diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3400 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6638 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1351 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10670 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32319 |
5 files changed, 27204 insertions, 27174 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index b76f127a..df343568 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2267310 . 3485684126) +(2268894 . 3485693909) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4452 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4448 . T) (-4453 . T) (-4447 . T)) +((-4455 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4456 . T) (-4450 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1385) +(-32 R -1395) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) +((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4455))) +((|HasAttribute| |#1| (QUOTE -4458))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1385 UP UPUP -3621) +(-40 -1395 UP UPUP -4154) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-416 |#2|) (QUOTE (-146))) (|HasCategory| (-416 |#2|) (QUOTE (-148))) (|HasCategory| (-416 |#2|) (QUOTE (-357))) (-2817 (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-376))) (-2817 (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (-2817 (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-357))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371))))) -(-41 R -1385) +((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) +(-41 R -1395) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -439) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-314)))) +((|HasCategory| |#1| (QUOTE (-315)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) -((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) +((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4455 . T) (-4456 . T)) -((-2817 (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|))))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|))))))) +((-4458 . T) (-4459 . T)) +((-2832 (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|))))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4452 . T)) +((-4455 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1385) +(-54 |Base| R -1395) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-61 -2031) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-61 -2041) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2031) +(-62 -2041) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2031) +(-63 -2041) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2031) +(-64 -2041) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2031) +(-65 -2041) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2031) +(-66 -2041) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2031) +(-67 -2041) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2031) +(-68 -2041) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2031) +(-69 -2041) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2031) +(-70 -2041) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2031) +(-71 -2041) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2031) +(-72 -2041) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2031) +(-73 -2041) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2031) +(-74 -2041) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2031) +(-77 -2041) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2031) +(-78 -2041) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2031) +(-79 -2041) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2031) +(-80 -2041) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2031) +(-81 -2041) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2031) +(-82 -2041) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2031) +(-83 -2041) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2031) +(-84 -2041) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2031) +(-85 -2041) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2031) +(-86 -2041) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2031) +(-87 -2041) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2031) +(-88 -2041) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2031) +(-89 -2041) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-371)))) +((|HasCategory| |#1| (QUOTE (-372)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4455 . T)) +((-4458 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4455 . T) ((-4457 "*") . T) (-4456 . T) (-4452 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4453 . T) (-4447 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4443 . T) (-4451 . T) (-4454 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4442 . T)) +((-4458 . T) ((-4460 "*") . T) (-4459 . T) (-4455 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4456 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4446 . T) (-4454 . T) (-4457 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4445 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4452 . T)) +((-4455 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4457 "*")))) +((|HasAttribute| |#1| (QUOTE (-4460 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4455 . T)) +((-4458 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4456 . T)) +((-4459 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -316) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-112) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-871))))) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1385 UP) +(-116 -1395 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-919))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-117 |#1|) (QUOTE (-1034))) (|HasCategory| (-117 |#1|) (QUOTE (-829))) (-2817 (|HasCategory| (-117 |#1|) (QUOTE (-829))) (|HasCategory| (-117 |#1|) (QUOTE (-859)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (QUOTE (-1164))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -316) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-314))) (|HasCategory| (-117 |#1|) (QUOTE (-554))) (|HasCategory| (-117 |#1|) (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-919)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-922))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1037))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1167))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-922)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) +((|HasAttribute| |#1| (QUOTE -4459))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130)))))) (-2817 (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1112)))) (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130)))))) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2832 (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1115))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4457 "*") . T)) +(((-4460 "*") . T)) NIL -(-136 |minix| -4131 S T$) +(-136 |minix| -4106 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -4131 R) +(-137 |minix| -4106 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4455 . T) (-4445 . T) (-4456 . T)) -((-2817 (-12 (|HasCategory| (-145) (QUOTE (-376))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-145) (QUOTE (-376))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) +((-4458 . T) (-4448 . T) (-4459 . T)) +((-2832 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4452 . T)) +((-4455 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4452 . T)) +((-4455 . T)) NIL -(-149 -1385 UP UPUP) +(-149 -1395 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasAttribute| |#1| (QUOTE -4455))) +((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasAttribute| |#1| (QUOTE -4458))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4450 . T) (-4449 . T) (-4452 . T)) +((-4453 . T) (-4452 . T) (-4455 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -1385) +(-159 R -1395) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1215))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-565)))) +((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4448 -2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4451 |has| |#1| (-6 -4451)) (-4454 |has| |#1| (-6 -4454)) (-3561 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 -2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4457 |has| |#1| (-6 -4457)) (-3535 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4448 -2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4451 |has| |#1| (-6 -4451)) (-4454 |has| |#1| (-6 -4454)) (-3561 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1215)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-919))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-919))))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1215)))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-1215)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#1| (QUOTE -4454)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-357))))) +((-4451 -2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4457 |has| |#1| (-6 -4457)) (-3535 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1218)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-922))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-922))))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1075))) (-12 (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4457)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-358))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4457 "*") . T) (-4448 . T) (-4453 . T) (-4447 . T) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") . T) (-4451 . T) (-4456 . T) (-4450 . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-962 |#2|) (LIST (QUOTE -896) (|devaluate| |#1|)))) +((|HasCategory| (-965 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -1385) +(-190 R -1395) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -1385 UP UPUP R) +(-217 -1395 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -1385 FP) +(-218 -1395 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -1385) +(-221 R -1395) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-226 R -1385) +(-226 R -1395) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,23 +846,23 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4456 . T)) +((-4459 . T)) NIL (-232 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (-233 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4452 . T)) +((-4455 . T)) NIL (-234 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -872,4301 +872,4313 @@ NIL ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-236 S) +(-236 R) +((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) +((-4453 . T) (-4452 . T)) +NIL +(-237 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-237) +(-238) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-238) +(-239) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4452 . T)) +((-4455 . T)) NIL -(-239 A S) +(-240 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4455))) -(-240 S) +((|HasAttribute| |#1| (QUOTE -4458))) +(-241 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4456 . T)) +((-4459 . T)) NIL -(-241) +(-242) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -4131 R) +(-243 S -4106 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857))) (|HasAttribute| |#3| (QUOTE -4452)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-1112)))) -(-243 -4131 R) +((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) +(-244 -4106 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) +((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) NIL -(-244 -4131 A B) +(-245 -4106 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -4131 R) +(-246 -4106 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) -(-246) +((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) +(-247) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-247 S) +(-248 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-248) +(-249) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4448 . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-249 S) +(-250 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-250 S) +(-251 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-251 M) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-252 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-252 |vl| R) +(-253 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-253) +(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-254) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-254) +(-255) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-255) +(-256) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-256 |n| R M S) +(-257 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4452 -2817 (-2086 (|has| |#4| (-1061)) (|has| |#4| (-238))) (|has| |#4| (-6 -4452)) (-2086 (|has| |#4| (-1061)) (|has| |#4| (-910 (-1189))))) (-4449 |has| |#4| (-1061)) (-4450 |has| |#4| (-1061)) ((-4457 "*") |has| |#4| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#4| (QUOTE (-371))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (QUOTE (-1061)))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-371)))) (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-802))) (-2817 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (QUOTE (-857)))) (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (QUOTE (-735))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-371)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-802)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-857)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1061)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1061))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-735))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#4| (QUOTE (-1061))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1112)))) (-2817 (|HasAttribute| |#4| (QUOTE -4452)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|))))) -(-257 |n| R S) +((-4455 -2832 (-2097 (|has| |#4| (-1064)) (|has| |#4| (-239))) (|has| |#4| (-6 -4455)) (-2097 (|has| |#4| (-1064)) (|has| |#4| (-913 (-1192))))) (-4452 |has| |#4| (-1064)) (-4453 |has| |#4| (-1064)) ((-4460 "*") |has| |#4| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-803))) (-2832 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-858)))) (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (QUOTE (-736))) (-2832 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-858)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (|HasCategory| |#4| (QUOTE (-736))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#4| (QUOTE (-1064))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#4| (QUOTE -4455)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1064)))) (-12 (|HasCategory| |#4| (QUOTE (-1064))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))))) +(-258 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4452 -2817 (-2086 (|has| |#3| (-1061)) (|has| |#3| (-238))) (|has| |#3| (-6 -4452)) (-2086 (|has| |#3| (-1061)) (|has| |#3| (-910 (-1189))))) (-4449 |has| |#3| (-1061)) (-4450 |has| |#3| (-1061)) ((-4457 "*") |has| |#3| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#3| (QUOTE (-371))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-802))) (-2817 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857)))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-735))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-371)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-802)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-857)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-735))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (-2817 (|HasAttribute| |#3| (QUOTE -4452)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) -(-258 A R S V E) +((-4455 -2832 (-2097 (|has| |#3| (-1064)) (|has| |#3| (-239))) (|has| |#3| (-6 -4455)) (-2097 (|has| |#3| (-1064)) (|has| |#3| (-913 (-1192))))) (-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-736))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasAttribute| |#3| (QUOTE -4455)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) +(-259 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-238)))) -(-259 R S V E) +((|HasCategory| |#2| (QUOTE (-239)))) +(-260 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-260 S) +(-261 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL -(-261) +(-262) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-262 R |Ex|) +(-263 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-263) +(-264) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-264 R) +(-265 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-265 |Ex|) +(-266 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-266) +(-267) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-267) +(-268) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-268 S) +(-269 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-270 R S V) +(-271 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#3| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-271 A S) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-272 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-272 S) +(-273 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-273) +(-274) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-274) +(-275) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-275) +(-276) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-276) +(-277) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-277) +(-278) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-278) +(-279) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-279) +(-280) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-280) +(-281) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-281) +(-282) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-282 R -1385) +(-283 R -1395) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-283 R -1385) +(-284 R -1395) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-284 |Coef| UTS ULS) +(-285 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-371)))) -(-285 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-372)))) +(-286 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-371)))) -(-286) +((|HasCategory| |#1| (QUOTE (-372)))) +(-287) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-287) +(-288) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-288 A S) +(-289 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112)))) -(-289 S) +((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115)))) +(-290 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4456 . T)) +((-4459 . T)) NIL -(-290 S) +(-291 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-291) +(-292) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-292 |Coef| UTS) +(-293 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-293 S T$) +(-294 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-294 S |Dom| |Im|) +(-295 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) -(-295 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4459))) +(-296 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-296 S R |Mod| -4115 -1480 |exactQuo|) +(-297 S R |Mod| -2230 -4333 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-297) +(-298) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4448 . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-298) +(-299) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-299 R) +(-300 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-300 S R) +(-301 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-301 S) +(-302 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4452 -2817 (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4449 |has| |#1| (-1061)) (-4450 |has| |#1| (-1061))) -((|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735)))) (|HasCategory| |#1| (QUOTE (-482))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-309))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-482)))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-735)))) -(-302 |Key| |Entry|) +((-4455 -2832 (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4452 |has| |#1| (-1064)) (-4453 |has| |#1| (-1064))) +((|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-1115)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-736)))) +(-303 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-303) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-304) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-304 -1385 S) +(-305 -1395 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-305 E -1385) +(-306 E -1395) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-306 A B) +(-307 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-307) +(-308) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-308 S) +(-309 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-1061)))) -(-309) +((|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1064)))) +(-310) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-310 R1) +(-311 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-311 R1 R2) +(-312 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-312) +(-313) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-313 S) +(-314 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-314) +(-315) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-315 S R) +(-316 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-316 R) +(-317 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-317 -1385) +(-318 -1395) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-318) +(-319) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-319) +(-320) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-320 R FE |var| |cen|) +(-321 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-1034))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-829))) (-2817 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-829))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-859)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-1164))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -316) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -293) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-314))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-554))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-859))) (-12 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| $ (QUOTE (-146)))) (-2817 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| $ (QUOTE (-146)))))) -(-321 R S) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1037))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-1167))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146)))) (-2832 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3| |#4|) (QUOTE (-922))) (|HasCategory| $ (QUOTE (-146)))))) +(-322 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-322 R FE) +(-323 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-323 R) +(-324 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4452 -2817 (-12 (|has| |#1| (-565)) (-2817 (|has| |#1| (-1061)) (|has| |#1| (-482)))) (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) ((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-565)) (-4447 |has| |#1| (-565))) -((-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-1061))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1124)))) (-2817 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) -(-324 R -1385) +((-4455 -2832 (-12 (|has| |#1| (-566)) (-2832 (|has| |#1| (-1064)) (|has| |#1| (-483)))) (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566))) +((-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (QUOTE (-1064))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1127)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1127)))) (-2832 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2832 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1064)))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +(-325 R -1395) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-325) +(-326) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-326 FE |var| |cen|) +(-327 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-327 M) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-328 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-328 E OV R P) +(-329 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-329 S) +(-330 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4450 . T) (-4449 . T)) -((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-801)))) -(-330 S E) +((-4453 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802)))) +(-331 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-331 S) +(-332 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-780) (QUOTE (-801)))) -(-332 S R E) +((|HasCategory| (-781) (QUOTE (-802)))) +(-333 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174)))) -(-333 R E) +((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) +(-334 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-334 S) +(-335 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-335 S -1385) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-336 S -1395) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-376)))) -(-336 -1385) +((|HasCategory| |#2| (QUOTE (-377)))) +(-337 -1395) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-337) +(-338) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-338 E) +(-339 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-339) +(-340) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-340) +(-341) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-341 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-342 S -1385 UP UPUP R) +(-343 S -1395 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-343 -1385 UP UPUP R) +(-344 -1395 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-344 -1385 UP UPUP R) +(-345 -1395 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-345 S R) +(-346 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-346 R) +((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-347 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-347 |basicSymbols| |subscriptedSymbols| R) +(-348 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-387)))) (|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) -(-348 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +(-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-349 S -1385 UP UPUP) +(-350 S -1395 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-371)))) -(-350 -1385 UP UPUP) +((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372)))) +(-351 -1395 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-351 |p| |extdeg|) +(-352 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) -(-352 GF |defpol|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +(-353 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-353 GF |extdeg|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-354 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-354 GF) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-355 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-355 F1 GF F2) +(-356 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-356 S) +(-357 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-357) +(-358) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-358 R UP -1385) +(-359 R UP -1395) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-359 |p| |extdeg|) +(-360 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) -(-360 GF |uni|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +(-361 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-361 GF |extdeg|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-362 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-362 |p| |n|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-363 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) -(-363 GF |defpol|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| (-923 |#1|) (QUOTE (-146))) (|HasCategory| (-923 |#1|) (QUOTE (-377)))) (|HasCategory| (-923 |#1|) (QUOTE (-148))) (|HasCategory| (-923 |#1|) (QUOTE (-377))) (|HasCategory| (-923 |#1|) (QUOTE (-146)))) +(-364 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-364 -1385 GF) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-365 -1395 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-365 GF) +(-366 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-366 -1385 FP FPP) +(-367 -1395 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-367 GF |n|) +(-368 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) -(-368 R |ls|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) +(-369 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-369 S) +(-370 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4452 . T)) +((-4455 . T)) NIL -(-370 S) +(-371 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-371) +(-372) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-372 |Name| S) +(-373 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-373 S) +(-374 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-374 S R) +(-375 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-565)))) -(-375 R) +((|HasCategory| |#2| (QUOTE (-566)))) +(-376 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) +((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) NIL -(-376) +(-377) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-377 S R UP) +(-378 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-371)))) -(-378 R UP) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372)))) +(-379 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-379 S A R B) +(-380 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-380 A S) +(-381 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112)))) -(-381 S) +((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115)))) +(-382 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4455 . T)) +((-4458 . T)) NIL -(-382 |VarSet| R) +(-383 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) NIL -(-383 S V) +(-384 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-384 S R) +(-385 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) -(-385 R) +((|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) +(-386 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-386 |Par|) +(-387 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-387) +(-388) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4438 . T) (-4446 . T) (-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4441 . T) (-4449 . T) (-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-388 |Par|) +(-389 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-389 R S) +(-390 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-390 R |Basis|) +(-391 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-391) +(-392) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-392) +(-393) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-393 R S) +(-394 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-394 S) +(-395 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-395 S) +(-396 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-396) +((|HasCategory| |#1| (QUOTE (-860)))) +(-397) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-397) +(-398) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-398) +(-399) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-399 |n| |class| R) +(-400 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-400) +(-401) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-401 -1385 UP UPUP R) +(-402 -1395 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-402 S) +(-403 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-403) +(-404) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-404) +(-405) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-405) +(-406) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-406) +(-407) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-407 -2031 |returnType| -1563 |symbols|) +(-408 -2041 |returnType| -1574 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-408 -1385 UP) +(-409 -1395 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-409 R) +(-410 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-410 S) +(-411 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-411) +(-412) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-412 S) +(-413 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4438)) (|HasAttribute| |#1| (QUOTE -4446))) -(-413) +((|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4449))) +(-414) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-414 R S) +(-415 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-415 A B) +(-416 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-416 S) +(-417 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4442 -12 (|has| |#1| (-6 -4453)) (|has| |#1| (-461)) (|has| |#1| (-6 -4442))) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-829))) (-2817 (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-859)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-554))) (-12 (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-461)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-417 S R UP) +((-4445 -12 (|has| |#1| (-6 -4456)) (|has| |#1| (-462)) (|has| |#1| (-6 -4445))) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-830))) (-2832 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-418 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-418 R UP) +(-419 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-419 A S) +(-420 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) -(-420 S) +((|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) +(-421 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-421 R1 F1 U1 A1 R2 F2 U2 A2) +(-422 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-422 R -1385 UP A) +(-423 R -1395 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-423 R -1385 UP A |ibasis|) +(-424 R -1395 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1050) (|devaluate| |#2|)))) -(-424 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1053) (|devaluate| |#2|)))) +(-425 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-425 S R) +(-426 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-371)))) -(-426 R) +((|HasCategory| |#2| (QUOTE (-372)))) +(-427 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) +((-4455 |has| |#1| (-566)) (-4453 . T) (-4452 . T)) NIL -(-427 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -316) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-1234))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-461)))) (-428 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1237))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1237)))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462)))) +(-429 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-429 R FE |x| |cen|) +(-430 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-430 R A S B) +(-431 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-431 R FE |Expon| UPS TRAN |x|) +(-432 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-432 S A R B) +(-433 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-433 A S) +(-434 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-376)))) -(-434 S) +((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) +(-435 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4455 . T) (-4445 . T) (-4456 . T)) +((-4458 . T) (-4448 . T) (-4459 . T)) NIL -(-435 R -1385) +(-436 R -1395) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-436 R E) +(-437 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4442 -12 (|has| |#1| (-6 -4442)) (|has| |#2| (-6 -4442))) (-4449 . T) (-4450 . T) (-4452 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#2| (QUOTE -4442)))) -(-437 R -1385) +((-4445 -12 (|has| |#1| (-6 -4445)) (|has| |#2| (-6 -4445))) (-4452 . T) (-4453 . T) (-4455 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#2| (QUOTE -4445)))) +(-438 R -1395) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-438 S R) +(-439 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) -(-439 R) +((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) +(-440 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4452 -2817 (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) ((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-565)) (-4447 |has| |#1| (-565))) +((-4455 -2832 (|has| |#1| (-1064)) (|has| |#1| (-483))) (-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) ((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-566)) (-4450 |has| |#1| (-566))) NIL -(-440 R -1385) +(-441 R -1395) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-441 R -1385) +(-442 R -1395) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-442 R -1385) +(-443 R -1395) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-443) +(-444) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-444 R -1385 UP) +(-445 R -1395 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-48))))) -(-445) +((|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-48))))) +(-446) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-446) +(-447) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-447 |f|) +(-448 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-448) +(-449) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-449) +(-450) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-450) +(-451) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-451 UP) +(-452 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-452 R UP -1385) +(-453 R UP -1395) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-453 R UP) +(-454 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-454 R) +(-455 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-413)))) -(-455) +((|HasCategory| |#1| (QUOTE (-414)))) +(-456) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-456 |Dom| |Expon| |VarSet| |Dpol|) +(-457 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-457 |Dom| |Expon| |VarSet| |Dpol|) +(-458 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-458 |Dom| |Expon| |VarSet| |Dpol|) +(-459 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-459 |Dom| |Expon| |VarSet| |Dpol|) +(-460 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-371)))) -(-460 S) +((|HasCategory| |#1| (QUOTE (-372)))) +(-461 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-461) +(-462) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-462 R |n| |ls| |gamma|) +(-463 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4452 |has| (-416 (-962 |#1|)) (-565)) (-4450 . T) (-4449 . T)) -((|HasCategory| (-416 (-962 |#1|)) (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| (-416 (-962 |#1|)) (QUOTE (-565)))) -(-463 |vl| R E) +((-4455 |has| (-417 (-965 |#1|)) (-566)) (-4453 . T) (-4452 . T)) +((|HasCategory| (-417 (-965 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-965 |#1|)) (QUOTE (-566)))) +(-464 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-464 R BP) +(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-465 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-465 OV E S R P) +(-466 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-466 E OV R P) +(-467 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-467 R) +(-468 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-468 R FE) +(-469 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-469 RP TP) +(-470 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-470 |vl| R IS E |ff| P) +(-471 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-471 E V R P Q) +(-472 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-472 R E |VarSet| P) +(-473 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) -(-473 S R E) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-474 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-474 R E) +(-475 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-475) +(-476) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-476) +(-477) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-477) +(-478) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-478 S R E) +(-479 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-479 R E) +(-480 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-480 |lv| -1385 R) +(-481 |lv| -1395 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-481 S) +(-482 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-482) +(-483) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-483 |Coef| |var| |cen|) +(-484 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-484 |Key| |Entry| |Tbl| |dent|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-485 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112)))) -(-485 R E V P) +((-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115)))) +(-486 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) -(-486) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-487) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-487) +(-488) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-488 |Key| |Entry| |hashfn|) +(-489 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-489) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-490) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-490 |vl| R) +(-491 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-491 -4131 S) +(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-492 -4106 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) -(-492) +((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) +(-493) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-493 S) +(-494 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-494 -1385 UP UPUP R) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-495 -1395 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-495 BP) +(-496 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-496) +(-497) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) -(-497 A S) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) +(-498 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) -(-498 S) +((|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) +(-499 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-499 S) +(-500 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-500) +(-501) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-501 S) +(-502 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-502) +(-503) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-503 -1385 UP |AlExt| |AlPol|) +(-504 -1395 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-504) +(-505) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) -(-505 S |mn|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| $ (QUOTE (-1064))) (|HasCategory| $ (LIST (QUOTE -1053) (QUOTE (-574))))) +(-506 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-506 R |mnRow| |mnCol|) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-507 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-507 K R UP) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-508 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-508 R UP -1385) +(-509 R UP -1395) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-509 |mn|) +(-510 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -316) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-112) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-871))))) -(-510 K R UP L) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1115))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) +(-511 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-511) +(-512) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-512 R Q A B) +(-513 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-513 -1385 |Expon| |VarSet| |DPoly|) +(-514 -1395 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-1189))))) -(-514 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1192))))) +(-515 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-515) +(-516) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-516 A S) +(-517 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-517 A S) +(-518 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-518 A S) +(-519 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-519 A S) +(-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-520 A S) +(-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-521 A S) +(-522 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-522 S A B) +(-523 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-523 A B) +(-524 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-524 S E |un|) +(-525 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-801)))) -(-525 S |mn|) +((|HasCategory| |#2| (QUOTE (-802)))) +(-526 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-526) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-527) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-527 |p| |n|) +(-528 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| (-590 |#1|) (QUOTE (-146))) (|HasCategory| (-590 |#1|) (QUOTE (-376)))) (|HasCategory| (-590 |#1|) (QUOTE (-148))) (|HasCategory| (-590 |#1|) (QUOTE (-376))) (|HasCategory| (-590 |#1|) (QUOTE (-146)))) -(-528 R |mnRow| |mnCol| |Row| |Col|) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146)))) +(-529 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-529 S |mn|) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-530 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-530 R |Row| |Col| M) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-531 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4456))) -(-531 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4459))) +(-532 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4456))) -(-532 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4459))) +(-533 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-533) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-534) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-534) +(-535) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-535 S) +(-536 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-536) +(-537) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-537 GF) +(-538 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-539 R) +(-540 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-540 |Varset|) +(-541 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-541 K -1385 |Par|) +(-542 K -1395 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-542) +(-543) NIL NIL NIL -(-543) +(-544) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-544 R) +(-545 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-546 |Coef| UTS) +(-547 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-547 K -1385 |Par|) +(-548 K -1395 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-548 R BP |pMod| |nextMod|) +(-549 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-549 OV E R P) +(-550 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-550 K UP |Coef| UTS) +(-551 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-551 |Coef| UTS) +(-552 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-552 R UP) +(-553 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-553 S) +(-554 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-554) +(-555) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-555) +(-556) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-556) +(-557) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-558) +(-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-559 |Key| |Entry| |addDom|) +(-560 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-560 R -1385) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-561 R -1395) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-561 R0 -1385 UP UPUP R) +(-562 R0 -1395 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-562) +(-563) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-563 R) +(-564 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3550 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-564 S) +(-565 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-565) +(-566) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-566 R -1385) +(-567 R -1395) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-567 I) +(-568 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-568) +(-569) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-569 R -1385 L) +(-570 R -1395 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -665) (|devaluate| |#2|)))) -(-570) +((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) +(-571) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-571 -1385 UP UPUP R) +(-572 -1395 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-572 -1385 UP) +(-573 -1395 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-573) +(-574) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4437 . T) (-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4440 . T) (-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-574) +(-575) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-575 R -1385 L) +(-576 R -1395 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -665) (|devaluate| |#2|)))) -(-576 R -1385) +((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) +(-577 R -1395) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1151)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-638))))) -(-577 -1385 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639))))) +(-578 -1395 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-578 S) +(-579 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-579 -1385) +(-580 -1395) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-580 R) +(-581 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3550 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-3524 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-581) +(-582) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-582 R -1385) +(-583 R -1395) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-638))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-565)))) -(-583 -1385 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566)))) +(-584 -1395 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-584 R -1385) +(-585 R -1395) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-585) +(-586) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-586) +(-587) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-587) +(-588) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-588) +(-589) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-589 |p| |unBalanced?|) +(-590 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-590 |p|) +(-591 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-376)))) -(-591) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) +(-592) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-592 R -1385) +(-593 R -1395) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-593 E -1385) +(-594 E -1395) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-594) +(-595) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-595 -1385) +(-596 -1395) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4450 . T) (-4449 . T)) -((|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-1189))))) -(-596 I) +((-4453 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-1192))))) +(-597 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-597 GF) +(-598 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-598 R) +(-599 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-148)))) -(-599) +(-600) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-600 R E V P TS) +(-601 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-601) +(-602) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-602 |mn|) +(-603 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (-2817 (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112)))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) -(-603 E V R P) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2832 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +(-604 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-604 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))) (|HasCategory| (-573) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573)))))) (-605 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574)))))) +(-606 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-565)))) -(-606) +(((-4460 "*") |has| |#1| (-566)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-566)))) +(-607) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-607 A B) +(-608 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-608 A B C) +(-609 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-609 R -1385 FG) +(-610 R -1395 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-610 S) +(-611 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-611 R |mn|) +(-612 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-612 S |Index| |Entry|) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-613 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-859))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-1112)))) -(-613 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-1115)))) +(-614 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-614) +(-615) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-615) +(-616) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-616 R A) +(-617 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4452 -2817 (-2086 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))) (-4450 . T) (-4449 . T)) -((-2817 (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) -(-617 |Entry|) +((-4455 -2832 (-2097 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T)) +((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) +(-618 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| (-1171) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-618 S |Key| |Entry|) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-619 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-619 |Key| |Entry|) +(-620 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4456 . T)) +((-4459 . T)) NIL -(-620 R S) +(-621 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-621 S) +(-622 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) -(-622 S) +((|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) +(-623 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-623 S) +(-624 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-624 -1385 UP) +(-625 -1395 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-625 S) +(-626 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-626) +(-627) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-627 S) +(-628 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-628 S R) +(-629 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-629 R) +(-630 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4452 . T)) +((-4455 . T)) NIL -(-630 A R S) +(-631 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-857)))) -(-631 R -1385) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-858)))) +(-632 R -1395) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-632 R UP) +(-633 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4448 . T) (-4452 . T)) -((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) -(-633 R E V P TS ST) +((-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4451 . T) (-4455 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) +(-634 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-634 OV E Z P) +(-635 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-635) +(-636) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-636 |VarSet| R |Order|) +(-637 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-637 R |ls|) +(-638 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-638) +(-639) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-639 R -1385) +(-640 R -1395) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-640 |lv| -1385) +(-641 |lv| -1395) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-641) +(-642) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-1171) (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112)))) -(-642 S R) +((-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1174) (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (QUOTE (-1115)))) +(-643 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-371)))) -(-643 R) +((|HasCategory| |#2| (QUOTE (-372)))) +(-644 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) NIL -(-644 R A) +(-645 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4452 -2817 (-2086 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))) (-4450 . T) (-4449 . T)) -((-2817 (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) -(-645 R FE) +((-4455 -2832 (-2097 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4453 . T) (-4452 . T)) +((-2832 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) +(-646 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-646 R) +(-647 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-647 S R) +(-648 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2075 (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-371)))) -(-648 R) +((-2086 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372)))) +(-649 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-649 R) +(-650 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-650 A B) +(-651 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-651 A B) +(-652 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-652 A B C) +(-653 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-653 S) +(-654 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-654 T$) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-655 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-655 R) +(-656 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-656 S) +(-657 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-657 R) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-658 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-658 S E |un|) +(-659 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-659 A S) +(-660 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) -(-660 S) +((|HasAttribute| |#1| (QUOTE -4459))) +(-661 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-661 R -1385 L) +(-662 R -1395 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-662 A) +(-663 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) -(-663 A M) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +(-664 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) -(-664 S A) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +(-665 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-371)))) -(-665 A) +((|HasCategory| |#2| (QUOTE (-372)))) +(-666 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-666 -1385 UP) +(-667 -1395 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-667 A -3189) +(-668 A -2024) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) -(-668 A L) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +(-669 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-669 S) +(-670 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-670) +(-671) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-671 M R S) +(-672 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4450 . T) (-4449 . T)) -((|HasCategory| |#1| (QUOTE (-800)))) -(-672 R) +((-4453 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-801)))) +(-673 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-673 |VarSet| R) +(-674 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) -((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-174)))) -(-674 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4453 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174)))) +(-675 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-675 S) +(-676 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-676 -1385) +(-677 -1395) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-677 -1385 |Row| |Col| M) +(-678 -1395 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-678 R E OV P) +(-679 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-679 |n| R) +(-680 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4452 . T) (-4455 . T) (-4449 . T) (-4450 . T)) -((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-565))) (-2817 (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-680) +((-4455 . T) (-4458 . T) (-4452 . T) (-4453 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-681) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-681 |VarSet|) +(-682 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-682 A S) +(-683 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-683 S) +(-684 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-684 R) +(-685 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-685) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-686) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-686 |VarSet|) +(-687 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-687 A) +(-688 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-688 A C) +(-689 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-689 A B C) +(-690 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-690) +(-691) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-691 A) +(-692 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-692 A C) +(-693 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-693 A B C) +(-694 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-694 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-695 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-695 S R |Row| |Col|) +(-696 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-565)))) -(-696 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566)))) +(-697 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL -(-697 R |Row| |Col| M) +(-698 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565)))) -(-698 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4455 . T) (-4456 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566)))) (-699 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4458 . T) (-4459 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4460 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-700 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-700 T$) +(-701 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-701 S -1385 FLAF FLAS) +(-702 S -1395 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-702 R Q) +(-703 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-703) +(-704) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4448 . T) (-4453 |has| (-708) (-371)) (-4447 |has| (-708) (-371)) (-3561 . T) (-4454 |has| (-708) (-6 -4454)) (-4451 |has| (-708) (-6 -4451)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-708) (QUOTE (-148))) (|HasCategory| (-708) (QUOTE (-146))) (|HasCategory| (-708) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-708) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-708) (QUOTE (-376))) (|HasCategory| (-708) (QUOTE (-371))) (-2817 (|HasCategory| (-708) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-708) (QUOTE (-371)))) (|HasCategory| (-708) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-708) (QUOTE (-238))) (-2817 (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-357)))) (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (LIST (QUOTE -293) (QUOTE (-708)) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -316) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-708) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-708) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-708) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (-2817 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-357)))) (|HasCategory| (-708) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-708) (QUOTE (-1034))) (|HasCategory| (-708) (QUOTE (-1215))) (-12 (|HasCategory| (-708) (QUOTE (-1014))) (|HasCategory| (-708) (QUOTE (-1215)))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-371))) (-12 (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (QUOTE (-919))))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (-12 (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-919)))) (-12 (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (QUOTE (-919))))) (|HasCategory| (-708) (QUOTE (-554))) (-12 (|HasCategory| (-708) (QUOTE (-1072))) (|HasCategory| (-708) (QUOTE (-1215)))) (|HasCategory| (-708) (QUOTE (-1072))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-565)))) (-12 (|HasCategory| (-708) (QUOTE (-238))) (|HasCategory| (-708) (QUOTE (-371)))) (-12 (|HasCategory| (-708) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-708) (QUOTE (-371)))) (|HasCategory| (-708) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-708) (QUOTE (-565))) (|HasAttribute| (-708) (QUOTE -4454)) (|HasAttribute| (-708) (QUOTE -4451)) (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-146)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-357))))) -(-704 S) +((-4451 . T) (-4456 |has| (-709) (-372)) (-4450 |has| (-709) (-372)) (-3535 . T) (-4457 |has| (-709) (-6 -4457)) (-4454 |has| (-709) (-6 -4454)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2832 (|HasCategory| (-709) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-239))) (-2832 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2832 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1037))) (|HasCategory| (-709) (QUOTE (-1218))) (-12 (|HasCategory| (-709) (QUOTE (-1017))) (|HasCategory| (-709) (QUOTE (-1218)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-922)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-922))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-1218)))) (|HasCategory| (-709) (QUOTE (-1075))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4457)) (|HasAttribute| (-709) (QUOTE -4454)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-922)))) (|HasCategory| (-709) (QUOTE (-358))))) +(-705 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4456 . T)) +((-4459 . T)) NIL -(-705 U) +(-706 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-706) +(-707) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-707 OV E -1385 PG) +(-708 OV E -1395 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-708) +(-709) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-3524 . T) (-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-709 R) +(-710 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-710) +(-711) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4454 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4457 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-711 S D1 D2 I) +(-712 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-712 S) +(-713 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-713 S) +(-714 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-714 S T$) +(-715 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-715 S -3609 I) +(-716 S -3583 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-716 E OV R P) +(-717 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-717 R) +(-718 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-718 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-719 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-719) +(-720) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-720 R |Mod| -4115 -1480 |exactQuo|) +(-721 R |Mod| -2230 -4333 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-721 R |Rep|) +(-722 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-722 IS E |ff|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-723 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-723 R M) +(-724 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) +((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-724 R |Mod| -4115 -1480 |exactQuo|) +(-725 R |Mod| -2230 -4333 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4452 . T)) +((-4455 . T)) NIL -(-725 S R) +(-726 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-726 R) +(-727 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-727 -1385) +(-728 -1395) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-728 S) +(-729 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-729) +(-730) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-730 S) +(-731 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-731) +(-732) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-732 S R UP) +(-733 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376)))) -(-733 R UP) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377)))) +(-734 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4448 |has| |#1| (-371)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-734 S) +(-735 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-735) +(-736) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-736 -1385 UP) +(-737 -1395 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-737 |VarSet| E1 E2 R S PR PS) +(-738 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-738 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-739 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-739 E OV R PPR) +(-740 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-740 |vl| R) +(-741 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-741 E OV R PRF) +(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-742 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-742 E OV R P) +(-743 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-743 R S M) +(-744 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-744 R M) +(-745 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-859)))) -(-745 S) +((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860)))) +(-746 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4445 . T) (-4456 . T)) +((-4448 . T) (-4459 . T)) NIL -(-746 S) +(-747 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4455 . T) (-4445 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-747) +((-4458 . T) (-4448 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-748) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-748 S) +(-749 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-749 |Coef| |Var|) +(-750 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-750 OV E R P) +(-751 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-751 E OV R P) +(-752 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-752 S R) +(-753 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-753 R) +(-754 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-754) +(-755) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-762) +(-763) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-769 S) +(-770 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-771 S) +(-772 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-773 |Par|) +(-774 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-774 -1385) +(-775 -1395) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-775 P -1385) +(-776 P -1395) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-776 T$) +(-777 T$) NIL NIL NIL -(-777 UP -1385) +(-778 UP -1395) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-778) +(-779) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-779 R) +(-780 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-780) +(-781) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4457 "*") . T)) +(((-4460 "*") . T)) NIL -(-781 R -1385) +(-782 R -1395) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-782 S) +(-783 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-784 R |PolR| E |PolE|) +(-785 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-785 R E V P TS) +(-786 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-786 -1385 |ExtF| |SUEx| |ExtP| |n|) +(-787 -1395 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-787 BP E OV R P) +(-788 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-788 |Par|) +(-789 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-789 R |VarSet|) +(-790 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (QUOTE (-554)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573))))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -1004) (QUOTE (-573))))))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-790 R S) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2086 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2086 (|HasCategory| |#1| (QUOTE (-555)))) (-2086 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2086 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2086 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1192)))) (-2086 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-791 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-791 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) (-792 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-793 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) -(-793 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) +(-794 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-794 S) +(-795 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-174)))) -(-795) +((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-174)))) +(-796) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-796) +(-797) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-797) +(-798) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-798) +(-799) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-799 |Curve|) +(-800 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-800) +(-801) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-801) +(-802) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-802) +(-803) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-803) +(-804) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-804) +(-805) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-805 S R) +(-806 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-376)))) -(-806 R) +((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) +(-807 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-807 -2817 R OS S) +(-808 -2832 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-808 R) +(-809 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (-2817 (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) -(-809) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1014 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) +(-810) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-810 R -1385 L) +(-811 R -1395 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-811 R -1385) +(-812 R -1395) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-812) +(-813) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-813 R -1385) +(-814 R -1395) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-814) +(-815) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-815 -1385 UP UPUP R) +(-816 -1395 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-816 -1385 UP L LQ) +(-817 -1395 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-817) +(-818) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-818 -1385 UP L LQ) +(-819 -1395 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-819 -1385 UP) +(-820 -1395 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-820 -1385 L UP A LO) +(-821 -1395 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-821 -1385 UP) +(-822 -1395 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-822 -1385 LO) +(-823 -1395 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-823 -1385 LODO) +(-824 -1395 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-824 -4131 S |f|) +(-825 -4106 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) -(-825 R) +((-4452 |has| |#2| (-1064)) (-4453 |has| |#2| (-1064)) (-4455 |has| |#2| (-6 -4455)) ((-4460 "*") |has| |#2| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2832 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#2| (QUOTE (-1064))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1115)))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) +(-826 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-826 |Kernels| R |var|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-827 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4457 "*") |has| |#2| (-371)) (-4448 |has| |#2| (-371)) (-4453 |has| |#2| (-371)) (-4447 |has| |#2| (-371)) (-4452 . T) (-4450 . T) (-4449 . T)) -((|HasCategory| |#2| (QUOTE (-371)))) -(-827 S) +(((-4460 "*") |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 |has| |#2| (-372)) (-4450 |has| |#2| (-372)) (-4455 . T) (-4453 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-372)))) +(-828 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-828 S) +(-829 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-829) +((|HasCategory| |#1| (QUOTE (-860)))) +(-830) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-830) +(-831) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-831) +(-832) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-832) +(-833) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-833) +(-834) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-834) +(-835) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-835 R) +(-836 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-836 P R) +(-837 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) -(-837) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) +(-838) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-838) +(-839) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-839 S) +(-840 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4455 . T) (-4445 . T) (-4456 . T)) +((-4458 . T) (-4448 . T) (-4459 . T)) NIL -(-840) +(-841) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-841 R S) +(-842 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-842 R) +(-843 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4452 |has| |#1| (-857))) -((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-554)))) -(-843 A S) +((-4455 |has| |#1| (-858))) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) +(-844 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-844 S) +(-845 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-845 R) +(-846 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) +((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-846) +(-847) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-847) +(-848) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-848) +(-849) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-849) +(-850) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-850) +(-851) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-851 R S) +(-852 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-852 R) +(-853 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4452 |has| |#1| (-857))) -((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-554)))) -(-853) +((-4455 |has| |#1| (-858))) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2832 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) +(-854) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-854 -4131 S) +(-855 -4106 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-855) +(-856) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-856 S) +(-857 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-857) +(-858) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4452 . T)) +((-4455 . T)) NIL -(-858 S) +(-859 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-860 S R) +(-861 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174)))) -(-861 R) +((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) +(-862 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-862 R C) +(-863 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) -(-863 R |sigma| -2074) +((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) +(-864 R |sigma| -2085) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) -(-864 |x| R |sigma| -2074) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) +(-865 |x| R |sigma| -2085) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-371)))) -(-865 R) +((-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372)))) +(-866 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) -(-866) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) +(-867) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-868 S) +(-869 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-869) +(-870) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-870) +(-871) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-871) +(-872) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-872) +(-873) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-873 |VariableList|) +(-874 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-874) +(-875) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-875 R |vl| |wl| |wtlevel|) +(-876 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) -(-876 R PS UP) +((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) +(-877 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-877 R |x| |pt|) +(-878 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-878 |p|) +(-879 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-879 |p|) +(-880 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-880 |p|) +(-881 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-879 |#1|) (QUOTE (-919))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-879 |#1|) (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-148))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-879 |#1|) (QUOTE (-1034))) (|HasCategory| (-879 |#1|) (QUOTE (-829))) (-2817 (|HasCategory| (-879 |#1|) (QUOTE (-829))) (|HasCategory| (-879 |#1|) (QUOTE (-859)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (QUOTE (-1164))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (QUOTE (-238))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -316) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -879) (|devaluate| |#1|)) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (QUOTE (-314))) (|HasCategory| (-879 |#1|) (QUOTE (-554))) (|HasCategory| (-879 |#1|) (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-919)))) (|HasCategory| (-879 |#1|) (QUOTE (-146))))) -(-881 |p| PADIC) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-880 |#1|) (QUOTE (-922))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1037))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2832 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1167))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-922)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))))) +(-882 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-829))) (-2817 (|HasCategory| |#2| (QUOTE (-829))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-882 S T$) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (-2832 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-883 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))))) -(-883) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) +(-884) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-884) +(-885) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-885) +(-886) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-886 CF1 CF2) +(-887 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-887 |ComponentFunction|) +(-888 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-888 CF1 CF2) +(-889 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-889 |ComponentFunction|) +(-890 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-890) +(-891) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-891 CF1 CF2) +(-892 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-892 |ComponentFunction|) +(-893 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-893) +(-894) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-894 R) +(-895 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-895 R S L) +(-896 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-896 S) +(-897 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-897 |Base| |Subject| |Pat|) +(-898 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2075 (|HasCategory| |#2| (QUOTE (-1061)))) (-2075 (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (-2075 (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) -(-898 R A B) +((-12 (-2086 (|HasCategory| |#2| (QUOTE (-1064)))) (-2086 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#2| (QUOTE (-1064))) (-2086 (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) +(-899 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-899 R S) +(-900 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-900 R -3609) +(-901 R -3583) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-901 R S) +(-902 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-902 R) +(-903 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-903 |VarSet|) +(-904 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-904 UP R) +(-905 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-905) +(-906 A T$ S) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +NIL +NIL +(-907 T$ S) +((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +NIL +NIL +(-908) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-906 UP -1385) +(-909 UP -1395) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-907) +(-910) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-908) +(-911) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-909 A S) +(-912 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-910 S) +(-913 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4452 . T)) +((-4455 . T)) NIL -(-911 S) +(-914 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-912 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-915 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-913 S) +(-916 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4452 . T)) +((-4455 . T)) NIL -(-914 S) +(-917 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-915 S) +(-918 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4452 . T)) -((-2817 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-859)))) -(-916 R E |VarSet| S) +((-4455 . T)) +((-2832 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) +(-919 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-917 R S) +(-920 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-918 S) +(-921 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-919) +(-922) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-920 |p|) +(-923 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-376)))) -(-921 R0 -1385 UP UPUP R) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) +(-924 R0 -1395 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-922 UP UPUP R) +(-925 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-923 UP UPUP) +(-926 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-924 R) +(-927 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-925 R) +(-928 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-926 E OV R P) +(-929 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-927) +(-930) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-928 -1385) +(-931 -1395) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-929 R) +(-932 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-930) +(-933) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-931) +(-934) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4457 "*") . T)) +(((-4460 "*") . T)) NIL -(-932 -1385 P) +(-935 -1395 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-933 |xx| -1385) +(-936 |xx| -1395) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-934 R |Var| |Expon| GR) +(-937 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-935 S) +(-938 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-936) +(-939) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-937) +(-940) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-938) +(-941) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-939 R -1385) +(-942 R -1395) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-940) +(-943) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-941 S A B) +(-944 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-942 S R -1385) +(-945 S R -1395) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-943 I) +(-946 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-944 S E) +(-947 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-945 S R L) +(-948 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-946 S E V R P) +(-949 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -896) (|devaluate| |#1|)))) -(-947 R -1385 -3609) +((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|)))) +(-950 R -1395 -3583) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-948 -3609) +(-951 -3583) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-949 S R Q) +(-952 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-950 S) +(-953 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-951 S R P) +(-954 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-952) +(-955) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-953 R) +(-956 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-954 |lv| R) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-957 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-955 |TheField| |ThePols|) +(-958 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-857)))) -(-956 R S) +((|HasCategory| |#1| (QUOTE (-858)))) +(-959 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-957 |x| R) +(-960 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-958 S R E |VarSet|) +(-961 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-919))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#4| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#4| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) -(-959 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-922))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) +(-962 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-960 E V R P -1385) +(-963 E V R P -1395) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-961 E |Vars| R P S) +(-964 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-962 R) +(-965 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-963 E V R P -1385) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1192) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-966 E V R P -1395) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-461)))) -(-964) +((|HasCategory| |#3| (QUOTE (-462)))) +(-967) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-965) +(-968) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-966 R L) +(-969 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-967 A B) +(-970 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-968 S) +(-971 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-969) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-972) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-970 -1385) +(-973 -1395) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-971 I) +(-974 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-972) +(-975) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-973 R E) +(-976 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4453))) -(-974 A B) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4456))) +(-977 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4452 -12 (|has| |#2| (-482)) (|has| |#1| (-482)))) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-376)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) -(-975) +((-4455 -12 (|has| |#2| (-483)) (|has| |#1| (-483)))) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) +(-978) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-976 T$) +(-979 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-977 T$) +(-980 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-978 S T$) +(-981 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-979) +(-982) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-980 S) +(-983 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL -(-981 R |polR|) +(-984 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-461)))) -(-982) +((|HasCategory| |#1| (QUOTE (-462)))) +(-985) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-983) +(-986) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-984 S |Coef| |Expon| |Var|) +(-987 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-985 |Coef| |Expon| |Var|) +(-988 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-986) +(-989) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-987 S R E |VarSet| P) +(-990 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-565)))) -(-988 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-566)))) +(-991 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4455 . T)) +((-4458 . T)) NIL -(-989 R E V P) +(-992 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-461)))) -(-990 K) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462)))) +(-993 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-991 |VarSet| E RC P) +(-994 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-992 R) +(-995 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-993 R1 R2) +(-996 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-994 R) +(-997 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-995 K) +(-998 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-996 R E OV PPR) +(-999 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-997 K R UP -1385) +(-1000 K R UP -1395) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-998 |vl| |nv|) +(-1001 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-999 R |Var| |Expon| |Dpoly|) +(-1002 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))))) -(-1000 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315))))) +(-1003 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1001) +(-1004) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1002 A B R S) +(-1005 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1003 A S) +(-1006 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-829))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1164)))) -(-1004 S) +((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1167)))) +(-1007 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1005 |n| K) +(-1008 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1006) +(-1009) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1007 S) +(-1010 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL -(-1008 S R) +(-1011 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-297)))) -(-1009 R) +((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298)))) +(-1012 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4448 |has| |#1| (-297)) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1010 QR R QS S) +(-1013 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1011 R) +(-1014 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4448 |has| |#1| (-297)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-297))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-297))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-554)))) -(-1012 S) +((-4451 |has| |#1| (-298)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-555)))) +(-1015 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1013 S) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1016 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1014) +(-1017) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1015 -1385 UP UPUP |radicnd| |n|) +(-1018 -1395 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-416 |#2|) (QUOTE (-146))) (|HasCategory| (-416 |#2|) (QUOTE (-148))) (|HasCategory| (-416 |#2|) (QUOTE (-357))) (-2817 (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-376))) (-2817 (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (-2817 (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-357))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371))))) -(-1016 |bb|) +((-4451 |has| (-417 |#2|) (-372)) (-4456 |has| (-417 |#2|) (-372)) (-4450 |has| (-417 |#2|) (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2832 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2832 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2832 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) +(-1019 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) -(-1017) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-574) (QUOTE (-922))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1037))) (|HasCategory| (-574) (QUOTE (-830))) (-2832 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1167))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1192)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-922)))) (|HasCategory| (-574) (QUOTE (-146))))) +(-1020) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1018) +(-1021) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1019 RP) +(-1022 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1020 S) +(-1023 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1021 A S) +(-1024 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-1112)))) -(-1022 S) +((|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-1115)))) +(-1025 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1023 S) +(-1026 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1024) +(-1027) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4448 . T) (-4453 . T) (-4447 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4452 . T)) +((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T)) NIL -(-1025 R -1385) +(-1028 R -1395) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1026 R -1385) +(-1029 R -1395) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1027 -1385 UP) +(-1030 -1395 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1028 -1385 UP) +(-1031 -1395 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1029 S) +(-1032 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1030 F1 UP UPUP R F2) +(-1033 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1031) +(-1034) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1032 |Pol|) +(-1035 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1033 |Pol|) +(-1036 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1034) +(-1037) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1035) +(-1038) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1036 |TheField|) +(-1039 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4448 . T) (-4453 . T) (-4447 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4452 . T)) -((-2817 (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (QUOTE (-573))))) -(-1037 -1385 L) +((-4451 . T) (-4456 . T) (-4450 . T) (-4453 . T) (-4452 . T) ((-4460 "*") . T) (-4455 . T)) +((-2832 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1053) (QUOTE (-574))))) +(-1040 -1395 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1038 S) +(-1041 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1112)))) -(-1039 R E V P) +((|HasCategory| |#1| (QUOTE (-1115)))) +(-1042 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1040 R) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1043 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4457 "*")))) -(-1041 R) +((|HasAttribute| |#1| (QUOTE (-4460 "*")))) +(-1044 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-314)))) -(-1042 S) +((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315)))) +(-1045 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1043) +(-1046) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1044 S) +(-1047 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1045 S) +(-1048 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1046 -1385 |Expon| |VarSet| |FPol| |LFPol|) +(-1049 -1395 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1047) +(-1050) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-1189) (QUOTE (-859))) (|HasCategory| (-52) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1048) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1051) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1049 A S) +(-1052 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1050 S) +(-1053 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1051 Q R) +(-1054 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1052) +(-1055) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1053 UP) +(-1056 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1054 R) +(-1057 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1055 R) +(-1058 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1056 T$) +(-1059 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1057 T$) +(-1060 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1058 R |ls|) +(-1061 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| (-789 |#1| (-873 |#2|)) (QUOTE (-1112))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -789) (|devaluate| |#1|) (LIST (QUOTE -873) (|devaluate| |#2|)))))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-789 |#1| (-873 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| (-873 |#2|) (QUOTE (-376))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1059) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1062) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1060 S) +(-1063 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1061) +(-1064) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4452 . T)) +((-4455 . T)) NIL -(-1062 |xx| -1385) +(-1065 |xx| -1395) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1063 R) +(-1066 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1064 S |m| |n| R |Row| |Col|) +(-1067 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (QUOTE (-565))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1065 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174)))) +(-1068 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4455 . T) (-4450 . T) (-4449 . T)) +((-4458 . T) (-4453 . T) (-4452 . T)) NIL -(-1066 |m| |n| R) +(-1069 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4455 . T) (-4450 . T) (-4449 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2817 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-565))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1067 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4458 . T) (-4453 . T) (-4452 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2832 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1070 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1068 R) +(-1071 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1069 S T$) +(-1072 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1112)))) -(-1070) +((|HasCategory| |#1| (QUOTE (-1115)))) +(-1073) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1071 S) +(-1074 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1072) +(-1075) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1073 |TheField| |ThePolDom|) +(-1076 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1074) +(-1077) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1075) +(-1078) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-1189) (QUOTE (-859))) (|HasCategory| (-52) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1076 S R E V) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1192))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-52) (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1115))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (QUOTE (-1115))) (|HasCategory| (-1192) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1079 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1004) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-1189))))) -(-1077 R E V) +((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1192))))) +(-1080 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-1078) +(-1081) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1079 S |TheField| |ThePols|) +(-1082 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1080 |TheField| |ThePols|) +(-1083 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1081 R E V P TS) +(-1084 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1082 S R E V P) +(-1085 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1083 R E V P) +(-1086 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1084 R E V P TS) +(-1087 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1085) +(-1088) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1086) +(-1089) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1087 |f|) +(-1090 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1088 |Base| R -1385) +(-1091 |Base| R -1395) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1089 |Base| R -1385) +(-1092 |Base| R -1395) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1090 R |ls|) +(-1093 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1091 UP SAE UPA) +(-1094 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1092 R UP M) +(-1095 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4448 |has| |#1| (-371)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-357)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371))))) -(-1093 UP SAE UPA) +((-4451 |has| |#1| (-372)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))))) +(-1096 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1094) +(-1097) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1095) +(-1098) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1096 S) +(-1099 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1097) +(-1100) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1098 R) +(-1101 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1099 R) +(-1102 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1100 S) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1103 (-1192)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1103 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1101 R S) +(-1104 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-857)))) -(-1102) +((|HasCategory| |#1| (QUOTE (-858)))) +(-1105) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1103 R S) +(-1106 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1104 S) +(-1107 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1106 |#1|) (QUOTE (-1112)))) -(-1105 S) +((|HasCategory| (-1109 |#1|) (QUOTE (-1115)))) +(-1108 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1106 S) +(-1109 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-1112)))) -(-1107 S L) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115)))) +(-1110 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1108) +(-1111) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1109 A S) +(-1112 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1110 S) +(-1113 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4445 . T)) +((-4448 . T)) NIL -(-1111 S) +(-1114 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1112) +(-1115) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1113 |m| |n|) +(-1116 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1114 S) +(-1117 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4455 . T) (-4445 . T) (-4456 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-1115 |Str| |Sym| |Int| |Flt| |Expr|) +((-4458 . T) (-4448 . T) (-4459 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-1118 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1116) +(-1119) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1117 |Str| |Sym| |Int| |Flt| |Expr|) +(-1120 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1118 R FS) +(-1121 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1119 R E V P TS) +(-1122 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1120 R E V P TS) +(-1123 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1121 R E V P) +(-1124 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1122) +(-1125) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1123 S) +(-1126 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1124) +(-1127) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1125 |dimtot| |dim1| S) +(-1128 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4449 |has| |#3| (-1061)) (-4450 |has| |#3| (-1061)) (-4452 |has| |#3| (-6 -4452)) ((-4457 "*") |has| |#3| (-174)) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#3| (QUOTE (-371))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-802))) (-2817 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857)))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-735))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-1112)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-371)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-802)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-857)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (|HasAttribute| |#3| (QUOTE -4452)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) -(-1126 R |x|) +((-4452 |has| |#3| (-1064)) (-4453 |has| |#3| (-1064)) (-4455 |has| |#3| (-6 -4455)) ((-4460 "*") |has| |#3| (-174)) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2832 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2832 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-377))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (QUOTE (-1115)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-2832 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1064)))) (-12 (|HasCategory| |#3| (QUOTE (-1064))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1192))))) (-2832 (|HasCategory| |#3| (QUOTE (-1064))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1115)))) (|HasAttribute| |#3| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1115))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) +(-1129 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-461)))) -(-1127) +((|HasCategory| |#1| (QUOTE (-462)))) +(-1130) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1128 R -1385) +(-1131 R -1395) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1129 R) +(-1132 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1130) +(-1133) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1131) +(-1134) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1132) +(-1135) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4446 . T) (-4450 . T) (-4445 . T) (-4456 . T) (-4457 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1133 S) +(-1136 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4455 . T) (-4456 . T)) +((-4458 . T) (-4459 . T)) NIL -(-1134 S |ndim| R |Row| |Col|) +(-1137 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-371))) (|HasAttribute| |#3| (QUOTE (-4457 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1135 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4460 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1138 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4455 . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4458 . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1136 R |Row| |Col| M) +(-1139 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1137 R |VarSet|) +(-1140 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1138 |Coef| |Var| SMP) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1141 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371)))) -(-1139 R E V P) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) +(-1142 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1140 UP -1385) +(-1143 UP -1395) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1141 R) +(-1144 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1142 R) +(-1145 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1143 R) +(-1146 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1144 S A) +(-1147 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-1145 R) +((|HasCategory| |#1| (QUOTE (-860)))) +(-1148 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1146 R) +(-1149 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1147) +(-1150) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1148) +(-1151) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1149) +(-1152) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1150) +(-1153) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1151) +(-1154) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1152 V C) +(-1155 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1153 V C) +(-1156 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -316) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112))) (-2817 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -316) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112))))) (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1154 |ndim| R) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))) (-2832 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1155 |#1| |#2|) (QUOTE (-1115))))) (|HasCategory| (-1155 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1157 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4452 . T) (-4444 |has| |#2| (-6 (-4457 "*"))) (-4455 . T) (-4449 . T) (-4450 . T)) -((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1155 S) +((-4455 . T) (-4447 |has| |#2| (-6 (-4460 "*"))) (-4458 . T) (-4452 . T) (-4453 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-372))) (-2832 (|HasAttribute| |#2| (QUOTE (-4460 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1158 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1156) +(-1159) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1157 R E V P TS) +(-1160 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1158 R E V P) +(-1161 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1159 S) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1162 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1160 A S) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1163 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1161 S) +(-1164 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1162 |Key| |Ent| |dent|) +(-1165 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112)))) -(-1163) +((-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115)))) +(-1166) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1164) +(-1167) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1165 |Coef|) +(-1168 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1166 S) +(-1169 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1167 A B) +(-1170 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1168 A B C) +(-1171 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1169 S) +(-1172 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1170) +((-4459 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1173) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1171) +(-1174) NIL -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) -(-1172 |Entry|) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1115))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +(-1175 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-1171) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1173 A) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (QUOTE (-1174))) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#1|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (QUOTE (-1115))) (|HasCategory| (-1174) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1176 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) -(-1174 |Coef|) +((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) +(-1177 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1175 |Coef|) +(-1178 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1176 R UP) +(-1179 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-314)))) -(-1177 |n| R) +((|HasCategory| |#1| (QUOTE (-315)))) +(-1180 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1178 S1 S2) +(-1181 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1179) +(-1182) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1180 |Coef| |var| |cen|) +(-1183 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4457 "*") -2817 (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-829))) (|has| |#1| (-174)) (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-919)))) (-4448 -2817 (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-829))) (|has| |#1| (-565)) (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371))))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1181 R -1385) +(((-4460 "*") -2832 (-2097 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2097 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2097 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2097 (|has| |#1| (-372)) (|has| (-1190 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1190) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1190 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1184 R -1395) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1182 R) +(-1185 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1183 R S) +(-1186 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1184 E OV R P) +(-1187 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1185 R) +(-1188 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1186 |Coef| |var| |cen|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1167))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1189 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-1187 |Coef| |var| |cen|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-1190 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|)))) (|HasCategory| (-780) (QUOTE (-1124))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-1188) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-1191) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1189) +(-1192) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1190 R) +(-1193 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1191 R) +(-1194 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| (-983) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasAttribute| |#1| (QUOTE -4453))) -(-1192) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-6 -4456)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-986) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4456))) +(-1195) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1193) +(-1196) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1194) +(-1197) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1195 N) +(-1198 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1196 N) +(-1199 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1197) +(-1200) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1198 R) +(-1201 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1199) +(-1202) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1200 S) +(-1203 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1201 S) +(-1204 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1202 |Key| |Entry|) +(-1205 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4455 . T) (-4456 . T)) -((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) -(-1203 S) +((-4458 . T) (-4459 . T)) +((-12 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3666) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-1115)))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1115))) (-2832 (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) +(-1206 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1204 R) +(-1207 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1205 S |Key| |Entry|) +(-1208 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1206 |Key| |Entry|) +(-1209 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4456 . T)) +((-4459 . T)) NIL -(-1207 |Key| |Entry|) +(-1210 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1208) +(-1211) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1209 S) +(-1212 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1210) +(-1213) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1211) +(-1214) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1212 R) +(-1215 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1213) +(-1216) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1214 S) +(-1217 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1215) +(-1218) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1216 S) +(-1219 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1217 S) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1115))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1220 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1218) +(-1221) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1219 R -1385) +(-1222 R -1395) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1220 R |Row| |Col| M) +(-1223 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1221 R -1385) +(-1224 R -1395) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -896) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -896) (|devaluate| |#1|))))) -(-1222 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|))))) +(-1225 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-376)))) -(-1223 R E V P) +((|HasCategory| |#4| (QUOTE (-377)))) +(-1226 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1224 |Coef|) +(-1227 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371)))) -(-1225 |Curve|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) +(-1228 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1226) +(-1229) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1227 S) +(-1230 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1228 -1385) +((|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1231 -1395) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1229) +(-1232) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1230) +(-1233) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1231 S) +(-1234 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-859)))) -(-1232) +((|HasCategory| |#1| (QUOTE (-860)))) +(-1235) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1233 S) +(-1236 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1234) +(-1237) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1235) +(-1238) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1236) +(-1239) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1237) +(-1240) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1238) +(-1241) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1239 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1242 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1240 |Coef|) +(-1243 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1241 S |Coef| UTS) +(-1244 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-371)))) -(-1242 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-372)))) +(-1245 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1243 |Coef| UTS) +(-1246 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-146))))) (-2817 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-148))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-919))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1244 |Coef| |var| |cen|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2832 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2832 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-1192)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1192)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-922))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1247 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4457 "*") -2817 (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-829))) (|has| |#1| (-174)) (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-919)))) (-4448 -2817 (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-829))) (|has| |#1| (-565)) (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371))))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1245 ZP) +(((-4460 "*") -2832 (-2097 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2097 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4451 -2832 (-2097 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2097 (|has| |#1| (-372)) (|has| (-1275 |#1| |#2| |#3|) (-922)))) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1127))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-1167))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1192)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-922))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1248 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1246 R S) +(-1249 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-857)))) -(-1247 S) +((|HasCategory| |#1| (QUOTE (-858)))) +(-1250 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-1112)))) -(-1248 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1115)))) +(-1251 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1249 R Q UP) +(-1252 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1250 R UP) +(-1253 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1251 R UP) +(-1254 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1252 R U) +(-1255 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1253 |x| R) +(-1256 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4451 |has| |#2| (-371)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1254 R PR S PS) +(((-4460 "*") |has| |#2| (-174)) (-4451 |has| |#2| (-566)) (-4454 |has| |#2| (-372)) (-4456 |has| |#2| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-922))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1097) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (QUOTE (-574)))) (-2832 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (-2832 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1167))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (-2832 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-922)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1257 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1255 S R) +(-1258 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1164)))) -(-1256 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1167)))) +(-1259 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4456 |has| |#1| (-6 -4456)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-1257 S |Coef| |Expon|) +(-1260 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1124))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2942) (LIST (|devaluate| |#2|) (QUOTE (-1189)))))) -(-1258 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1127))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2950) (LIST (|devaluate| |#2|) (QUOTE (-1192)))))) +(-1261 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1259 RC P) +(-1262 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1260 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1263 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1261 |Coef|) +(-1264 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1262 S |Coef| ULS) +(-1265 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1263 |Coef| ULS) +(-1266 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1264 |Coef| ULS) +(-1267 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) -(-1265 |Coef| |var| |cen|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) +(-1268 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-1266 R FE |var| |cen|) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4456 |has| |#1| (-372)) (-4450 |has| |#1| (-372)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2832 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-1269 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4457 "*") |has| (-1265 |#2| |#3| |#4|) (-174)) (-4448 |has| (-1265 |#2| |#3| |#4|) (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-174))) (-2817 (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-371))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-461))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-565)))) -(-1267 A S) +(((-4460 "*") |has| (-1268 |#2| |#3| |#4|) (-174)) (-4451 |has| (-1268 |#2| |#3| |#4|) (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-174))) (-2832 (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (LIST (QUOTE -1053) (QUOTE (-574)))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-566)))) +(-1270 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) -(-1268 S) +((|HasAttribute| |#1| (QUOTE -4459))) +(-1271 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1269 |Coef1| |Coef2| UTS1 UTS2) +(-1272 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1270 S |Coef|) +(-1273 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-1215))) (|HasSignature| |#2| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1626) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1189))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) -(-1271 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-1218))) (|HasSignature| |#2| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3302) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1192))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) +(-1274 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1272 |Coef| |var| |cen|) +(-1275 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|)))) (|HasCategory| (-780) (QUOTE (-1124))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) -(-1273 |Coef| UTS) +(((-4460 "*") |has| |#1| (-174)) (-4451 |has| |#1| (-566)) (-4452 . T) (-4453 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2832 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1192)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1127))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2950) (LIST (|devaluate| |#1|) (QUOTE (-1192)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2832 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1218))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3302) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1192))))) (|HasSignature| |#1| (LIST (QUOTE -4349) (LIST (LIST (QUOTE -654) (QUOTE (-1192))) (|devaluate| |#1|))))))) +(-1276 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1274 -1385 UP L UTS) +(-1277 -1395 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-565)))) -(-1275) +((|HasCategory| |#1| (QUOTE (-566)))) +(-1278) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1276 |sym|) +(-1279 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1277 S R) +(-1280 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1278 R) +((|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1281 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4456 . T) (-4455 . T)) +((-4459 . T) (-4458 . T)) NIL -(-1279 A B) +(-1282 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1280 R) +(-1283 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4456 . T) (-4455 . T)) -((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) -(-1281) +((-4459 . T) (-4458 . T)) +((-2832 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2832 (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2832 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1064))) (-12 (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-1064)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +(-1284) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1282) +(-1285) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1283) +(-1286) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1284) +(-1287) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1285) +(-1288) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1286 A S) +(-1289 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1287 S) +(-1290 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4450 . T) (-4449 . T)) +((-4453 . T) (-4452 . T)) NIL -(-1288 R) +(-1291 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1289 K R UP -1385) +(-1292 K R UP -1395) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1290) +(-1293) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1291) +(-1294) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1292 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1295 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) -(-1293 R E V P) +((-4453 |has| |#1| (-174)) (-4452 |has| |#1| (-174)) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) +(-1296 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4456 . T) (-4455 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) -(-1294 R) +((-4459 . T) (-4458 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) +(-1297 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4449 . T) (-4450 . T) (-4452 . T)) +((-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1295 |vl| R) +(-1298 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4452 . T) (-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4448))) -(-1296 R |VarSet| XPOLY) +((-4455 . T) (-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451))) +(-1299 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1297 |vl| R) +(-1300 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) +((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-1298 S -1385) +(-1301 S -1395) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1299 -1385) +((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1302 -1395) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-4450 . T) (-4456 . T) (-4451 . T) ((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL -(-1300 |VarSet| R) +(-1303 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -726) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasAttribute| |#2| (QUOTE -4448))) -(-1301 |vl| R) +((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4451))) +(-1304 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) +((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) NIL -(-1302 R) +(-1305 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4448 |has| |#1| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4448))) -(-1303 R E) +((-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4451))) +(-1306 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4452 . T) (-4453 |has| |#1| (-6 -4453)) (-4448 |has| |#1| (-6 -4448)) (-4450 . T) (-4449 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4448))) -(-1304 |VarSet| R) +((-4455 . T) (-4456 |has| |#1| (-6 -4456)) (-4451 |has| |#1| (-6 -4451)) (-4453 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4451))) +(-1307 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4448))) -(-1305) +((-4451 |has| |#2| (-6 -4451)) (-4453 . T) (-4452 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4451))) +(-1308) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1306 A) +(-1309 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1307 R |ls| |ls2|) +(-1310 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1308 R) +(-1311 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1309 |p|) +(-1312 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +(((-4460 "*") . T) (-4452 . T) (-4453 . T) (-4455 . T)) NIL NIL NIL @@ -5184,4 +5196,4 @@ NIL NIL NIL NIL -((-3 NIL 2267290 2267295 2267300 2267305) (-2 NIL 2267270 2267275 2267280 2267285) (-1 NIL 2267250 2267255 2267260 2267265) (0 NIL 2267230 2267235 2267240 2267245) (-1309 "ZMOD.spad" 2267039 2267052 2267168 2267225) (-1308 "ZLINDEP.spad" 2266105 2266116 2267029 2267034) (-1307 "ZDSOLVE.spad" 2256050 2256072 2266095 2266100) (-1306 "YSTREAM.spad" 2255545 2255556 2256040 2256045) (-1305 "YDIAGRAM.spad" 2255179 2255188 2255535 2255540) (-1304 "XRPOLY.spad" 2254399 2254419 2255035 2255104) (-1303 "XPR.spad" 2252194 2252207 2254117 2254216) (-1302 "XPOLY.spad" 2251749 2251760 2252050 2252119) (-1301 "XPOLYC.spad" 2251068 2251084 2251675 2251744) (-1300 "XPBWPOLY.spad" 2249505 2249525 2250848 2250917) (-1299 "XF.spad" 2247968 2247983 2249407 2249500) (-1298 "XF.spad" 2246411 2246428 2247852 2247857) (-1297 "XFALG.spad" 2243459 2243475 2246337 2246406) (-1296 "XEXPPKG.spad" 2242710 2242736 2243449 2243454) (-1295 "XDPOLY.spad" 2242324 2242340 2242566 2242635) (-1294 "XALG.spad" 2241984 2241995 2242280 2242319) (-1293 "WUTSET.spad" 2237823 2237840 2241630 2241657) (-1292 "WP.spad" 2237022 2237066 2237681 2237748) (-1291 "WHILEAST.spad" 2236820 2236829 2237012 2237017) (-1290 "WHEREAST.spad" 2236491 2236500 2236810 2236815) (-1289 "WFFINTBS.spad" 2234154 2234176 2236481 2236486) (-1288 "WEIER.spad" 2232376 2232387 2234144 2234149) (-1287 "VSPACE.spad" 2232049 2232060 2232344 2232371) (-1286 "VSPACE.spad" 2231742 2231755 2232039 2232044) (-1285 "VOID.spad" 2231419 2231428 2231732 2231737) (-1284 "VIEW.spad" 2229099 2229108 2231409 2231414) (-1283 "VIEWDEF.spad" 2224300 2224309 2229089 2229094) (-1282 "VIEW3D.spad" 2208261 2208270 2224290 2224295) (-1281 "VIEW2D.spad" 2196152 2196161 2208251 2208256) (-1280 "VECTOR.spad" 2194826 2194837 2195077 2195104) (-1279 "VECTOR2.spad" 2193465 2193478 2194816 2194821) (-1278 "VECTCAT.spad" 2191369 2191380 2193433 2193460) (-1277 "VECTCAT.spad" 2189080 2189093 2191146 2191151) (-1276 "VARIABLE.spad" 2188860 2188875 2189070 2189075) (-1275 "UTYPE.spad" 2188504 2188513 2188850 2188855) (-1274 "UTSODETL.spad" 2187799 2187823 2188460 2188465) (-1273 "UTSODE.spad" 2186015 2186035 2187789 2187794) (-1272 "UTS.spad" 2180819 2180847 2184482 2184579) (-1271 "UTSCAT.spad" 2178298 2178314 2180717 2180814) (-1270 "UTSCAT.spad" 2175421 2175439 2177842 2177847) (-1269 "UTS2.spad" 2175016 2175051 2175411 2175416) (-1268 "URAGG.spad" 2169689 2169700 2175006 2175011) (-1267 "URAGG.spad" 2164326 2164339 2169645 2169650) (-1266 "UPXSSING.spad" 2161971 2161997 2163407 2163540) (-1265 "UPXS.spad" 2159125 2159153 2160103 2160252) (-1264 "UPXSCONS.spad" 2156884 2156904 2157257 2157406) (-1263 "UPXSCCA.spad" 2155455 2155475 2156730 2156879) (-1262 "UPXSCCA.spad" 2154168 2154190 2155445 2155450) (-1261 "UPXSCAT.spad" 2152757 2152773 2154014 2154163) (-1260 "UPXS2.spad" 2152300 2152353 2152747 2152752) (-1259 "UPSQFREE.spad" 2150714 2150728 2152290 2152295) (-1258 "UPSCAT.spad" 2148501 2148525 2150612 2150709) (-1257 "UPSCAT.spad" 2145994 2146020 2148107 2148112) (-1256 "UPOLYC.spad" 2141034 2141045 2145836 2145989) (-1255 "UPOLYC.spad" 2135966 2135979 2140770 2140775) (-1254 "UPOLYC2.spad" 2135437 2135456 2135956 2135961) (-1253 "UP.spad" 2132636 2132651 2133023 2133176) (-1252 "UPMP.spad" 2131536 2131549 2132626 2132631) (-1251 "UPDIVP.spad" 2131101 2131115 2131526 2131531) (-1250 "UPDECOMP.spad" 2129346 2129360 2131091 2131096) (-1249 "UPCDEN.spad" 2128555 2128571 2129336 2129341) (-1248 "UP2.spad" 2127919 2127940 2128545 2128550) (-1247 "UNISEG.spad" 2127272 2127283 2127838 2127843) (-1246 "UNISEG2.spad" 2126769 2126782 2127228 2127233) (-1245 "UNIFACT.spad" 2125872 2125884 2126759 2126764) (-1244 "ULS.spad" 2116430 2116458 2117517 2117946) (-1243 "ULSCONS.spad" 2108826 2108846 2109196 2109345) (-1242 "ULSCCAT.spad" 2106563 2106583 2108672 2108821) (-1241 "ULSCCAT.spad" 2104408 2104430 2106519 2106524) (-1240 "ULSCAT.spad" 2102640 2102656 2104254 2104403) (-1239 "ULS2.spad" 2102154 2102207 2102630 2102635) (-1238 "UINT8.spad" 2102031 2102040 2102144 2102149) (-1237 "UINT64.spad" 2101907 2101916 2102021 2102026) (-1236 "UINT32.spad" 2101783 2101792 2101897 2101902) (-1235 "UINT16.spad" 2101659 2101668 2101773 2101778) (-1234 "UFD.spad" 2100724 2100733 2101585 2101654) (-1233 "UFD.spad" 2099851 2099862 2100714 2100719) (-1232 "UDVO.spad" 2098732 2098741 2099841 2099846) (-1231 "UDPO.spad" 2096225 2096236 2098688 2098693) (-1230 "TYPE.spad" 2096157 2096166 2096215 2096220) (-1229 "TYPEAST.spad" 2096076 2096085 2096147 2096152) (-1228 "TWOFACT.spad" 2094728 2094743 2096066 2096071) (-1227 "TUPLE.spad" 2094214 2094225 2094627 2094632) (-1226 "TUBETOOL.spad" 2091081 2091090 2094204 2094209) (-1225 "TUBE.spad" 2089728 2089745 2091071 2091076) (-1224 "TS.spad" 2088327 2088343 2089293 2089390) (-1223 "TSETCAT.spad" 2075454 2075471 2088295 2088322) (-1222 "TSETCAT.spad" 2062567 2062586 2075410 2075415) (-1221 "TRMANIP.spad" 2056933 2056950 2062273 2062278) (-1220 "TRIMAT.spad" 2055896 2055921 2056923 2056928) (-1219 "TRIGMNIP.spad" 2054423 2054440 2055886 2055891) (-1218 "TRIGCAT.spad" 2053935 2053944 2054413 2054418) (-1217 "TRIGCAT.spad" 2053445 2053456 2053925 2053930) (-1216 "TREE.spad" 2052020 2052031 2053052 2053079) (-1215 "TRANFUN.spad" 2051859 2051868 2052010 2052015) (-1214 "TRANFUN.spad" 2051696 2051707 2051849 2051854) (-1213 "TOPSP.spad" 2051370 2051379 2051686 2051691) (-1212 "TOOLSIGN.spad" 2051033 2051044 2051360 2051365) (-1211 "TEXTFILE.spad" 2049594 2049603 2051023 2051028) (-1210 "TEX.spad" 2046740 2046749 2049584 2049589) (-1209 "TEX1.spad" 2046296 2046307 2046730 2046735) (-1208 "TEMUTL.spad" 2045851 2045860 2046286 2046291) (-1207 "TBCMPPK.spad" 2043944 2043967 2045841 2045846) (-1206 "TBAGG.spad" 2042994 2043017 2043924 2043939) (-1205 "TBAGG.spad" 2042052 2042077 2042984 2042989) (-1204 "TANEXP.spad" 2041460 2041471 2042042 2042047) (-1203 "TALGOP.spad" 2041184 2041195 2041450 2041455) (-1202 "TABLE.spad" 2039595 2039618 2039865 2039892) (-1201 "TABLEAU.spad" 2039076 2039087 2039585 2039590) (-1200 "TABLBUMP.spad" 2035879 2035890 2039066 2039071) (-1199 "SYSTEM.spad" 2035107 2035116 2035869 2035874) (-1198 "SYSSOLP.spad" 2032590 2032601 2035097 2035102) (-1197 "SYSPTR.spad" 2032489 2032498 2032580 2032585) (-1196 "SYSNNI.spad" 2031671 2031682 2032479 2032484) (-1195 "SYSINT.spad" 2031075 2031086 2031661 2031666) (-1194 "SYNTAX.spad" 2027281 2027290 2031065 2031070) (-1193 "SYMTAB.spad" 2025349 2025358 2027271 2027276) (-1192 "SYMS.spad" 2021372 2021381 2025339 2025344) (-1191 "SYMPOLY.spad" 2020379 2020390 2020461 2020588) (-1190 "SYMFUNC.spad" 2019880 2019891 2020369 2020374) (-1189 "SYMBOL.spad" 2017383 2017392 2019870 2019875) (-1188 "SWITCH.spad" 2014154 2014163 2017373 2017378) (-1187 "SUTS.spad" 2011059 2011087 2012621 2012718) (-1186 "SUPXS.spad" 2008200 2008228 2009191 2009340) (-1185 "SUP.spad" 2005013 2005024 2005786 2005939) (-1184 "SUPFRACF.spad" 2004118 2004136 2005003 2005008) (-1183 "SUP2.spad" 2003510 2003523 2004108 2004113) (-1182 "SUMRF.spad" 2002484 2002495 2003500 2003505) (-1181 "SUMFS.spad" 2002121 2002138 2002474 2002479) (-1180 "SULS.spad" 1992666 1992694 1993766 1994195) (-1179 "SUCHTAST.spad" 1992435 1992444 1992656 1992661) (-1178 "SUCH.spad" 1992117 1992132 1992425 1992430) (-1177 "SUBSPACE.spad" 1984232 1984247 1992107 1992112) (-1176 "SUBRESP.spad" 1983402 1983416 1984188 1984193) (-1175 "STTF.spad" 1979501 1979517 1983392 1983397) (-1174 "STTFNC.spad" 1975969 1975985 1979491 1979496) (-1173 "STTAYLOR.spad" 1968604 1968615 1975850 1975855) (-1172 "STRTBL.spad" 1967109 1967126 1967258 1967285) (-1171 "STRING.spad" 1966518 1966527 1966532 1966559) (-1170 "STRICAT.spad" 1966306 1966315 1966486 1966513) (-1169 "STREAM.spad" 1963224 1963235 1965831 1965846) (-1168 "STREAM3.spad" 1962797 1962812 1963214 1963219) (-1167 "STREAM2.spad" 1961925 1961938 1962787 1962792) (-1166 "STREAM1.spad" 1961631 1961642 1961915 1961920) (-1165 "STINPROD.spad" 1960567 1960583 1961621 1961626) (-1164 "STEP.spad" 1959768 1959777 1960557 1960562) (-1163 "STEPAST.spad" 1959002 1959011 1959758 1959763) (-1162 "STBL.spad" 1957528 1957556 1957695 1957710) (-1161 "STAGG.spad" 1956603 1956614 1957518 1957523) (-1160 "STAGG.spad" 1955676 1955689 1956593 1956598) (-1159 "STACK.spad" 1955033 1955044 1955283 1955310) (-1158 "SREGSET.spad" 1952737 1952754 1954679 1954706) (-1157 "SRDCMPK.spad" 1951298 1951318 1952727 1952732) (-1156 "SRAGG.spad" 1946441 1946450 1951266 1951293) (-1155 "SRAGG.spad" 1941604 1941615 1946431 1946436) (-1154 "SQMATRIX.spad" 1939276 1939294 1940192 1940279) (-1153 "SPLTREE.spad" 1933828 1933841 1938712 1938739) (-1152 "SPLNODE.spad" 1930416 1930429 1933818 1933823) (-1151 "SPFCAT.spad" 1929225 1929234 1930406 1930411) (-1150 "SPECOUT.spad" 1927777 1927786 1929215 1929220) (-1149 "SPADXPT.spad" 1919372 1919381 1927767 1927772) (-1148 "spad-parser.spad" 1918837 1918846 1919362 1919367) (-1147 "SPADAST.spad" 1918538 1918547 1918827 1918832) (-1146 "SPACEC.spad" 1902737 1902748 1918528 1918533) (-1145 "SPACE3.spad" 1902513 1902524 1902727 1902732) (-1144 "SORTPAK.spad" 1902062 1902075 1902469 1902474) (-1143 "SOLVETRA.spad" 1899825 1899836 1902052 1902057) (-1142 "SOLVESER.spad" 1898353 1898364 1899815 1899820) (-1141 "SOLVERAD.spad" 1894379 1894390 1898343 1898348) (-1140 "SOLVEFOR.spad" 1892841 1892859 1894369 1894374) (-1139 "SNTSCAT.spad" 1892441 1892458 1892809 1892836) (-1138 "SMTS.spad" 1890713 1890739 1892006 1892103) (-1137 "SMP.spad" 1888188 1888208 1888578 1888705) (-1136 "SMITH.spad" 1887033 1887058 1888178 1888183) (-1135 "SMATCAT.spad" 1885143 1885173 1886977 1887028) (-1134 "SMATCAT.spad" 1883185 1883217 1885021 1885026) (-1133 "SKAGG.spad" 1882148 1882159 1883153 1883180) (-1132 "SINT.spad" 1881088 1881097 1882014 1882143) (-1131 "SIMPAN.spad" 1880816 1880825 1881078 1881083) (-1130 "SIG.spad" 1880146 1880155 1880806 1880811) (-1129 "SIGNRF.spad" 1879264 1879275 1880136 1880141) (-1128 "SIGNEF.spad" 1878543 1878560 1879254 1879259) (-1127 "SIGAST.spad" 1877928 1877937 1878533 1878538) (-1126 "SHP.spad" 1875856 1875871 1877884 1877889) (-1125 "SHDP.spad" 1865490 1865517 1865999 1866130) (-1124 "SGROUP.spad" 1865098 1865107 1865480 1865485) (-1123 "SGROUP.spad" 1864704 1864715 1865088 1865093) (-1122 "SGCF.spad" 1857843 1857852 1864694 1864699) (-1121 "SFRTCAT.spad" 1856773 1856790 1857811 1857838) (-1120 "SFRGCD.spad" 1855836 1855856 1856763 1856768) (-1119 "SFQCMPK.spad" 1850473 1850493 1855826 1855831) (-1118 "SFORT.spad" 1849912 1849926 1850463 1850468) (-1117 "SEXOF.spad" 1849755 1849795 1849902 1849907) (-1116 "SEX.spad" 1849647 1849656 1849745 1849750) (-1115 "SEXCAT.spad" 1847428 1847468 1849637 1849642) (-1114 "SET.spad" 1845752 1845763 1846849 1846888) (-1113 "SETMN.spad" 1844202 1844219 1845742 1845747) (-1112 "SETCAT.spad" 1843524 1843533 1844192 1844197) (-1111 "SETCAT.spad" 1842844 1842855 1843514 1843519) (-1110 "SETAGG.spad" 1839393 1839404 1842824 1842839) (-1109 "SETAGG.spad" 1835950 1835963 1839383 1839388) (-1108 "SEQAST.spad" 1835653 1835662 1835940 1835945) (-1107 "SEGXCAT.spad" 1834809 1834822 1835643 1835648) (-1106 "SEG.spad" 1834622 1834633 1834728 1834733) (-1105 "SEGCAT.spad" 1833547 1833558 1834612 1834617) (-1104 "SEGBIND.spad" 1833305 1833316 1833494 1833499) (-1103 "SEGBIND2.spad" 1833003 1833016 1833295 1833300) (-1102 "SEGAST.spad" 1832717 1832726 1832993 1832998) (-1101 "SEG2.spad" 1832152 1832165 1832673 1832678) (-1100 "SDVAR.spad" 1831428 1831439 1832142 1832147) (-1099 "SDPOL.spad" 1828854 1828865 1829145 1829272) (-1098 "SCPKG.spad" 1826943 1826954 1828844 1828849) (-1097 "SCOPE.spad" 1826096 1826105 1826933 1826938) (-1096 "SCACHE.spad" 1824792 1824803 1826086 1826091) (-1095 "SASTCAT.spad" 1824701 1824710 1824782 1824787) (-1094 "SAOS.spad" 1824573 1824582 1824691 1824696) (-1093 "SAERFFC.spad" 1824286 1824306 1824563 1824568) (-1092 "SAE.spad" 1822461 1822477 1823072 1823207) (-1091 "SAEFACT.spad" 1822162 1822182 1822451 1822456) (-1090 "RURPK.spad" 1819821 1819837 1822152 1822157) (-1089 "RULESET.spad" 1819274 1819298 1819811 1819816) (-1088 "RULE.spad" 1817514 1817538 1819264 1819269) (-1087 "RULECOLD.spad" 1817366 1817379 1817504 1817509) (-1086 "RTVALUE.spad" 1817101 1817110 1817356 1817361) (-1085 "RSTRCAST.spad" 1816818 1816827 1817091 1817096) (-1084 "RSETGCD.spad" 1813196 1813216 1816808 1816813) (-1083 "RSETCAT.spad" 1803132 1803149 1813164 1813191) (-1082 "RSETCAT.spad" 1793088 1793107 1803122 1803127) (-1081 "RSDCMPK.spad" 1791540 1791560 1793078 1793083) (-1080 "RRCC.spad" 1789924 1789954 1791530 1791535) (-1079 "RRCC.spad" 1788306 1788338 1789914 1789919) (-1078 "RPTAST.spad" 1788008 1788017 1788296 1788301) (-1077 "RPOLCAT.spad" 1767368 1767383 1787876 1788003) (-1076 "RPOLCAT.spad" 1746441 1746458 1766951 1766956) (-1075 "ROUTINE.spad" 1742324 1742333 1745088 1745115) (-1074 "ROMAN.spad" 1741652 1741661 1742190 1742319) (-1073 "ROIRC.spad" 1740732 1740764 1741642 1741647) (-1072 "RNS.spad" 1739635 1739644 1740634 1740727) (-1071 "RNS.spad" 1738624 1738635 1739625 1739630) (-1070 "RNG.spad" 1738359 1738368 1738614 1738619) (-1069 "RNGBIND.spad" 1737519 1737533 1738314 1738319) (-1068 "RMODULE.spad" 1737284 1737295 1737509 1737514) (-1067 "RMCAT2.spad" 1736704 1736761 1737274 1737279) (-1066 "RMATRIX.spad" 1735528 1735547 1735871 1735910) (-1065 "RMATCAT.spad" 1731107 1731138 1735484 1735523) (-1064 "RMATCAT.spad" 1726576 1726609 1730955 1730960) (-1063 "RLINSET.spad" 1725970 1725981 1726566 1726571) (-1062 "RINTERP.spad" 1725858 1725878 1725960 1725965) (-1061 "RING.spad" 1725328 1725337 1725838 1725853) (-1060 "RING.spad" 1724806 1724817 1725318 1725323) (-1059 "RIDIST.spad" 1724198 1724207 1724796 1724801) (-1058 "RGCHAIN.spad" 1722781 1722797 1723683 1723710) (-1057 "RGBCSPC.spad" 1722562 1722574 1722771 1722776) (-1056 "RGBCMDL.spad" 1722092 1722104 1722552 1722557) (-1055 "RF.spad" 1719734 1719745 1722082 1722087) (-1054 "RFFACTOR.spad" 1719196 1719207 1719724 1719729) (-1053 "RFFACT.spad" 1718931 1718943 1719186 1719191) (-1052 "RFDIST.spad" 1717927 1717936 1718921 1718926) (-1051 "RETSOL.spad" 1717346 1717359 1717917 1717922) (-1050 "RETRACT.spad" 1716774 1716785 1717336 1717341) (-1049 "RETRACT.spad" 1716200 1716213 1716764 1716769) (-1048 "RETAST.spad" 1716012 1716021 1716190 1716195) (-1047 "RESULT.spad" 1714072 1714081 1714659 1714686) (-1046 "RESRING.spad" 1713419 1713466 1714010 1714067) (-1045 "RESLATC.spad" 1712743 1712754 1713409 1713414) (-1044 "REPSQ.spad" 1712474 1712485 1712733 1712738) (-1043 "REP.spad" 1710028 1710037 1712464 1712469) (-1042 "REPDB.spad" 1709735 1709746 1710018 1710023) (-1041 "REP2.spad" 1699393 1699404 1709577 1709582) (-1040 "REP1.spad" 1693589 1693600 1699343 1699348) (-1039 "REGSET.spad" 1691386 1691403 1693235 1693262) (-1038 "REF.spad" 1690721 1690732 1691341 1691346) (-1037 "REDORDER.spad" 1689927 1689944 1690711 1690716) (-1036 "RECLOS.spad" 1688710 1688730 1689414 1689507) (-1035 "REALSOLV.spad" 1687850 1687859 1688700 1688705) (-1034 "REAL.spad" 1687722 1687731 1687840 1687845) (-1033 "REAL0Q.spad" 1685020 1685035 1687712 1687717) (-1032 "REAL0.spad" 1681864 1681879 1685010 1685015) (-1031 "RDUCEAST.spad" 1681585 1681594 1681854 1681859) (-1030 "RDIV.spad" 1681240 1681265 1681575 1681580) (-1029 "RDIST.spad" 1680807 1680818 1681230 1681235) (-1028 "RDETRS.spad" 1679671 1679689 1680797 1680802) (-1027 "RDETR.spad" 1677810 1677828 1679661 1679666) (-1026 "RDEEFS.spad" 1676909 1676926 1677800 1677805) (-1025 "RDEEF.spad" 1675919 1675936 1676899 1676904) (-1024 "RCFIELD.spad" 1673105 1673114 1675821 1675914) (-1023 "RCFIELD.spad" 1670377 1670388 1673095 1673100) (-1022 "RCAGG.spad" 1668305 1668316 1670367 1670372) (-1021 "RCAGG.spad" 1666160 1666173 1668224 1668229) (-1020 "RATRET.spad" 1665520 1665531 1666150 1666155) (-1019 "RATFACT.spad" 1665212 1665224 1665510 1665515) (-1018 "RANDSRC.spad" 1664531 1664540 1665202 1665207) (-1017 "RADUTIL.spad" 1664287 1664296 1664521 1664526) (-1016 "RADIX.spad" 1661208 1661222 1662754 1662847) (-1015 "RADFF.spad" 1659621 1659658 1659740 1659896) (-1014 "RADCAT.spad" 1659216 1659225 1659611 1659616) (-1013 "RADCAT.spad" 1658809 1658820 1659206 1659211) (-1012 "QUEUE.spad" 1658157 1658168 1658416 1658443) (-1011 "QUAT.spad" 1656615 1656626 1656958 1657023) (-1010 "QUATCT2.spad" 1656235 1656254 1656605 1656610) (-1009 "QUATCAT.spad" 1654405 1654416 1656165 1656230) (-1008 "QUATCAT.spad" 1652326 1652339 1654088 1654093) (-1007 "QUAGG.spad" 1651153 1651164 1652294 1652321) (-1006 "QQUTAST.spad" 1650921 1650930 1651143 1651148) (-1005 "QFORM.spad" 1650539 1650554 1650911 1650916) (-1004 "QFCAT.spad" 1649241 1649252 1650441 1650534) (-1003 "QFCAT.spad" 1647534 1647547 1648736 1648741) (-1002 "QFCAT2.spad" 1647226 1647243 1647524 1647529) (-1001 "QEQUAT.spad" 1646784 1646793 1647216 1647221) (-1000 "QCMPACK.spad" 1641530 1641550 1646774 1646779) (-999 "QALGSET.spad" 1637609 1637641 1641444 1641449) (-998 "QALGSET2.spad" 1635605 1635623 1637599 1637604) (-997 "PWFFINTB.spad" 1633021 1633042 1635595 1635600) (-996 "PUSHVAR.spad" 1632360 1632379 1633011 1633016) (-995 "PTRANFN.spad" 1628488 1628498 1632350 1632355) (-994 "PTPACK.spad" 1625576 1625586 1628478 1628483) (-993 "PTFUNC2.spad" 1625399 1625413 1625566 1625571) (-992 "PTCAT.spad" 1624654 1624664 1625367 1625394) (-991 "PSQFR.spad" 1623961 1623985 1624644 1624649) (-990 "PSEUDLIN.spad" 1622847 1622857 1623951 1623956) (-989 "PSETPK.spad" 1608280 1608296 1622725 1622730) (-988 "PSETCAT.spad" 1602200 1602223 1608260 1608275) (-987 "PSETCAT.spad" 1596094 1596119 1602156 1602161) (-986 "PSCURVE.spad" 1595077 1595085 1596084 1596089) (-985 "PSCAT.spad" 1593860 1593889 1594975 1595072) (-984 "PSCAT.spad" 1592733 1592764 1593850 1593855) (-983 "PRTITION.spad" 1591431 1591439 1592723 1592728) (-982 "PRTDAST.spad" 1591150 1591158 1591421 1591426) (-981 "PRS.spad" 1580712 1580729 1591106 1591111) (-980 "PRQAGG.spad" 1580147 1580157 1580680 1580707) (-979 "PROPLOG.spad" 1579719 1579727 1580137 1580142) (-978 "PROPFUN2.spad" 1579342 1579355 1579709 1579714) (-977 "PROPFUN1.spad" 1578740 1578751 1579332 1579337) (-976 "PROPFRML.spad" 1577308 1577319 1578730 1578735) (-975 "PROPERTY.spad" 1576796 1576804 1577298 1577303) (-974 "PRODUCT.spad" 1574478 1574490 1574762 1574817) (-973 "PR.spad" 1572870 1572882 1573569 1573696) (-972 "PRINT.spad" 1572622 1572630 1572860 1572865) (-971 "PRIMES.spad" 1570875 1570885 1572612 1572617) (-970 "PRIMELT.spad" 1568956 1568970 1570865 1570870) (-969 "PRIMCAT.spad" 1568583 1568591 1568946 1568951) (-968 "PRIMARR.spad" 1567588 1567598 1567766 1567793) (-967 "PRIMARR2.spad" 1566355 1566367 1567578 1567583) (-966 "PREASSOC.spad" 1565737 1565749 1566345 1566350) (-965 "PPCURVE.spad" 1564874 1564882 1565727 1565732) (-964 "PORTNUM.spad" 1564649 1564657 1564864 1564869) (-963 "POLYROOT.spad" 1563498 1563520 1564605 1564610) (-962 "POLY.spad" 1560833 1560843 1561348 1561475) (-961 "POLYLIFT.spad" 1560098 1560121 1560823 1560828) (-960 "POLYCATQ.spad" 1558216 1558238 1560088 1560093) (-959 "POLYCAT.spad" 1551686 1551707 1558084 1558211) (-958 "POLYCAT.spad" 1544494 1544517 1550894 1550899) (-957 "POLY2UP.spad" 1543946 1543960 1544484 1544489) (-956 "POLY2.spad" 1543543 1543555 1543936 1543941) (-955 "POLUTIL.spad" 1542484 1542513 1543499 1543504) (-954 "POLTOPOL.spad" 1541232 1541247 1542474 1542479) (-953 "POINT.spad" 1540070 1540080 1540157 1540184) (-952 "PNTHEORY.spad" 1536772 1536780 1540060 1540065) (-951 "PMTOOLS.spad" 1535547 1535561 1536762 1536767) (-950 "PMSYM.spad" 1535096 1535106 1535537 1535542) (-949 "PMQFCAT.spad" 1534687 1534701 1535086 1535091) (-948 "PMPRED.spad" 1534166 1534180 1534677 1534682) (-947 "PMPREDFS.spad" 1533620 1533642 1534156 1534161) (-946 "PMPLCAT.spad" 1532700 1532718 1533552 1533557) (-945 "PMLSAGG.spad" 1532285 1532299 1532690 1532695) (-944 "PMKERNEL.spad" 1531864 1531876 1532275 1532280) (-943 "PMINS.spad" 1531444 1531454 1531854 1531859) (-942 "PMFS.spad" 1531021 1531039 1531434 1531439) (-941 "PMDOWN.spad" 1530311 1530325 1531011 1531016) (-940 "PMASS.spad" 1529321 1529329 1530301 1530306) (-939 "PMASSFS.spad" 1528288 1528304 1529311 1529316) (-938 "PLOTTOOL.spad" 1528068 1528076 1528278 1528283) (-937 "PLOT.spad" 1522991 1522999 1528058 1528063) (-936 "PLOT3D.spad" 1519455 1519463 1522981 1522986) (-935 "PLOT1.spad" 1518612 1518622 1519445 1519450) (-934 "PLEQN.spad" 1505902 1505929 1518602 1518607) (-933 "PINTERP.spad" 1505524 1505543 1505892 1505897) (-932 "PINTERPA.spad" 1505308 1505324 1505514 1505519) (-931 "PI.spad" 1504917 1504925 1505282 1505303) (-930 "PID.spad" 1503887 1503895 1504843 1504912) (-929 "PICOERCE.spad" 1503544 1503554 1503877 1503882) (-928 "PGROEB.spad" 1502145 1502159 1503534 1503539) (-927 "PGE.spad" 1493762 1493770 1502135 1502140) (-926 "PGCD.spad" 1492652 1492669 1493752 1493757) (-925 "PFRPAC.spad" 1491801 1491811 1492642 1492647) (-924 "PFR.spad" 1488464 1488474 1491703 1491796) (-923 "PFOTOOLS.spad" 1487722 1487738 1488454 1488459) (-922 "PFOQ.spad" 1487092 1487110 1487712 1487717) (-921 "PFO.spad" 1486511 1486538 1487082 1487087) (-920 "PF.spad" 1486085 1486097 1486316 1486409) (-919 "PFECAT.spad" 1483767 1483775 1486011 1486080) (-918 "PFECAT.spad" 1481477 1481487 1483723 1483728) (-917 "PFBRU.spad" 1479365 1479377 1481467 1481472) (-916 "PFBR.spad" 1476925 1476948 1479355 1479360) (-915 "PERM.spad" 1472732 1472742 1476755 1476770) (-914 "PERMGRP.spad" 1467502 1467512 1472722 1472727) (-913 "PERMCAT.spad" 1466163 1466173 1467482 1467497) (-912 "PERMAN.spad" 1464695 1464709 1466153 1466158) (-911 "PENDTREE.spad" 1464036 1464046 1464324 1464329) (-910 "PDRING.spad" 1462587 1462597 1464016 1464031) (-909 "PDRING.spad" 1461146 1461158 1462577 1462582) (-908 "PDEPROB.spad" 1460161 1460169 1461136 1461141) (-907 "PDEPACK.spad" 1454201 1454209 1460151 1460156) (-906 "PDECOMP.spad" 1453671 1453688 1454191 1454196) (-905 "PDECAT.spad" 1452027 1452035 1453661 1453666) (-904 "PCOMP.spad" 1451880 1451893 1452017 1452022) (-903 "PBWLB.spad" 1450468 1450485 1451870 1451875) (-902 "PATTERN.spad" 1445007 1445017 1450458 1450463) (-901 "PATTERN2.spad" 1444745 1444757 1444997 1445002) (-900 "PATTERN1.spad" 1443081 1443097 1444735 1444740) (-899 "PATRES.spad" 1440656 1440668 1443071 1443076) (-898 "PATRES2.spad" 1440328 1440342 1440646 1440651) (-897 "PATMATCH.spad" 1438525 1438556 1440036 1440041) (-896 "PATMAB.spad" 1437954 1437964 1438515 1438520) (-895 "PATLRES.spad" 1437040 1437054 1437944 1437949) (-894 "PATAB.spad" 1436804 1436814 1437030 1437035) (-893 "PARTPERM.spad" 1434812 1434820 1436794 1436799) (-892 "PARSURF.spad" 1434246 1434274 1434802 1434807) (-891 "PARSU2.spad" 1434043 1434059 1434236 1434241) (-890 "script-parser.spad" 1433563 1433571 1434033 1434038) (-889 "PARSCURV.spad" 1432997 1433025 1433553 1433558) (-888 "PARSC2.spad" 1432788 1432804 1432987 1432992) (-887 "PARPCURV.spad" 1432250 1432278 1432778 1432783) (-886 "PARPC2.spad" 1432041 1432057 1432240 1432245) (-885 "PARAMAST.spad" 1431169 1431177 1432031 1432036) (-884 "PAN2EXPR.spad" 1430581 1430589 1431159 1431164) (-883 "PALETTE.spad" 1429551 1429559 1430571 1430576) (-882 "PAIR.spad" 1428538 1428551 1429139 1429144) (-881 "PADICRC.spad" 1425872 1425890 1427043 1427136) (-880 "PADICRAT.spad" 1423887 1423899 1424108 1424201) (-879 "PADIC.spad" 1423582 1423594 1423813 1423882) (-878 "PADICCT.spad" 1422131 1422143 1423508 1423577) (-877 "PADEPAC.spad" 1420820 1420839 1422121 1422126) (-876 "PADE.spad" 1419572 1419588 1420810 1420815) (-875 "OWP.spad" 1418812 1418842 1419430 1419497) (-874 "OVERSET.spad" 1418385 1418393 1418802 1418807) (-873 "OVAR.spad" 1418166 1418189 1418375 1418380) (-872 "OUT.spad" 1417252 1417260 1418156 1418161) (-871 "OUTFORM.spad" 1406644 1406652 1417242 1417247) (-870 "OUTBFILE.spad" 1406062 1406070 1406634 1406639) (-869 "OUTBCON.spad" 1405068 1405076 1406052 1406057) (-868 "OUTBCON.spad" 1404072 1404082 1405058 1405063) (-867 "OSI.spad" 1403547 1403555 1404062 1404067) (-866 "OSGROUP.spad" 1403465 1403473 1403537 1403542) (-865 "ORTHPOL.spad" 1401950 1401960 1403382 1403387) (-864 "OREUP.spad" 1401403 1401431 1401630 1401669) (-863 "ORESUP.spad" 1400704 1400728 1401083 1401122) (-862 "OREPCTO.spad" 1398561 1398573 1400624 1400629) (-861 "OREPCAT.spad" 1392708 1392718 1398517 1398556) (-860 "OREPCAT.spad" 1386745 1386757 1392556 1392561) (-859 "ORDSET.spad" 1385917 1385925 1386735 1386740) (-858 "ORDSET.spad" 1385087 1385097 1385907 1385912) (-857 "ORDRING.spad" 1384477 1384485 1385067 1385082) (-856 "ORDRING.spad" 1383875 1383885 1384467 1384472) (-855 "ORDMON.spad" 1383730 1383738 1383865 1383870) (-854 "ORDFUNS.spad" 1382862 1382878 1383720 1383725) (-853 "ORDFIN.spad" 1382682 1382690 1382852 1382857) (-852 "ORDCOMP.spad" 1381147 1381157 1382229 1382258) (-851 "ORDCOMP2.spad" 1380440 1380452 1381137 1381142) (-850 "OPTPROB.spad" 1379078 1379086 1380430 1380435) (-849 "OPTPACK.spad" 1371487 1371495 1379068 1379073) (-848 "OPTCAT.spad" 1369166 1369174 1371477 1371482) (-847 "OPSIG.spad" 1368820 1368828 1369156 1369161) (-846 "OPQUERY.spad" 1368369 1368377 1368810 1368815) (-845 "OP.spad" 1368111 1368121 1368191 1368258) (-844 "OPERCAT.spad" 1367577 1367587 1368101 1368106) (-843 "OPERCAT.spad" 1367041 1367053 1367567 1367572) (-842 "ONECOMP.spad" 1365786 1365796 1366588 1366617) (-841 "ONECOMP2.spad" 1365210 1365222 1365776 1365781) (-840 "OMSERVER.spad" 1364216 1364224 1365200 1365205) (-839 "OMSAGG.spad" 1364004 1364014 1364172 1364211) (-838 "OMPKG.spad" 1362620 1362628 1363994 1363999) (-837 "OM.spad" 1361593 1361601 1362610 1362615) (-836 "OMLO.spad" 1361018 1361030 1361479 1361518) (-835 "OMEXPR.spad" 1360852 1360862 1361008 1361013) (-834 "OMERR.spad" 1360397 1360405 1360842 1360847) (-833 "OMERRK.spad" 1359431 1359439 1360387 1360392) (-832 "OMENC.spad" 1358775 1358783 1359421 1359426) (-831 "OMDEV.spad" 1353084 1353092 1358765 1358770) (-830 "OMCONN.spad" 1352493 1352501 1353074 1353079) (-829 "OINTDOM.spad" 1352256 1352264 1352419 1352488) (-828 "OFMONOID.spad" 1350379 1350389 1352212 1352217) (-827 "ODVAR.spad" 1349640 1349650 1350369 1350374) (-826 "ODR.spad" 1349284 1349310 1349452 1349601) (-825 "ODPOL.spad" 1346666 1346676 1347006 1347133) (-824 "ODP.spad" 1336436 1336456 1336809 1336940) (-823 "ODETOOLS.spad" 1335085 1335104 1336426 1336431) (-822 "ODESYS.spad" 1332779 1332796 1335075 1335080) (-821 "ODERTRIC.spad" 1328788 1328805 1332736 1332741) (-820 "ODERED.spad" 1328187 1328211 1328778 1328783) (-819 "ODERAT.spad" 1325802 1325819 1328177 1328182) (-818 "ODEPRRIC.spad" 1322839 1322861 1325792 1325797) (-817 "ODEPROB.spad" 1322096 1322104 1322829 1322834) (-816 "ODEPRIM.spad" 1319430 1319452 1322086 1322091) (-815 "ODEPAL.spad" 1318816 1318840 1319420 1319425) (-814 "ODEPACK.spad" 1305482 1305490 1318806 1318811) (-813 "ODEINT.spad" 1304917 1304933 1305472 1305477) (-812 "ODEIFTBL.spad" 1302312 1302320 1304907 1304912) (-811 "ODEEF.spad" 1297803 1297819 1302302 1302307) (-810 "ODECONST.spad" 1297340 1297358 1297793 1297798) (-809 "ODECAT.spad" 1295938 1295946 1297330 1297335) (-808 "OCT.spad" 1294074 1294084 1294788 1294827) (-807 "OCTCT2.spad" 1293720 1293741 1294064 1294069) (-806 "OC.spad" 1291516 1291526 1293676 1293715) (-805 "OC.spad" 1289037 1289049 1291199 1291204) (-804 "OCAMON.spad" 1288885 1288893 1289027 1289032) (-803 "OASGP.spad" 1288700 1288708 1288875 1288880) (-802 "OAMONS.spad" 1288222 1288230 1288690 1288695) (-801 "OAMON.spad" 1288083 1288091 1288212 1288217) (-800 "OAGROUP.spad" 1287945 1287953 1288073 1288078) (-799 "NUMTUBE.spad" 1287536 1287552 1287935 1287940) (-798 "NUMQUAD.spad" 1275512 1275520 1287526 1287531) (-797 "NUMODE.spad" 1266866 1266874 1275502 1275507) (-796 "NUMINT.spad" 1264432 1264440 1266856 1266861) (-795 "NUMFMT.spad" 1263272 1263280 1264422 1264427) (-794 "NUMERIC.spad" 1255386 1255396 1263077 1263082) (-793 "NTSCAT.spad" 1253894 1253910 1255354 1255381) (-792 "NTPOLFN.spad" 1253445 1253455 1253811 1253816) (-791 "NSUP.spad" 1246491 1246501 1251031 1251184) (-790 "NSUP2.spad" 1245883 1245895 1246481 1246486) (-789 "NSMP.spad" 1242113 1242132 1242421 1242548) (-788 "NREP.spad" 1240491 1240505 1242103 1242108) (-787 "NPCOEF.spad" 1239737 1239757 1240481 1240486) (-786 "NORMRETR.spad" 1239335 1239374 1239727 1239732) (-785 "NORMPK.spad" 1237237 1237256 1239325 1239330) (-784 "NORMMA.spad" 1236925 1236951 1237227 1237232) (-783 "NONE.spad" 1236666 1236674 1236915 1236920) (-782 "NONE1.spad" 1236342 1236352 1236656 1236661) (-781 "NODE1.spad" 1235829 1235845 1236332 1236337) (-780 "NNI.spad" 1234724 1234732 1235803 1235824) (-779 "NLINSOL.spad" 1233350 1233360 1234714 1234719) (-778 "NIPROB.spad" 1231891 1231899 1233340 1233345) (-777 "NFINTBAS.spad" 1229451 1229468 1231881 1231886) (-776 "NETCLT.spad" 1229425 1229436 1229441 1229446) (-775 "NCODIV.spad" 1227641 1227657 1229415 1229420) (-774 "NCNTFRAC.spad" 1227283 1227297 1227631 1227636) (-773 "NCEP.spad" 1225449 1225463 1227273 1227278) (-772 "NASRING.spad" 1225045 1225053 1225439 1225444) (-771 "NASRING.spad" 1224639 1224649 1225035 1225040) (-770 "NARNG.spad" 1223991 1223999 1224629 1224634) (-769 "NARNG.spad" 1223341 1223351 1223981 1223986) (-768 "NAGSP.spad" 1222418 1222426 1223331 1223336) (-767 "NAGS.spad" 1212079 1212087 1222408 1222413) (-766 "NAGF07.spad" 1210510 1210518 1212069 1212074) (-765 "NAGF04.spad" 1204912 1204920 1210500 1210505) (-764 "NAGF02.spad" 1198981 1198989 1204902 1204907) (-763 "NAGF01.spad" 1194742 1194750 1198971 1198976) (-762 "NAGE04.spad" 1188442 1188450 1194732 1194737) (-761 "NAGE02.spad" 1179102 1179110 1188432 1188437) (-760 "NAGE01.spad" 1175104 1175112 1179092 1179097) (-759 "NAGD03.spad" 1173108 1173116 1175094 1175099) (-758 "NAGD02.spad" 1165855 1165863 1173098 1173103) (-757 "NAGD01.spad" 1160148 1160156 1165845 1165850) (-756 "NAGC06.spad" 1156023 1156031 1160138 1160143) (-755 "NAGC05.spad" 1154524 1154532 1156013 1156018) (-754 "NAGC02.spad" 1153791 1153799 1154514 1154519) (-753 "NAALG.spad" 1153332 1153342 1153759 1153786) (-752 "NAALG.spad" 1152893 1152905 1153322 1153327) (-751 "MULTSQFR.spad" 1149851 1149868 1152883 1152888) (-750 "MULTFACT.spad" 1149234 1149251 1149841 1149846) (-749 "MTSCAT.spad" 1147328 1147349 1149132 1149229) (-748 "MTHING.spad" 1146987 1146997 1147318 1147323) (-747 "MSYSCMD.spad" 1146421 1146429 1146977 1146982) (-746 "MSET.spad" 1144379 1144389 1146127 1146166) (-745 "MSETAGG.spad" 1144224 1144234 1144347 1144374) (-744 "MRING.spad" 1141201 1141213 1143932 1143999) (-743 "MRF2.spad" 1140771 1140785 1141191 1141196) (-742 "MRATFAC.spad" 1140317 1140334 1140761 1140766) (-741 "MPRFF.spad" 1138357 1138376 1140307 1140312) (-740 "MPOLY.spad" 1135828 1135843 1136187 1136314) (-739 "MPCPF.spad" 1135092 1135111 1135818 1135823) (-738 "MPC3.spad" 1134909 1134949 1135082 1135087) (-737 "MPC2.spad" 1134555 1134588 1134899 1134904) (-736 "MONOTOOL.spad" 1132906 1132923 1134545 1134550) (-735 "MONOID.spad" 1132225 1132233 1132896 1132901) (-734 "MONOID.spad" 1131542 1131552 1132215 1132220) (-733 "MONOGEN.spad" 1130290 1130303 1131402 1131537) (-732 "MONOGEN.spad" 1129060 1129075 1130174 1130179) (-731 "MONADWU.spad" 1127090 1127098 1129050 1129055) (-730 "MONADWU.spad" 1125118 1125128 1127080 1127085) (-729 "MONAD.spad" 1124278 1124286 1125108 1125113) (-728 "MONAD.spad" 1123436 1123446 1124268 1124273) (-727 "MOEBIUS.spad" 1122172 1122186 1123416 1123431) (-726 "MODULE.spad" 1122042 1122052 1122140 1122167) (-725 "MODULE.spad" 1121932 1121944 1122032 1122037) (-724 "MODRING.spad" 1121267 1121306 1121912 1121927) (-723 "MODOP.spad" 1119932 1119944 1121089 1121156) (-722 "MODMONOM.spad" 1119663 1119681 1119922 1119927) (-721 "MODMON.spad" 1116458 1116474 1117177 1117330) (-720 "MODFIELD.spad" 1115820 1115859 1116360 1116453) (-719 "MMLFORM.spad" 1114680 1114688 1115810 1115815) (-718 "MMAP.spad" 1114422 1114456 1114670 1114675) (-717 "MLO.spad" 1112881 1112891 1114378 1114417) (-716 "MLIFT.spad" 1111493 1111510 1112871 1112876) (-715 "MKUCFUNC.spad" 1111028 1111046 1111483 1111488) (-714 "MKRECORD.spad" 1110632 1110645 1111018 1111023) (-713 "MKFUNC.spad" 1110039 1110049 1110622 1110627) (-712 "MKFLCFN.spad" 1109007 1109017 1110029 1110034) (-711 "MKBCFUNC.spad" 1108502 1108520 1108997 1109002) (-710 "MINT.spad" 1107941 1107949 1108404 1108497) (-709 "MHROWRED.spad" 1106452 1106462 1107931 1107936) (-708 "MFLOAT.spad" 1104972 1104980 1106342 1106447) (-707 "MFINFACT.spad" 1104372 1104394 1104962 1104967) (-706 "MESH.spad" 1102154 1102162 1104362 1104367) (-705 "MDDFACT.spad" 1100365 1100375 1102144 1102149) (-704 "MDAGG.spad" 1099656 1099666 1100345 1100360) (-703 "MCMPLX.spad" 1095667 1095675 1096281 1096482) (-702 "MCDEN.spad" 1094877 1094889 1095657 1095662) (-701 "MCALCFN.spad" 1091999 1092025 1094867 1094872) (-700 "MAYBE.spad" 1091283 1091294 1091989 1091994) (-699 "MATSTOR.spad" 1088591 1088601 1091273 1091278) (-698 "MATRIX.spad" 1087295 1087305 1087779 1087806) (-697 "MATLIN.spad" 1084639 1084663 1087179 1087184) (-696 "MATCAT.spad" 1076368 1076390 1084607 1084634) (-695 "MATCAT.spad" 1067969 1067993 1076210 1076215) (-694 "MATCAT2.spad" 1067251 1067299 1067959 1067964) (-693 "MAPPKG3.spad" 1066166 1066180 1067241 1067246) (-692 "MAPPKG2.spad" 1065504 1065516 1066156 1066161) (-691 "MAPPKG1.spad" 1064332 1064342 1065494 1065499) (-690 "MAPPAST.spad" 1063647 1063655 1064322 1064327) (-689 "MAPHACK3.spad" 1063459 1063473 1063637 1063642) (-688 "MAPHACK2.spad" 1063228 1063240 1063449 1063454) (-687 "MAPHACK1.spad" 1062872 1062882 1063218 1063223) (-686 "MAGMA.spad" 1060662 1060679 1062862 1062867) (-685 "MACROAST.spad" 1060241 1060249 1060652 1060657) (-684 "M3D.spad" 1057961 1057971 1059619 1059624) (-683 "LZSTAGG.spad" 1055199 1055209 1057951 1057956) (-682 "LZSTAGG.spad" 1052435 1052447 1055189 1055194) (-681 "LWORD.spad" 1049140 1049157 1052425 1052430) (-680 "LSTAST.spad" 1048924 1048932 1049130 1049135) (-679 "LSQM.spad" 1047210 1047224 1047604 1047655) (-678 "LSPP.spad" 1046745 1046762 1047200 1047205) (-677 "LSMP.spad" 1045595 1045623 1046735 1046740) (-676 "LSMP1.spad" 1043413 1043427 1045585 1045590) (-675 "LSAGG.spad" 1043082 1043092 1043381 1043408) (-674 "LSAGG.spad" 1042771 1042783 1043072 1043077) (-673 "LPOLY.spad" 1041725 1041744 1042627 1042696) (-672 "LPEFRAC.spad" 1040996 1041006 1041715 1041720) (-671 "LO.spad" 1040397 1040411 1040930 1040957) (-670 "LOGIC.spad" 1039999 1040007 1040387 1040392) (-669 "LOGIC.spad" 1039599 1039609 1039989 1039994) (-668 "LODOOPS.spad" 1038529 1038541 1039589 1039594) (-667 "LODO.spad" 1037913 1037929 1038209 1038248) (-666 "LODOF.spad" 1036959 1036976 1037870 1037875) (-665 "LODOCAT.spad" 1035625 1035635 1036915 1036954) (-664 "LODOCAT.spad" 1034289 1034301 1035581 1035586) (-663 "LODO2.spad" 1033562 1033574 1033969 1034008) (-662 "LODO1.spad" 1032962 1032972 1033242 1033281) (-661 "LODEEF.spad" 1031764 1031782 1032952 1032957) (-660 "LNAGG.spad" 1027911 1027921 1031754 1031759) (-659 "LNAGG.spad" 1024022 1024034 1027867 1027872) (-658 "LMOPS.spad" 1020790 1020807 1024012 1024017) (-657 "LMODULE.spad" 1020558 1020568 1020780 1020785) (-656 "LMDICT.spad" 1019845 1019855 1020109 1020136) (-655 "LLINSET.spad" 1019242 1019252 1019835 1019840) (-654 "LITERAL.spad" 1019148 1019159 1019232 1019237) (-653 "LIST.spad" 1016883 1016893 1018295 1018322) (-652 "LIST3.spad" 1016194 1016208 1016873 1016878) (-651 "LIST2.spad" 1014896 1014908 1016184 1016189) (-650 "LIST2MAP.spad" 1011799 1011811 1014886 1014891) (-649 "LINSET.spad" 1011421 1011431 1011789 1011794) (-648 "LINEXP.spad" 1010559 1010569 1011411 1011416) (-647 "LINDEP.spad" 1009368 1009380 1010471 1010476) (-646 "LIMITRF.spad" 1007296 1007306 1009358 1009363) (-645 "LIMITPS.spad" 1006199 1006212 1007286 1007291) (-644 "LIE.spad" 1004215 1004227 1005489 1005634) (-643 "LIECAT.spad" 1003691 1003701 1004141 1004210) (-642 "LIECAT.spad" 1003195 1003207 1003647 1003652) (-641 "LIB.spad" 1001408 1001416 1001854 1001869) (-640 "LGROBP.spad" 998761 998780 1001398 1001403) (-639 "LF.spad" 997716 997732 998751 998756) (-638 "LFCAT.spad" 996775 996783 997706 997711) (-637 "LEXTRIPK.spad" 992278 992293 996765 996770) (-636 "LEXP.spad" 990281 990308 992258 992273) (-635 "LETAST.spad" 989980 989988 990271 990276) (-634 "LEADCDET.spad" 988378 988395 989970 989975) (-633 "LAZM3PK.spad" 987082 987104 988368 988373) (-632 "LAUPOL.spad" 985775 985788 986675 986744) (-631 "LAPLACE.spad" 985358 985374 985765 985770) (-630 "LA.spad" 984798 984812 985280 985319) (-629 "LALG.spad" 984574 984584 984778 984793) (-628 "LALG.spad" 984358 984370 984564 984569) (-627 "KVTFROM.spad" 984093 984103 984348 984353) (-626 "KTVLOGIC.spad" 983605 983613 984083 984088) (-625 "KRCFROM.spad" 983343 983353 983595 983600) (-624 "KOVACIC.spad" 982066 982083 983333 983338) (-623 "KONVERT.spad" 981788 981798 982056 982061) (-622 "KOERCE.spad" 981525 981535 981778 981783) (-621 "KERNEL.spad" 980180 980190 981309 981314) (-620 "KERNEL2.spad" 979883 979895 980170 980175) (-619 "KDAGG.spad" 978992 979014 979863 979878) (-618 "KDAGG.spad" 978109 978133 978982 978987) (-617 "KAFILE.spad" 977072 977088 977307 977334) (-616 "JORDAN.spad" 974901 974913 976362 976507) (-615 "JOINAST.spad" 974595 974603 974891 974896) (-614 "JAVACODE.spad" 974461 974469 974585 974590) (-613 "IXAGG.spad" 972594 972618 974451 974456) (-612 "IXAGG.spad" 970582 970608 972441 972446) (-611 "IVECTOR.spad" 969352 969367 969507 969534) (-610 "ITUPLE.spad" 968513 968523 969342 969347) (-609 "ITRIGMNP.spad" 967352 967371 968503 968508) (-608 "ITFUN3.spad" 966858 966872 967342 967347) (-607 "ITFUN2.spad" 966602 966614 966848 966853) (-606 "ITFORM.spad" 965957 965965 966592 966597) (-605 "ITAYLOR.spad" 963951 963966 965821 965918) (-604 "ISUPS.spad" 956388 956403 962925 963022) (-603 "ISUMP.spad" 955889 955905 956378 956383) (-602 "ISTRING.spad" 954977 954990 955058 955085) (-601 "ISAST.spad" 954696 954704 954967 954972) (-600 "IRURPK.spad" 953413 953432 954686 954691) (-599 "IRSN.spad" 951385 951393 953403 953408) (-598 "IRRF2F.spad" 949870 949880 951341 951346) (-597 "IRREDFFX.spad" 949471 949482 949860 949865) (-596 "IROOT.spad" 947810 947820 949461 949466) (-595 "IR.spad" 945611 945625 947665 947692) (-594 "IRFORM.spad" 944935 944943 945601 945606) (-593 "IR2.spad" 943963 943979 944925 944930) (-592 "IR2F.spad" 943169 943185 943953 943958) (-591 "IPRNTPK.spad" 942929 942937 943159 943164) (-590 "IPF.spad" 942494 942506 942734 942827) (-589 "IPADIC.spad" 942255 942281 942420 942489) (-588 "IP4ADDR.spad" 941812 941820 942245 942250) (-587 "IOMODE.spad" 941334 941342 941802 941807) (-586 "IOBFILE.spad" 940695 940703 941324 941329) (-585 "IOBCON.spad" 940560 940568 940685 940690) (-584 "INVLAPLA.spad" 940209 940225 940550 940555) (-583 "INTTR.spad" 933591 933608 940199 940204) (-582 "INTTOOLS.spad" 931346 931362 933165 933170) (-581 "INTSLPE.spad" 930666 930674 931336 931341) (-580 "INTRVL.spad" 930232 930242 930580 930661) (-579 "INTRF.spad" 928656 928670 930222 930227) (-578 "INTRET.spad" 928088 928098 928646 928651) (-577 "INTRAT.spad" 926815 926832 928078 928083) (-576 "INTPM.spad" 925200 925216 926458 926463) (-575 "INTPAF.spad" 923064 923082 925132 925137) (-574 "INTPACK.spad" 913438 913446 923054 923059) (-573 "INT.spad" 912886 912894 913292 913433) (-572 "INTHERTR.spad" 912160 912177 912876 912881) (-571 "INTHERAL.spad" 911830 911854 912150 912155) (-570 "INTHEORY.spad" 908269 908277 911820 911825) (-569 "INTG0.spad" 902002 902020 908201 908206) (-568 "INTFTBL.spad" 896031 896039 901992 901997) (-567 "INTFACT.spad" 895090 895100 896021 896026) (-566 "INTEF.spad" 893475 893491 895080 895085) (-565 "INTDOM.spad" 892098 892106 893401 893470) (-564 "INTDOM.spad" 890783 890793 892088 892093) (-563 "INTCAT.spad" 889042 889052 890697 890778) (-562 "INTBIT.spad" 888549 888557 889032 889037) (-561 "INTALG.spad" 887737 887764 888539 888544) (-560 "INTAF.spad" 887237 887253 887727 887732) (-559 "INTABL.spad" 885755 885786 885918 885945) (-558 "INT8.spad" 885635 885643 885745 885750) (-557 "INT64.spad" 885514 885522 885625 885630) (-556 "INT32.spad" 885393 885401 885504 885509) (-555 "INT16.spad" 885272 885280 885383 885388) (-554 "INS.spad" 882775 882783 885174 885267) (-553 "INS.spad" 880364 880374 882765 882770) (-552 "INPSIGN.spad" 879812 879825 880354 880359) (-551 "INPRODPF.spad" 878908 878927 879802 879807) (-550 "INPRODFF.spad" 877996 878020 878898 878903) (-549 "INNMFACT.spad" 876971 876988 877986 877991) (-548 "INMODGCD.spad" 876459 876489 876961 876966) (-547 "INFSP.spad" 874756 874778 876449 876454) (-546 "INFPROD0.spad" 873836 873855 874746 874751) (-545 "INFORM.spad" 871035 871043 873826 873831) (-544 "INFORM1.spad" 870660 870670 871025 871030) (-543 "INFINITY.spad" 870212 870220 870650 870655) (-542 "INETCLTS.spad" 870189 870197 870202 870207) (-541 "INEP.spad" 868727 868749 870179 870184) (-540 "INDE.spad" 868456 868473 868717 868722) (-539 "INCRMAPS.spad" 867877 867887 868446 868451) (-538 "INBFILE.spad" 866949 866957 867867 867872) (-537 "INBFF.spad" 862743 862754 866939 866944) (-536 "INBCON.spad" 861033 861041 862733 862738) (-535 "INBCON.spad" 859321 859331 861023 861028) (-534 "INAST.spad" 858982 858990 859311 859316) (-533 "IMPTAST.spad" 858690 858698 858972 858977) (-532 "IMATRIX.spad" 857635 857661 858147 858174) (-531 "IMATQF.spad" 856729 856773 857591 857596) (-530 "IMATLIN.spad" 855334 855358 856685 856690) (-529 "ILIST.spad" 853992 854007 854517 854544) (-528 "IIARRAY2.spad" 853380 853418 853599 853626) (-527 "IFF.spad" 852790 852806 853061 853154) (-526 "IFAST.spad" 852404 852412 852780 852785) (-525 "IFARRAY.spad" 849897 849912 851587 851614) (-524 "IFAMON.spad" 849759 849776 849853 849858) (-523 "IEVALAB.spad" 849164 849176 849749 849754) (-522 "IEVALAB.spad" 848567 848581 849154 849159) (-521 "IDPO.spad" 848365 848377 848557 848562) (-520 "IDPOAMS.spad" 848121 848133 848355 848360) (-519 "IDPOAM.spad" 847841 847853 848111 848116) (-518 "IDPC.spad" 846779 846791 847831 847836) (-517 "IDPAM.spad" 846524 846536 846769 846774) (-516 "IDPAG.spad" 846271 846283 846514 846519) (-515 "IDENT.spad" 845921 845929 846261 846266) (-514 "IDECOMP.spad" 843160 843178 845911 845916) (-513 "IDEAL.spad" 838109 838148 843095 843100) (-512 "ICDEN.spad" 837298 837314 838099 838104) (-511 "ICARD.spad" 836489 836497 837288 837293) (-510 "IBPTOOLS.spad" 835096 835113 836479 836484) (-509 "IBITS.spad" 834299 834312 834732 834759) (-508 "IBATOOL.spad" 831276 831295 834289 834294) (-507 "IBACHIN.spad" 829783 829798 831266 831271) (-506 "IARRAY2.spad" 828771 828797 829390 829417) (-505 "IARRAY1.spad" 827816 827831 827954 827981) (-504 "IAN.spad" 826039 826047 827632 827725) (-503 "IALGFACT.spad" 825642 825675 826029 826034) (-502 "HYPCAT.spad" 825066 825074 825632 825637) (-501 "HYPCAT.spad" 824488 824498 825056 825061) (-500 "HOSTNAME.spad" 824296 824304 824478 824483) (-499 "HOMOTOP.spad" 824039 824049 824286 824291) (-498 "HOAGG.spad" 821321 821331 824029 824034) (-497 "HOAGG.spad" 818378 818390 821088 821093) (-496 "HEXADEC.spad" 816480 816488 816845 816938) (-495 "HEUGCD.spad" 815515 815526 816470 816475) (-494 "HELLFDIV.spad" 815105 815129 815505 815510) (-493 "HEAP.spad" 814497 814507 814712 814739) (-492 "HEADAST.spad" 814030 814038 814487 814492) (-491 "HDP.spad" 803796 803812 804173 804304) (-490 "HDMP.spad" 801010 801025 801626 801753) (-489 "HB.spad" 799261 799269 801000 801005) (-488 "HASHTBL.spad" 797731 797762 797942 797969) (-487 "HASAST.spad" 797447 797455 797721 797726) (-486 "HACKPI.spad" 796938 796946 797349 797442) (-485 "GTSET.spad" 795877 795893 796584 796611) (-484 "GSTBL.spad" 794396 794431 794570 794585) (-483 "GSERIES.spad" 791567 791594 792528 792677) (-482 "GROUP.spad" 790840 790848 791547 791562) (-481 "GROUP.spad" 790121 790131 790830 790835) (-480 "GROEBSOL.spad" 788615 788636 790111 790116) (-479 "GRMOD.spad" 787186 787198 788605 788610) (-478 "GRMOD.spad" 785755 785769 787176 787181) (-477 "GRIMAGE.spad" 778644 778652 785745 785750) (-476 "GRDEF.spad" 777023 777031 778634 778639) (-475 "GRAY.spad" 775486 775494 777013 777018) (-474 "GRALG.spad" 774563 774575 775476 775481) (-473 "GRALG.spad" 773638 773652 774553 774558) (-472 "GPOLSET.spad" 773092 773115 773320 773347) (-471 "GOSPER.spad" 772361 772379 773082 773087) (-470 "GMODPOL.spad" 771509 771536 772329 772356) (-469 "GHENSEL.spad" 770592 770606 771499 771504) (-468 "GENUPS.spad" 766885 766898 770582 770587) (-467 "GENUFACT.spad" 766462 766472 766875 766880) (-466 "GENPGCD.spad" 766048 766065 766452 766457) (-465 "GENMFACT.spad" 765500 765519 766038 766043) (-464 "GENEEZ.spad" 763451 763464 765490 765495) (-463 "GDMP.spad" 760507 760524 761281 761408) (-462 "GCNAALG.spad" 754430 754457 760301 760368) (-461 "GCDDOM.spad" 753606 753614 754356 754425) (-460 "GCDDOM.spad" 752844 752854 753596 753601) (-459 "GB.spad" 750370 750408 752800 752805) (-458 "GBINTERN.spad" 746390 746428 750360 750365) (-457 "GBF.spad" 742157 742195 746380 746385) (-456 "GBEUCLID.spad" 740039 740077 742147 742152) (-455 "GAUSSFAC.spad" 739352 739360 740029 740034) (-454 "GALUTIL.spad" 737678 737688 739308 739313) (-453 "GALPOLYU.spad" 736132 736145 737668 737673) (-452 "GALFACTU.spad" 734305 734324 736122 736127) (-451 "GALFACT.spad" 724494 724505 734295 734300) (-450 "FVFUN.spad" 721517 721525 724484 724489) (-449 "FVC.spad" 720569 720577 721507 721512) (-448 "FUNDESC.spad" 720247 720255 720559 720564) (-447 "FUNCTION.spad" 720096 720108 720237 720242) (-446 "FT.spad" 718393 718401 720086 720091) (-445 "FTEM.spad" 717558 717566 718383 718388) (-444 "FSUPFACT.spad" 716458 716477 717494 717499) (-443 "FST.spad" 714544 714552 716448 716453) (-442 "FSRED.spad" 714024 714040 714534 714539) (-441 "FSPRMELT.spad" 712906 712922 713981 713986) (-440 "FSPECF.spad" 710997 711013 712896 712901) (-439 "FS.spad" 705265 705275 710772 710992) (-438 "FS.spad" 699311 699323 704820 704825) (-437 "FSINT.spad" 698971 698987 699301 699306) (-436 "FSERIES.spad" 698162 698174 698791 698890) (-435 "FSCINT.spad" 697479 697495 698152 698157) (-434 "FSAGG.spad" 696596 696606 697435 697474) (-433 "FSAGG.spad" 695675 695687 696516 696521) (-432 "FSAGG2.spad" 694418 694434 695665 695670) (-431 "FS2UPS.spad" 688909 688943 694408 694413) (-430 "FS2.spad" 688556 688572 688899 688904) (-429 "FS2EXPXP.spad" 687681 687704 688546 688551) (-428 "FRUTIL.spad" 686635 686645 687671 687676) (-427 "FR.spad" 680167 680177 685475 685544) (-426 "FRNAALG.spad" 675436 675446 680109 680162) (-425 "FRNAALG.spad" 670717 670729 675392 675397) (-424 "FRNAAF2.spad" 670173 670191 670707 670712) (-423 "FRMOD.spad" 669583 669613 670104 670109) (-422 "FRIDEAL.spad" 668808 668829 669563 669578) (-421 "FRIDEAL2.spad" 668412 668444 668798 668803) (-420 "FRETRCT.spad" 667923 667933 668402 668407) (-419 "FRETRCT.spad" 667300 667312 667781 667786) (-418 "FRAMALG.spad" 665648 665661 667256 667295) (-417 "FRAMALG.spad" 664028 664043 665638 665643) (-416 "FRAC.spad" 661127 661137 661530 661703) (-415 "FRAC2.spad" 660732 660744 661117 661122) (-414 "FR2.spad" 660068 660080 660722 660727) (-413 "FPS.spad" 656883 656891 659958 660063) (-412 "FPS.spad" 653726 653736 656803 656808) (-411 "FPC.spad" 652772 652780 653628 653721) (-410 "FPC.spad" 651904 651914 652762 652767) (-409 "FPATMAB.spad" 651666 651676 651894 651899) (-408 "FPARFRAC.spad" 650153 650170 651656 651661) (-407 "FORTRAN.spad" 648659 648702 650143 650148) (-406 "FORT.spad" 647608 647616 648649 648654) (-405 "FORTFN.spad" 644778 644786 647598 647603) (-404 "FORTCAT.spad" 644462 644470 644768 644773) (-403 "FORMULA.spad" 641936 641944 644452 644457) (-402 "FORMULA1.spad" 641415 641425 641926 641931) (-401 "FORDER.spad" 641106 641130 641405 641410) (-400 "FOP.spad" 640307 640315 641096 641101) (-399 "FNLA.spad" 639731 639753 640275 640302) (-398 "FNCAT.spad" 638326 638334 639721 639726) (-397 "FNAME.spad" 638218 638226 638316 638321) (-396 "FMTC.spad" 638016 638024 638144 638213) (-395 "FMONOID.spad" 637681 637691 637972 637977) (-394 "FMONCAT.spad" 634834 634844 637671 637676) (-393 "FM.spad" 634529 634541 634768 634795) (-392 "FMFUN.spad" 631559 631567 634519 634524) (-391 "FMC.spad" 630611 630619 631549 631554) (-390 "FMCAT.spad" 628279 628297 630579 630606) (-389 "FM1.spad" 627636 627648 628213 628240) (-388 "FLOATRP.spad" 625371 625385 627626 627631) (-387 "FLOAT.spad" 618685 618693 625237 625366) (-386 "FLOATCP.spad" 616116 616130 618675 618680) (-385 "FLINEXP.spad" 615838 615848 616106 616111) (-384 "FLINEXP.spad" 615504 615516 615774 615779) (-383 "FLASORT.spad" 614830 614842 615494 615499) (-382 "FLALG.spad" 612476 612495 614756 614825) (-381 "FLAGG.spad" 609518 609528 612456 612471) (-380 "FLAGG.spad" 606461 606473 609401 609406) (-379 "FLAGG2.spad" 605186 605202 606451 606456) (-378 "FINRALG.spad" 603247 603260 605142 605181) (-377 "FINRALG.spad" 601234 601249 603131 603136) (-376 "FINITE.spad" 600386 600394 601224 601229) (-375 "FINAALG.spad" 589507 589517 600328 600381) (-374 "FINAALG.spad" 578640 578652 589463 589468) (-373 "FILE.spad" 578223 578233 578630 578635) (-372 "FILECAT.spad" 576749 576766 578213 578218) (-371 "FIELD.spad" 576155 576163 576651 576744) (-370 "FIELD.spad" 575647 575657 576145 576150) (-369 "FGROUP.spad" 574294 574304 575627 575642) (-368 "FGLMICPK.spad" 573081 573096 574284 574289) (-367 "FFX.spad" 572456 572471 572797 572890) (-366 "FFSLPE.spad" 571959 571980 572446 572451) (-365 "FFPOLY.spad" 563221 563232 571949 571954) (-364 "FFPOLY2.spad" 562281 562298 563211 563216) (-363 "FFP.spad" 561678 561698 561997 562090) (-362 "FF.spad" 561126 561142 561359 561452) (-361 "FFNBX.spad" 559638 559658 560842 560935) (-360 "FFNBP.spad" 558151 558168 559354 559447) (-359 "FFNB.spad" 556616 556637 557832 557925) (-358 "FFINTBAS.spad" 554130 554149 556606 556611) (-357 "FFIELDC.spad" 551707 551715 554032 554125) (-356 "FFIELDC.spad" 549370 549380 551697 551702) (-355 "FFHOM.spad" 548118 548135 549360 549365) (-354 "FFF.spad" 545553 545564 548108 548113) (-353 "FFCGX.spad" 544400 544420 545269 545362) (-352 "FFCGP.spad" 543289 543309 544116 544209) (-351 "FFCG.spad" 542081 542102 542970 543063) (-350 "FFCAT.spad" 535254 535276 541920 542076) (-349 "FFCAT.spad" 528506 528530 535174 535179) (-348 "FFCAT2.spad" 528253 528293 528496 528501) (-347 "FEXPR.spad" 519970 520016 528009 528048) (-346 "FEVALAB.spad" 519678 519688 519960 519965) (-345 "FEVALAB.spad" 519171 519183 519455 519460) (-344 "FDIV.spad" 518613 518637 519161 519166) (-343 "FDIVCAT.spad" 516677 516701 518603 518608) (-342 "FDIVCAT.spad" 514739 514765 516667 516672) (-341 "FDIV2.spad" 514395 514435 514729 514734) (-340 "FCTRDATA.spad" 513403 513411 514385 514390) (-339 "FCPAK1.spad" 511970 511978 513393 513398) (-338 "FCOMP.spad" 511349 511359 511960 511965) (-337 "FC.spad" 501356 501364 511339 511344) (-336 "FAXF.spad" 494327 494341 501258 501351) (-335 "FAXF.spad" 487350 487366 494283 494288) (-334 "FARRAY.spad" 485500 485510 486533 486560) (-333 "FAMR.spad" 483636 483648 485398 485495) (-332 "FAMR.spad" 481756 481770 483520 483525) (-331 "FAMONOID.spad" 481424 481434 481710 481715) (-330 "FAMONC.spad" 479720 479732 481414 481419) (-329 "FAGROUP.spad" 479344 479354 479616 479643) (-328 "FACUTIL.spad" 477548 477565 479334 479339) (-327 "FACTFUNC.spad" 476742 476752 477538 477543) (-326 "EXPUPXS.spad" 473575 473598 474874 475023) (-325 "EXPRTUBE.spad" 470863 470871 473565 473570) (-324 "EXPRODE.spad" 468023 468039 470853 470858) (-323 "EXPR.spad" 463198 463208 463912 464207) (-322 "EXPR2UPS.spad" 459320 459333 463188 463193) (-321 "EXPR2.spad" 459025 459037 459310 459315) (-320 "EXPEXPAN.spad" 455965 455990 456597 456690) (-319 "EXIT.spad" 455636 455644 455955 455960) (-318 "EXITAST.spad" 455372 455380 455626 455631) (-317 "EVALCYC.spad" 454832 454846 455362 455367) (-316 "EVALAB.spad" 454404 454414 454822 454827) (-315 "EVALAB.spad" 453974 453986 454394 454399) (-314 "EUCDOM.spad" 451548 451556 453900 453969) (-313 "EUCDOM.spad" 449184 449194 451538 451543) (-312 "ESTOOLS.spad" 441030 441038 449174 449179) (-311 "ESTOOLS2.spad" 440633 440647 441020 441025) (-310 "ESTOOLS1.spad" 440318 440329 440623 440628) (-309 "ES.spad" 433133 433141 440308 440313) (-308 "ES.spad" 425854 425864 433031 433036) (-307 "ESCONT.spad" 422647 422655 425844 425849) (-306 "ESCONT1.spad" 422396 422408 422637 422642) (-305 "ES2.spad" 421901 421917 422386 422391) (-304 "ES1.spad" 421471 421487 421891 421896) (-303 "ERROR.spad" 418798 418806 421461 421466) (-302 "EQTBL.spad" 417270 417292 417479 417506) (-301 "EQ.spad" 412075 412085 414862 414974) (-300 "EQ2.spad" 411793 411805 412065 412070) (-299 "EP.spad" 408119 408129 411783 411788) (-298 "ENV.spad" 406797 406805 408109 408114) (-297 "ENTIRER.spad" 406465 406473 406741 406792) (-296 "EMR.spad" 405753 405794 406391 406460) (-295 "ELTAGG.spad" 404007 404026 405743 405748) (-294 "ELTAGG.spad" 402225 402246 403963 403968) (-293 "ELTAB.spad" 401700 401713 402215 402220) (-292 "ELFUTS.spad" 401087 401106 401690 401695) (-291 "ELEMFUN.spad" 400776 400784 401077 401082) (-290 "ELEMFUN.spad" 400463 400473 400766 400771) (-289 "ELAGG.spad" 398434 398444 400443 400458) (-288 "ELAGG.spad" 396342 396354 398353 398358) (-287 "ELABOR.spad" 395688 395696 396332 396337) (-286 "ELABEXPR.spad" 394620 394628 395678 395683) (-285 "EFUPXS.spad" 391396 391426 394576 394581) (-284 "EFULS.spad" 388232 388255 391352 391357) (-283 "EFSTRUC.spad" 386247 386263 388222 388227) (-282 "EF.spad" 381023 381039 386237 386242) (-281 "EAB.spad" 379299 379307 381013 381018) (-280 "E04UCFA.spad" 378835 378843 379289 379294) (-279 "E04NAFA.spad" 378412 378420 378825 378830) (-278 "E04MBFA.spad" 377992 378000 378402 378407) (-277 "E04JAFA.spad" 377528 377536 377982 377987) (-276 "E04GCFA.spad" 377064 377072 377518 377523) (-275 "E04FDFA.spad" 376600 376608 377054 377059) (-274 "E04DGFA.spad" 376136 376144 376590 376595) (-273 "E04AGNT.spad" 371986 371994 376126 376131) (-272 "DVARCAT.spad" 368876 368886 371976 371981) (-271 "DVARCAT.spad" 365764 365776 368866 368871) (-270 "DSMP.spad" 363231 363245 363536 363663) (-269 "DROPT.spad" 357190 357198 363221 363226) (-268 "DROPT1.spad" 356855 356865 357180 357185) (-267 "DROPT0.spad" 351712 351720 356845 356850) (-266 "DRAWPT.spad" 349885 349893 351702 351707) (-265 "DRAW.spad" 342761 342774 349875 349880) (-264 "DRAWHACK.spad" 342069 342079 342751 342756) (-263 "DRAWCX.spad" 339539 339547 342059 342064) (-262 "DRAWCURV.spad" 339086 339101 339529 339534) (-261 "DRAWCFUN.spad" 328618 328626 339076 339081) (-260 "DQAGG.spad" 326796 326806 328586 328613) (-259 "DPOLCAT.spad" 322145 322161 326664 326791) (-258 "DPOLCAT.spad" 317580 317598 322101 322106) (-257 "DPMO.spad" 310053 310069 310191 310436) (-256 "DPMM.spad" 302539 302557 302664 302909) (-255 "DOMTMPLT.spad" 302310 302318 302529 302534) (-254 "DOMCTOR.spad" 302065 302073 302300 302305) (-253 "DOMAIN.spad" 301152 301160 302055 302060) (-252 "DMP.spad" 298412 298427 298982 299109) (-251 "DLP.spad" 297764 297774 298402 298407) (-250 "DLIST.spad" 296343 296353 296947 296974) (-249 "DLAGG.spad" 294760 294770 296333 296338) (-248 "DIVRING.spad" 294302 294310 294704 294755) (-247 "DIVRING.spad" 293888 293898 294292 294297) (-246 "DISPLAY.spad" 292078 292086 293878 293883) (-245 "DIRPROD.spad" 281581 281597 282221 282352) (-244 "DIRPROD2.spad" 280399 280417 281571 281576) (-243 "DIRPCAT.spad" 279343 279359 280263 280394) (-242 "DIRPCAT.spad" 278016 278034 278938 278943) (-241 "DIOSP.spad" 276841 276849 278006 278011) (-240 "DIOPS.spad" 275837 275847 276821 276836) (-239 "DIOPS.spad" 274807 274819 275793 275798) (-238 "DIFRING.spad" 274645 274653 274787 274802) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2268874 2268879 2268884 2268889) (-2 NIL 2268854 2268859 2268864 2268869) (-1 NIL 2268834 2268839 2268844 2268849) (0 NIL 2268814 2268819 2268824 2268829) (-1312 "ZMOD.spad" 2268623 2268636 2268752 2268809) (-1311 "ZLINDEP.spad" 2267689 2267700 2268613 2268618) (-1310 "ZDSOLVE.spad" 2257634 2257656 2267679 2267684) (-1309 "YSTREAM.spad" 2257129 2257140 2257624 2257629) (-1308 "YDIAGRAM.spad" 2256763 2256772 2257119 2257124) (-1307 "XRPOLY.spad" 2255983 2256003 2256619 2256688) (-1306 "XPR.spad" 2253778 2253791 2255701 2255800) (-1305 "XPOLY.spad" 2253333 2253344 2253634 2253703) (-1304 "XPOLYC.spad" 2252652 2252668 2253259 2253328) (-1303 "XPBWPOLY.spad" 2251089 2251109 2252432 2252501) (-1302 "XF.spad" 2249552 2249567 2250991 2251084) (-1301 "XF.spad" 2247995 2248012 2249436 2249441) (-1300 "XFALG.spad" 2245043 2245059 2247921 2247990) (-1299 "XEXPPKG.spad" 2244294 2244320 2245033 2245038) (-1298 "XDPOLY.spad" 2243908 2243924 2244150 2244219) (-1297 "XALG.spad" 2243568 2243579 2243864 2243903) (-1296 "WUTSET.spad" 2239407 2239424 2243214 2243241) (-1295 "WP.spad" 2238606 2238650 2239265 2239332) (-1294 "WHILEAST.spad" 2238404 2238413 2238596 2238601) (-1293 "WHEREAST.spad" 2238075 2238084 2238394 2238399) (-1292 "WFFINTBS.spad" 2235738 2235760 2238065 2238070) (-1291 "WEIER.spad" 2233960 2233971 2235728 2235733) (-1290 "VSPACE.spad" 2233633 2233644 2233928 2233955) (-1289 "VSPACE.spad" 2233326 2233339 2233623 2233628) (-1288 "VOID.spad" 2233003 2233012 2233316 2233321) (-1287 "VIEW.spad" 2230683 2230692 2232993 2232998) (-1286 "VIEWDEF.spad" 2225884 2225893 2230673 2230678) (-1285 "VIEW3D.spad" 2209845 2209854 2225874 2225879) (-1284 "VIEW2D.spad" 2197736 2197745 2209835 2209840) (-1283 "VECTOR.spad" 2196410 2196421 2196661 2196688) (-1282 "VECTOR2.spad" 2195049 2195062 2196400 2196405) (-1281 "VECTCAT.spad" 2192953 2192964 2195017 2195044) (-1280 "VECTCAT.spad" 2190664 2190677 2192730 2192735) (-1279 "VARIABLE.spad" 2190444 2190459 2190654 2190659) (-1278 "UTYPE.spad" 2190088 2190097 2190434 2190439) (-1277 "UTSODETL.spad" 2189383 2189407 2190044 2190049) (-1276 "UTSODE.spad" 2187599 2187619 2189373 2189378) (-1275 "UTS.spad" 2182403 2182431 2186066 2186163) (-1274 "UTSCAT.spad" 2179882 2179898 2182301 2182398) (-1273 "UTSCAT.spad" 2177005 2177023 2179426 2179431) (-1272 "UTS2.spad" 2176600 2176635 2176995 2177000) (-1271 "URAGG.spad" 2171273 2171284 2176590 2176595) (-1270 "URAGG.spad" 2165910 2165923 2171229 2171234) (-1269 "UPXSSING.spad" 2163555 2163581 2164991 2165124) (-1268 "UPXS.spad" 2160709 2160737 2161687 2161836) (-1267 "UPXSCONS.spad" 2158468 2158488 2158841 2158990) (-1266 "UPXSCCA.spad" 2157039 2157059 2158314 2158463) (-1265 "UPXSCCA.spad" 2155752 2155774 2157029 2157034) (-1264 "UPXSCAT.spad" 2154341 2154357 2155598 2155747) (-1263 "UPXS2.spad" 2153884 2153937 2154331 2154336) (-1262 "UPSQFREE.spad" 2152298 2152312 2153874 2153879) (-1261 "UPSCAT.spad" 2150085 2150109 2152196 2152293) (-1260 "UPSCAT.spad" 2147578 2147604 2149691 2149696) (-1259 "UPOLYC.spad" 2142618 2142629 2147420 2147573) (-1258 "UPOLYC.spad" 2137550 2137563 2142354 2142359) (-1257 "UPOLYC2.spad" 2137021 2137040 2137540 2137545) (-1256 "UP.spad" 2134220 2134235 2134607 2134760) (-1255 "UPMP.spad" 2133120 2133133 2134210 2134215) (-1254 "UPDIVP.spad" 2132685 2132699 2133110 2133115) (-1253 "UPDECOMP.spad" 2130930 2130944 2132675 2132680) (-1252 "UPCDEN.spad" 2130139 2130155 2130920 2130925) (-1251 "UP2.spad" 2129503 2129524 2130129 2130134) (-1250 "UNISEG.spad" 2128856 2128867 2129422 2129427) (-1249 "UNISEG2.spad" 2128353 2128366 2128812 2128817) (-1248 "UNIFACT.spad" 2127456 2127468 2128343 2128348) (-1247 "ULS.spad" 2118014 2118042 2119101 2119530) (-1246 "ULSCONS.spad" 2110410 2110430 2110780 2110929) (-1245 "ULSCCAT.spad" 2108147 2108167 2110256 2110405) (-1244 "ULSCCAT.spad" 2105992 2106014 2108103 2108108) (-1243 "ULSCAT.spad" 2104224 2104240 2105838 2105987) (-1242 "ULS2.spad" 2103738 2103791 2104214 2104219) (-1241 "UINT8.spad" 2103615 2103624 2103728 2103733) (-1240 "UINT64.spad" 2103491 2103500 2103605 2103610) (-1239 "UINT32.spad" 2103367 2103376 2103481 2103486) (-1238 "UINT16.spad" 2103243 2103252 2103357 2103362) (-1237 "UFD.spad" 2102308 2102317 2103169 2103238) (-1236 "UFD.spad" 2101435 2101446 2102298 2102303) (-1235 "UDVO.spad" 2100316 2100325 2101425 2101430) (-1234 "UDPO.spad" 2097809 2097820 2100272 2100277) (-1233 "TYPE.spad" 2097741 2097750 2097799 2097804) (-1232 "TYPEAST.spad" 2097660 2097669 2097731 2097736) (-1231 "TWOFACT.spad" 2096312 2096327 2097650 2097655) (-1230 "TUPLE.spad" 2095798 2095809 2096211 2096216) (-1229 "TUBETOOL.spad" 2092665 2092674 2095788 2095793) (-1228 "TUBE.spad" 2091312 2091329 2092655 2092660) (-1227 "TS.spad" 2089911 2089927 2090877 2090974) (-1226 "TSETCAT.spad" 2077038 2077055 2089879 2089906) (-1225 "TSETCAT.spad" 2064151 2064170 2076994 2076999) (-1224 "TRMANIP.spad" 2058517 2058534 2063857 2063862) (-1223 "TRIMAT.spad" 2057480 2057505 2058507 2058512) (-1222 "TRIGMNIP.spad" 2056007 2056024 2057470 2057475) (-1221 "TRIGCAT.spad" 2055519 2055528 2055997 2056002) (-1220 "TRIGCAT.spad" 2055029 2055040 2055509 2055514) (-1219 "TREE.spad" 2053604 2053615 2054636 2054663) (-1218 "TRANFUN.spad" 2053443 2053452 2053594 2053599) (-1217 "TRANFUN.spad" 2053280 2053291 2053433 2053438) (-1216 "TOPSP.spad" 2052954 2052963 2053270 2053275) (-1215 "TOOLSIGN.spad" 2052617 2052628 2052944 2052949) (-1214 "TEXTFILE.spad" 2051178 2051187 2052607 2052612) (-1213 "TEX.spad" 2048324 2048333 2051168 2051173) (-1212 "TEX1.spad" 2047880 2047891 2048314 2048319) (-1211 "TEMUTL.spad" 2047435 2047444 2047870 2047875) (-1210 "TBCMPPK.spad" 2045528 2045551 2047425 2047430) (-1209 "TBAGG.spad" 2044578 2044601 2045508 2045523) (-1208 "TBAGG.spad" 2043636 2043661 2044568 2044573) (-1207 "TANEXP.spad" 2043044 2043055 2043626 2043631) (-1206 "TALGOP.spad" 2042768 2042779 2043034 2043039) (-1205 "TABLE.spad" 2041179 2041202 2041449 2041476) (-1204 "TABLEAU.spad" 2040660 2040671 2041169 2041174) (-1203 "TABLBUMP.spad" 2037463 2037474 2040650 2040655) (-1202 "SYSTEM.spad" 2036691 2036700 2037453 2037458) (-1201 "SYSSOLP.spad" 2034174 2034185 2036681 2036686) (-1200 "SYSPTR.spad" 2034073 2034082 2034164 2034169) (-1199 "SYSNNI.spad" 2033255 2033266 2034063 2034068) (-1198 "SYSINT.spad" 2032659 2032670 2033245 2033250) (-1197 "SYNTAX.spad" 2028865 2028874 2032649 2032654) (-1196 "SYMTAB.spad" 2026933 2026942 2028855 2028860) (-1195 "SYMS.spad" 2022956 2022965 2026923 2026928) (-1194 "SYMPOLY.spad" 2021963 2021974 2022045 2022172) (-1193 "SYMFUNC.spad" 2021464 2021475 2021953 2021958) (-1192 "SYMBOL.spad" 2018967 2018976 2021454 2021459) (-1191 "SWITCH.spad" 2015738 2015747 2018957 2018962) (-1190 "SUTS.spad" 2012643 2012671 2014205 2014302) (-1189 "SUPXS.spad" 2009784 2009812 2010775 2010924) (-1188 "SUP.spad" 2006597 2006608 2007370 2007523) (-1187 "SUPFRACF.spad" 2005702 2005720 2006587 2006592) (-1186 "SUP2.spad" 2005094 2005107 2005692 2005697) (-1185 "SUMRF.spad" 2004068 2004079 2005084 2005089) (-1184 "SUMFS.spad" 2003705 2003722 2004058 2004063) (-1183 "SULS.spad" 1994250 1994278 1995350 1995779) (-1182 "SUCHTAST.spad" 1994019 1994028 1994240 1994245) (-1181 "SUCH.spad" 1993701 1993716 1994009 1994014) (-1180 "SUBSPACE.spad" 1985816 1985831 1993691 1993696) (-1179 "SUBRESP.spad" 1984986 1985000 1985772 1985777) (-1178 "STTF.spad" 1981085 1981101 1984976 1984981) (-1177 "STTFNC.spad" 1977553 1977569 1981075 1981080) (-1176 "STTAYLOR.spad" 1970188 1970199 1977434 1977439) (-1175 "STRTBL.spad" 1968693 1968710 1968842 1968869) (-1174 "STRING.spad" 1968102 1968111 1968116 1968143) (-1173 "STRICAT.spad" 1967890 1967899 1968070 1968097) (-1172 "STREAM.spad" 1964808 1964819 1967415 1967430) (-1171 "STREAM3.spad" 1964381 1964396 1964798 1964803) (-1170 "STREAM2.spad" 1963509 1963522 1964371 1964376) (-1169 "STREAM1.spad" 1963215 1963226 1963499 1963504) (-1168 "STINPROD.spad" 1962151 1962167 1963205 1963210) (-1167 "STEP.spad" 1961352 1961361 1962141 1962146) (-1166 "STEPAST.spad" 1960586 1960595 1961342 1961347) (-1165 "STBL.spad" 1959112 1959140 1959279 1959294) (-1164 "STAGG.spad" 1958187 1958198 1959102 1959107) (-1163 "STAGG.spad" 1957260 1957273 1958177 1958182) (-1162 "STACK.spad" 1956617 1956628 1956867 1956894) (-1161 "SREGSET.spad" 1954321 1954338 1956263 1956290) (-1160 "SRDCMPK.spad" 1952882 1952902 1954311 1954316) (-1159 "SRAGG.spad" 1948025 1948034 1952850 1952877) (-1158 "SRAGG.spad" 1943188 1943199 1948015 1948020) (-1157 "SQMATRIX.spad" 1940860 1940878 1941776 1941863) (-1156 "SPLTREE.spad" 1935412 1935425 1940296 1940323) (-1155 "SPLNODE.spad" 1932000 1932013 1935402 1935407) (-1154 "SPFCAT.spad" 1930809 1930818 1931990 1931995) (-1153 "SPECOUT.spad" 1929361 1929370 1930799 1930804) (-1152 "SPADXPT.spad" 1920956 1920965 1929351 1929356) (-1151 "spad-parser.spad" 1920421 1920430 1920946 1920951) (-1150 "SPADAST.spad" 1920122 1920131 1920411 1920416) (-1149 "SPACEC.spad" 1904321 1904332 1920112 1920117) (-1148 "SPACE3.spad" 1904097 1904108 1904311 1904316) (-1147 "SORTPAK.spad" 1903646 1903659 1904053 1904058) (-1146 "SOLVETRA.spad" 1901409 1901420 1903636 1903641) (-1145 "SOLVESER.spad" 1899937 1899948 1901399 1901404) (-1144 "SOLVERAD.spad" 1895963 1895974 1899927 1899932) (-1143 "SOLVEFOR.spad" 1894425 1894443 1895953 1895958) (-1142 "SNTSCAT.spad" 1894025 1894042 1894393 1894420) (-1141 "SMTS.spad" 1892297 1892323 1893590 1893687) (-1140 "SMP.spad" 1889772 1889792 1890162 1890289) (-1139 "SMITH.spad" 1888617 1888642 1889762 1889767) (-1138 "SMATCAT.spad" 1886727 1886757 1888561 1888612) (-1137 "SMATCAT.spad" 1884769 1884801 1886605 1886610) (-1136 "SKAGG.spad" 1883732 1883743 1884737 1884764) (-1135 "SINT.spad" 1882672 1882681 1883598 1883727) (-1134 "SIMPAN.spad" 1882400 1882409 1882662 1882667) (-1133 "SIG.spad" 1881730 1881739 1882390 1882395) (-1132 "SIGNRF.spad" 1880848 1880859 1881720 1881725) (-1131 "SIGNEF.spad" 1880127 1880144 1880838 1880843) (-1130 "SIGAST.spad" 1879512 1879521 1880117 1880122) (-1129 "SHP.spad" 1877440 1877455 1879468 1879473) (-1128 "SHDP.spad" 1867074 1867101 1867583 1867714) (-1127 "SGROUP.spad" 1866682 1866691 1867064 1867069) (-1126 "SGROUP.spad" 1866288 1866299 1866672 1866677) (-1125 "SGCF.spad" 1859427 1859436 1866278 1866283) (-1124 "SFRTCAT.spad" 1858357 1858374 1859395 1859422) (-1123 "SFRGCD.spad" 1857420 1857440 1858347 1858352) (-1122 "SFQCMPK.spad" 1852057 1852077 1857410 1857415) (-1121 "SFORT.spad" 1851496 1851510 1852047 1852052) (-1120 "SEXOF.spad" 1851339 1851379 1851486 1851491) (-1119 "SEX.spad" 1851231 1851240 1851329 1851334) (-1118 "SEXCAT.spad" 1849012 1849052 1851221 1851226) (-1117 "SET.spad" 1847336 1847347 1848433 1848472) (-1116 "SETMN.spad" 1845786 1845803 1847326 1847331) (-1115 "SETCAT.spad" 1845108 1845117 1845776 1845781) (-1114 "SETCAT.spad" 1844428 1844439 1845098 1845103) (-1113 "SETAGG.spad" 1840977 1840988 1844408 1844423) (-1112 "SETAGG.spad" 1837534 1837547 1840967 1840972) (-1111 "SEQAST.spad" 1837237 1837246 1837524 1837529) (-1110 "SEGXCAT.spad" 1836393 1836406 1837227 1837232) (-1109 "SEG.spad" 1836206 1836217 1836312 1836317) (-1108 "SEGCAT.spad" 1835131 1835142 1836196 1836201) (-1107 "SEGBIND.spad" 1834889 1834900 1835078 1835083) (-1106 "SEGBIND2.spad" 1834587 1834600 1834879 1834884) (-1105 "SEGAST.spad" 1834301 1834310 1834577 1834582) (-1104 "SEG2.spad" 1833736 1833749 1834257 1834262) (-1103 "SDVAR.spad" 1833012 1833023 1833726 1833731) (-1102 "SDPOL.spad" 1830438 1830449 1830729 1830856) (-1101 "SCPKG.spad" 1828527 1828538 1830428 1830433) (-1100 "SCOPE.spad" 1827680 1827689 1828517 1828522) (-1099 "SCACHE.spad" 1826376 1826387 1827670 1827675) (-1098 "SASTCAT.spad" 1826285 1826294 1826366 1826371) (-1097 "SAOS.spad" 1826157 1826166 1826275 1826280) (-1096 "SAERFFC.spad" 1825870 1825890 1826147 1826152) (-1095 "SAE.spad" 1824045 1824061 1824656 1824791) (-1094 "SAEFACT.spad" 1823746 1823766 1824035 1824040) (-1093 "RURPK.spad" 1821405 1821421 1823736 1823741) (-1092 "RULESET.spad" 1820858 1820882 1821395 1821400) (-1091 "RULE.spad" 1819098 1819122 1820848 1820853) (-1090 "RULECOLD.spad" 1818950 1818963 1819088 1819093) (-1089 "RTVALUE.spad" 1818685 1818694 1818940 1818945) (-1088 "RSTRCAST.spad" 1818402 1818411 1818675 1818680) (-1087 "RSETGCD.spad" 1814780 1814800 1818392 1818397) (-1086 "RSETCAT.spad" 1804716 1804733 1814748 1814775) (-1085 "RSETCAT.spad" 1794672 1794691 1804706 1804711) (-1084 "RSDCMPK.spad" 1793124 1793144 1794662 1794667) (-1083 "RRCC.spad" 1791508 1791538 1793114 1793119) (-1082 "RRCC.spad" 1789890 1789922 1791498 1791503) (-1081 "RPTAST.spad" 1789592 1789601 1789880 1789885) (-1080 "RPOLCAT.spad" 1768952 1768967 1789460 1789587) (-1079 "RPOLCAT.spad" 1748025 1748042 1768535 1768540) (-1078 "ROUTINE.spad" 1743908 1743917 1746672 1746699) (-1077 "ROMAN.spad" 1743236 1743245 1743774 1743903) (-1076 "ROIRC.spad" 1742316 1742348 1743226 1743231) (-1075 "RNS.spad" 1741219 1741228 1742218 1742311) (-1074 "RNS.spad" 1740208 1740219 1741209 1741214) (-1073 "RNG.spad" 1739943 1739952 1740198 1740203) (-1072 "RNGBIND.spad" 1739103 1739117 1739898 1739903) (-1071 "RMODULE.spad" 1738868 1738879 1739093 1739098) (-1070 "RMCAT2.spad" 1738288 1738345 1738858 1738863) (-1069 "RMATRIX.spad" 1737112 1737131 1737455 1737494) (-1068 "RMATCAT.spad" 1732691 1732722 1737068 1737107) (-1067 "RMATCAT.spad" 1728160 1728193 1732539 1732544) (-1066 "RLINSET.spad" 1727554 1727565 1728150 1728155) (-1065 "RINTERP.spad" 1727442 1727462 1727544 1727549) (-1064 "RING.spad" 1726912 1726921 1727422 1727437) (-1063 "RING.spad" 1726390 1726401 1726902 1726907) (-1062 "RIDIST.spad" 1725782 1725791 1726380 1726385) (-1061 "RGCHAIN.spad" 1724365 1724381 1725267 1725294) (-1060 "RGBCSPC.spad" 1724146 1724158 1724355 1724360) (-1059 "RGBCMDL.spad" 1723676 1723688 1724136 1724141) (-1058 "RF.spad" 1721318 1721329 1723666 1723671) (-1057 "RFFACTOR.spad" 1720780 1720791 1721308 1721313) (-1056 "RFFACT.spad" 1720515 1720527 1720770 1720775) (-1055 "RFDIST.spad" 1719511 1719520 1720505 1720510) (-1054 "RETSOL.spad" 1718930 1718943 1719501 1719506) (-1053 "RETRACT.spad" 1718358 1718369 1718920 1718925) (-1052 "RETRACT.spad" 1717784 1717797 1718348 1718353) (-1051 "RETAST.spad" 1717596 1717605 1717774 1717779) (-1050 "RESULT.spad" 1715656 1715665 1716243 1716270) (-1049 "RESRING.spad" 1715003 1715050 1715594 1715651) (-1048 "RESLATC.spad" 1714327 1714338 1714993 1714998) (-1047 "REPSQ.spad" 1714058 1714069 1714317 1714322) (-1046 "REP.spad" 1711612 1711621 1714048 1714053) (-1045 "REPDB.spad" 1711319 1711330 1711602 1711607) (-1044 "REP2.spad" 1700977 1700988 1711161 1711166) (-1043 "REP1.spad" 1695173 1695184 1700927 1700932) (-1042 "REGSET.spad" 1692970 1692987 1694819 1694846) (-1041 "REF.spad" 1692305 1692316 1692925 1692930) (-1040 "REDORDER.spad" 1691511 1691528 1692295 1692300) (-1039 "RECLOS.spad" 1690294 1690314 1690998 1691091) (-1038 "REALSOLV.spad" 1689434 1689443 1690284 1690289) (-1037 "REAL.spad" 1689306 1689315 1689424 1689429) (-1036 "REAL0Q.spad" 1686604 1686619 1689296 1689301) (-1035 "REAL0.spad" 1683448 1683463 1686594 1686599) (-1034 "RDUCEAST.spad" 1683169 1683178 1683438 1683443) (-1033 "RDIV.spad" 1682824 1682849 1683159 1683164) (-1032 "RDIST.spad" 1682391 1682402 1682814 1682819) (-1031 "RDETRS.spad" 1681255 1681273 1682381 1682386) (-1030 "RDETR.spad" 1679394 1679412 1681245 1681250) (-1029 "RDEEFS.spad" 1678493 1678510 1679384 1679389) (-1028 "RDEEF.spad" 1677503 1677520 1678483 1678488) (-1027 "RCFIELD.spad" 1674689 1674698 1677405 1677498) (-1026 "RCFIELD.spad" 1671961 1671972 1674679 1674684) (-1025 "RCAGG.spad" 1669889 1669900 1671951 1671956) (-1024 "RCAGG.spad" 1667744 1667757 1669808 1669813) (-1023 "RATRET.spad" 1667104 1667115 1667734 1667739) (-1022 "RATFACT.spad" 1666796 1666808 1667094 1667099) (-1021 "RANDSRC.spad" 1666115 1666124 1666786 1666791) (-1020 "RADUTIL.spad" 1665871 1665880 1666105 1666110) (-1019 "RADIX.spad" 1662792 1662806 1664338 1664431) (-1018 "RADFF.spad" 1661205 1661242 1661324 1661480) (-1017 "RADCAT.spad" 1660800 1660809 1661195 1661200) (-1016 "RADCAT.spad" 1660393 1660404 1660790 1660795) (-1015 "QUEUE.spad" 1659741 1659752 1660000 1660027) (-1014 "QUAT.spad" 1658199 1658210 1658542 1658607) (-1013 "QUATCT2.spad" 1657819 1657838 1658189 1658194) (-1012 "QUATCAT.spad" 1655989 1656000 1657749 1657814) (-1011 "QUATCAT.spad" 1653910 1653923 1655672 1655677) (-1010 "QUAGG.spad" 1652737 1652748 1653878 1653905) (-1009 "QQUTAST.spad" 1652505 1652514 1652727 1652732) (-1008 "QFORM.spad" 1652123 1652138 1652495 1652500) (-1007 "QFCAT.spad" 1650825 1650836 1652025 1652118) (-1006 "QFCAT.spad" 1649118 1649131 1650320 1650325) (-1005 "QFCAT2.spad" 1648810 1648827 1649108 1649113) (-1004 "QEQUAT.spad" 1648368 1648377 1648800 1648805) (-1003 "QCMPACK.spad" 1643114 1643134 1648358 1648363) (-1002 "QALGSET.spad" 1639192 1639225 1643028 1643033) (-1001 "QALGSET2.spad" 1637187 1637206 1639182 1639187) (-1000 "PWFFINTB.spad" 1634602 1634624 1637177 1637182) (-999 "PUSHVAR.spad" 1633941 1633960 1634592 1634597) (-998 "PTRANFN.spad" 1630069 1630079 1633931 1633936) (-997 "PTPACK.spad" 1627157 1627167 1630059 1630064) (-996 "PTFUNC2.spad" 1626980 1626994 1627147 1627152) (-995 "PTCAT.spad" 1626235 1626245 1626948 1626975) (-994 "PSQFR.spad" 1625542 1625566 1626225 1626230) (-993 "PSEUDLIN.spad" 1624428 1624438 1625532 1625537) (-992 "PSETPK.spad" 1609861 1609877 1624306 1624311) (-991 "PSETCAT.spad" 1603781 1603804 1609841 1609856) (-990 "PSETCAT.spad" 1597675 1597700 1603737 1603742) (-989 "PSCURVE.spad" 1596658 1596666 1597665 1597670) (-988 "PSCAT.spad" 1595441 1595470 1596556 1596653) (-987 "PSCAT.spad" 1594314 1594345 1595431 1595436) (-986 "PRTITION.spad" 1593012 1593020 1594304 1594309) (-985 "PRTDAST.spad" 1592731 1592739 1593002 1593007) (-984 "PRS.spad" 1582293 1582310 1592687 1592692) (-983 "PRQAGG.spad" 1581728 1581738 1582261 1582288) (-982 "PROPLOG.spad" 1581300 1581308 1581718 1581723) (-981 "PROPFUN2.spad" 1580923 1580936 1581290 1581295) (-980 "PROPFUN1.spad" 1580321 1580332 1580913 1580918) (-979 "PROPFRML.spad" 1578889 1578900 1580311 1580316) (-978 "PROPERTY.spad" 1578377 1578385 1578879 1578884) (-977 "PRODUCT.spad" 1576059 1576071 1576343 1576398) (-976 "PR.spad" 1574451 1574463 1575150 1575277) (-975 "PRINT.spad" 1574203 1574211 1574441 1574446) (-974 "PRIMES.spad" 1572456 1572466 1574193 1574198) (-973 "PRIMELT.spad" 1570537 1570551 1572446 1572451) (-972 "PRIMCAT.spad" 1570164 1570172 1570527 1570532) (-971 "PRIMARR.spad" 1569169 1569179 1569347 1569374) (-970 "PRIMARR2.spad" 1567936 1567948 1569159 1569164) (-969 "PREASSOC.spad" 1567318 1567330 1567926 1567931) (-968 "PPCURVE.spad" 1566455 1566463 1567308 1567313) (-967 "PORTNUM.spad" 1566230 1566238 1566445 1566450) (-966 "POLYROOT.spad" 1565079 1565101 1566186 1566191) (-965 "POLY.spad" 1562414 1562424 1562929 1563056) (-964 "POLYLIFT.spad" 1561679 1561702 1562404 1562409) (-963 "POLYCATQ.spad" 1559797 1559819 1561669 1561674) (-962 "POLYCAT.spad" 1553267 1553288 1559665 1559792) (-961 "POLYCAT.spad" 1546075 1546098 1552475 1552480) (-960 "POLY2UP.spad" 1545527 1545541 1546065 1546070) (-959 "POLY2.spad" 1545124 1545136 1545517 1545522) (-958 "POLUTIL.spad" 1544065 1544094 1545080 1545085) (-957 "POLTOPOL.spad" 1542813 1542828 1544055 1544060) (-956 "POINT.spad" 1541651 1541661 1541738 1541765) (-955 "PNTHEORY.spad" 1538353 1538361 1541641 1541646) (-954 "PMTOOLS.spad" 1537128 1537142 1538343 1538348) (-953 "PMSYM.spad" 1536677 1536687 1537118 1537123) (-952 "PMQFCAT.spad" 1536268 1536282 1536667 1536672) (-951 "PMPRED.spad" 1535747 1535761 1536258 1536263) (-950 "PMPREDFS.spad" 1535201 1535223 1535737 1535742) (-949 "PMPLCAT.spad" 1534281 1534299 1535133 1535138) (-948 "PMLSAGG.spad" 1533866 1533880 1534271 1534276) (-947 "PMKERNEL.spad" 1533445 1533457 1533856 1533861) (-946 "PMINS.spad" 1533025 1533035 1533435 1533440) (-945 "PMFS.spad" 1532602 1532620 1533015 1533020) (-944 "PMDOWN.spad" 1531892 1531906 1532592 1532597) (-943 "PMASS.spad" 1530902 1530910 1531882 1531887) (-942 "PMASSFS.spad" 1529869 1529885 1530892 1530897) (-941 "PLOTTOOL.spad" 1529649 1529657 1529859 1529864) (-940 "PLOT.spad" 1524572 1524580 1529639 1529644) (-939 "PLOT3D.spad" 1521036 1521044 1524562 1524567) (-938 "PLOT1.spad" 1520193 1520203 1521026 1521031) (-937 "PLEQN.spad" 1507483 1507510 1520183 1520188) (-936 "PINTERP.spad" 1507105 1507124 1507473 1507478) (-935 "PINTERPA.spad" 1506889 1506905 1507095 1507100) (-934 "PI.spad" 1506498 1506506 1506863 1506884) (-933 "PID.spad" 1505468 1505476 1506424 1506493) (-932 "PICOERCE.spad" 1505125 1505135 1505458 1505463) (-931 "PGROEB.spad" 1503726 1503740 1505115 1505120) (-930 "PGE.spad" 1495343 1495351 1503716 1503721) (-929 "PGCD.spad" 1494233 1494250 1495333 1495338) (-928 "PFRPAC.spad" 1493382 1493392 1494223 1494228) (-927 "PFR.spad" 1490045 1490055 1493284 1493377) (-926 "PFOTOOLS.spad" 1489303 1489319 1490035 1490040) (-925 "PFOQ.spad" 1488673 1488691 1489293 1489298) (-924 "PFO.spad" 1488092 1488119 1488663 1488668) (-923 "PF.spad" 1487666 1487678 1487897 1487990) (-922 "PFECAT.spad" 1485348 1485356 1487592 1487661) (-921 "PFECAT.spad" 1483058 1483068 1485304 1485309) (-920 "PFBRU.spad" 1480946 1480958 1483048 1483053) (-919 "PFBR.spad" 1478506 1478529 1480936 1480941) (-918 "PERM.spad" 1474313 1474323 1478336 1478351) (-917 "PERMGRP.spad" 1469083 1469093 1474303 1474308) (-916 "PERMCAT.spad" 1467744 1467754 1469063 1469078) (-915 "PERMAN.spad" 1466276 1466290 1467734 1467739) (-914 "PENDTREE.spad" 1465617 1465627 1465905 1465910) (-913 "PDRING.spad" 1464168 1464178 1465597 1465612) (-912 "PDRING.spad" 1462727 1462739 1464158 1464163) (-911 "PDEPROB.spad" 1461742 1461750 1462717 1462722) (-910 "PDEPACK.spad" 1455782 1455790 1461732 1461737) (-909 "PDECOMP.spad" 1455252 1455269 1455772 1455777) (-908 "PDECAT.spad" 1453608 1453616 1455242 1455247) (-907 "PDDOM.spad" 1453074 1453087 1453598 1453603) (-906 "PDDOM.spad" 1452538 1452553 1453064 1453069) (-905 "PCOMP.spad" 1452391 1452404 1452528 1452533) (-904 "PBWLB.spad" 1450979 1450996 1452381 1452386) (-903 "PATTERN.spad" 1445518 1445528 1450969 1450974) (-902 "PATTERN2.spad" 1445256 1445268 1445508 1445513) (-901 "PATTERN1.spad" 1443592 1443608 1445246 1445251) (-900 "PATRES.spad" 1441167 1441179 1443582 1443587) (-899 "PATRES2.spad" 1440839 1440853 1441157 1441162) (-898 "PATMATCH.spad" 1439036 1439067 1440547 1440552) (-897 "PATMAB.spad" 1438465 1438475 1439026 1439031) (-896 "PATLRES.spad" 1437551 1437565 1438455 1438460) (-895 "PATAB.spad" 1437315 1437325 1437541 1437546) (-894 "PARTPERM.spad" 1435323 1435331 1437305 1437310) (-893 "PARSURF.spad" 1434757 1434785 1435313 1435318) (-892 "PARSU2.spad" 1434554 1434570 1434747 1434752) (-891 "script-parser.spad" 1434074 1434082 1434544 1434549) (-890 "PARSCURV.spad" 1433508 1433536 1434064 1434069) (-889 "PARSC2.spad" 1433299 1433315 1433498 1433503) (-888 "PARPCURV.spad" 1432761 1432789 1433289 1433294) (-887 "PARPC2.spad" 1432552 1432568 1432751 1432756) (-886 "PARAMAST.spad" 1431680 1431688 1432542 1432547) (-885 "PAN2EXPR.spad" 1431092 1431100 1431670 1431675) (-884 "PALETTE.spad" 1430062 1430070 1431082 1431087) (-883 "PAIR.spad" 1429049 1429062 1429650 1429655) (-882 "PADICRC.spad" 1426383 1426401 1427554 1427647) (-881 "PADICRAT.spad" 1424398 1424410 1424619 1424712) (-880 "PADIC.spad" 1424093 1424105 1424324 1424393) (-879 "PADICCT.spad" 1422642 1422654 1424019 1424088) (-878 "PADEPAC.spad" 1421331 1421350 1422632 1422637) (-877 "PADE.spad" 1420083 1420099 1421321 1421326) (-876 "OWP.spad" 1419323 1419353 1419941 1420008) (-875 "OVERSET.spad" 1418896 1418904 1419313 1419318) (-874 "OVAR.spad" 1418677 1418700 1418886 1418891) (-873 "OUT.spad" 1417763 1417771 1418667 1418672) (-872 "OUTFORM.spad" 1407155 1407163 1417753 1417758) (-871 "OUTBFILE.spad" 1406573 1406581 1407145 1407150) (-870 "OUTBCON.spad" 1405579 1405587 1406563 1406568) (-869 "OUTBCON.spad" 1404583 1404593 1405569 1405574) (-868 "OSI.spad" 1404058 1404066 1404573 1404578) (-867 "OSGROUP.spad" 1403976 1403984 1404048 1404053) (-866 "ORTHPOL.spad" 1402461 1402471 1403893 1403898) (-865 "OREUP.spad" 1401914 1401942 1402141 1402180) (-864 "ORESUP.spad" 1401215 1401239 1401594 1401633) (-863 "OREPCTO.spad" 1399072 1399084 1401135 1401140) (-862 "OREPCAT.spad" 1393219 1393229 1399028 1399067) (-861 "OREPCAT.spad" 1387256 1387268 1393067 1393072) (-860 "ORDSET.spad" 1386428 1386436 1387246 1387251) (-859 "ORDSET.spad" 1385598 1385608 1386418 1386423) (-858 "ORDRING.spad" 1384988 1384996 1385578 1385593) (-857 "ORDRING.spad" 1384386 1384396 1384978 1384983) (-856 "ORDMON.spad" 1384241 1384249 1384376 1384381) (-855 "ORDFUNS.spad" 1383373 1383389 1384231 1384236) (-854 "ORDFIN.spad" 1383193 1383201 1383363 1383368) (-853 "ORDCOMP.spad" 1381658 1381668 1382740 1382769) (-852 "ORDCOMP2.spad" 1380951 1380963 1381648 1381653) (-851 "OPTPROB.spad" 1379589 1379597 1380941 1380946) (-850 "OPTPACK.spad" 1371998 1372006 1379579 1379584) (-849 "OPTCAT.spad" 1369677 1369685 1371988 1371993) (-848 "OPSIG.spad" 1369331 1369339 1369667 1369672) (-847 "OPQUERY.spad" 1368880 1368888 1369321 1369326) (-846 "OP.spad" 1368622 1368632 1368702 1368769) (-845 "OPERCAT.spad" 1368088 1368098 1368612 1368617) (-844 "OPERCAT.spad" 1367552 1367564 1368078 1368083) (-843 "ONECOMP.spad" 1366297 1366307 1367099 1367128) (-842 "ONECOMP2.spad" 1365721 1365733 1366287 1366292) (-841 "OMSERVER.spad" 1364727 1364735 1365711 1365716) (-840 "OMSAGG.spad" 1364515 1364525 1364683 1364722) (-839 "OMPKG.spad" 1363131 1363139 1364505 1364510) (-838 "OM.spad" 1362104 1362112 1363121 1363126) (-837 "OMLO.spad" 1361529 1361541 1361990 1362029) (-836 "OMEXPR.spad" 1361363 1361373 1361519 1361524) (-835 "OMERR.spad" 1360908 1360916 1361353 1361358) (-834 "OMERRK.spad" 1359942 1359950 1360898 1360903) (-833 "OMENC.spad" 1359286 1359294 1359932 1359937) (-832 "OMDEV.spad" 1353595 1353603 1359276 1359281) (-831 "OMCONN.spad" 1353004 1353012 1353585 1353590) (-830 "OINTDOM.spad" 1352767 1352775 1352930 1352999) (-829 "OFMONOID.spad" 1350890 1350900 1352723 1352728) (-828 "ODVAR.spad" 1350151 1350161 1350880 1350885) (-827 "ODR.spad" 1349795 1349821 1349963 1350112) (-826 "ODPOL.spad" 1347177 1347187 1347517 1347644) (-825 "ODP.spad" 1336947 1336967 1337320 1337451) (-824 "ODETOOLS.spad" 1335596 1335615 1336937 1336942) (-823 "ODESYS.spad" 1333290 1333307 1335586 1335591) (-822 "ODERTRIC.spad" 1329299 1329316 1333247 1333252) (-821 "ODERED.spad" 1328698 1328722 1329289 1329294) (-820 "ODERAT.spad" 1326313 1326330 1328688 1328693) (-819 "ODEPRRIC.spad" 1323350 1323372 1326303 1326308) (-818 "ODEPROB.spad" 1322607 1322615 1323340 1323345) (-817 "ODEPRIM.spad" 1319941 1319963 1322597 1322602) (-816 "ODEPAL.spad" 1319327 1319351 1319931 1319936) (-815 "ODEPACK.spad" 1305993 1306001 1319317 1319322) (-814 "ODEINT.spad" 1305428 1305444 1305983 1305988) (-813 "ODEIFTBL.spad" 1302823 1302831 1305418 1305423) (-812 "ODEEF.spad" 1298314 1298330 1302813 1302818) (-811 "ODECONST.spad" 1297851 1297869 1298304 1298309) (-810 "ODECAT.spad" 1296449 1296457 1297841 1297846) (-809 "OCT.spad" 1294585 1294595 1295299 1295338) (-808 "OCTCT2.spad" 1294231 1294252 1294575 1294580) (-807 "OC.spad" 1292027 1292037 1294187 1294226) (-806 "OC.spad" 1289548 1289560 1291710 1291715) (-805 "OCAMON.spad" 1289396 1289404 1289538 1289543) (-804 "OASGP.spad" 1289211 1289219 1289386 1289391) (-803 "OAMONS.spad" 1288733 1288741 1289201 1289206) (-802 "OAMON.spad" 1288594 1288602 1288723 1288728) (-801 "OAGROUP.spad" 1288456 1288464 1288584 1288589) (-800 "NUMTUBE.spad" 1288047 1288063 1288446 1288451) (-799 "NUMQUAD.spad" 1276023 1276031 1288037 1288042) (-798 "NUMODE.spad" 1267377 1267385 1276013 1276018) (-797 "NUMINT.spad" 1264943 1264951 1267367 1267372) (-796 "NUMFMT.spad" 1263783 1263791 1264933 1264938) (-795 "NUMERIC.spad" 1255897 1255907 1263588 1263593) (-794 "NTSCAT.spad" 1254405 1254421 1255865 1255892) (-793 "NTPOLFN.spad" 1253956 1253966 1254322 1254327) (-792 "NSUP.spad" 1247002 1247012 1251542 1251695) (-791 "NSUP2.spad" 1246394 1246406 1246992 1246997) (-790 "NSMP.spad" 1242624 1242643 1242932 1243059) (-789 "NREP.spad" 1241002 1241016 1242614 1242619) (-788 "NPCOEF.spad" 1240248 1240268 1240992 1240997) (-787 "NORMRETR.spad" 1239846 1239885 1240238 1240243) (-786 "NORMPK.spad" 1237748 1237767 1239836 1239841) (-785 "NORMMA.spad" 1237436 1237462 1237738 1237743) (-784 "NONE.spad" 1237177 1237185 1237426 1237431) (-783 "NONE1.spad" 1236853 1236863 1237167 1237172) (-782 "NODE1.spad" 1236340 1236356 1236843 1236848) (-781 "NNI.spad" 1235235 1235243 1236314 1236335) (-780 "NLINSOL.spad" 1233861 1233871 1235225 1235230) (-779 "NIPROB.spad" 1232402 1232410 1233851 1233856) (-778 "NFINTBAS.spad" 1229962 1229979 1232392 1232397) (-777 "NETCLT.spad" 1229936 1229947 1229952 1229957) (-776 "NCODIV.spad" 1228152 1228168 1229926 1229931) (-775 "NCNTFRAC.spad" 1227794 1227808 1228142 1228147) (-774 "NCEP.spad" 1225960 1225974 1227784 1227789) (-773 "NASRING.spad" 1225556 1225564 1225950 1225955) (-772 "NASRING.spad" 1225150 1225160 1225546 1225551) (-771 "NARNG.spad" 1224502 1224510 1225140 1225145) (-770 "NARNG.spad" 1223852 1223862 1224492 1224497) (-769 "NAGSP.spad" 1222929 1222937 1223842 1223847) (-768 "NAGS.spad" 1212590 1212598 1222919 1222924) (-767 "NAGF07.spad" 1211021 1211029 1212580 1212585) (-766 "NAGF04.spad" 1205423 1205431 1211011 1211016) (-765 "NAGF02.spad" 1199492 1199500 1205413 1205418) (-764 "NAGF01.spad" 1195253 1195261 1199482 1199487) (-763 "NAGE04.spad" 1188953 1188961 1195243 1195248) (-762 "NAGE02.spad" 1179613 1179621 1188943 1188948) (-761 "NAGE01.spad" 1175615 1175623 1179603 1179608) (-760 "NAGD03.spad" 1173619 1173627 1175605 1175610) (-759 "NAGD02.spad" 1166366 1166374 1173609 1173614) (-758 "NAGD01.spad" 1160659 1160667 1166356 1166361) (-757 "NAGC06.spad" 1156534 1156542 1160649 1160654) (-756 "NAGC05.spad" 1155035 1155043 1156524 1156529) (-755 "NAGC02.spad" 1154302 1154310 1155025 1155030) (-754 "NAALG.spad" 1153843 1153853 1154270 1154297) (-753 "NAALG.spad" 1153404 1153416 1153833 1153838) (-752 "MULTSQFR.spad" 1150362 1150379 1153394 1153399) (-751 "MULTFACT.spad" 1149745 1149762 1150352 1150357) (-750 "MTSCAT.spad" 1147839 1147860 1149643 1149740) (-749 "MTHING.spad" 1147498 1147508 1147829 1147834) (-748 "MSYSCMD.spad" 1146932 1146940 1147488 1147493) (-747 "MSET.spad" 1144890 1144900 1146638 1146677) (-746 "MSETAGG.spad" 1144735 1144745 1144858 1144885) (-745 "MRING.spad" 1141712 1141724 1144443 1144510) (-744 "MRF2.spad" 1141282 1141296 1141702 1141707) (-743 "MRATFAC.spad" 1140828 1140845 1141272 1141277) (-742 "MPRFF.spad" 1138868 1138887 1140818 1140823) (-741 "MPOLY.spad" 1136339 1136354 1136698 1136825) (-740 "MPCPF.spad" 1135603 1135622 1136329 1136334) (-739 "MPC3.spad" 1135420 1135460 1135593 1135598) (-738 "MPC2.spad" 1135066 1135099 1135410 1135415) (-737 "MONOTOOL.spad" 1133417 1133434 1135056 1135061) (-736 "MONOID.spad" 1132736 1132744 1133407 1133412) (-735 "MONOID.spad" 1132053 1132063 1132726 1132731) (-734 "MONOGEN.spad" 1130801 1130814 1131913 1132048) (-733 "MONOGEN.spad" 1129571 1129586 1130685 1130690) (-732 "MONADWU.spad" 1127601 1127609 1129561 1129566) (-731 "MONADWU.spad" 1125629 1125639 1127591 1127596) (-730 "MONAD.spad" 1124789 1124797 1125619 1125624) (-729 "MONAD.spad" 1123947 1123957 1124779 1124784) (-728 "MOEBIUS.spad" 1122683 1122697 1123927 1123942) (-727 "MODULE.spad" 1122553 1122563 1122651 1122678) (-726 "MODULE.spad" 1122443 1122455 1122543 1122548) (-725 "MODRING.spad" 1121778 1121817 1122423 1122438) (-724 "MODOP.spad" 1120443 1120455 1121600 1121667) (-723 "MODMONOM.spad" 1120174 1120192 1120433 1120438) (-722 "MODMON.spad" 1116969 1116985 1117688 1117841) (-721 "MODFIELD.spad" 1116331 1116370 1116871 1116964) (-720 "MMLFORM.spad" 1115191 1115199 1116321 1116326) (-719 "MMAP.spad" 1114933 1114967 1115181 1115186) (-718 "MLO.spad" 1113392 1113402 1114889 1114928) (-717 "MLIFT.spad" 1112004 1112021 1113382 1113387) (-716 "MKUCFUNC.spad" 1111539 1111557 1111994 1111999) (-715 "MKRECORD.spad" 1111143 1111156 1111529 1111534) (-714 "MKFUNC.spad" 1110550 1110560 1111133 1111138) (-713 "MKFLCFN.spad" 1109518 1109528 1110540 1110545) (-712 "MKBCFUNC.spad" 1109013 1109031 1109508 1109513) (-711 "MINT.spad" 1108452 1108460 1108915 1109008) (-710 "MHROWRED.spad" 1106963 1106973 1108442 1108447) (-709 "MFLOAT.spad" 1105483 1105491 1106853 1106958) (-708 "MFINFACT.spad" 1104883 1104905 1105473 1105478) (-707 "MESH.spad" 1102665 1102673 1104873 1104878) (-706 "MDDFACT.spad" 1100876 1100886 1102655 1102660) (-705 "MDAGG.spad" 1100167 1100177 1100856 1100871) (-704 "MCMPLX.spad" 1096178 1096186 1096792 1096993) (-703 "MCDEN.spad" 1095388 1095400 1096168 1096173) (-702 "MCALCFN.spad" 1092510 1092536 1095378 1095383) (-701 "MAYBE.spad" 1091794 1091805 1092500 1092505) (-700 "MATSTOR.spad" 1089102 1089112 1091784 1091789) (-699 "MATRIX.spad" 1087806 1087816 1088290 1088317) (-698 "MATLIN.spad" 1085150 1085174 1087690 1087695) (-697 "MATCAT.spad" 1076879 1076901 1085118 1085145) (-696 "MATCAT.spad" 1068480 1068504 1076721 1076726) (-695 "MATCAT2.spad" 1067762 1067810 1068470 1068475) (-694 "MAPPKG3.spad" 1066677 1066691 1067752 1067757) (-693 "MAPPKG2.spad" 1066015 1066027 1066667 1066672) (-692 "MAPPKG1.spad" 1064843 1064853 1066005 1066010) (-691 "MAPPAST.spad" 1064158 1064166 1064833 1064838) (-690 "MAPHACK3.spad" 1063970 1063984 1064148 1064153) (-689 "MAPHACK2.spad" 1063739 1063751 1063960 1063965) (-688 "MAPHACK1.spad" 1063383 1063393 1063729 1063734) (-687 "MAGMA.spad" 1061173 1061190 1063373 1063378) (-686 "MACROAST.spad" 1060752 1060760 1061163 1061168) (-685 "M3D.spad" 1058472 1058482 1060130 1060135) (-684 "LZSTAGG.spad" 1055710 1055720 1058462 1058467) (-683 "LZSTAGG.spad" 1052946 1052958 1055700 1055705) (-682 "LWORD.spad" 1049651 1049668 1052936 1052941) (-681 "LSTAST.spad" 1049435 1049443 1049641 1049646) (-680 "LSQM.spad" 1047721 1047735 1048115 1048166) (-679 "LSPP.spad" 1047256 1047273 1047711 1047716) (-678 "LSMP.spad" 1046106 1046134 1047246 1047251) (-677 "LSMP1.spad" 1043924 1043938 1046096 1046101) (-676 "LSAGG.spad" 1043593 1043603 1043892 1043919) (-675 "LSAGG.spad" 1043282 1043294 1043583 1043588) (-674 "LPOLY.spad" 1042236 1042255 1043138 1043207) (-673 "LPEFRAC.spad" 1041507 1041517 1042226 1042231) (-672 "LO.spad" 1040908 1040922 1041441 1041468) (-671 "LOGIC.spad" 1040510 1040518 1040898 1040903) (-670 "LOGIC.spad" 1040110 1040120 1040500 1040505) (-669 "LODOOPS.spad" 1039040 1039052 1040100 1040105) (-668 "LODO.spad" 1038424 1038440 1038720 1038759) (-667 "LODOF.spad" 1037470 1037487 1038381 1038386) (-666 "LODOCAT.spad" 1036136 1036146 1037426 1037465) (-665 "LODOCAT.spad" 1034800 1034812 1036092 1036097) (-664 "LODO2.spad" 1034073 1034085 1034480 1034519) (-663 "LODO1.spad" 1033473 1033483 1033753 1033792) (-662 "LODEEF.spad" 1032275 1032293 1033463 1033468) (-661 "LNAGG.spad" 1028422 1028432 1032265 1032270) (-660 "LNAGG.spad" 1024533 1024545 1028378 1028383) (-659 "LMOPS.spad" 1021301 1021318 1024523 1024528) (-658 "LMODULE.spad" 1021069 1021079 1021291 1021296) (-657 "LMDICT.spad" 1020356 1020366 1020620 1020647) (-656 "LLINSET.spad" 1019753 1019763 1020346 1020351) (-655 "LITERAL.spad" 1019659 1019670 1019743 1019748) (-654 "LIST.spad" 1017394 1017404 1018806 1018833) (-653 "LIST3.spad" 1016705 1016719 1017384 1017389) (-652 "LIST2.spad" 1015407 1015419 1016695 1016700) (-651 "LIST2MAP.spad" 1012310 1012322 1015397 1015402) (-650 "LINSET.spad" 1011932 1011942 1012300 1012305) (-649 "LINEXP.spad" 1011070 1011080 1011922 1011927) (-648 "LINDEP.spad" 1009879 1009891 1010982 1010987) (-647 "LIMITRF.spad" 1007807 1007817 1009869 1009874) (-646 "LIMITPS.spad" 1006710 1006723 1007797 1007802) (-645 "LIE.spad" 1004726 1004738 1006000 1006145) (-644 "LIECAT.spad" 1004202 1004212 1004652 1004721) (-643 "LIECAT.spad" 1003706 1003718 1004158 1004163) (-642 "LIB.spad" 1001919 1001927 1002365 1002380) (-641 "LGROBP.spad" 999272 999291 1001909 1001914) (-640 "LF.spad" 998227 998243 999262 999267) (-639 "LFCAT.spad" 997286 997294 998217 998222) (-638 "LEXTRIPK.spad" 992789 992804 997276 997281) (-637 "LEXP.spad" 990792 990819 992769 992784) (-636 "LETAST.spad" 990491 990499 990782 990787) (-635 "LEADCDET.spad" 988889 988906 990481 990486) (-634 "LAZM3PK.spad" 987593 987615 988879 988884) (-633 "LAUPOL.spad" 986286 986299 987186 987255) (-632 "LAPLACE.spad" 985869 985885 986276 986281) (-631 "LA.spad" 985309 985323 985791 985830) (-630 "LALG.spad" 985085 985095 985289 985304) (-629 "LALG.spad" 984869 984881 985075 985080) (-628 "KVTFROM.spad" 984604 984614 984859 984864) (-627 "KTVLOGIC.spad" 984116 984124 984594 984599) (-626 "KRCFROM.spad" 983854 983864 984106 984111) (-625 "KOVACIC.spad" 982577 982594 983844 983849) (-624 "KONVERT.spad" 982299 982309 982567 982572) (-623 "KOERCE.spad" 982036 982046 982289 982294) (-622 "KERNEL.spad" 980691 980701 981820 981825) (-621 "KERNEL2.spad" 980394 980406 980681 980686) (-620 "KDAGG.spad" 979503 979525 980374 980389) (-619 "KDAGG.spad" 978620 978644 979493 979498) (-618 "KAFILE.spad" 977583 977599 977818 977845) (-617 "JORDAN.spad" 975412 975424 976873 977018) (-616 "JOINAST.spad" 975106 975114 975402 975407) (-615 "JAVACODE.spad" 974972 974980 975096 975101) (-614 "IXAGG.spad" 973105 973129 974962 974967) (-613 "IXAGG.spad" 971093 971119 972952 972957) (-612 "IVECTOR.spad" 969863 969878 970018 970045) (-611 "ITUPLE.spad" 969024 969034 969853 969858) (-610 "ITRIGMNP.spad" 967863 967882 969014 969019) (-609 "ITFUN3.spad" 967369 967383 967853 967858) (-608 "ITFUN2.spad" 967113 967125 967359 967364) (-607 "ITFORM.spad" 966468 966476 967103 967108) (-606 "ITAYLOR.spad" 964462 964477 966332 966429) (-605 "ISUPS.spad" 956899 956914 963436 963533) (-604 "ISUMP.spad" 956400 956416 956889 956894) (-603 "ISTRING.spad" 955488 955501 955569 955596) (-602 "ISAST.spad" 955207 955215 955478 955483) (-601 "IRURPK.spad" 953924 953943 955197 955202) (-600 "IRSN.spad" 951896 951904 953914 953919) (-599 "IRRF2F.spad" 950381 950391 951852 951857) (-598 "IRREDFFX.spad" 949982 949993 950371 950376) (-597 "IROOT.spad" 948321 948331 949972 949977) (-596 "IR.spad" 946122 946136 948176 948203) (-595 "IRFORM.spad" 945446 945454 946112 946117) (-594 "IR2.spad" 944474 944490 945436 945441) (-593 "IR2F.spad" 943680 943696 944464 944469) (-592 "IPRNTPK.spad" 943440 943448 943670 943675) (-591 "IPF.spad" 943005 943017 943245 943338) (-590 "IPADIC.spad" 942766 942792 942931 943000) (-589 "IP4ADDR.spad" 942323 942331 942756 942761) (-588 "IOMODE.spad" 941845 941853 942313 942318) (-587 "IOBFILE.spad" 941206 941214 941835 941840) (-586 "IOBCON.spad" 941071 941079 941196 941201) (-585 "INVLAPLA.spad" 940720 940736 941061 941066) (-584 "INTTR.spad" 934102 934119 940710 940715) (-583 "INTTOOLS.spad" 931857 931873 933676 933681) (-582 "INTSLPE.spad" 931177 931185 931847 931852) (-581 "INTRVL.spad" 930743 930753 931091 931172) (-580 "INTRF.spad" 929167 929181 930733 930738) (-579 "INTRET.spad" 928599 928609 929157 929162) (-578 "INTRAT.spad" 927326 927343 928589 928594) (-577 "INTPM.spad" 925711 925727 926969 926974) (-576 "INTPAF.spad" 923575 923593 925643 925648) (-575 "INTPACK.spad" 913949 913957 923565 923570) (-574 "INT.spad" 913397 913405 913803 913944) (-573 "INTHERTR.spad" 912671 912688 913387 913392) (-572 "INTHERAL.spad" 912341 912365 912661 912666) (-571 "INTHEORY.spad" 908780 908788 912331 912336) (-570 "INTG0.spad" 902513 902531 908712 908717) (-569 "INTFTBL.spad" 896542 896550 902503 902508) (-568 "INTFACT.spad" 895601 895611 896532 896537) (-567 "INTEF.spad" 893986 894002 895591 895596) (-566 "INTDOM.spad" 892609 892617 893912 893981) (-565 "INTDOM.spad" 891294 891304 892599 892604) (-564 "INTCAT.spad" 889553 889563 891208 891289) (-563 "INTBIT.spad" 889060 889068 889543 889548) (-562 "INTALG.spad" 888248 888275 889050 889055) (-561 "INTAF.spad" 887748 887764 888238 888243) (-560 "INTABL.spad" 886266 886297 886429 886456) (-559 "INT8.spad" 886146 886154 886256 886261) (-558 "INT64.spad" 886025 886033 886136 886141) (-557 "INT32.spad" 885904 885912 886015 886020) (-556 "INT16.spad" 885783 885791 885894 885899) (-555 "INS.spad" 883286 883294 885685 885778) (-554 "INS.spad" 880875 880885 883276 883281) (-553 "INPSIGN.spad" 880323 880336 880865 880870) (-552 "INPRODPF.spad" 879419 879438 880313 880318) (-551 "INPRODFF.spad" 878507 878531 879409 879414) (-550 "INNMFACT.spad" 877482 877499 878497 878502) (-549 "INMODGCD.spad" 876970 877000 877472 877477) (-548 "INFSP.spad" 875267 875289 876960 876965) (-547 "INFPROD0.spad" 874347 874366 875257 875262) (-546 "INFORM.spad" 871546 871554 874337 874342) (-545 "INFORM1.spad" 871171 871181 871536 871541) (-544 "INFINITY.spad" 870723 870731 871161 871166) (-543 "INETCLTS.spad" 870700 870708 870713 870718) (-542 "INEP.spad" 869238 869260 870690 870695) (-541 "INDE.spad" 868967 868984 869228 869233) (-540 "INCRMAPS.spad" 868388 868398 868957 868962) (-539 "INBFILE.spad" 867460 867468 868378 868383) (-538 "INBFF.spad" 863254 863265 867450 867455) (-537 "INBCON.spad" 861544 861552 863244 863249) (-536 "INBCON.spad" 859832 859842 861534 861539) (-535 "INAST.spad" 859493 859501 859822 859827) (-534 "IMPTAST.spad" 859201 859209 859483 859488) (-533 "IMATRIX.spad" 858146 858172 858658 858685) (-532 "IMATQF.spad" 857240 857284 858102 858107) (-531 "IMATLIN.spad" 855845 855869 857196 857201) (-530 "ILIST.spad" 854503 854518 855028 855055) (-529 "IIARRAY2.spad" 853891 853929 854110 854137) (-528 "IFF.spad" 853301 853317 853572 853665) (-527 "IFAST.spad" 852915 852923 853291 853296) (-526 "IFARRAY.spad" 850408 850423 852098 852125) (-525 "IFAMON.spad" 850270 850287 850364 850369) (-524 "IEVALAB.spad" 849675 849687 850260 850265) (-523 "IEVALAB.spad" 849078 849092 849665 849670) (-522 "IDPO.spad" 848876 848888 849068 849073) (-521 "IDPOAMS.spad" 848632 848644 848866 848871) (-520 "IDPOAM.spad" 848352 848364 848622 848627) (-519 "IDPC.spad" 847290 847302 848342 848347) (-518 "IDPAM.spad" 847035 847047 847280 847285) (-517 "IDPAG.spad" 846782 846794 847025 847030) (-516 "IDENT.spad" 846432 846440 846772 846777) (-515 "IDECOMP.spad" 843671 843689 846422 846427) (-514 "IDEAL.spad" 838620 838659 843606 843611) (-513 "ICDEN.spad" 837809 837825 838610 838615) (-512 "ICARD.spad" 837000 837008 837799 837804) (-511 "IBPTOOLS.spad" 835607 835624 836990 836995) (-510 "IBITS.spad" 834810 834823 835243 835270) (-509 "IBATOOL.spad" 831787 831806 834800 834805) (-508 "IBACHIN.spad" 830294 830309 831777 831782) (-507 "IARRAY2.spad" 829282 829308 829901 829928) (-506 "IARRAY1.spad" 828327 828342 828465 828492) (-505 "IAN.spad" 826550 826558 828143 828236) (-504 "IALGFACT.spad" 826153 826186 826540 826545) (-503 "HYPCAT.spad" 825577 825585 826143 826148) (-502 "HYPCAT.spad" 824999 825009 825567 825572) (-501 "HOSTNAME.spad" 824807 824815 824989 824994) (-500 "HOMOTOP.spad" 824550 824560 824797 824802) (-499 "HOAGG.spad" 821832 821842 824540 824545) (-498 "HOAGG.spad" 818889 818901 821599 821604) (-497 "HEXADEC.spad" 816991 816999 817356 817449) (-496 "HEUGCD.spad" 816026 816037 816981 816986) (-495 "HELLFDIV.spad" 815616 815640 816016 816021) (-494 "HEAP.spad" 815008 815018 815223 815250) (-493 "HEADAST.spad" 814541 814549 814998 815003) (-492 "HDP.spad" 804307 804323 804684 804815) (-491 "HDMP.spad" 801521 801536 802137 802264) (-490 "HB.spad" 799772 799780 801511 801516) (-489 "HASHTBL.spad" 798242 798273 798453 798480) (-488 "HASAST.spad" 797958 797966 798232 798237) (-487 "HACKPI.spad" 797449 797457 797860 797953) (-486 "GTSET.spad" 796388 796404 797095 797122) (-485 "GSTBL.spad" 794907 794942 795081 795096) (-484 "GSERIES.spad" 792078 792105 793039 793188) (-483 "GROUP.spad" 791351 791359 792058 792073) (-482 "GROUP.spad" 790632 790642 791341 791346) (-481 "GROEBSOL.spad" 789126 789147 790622 790627) (-480 "GRMOD.spad" 787697 787709 789116 789121) (-479 "GRMOD.spad" 786266 786280 787687 787692) (-478 "GRIMAGE.spad" 779155 779163 786256 786261) (-477 "GRDEF.spad" 777534 777542 779145 779150) (-476 "GRAY.spad" 775997 776005 777524 777529) (-475 "GRALG.spad" 775074 775086 775987 775992) (-474 "GRALG.spad" 774149 774163 775064 775069) (-473 "GPOLSET.spad" 773603 773626 773831 773858) (-472 "GOSPER.spad" 772872 772890 773593 773598) (-471 "GMODPOL.spad" 772020 772047 772840 772867) (-470 "GHENSEL.spad" 771103 771117 772010 772015) (-469 "GENUPS.spad" 767396 767409 771093 771098) (-468 "GENUFACT.spad" 766973 766983 767386 767391) (-467 "GENPGCD.spad" 766559 766576 766963 766968) (-466 "GENMFACT.spad" 766011 766030 766549 766554) (-465 "GENEEZ.spad" 763962 763975 766001 766006) (-464 "GDMP.spad" 761018 761035 761792 761919) (-463 "GCNAALG.spad" 754941 754968 760812 760879) (-462 "GCDDOM.spad" 754117 754125 754867 754936) (-461 "GCDDOM.spad" 753355 753365 754107 754112) (-460 "GB.spad" 750881 750919 753311 753316) (-459 "GBINTERN.spad" 746901 746939 750871 750876) (-458 "GBF.spad" 742668 742706 746891 746896) (-457 "GBEUCLID.spad" 740550 740588 742658 742663) (-456 "GAUSSFAC.spad" 739863 739871 740540 740545) (-455 "GALUTIL.spad" 738189 738199 739819 739824) (-454 "GALPOLYU.spad" 736643 736656 738179 738184) (-453 "GALFACTU.spad" 734816 734835 736633 736638) (-452 "GALFACT.spad" 725005 725016 734806 734811) (-451 "FVFUN.spad" 722028 722036 724995 725000) (-450 "FVC.spad" 721080 721088 722018 722023) (-449 "FUNDESC.spad" 720758 720766 721070 721075) (-448 "FUNCTION.spad" 720607 720619 720748 720753) (-447 "FT.spad" 718904 718912 720597 720602) (-446 "FTEM.spad" 718069 718077 718894 718899) (-445 "FSUPFACT.spad" 716969 716988 718005 718010) (-444 "FST.spad" 715055 715063 716959 716964) (-443 "FSRED.spad" 714535 714551 715045 715050) (-442 "FSPRMELT.spad" 713417 713433 714492 714497) (-441 "FSPECF.spad" 711508 711524 713407 713412) (-440 "FS.spad" 705776 705786 711283 711503) (-439 "FS.spad" 699822 699834 705331 705336) (-438 "FSINT.spad" 699482 699498 699812 699817) (-437 "FSERIES.spad" 698673 698685 699302 699401) (-436 "FSCINT.spad" 697990 698006 698663 698668) (-435 "FSAGG.spad" 697107 697117 697946 697985) (-434 "FSAGG.spad" 696186 696198 697027 697032) (-433 "FSAGG2.spad" 694929 694945 696176 696181) (-432 "FS2UPS.spad" 689420 689454 694919 694924) (-431 "FS2.spad" 689067 689083 689410 689415) (-430 "FS2EXPXP.spad" 688192 688215 689057 689062) (-429 "FRUTIL.spad" 687146 687156 688182 688187) (-428 "FR.spad" 680678 680688 685986 686055) (-427 "FRNAALG.spad" 675947 675957 680620 680673) (-426 "FRNAALG.spad" 671228 671240 675903 675908) (-425 "FRNAAF2.spad" 670684 670702 671218 671223) (-424 "FRMOD.spad" 670094 670124 670615 670620) (-423 "FRIDEAL.spad" 669319 669340 670074 670089) (-422 "FRIDEAL2.spad" 668923 668955 669309 669314) (-421 "FRETRCT.spad" 668434 668444 668913 668918) (-420 "FRETRCT.spad" 667811 667823 668292 668297) (-419 "FRAMALG.spad" 666159 666172 667767 667806) (-418 "FRAMALG.spad" 664539 664554 666149 666154) (-417 "FRAC.spad" 661638 661648 662041 662214) (-416 "FRAC2.spad" 661243 661255 661628 661633) (-415 "FR2.spad" 660579 660591 661233 661238) (-414 "FPS.spad" 657394 657402 660469 660574) (-413 "FPS.spad" 654237 654247 657314 657319) (-412 "FPC.spad" 653283 653291 654139 654232) (-411 "FPC.spad" 652415 652425 653273 653278) (-410 "FPATMAB.spad" 652177 652187 652405 652410) (-409 "FPARFRAC.spad" 650664 650681 652167 652172) (-408 "FORTRAN.spad" 649170 649213 650654 650659) (-407 "FORT.spad" 648119 648127 649160 649165) (-406 "FORTFN.spad" 645289 645297 648109 648114) (-405 "FORTCAT.spad" 644973 644981 645279 645284) (-404 "FORMULA.spad" 642447 642455 644963 644968) (-403 "FORMULA1.spad" 641926 641936 642437 642442) (-402 "FORDER.spad" 641617 641641 641916 641921) (-401 "FOP.spad" 640818 640826 641607 641612) (-400 "FNLA.spad" 640242 640264 640786 640813) (-399 "FNCAT.spad" 638837 638845 640232 640237) (-398 "FNAME.spad" 638729 638737 638827 638832) (-397 "FMTC.spad" 638527 638535 638655 638724) (-396 "FMONOID.spad" 638192 638202 638483 638488) (-395 "FMONCAT.spad" 635345 635355 638182 638187) (-394 "FM.spad" 635040 635052 635279 635306) (-393 "FMFUN.spad" 632070 632078 635030 635035) (-392 "FMC.spad" 631122 631130 632060 632065) (-391 "FMCAT.spad" 628790 628808 631090 631117) (-390 "FM1.spad" 628147 628159 628724 628751) (-389 "FLOATRP.spad" 625882 625896 628137 628142) (-388 "FLOAT.spad" 619196 619204 625748 625877) (-387 "FLOATCP.spad" 616627 616641 619186 619191) (-386 "FLINEXP.spad" 616349 616359 616617 616622) (-385 "FLINEXP.spad" 616015 616027 616285 616290) (-384 "FLASORT.spad" 615341 615353 616005 616010) (-383 "FLALG.spad" 612987 613006 615267 615336) (-382 "FLAGG.spad" 610029 610039 612967 612982) (-381 "FLAGG.spad" 606972 606984 609912 609917) (-380 "FLAGG2.spad" 605697 605713 606962 606967) (-379 "FINRALG.spad" 603758 603771 605653 605692) (-378 "FINRALG.spad" 601745 601760 603642 603647) (-377 "FINITE.spad" 600897 600905 601735 601740) (-376 "FINAALG.spad" 590018 590028 600839 600892) (-375 "FINAALG.spad" 579151 579163 589974 589979) (-374 "FILE.spad" 578734 578744 579141 579146) (-373 "FILECAT.spad" 577260 577277 578724 578729) (-372 "FIELD.spad" 576666 576674 577162 577255) (-371 "FIELD.spad" 576158 576168 576656 576661) (-370 "FGROUP.spad" 574805 574815 576138 576153) (-369 "FGLMICPK.spad" 573592 573607 574795 574800) (-368 "FFX.spad" 572967 572982 573308 573401) (-367 "FFSLPE.spad" 572470 572491 572957 572962) (-366 "FFPOLY.spad" 563732 563743 572460 572465) (-365 "FFPOLY2.spad" 562792 562809 563722 563727) (-364 "FFP.spad" 562189 562209 562508 562601) (-363 "FF.spad" 561637 561653 561870 561963) (-362 "FFNBX.spad" 560149 560169 561353 561446) (-361 "FFNBP.spad" 558662 558679 559865 559958) (-360 "FFNB.spad" 557127 557148 558343 558436) (-359 "FFINTBAS.spad" 554641 554660 557117 557122) (-358 "FFIELDC.spad" 552218 552226 554543 554636) (-357 "FFIELDC.spad" 549881 549891 552208 552213) (-356 "FFHOM.spad" 548629 548646 549871 549876) (-355 "FFF.spad" 546064 546075 548619 548624) (-354 "FFCGX.spad" 544911 544931 545780 545873) (-353 "FFCGP.spad" 543800 543820 544627 544720) (-352 "FFCG.spad" 542592 542613 543481 543574) (-351 "FFCAT.spad" 535765 535787 542431 542587) (-350 "FFCAT.spad" 529017 529041 535685 535690) (-349 "FFCAT2.spad" 528764 528804 529007 529012) (-348 "FEXPR.spad" 520481 520527 528520 528559) (-347 "FEVALAB.spad" 520189 520199 520471 520476) (-346 "FEVALAB.spad" 519682 519694 519966 519971) (-345 "FDIV.spad" 519124 519148 519672 519677) (-344 "FDIVCAT.spad" 517188 517212 519114 519119) (-343 "FDIVCAT.spad" 515250 515276 517178 517183) (-342 "FDIV2.spad" 514906 514946 515240 515245) (-341 "FCTRDATA.spad" 513914 513922 514896 514901) (-340 "FCPAK1.spad" 512481 512489 513904 513909) (-339 "FCOMP.spad" 511860 511870 512471 512476) (-338 "FC.spad" 501867 501875 511850 511855) (-337 "FAXF.spad" 494838 494852 501769 501862) (-336 "FAXF.spad" 487861 487877 494794 494799) (-335 "FARRAY.spad" 486011 486021 487044 487071) (-334 "FAMR.spad" 484147 484159 485909 486006) (-333 "FAMR.spad" 482267 482281 484031 484036) (-332 "FAMONOID.spad" 481935 481945 482221 482226) (-331 "FAMONC.spad" 480231 480243 481925 481930) (-330 "FAGROUP.spad" 479855 479865 480127 480154) (-329 "FACUTIL.spad" 478059 478076 479845 479850) (-328 "FACTFUNC.spad" 477253 477263 478049 478054) (-327 "EXPUPXS.spad" 474086 474109 475385 475534) (-326 "EXPRTUBE.spad" 471374 471382 474076 474081) (-325 "EXPRODE.spad" 468534 468550 471364 471369) (-324 "EXPR.spad" 463709 463719 464423 464718) (-323 "EXPR2UPS.spad" 459831 459844 463699 463704) (-322 "EXPR2.spad" 459536 459548 459821 459826) (-321 "EXPEXPAN.spad" 456476 456501 457108 457201) (-320 "EXIT.spad" 456147 456155 456466 456471) (-319 "EXITAST.spad" 455883 455891 456137 456142) (-318 "EVALCYC.spad" 455343 455357 455873 455878) (-317 "EVALAB.spad" 454915 454925 455333 455338) (-316 "EVALAB.spad" 454485 454497 454905 454910) (-315 "EUCDOM.spad" 452059 452067 454411 454480) (-314 "EUCDOM.spad" 449695 449705 452049 452054) (-313 "ESTOOLS.spad" 441541 441549 449685 449690) (-312 "ESTOOLS2.spad" 441144 441158 441531 441536) (-311 "ESTOOLS1.spad" 440829 440840 441134 441139) (-310 "ES.spad" 433644 433652 440819 440824) (-309 "ES.spad" 426365 426375 433542 433547) (-308 "ESCONT.spad" 423158 423166 426355 426360) (-307 "ESCONT1.spad" 422907 422919 423148 423153) (-306 "ES2.spad" 422412 422428 422897 422902) (-305 "ES1.spad" 421982 421998 422402 422407) (-304 "ERROR.spad" 419309 419317 421972 421977) (-303 "EQTBL.spad" 417781 417803 417990 418017) (-302 "EQ.spad" 412586 412596 415373 415485) (-301 "EQ2.spad" 412304 412316 412576 412581) (-300 "EP.spad" 408630 408640 412294 412299) (-299 "ENV.spad" 407308 407316 408620 408625) (-298 "ENTIRER.spad" 406976 406984 407252 407303) (-297 "EMR.spad" 406264 406305 406902 406971) (-296 "ELTAGG.spad" 404518 404537 406254 406259) (-295 "ELTAGG.spad" 402736 402757 404474 404479) (-294 "ELTAB.spad" 402211 402224 402726 402731) (-293 "ELFUTS.spad" 401598 401617 402201 402206) (-292 "ELEMFUN.spad" 401287 401295 401588 401593) (-291 "ELEMFUN.spad" 400974 400984 401277 401282) (-290 "ELAGG.spad" 398945 398955 400954 400969) (-289 "ELAGG.spad" 396853 396865 398864 398869) (-288 "ELABOR.spad" 396199 396207 396843 396848) (-287 "ELABEXPR.spad" 395131 395139 396189 396194) (-286 "EFUPXS.spad" 391907 391937 395087 395092) (-285 "EFULS.spad" 388743 388766 391863 391868) (-284 "EFSTRUC.spad" 386758 386774 388733 388738) (-283 "EF.spad" 381534 381550 386748 386753) (-282 "EAB.spad" 379810 379818 381524 381529) (-281 "E04UCFA.spad" 379346 379354 379800 379805) (-280 "E04NAFA.spad" 378923 378931 379336 379341) (-279 "E04MBFA.spad" 378503 378511 378913 378918) (-278 "E04JAFA.spad" 378039 378047 378493 378498) (-277 "E04GCFA.spad" 377575 377583 378029 378034) (-276 "E04FDFA.spad" 377111 377119 377565 377570) (-275 "E04DGFA.spad" 376647 376655 377101 377106) (-274 "E04AGNT.spad" 372497 372505 376637 376642) (-273 "DVARCAT.spad" 369387 369397 372487 372492) (-272 "DVARCAT.spad" 366275 366287 369377 369382) (-271 "DSMP.spad" 363742 363756 364047 364174) (-270 "DROPT.spad" 357701 357709 363732 363737) (-269 "DROPT1.spad" 357366 357376 357691 357696) (-268 "DROPT0.spad" 352223 352231 357356 357361) (-267 "DRAWPT.spad" 350396 350404 352213 352218) (-266 "DRAW.spad" 343272 343285 350386 350391) (-265 "DRAWHACK.spad" 342580 342590 343262 343267) (-264 "DRAWCX.spad" 340050 340058 342570 342575) (-263 "DRAWCURV.spad" 339597 339612 340040 340045) (-262 "DRAWCFUN.spad" 329129 329137 339587 339592) (-261 "DQAGG.spad" 327307 327317 329097 329124) (-260 "DPOLCAT.spad" 322656 322672 327175 327302) (-259 "DPOLCAT.spad" 318091 318109 322612 322617) (-258 "DPMO.spad" 310564 310580 310702 310947) (-257 "DPMM.spad" 303050 303068 303175 303420) (-256 "DOMTMPLT.spad" 302821 302829 303040 303045) (-255 "DOMCTOR.spad" 302576 302584 302811 302816) (-254 "DOMAIN.spad" 301663 301671 302566 302571) (-253 "DMP.spad" 298923 298938 299493 299620) (-252 "DLP.spad" 298275 298285 298913 298918) (-251 "DLIST.spad" 296854 296864 297458 297485) (-250 "DLAGG.spad" 295271 295281 296844 296849) (-249 "DIVRING.spad" 294813 294821 295215 295266) (-248 "DIVRING.spad" 294399 294409 294803 294808) (-247 "DISPLAY.spad" 292589 292597 294389 294394) (-246 "DIRPROD.spad" 282092 282108 282732 282863) (-245 "DIRPROD2.spad" 280910 280928 282082 282087) (-244 "DIRPCAT.spad" 279854 279870 280774 280905) (-243 "DIRPCAT.spad" 278527 278545 279449 279454) (-242 "DIOSP.spad" 277352 277360 278517 278522) (-241 "DIOPS.spad" 276348 276358 277332 277347) (-240 "DIOPS.spad" 275318 275330 276304 276309) (-239 "DIFRING.spad" 275156 275164 275298 275313) (-238 "DIFFSPC.spad" 274735 274743 275146 275151) (-237 "DIFFSPC.spad" 274312 274322 274725 274730) (-236 "DIFFMOD.spad" 273801 273811 274280 274307) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 56198f5b..7355edfc 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1128 +1,1128 @@ -(195368 . 3485684133) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -((((-573)) . T) (($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T)) +(195368 . 3485693916) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +((((-574)) . T) (($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-573)) . T)) -((($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2| |#2|) . T) ((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573))))) +((((-574)) . T)) +((($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#2|) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -(|has| |#1| (-919)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((($) . T) (((-416 (-573))) . T)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +(|has| |#1| (-922)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((($) . T) (((-417 (-574))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-545)) . T) (((-1171)) . T) (((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-871)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -((($ $) . T) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1| |#1|) . T)) -(-2817 (|has| |#1| (-829)) (|has| |#1| (-859))) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(|has| |#1| (-857)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-323 |#1|)) . T) (((-573)) . T) (($) . T)) +((((-546)) . T) (((-1174)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-872)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((($ $) . T) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) +(-2832 (|has| |#1| (-830)) (|has| |#1| (-860))) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +((((-872)) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(|has| |#1| (-858)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-324 |#1|)) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-573)) . T) (((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) -((((-871)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) +((((-574)) . T) (((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +((((-872)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) (((|#4|) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) -((((-871)) . T)) -((((-871)) |has| (-1106 |#1|) (-1112))) -(-2817 (|has| |#1| (-238)) (|has| |#1| (-293 $ $)) (|has| |#1| (-293 |#1| |#1|))) -((((-871)) . T) (((-1194)) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +((((-872)) . T)) +((((-872)) |has| (-1109 |#1|) (-1115))) +(-2832 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|))) +((((-872)) . T) (((-1197)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1194)) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#2| (-491 (-2862 |#1|) (-780))) . T)) -(((|#1| (-540 (-1189))) . T)) -(((#0=(-879 |#1|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -((((-1171)) . T) (((-968 (-130))) . T) (((-871)) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#4| (-376)) -(|has| |#3| (-376)) -(((|#1|) . T)) -((((-1189)) . T)) -((((-515)) . T)) -((((-879 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-1197)) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#2| (-492 (-2876 |#1|) (-781))) . T)) +(((|#1| (-541 (-1192))) . T)) +(((#0=(-880 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +((((-1174)) . T) (((-971 (-130))) . T) (((-872)) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#4| (-377)) +(|has| |#3| (-377)) +(((|#1|) . T)) +((((-1192)) . T)) +((((-516)) . T)) +((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-565)) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T)) -((($) . T)) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1189)) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -((((-1189)) . T)) -((((-573)) . T) (($) . T)) -((((-590 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +(|has| |#1| (-566)) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) . T)) +((($) . T)) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1192)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +((((-1192)) . T)) +((((-574)) . T) (($) . T)) +((((-591 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) . T) (((-573)) . T) (($) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) . T) (((-574)) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -(|has| |#1| (-1112)) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +(|has| |#1| (-1115)) (((|#1|) . T)) -((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-117 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) -(((|#2|) . T) (((-573)) . T) ((|#6|) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) +(((|#2|) . T) (((-574)) . T) ((|#6|) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) ((($ $) . T)) ((($) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-376)) +(|has| |#1| (-377)) (((|#1|) . T)) -((((-871)) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) +((((-872)) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-573)) . T)) -((((-871)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-574)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) -((($) |has| |#1| (-238))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-565)) -(((|#1|) . T) (((-573)) . T) (($) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(|has| |#1| (-1112)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(|has| |#1| (-1112)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(|has| |#1| (-857)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +((($) |has| |#1| (-239))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-566)) +(((|#1|) . T) (((-574)) . T) (($) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(|has| |#1| (-1115)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(|has| |#1| (-1115)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(|has| |#1| (-858)) (((|#1| |#1|) . T)) -((($) . T) (((-416 (-573))) . T)) +((($) . T) (((-417 (-574))) . T)) (((|#1|) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-573) (-130)) . T)) -((((-871)) . T)) -((($) . T) (((-416 (-573))) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-574) (-130)) . T)) +((((-872)) . T)) +((($) . T) (((-417 (-574))) . T)) ((((-130)) . T)) -(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) -(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(-2832 (|has| |#4| (-803)) (|has| |#4| (-858))) +(-2832 (|has| |#4| (-803)) (|has| |#4| (-858))) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) (((|#1| |#2|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-1194)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1197)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) (((-1189) |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-523 (-1189) |#2|)))) -(|has| |#1| (-1112)) -(|has| |#1| (-1112)) -((((-573)) . T) (((-416 (-573))) . T)) -(((|#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) . T)) -((((-573) |#1|) . T)) -((((-573)) . T)) -((((-573)) . T)) -((((-920 |#1|)) . T)) -(((|#1| (-540 |#2|)) . T)) -((((-573)) . T)) -((((-573)) . T)) -(((|#1|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(((|#1| (-780)) . T)) -(|has| |#2| (-802)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(|has| |#2| (-857)) +(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1192) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1192) |#2|)))) +(|has| |#1| (-1115)) +(|has| |#1| (-1115)) +((((-574)) . T) (((-417 (-574))) . T)) +(((|#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) . T)) +((((-574) |#1|) . T)) +((((-574)) . T)) +((((-574)) . T)) +((((-923 |#1|)) . T)) +(((|#1| (-541 |#2|)) . T)) +((((-574)) . T)) +((((-574)) . T)) +(((|#1|) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(((|#1| (-781)) . T)) +(|has| |#2| (-803)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(|has| |#2| (-858)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1171) |#1|) . T)) -((((-1247 (-573)) $) . T) (((-573) (-130)) . T)) +((((-1174) |#1|) . T)) +((((-1250 (-574)) $) . T) (((-574) (-130)) . T)) (((|#1|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(((|#3| (-780)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(((|#3| (-781)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) (((-416 (-573))) . T)) +((($) . T) (((-417 (-574))) . T)) ((($) . T)) ((($) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -((((-416 (-573))) . T) (($) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-417 (-574))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1112)) -((((-416 (-573))) . T) (((-573)) . T)) -((((-573)) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#2|) . T)) -((((-1189) |#2|) |has| |#2| (-523 (-1189) |#2|)) ((|#2| |#2|) |has| |#2| (-316 |#2|))) -((((-416 (-573))) . T) (((-573)) . T)) -((((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) +(|has| |#1| (-1115)) +((((-417 (-574))) . T) (((-574)) . T)) +((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#2|) . T)) +((((-1192) |#2|) |has| |#2| (-524 (-1192) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|))) +((((-417 (-574))) . T) (((-574)) . T)) +((((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (((|#1|) . T) (($) . T)) -((((-573)) . T)) -((((-573)) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -((((-573)) . T)) -((((-573)) . T)) -((((-416 (-573))) . T) (($) . T)) -(((#0=(-708) (-1185 #0#)) . T)) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T)) -(|has| |#2| (-371)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -((($) |has| (-416 |#2|) (-238))) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-574)) . T)) +((((-574)) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-574)) . T)) +((((-574)) . T)) +((((-417 (-574))) . T) (($) . T)) +(((#0=(-709) (-1188 #0#)) . T)) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T)) +(|has| |#2| (-372)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((($) |has| (-417 |#2|) (-239))) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-871)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1171) |#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((((-872)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1174) |#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#1|) . T)) -(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-573) |#1|) . T)) -((((-871)) . T)) -((((-171 (-227))) |has| |#1| (-1034)) (((-171 (-387))) |has| |#1| (-1034)) (((-545)) |has| |#1| (-623 (-545))) (((-1185 |#1|)) . T) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387))))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -(|has| |#1| (-371)) -((((-871)) . T)) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-574) |#1|) . T)) +((((-872)) . T)) +((((-171 (-227))) |has| |#1| (-1037)) (((-171 (-388))) |has| |#1| (-1037)) (((-546)) |has| |#1| (-624 (-546))) (((-1188 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(|has| |#1| (-372)) +((((-872)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) -((($) |has| |#2| (-238))) -(-2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -(|has| |#1| (-565)) -((((-573)) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (|has| |#4| (-1061))) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-1112))) (((-416 (-573))) -12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112)))) -((((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-565)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#1|) . T)) -(|has| |#1| (-565)) -(|has| |#1| (-565)) -(|has| |#1| (-565)) -((((-708)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -(-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))) -((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) -(((|#4| |#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($ $) |has| |#4| (-174))) -(((|#3| |#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($ $) |has| |#3| (-174))) -(((|#2|) . T)) -(((|#1|) . T)) -((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) -((((-871)) . T)) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) +((($) |has| |#2| (-239))) +(-2832 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1064))) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +(|has| |#1| (-566)) +((((-574)) -2832 (|has| |#4| (-174)) (|has| |#4| (-858)) (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (|has| |#4| (-1064))) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-1115))) (((-417 (-574))) -12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115)))) +((((-574)) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-566)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#1|) . T)) +(|has| |#1| (-566)) +(|has| |#1| (-566)) +(|has| |#1| (-566)) +((((-709)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +(-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))) +((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) +(((|#4| |#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (($ $) |has| |#4| (-174))) +(((|#3| |#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($ $) |has| |#3| (-174))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) +((((-872)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T) (((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573))))) -(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($) |has| |#4| (-174))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) -((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -((((-653 |#1|)) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-416 $) (-416 $)) |has| |#2| (-565)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-919)) -((((-1171) (-52)) . T)) -((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T)) -((((-545)) . T) (((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +((((-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) . T) (((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) +(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (($) |has| |#4| (-174))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +((((-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-654 |#1|)) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-417 $) (-417 $)) |has| |#2| (-566)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-922)) +((((-1174) (-52)) . T)) +((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) +((((-546)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) (((|#1|) |has| |#1| (-174))) -(((|#1| $) |has| |#1| (-293 |#1| |#1|))) -((((-871)) . T)) -((((-871)) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -(|has| |#1| (-859)) -(((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-1112)) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) . T) (((-1194)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-1194)) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| |#1| (-238)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1| (-540 (-827 (-1189)))) . T)) -(((|#1| (-983)) . T)) -((((-573)) . T) ((|#2|) . T)) -(((#0=(-879 |#1|) $) |has| #0# (-293 #0# #0#))) -((((-573) |#4|) . T)) -((((-573) |#3|) . T)) +(((|#1| $) |has| |#1| (-294 |#1| |#1|))) +((((-872)) . T)) +((((-872)) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +(|has| |#1| (-860)) +(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1115)) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) . T) (((-1197)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-1197)) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#1| (-239)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1| (-541 (-828 (-1192)))) . T)) +(((|#1| (-986)) . T)) +((((-574)) . T) ((|#2|) . T)) +(((#0=(-880 |#1|) $) |has| #0# (-294 #0# #0#))) +((((-574) |#4|) . T)) +((((-574) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1164)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -(|has| (-1266 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1266 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1167)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +(|has| (-1269 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1269 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) +((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1112)) -((((-1171) |#1|) . T)) +(|has| |#1| (-1115)) +((((-1174) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-1137 |#1| (-1189))) . T) (((-573)) . T) (((-827 (-1189))) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-1189)) . T)) -(|has| |#2| (-376)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-1140 |#1| (-1192))) . T) (((-574)) . T) (((-828 (-1192))) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-1192)) . T)) +(|has| |#2| (-377)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1061))) -((((-871)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(((|#2|) |has| |#2| (-1064))) +((((-872)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) (((|#1|) . T)) -((((-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) -((((-871)) . T)) -((((-573) |#1|) . T)) -((((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545)))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387))))) (((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) +((((-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((#0=(-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) +((((-872)) . T)) +((((-574) |#1|) . T)) +((((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) ((($) . T)) -((((-871)) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) +((((-872)) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) -((((-871)) . T)) -(|has| (-1265 |#2| |#3| |#4|) (-148)) -(|has| (-1265 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) +((((-872)) . T)) +(|has| (-1268 |#2| |#3| |#4|) (-148)) +(|has| (-1268 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((|#1|) . T)) -(|has| |#1| (-1112)) -((((-871)) . T)) +(|has| |#1| (-1115)) +((((-872)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) (((|#1|) . T)) -((((-573) |#1|) . T)) +((((-574) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -((((-871)) |has| |#1| (-1112))) -((($) |has| |#1| (-238))) -(-2817 (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-920 |#1|)) . T)) -((((-416 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-573) |#1|))) -((((-416 (-573))) . T) (($) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((((-872)) |has| |#1| (-1115))) +((($) |has| |#1| (-239))) +(-2832 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-923 |#1|)) . T)) +((((-417 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-574) |#1|))) +((((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -(|has| |#1| (-371)) -(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-371)) -(|has| |#1| (-15 * (|#1| (-780) |#1|))) -((((-573)) . T)) -((((-573)) . T)) -((((-1154 |#2| (-416 (-962 |#1|)))) . T) (((-416 (-962 |#1|))) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +(|has| |#1| (-372)) +(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-372)) +(|has| |#1| (-15 * (|#1| (-781) |#1|))) +((((-574)) . T)) +((((-574)) . T)) +((((-1157 |#2| (-417 (-965 |#1|)))) . T) (((-417 (-965 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) -(((|#1|) . T)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -((((-871)) . T)) -(((|#2|) . T)) -(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((($) |has| |#1| (-565)) (((-573)) . T)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -((((-1272 |#1| |#2| |#3|)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) -((((-1276 |#2|)) . T) (((-1272 |#1| |#2| |#3|)) . T) (((-1244 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T)) -(((|#1|) . T)) -((((-1189)) -12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) -(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($ $) |has| |#1| (-565)) ((|#1| |#1|) . T)) -(((#0=(-708) (-1185 #0#)) . T)) -((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T) (((-1280 |#4|)) . T)) -((((-871)) . T) (((-1280 |#3|)) . T)) -((((-590 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) . T)) -((((-871)) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((($) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((#1=(-1272 |#1| |#2| |#3|) #1#) |has| |#1| (-371)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -(((|#3|) |has| |#3| (-1061))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -(|has| (-1106 |#1|) (-1112)) -(((|#2| (-828 |#1|)) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) +(((|#1|) . T)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((((-872)) . T)) +(((|#2|) . T)) +(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((($) |has| |#1| (-566)) (((-574)) . T)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +((((-1275 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +((((-1279 |#2|)) . T) (((-1275 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) +(((|#1|) . T)) +((((-1192)) -12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($ $) |has| |#1| (-566)) ((|#1| |#1|) . T)) +(((#0=(-709) (-1188 #0#)) . T)) +((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T) (((-1283 |#4|)) . T)) +((((-872)) . T) (((-1283 |#3|)) . T)) +((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) . T)) +((((-872)) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((($) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1275 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#3|) |has| |#3| (-1064))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(|has| (-1109 |#1|) (-1115)) +(((|#2| (-829 |#1|)) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-371)) -((((-573)) . T) ((|#2|) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +(|has| |#1| (-372)) +((((-574)) . T) ((|#2|) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((#0=(-1094) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-871)) . T)) -((((-920 |#1|)) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-1097) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-872)) . T)) +((((-923 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) -((((-245 |#1| |#2|) |#2|) . T)) -((((-871)) . T)) -(((|#3|) |has| |#3| (-1112)) (((-573)) -12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-246 |#1| |#2|) |#2|) . T)) +((((-872)) . T)) +(((|#3|) |has| |#3| (-1115)) (((-574)) -12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#1|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -(|has| |#1| (-371)) -((((-1194)) . T)) -(((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) -((($) . T)) -((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) -(|has| |#2| (-829)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-857)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +(|has| |#1| (-372)) +((((-1197)) . T)) +(((|#1|) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) +((($) . T)) +((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +(|has| |#2| (-830)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-858)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) (((|#1| |#2|) . T)) -((((-1189)) -12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) -((((-1171) |#1|) . T)) -(((|#1| |#2| |#3| (-540 |#3|)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-871)) . T)) -((((-416 (-573))) . T)) -(((|#1|) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -((((-416 (-573))) . T)) -(|has| |#1| (-376)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-573)) . T)) -((((-573)) . T)) -(((|#1|) . T) (((-573)) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -((((-871)) . T)) -((((-871)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -((((-1189) #0=(-879 |#1|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) -(((|#1|) . T)) -((((-573) |#4|) . T)) -((((-573) |#3|) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -((((-416 (-573))) . T) (((-573)) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-1192)) -12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) +((((-1174) |#1|) . T)) +(((|#1| |#2| |#3| (-541 |#3|)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((((-872)) . T)) +((((-417 (-574))) . T)) +(((|#1|) . T)) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-417 (-574))) . T)) +(|has| |#1| (-377)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-574)) . T)) +((((-574)) . T)) +(((|#1|) . T) (((-574)) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-872)) . T)) +((((-872)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +((((-1192) #0=(-880 |#1|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +(((|#1|) . T)) +((((-574) |#4|) . T)) +((((-574) |#3|) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-417 (-574))) . T) (((-574)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((((-573)) . T)) -((((-573)) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -((($) . T) (((-416 (-573))) . T)) -(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -(((|#1|) |has| |#1| (-565))) -((((-573) |#4|) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-573) |#3|) . T)) -((((-871)) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((((-871)) . T)) -(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) -((((-573) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1189) $) . T) ((#0# |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-574)) . T)) +((((-574)) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((($) . T) (((-417 (-574))) . T)) +(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +(((|#1|) |has| |#1| (-566))) +((((-574) |#4|) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((((-574) |#3|) . T)) +((((-872)) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-872)) . T)) +(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +((((-574) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1192) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) +((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) ((((-145)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-376)) (|has| |#2| (-376))) -((((-871)) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +(-12 (|has| |#1| (-377)) (|has| |#2| (-377))) +((((-872)) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) (((|#1|) . T)) -((((-871)) . T)) -(|has| |#1| (-1112)) +((((-872)) . T)) +(|has| |#1| (-1115)) (|has| $ (-148)) -((((-1194)) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) -(|has| |#1| (-371)) -(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-371)) -(|has| |#1| (-15 * (|#1| (-780) |#1|))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-871)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(((|#2| (-540 (-873 |#1|))) . T)) -((((-871)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-590 |#1|)) . T)) -((($) . T)) -((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((((-1197)) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +(|has| |#1| (-372)) +(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-372)) +(|has| |#1| (-15 * (|#1| (-781) |#1|))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-872)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(((|#2| (-541 (-874 |#1|))) . T)) +((((-872)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-591 |#1|)) . T)) +((($) . T)) +((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) . T) (($) . T)) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) -((((-1187 |#1| |#2| |#3|)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) -((((-1276 |#2|)) . T) (((-1187 |#1| |#2| |#3|)) . T) (((-1180 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((((-1190 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +((((-1279 |#2|)) . T) (((-1190 |#1| |#2| |#3|)) . T) (((-1183 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) (((|#4|) . T)) (((|#3|) . T)) -((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T)) -((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) -(|has| |#2| (-238)) -(((|#1|) . T)) -((($) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) -((((-573) |#2|) . T)) -((((-871)) . T)) -((($) . T) (((-573)) . T) ((|#2|) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) +((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) +(|has| |#2| (-239)) +(((|#1|) . T)) +((($) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) +((((-574) |#2|) . T)) +((((-872)) . T)) +((($) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((#1=(-1187 |#1| |#2| |#3|) #1#) |has| |#1| (-371)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) -(((|#2|) |has| |#2| (-1061))) -(|has| |#1| (-1112)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1190 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) +(((|#2|) |has| |#2| (-1064))) +(|has| |#1| (-1115)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-871)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-872)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) -(((|#2|) |has| |#1| (-371))) -((((-573) |#1|) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) -((((-871)) . T)) -((((-416 |#2|) |#3|) . T)) -(((|#1| (-416 (-573))) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T) (((-1194)) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#2|) |has| |#1| (-372))) +((((-574) |#1|) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) +((((-872)) . T)) +((((-417 |#2|) |#3|) . T)) +(((|#1| (-417 (-574))) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T) (((-1197)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1194)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#2| |#3| (-873 |#1|)) . T)) -((((-1189)) |has| |#2| (-910 (-1189)))) -(((|#1|) . T)) -(((|#1| (-540 |#2|) |#2|) . T)) -(((|#1| (-780) (-1094)) . T)) -((((-416 (-573))) |has| |#2| (-371)) (($) . T)) -(((|#1| (-540 (-1100 (-1189))) (-1100 (-1189))) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1011 |#1|)) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(|has| |#2| (-802)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#2| (-857)) -((((-903 |#1|)) . T) (((-828 |#1|)) . T)) -((((-828 (-1189))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-653 (-931))) . T) (((-871)) . T)) -((((-416 (-573))) . T) (((-871)) . T)) -((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -(|has| |#1| (-238)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((($ $) . T) (((-573) |#1|) . T)) +((((-1197)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#2| |#3| (-874 |#1|)) . T)) +((((-1192)) |has| |#2| (-913 (-1192)))) +(((|#1|) . T)) +(((|#1| (-541 |#2|) |#2|) . T)) +(((|#1| (-781) (-1097)) . T)) +((((-417 (-574))) |has| |#2| (-372)) (($) . T)) +(((|#1| (-541 (-1103 (-1192))) (-1103 (-1192))) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1014 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(|has| |#2| (-803)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#2| (-858)) +((((-904 |#1|)) . T) (((-829 |#1|)) . T)) +((((-829 (-1192))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-654 (-934))) . T) (((-872)) . T)) +((((-417 (-574))) . T) (((-872)) . T)) +((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +(|has| |#1| (-239)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($ $) . T) (((-574) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1272 |#1| |#2| |#3|) $) -12 (|has| (-1272 |#1| |#2| |#3|) (-293 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))) (($ $) . T) (((-573) |#1|) . T)) -((($ $) . T) (((-416 (-573)) |#1|) . T)) -((((-780) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1275 |#1| |#2| |#3|) $) -12 (|has| (-1275 |#1| |#2| |#3|) (-294 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) +((($ $) . T) (((-417 (-574)) |#1|) . T)) +((((-781) |#1|) . T) (($ $) . T)) (((|#1|) . T)) -((((-1152 |#1| |#2|)) |has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +((((-1155 |#1| |#2|)) |has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) (((|#2|) . T)) -((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T) (($) . T)) +((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-573)) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -(|has| |#1| (-1112)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-573) (-145)) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) -((((-573)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-573)) . T)) -((($) |has| |#1| (-565)) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) -((($) . T) (((-573)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) -(((|#2|) |has| |#1| (-371))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-574)) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +(|has| |#1| (-1115)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-574) (-145)) . T)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((((-574)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-574)) . T)) +((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +((($) . T) (((-574)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) +(((|#2|) |has| |#1| (-372))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1194)) . T)) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1| (-540 #0=(-1189)) #0#) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1197)) . T)) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1| (-541 #0=(-1192)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-573)) . T)) +((((-574)) . T)) (|has| |#4| (-174)) (|has| |#3| (-174)) -(((#0=(-416 (-962 |#1|)) #0#) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(|has| |#1| (-1112)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(|has| |#1| (-1112)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) +(((#0=(-417 (-965 |#1|)) #0#) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(|has| |#1| (-1115)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(|has| |#1| (-1115)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(|has| (-416 |#2|) (-238)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-416 (-962 |#1|))) . T)) +(|has| (-417 |#2|) (-239)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-417 (-965 |#1|))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-574)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-871)) . T)) -((((-871)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1061)) (((-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-872)) . T)) +((((-872)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1064)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((|#1| |#2|) . T)) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -(|has| |#3| (-802)) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -(|has| |#3| (-857)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -(((|#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1| (-1169 |#1|)) |has| |#1| (-857))) -((((-573) |#2|) . T)) -(|has| |#1| (-1112)) -(((|#1|) . T)) -(-12 (|has| |#1| (-371)) (|has| |#2| (-1164))) -((((-416 (-573))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-1112)) -(((|#2|) . T)) -((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) -(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -((((-871)) . T)) -(((|#1|) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) -((($ $) . T) ((#0=(-1189) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-827 (-1189)) |#1|) . T) ((#1# $) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) -((((-573) |#2|) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) -((((-573) |#1|) . T)) -(|has| (-416 |#2|) (-148)) -(|has| (-416 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|)))) -(|has| |#1| (-38 (-416 (-573)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -(|has| |#1| (-565)) -(|has| |#1| (-565)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((((-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#2| (-1164)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-1229)) . T) (((-871)) . T) (((-1194)) . T)) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +(|has| |#3| (-803)) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +(|has| |#3| (-858)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(((|#2|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1| (-1172 |#1|)) |has| |#1| (-858))) +((((-574) |#2|) . T)) +(|has| |#1| (-1115)) +(((|#1|) . T)) +(-12 (|has| |#1| (-372)) (|has| |#2| (-1167))) +((((-417 (-574))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-1115)) +(((|#2|) . T)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) +(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +((((-872)) . T)) +(((|#1|) . T)) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) +((($ $) . T) ((#0=(-1192) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1192)) |#1|) . T) ((#1# $) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +((((-574) |#2|) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) +((((-574) |#1|) . T)) +(|has| (-417 |#2|) (-148)) +(|has| (-417 |#2|) (-146)) +(((|#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|)))) +(|has| |#1| (-38 (-417 (-574)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +(|has| |#1| (-566)) +(|has| |#1| (-566)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-398) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#2| (-1167)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-1232)) . T) (((-872)) . T) (((-1197)) . T)) ((((-117 |#1|)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) (((|#1|) . T)) -((((-397) (-1171)) . T)) -(|has| |#1| (-565)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-398) (-1174)) . T)) +(|has| |#1| (-566)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) (((|#2|) . T)) -((((-780) (-1194)) . T)) -((((-871)) . T)) -((((-828 |#1|)) . T)) +((((-781) (-1197)) . T)) +((((-872)) . T)) +((((-829 |#1|)) . T)) ((($) . T)) (((|#2|) |has| |#2| (-174))) -((((-1189) (-52)) . T)) +((((-1192) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-565)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-566)) (((|#1|) |has| |#1| (-174))) -((((-653 |#1|)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#2|) |has| |#2| (-316 |#2|))) -(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1185 |#1|)) . T)) +((((-654 |#1|)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#2|) |has| |#2| (-317 |#2|))) +(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1188 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -(|has| |#2| (-376)) -(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +(|has| |#2| (-377)) +(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((((-871)) . T)) -((((-1187 |#1| |#2| |#3|) $) -12 (|has| (-1187 |#1| |#2| |#3|) (-293 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))) (($ $) . T) (((-573) |#1|) . T)) -((($ $) . T) (((-416 (-573)) |#1|) . T)) -((((-780) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((#0=(-1272 |#1| |#2| |#3|) #0#) -12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))) (((-1189) #0#) -12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) -(-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-573)) . T) (($) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) . T) (((-573)) . T) ((|#2|) . T)) -((((-573)) . T) (($) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -((((-416 (-573))) . T) (((-573)) . T)) -((((-573) (-145)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((((-872)) . T)) +((((-1190 |#1| |#2| |#3|) $) -12 (|has| (-1190 |#1| |#2| |#3|) (-294 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) +((($ $) . T) (((-417 (-574)) |#1|) . T)) +((((-781) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((#0=(-1275 |#1| |#2| |#3|) #0#) -12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1192) #0#) -12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +(-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-574)) . T) (($) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) . T) (((-574)) . T) ((|#2|) . T)) +((((-574)) . T) (($) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((((-417 (-574))) . T) (((-574)) . T)) +((((-574) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) ((((-112)) . T)) -((((-545)) |has| |#1| (-623 (-545))) (((-227)) . #0=(|has| |#1| (-1034))) (((-387)) . #0#)) -((((-871)) . T)) -(((|#1|) . T)) -((((-1194)) . T)) -(|has| |#1| (-829)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) ((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -(|has| |#1| (-565)) -(|has| |#1| (-859)) -((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) -(|has| |#1| (-919)) -(((|#1|) . T)) -(|has| |#1| (-1112)) -((((-871)) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) -((((-573) (-145)) . T) (((-1247 (-573)) $) . T)) -((($) . T)) -(-2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-1194)) . T) (((-871)) . T)) -((((-1194)) . T)) -((((-871)) . T)) -(|has| |#1| (-1112)) -(((|#1| (-983)) . T)) +((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1037))) (((-388)) . #0#)) +((((-872)) . T)) +(((|#1|) . T)) +((((-1197)) . T)) +(|has| |#1| (-830)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(|has| |#1| (-566)) +(|has| |#1| (-860)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +(|has| |#1| (-922)) +(((|#1|) . T)) +(|has| |#1| (-1115)) +((((-872)) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) +((((-574) (-145)) . T) (((-1250 (-574)) $) . T)) +((($) . T)) +(-2832 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1064))) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-1197)) . T) (((-872)) . T)) +((((-1197)) . T)) +((((-872)) . T)) +(|has| |#1| (-1115)) +(((|#1| (-986)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(-12 (|has| |#1| (-482)) (|has| |#2| (-482))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((($) . T) (((-573)) . T) (((-879 |#1|)) . T) (((-416 (-573))) . T)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(-12 (|has| |#1| (-483)) (|has| |#2| (-483))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((($) . T) (((-574)) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) -(|has| |#2| (-802)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(|has| |#2| (-803)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#2| (-857)) -(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) -(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) -(-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#2| (-858)) +(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) +(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) +(-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-573)) . T)) +(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-574)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-871)) . T)) -(|has| |#1| (-238)) -(|has| |#1| (-357)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) -(|has| |#1| (-837)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -(|has| |#1| (-1112)) -(((|#1| $) |has| |#1| (-293 |#1| |#1|))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((($) |has| |#1| (-565))) -(((|#2|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1112))) -(((|#3|) |has| |#3| (-1112))) -(|has| |#3| (-376)) -((($) |has| |#1| (-565)) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +(|has| |#1| (-239)) +(|has| |#1| (-358)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +(|has| |#1| (-838)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +(|has| |#1| (-1115)) +(((|#1| $) |has| |#1| (-294 |#1| |#1|))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((($) |has| |#1| (-566))) +(((|#2|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1115))) +(((|#3|) |has| |#3| (-1115))) +(|has| |#3| (-377)) +((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +((((-872)) . T)) +((((-872)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1| |#1|) |has| |#1| (-174))) -(|has| |#2| (-371)) +(|has| |#2| (-372)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((((-416 (-573))) . T) (((-573)) . T)) -((($) |has| |#2| (-238))) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -((($) . T) (((-573)) . T)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((((-417 (-574))) . T) (((-574)) . T)) +((($) |has| |#2| (-239))) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((($) . T) (((-574)) . T)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) ((((-145)) . T)) (((|#1|) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) ((((-145)) . T)) ((((-145)) . T)) -((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#) ((|#2|) . T) (((-573)) . T)) +((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#) ((|#2|) . T) (((-574)) . T)) (((|#1| |#2| |#3|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1194)) . T)) +((((-1197)) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1112)) -((((-871)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-482)) (|has| |#1| (-565)) (|has| |#1| (-1061)) (|has| |#1| (-1124))) -((($ $) |has| |#1| (-293 $ $)) ((|#1| $) |has| |#1| (-293 |#1| |#1|))) -(((|#1| (-416 (-573))) . T)) -(((|#1|) . T)) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-1189)) . T)) -(|has| |#1| (-565)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(|has| |#1| (-565)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T)) +(|has| |#1| (-1115)) +((((-872)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1064)) (|has| |#1| (-1127))) +((($ $) |has| |#1| (-294 $ $)) ((|#1| $) |has| |#1| (-294 |#1| |#1|))) +(((|#1| (-417 (-574))) . T)) +(((|#1|) . T)) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-1192)) . T)) +(|has| |#1| (-566)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(|has| |#1| (-566)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-573) (-416 (-962 |#1|))) . T)) +((((-574) (-417 (-965 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(|has| |#4| (-857)) -(((|#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) . T)) -(|has| |#3| (-857)) -(((|#1| (-540 |#3|) |#3|) . T)) +(|has| |#4| (-858)) +(((|#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) . T)) +(|has| |#3| (-858)) +(((|#1| (-541 |#3|) |#3|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(((#0=(-416 (-573)) #0#) |has| |#2| (-371)) (($ $) . T)) -((((-879 |#1|)) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-871)) . T)) +(((#0=(-417 (-574)) #0#) |has| |#2| (-372)) (($ $) . T)) +((((-880 |#1|)) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((((-872)) . T)) (|has| |#1| (-148)) -((((-416 (-573))) |has| |#2| (-371)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-417 (-574))) |has| |#2| (-372)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (|has| |#1| (-146)) -(-2817 (|has| |#1| (-357)) (|has| |#1| (-376))) -((((-1154 |#2| |#1|)) . T) ((|#1|) . T)) +(-2832 (|has| |#1| (-358)) (|has| |#1| (-377))) +((((-1157 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-174)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -((((-871)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +((((-872)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-708)) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(|has| |#1| (-565)) +((((-709)) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(|has| |#1| (-566)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1132,387 +1132,387 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1189) (-52)) . T)) -((((-1016 10)) . T) (((-416 (-573))) . T) (((-871)) . T)) -((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-1192) (-52)) . T)) +((((-1019 10)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1016 16)) . T) (((-416 (-573))) . T) (((-871)) . T)) -((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -(((|#1| (-573)) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-1019 16)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +(((|#1| (-574)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-416 (-573))) . T)) -(((|#3|) . T) (((-621 $)) . T)) +(((|#1| (-417 (-574))) . T)) +(((|#3|) . T) (((-622 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -(((#0=(-1187 |#1| |#2| |#3|) #0#) -12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))) (((-1189) #0#) -12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) -((((-871)) . T)) -((((-871)) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +(((#0=(-1190 |#1| |#2| |#3|) #0#) -12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1192) #0#) -12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +((((-872)) . T)) +((((-872)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) -((((-871)) . T)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) +((((-872)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-1189) (-52)) . T)) +((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-1192) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-837)) -((($) . T) (((-573)) . T) ((|#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| (-1106 |#1|) (-1112)) -(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) -((((-573)) . T)) -((((-1194)) . T)) -((((-780)) . T)) +((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-838)) +((($) . T) (((-574)) . T) ((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| (-1109 |#1|) (-1115)) +(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +((((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +((((-574)) . T)) +((((-1197)) . T)) +((((-781)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-565)) -((((-573)) . T)) +(|has| |#1| (-566)) +((((-574)) . T)) (((|#2|) . T)) -((((-871)) . T)) -(((|#1| (-416 (-573)) (-1094)) . T)) +((((-872)) . T)) +(((|#1| (-417 (-574)) (-1097)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#1| (-565)) -((((-573)) . T)) +(|has| |#1| (-566)) +((((-574)) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) -((((-416 (-573))) . T) (($) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -((((-1194)) . T)) -((($) . T) (((-416 (-573))) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -((((-573)) . T)) +((((-417 (-574))) . T) (($) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-1197)) . T)) +((($) . T) (((-417 (-574))) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +((((-574)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-573)) . T)) -((((-902 (-573))) . T) (((-902 (-387))) . T) (((-545)) . T) (((-1189)) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) +((((-574)) . T)) +((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1192)) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) ((($) . T)) (((|#1|) . T)) -((((-871)) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-872)) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -((((-879 |#1|)) . T)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) -(|has| |#2| (-1164)) -(((#0=(-52)) . T) (((-2 (|:| -3692 (-1189)) (|:| -1907 #0#))) . T)) +((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((((-880 |#1|)) . T)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) +(|has| |#2| (-1167)) +(((#0=(-52)) . T) (((-2 (|:| -3666 (-1192)) (|:| -1918 #0#))) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -(((|#1| (-573) (-1094)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| (-416 (-573)) (-1094)) . T)) -((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((($) |has| (-416 |#2|) (-238))) -((((-573) |#2|) . T)) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +(((|#1| (-574) (-1097)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| (-417 (-574)) (-1097)) . T)) +((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((($) |has| (-417 |#2|) (-239))) +((((-574) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-376)) +(|has| |#2| (-377)) (((|#1| |#1|) . T)) -((((-871)) . T)) -((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-376))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -(((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -(|has| |#1| (-357)) -((((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) -(((|#1|) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-872)) . T)) +((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +(-12 (|has| |#1| (-377)) (|has| |#2| (-377))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +(((|#1|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +(|has| |#1| (-358)) +((((-574)) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +(((|#1|) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#4|) . T)) -(((|#4|) . T) (((-871)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) (((-573)) . T) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061)))) -(((|#2|) . T) (($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) (((-573)) . T) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061)))) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -(|has| |#1| (-565)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) +(((|#4|) . T) (((-872)) . T)) +(((|#3|) . T) ((|#2|) . T) (($) -2832 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1064))) (((-574)) . T) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064)))) +(((|#2|) . T) (($) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) (((-574)) . T) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +(|has| |#1| (-566)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) -((((-416 (-573))) . T) (((-573)) . T)) -((((-573)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -(((|#3| |#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($ $) |has| |#3| (-174))) -(|has| |#1| (-1034)) -((((-871)) . T)) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) -((((-573) (-112)) . T)) -((((-1194)) . T)) -(((|#1|) |has| |#1| (-316 |#1|))) -((((-1194)) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-1189) $) |has| |#1| (-523 (-1189) $)) (($ $) |has| |#1| (-316 $)) ((|#1| |#1|) |has| |#1| (-316 |#1|)) (((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|))) -((((-1189)) |has| |#1| (-910 (-1189)))) -(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +((((-417 (-574))) . T) (((-574)) . T)) +((((-574)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +(((|#3| |#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($ $) |has| |#3| (-174))) +(|has| |#1| (-1037)) +((((-872)) . T)) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +((((-574) (-112)) . T)) +((((-1197)) . T)) +(((|#1|) |has| |#1| (-317 |#1|))) +((((-1197)) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((((-1192) $) |has| |#1| (-524 (-1192) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|))) +((((-1192)) |has| |#1| (-913 (-1192)))) +(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) -((((-397) |#1|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -(|has| |#1| (-1112)) -(((|#2|) . T) (((-871)) . T)) -((((-871)) . T)) -(((|#2|) . T)) -((((-920 |#1|)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((((-398) |#1|) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(|has| |#1| (-1115)) +(((|#2|) . T) (((-872)) . T)) +((((-872)) . T)) +(((|#2|) . T)) +((((-923 |#1|)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) (((|#1| |#1|) . T)) -(((#0=(-879 |#1|)) |has| #0# (-316 #0#))) -((((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T)) +(((#0=(-880 |#1|)) |has| #0# (-317 #0#))) +((((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1053 (-417 (-574))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(((|#1|) . T)) -(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) -(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((($) . T) (((-573)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(((|#1|) . T)) +(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) +(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((($) . T) (((-574)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1215)) -(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1061))) -(((|#3|) |has| |#3| (-1061))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(|has| |#1| (-371)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((($ $) . T) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1| |#1|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-573) |#3|) . T)) -((((-871)) . T)) -((((-545)) |has| |#3| (-623 (-545)))) -((((-698 |#3|)) . T) (((-871)) . T)) +(|has| |#1| (-1218)) +(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1064))) +(((|#3|) |has| |#3| (-1064))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(|has| |#1| (-372)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((($ $) . T) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-574) |#3|) . T)) +((((-872)) . T)) +((((-546)) |has| |#3| (-624 (-546)))) +((((-699 |#3|)) . T) (((-872)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((($) . T)) -(((#0=(-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) +(((#0=(-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1112))) -((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) +(((|#2|) |has| |#2| (-1115))) +((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) ((($) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-1171) (-52)) . T)) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1174) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -((((-871)) . T)) -(((|#2|) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T)) -((($) . T) (((-573)) . T)) -((((-573) (-145)) . T)) -((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-871)) . T)) -((((-920 |#1|)) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-857)) -((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -(|has| |#1| (-371)) +((($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((((-872)) . T)) +(((|#2|) . T)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) +((($) . T) (((-574)) . T)) +((((-574) (-145)) . T)) +((((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((|#1| |#2|) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-872)) . T)) +((((-923 |#1|)) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-858)) +((($) -2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(|has| |#1| (-372)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-857)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-1189)) |has| |#1| (-910 (-1189)))) -(|has| |#1| (-857)) -((((-515)) . T)) -(((|#1| (-1189)) . T)) -(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) -((((-871)) . T) (((-1194)) . T)) +(|has| |#1| (-858)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-1192)) |has| |#1| (-913 (-1192)))) +(|has| |#1| (-858)) +((((-516)) . T)) +(((|#1| (-1192)) . T)) +(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) +((((-872)) . T) (((-1197)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1194)) . T)) -(|has| |#1| (-1112)) -(((|#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) . T)) -((((-416 (-962 |#1|))) . T)) -((((-545)) . T)) -((((-871)) . T)) +((((-1197)) . T)) +(|has| |#1| (-1115)) +(((|#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) . T)) +((((-417 (-965 |#1|))) . T)) +((((-546)) . T)) +((((-872)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) (((-1247 (-573)) $) . T) ((|#1| |#2|) . T)) +((((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) (((-1250 (-574)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#2| (-426 |#1|)) -(|has| |#2| (-426 |#1|)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-545)) |has| |#1| (-623 (-545))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573))))) -((((-871)) . T)) -((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-515)) . T)) -(|has| |#2| (-857)) -((((-515)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -(|has| |#1| (-565)) -((((-879 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-238)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-1171) |#1|) . T)) -(|has| |#1| (-1164)) -((((-968 |#1|)) . T)) -(((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1| |#1|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-573))) (((-573)) |has| |#1| (-1050 (-573))) (((-1189)) |has| |#1| (-1050 (-1189))) ((|#1|) . T)) -((($) . T)) -((($) . T)) -((((-573) |#2|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-573)) . T)) -((((-653 |#4|)) . T) (((-871)) . T)) -((((-545)) |has| |#4| (-623 (-545)))) -((((-545)) |has| |#4| (-623 (-545)))) -((((-871)) . T) (((-653 |#4|)) . T)) -((($) |has| |#1| (-857))) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) -((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) -(((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) -((((-653 |#4|)) . T) (((-871)) . T)) -((((-545)) |has| |#4| (-623 (-545)))) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) -(((|#1|) . T)) -((((-1189)) |has| (-416 |#2|) (-910 (-1189)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -((($) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) |has| |#1| (-238))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) . T)) -((($) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) . T)) -((($) . T)) -((((-871)) -2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-622 (-871))) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) (((-1280 |#3|)) . T)) -(((|#2|) . T)) -((((-573) |#2|) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) -(((|#2|) . T) (((-573)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-1171) (-1189) (-573) (-227) (-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T)) -((((-573) (-112)) . T)) -(((|#1|) . T)) -((((-871)) . T)) +(|has| |#2| (-427 |#1|)) +(|has| |#2| (-427 |#1|)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) +((((-872)) . T)) +((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-516)) . T)) +(|has| |#2| (-858)) +((((-516)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(|has| |#1| (-566)) +((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-239)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-1174) |#1|) . T)) +(|has| |#1| (-1167)) +((((-971 |#1|)) . T)) +(((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-574))) (((-574)) |has| |#1| (-1053 (-574))) (((-1192)) |has| |#1| (-1053 (-1192))) ((|#1|) . T)) +((($) . T)) +((($) . T)) +((((-574) |#2|) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-574)) . T)) +((((-654 |#4|)) . T) (((-872)) . T)) +((((-546)) |has| |#4| (-624 (-546)))) +((((-546)) |has| |#4| (-624 (-546)))) +((((-872)) . T) (((-654 |#4|)) . T)) +((($) |has| |#1| (-858))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +((((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +((((-654 |#4|)) . T) (((-872)) . T)) +((((-546)) |has| |#4| (-624 (-546)))) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +(((|#1|) . T)) +((((-1192)) |has| (-417 |#2|) (-913 (-1192)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +((($) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) |has| |#1| (-239))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) . T)) +((($) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) . T)) +((($) . T)) +((((-872)) -2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) (((-1283 |#3|)) . T)) +(((|#2|) . T)) +((((-574) |#2|) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#2| |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($ $) |has| |#2| (-174))) +(((|#2|) . T) (((-574)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((|#2|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-1174) (-1192) (-574) (-227) (-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T)) +((((-574) (-112)) . T)) +(((|#1|) . T)) +((((-872)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +((((-872)) . T)) ((((-112)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((($) . T) (((-416 (-573))) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((($) . T) (((-417 (-574))) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) (|has| $ (-148)) -((((-416 |#2|)) . T)) -((((-416 (-573))) |has| #0=(-416 |#2|) (-1050 (-416 (-573)))) (((-573)) |has| #0# (-1050 (-573))) ((#0#) . T)) +((((-417 |#2|)) . T)) +((((-417 (-574))) |has| #0=(-417 |#2|) (-1053 (-417 (-574)))) (((-574)) |has| #0# (-1053 (-574))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-174))) (|has| |#2| (-146)) @@ -1520,212 +1520,212 @@ (((|#3|) |has| |#3| (-174))) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) (((|#1|) . T)) -(|has| |#2| (-238)) +(|has| |#2| (-239)) (((|#2|) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -((((-1189) (-52)) . T)) -((((-871)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +((((-1192) (-52)) . T)) +((((-872)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) (((|#1| |#1|) . T)) -((((-1189)) |has| |#2| (-910 (-1189)))) +((((-1192)) |has| |#2| (-913 (-1192)))) ((((-130)) . T)) -(|has| (-416 |#2|) (-238)) -((((-573) (-112)) . T) (((-1247 (-573)) $) . T)) -(|has| |#1| (-565)) +(|has| (-417 |#2|) (-239)) +((((-574) (-112)) . T) (((-1250 (-574)) $) . T)) +(|has| |#1| (-566)) (((|#2|) . T)) (((|#2|) . T)) -((((-903 |#1|)) . T) ((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) -(((|#1|) . T) (((-573)) . T) (((-828 (-1189))) . T)) +((((-904 |#1|)) . T) ((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) +(((|#1|) . T) (((-574)) . T) (((-829 (-1192))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) (((|#3|) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -(((|#1|) . T)) -((((-1016 2)) . T) (((-416 (-573))) . T) (((-871)) . T)) -((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-1011 |#1|)) . T) ((|#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1185 |#1|)) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +(((|#1|) . T)) +((((-1019 2)) . T) (((-417 (-574))) . T) (((-872)) . T)) +((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-1014 |#1|)) . T) ((|#1|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1188 |#1|)) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-859)) -(((|#1|) . T) (((-573)) . T) (($) . T)) -(((|#2|) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-573) |#2|) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -(((|#2|) . T)) -((((-573) |#3|) . T)) -(((|#2|) . T)) -((((-871)) . T)) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) -(-2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(|has| |#1| (-860)) +(((|#1|) . T) (((-574)) . T) (($) . T)) +(((|#2|) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-574) |#2|) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +(((|#2|) . T)) +((((-574) |#3|) . T)) +(((|#2|) . T)) +((((-872)) . T)) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(-2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) (((|#2| |#2|) . T)) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -(|has| |#2| (-371)) -(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -(|has| |#1| (-1112)) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#2| (-372)) +(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +(|has| |#1| (-1115)) (((|#2|) . T)) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-38 (-417 (-574)))) (((|#1|) |has| |#1| (-174))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) (((|#2|) . T)) -((((-1171) (-52)) . T)) +((((-1174) (-52)) . T)) (((|#1|) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) -((((-573) |#3|) . T)) -((((-573) (-145)) . T)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064)))) +((((-574) |#3|) . T)) +((((-574) (-145)) . T)) ((((-145)) . T)) -((((-871)) . T)) -((((-1194)) . T)) +((((-872)) . T)) +((((-1197)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#1| (-146)) ((($) . T)) -(|has| |#1| (-565)) -((((-573)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-566)) +((((-574)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#1|) . T)) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) ((((-145)) . T)) -((((-871)) . T)) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) -((((-1189) (-52)) . T) (((-1171) (-52)) . T)) +((((-872)) . T)) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((((-1192) (-52)) . T) (((-1174) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#1| |#2|) . T)) -(|has| |#2| (-238)) -((((-1247 (-573)) $) . T) (((-573) (-145)) . T)) -(((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| |#1| (-859)) -(((|#2| (-780) (-1094)) . T)) +(|has| |#2| (-239)) +((((-1250 (-574)) $) . T) (((-574) (-145)) . T)) +(((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#1| (-860)) +(((|#2| (-781) (-1097)) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -(|has| |#1| (-800)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(|has| |#1| (-801)) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2817 (|has| |#1| (-148)) (-12 (|has| |#1| (-371)) (|has| |#2| (-148)))) -(-2817 (|has| |#1| (-146)) (-12 (|has| |#1| (-371)) (|has| |#2| (-146)))) +(-2832 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148)))) +(-2832 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146)))) (((|#4|) . T)) (|has| |#1| (-146)) -((((-1171) |#1|) . T)) +((((-1174) |#1|) . T)) (|has| |#1| (-148)) (((|#1|) . T)) -((((-573)) . T)) -((((-871)) . T)) +((((-574)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) -((((-871)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-872)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#3|) . T)) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112))) (((-968 |#1|)) . T)) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-968 |#1|)) . T)) -(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -(|has| |#2| (-371)) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115))) (((-971 |#1|)) . T)) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-971 |#1|)) . T)) +(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(|has| |#2| (-372)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($) |has| |#4| (-174))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) -(((|#2|) |has| |#2| (-1061))) -((((-1171) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) -(((|#2| (-903 |#1|)) . T)) -((($) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) -((((-397) (-1171)) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 #0#))) . T)) -(((|#1|) . T)) -((((-871)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (($) |has| |#4| (-174))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +(((|#2|) |has| |#2| (-1064))) +((((-1174) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#2| (-904 |#1|)) . T)) +((($) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) +((((-398) (-1174)) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) -2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((-1283 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3666 (-1174)) (|:| -1918 #0#))) . T)) +(((|#1|) . T)) +((((-872)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) ((((-145)) . T)) (|has| |#2| (-146)) -((((-573)) . T)) +((((-574)) . T)) (|has| |#2| (-148)) -(|has| |#1| (-482)) -(-2817 (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) -(|has| |#1| (-371)) -((((-871)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((($) |has| |#1| (-565))) -((((-1194)) . T)) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -((((-871)) . T)) -(((|#2|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) +(|has| |#1| (-483)) +(-2832 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +(|has| |#1| (-372)) +((((-872)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((($) |has| |#1| (-566))) +((((-1197)) . T)) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +((((-872)) . T)) +(((|#2|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1189)) |has| |#1| (-910 (-1189)))) +((((-1192)) |has| |#1| (-913 (-1192)))) (((|#2| |#2|) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-871)) . T)) -(|has| |#1| (-1112)) -(((|#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) . T)) -((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) -(((|#1| (-540 (-1189)) (-1189)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +(|has| |#1| (-1115)) +(((|#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) . T)) +((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) +(((|#1| (-541 (-1192)) (-1192)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1740,2332 +1740,2332 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-1189) (-52)) . T)) -((((-416 (-573)) |#1|) . T) (($ $) . T)) -(((|#1| (-573)) . T)) -((((-920 |#1|)) . T)) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -(|has| |#1| (-859)) -(|has| |#1| (-859)) -((((-573) |#2|) . T)) -((($) . T) (((-573)) . T) ((|#1|) . T)) -((((-871)) . T)) -((((-573)) . T)) -(|has| |#1| (-859)) -((((-698 |#2|)) . T) (((-871)) . T)) -((((-1272 |#1| |#2| |#3|)) -12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(|has| |#1| (-238)) +(((|#1|) . T) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-1192) (-52)) . T)) +((((-417 (-574)) |#1|) . T) (($ $) . T)) +(((|#1| (-574)) . T)) +((((-923 |#1|)) . T)) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(|has| |#1| (-860)) +(|has| |#1| (-860)) +((((-574) |#2|) . T)) +((($) . T) (((-574)) . T) ((|#1|) . T)) +((((-872)) . T)) +((((-574)) . T)) +(|has| |#1| (-860)) +((((-699 |#2|)) . T) (((-872)) . T)) +((((-1275 |#1| |#2| |#3|)) -12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(|has| |#1| (-239)) (((|#1| |#2|) . T)) -((((-416 (-962 |#1|))) . T)) -((((-983)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +((((-417 (-965 |#1|))) . T)) +((((-986)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (((|#1|) |has| |#1| (-174))) -(-2817 (|has| |#1| (-238)) (|has| |#1| (-293 |#1| |#1|))) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-919))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -((((-573) |#2|) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -(|has| |#1| (-357)) -(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) -(((|#2|) . T) (((-573)) . T)) -((($) . T) (((-416 (-573))) . T)) -((((-573) (-112)) . T)) -(|has| |#1| (-829)) -(|has| |#1| (-829)) -(((|#1|) . T)) -(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-573)) . T) (($) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) -(((|#1|) . T)) -(|has| |#1| (-857)) -(((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-1112)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) +(-2832 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-922))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((((-574) |#2|) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +(|has| |#1| (-358)) +(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +(((|#2|) . T) (((-574)) . T)) +((($) . T) (((-417 (-574))) . T)) +((((-574) (-112)) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +(((|#1|) . T)) +(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-574)) . T) (($) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) +(((|#1|) . T)) +(|has| |#1| (-858)) +(((#0=(-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-1115)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1154 |#2| (-416 (-962 |#1|)))) . T) (((-416 (-962 |#1|))) . T) (((-573)) . T)) -(((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) +((((-1157 |#2| (-417 (-965 |#1|)))) . T) (((-417 (-965 |#1|))) . T) (((-574)) . T)) +(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-573)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +((($) . T) (((-574)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-540 |#2|) |#2|) . T)) -((((-871)) . T)) -((((-145)) . T) (((-871)) . T)) -((((-573) |#1|) . T)) -(((|#1| (-780) (-1094)) . T)) +(((|#1| (-541 |#2|) |#2|) . T)) +((((-872)) . T)) +((((-145)) . T) (((-872)) . T)) +((((-574) |#1|) . T)) +(((|#1| (-781) (-1097)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) -2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))) ((|#1|) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) -2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))) ((|#1|) . T)) (((|#1|) . T)) ((((-145)) . T)) (((|#2|) |has| |#2| (-174))) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#3| (-174)) -(((|#4|) |has| |#4| (-371))) -(((|#3|) |has| |#3| (-371))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-371))) -((((-871)) . T)) -((((-871)) . T)) -(((|#2|) . T)) -(((|#1| (-1185 |#1|)) . T)) -((((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((($) . T) ((|#1|) . T) (((-416 (-573))) . T) (((-573)) |has| |#1| (-648 (-573)))) -((($) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((($) |has| |#1| (-565))) -(((|#2|) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) . T)) -((($) |has| |#1| (-857))) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -(|has| |#1| (-919)) -((((-1189)) . T)) -((((-871)) . T)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-573) |#2|) . T)) -((($) |has| |#1| (-238))) -((($) |has| |#1| (-376))) -((($) |has| |#1| (-376))) -((($) |has| |#1| (-376))) +(((|#4|) |has| |#4| (-372))) +(((|#3|) |has| |#3| (-372))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-372))) +((((-872)) . T)) +((((-872)) . T)) +(((|#2|) . T)) +(((|#1| (-1188 |#1|)) . T)) +((((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((($) . T) ((|#1|) . T) (((-417 (-574))) . T) (((-574)) |has| |#1| (-649 (-574)))) +((($) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((($) |has| |#1| (-566))) +(((|#2|) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) . T)) +((($) |has| |#1| (-858))) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#1| (-922)) +((((-1192)) . T)) +((((-872)) . T)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1275 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-574) |#2|) . T)) +((($) |has| |#1| (-239))) +((($) |has| |#1| (-377))) +((($) |has| |#1| (-377))) +((($) |has| |#1| (-377))) (((|#1| |#2|) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((#0=(-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) #0#) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -(|has| |#1| (-859)) -(|has| |#1| (-565)) -((((-590 |#1|)) . T)) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(|has| |#1| (-860)) +(|has| |#1| (-566)) +((((-591 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-829))) (-12 (|has| |#1| (-371)) (|has| |#2| (-859)))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -((((-920 |#1|)) . T)) -(((|#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) . T)) +(-2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860)))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-923 |#1|)) . T)) +(((|#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-780)) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T) (((-416 (-573))) . T) (($) . T)) -((((-681 |#1|)) . T)) +(((|#1| (-781)) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) +((((-682 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-545)) . T)) -((((-871)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-1194)) . T)) -((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T) (((-573)) . T)) -(((|#3|) . T) (((-573)) . T) (((-621 $)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#2|) . T)) -(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -(|has| |#1| (-1215)) -(|has| |#1| (-1215)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) -(|has| |#1| (-1215)) -(|has| |#1| (-1215)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T) ((#1=(-416 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-546)) . T)) +((((-872)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-1197)) . T)) +((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T)) +(((|#3|) . T) (((-574)) . T) (((-622 $)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#2|) . T)) +(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +(|has| |#1| (-1218)) +(|has| |#1| (-1218)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +(|has| |#1| (-1218)) +(|has| |#1| (-1218)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-417 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((((-1171) (-52)) . T)) -(|has| |#1| (-1112)) +((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-1174) (-52)) . T)) +(|has| |#1| (-1115)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2817 (|has| |#2| (-829)) (|has| |#2| (-859))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573)) . T) (($) . T)) -((((-780)) . T)) -(-2817 (|has| |#1| (-238)) (|has| |#1| (-357))) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -((((-871)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((($) . T) (((-573)) . T)) -(|has| |#2| (-919)) -(|has| |#1| (-371)) -(((|#2|) |has| |#2| (-1112))) -((($) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-545)) . T) (((-416 (-1185 (-573)))) . T) (((-227)) . T) (((-387)) . T)) -((((-387)) . T) (((-227)) . T) (((-871)) . T)) -(|has| |#1| (-919)) -(|has| |#1| (-919)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -(|has| |#1| (-919)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) -((($) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -((($) . T) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -(((|#1|) . T)) -((((-1187 |#1| |#2| |#3|)) -12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) -((((-871)) . T)) -((((-871)) . T)) -((((-983)) . T)) -((((-983)) . T) (((-871)) . T)) +(-2832 (|has| |#2| (-830)) (|has| |#2| (-860))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574)) . T) (($) . T)) +((((-781)) . T)) +(-2832 (|has| |#1| (-239)) (|has| |#1| (-358))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-872)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) . T) (((-574)) . T)) +(|has| |#2| (-922)) +(|has| |#1| (-372)) +(((|#2|) |has| |#2| (-1115))) +((($) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-546)) . T) (((-417 (-1188 (-574)))) . T) (((-227)) . T) (((-388)) . T)) +((((-388)) . T) (((-227)) . T) (((-872)) . T)) +(|has| |#1| (-922)) +(|has| |#1| (-922)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(|has| |#1| (-922)) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +((($) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +(((|#1|) . T)) +((((-1190 |#1| |#2| |#3|)) -12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) +((((-872)) . T)) +((((-872)) . T)) +((((-986)) . T)) +((((-986)) . T) (((-872)) . T)) ((($ $) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((($) -2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238))))) -((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((($) -2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))) +((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) ((($ $) . T)) -((((-573) (-112)) . T)) +((((-574) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) -((((-573)) . T)) -(((|#1| (-573)) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-574)) . T)) +(((|#1| (-574)) . T)) ((($) . T)) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) (((|#1|) . T)) -((((-573)) . T)) +((((-574)) . T)) (((|#1| |#2|) . T)) -((((-1189)) |has| |#1| (-1061))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T)) +((((-1192)) |has| |#1| (-1064))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T)) (((|#1|) . T)) -(((|#1| (-573)) . T)) -(((|#1| (-1272 |#1| |#2| |#3|)) . T)) +(((|#1| (-574)) . T)) +(((|#1| (-1275 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-416 (-573))) . T)) -(((|#1| (-1244 |#1| |#2| |#3|)) . T)) -(((|#1| (-780)) . T)) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#1| (-1112)) +(((|#1| (-417 (-574))) . T)) +(((|#1| (-1247 |#1| |#2| |#3|)) . T)) +(((|#1| (-781)) . T)) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#1| (-1115)) (((|#1|) . T)) -((((-1171) |#1|) . T)) +((((-1174) |#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-540 (-827 (-1189))) (-827 (-1189))) . T)) -((((-871)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1061))) -((((-573) (-112)) . T) (((-1247 (-573)) $) . T)) -((((-871)) |has| |#1| (-1112))) -(((|#1|) . T) (((-573)) . T) (($) . T)) +(((|#1| (-541 (-828 (-1192))) (-828 (-1192))) . T)) +((((-872)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1064))) +((((-574) (-112)) . T) (((-1250 (-574)) $) . T)) +((((-872)) |has| |#1| (-1115))) +(((|#1|) . T) (((-574)) . T) (($) . T)) (|has| |#2| (-174)) -((((-573)) . T)) -(|has| |#2| (-857)) +((((-574)) . T)) +(|has| |#2| (-858)) (((|#1|) . T)) -((((-573)) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-357))) -((((-871)) . T)) +((((-574)) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-358))) +((((-872)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-871)) . T)) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((($) |has| |#2| (-238))) -((((-1265 |#2| |#3| |#4|)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T)) -((((-871)) . T)) -((((-48)) -12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (((-621 $)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) -2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-416 (-962 |#1|))) |has| |#1| (-565)) (((-962 |#1|)) |has| |#1| (-1061)) (((-1189)) . T)) +((((-872)) . T)) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((($) |has| |#2| (-239))) +((((-1268 |#2| |#3| |#4|)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-872)) . T)) +((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) -2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-417 (-965 |#1|))) |has| |#1| (-566)) (((-965 |#1|)) |has| |#1| (-1064)) (((-1192)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-780)) . T)) +(((|#1| (-781)) . T)) (((|#1|) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-316 |#1|))) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-317 |#1|))) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-565)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +(|has| |#1| (-566)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) (((|#1|) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1190 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-871)) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -(((|#1|) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1112))) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -((((-1265 |#2| |#3| |#4|)) . T)) +((((-872)) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((|#1|) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1115))) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +((((-1268 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-829)) -(|has| |#1| (-829)) -(((|#1| (-573) (-1094)) . T)) -((($) |has| |#1| (-316 $)) ((|#1|) |has| |#1| (-316 |#1|))) -(|has| |#1| (-857)) -(|has| |#1| (-857)) -(((|#1| (-573) (-1094)) . T)) -(-2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(((|#1| (-416 (-573)) (-1094)) . T)) -(((|#1| (-780) (-1094)) . T)) -(|has| |#1| (-859)) -(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +(((|#1| (-574) (-1097)) . T)) +((($) |has| |#1| (-317 $)) ((|#1|) |has| |#1| (-317 |#1|))) +(|has| |#1| (-858)) +(|has| |#1| (-858)) +(((|#1| (-574) (-1097)) . T)) +(-2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(((|#1| (-417 (-574)) (-1097)) . T)) +(((|#1| (-781) (-1097)) . T)) +(|has| |#1| (-860)) +(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1112)) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-1112)) -((((-416 (-573))) |has| |#2| (-371)) (($) . T) (((-573)) . T)) -((((-573)) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) -(((|#1|) . T)) -(|has| |#1| (-1112)) -((((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((|#2|) |has| |#1| (-371))) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) -((((-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708)))) . T)) +(|has| |#1| (-1115)) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-1115)) +((((-417 (-574))) |has| |#2| (-372)) (($) . T) (((-574)) . T)) +((((-574)) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) +(((|#1|) . T)) +(|has| |#1| (-1115)) +((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((|#2|) |has| |#1| (-372))) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +((((-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -((((-871)) . T)) -(|has| |#3| (-857)) -((((-871)) . T)) -((((-871)) . T)) -((((-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) -(((|#1|) . T)) -((((-573)) . T)) -((((-573)) . T)) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) -(((|#2|) |has| |#2| (-371))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-371)) (((-573)) |has| |#1| (-648 (-573)))) -(|has| |#1| (-859)) -(((|#1|) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(((|#1|) . T) (((-573)) . T)) -(((|#2|) . T)) -((((-573)) . T) ((|#3|) . T)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-871)) . T)) -((((-871)) . T)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) -((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -((((-871)) . T)) -((($) |has| |#1| (-238))) -(|has| |#1| (-38 (-416 (-573)))) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T)) -(|has| |#1| (-238)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +((((-872)) . T)) +(|has| |#3| (-858)) +((((-872)) . T)) +((((-872)) . T)) +((((-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +(((|#1|) . T)) +((((-574)) . T)) +((((-574)) . T)) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +(((|#2|) |has| |#2| (-372))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)) (((-574)) |has| |#1| (-649 (-574)))) +(|has| |#1| (-860)) +(((|#1|) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(((|#1|) . T) (((-574)) . T)) +(((|#2|) . T)) +((((-574)) . T) ((|#3|) . T)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) |has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-922))) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-872)) . T)) +((((-872)) . T)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064)))) +((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-872)) . T)) +((($) |has| |#1| (-239))) +(|has| |#1| (-38 (-417 (-574)))) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T)) +(|has| |#1| (-239)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-857)) -(((|#1| (-573)) . T)) +(|has| |#1| (-858)) +(((|#1| (-574)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1187 |#1| |#2| |#3|)) . T)) +(((|#1| (-1190 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-416 (-573))) . T)) -(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#1| (-1180 |#1| |#2| |#3|)) . T)) -(((|#1| (-780)) . T)) +(((|#1| (-417 (-574))) . T)) +(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#1| (-1183 |#1| |#2| |#3|)) . T)) +(((|#1| (-781)) . T)) (((|#1|) . T)) -((((-416 (-962 |#1|))) . T)) +((((-417 (-965 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-416 (-962 |#1|))) . T)) +((((-417 (-965 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-573)) . T) ((|#1|) . T) (($) . T) (((-416 (-573))) . T) (((-1189)) |has| |#1| (-1050 (-1189)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1192)) |has| |#1| (-1053 (-1192)))) (((|#1| |#2|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) -2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))) ((|#1|) . T)) -(-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) -2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))) ((|#1|) . T)) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) ((((-145)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(((|#1|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-573)) . T)) -((((-871)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| (-416 |#2|) (-238)) -((((-653 |#1|)) . T)) -(|has| |#1| (-919)) -(((|#2|) |has| |#2| (-1061))) -((($) . T)) -(|has| |#1| (-371)) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(((|#1|) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-574)) . T)) +((((-872)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| (-417 |#2|) (-239)) +((((-654 |#1|)) . T)) +(|has| |#1| (-922)) +(((|#2|) |has| |#2| (-1064))) +((($) . T)) +(|has| |#1| (-372)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) . T)) -((((-879 |#1|)) . T)) -((((-871)) . T)) +((((-880 |#1|)) . T)) +((((-872)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1112))) +(((|#2|) |has| |#2| (-1115))) (((|#1|) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((((-653 $)) . T) (((-1171)) . T) (((-1189)) . T) (((-573)) . T) (((-227)) . T) (((-871)) . T)) -((($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) (((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061)))) -((((-416 (-573))) . T) (((-573)) . T) (((-621 $)) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-654 $)) . T) (((-1174)) . T) (((-1192)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) +((($) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) (((-574)) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064)))) +((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) (((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) ((($) . T)) -(((|#1| (-540 |#2|) |#2|) . T)) -((((-871)) . T)) -(((|#1| (-573) (-1094)) . T)) -((((-920 |#1|)) . T)) -((((-871)) . T)) +(((|#1| (-541 |#2|) |#2|) . T)) +((((-872)) . T)) +(((|#1| (-574) (-1097)) . T)) +((((-923 |#1|)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-416 (-573)) (-1094)) . T)) -(((|#1| (-780) (-1094)) . T)) -(((#0=(-416 |#2|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-573)) -2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))) (((-416 (-573))) . T)) -(((|#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) . T)) +(((|#1| (-417 (-574)) (-1097)) . T)) +(((|#1| (-781) (-1097)) . T)) +(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-574)) -2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))) (((-417 (-574))) . T)) +(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#2| (-238)) -(((|#2| (-540 (-873 |#1|)) (-873 |#1|)) . T)) -((((-871)) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#2| (-239)) +(((|#2| (-541 (-874 |#1|)) (-874 |#1|)) . T)) +((((-872)) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) (((|#1| |#3|) . T)) -((((-871)) . T)) -(((|#1|) |has| |#1| (-174)) (((-962 |#1|)) . T) (((-573)) . T)) +((((-872)) . T)) +(((|#1|) |has| |#1| (-174)) (((-965 |#1|)) . T) (((-574)) . T)) (((|#1|) |has| |#1| (-174))) -((((-708)) . T)) -((((-708)) . T)) +((((-709)) . T)) +((((-709)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#2| (-857)) -(|has| |#1| (-238)) -((((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -((((-112)) |has| |#1| (-1112)) (((-871)) -2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112)))) +(|has| |#2| (-858)) +(|has| |#1| (-239)) +((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +((((-112)) |has| |#1| (-1115)) (((-872)) -2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-708)) . T) (((-416 (-573))) . T) (((-573)) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-709)) . T) (((-417 (-574))) . T) (((-574)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-573) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -((((-387)) . T)) -((((-708)) . T)) -((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) +((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-574) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +((((-388)) . T)) +((((-709)) . T)) +((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-416 (-962 |#1|))) . T)) +((((-417 (-965 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#3|) |has| |#3| (-1061))) -(|has| |#2| (-919)) -(|has| |#1| (-919)) -(|has| |#1| (-371)) -((($) . T)) -((((-1189)) |has| |#2| (-910 (-1189)))) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-482)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-371)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-482)) (|has| |#1| (-565)) (|has| |#1| (-1061)) (|has| |#1| (-1124))) -((($) -2817 (|has| |#1| (-238)) (|has| |#1| (-357)))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#3|) |has| |#3| (-1064))) +(|has| |#2| (-922)) +(|has| |#1| (-922)) +(|has| |#1| (-372)) +((($) . T)) +((((-1192)) |has| |#2| (-913 (-1192)))) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-483)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-372)) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1064)) (|has| |#1| (-1127))) +((($) -2832 (|has| |#1| (-239)) (|has| |#1| (-358)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-357)) +(|has| |#1| (-358)) ((((-145)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((($) . T) (((-573)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(((|#2|) . T) (((-871)) . T)) -(((|#2|) . T) (((-871)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-859)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((($) . T) (((-574)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(((|#2|) . T) (((-872)) . T)) +(((|#2|) . T) (((-872)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-860)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-573)) . T)) +((($) . T) (((-574)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) ((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (((|#2|) . T)) -(|has| |#1| (-15 * (|#1| (-573) |#1|))) +(|has| |#1| (-15 * (|#1| (-574) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-376)) -(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-859)) -(|has| |#1| (-15 * (|#1| (-780) |#1|))) -(((|#2|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +(|has| |#1| (-377)) +(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-860)) +(|has| |#1| (-15 * (|#1| (-781) |#1|))) +(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-573)) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#2| (-238)) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-387)) . #0=(|has| |#1| (-1034))) (((-227)) . #0#)) -(((|#1|) |has| |#1| (-371))) -((((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((($ $) . T) (((-621 $) $) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -((($) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T)) -((($) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) ((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-1061))) (((-416 (-573))) |has| |#1| (-565)) (((-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) -((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -((((-387)) . T) (((-573)) . T) (((-416 (-573))) . T)) -((((-653 (-789 |#1| (-873 |#2|)))) . T) (((-871)) . T)) -((((-545)) |has| (-789 |#1| (-873 |#2|)) (-623 (-545)))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-387)) . T)) +((((-574)) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#2| (-239)) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1037))) (((-227)) . #0#)) +(((|#1|) |has| |#1| (-372))) +((((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((($ $) . T) (((-622 $) $) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +((($) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) +((($) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) ((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-1064))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) +((($) . T) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +((((-388)) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-654 (-790 |#1| (-874 |#2|)))) . T) (((-872)) . T)) +((((-546)) |has| (-790 |#1| (-874 |#2|)) (-624 (-546)))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-388)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (((|#1|) |has| |#1| (-174))) -((((-871)) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) -(((|#1|) . T)) -((($) . T)) -((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -((((-780)) . T)) -(|has| |#1| (-1112)) -((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) -((((-871)) . T)) -((((-1189)) . T) (((-871)) . T)) -((((-573)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-416 (-573))) . T) (((-573)) . T) (((-621 $)) . T)) +((((-872)) . T)) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-922))) +(((|#1|) . T)) +((($) . T)) +((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((((-781)) . T)) +(|has| |#1| (-1115)) +((($) -2832 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (((-574)) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) ((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064)))) +((((-872)) . T)) +((((-1192)) . T) (((-872)) . T)) +((((-574)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-573)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573)))) (($) . T)) -((((-573)) . T)) -((($) . T)) -(|has| |#1| (-371)) -(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-148)) (|has| |#1| (-371))) (|has| |#1| (-148))) -(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))) -(|has| |#1| (-371)) +((((-574)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T)) +((((-574)) . T)) +((($) . T)) +(|has| |#1| (-372)) +(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) +(-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) +(|has| |#1| (-372)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(|has| |#1| (-238)) -(|has| |#1| (-371)) +(|has| |#1| (-239)) +(|has| |#1| (-372)) (((|#3|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-573)) |has| |#2| (-648 (-573))) ((|#2|) . T)) -((((-573) |#1|) |has| |#2| (-426 |#1|))) -((((-573) |#1|) |has| |#2| (-426 |#1|))) -(((|#2|) . T) (($) . T) (((-573)) . T)) -(((|#2|) . T)) -((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) -((((-416 (-573))) |has| |#2| (-371)) (($) . T)) -(|has| |#1| (-1112)) -((((-1154 |#2| |#1|)) . T) ((|#1|) . T) (((-573)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T)) +((((-574) |#1|) |has| |#2| (-427 |#1|))) +((((-574) |#1|) |has| |#2| (-427 |#1|))) +(((|#2|) . T) (($) . T) (((-574)) . T)) +(((|#2|) . T)) +((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) +((((-417 (-574))) |has| |#2| (-372)) (($) . T)) +(|has| |#1| (-1115)) +((((-1157 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T)) (((|#1| |#2|) . T)) -((((-573)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) (((|#3|) |has| |#3| (-174))) -(((|#2|) . T) (($) . T) (((-573)) . T)) -(((|#1|) . T) (($) . T) (((-573)) . T)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) -((((-871)) . T)) -((((-573)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -(((|#1| $) |has| |#1| (-293 |#1| |#1|))) -((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) -((((-962 |#1|)) . T) (((-871)) . T)) +(((|#2|) . T) (($) . T) (((-574)) . T)) +(((|#1|) . T) (($) . T) (((-574)) . T)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +((((-872)) . T)) +((((-574)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(((|#1| $) |has| |#1| (-294 |#1| |#1|))) +((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) +((((-965 |#1|)) . T) (((-872)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) ((#0=(-416 (-573)) #0#) |has| |#1| (-371))) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-962 |#1|)) . T)) -((($) . T)) -((((-573) |#1|) . T)) -((((-1189)) |has| (-416 |#2|) (-910 (-1189)))) -(((|#1|) . T) (($) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) (((-416 (-573))) |has| |#1| (-371))) -((((-545)) |has| |#2| (-623 (-545)))) -((((-698 |#2|)) . T) (((-871)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -((((-879 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372))) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-965 |#1|)) . T)) +((($) . T)) +((((-574) |#1|) . T)) +((((-1192)) |has| (-417 |#2|) (-913 (-1192)))) +(((|#1|) . T) (($) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) +((((-546)) |has| |#2| (-624 (-546)))) +((((-699 |#2|)) . T) (((-872)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +((((-880 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((($) . T) (((-573)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -(((|#2|) |has| |#2| (-1061))) +(-2832 (|has| |#4| (-803)) (|has| |#4| (-858))) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((($) . T) (((-574)) . T) ((|#2|) . T)) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +(((|#2|) |has| |#2| (-1064))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) -((((-416 |#2|)) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -(((|#1|) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) -(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) . T) (($) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-1234))) -((($) . T)) -((((-416 (-573))) |has| #0=(-416 |#2|) (-1050 (-416 (-573)))) (((-573)) |has| #0# (-1050 (-573))) ((#0#) . T)) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -(((|#1| (-780)) . T)) -(|has| |#1| (-859)) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -((((-573)) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-857)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-573) $) . T) (((-653 (-573)) $) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| (-416 |#2|) (-238)) -(|has| |#1| (-357)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-1171)) . T) (((-515)) . T) (((-227)) . T) (((-573)) . T)) -((((-871)) . T)) -(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-15 * (|#1| (-780) |#1|))) -(((|#2|) . T) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) +((((-417 |#2|)) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +(((|#1|) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) . T) (($) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-1237))) +((($) . T)) +((((-417 (-574))) |has| #0=(-417 |#2|) (-1053 (-417 (-574)))) (((-574)) |has| #0# (-1053 (-574))) ((#0#) . T)) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +(((|#1| (-781)) . T)) +(|has| |#1| (-860)) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +((((-574)) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))))) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-858)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-574) $) . T) (((-654 (-574)) $) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| (-417 |#2|) (-239)) +(|has| |#1| (-358)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-1174)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) +((((-872)) . T)) +(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-15 * (|#1| (-781) |#1|))) +(((|#2|) . T) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-789 |#1| (-873 |#2|))) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(|has| |#1| (-1215)) -((((-871)) . T)) -(((|#1|) . T)) -(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) -((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|))) -(((|#2|) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((((-920 |#1|)) . T)) -((($) -12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) -((($) -12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) -((($) . T)) -((((-416 (-962 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-545)) |has| |#4| (-623 (-545)))) -((((-871)) . T) (((-653 |#4|)) . T)) -(|has| |#1| (-857)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#1| (-1112)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) -(|has| |#1| (-371)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) -((((-681 |#1|)) . T)) -(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +((((-790 |#1| (-874 |#2|))) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(|has| |#1| (-1218)) +((((-872)) . T)) +(((|#1|) . T)) +(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064)) (|has| |#3| (-1115))) +((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|))) +(((|#2|) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-923 |#1|)) . T)) +((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) +((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) +((($) . T)) +((((-417 (-965 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-546)) |has| |#4| (-624 (-546)))) +((((-872)) . T) (((-654 |#4|)) . T)) +(|has| |#1| (-858)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#1| (-1115)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) |has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) +(|has| |#1| (-372)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)))) +((((-682 |#1|)) . T)) +(((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (($) |has| |#3| (-174))) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-148)) (|has| |#1| (-371))) (|has| |#1| (-148))) -(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))) +(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) +(-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -(|has| |#1| (-857)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#1| (-858)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-1112)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T) (((-573)) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1115)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-574)) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-1112)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1115)) (((|#2|) |has| |#2| (-174))) -((((-573)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-573)) . T)) +((((-574)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-574)) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-371))) -((((-416 |#2|)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-323 |#1|)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#2|) |has| |#2| (-371))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -(((|#2|) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-238)) -(((#0=(-789 |#1| (-873 |#2|)) #0#) |has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|))))) -((($) |has| |#1| (-238))) -((((-573)) . T) (($) . T)) -((((-873 |#1|)) . T)) +(((|#3|) |has| |#3| (-372))) +((((-417 |#2|)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-324 |#1|)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) |has| |#2| (-372))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(((|#2|) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-239)) +(((#0=(-790 |#1| (-874 |#2|)) #0#) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) +((($) |has| |#1| (-239))) +((((-574)) . T) (($) . T)) +((((-874 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) -((((-1189)) |has| |#1| (-910 (-1189))) (((-1100 (-1189))) . T)) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(|has| |#1| (-38 (-416 (-573)))) -(((|#4|) |has| |#4| (-1061)) (((-573)) -12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) -(((|#3|) |has| |#3| (-1061)) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) +((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) +((((-1192)) |has| |#1| (-913 (-1192))) (((-1103 (-1192))) . T)) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(|has| |#1| (-38 (-417 (-574)))) +(((|#4|) |has| |#4| (-1064)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) +(((|#3|) |has| |#3| (-1064)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112))) -(|has| |#1| (-565)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115))) +(|has| |#1| (-566)) (((|#2|) . T)) -((((-573)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-574)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-590 |#1|)) . T)) +((((-591 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-871)) . T)) -(((|#2|) |has| |#2| (-6 (-4457 "*")))) +((((-872)) . T)) +(((|#2|) |has| |#2| (-6 (-4460 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-573)) . T) (($) . T)) +(((|#2|) . T) (((-574)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-573)) . T)) -((((-1265 |#2| |#3| |#4|)) . T) (((-573)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-48)) -12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (((-573)) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))) (|has| |#1| (-1061))) ((|#1|) . T) (((-621 $)) . T) (($) |has| |#1| (-565)) (((-416 (-573))) -2817 (|has| |#1| (-565)) (|has| |#1| (-1050 (-416 (-573))))) (((-416 (-962 |#1|))) |has| |#1| (-565)) (((-962 |#1|)) |has| |#1| (-1061)) (((-1189)) . T)) -((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) -((($) . T) (((-117 |#1|)) . T) (((-416 (-573))) . T)) -((((-1137 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((((-1185 |#1|)) . T) (((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((((-1137 |#1| (-1189))) . T) (((-1100 (-1189))) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-1189)) . T)) -(|has| |#1| (-1112)) +(((|#3|) . T) (((-574)) . T)) +((((-1268 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (((-574)) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))) (|has| |#1| (-1064))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2832 (|has| |#1| (-566)) (|has| |#1| (-1053 (-417 (-574))))) (((-417 (-965 |#1|))) |has| |#1| (-566)) (((-965 |#1|)) |has| |#1| (-1064)) (((-1192)) . T)) +((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((($) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) +((((-1140 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-1188 |#1|)) . T) (((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-1140 |#1| (-1192))) . T) (((-1103 (-1192))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-1192)) . T)) +(|has| |#1| (-1115)) ((($) . T)) -(|has| |#1| (-1112)) -((((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))) (((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) +(|has| |#1| (-1115)) +((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((|#1| |#2|) . T)) -((((-1189) |#1|) . T)) +((((-1192) |#1|) . T)) (((|#4|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-1189) (-52)) . T)) -(|has| |#1| (-238)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) -((((-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) . T)) -((((-871)) . T)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) -(((#0=(-1266 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-416 (-573)) #0#) |has| |#1| (-565)) (($ $) |has| |#1| (-565))) -((($) |has| |#1| (-15 * (|#1| (-573) |#1|)))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1| $) |has| |#1| (-293 |#1| |#1|))) -((((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-565)) (($) |has| |#1| (-565))) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) -(|has| |#1| (-371)) -((($) |has| |#1| (-857)) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-857)))) -((($) -2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-780) |#1|)))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1192) (-52)) . T)) +(|has| |#1| (-239)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T)) +((((-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) +((((-872)) . T)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064)) (|has| |#2| (-1115))) +(((#0=(-1269 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-417 (-574)) #0#) |has| |#1| (-566)) (($ $) |has| |#1| (-566))) +((($) |has| |#1| (-15 * (|#1| (-574) |#1|)))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1| $) |has| |#1| (-294 |#1| |#1|))) +((((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +(|has| |#1| (-372)) +((($) |has| |#1| (-858)) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-858)))) +((($) -2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-416 (-573))) . T) (($) . T)) -(((|#3|) |has| |#3| (-371))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -((((-1189)) . T)) -((($) . T) (((-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573)))) (((-573)) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#3|) |has| |#3| (-372))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +((((-1192)) . T)) +((($) . T) (((-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (((|#2| |#3|) . T)) -(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(((|#1| (-540 |#2|)) . T)) -(((|#1| (-780)) . T)) -(((|#1| (-540 (-1100 (-1189)))) . T)) +(-2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(((|#1| (-541 |#2|)) . T)) +(((|#1| (-781)) . T)) +(((|#1| (-541 (-1103 (-1192)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-919)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -((((-871)) . T)) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) -(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) -((($ $) . T) ((#0=(-1265 |#2| |#3| |#4|) #0#) . T) ((#1=(-416 (-573)) #1#) |has| #0# (-38 (-416 (-573))))) -((((-920 |#1|)) . T)) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -((((-573)) . T) (($) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -((($) . T) (((-573)) . T)) -((($) . T)) -(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) -(|has| |#1| (-371)) -(|has| |#1| (-371)) +(|has| |#2| (-922)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +((((-872)) . T)) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)))) +(((|#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1064))) (($) |has| |#2| (-174))) +((($ $) . T) ((#0=(-1268 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574))))) +((((-923 |#1|)) . T)) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +((($) . T) (((-574)) . T)) +((($) . T)) +(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) +(|has| |#1| (-372)) +(|has| |#1| (-372)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -(-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371)) (|has| |#1| (-357))) -(-2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +(-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +((((-872)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) +(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-371)) -(|has| |#1| (-859)) +(|has| |#2| (-372)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-573)) . T)) +((((-574)) . T)) (((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1112)) +(|has| |#1| (-1115)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T) (((-573)) . T) (($) . T)) -(((|#3|) . T) (((-573)) . T) (($) . T)) -((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-829)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T) (($) . T)) +(((|#3|) . T) (((-574)) . T) (($) . T)) +((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-830)) ((($) . T)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) -((((-871)) . T)) -(((|#1| (-540 (-1189))) . T)) +((((-872)) . T)) +(((|#1| (-541 (-1192))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174))) -((((-871)) . T)) +((((-872)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (((|#2|) . T)) -(((|#2|) -2817 (|has| |#2| (-6 (-4457 "*"))) (|has| |#2| (-174)))) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(|has| |#2| (-919)) -(|has| |#1| (-919)) -((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) +(((|#2|) -2832 (|has| |#2| (-6 (-4460 "*"))) (|has| |#2| (-174)))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(|has| |#2| (-922)) +(|has| |#1| (-922)) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-573)) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) +((($) . T) (((-574)) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-871)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-573)) . T)) -(((|#1| (-416 (-573))) . T)) +((($) . T) (((-574)) . T)) +(((|#1| (-417 (-574))) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-297)) (|has| |#1| (-371))) +(-2832 (|has| |#1| (-298)) (|has| |#1| (-372))) ((((-145)) . T)) -((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T) (((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-857)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-858)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-189)) . T) (((-871)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-189)) . T) (((-872)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387))))) -((((-1189) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-653 (-145))) . T) (((-1171)) . T)) -((((-871)) . T)) -((((-1171)) . T)) -((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -(|has| |#1| (-859)) -((($) -2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-780) |#1|)))) -((((-871)) . T)) -(((|#2|) |has| |#2| (-371))) -((((-871)) . T)) -((((-545)) |has| |#4| (-623 (-545)))) -((((-871)) . T) (((-653 |#4|)) . T)) -(((|#2|) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T) (((-621 $)) . T)) -(-2817 (|has| |#4| (-174)) (|has| |#4| (-735)) (|has| |#4| (-857)) (|has| |#4| (-1061))) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-1189) (-52)) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(|has| |#1| (-919)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(|has| |#1| (-919)) -(((|#1|) . T) (((-573)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-871)) . T)) -((((-573)) . T)) -(((#0=(-416 (-573)) #0#) . T) (($ $) . T)) -((((-416 (-573))) . T) (($) . T)) -(((|#1| (-416 (-573)) (-1094)) . T)) -(|has| |#1| (-1112)) -(|has| |#1| (-565)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(|has| |#1| (-829)) -(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) -((((-416 |#2|)) . T)) -(|has| |#1| (-857)) -((((-1216 |#1|)) . T) (((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) . T) ((#1=(-573) #1#) . T) (($ $) . T)) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) +((((-1192) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-654 (-145))) . T) (((-1174)) . T)) +((((-872)) . T)) +((((-1174)) . T)) +((((-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +(|has| |#1| (-860)) +((($) -2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) +((((-872)) . T)) +(((|#2|) |has| |#2| (-372))) +((((-872)) . T)) +((((-546)) |has| |#4| (-624 (-546)))) +((((-872)) . T) (((-654 |#4|)) . T)) +(((|#2|) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) +(-2832 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1064))) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-1192) (-52)) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(|has| |#1| (-922)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(|has| |#1| (-922)) +(((|#1|) . T) (((-574)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-872)) . T)) +((((-574)) . T)) +(((#0=(-417 (-574)) #0#) . T) (($ $) . T)) +((((-417 (-574))) . T) (($) . T)) +(((|#1| (-417 (-574)) (-1097)) . T)) +(|has| |#1| (-1115)) +(|has| |#1| (-566)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(|has| |#1| (-830)) +(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +((((-417 |#2|)) . T)) +(|has| |#1| (-858)) +((((-1219 |#1|)) . T) (((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-574) #1#) . T) (($ $) . T)) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-871)) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T) (((-573)) . T)) +((((-872)) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-573) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3692 (-1189)) (|:| -1907 #0#))) . T)) -(|has| |#1| (-357)) -((((-573)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -(((#0=(-1266 |#1| |#2| |#3| |#4|) $) |has| #0# (-293 #0# #0#))) -(|has| |#1| (-371)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) -(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -(((#0=(-416 (-573)) #0#) . T) ((#1=(-708) #1#) . T) (($ $) . T)) -((((-323 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) -((((-871)) . T)) -(|has| |#1| (-1112)) -(((|#1|) . T)) -(((|#1|) -2817 (|has| |#2| (-375 |#1|)) (|has| |#2| (-426 |#1|)))) -(((|#1|) -2817 (|has| |#2| (-375 |#1|)) (|has| |#2| (-426 |#1|)))) -(((|#2|) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) -((((-588)) . T)) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-574) |#3|) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3666 (-1192)) (|:| -1918 #0#))) . T)) +(|has| |#1| (-358)) +((((-574)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +(((#0=(-1269 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#))) +(|has| |#1| (-372)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064))) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)))) +(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(((#0=(-417 (-574)) #0#) . T) ((#1=(-709) #1#) . T) (($ $) . T)) +((((-324 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) +((((-872)) . T)) +(|has| |#1| (-1115)) +(((|#1|) . T)) +(((|#1|) -2832 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) +(((|#1|) -2832 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) +(((|#2|) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +((((-589)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-238)) -((((-873 |#1|)) . T)) -((((-1189)) |has| |#1| (-910 (-1189))) ((|#3|) . T)) -((((-653 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-371)) (|has| |#2| (-1034))) -((((-416 (-573))) . T) (($) . T)) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -((($) . T) (((-416 (-573))) . T)) -((((-871)) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) -((((-573)) . T) (((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573)) . T)) +(|has| |#2| (-239)) +((((-874 |#1|)) . T)) +((((-1192)) |has| |#1| (-913 (-1192))) ((|#3|) . T)) +((((-654 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-372)) (|has| |#2| (-1037))) +((((-417 (-574))) . T) (($) . T)) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +((($) . T) (((-417 (-574))) . T)) +((((-872)) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) +((((-574)) . T) (((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574)) . T)) (((|#3|) . T)) -(|has| |#1| (-1112)) +(|has| |#1| (-1115)) (((|#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-238))) -((((-573)) . T)) -(((|#2|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (($) . T) (((-573)) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((($) |has| |#1| (-239))) +((((-574)) . T)) +(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T) (((-416 (-573))) . T)) +((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-417 (-574))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-573)) . T)) -(((|#1|) . T) (((-573)) . T)) -(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) +(((|#1|) . T) (((-574)) . T)) +(((|#1|) . T) (((-574)) . T)) +(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-871)) . T)) -((((-871)) . T)) +((((-872)) . T)) +((((-872)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-117 |#1|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) -((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) -((((-1137 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#2|) . T)) +(((#0=(-117 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1140 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-681 |#1|)) . T)) -((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((((-117 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) (((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387))))) +((((-682 |#1|)) . T)) +((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((|#2|) . T) ((|#6|) . T)) -((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) +((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-387)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T)) -(|has| |#2| (-919)) -(|has| |#1| (-238)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-919)) -(|has| |#1| (-919)) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-388)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T)) +(|has| |#2| (-922)) +(|has| |#1| (-239)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-922)) +(|has| |#1| (-922)) (((|#4|) . T)) -(|has| |#2| (-1034)) +(|has| |#2| (-1037)) ((($) . T)) -(|has| |#1| (-919)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-922)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-371)) -((((-920 |#1|)) . T)) -((($) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) |has| |#1| (-857)) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-857)))) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(-2817 (|has| |#1| (-376)) (|has| |#1| (-859))) -(((|#1|) . T)) -((((-780)) . T)) -((((-871)) . T)) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) -((((-416 |#2|) |#3|) . T)) -((($) . T) (((-416 (-573))) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T) (((-621 $)) . T)) -((((-573)) . T) (($) . T)) -((((-573)) . T) (($) . T)) -((((-780) |#1|) . T)) -(((|#2| (-245 (-2862 |#1|) (-780))) . T)) -(((|#1| (-540 |#3|)) . T)) -((((-416 (-573))) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-1171)) . T) (((-871)) . T)) -(((#0=(-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) -((((-1171)) . T)) -(|has| |#1| (-919)) -(|has| |#2| (-371)) -(((|#1|) . T) (($) . T) (((-573)) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-171 (-387))) . T) (((-227)) . T) (((-387)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -((((-387)) . T) (((-573)) . T)) -(((#0=(-416 (-573)) #0#) . T) (($ $) . T)) +(|has| |#1| (-372)) +((((-923 |#1|)) . T)) +((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) |has| |#1| (-858)) (((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-858)))) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(-2832 (|has| |#1| (-377)) (|has| |#1| (-860))) +(((|#1|) . T)) +((((-781)) . T)) +((((-872)) . T)) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-417 |#2|) |#3|) . T)) +((($) . T) (((-417 (-574))) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) +((((-574)) . T) (($) . T)) +((((-574)) . T) (($) . T)) +((((-781) |#1|) . T)) +(((|#2| (-246 (-2876 |#1|) (-781))) . T)) +(((|#1| (-541 |#3|)) . T)) +((((-417 (-574))) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-1174)) . T) (((-872)) . T)) +(((#0=(-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) +((((-1174)) . T)) +(|has| |#1| (-922)) +(|has| |#2| (-372)) +(((|#1|) . T) (($) . T) (((-574)) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +((((-388)) . T) (((-574)) . T)) +(((#0=(-417 (-574)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-871)) . T)) -(|has| |#1| (-565)) -((((-416 (-573))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) -(|has| |#1| (-38 (-416 (-573)))) -(-12 (|has| |#1| (-554)) (|has| |#1| (-837))) -((((-871)) . T)) -((((-1189)) -2817 (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))) (-12 (|has| |#1| (-371)) (|has| |#2| (-910 (-1189)))))) -(|has| |#1| (-371)) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) -(|has| |#1| (-371)) -((((-416 (-573))) . T) (($) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((((-573) |#1|) . T)) -(((|#1|) . T)) -(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) -(((|#2|) |has| |#1| (-371))) -(((|#2|) |has| |#1| (-371))) -((((-573)) . T) (($) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-872)) . T)) +(|has| |#1| (-566)) +((((-417 (-574))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +(|has| |#1| (-38 (-417 (-574)))) +(-12 (|has| |#1| (-555)) (|has| |#1| (-838))) +((((-872)) . T)) +((((-1192)) -2832 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-913 (-1192)))))) +(|has| |#1| (-372)) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +(|has| |#1| (-372)) +((((-417 (-574))) . T) (($) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((((-574) |#1|) . T)) +(((|#1|) . T)) +(-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +(((|#2|) |has| |#1| (-372))) +(((|#2|) |has| |#1| (-372))) +((((-574)) . T) (($) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) (((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) (((-416 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573))))) +(((|#2|) . T) (((-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574))))) (((|#2|) . T)) ((($) . T)) -((((-1189) #0=(-1266 |#1| |#2| |#3| |#4|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) -((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) -((((-621 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-387))) . T) (((-1185 (-708))) . T) (((-902 (-387))) . T)) +((((-1192) #0=(-1269 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) +((((-622 $) $) . T) (($ $) . T)) +((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1188 (-709))) . T) (((-903 (-388))) . T)) (((|#3|) . T)) -(|has| |#1| (-565)) -(|has| (-416 |#2|) (-238)) -(((|#1| (-416 (-573))) . T)) -((($) . T) (((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-566)) +(|has| (-417 |#2|) (-239)) +(((|#1| (-417 (-574))) . T)) +((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-565)) -((((-871)) . T)) +(|has| |#1| (-566)) +((((-872)) . T)) ((($ $) . T)) ((($) . T)) -((((-871)) . T)) -((((-1189)) |has| |#2| (-910 (-1189)))) -((((-416 (-573))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#2|) |has| |#1| (-371))) -((((-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-387)))) (((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-573))))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(|has| |#1| (-371)) -(((|#1|) . T)) -((($) . T) (((-573)) . T) ((|#2|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-872)) . T)) +((((-1192)) |has| |#2| (-913 (-1192)))) +((((-417 (-574))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#2|) |has| |#1| (-372))) +((((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574))))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(|has| |#1| (-372)) +(((|#1|) . T)) +((($) . T) (((-574)) . T) ((|#2|) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((|#3|) . T)) -((((-1171)) . T) (((-515)) . T) (((-227)) . T) (((-573)) . T)) +((((-1174)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) (((|#1|) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-565)) -(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(|has| |#1| (-372)) +(|has| |#1| (-566)) +(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (((|#2|) . T)) (((|#2|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#1| (-38 (-416 (-573)))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#1| (-38 (-417 (-574)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(|has| |#1| (-38 (-417 (-574)))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) ((($) . T)) -((((-1171) |#1|) . T)) +((((-1174) |#1|) . T)) (|has| |#1| (-148)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) (|has| |#1| (-148)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-377))) ((($) . T)) (|has| |#1| (-148)) -((((-590 |#1|)) . T)) +((((-591 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-565)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-566)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) ((($) . T)) ((($) . T)) -((((-416 |#2|)) . T)) -((((-416 (-573))) |has| |#2| (-1050 (-573))) (((-573)) |has| |#2| (-1050 (-573))) (((-1189)) |has| |#2| (-1050 (-1189))) ((|#2|) . T)) -(((#0=(-416 |#2|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +((((-417 |#2|)) . T)) +((((-417 (-574))) |has| |#2| (-1053 (-574))) (((-574)) |has| |#2| (-1053 (-574))) (((-1192)) |has| |#2| (-1053 (-1192))) ((|#2|) . T)) +(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-357))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-358))) (|has| |#1| (-148)) -((((-871)) . T)) +((((-872)) . T)) ((($) . T)) -((((-1152 |#1| |#2|)) . T)) -(((|#1| (-573)) . T)) -(((|#1| (-416 (-573))) . T)) -((((-573)) |has| |#2| (-896 (-573))) (((-387)) |has| |#2| (-896 (-387)))) +((((-1155 |#1| |#2|)) . T)) +(((|#1| (-574)) . T)) +(((|#1| (-417 (-574))) . T)) +((((-574)) |has| |#2| (-897 (-574))) (((-388)) |has| |#2| (-897 (-388)))) (((|#2|) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-871)) . T)) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1189) (-52)) . T)) -((((-416 |#2|)) . T)) -((((-871)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1112)) -(|has| |#1| (-800)) -(|has| |#1| (-800)) -((((-871)) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((((-871)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-872)) . T)) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1192) (-52)) . T)) +((((-417 |#2|)) . T)) +((((-872)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1115)) +(|has| |#1| (-801)) +(|has| |#1| (-801)) +((((-872)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-872)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) -((((-871)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) -((((-871)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) -((((-871)) . T)) +((((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) +((((-872)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) +((((-872)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1064))) +((((-872)) . T)) (((|#2|) . T)) -((((-871)) . T)) -(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) +((((-872)) . T)) +(((#0=(-923 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-371)) -((((-871)) . T)) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-372)) +((((-872)) . T)) (((|#2|) . T)) -((((-573)) . T)) -((((-871)) . T)) -((((-573)) . T)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -((((-171 (-387))) . T) (((-227)) . T) (((-387)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-1171)) . T) (((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) -((((-871)) . T)) +((((-574)) . T)) +((((-872)) . T)) +((((-574)) . T)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-1174)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-872)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-573) $) . T) (((-653 (-573)) $) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112))) -(|has| |#1| (-1164)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T)) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-573) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-117 |#1|) $) |has| #0# (-293 #0# #0#))) +((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-574) $) . T) (((-654 (-574)) $) . T)) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-913 (-1192))) (|has| |#1| (-1064)) (|has| |#1| (-1127)) (|has| |#1| (-1115))) +(|has| |#1| (-1167)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T)) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-574) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-117 |#1|) $) |has| #0# (-294 #0# #0#))) (((|#1|) |has| |#1| (-174))) -((((-323 |#1|)) . T) (((-573)) . T)) -(|has| |#2| (-238)) +((((-324 |#1|)) . T) (((-574)) . T)) +(|has| |#2| (-239)) (((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-316 |#1|))) -((((-573) |#1|) . T) (((-1247 (-573)) $) . T)) -((((-1189) |#1|) . T)) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)))) +(((|#1|) |has| |#1| (-317 |#1|))) +((((-574) |#1|) . T) (((-1250 (-574)) $) . T)) +((((-1192) |#1|) . T)) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)))) (((|#1|) . T)) -(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) -((((-573)) . T) (((-416 (-573))) . T)) +(((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1064)))) +((((-574)) . T) (((-417 (-574))) . T)) (((|#1|) . T)) -(|has| |#1| (-565)) -(|has| |#1| (-238)) -((($) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) -((((-387)) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-566)) +(|has| |#1| (-239)) +((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) +((((-388)) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(|has| |#1| (-371)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(|has| |#1| (-371)) -(|has| |#1| (-565)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(|has| |#1| (-372)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(|has| |#1| (-372)) +(|has| |#1| (-566)) ((($) . T)) -(|has| |#1| (-1112)) -((((-789 |#1| (-873 |#2|))) |has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|))))) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(|has| |#1| (-1115)) +((((-790 |#1| (-874 |#2|))) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-919)) -(((|#1| (-540 |#2|)) . T)) -(((|#1| (-780)) . T)) -(|has| |#1| (-238)) -(((|#1| (-540 (-1100 (-1189)))) . T)) -(|has| |#2| (-371)) -((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) -((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-573)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) -((((-871)) . T)) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -((((-871)) . T)) -((((-1132)) . T) (((-871)) . T)) -((((-545)) . T) (((-871)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-621 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-573)) . T)) +(|has| |#2| (-922)) +(((|#1| (-541 |#2|)) . T)) +(((|#1| (-781)) . T)) +(|has| |#1| (-239)) +(((|#1| (-541 (-1103 (-1192)))) . T)) +(|has| |#2| (-372)) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) +((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-574)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) +((((-872)) . T)) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +((((-872)) . T)) +((((-1135)) . T) (((-872)) . T)) +((((-546)) . T) (((-872)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-622 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-574)) . T)) (((|#3|) . T)) -((((-871)) . T)) -(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) -((((-1137 |#1| |#2|)) . T) ((|#2|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) -((((-1185 |#1|)) . T) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) -(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) -((((-1137 |#1| (-1189))) . T) (((-573)) . T) (((-1100 (-1189))) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-1189)) . T)) -(((#0=(-590 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((((-872)) . T)) +(-2832 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) +((((-1140 |#1| |#2|)) . T) ((|#2|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-574)) . T)) +((((-1188 |#1|)) . T) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) (((-1097)) . T) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) +(-2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) +((((-1140 |#1| (-1192))) . T) (((-574)) . T) (((-1103 (-1192))) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) (((-1192)) . T)) +(((#0=(-591 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) -((((-590 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T) (((-416 (-573))) . T)) +(((|#1| (-1283 |#1|) (-1283 |#1|)) . T)) +((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-416 (-573))) . T)) -(((|#2|) |has| |#2| (-6 (-4457 "*")))) +((($) . T) (((-417 (-574))) . T)) +(((|#2|) |has| |#2| (-6 (-4460 "*")))) (((|#1|) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) (((|#1|) . T)) -((((-871)) . T)) -((((-301 |#3|)) . T)) -(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-872)) . T)) +((((-302 |#3|)) . T)) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) (((|#2|) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| |#2| (-919)) -(|has| |#1| (-919)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#2| (-922)) +(|has| |#1| (-922)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) (((|#1|) . T)) -((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +((((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1112)) +(|has| |#1| (-1115)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -((((-1189)) . T) ((|#1|) . T)) -((((-871)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) -(((#0=(-416 (-573)) #0#) . T)) -((((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +((((-1192)) . T) ((|#1|) . T)) +((((-872)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) +(((#0=(-417 (-574)) #0#) . T)) +((((-417 (-574))) . T)) (((|#1|) |has| |#1| (-174))) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(((|#1|) . T)) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-545)) . T)) -((((-871)) . T)) -((($) -12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) -((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((((-871)) . T)) -((((-1189)) |has| |#2| (-910 (-1189))) (((-1094)) . T)) -((((-920 |#1|)) . T)) -((((-1265 |#2| |#3| |#4|)) . T)) -((($) . T) (((-416 (-573))) . T)) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -((((-871)) . T)) -(|has| |#1| (-1234)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -((((-1189)) |has| |#1| (-910 (-1189)))) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) -(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -((($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) -(|has| |#1| (-565)) -(((|#1|) |has| |#1| (-371))) -((((-573)) . T)) -((((-1189) #0=(-117 |#1|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) -(|has| |#1| (-800)) -(|has| |#1| (-800)) -(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -((((-1094)) . T) ((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-573)) . T) (($) . T)) -((((-573) (-780)) . T) ((|#3| (-780)) . T)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(((|#1|) . T)) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-546)) . T)) +((((-872)) . T)) +((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) +((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((((-872)) . T)) +((((-1192)) |has| |#2| (-913 (-1192))) (((-1097)) . T)) +((((-923 |#1|)) . T)) +((((-1268 |#2| |#3| |#4|)) . T)) +((($) . T) (((-417 (-574))) . T)) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +((((-872)) . T)) +(|has| |#1| (-1237)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((((-1192)) |has| |#1| (-913 (-1192)))) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) +(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +((($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-566)))) +(|has| |#1| (-566)) +(((|#1|) |has| |#1| (-372))) +((((-574)) . T)) +((((-1192) #0=(-117 |#1|)) |has| #0# (-524 (-1192) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) +(|has| |#1| (-801)) +(|has| |#1| (-801)) +(((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +((((-1097)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1053 (-574))) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-574)) . T) (($) . T)) +((((-574) (-781)) . T) ((|#3| (-781)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) . T)) -((($) |has| |#1| (-376))) -((($) |has| |#1| (-376))) -((($) |has| |#1| (-376))) -(|has| |#2| (-829)) -(|has| |#2| (-829)) -((((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) -((($) -2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) -(((|#1|) . T)) -((((-879 |#1|)) . T)) -((((-879 |#1|)) . T)) -(-12 (|has| |#1| (-371)) (|has| |#2| (-919))) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) . T)) +((($) |has| |#1| (-377))) +((($) |has| |#1| (-377))) +((($) |has| |#1| (-377))) +(|has| |#2| (-830)) +(|has| |#2| (-830)) +((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +(((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) +((($) -2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) +(((|#1|) . T)) +((((-880 |#1|)) . T)) +((((-880 |#1|)) . T)) +(-12 (|has| |#1| (-372)) (|has| |#2| (-922))) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-371)) -(|has| |#1| (-371)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#2|) -2817 (|has| |#2| (-6 (-4457 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#2|) -2832 (|has| |#2| (-6 (-4460 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) -(|has| |#1| (-371)) +(|has| |#1| (-372)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-873 |#1|)) . T)) +((((-874 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-780)) . T)) -((((-1189)) . T)) -((((-879 |#1|)) . T)) -(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-871)) . T)) +(((|#2| (-781)) . T)) +((((-1192)) . T)) +((((-880 |#1|)) . T)) +(-2832 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-872)) . T)) (((|#1|) . T)) -(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) -(-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) -((((-879 |#1|)) . T)) +(-2832 (|has| |#2| (-803)) (|has| |#2| (-858))) +(-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) +((((-880 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -((($ $) . T) (((-621 $) $) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +((($ $) . T) (((-622 $) $) . T)) ((($) . T)) -((((-871)) . T)) -((((-573)) . T)) +((((-872)) . T)) +((((-574)) . T)) (((|#2|) . T)) -((((-871)) . T)) -((($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) -((((-871)) . T)) +((((-872)) . T)) +((($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) +((((-872)) . T)) (((|#1|) . T)) -((((-871)) . T)) -((($) . T) ((|#2|) . T) (((-416 (-573))) . T) (((-573)) |has| |#2| (-648 (-573)))) -(|has| |#1| (-1112)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-872)) . T)) +((($) . T) ((|#2|) . T) (((-417 (-574))) . T) (((-574)) |has| |#2| (-649 (-574)))) +(|has| |#1| (-1115)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-871)) . T)) -(|has| |#2| (-919)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) -((((-871)) . T)) -((((-871)) . T)) -(((|#3|) |has| |#3| (-1061)) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) -((((-1137 |#1| |#2|)) . T) (((-962 |#1|)) |has| |#2| (-623 (-1189))) (((-871)) . T)) -((((-962 |#1|)) |has| |#2| (-623 (-1189))) (((-1171)) -12 (|has| |#1| (-1050 (-573))) (|has| |#2| (-623 (-1189)))) (((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573))))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387))))) (((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545))))) -((((-1185 |#1|)) . T) (((-871)) . T)) -((((-871)) . T)) -((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T) (((-1189)) . T)) -((((-871)) . T)) -((((-573)) . T)) +((((-872)) . T)) +(|has| |#2| (-922)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) +((((-872)) . T)) +((((-872)) . T)) +(((|#3|) |has| |#3| (-1064)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) +((((-1140 |#1| |#2|)) . T) (((-965 |#1|)) |has| |#2| (-624 (-1192))) (((-872)) . T)) +((((-965 |#1|)) |has| |#2| (-624 (-1192))) (((-1174)) -12 (|has| |#1| (-1053 (-574))) (|has| |#2| (-624 (-1192)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) +((((-1188 |#1|)) . T) (((-872)) . T)) +((((-872)) . T)) +((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T) (((-1192)) . T)) +((((-872)) . T)) +((((-574)) . T)) (((|#1|) . T)) ((($) . T)) -((((-387)) |has| |#1| (-896 (-387))) (((-573)) |has| |#1| (-896 (-573)))) -((((-573)) . T)) +((((-388)) |has| |#1| (-897 (-388))) (((-574)) |has| |#1| (-897 (-574)))) +((((-574)) . T)) (((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) (((|#1|) . T)) -((((-871)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-653 |#1|)) . T)) -((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) -((($) . T) (((-573)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T)) -((((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) ((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-1061))) (((-416 (-573))) |has| |#1| (-565))) -((((-1194)) . T)) -((((-573)) . T) (((-416 (-573))) . T)) -((((-1194)) . T)) -((((-1194)) . T)) +((((-872)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-654 |#1|)) . T)) +((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((($) . T) (((-574)) . T) (((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) +((((-574)) -2832 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) (($) -2832 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1064))) ((|#1|) -2832 (|has| |#1| (-174)) (|has| |#1| (-1064))) (((-417 (-574))) |has| |#1| (-566))) +((((-1197)) . T)) +((((-574)) . T) (((-417 (-574))) . T)) +((((-1197)) . T)) +((((-1197)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1194)) . T)) -(((|#1|) |has| |#1| (-316 |#1|))) -((((-387)) . T)) +((((-1197)) . T)) +(((|#1|) |has| |#1| (-317 |#1|))) +((((-388)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-871)) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-416 |#2|) |#3|) . T)) +((((-872)) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-417 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1112)) -(((|#2| (-491 (-2862 |#1|) (-780))) . T)) -((((-573) |#1|) . T)) -((((-1171)) . T) (((-871)) . T)) +(|has| |#1| (-1115)) +(((|#2| (-492 (-2876 |#1|) (-781))) . T)) +((((-574) |#1|) . T)) +((((-1174)) . T) (((-872)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-540 (-1189))) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-573)) . T)) +(((|#1| (-541 (-1192))) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-574)) . T)) (((|#2|) . T)) -((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) +((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (((|#2|) . T)) -((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -(|has| |#1| (-565)) -(((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) -((($) . T) (((-416 (-573))) . T)) +((((-1192)) |has| |#1| (-913 (-1192))) (((-1097)) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +(|has| |#1| (-566)) +(((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +((($) . T) (((-417 (-574))) . T)) ((($) . T)) ((($) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) (((|#1|) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) ((((-145)) . T)) -(((|#1|) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (((-417 (-574))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-871)) . T)) +((((-872)) . T)) (((|#1|) . T)) -(|has| |#1| (-1164)) -(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) +(|has| |#1| (-1167)) +(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) (((|#1|) . T)) -((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((((-871)) . T)) -((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T) ((|#2|) . T)) -((((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) -((((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387)))) (((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573))))) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -((((-573) |#1|) . T)) +((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-872)) . T)) +((((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-574)) |has| |#1| (-1053 (-574))) ((|#1|) . T) ((|#2|) . T)) +((((-1097)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574))))) +((((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574))))) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +((((-574) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-708)) . T)) -((((-789 |#1| (-873 |#2|))) . T)) -((((-573)) . T) (($) . T)) -((($) . T)) -(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) -((((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-1112)) -(|has| |#1| (-1112)) -(|has| |#2| (-371)) -(((|#1|) . T) (($) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) (((-416 (-573))) |has| |#1| (-371))) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#1| (-38 (-416 (-573)))) -((($) |has| |#2| (-238))) -((((-573)) . T)) -((((-1189)) -12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) -((((-1189)) -12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) -(((|#1|) . T)) -(|has| |#1| (-238)) -(((|#2| (-245 (-2862 |#1|) (-780))) . T)) -(((|#1| (-540 |#3|)) . T)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) -(|has| |#1| (-376)) +((((-709)) . T)) +((((-790 |#1| (-874 |#2|))) . T)) +((((-574)) . T) (($) . T)) +((($) . T)) +(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) +((((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-1115)) +(|has| |#1| (-1115)) +(|has| |#2| (-372)) +(((|#1|) . T) (($) -2832 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#1| (-38 (-417 (-574)))) +((($) |has| |#2| (-239))) +((((-574)) . T)) +((((-1192)) -12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) +((((-1192)) -12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) +(((|#1|) . T)) +(|has| |#1| (-239)) +(((|#2| (-246 (-2876 |#1|) (-781))) . T)) +(((|#1| (-541 |#3|)) . T)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) +(|has| |#1| (-377)) (((|#1|) . T) (($) . T)) -(((|#1| (-540 |#2|)) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(((|#1| (-780)) . T)) -(|has| |#1| (-565)) -(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1| (-541 |#2|)) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(((|#1| (-781)) . T)) +(|has| |#1| (-566)) +(-2832 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-871)) . T)) -((((-573)) . T) (((-416 (-573))) . T) (($) . T)) -(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) -(-2817 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-872)) . T)) +((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +(-2832 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1061))) -(((|#3|) |has| |#3| (-1061))) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) -((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) -((((-1137 |#1| |#2|)) . T) (((-573)) . T) ((|#3|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#2|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((((-1194)) . T)) -((((-681 |#1|)) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -((((-871)) . T)) -((((-653 $)) . T) (((-1171)) . T) (((-1189)) . T) (((-573)) . T) (((-227)) . T) (((-871)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((($) . T) (((-416 (-573))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1112)) (((-573)) -12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (((-416 (-573))) -12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112)))) -(((|#3|) |has| |#3| (-1112)) (((-573)) -12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) -(|has| |#2| (-371)) -(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) -(((|#1|) . T)) -(|has| |#2| (-371)) -(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(((|#4|) |has| |#4| (-1064))) +(((|#3|) |has| |#3| (-1064))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) +((((-574)) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))) ((|#2|) . T) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-874 |#1|)) . T)) +((((-1140 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))) ((|#2|) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-1197)) . T)) +((((-682 |#1|)) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((((-872)) . T)) +((((-654 $)) . T) (((-1174)) . T) (((-1192)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((($) . T) (((-417 (-574))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1115)) (((-574)) -12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (((-417 (-574))) -12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115)))) +(((|#3|) |has| |#3| (-1115)) (((-574)) -12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (((-417 (-574))) -12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) +(|has| |#2| (-372)) +(((|#2|) |has| |#2| (-1064)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) +(((|#1|) . T)) +(|has| |#2| (-372)) +(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) (((|#2| |#2|) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) -(((|#2|) . T)) -((((-871)) |has| |#1| (-1112))) -((($) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-829)) -(|has| |#2| (-829)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-371)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#1|) |has| |#2| (-426 |#1|))) -(((|#1|) |has| |#2| (-426 |#1|))) -((((-1171)) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-653 |#1|)) . T) (((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-653 |#1|)) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1229)) . T) (((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -((((-573) |#1|) . T)) -((((-573) |#1|) . T)) -((((-573) |#1|) . T)) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-573) |#1|) . T)) -(((|#1|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) -((((-1189)) |has| |#1| (-910 (-1189))) (((-827 (-1189))) . T)) -(-2817 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-828 |#1|)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) +(((|#2|) . T)) +((((-872)) |has| |#1| (-1115))) +((($) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-830)) +(|has| |#2| (-830)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-372)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) |has| |#2| (-427 |#1|))) +(((|#1|) |has| |#2| (-427 |#1|))) +((((-1174)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-654 |#1|)) . T) (((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-654 |#1|)) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1232)) . T) (((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) |has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +((((-574) |#1|) . T)) +((((-574) |#1|) . T)) +((((-574) |#1|) . T)) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-574) |#1|) . T)) +(((|#1|) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-1192)) |has| |#1| (-913 (-1192))) (((-828 (-1192))) . T)) +(-2832 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-829 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-871)) . T)) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-872)) . T)) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1064))) (((|#1| |#2|) . T)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) -(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -(|has| |#1| (-371)) -(-2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238)))) -(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) -(|has| |#1| (-371)) -(((|#1|) . T)) -(((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1| |#1|) . T)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -((((-323 |#1|)) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((#0=(-708) (-1185 #0#)) . T)) -((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) +(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +(|has| |#1| (-372)) +(-2832 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) +(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) +(|has| |#1| (-372)) +(((|#1|) . T)) +(((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((((-324 |#1|)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((#0=(-709) (-1188 #0#)) . T)) +((((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-574)) . T) (((-417 (-574))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-857)) -(((|#2|) . T) (((-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) -((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1137 |#1| (-1189))) . T) (((-827 (-1189))) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-1189)) . T)) +(|has| |#1| (-858)) +(((|#2|) . T) (((-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2832 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1140 |#1| (-1192))) . T) (((-828 (-1192))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1053 (-574))) (((-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) (((-1192)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1189) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1100 (-1189)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1097) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1192) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1103 (-1192)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-573)) |has| |#2| (-648 (-573))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) -(|has| |#1| (-238)) -(|has| |#2| (-919)) -((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) +((($) . T) (((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) +(|has| |#1| (-239)) +(|has| |#2| (-922)) +((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) (((|#1|) |has| |#1| (-174))) -((((-573) |#1|) . T)) +((((-574) |#1|) . T)) (((|#1|) . T)) -((((-1194)) . T)) -(((#0=(-1266 |#1| |#2| |#3| |#4|)) |has| #0# (-316 #0#))) +((((-1197)) . T)) +(((#0=(-1269 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2| |#2|) |has| |#1| (-371)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -(|has| |#2| (-238)) +((($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +(|has| |#2| (-239)) (|has| $ (-148)) -((((-871)) . T)) -((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((((-871)) . T)) -(|has| |#1| (-857)) +((((-872)) . T)) +((($) . T) (((-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((((-872)) . T)) +(|has| |#1| (-858)) ((((-130)) . T)) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) -((((-416 (-573))) . T) (((-708)) . T) (($) . T) (((-573)) . T)) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((((-416 |#2|) |#3|) . T)) -((((-871)) . T)) -(-12 (|has| |#1| (-314)) (|has| |#1| (-919))) -(((|#2| (-681 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-871)) |has| |#1| (-1112))) +((((-417 |#2|) |#3|) . T)) +((((-872)) . T)) +(-12 (|has| |#1| (-315)) (|has| |#1| (-922))) +(((|#2| (-682 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-872)) |has| |#1| (-1115))) (((|#4|) . T)) -(|has| |#1| (-565)) -((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) ((|#1|) . T)) -((((-1189)) -2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) -(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) -(((|#1|) . T)) -(((|#1| (-540 (-827 (-1189)))) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((((-573)) . T) ((|#2|) . T) (($) . T) (((-416 (-573))) . T) (((-1189)) |has| |#2| (-1050 (-1189)))) -(((|#1|) . T)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -(((|#1|) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -((($) . T) (((-879 |#1|)) . T) (((-416 (-573))) . T)) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -(|has| |#1| (-565)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-416 |#2|)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-416 (-573)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-416 (-573))) . T) (($) . T)) -((((-573)) . T)) -((((-871)) . T)) -((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -((((-871)) . T)) -((((-416 (-573))) . T) (($) . T)) -((((-573) |#1|) . T)) -((($) . T)) -((($) . T)) -((((-871)) . T)) -((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) -((((-871)) . T)) -((((-871)) . T)) -((((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) (((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545))))) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(|has| |#1| (-238)) -(((|#1|) . T) (((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T)) -((((-115)) . T) ((|#1|) . T) (((-573)) . T)) +(|has| |#1| (-566)) +((($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) +((((-1192)) -2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) +(((|#1|) . T) (($) -2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) +(((|#1|) . T)) +(((|#1| (-541 (-828 (-1192)))) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1192)) |has| |#2| (-1053 (-1192)))) +(((|#1|) . T)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +(((|#1|) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +((($) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(|has| |#1| (-566)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-417 |#2|)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-417 (-574))) . T) (($) . T)) +((((-574)) . T)) +((((-872)) . T)) +((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-872)) . T)) +((((-417 (-574))) . T) (($) . T)) +((((-574) |#1|) . T)) +((($) . T)) +((($) . T)) +((((-872)) . T)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) +((((-872)) . T)) +((((-872)) . T)) +((((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546))))) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(|has| |#1| (-239)) +(((|#1|) . T) (((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T)) +((((-115)) . T) ((|#1|) . T) (((-574)) . T)) ((((-130)) . T)) -((($) . T) (((-573)) . T) (((-117 |#1|)) . T) (((-416 (-573))) . T)) -(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) -(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) . T) (((-574)) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) +(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) +(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) -((($) . T) (((-573)) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-1116)) . T)) -((((-871)) . T)) -((((-1194)) . T) (((-871)) . T)) -((((-1194)) . T) (((-871)) . T)) -((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-1194)) . T)) -((((-1194)) . T)) -((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((($) . T) (((-573)) . T)) -((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -((((-871)) . T)) -(|has| |#2| (-919)) -((($ $) . T) (((-1189) $) . T)) -((((-1272 |#1| |#2| |#3|)) . T)) -((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) -(((|#1|) . T)) -((((-1272 |#1| |#2| |#3|)) . T) (((-1244 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-919)) -((((-1189)) . T) (((-871)) . T)) +((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((($) . T) (((-574)) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1119)) . T)) +((((-872)) . T)) +((((-1197)) . T) (((-872)) . T)) +((((-1197)) . T) (((-872)) . T)) +((($) -2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-1197)) . T)) +((((-1197)) . T)) +((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((($) . T) (((-574)) . T)) +((($) -2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-872)) . T)) +(|has| |#2| (-922)) +((($ $) . T) (((-1192) $) . T)) +((((-1275 |#1| |#2| |#3|)) . T)) +((((-1275 |#1| |#2| |#3|)) |has| |#1| (-372))) +(((|#1|) . T)) +((((-1275 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-922)) +((((-1192)) . T) (((-872)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-708)) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-1194)) . T)) +((((-709)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-1197)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1194)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) -((((-1194)) . T)) -((((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-565)) (($) |has| |#1| (-565))) -((((-416 (-573))) . T) (($) . T)) -(((|#1| (-573)) . T)) +((((-1197)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) +((((-1197)) . T)) +((((-1269 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) +((((-417 (-574))) . T) (($) . T)) +(((|#1| (-574)) . T)) (((|#1|) |has| |#1| (-174))) -((((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-1194)) . T)) -((((-1194)) . T)) -(|has| |#1| (-371)) -(|has| |#1| (-371)) -(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) -(((|#1| (-573)) . T)) -(((|#1| (-416 (-573))) . T)) -(((|#1| (-780)) . T)) -((((-416 (-573))) . T)) -(((|#1| (-540 |#2|) |#2|) . T)) -((((-573) |#1|) . T)) -((((-573) |#1|) . T)) -(|has| |#1| (-1112)) -(|has| (-416 |#2|) (-238)) -((((-573) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-902 (-387))) . T) (((-902 (-573))) . T) (((-1189)) . T) (((-545)) . T)) -(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) -((((-871)) . T)) -((((-573)) . T)) -((((-573)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1197)) . T)) +((((-1197)) . T)) +(|has| |#1| (-372)) +(|has| |#1| (-372)) +(-2832 (|has| |#1| (-174)) (|has| |#1| (-566))) +(((|#1| (-574)) . T)) +(((|#1| (-417 (-574))) . T)) +(((|#1| (-781)) . T)) +((((-417 (-574))) . T)) +(((|#1| (-541 |#2|) |#2|) . T)) +((((-574) |#1|) . T)) +((((-574) |#1|) . T)) +(|has| |#1| (-1115)) +(|has| (-417 |#2|) (-239)) +((((-574) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1192)) . T) (((-546)) . T)) +(-2832 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +(-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) +((((-872)) . T)) +((((-574)) . T)) +((((-574)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) -((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) -(-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) +(-2832 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1064))) +((((-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) +(-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-371)) +(|has| |#1| (-372)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) -(|has| |#1| (-238)) -((($) . T) (((-573)) . T) (((-416 (-573))) . T)) -((($) . T) (((-573)) . T)) -((($) . T) (((-573)) . T)) -((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) -((((-871)) . T)) -(((|#1| (-780) (-1094)) . T)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) -((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +(|has| |#1| (-239)) +((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((($) . T) (((-574)) . T)) +((($) . T) (((-574)) . T)) +((($) . T) ((#0=(-1268 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((((-872)) . T)) +(((|#1| (-781) (-1097)) . T)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) +((((-1250 (-574)) $) . T) (((-574) |#1|) . T)) ((((-117 |#1|)) . T)) -((((-416 (-573))) . T) (((-573)) . T)) -(((|#2|) |has| |#2| (-1061))) -((((-416 (-573))) . T) (($) . T)) -(((|#2|) . T)) -((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) -((((-573)) . T)) -((((-573)) . T)) -((((-1171) (-1189) (-573) (-227) (-871)) . T)) +((((-417 (-574))) . T) (((-574)) . T)) +(((|#2|) |has| |#2| (-1064))) +((((-417 (-574))) . T) (($) . T)) +(((|#2|) . T)) +((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((((-574)) . T)) +((((-574)) . T)) +((((-1174) (-1192) (-574) (-227) (-872)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-573)) . T) ((|#2|) |has| |#2| (-174))) -((((-115)) . T) ((|#1|) . T) (((-573)) . T)) -(-2817 (|has| |#1| (-357)) (|has| |#1| (-376))) +((((-574)) . T) ((|#2|) |has| |#2| (-174))) +((((-115)) . T) ((|#1|) . T) (((-574)) . T)) +(-2832 (|has| |#1| (-358)) (|has| |#1| (-377))) (((|#1| |#2|) . T)) ((((-227)) . T)) -((((-416 (-573))) . T) (($) . T) (((-573)) . T)) -((((-871)) . T)) +((((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-872)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) -((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) -(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) -(|has| |#2| (-238)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-545)) |has| |#1| (-623 (-545)))) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) -((((-573) $) . T) (((-653 (-573)) $) . T)) -((($) . T) (((-416 (-573))) . T)) -(|has| |#1| (-919)) -(|has| |#1| (-919)) -((((-227)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) (((-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) (((-902 (-387))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-387))))) (((-902 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-573))))) (((-545)) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-545))))) -((((-871)) . T)) -((((-871)) . T)) +((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#2|) |has| |#2| (-1115)) (((-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (((-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) +(|has| |#2| (-239)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-546)) |has| |#1| (-624 (-546)))) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1115)))) +((((-574) $) . T) (((-654 (-574)) $) . T)) +((($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-922)) +(|has| |#1| (-922)) +((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546))))) +((((-872)) . T)) +((((-872)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(((|#1|) . T) (((-573)) . T)) -((((-1194)) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +(((|#1|) . T) (((-574)) . T)) +((((-1197)) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-566))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) (((|#2|) . T)) -(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +(-2832 (|has| |#1| (-21)) (|has| |#1| (-858))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-871)) -2817 (-12 (|has| |#1| (-622 (-871))) (|has| |#2| (-622 (-871)))) (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) -((((-416 |#2|) |#3|) . T)) -((((-416 (-573))) . T) (($) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-371)) -((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) -((($) . T) (((-573)) . T)) -(|has| (-416 |#2|) (-148)) -(|has| (-416 |#2|) (-146)) -((($) . T)) -((((-708)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((#0=(-573) #0#) . T)) -((($) . T) (((-416 (-573))) . T)) -(-2817 (|has| |#4| (-174)) (|has| |#4| (-735)) (|has| |#4| (-857)) (|has| |#4| (-1061))) -(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) -((((-871)) . T) (((-1194)) . T)) -(|has| |#4| (-802)) -(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) -(|has| |#4| (-857)) -(|has| |#3| (-802)) -((((-1194)) . T)) -(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) -(|has| |#3| (-857)) -((((-573)) . T)) -(((|#2|) . T)) -((((-1189)) -2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) -((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-872)) -2832 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) +((((-417 |#2|) |#3|) . T)) +((((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-372)) +((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((($) . T) (((-574)) . T)) +(|has| (-417 |#2|) (-148)) +(|has| (-417 |#2|) (-146)) +((($) . T)) +((((-709)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((#0=(-574) #0#) . T)) +((($) . T) (((-417 (-574))) . T)) +(-2832 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1064))) +(-2832 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1064))) +((((-872)) . T) (((-1197)) . T)) +(|has| |#4| (-803)) +(-2832 (|has| |#4| (-803)) (|has| |#4| (-858))) +(|has| |#4| (-858)) +(|has| |#3| (-803)) +((((-1197)) . T)) +(-2832 (|has| |#3| (-803)) (|has| |#3| (-858))) +(|has| |#3| (-858)) +((((-574)) . T)) +(((|#2|) . T)) +((((-1192)) -2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) +((((-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-873 |#1|)) . T)) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -((((-1152 |#1| |#2|)) . T)) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1034)) -(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -((($) . T)) -((((-871)) . T)) -((((-545)) |has| |#2| (-623 (-545))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-387)) . #0=(|has| |#2| (-1034))) (((-227)) . #0#)) -((((-301 |#3|)) . T)) -((((-1189) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-416 (-573)))) -(|has| |#1| (-38 (-416 (-573)))) -((((-871)) . T)) -(((|#2|) . T)) -((((-871)) . T)) -((((-416 (-573)) |#1|) . T) (($ $) . T)) -((((-416 |#2|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-416 (-573))) . T) (((-708)) . T) (($) . T)) -((((-1187 |#1| |#2| |#3|)) . T)) -((((-1187 |#1| |#2| |#3|)) . T) (((-1180 |#1| |#2| |#3|)) . T)) -((((-871)) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-573) |#1|) . T)) -((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +((((-874 |#1|)) . T)) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-1155 |#1| |#2|)) . T)) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1037)) +(((|#2|) . T) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +((($) . T)) +((((-872)) . T)) +((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1037))) (((-227)) . #0#)) +((((-302 |#3|)) . T)) +((((-1192) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-417 (-574)))) +((((-872)) . T)) +(((|#2|) . T)) +((((-872)) . T)) +((((-417 (-574)) |#1|) . T) (($ $) . T)) +((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +((((-1190 |#1| |#2| |#3|)) . T)) +((((-1190 |#1| |#2| |#3|)) . T) (((-1183 |#1| |#2| |#3|)) . T)) +((((-872)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-574) |#1|) . T)) +((((-1190 |#1| |#2| |#3|)) |has| |#1| (-372))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-371)) -(((|#3|) . T) ((|#2|) . T) (($) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (((-573)) -12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) -(((|#2|) . T) (($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) +(|has| |#2| (-372)) +(((|#3|) . T) ((|#2|) . T) (($) -2832 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1064))) ((|#4|) -2832 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1064))) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) +(((|#2|) . T) (($) -2832 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1064))) ((|#3|) -2832 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1064))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) -((((-1189)) . T) ((|#1|) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -((((-189)) . T) (((-871)) . T)) -((((-871)) . T)) +((((-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) (((-574)) |has| |#2| (-1053 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) +((((-1192)) . T) ((|#1|) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +((((-189)) . T) (((-872)) . T)) +((((-872)) . T)) (((|#1|) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -((((-130)) . T) (((-871)) . T)) -((((-573) |#1|) . T) (((-1247 (-573)) $) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +((((-130)) . T) (((-872)) . T)) +((((-574) |#1|) . T) (((-1250 (-574)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-371)) (|has| |#2| (-293 |#2| |#2|))) (($ $) . T) (((-573) |#1|) . T)) -((($ $) . T) (((-416 (-573)) |#1|) . T)) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((((-871)) . T)) -((((-871)) . T)) -((((-871)) . T)) -(((|#1| (-540 |#2|)) . T)) -((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) -((((-573) (-130)) . T)) -(((|#1| (-573)) . T)) -(((|#1| (-416 (-573))) . T)) -(((|#1| (-780)) . T)) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) -(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) -((($) . T)) -(((|#2| (-540 (-873 |#1|))) . T)) -((((-1194)) . T)) -((((-1194)) . T)) -((((-573) |#1|) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -(((|#2|) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) . T) (((-1194)) . T)) -((((-1194)) . T)) -((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) -(((|#1|) . T)) -(((|#2| (-780)) . T)) +(((|#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) (($ $) . T) (((-574) |#1|) . T)) +((($ $) . T) (((-417 (-574)) |#1|) . T)) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-922))) +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((((-872)) . T)) +((((-872)) . T)) +((((-872)) . T)) +(((|#1| (-541 |#2|)) . T)) +((((-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) . T)) +((((-574) (-130)) . T)) +(((|#1| (-574)) . T)) +(((|#1| (-417 (-574))) . T)) +(((|#1| (-781)) . T)) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +(-2832 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) +(-2832 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-922))) +((($) . T)) +(((|#2| (-541 (-874 |#1|))) . T)) +((((-1197)) . T)) +((((-1197)) . T)) +((((-574) |#1|) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +(((|#2|) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) . T) (((-1197)) . T)) +((((-1197)) . T)) +((((-872)) -2832 (|has| |#1| (-623 (-872))) (|has| |#1| (-1115)))) +(((|#1|) . T)) +(((|#2| (-781)) . T)) (((|#1| |#2|) . T)) -((((-1171) |#1|) . T)) -((((-416 |#2|)) . T)) -((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) -(|has| |#1| (-565)) -(|has| |#1| (-565)) +((((-1174) |#1|) . T)) +((((-417 |#2|)) . T)) +((((-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T)) +(|has| |#1| (-566)) +(|has| |#1| (-566)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-416 (-573))) . T)) -((((-416 (-573))) . T) (($) . T)) +((($) . T) (((-417 (-574))) . T)) +((((-417 (-574))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-573)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-293 |#2| |#2|))) -(((|#1| (-653 |#1|)) |has| |#1| (-857))) -(-2817 (|has| |#1| (-238)) (|has| |#1| (-357))) -(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) -((((-1276 |#1|)) . T) (((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) -(|has| |#1| (-1112)) -(((|#1|) . T)) -((((-1276 |#1|)) . T) (((-573)) . T) (($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-1094)) . T) ((|#2|) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) -((((-416 (-573))) . T) (($) . T)) -((((-1011 |#1|)) . T) ((|#1|) . T) (((-573)) -2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573)))) (((-416 (-573))) -2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) -((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-1189)) |has| |#1| (-910 (-1189)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) -(((|#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-574)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-294 |#2| |#2|))) +(((|#1| (-654 |#1|)) |has| |#1| (-858))) +(-2832 (|has| |#1| (-239)) (|has| |#1| (-358))) +(-2832 (|has| |#1| (-372)) (|has| |#1| (-358))) +((((-1279 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1053 (-417 (-574))))) +(|has| |#1| (-1115)) +(((|#1|) . T)) +((((-1279 |#1|)) . T) (((-574)) . T) (($) -2832 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-922))) (((-1097)) . T) ((|#2|) . T) (((-417 (-574))) -2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) +((((-417 (-574))) . T) (($) . T)) +((((-1014 |#1|)) . T) ((|#1|) . T) (((-574)) -2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574)))) (((-417 (-574))) -2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) +((((-923 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-1192)) |has| |#1| (-913 (-1192)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +((((-923 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) +(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1152 |#1| |#2|) #0#) |has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|)))) +(((#0=(-1155 |#1| |#2|) #0#) |has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) -(|has| |#1| (-293 |#1| |#1|)) -(|has| |#1| (-238)) -(((#0=(-117 |#1|)) |has| #0# (-316 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((#0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) +(|has| |#1| (-294 |#1| |#1|)) +(|has| |#1| (-239)) +(((#0=(-117 |#1|)) |has| #0# (-317 #0#))) ((($ $) . T)) -(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) -((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-487 . -1112) T) ((-270 . -523) 195259) ((-252 . -523) 195202) ((-250 . -1112) 195152) ((-580 . -111) 195137) ((-540 . -23) T) ((-134 . -1112) T) ((-139 . -1112) T) ((-118 . -316) 195094) ((-138 . -1112) T) ((-1011 . -237) 195073) ((-808 . -1230) 195042) ((-488 . -523) 194834) ((-686 . -625) 194818) ((-703 . -102) T) ((-1153 . -523) 194737) ((-399 . -132) T) ((-1293 . -988) 194706) ((-1036 . -1063) 194643) ((-31 . -93) T) ((-611 . -498) 194627) ((-1036 . -649) 194564) ((-630 . -132) T) ((-828 . -855) T) ((-532 . -57) 194514) ((-528 . -523) 194447) ((-359 . -235) 194434) ((-362 . -1063) 194379) ((-59 . -523) 194312) ((-525 . -523) 194245) ((-427 . -910) 194204) ((-171 . -1061) T) ((-506 . -523) 194137) ((-505 . -523) 194070) ((-362 . -649) 194015) ((-808 . -1050) 193795) ((-708 . -38) 193760) ((-1253 . -625) 193508) ((-351 . -357) T) ((-1106 . -1105) 193492) ((-1106 . -1112) 193470) ((-864 . -625) 193367) ((-171 . -248) 193318) ((-171 . -238) 193269) ((-1106 . -1107) 193227) ((-881 . -293) 193185) ((-227 . -804) T) ((-227 . -801) T) ((-703 . -291) NIL) ((-580 . -625) 193157) ((-1162 . -1206) 193136) ((-416 . -1004) 193120) ((-48 . -1063) 193085) ((-710 . -21) T) ((-710 . -25) T) ((-48 . -649) 193050) ((-1295 . -657) 193024) ((-323 . -161) 193003) ((-323 . -144) 192982) ((-1162 . -107) 192932) ((-117 . -21) T) ((-40 . -233) 192909) ((-135 . -25) T) ((-117 . -25) T) ((-617 . -295) 192885) ((-484 . -295) 192864) ((-1253 . -333) 192841) ((-1253 . -1061) T) ((-864 . -1061) T) ((-808 . -346) 192825) ((-140 . -187) T) ((-118 . -1164) NIL) ((-91 . -622) 192757) ((-486 . -132) T) ((-1253 . -238) T) ((-1108 . -499) 192738) ((-1108 . -622) 192704) ((-1102 . -499) 192685) ((-1102 . -622) 192651) ((-602 . -1230) T) ((-1085 . -499) 192632) ((-580 . -1061) T) ((-1085 . -622) 192598) ((-671 . -726) 192582) ((-1078 . -499) 192563) ((-1078 . -622) 192529) ((-968 . -295) 192506) ((-60 . -34) T) ((-1074 . -804) T) ((-1074 . -801) T) ((-1048 . -499) 192487) ((-1031 . -499) 192468) ((-825 . -735) T) ((-740 . -47) 192433) ((-632 . -38) 192420) ((-363 . -297) T) ((-360 . -297) T) ((-352 . -297) T) ((-270 . -297) 192351) ((-252 . -297) 192282) ((-1048 . -622) 192248) ((-1036 . -102) T) ((-1031 . -622) 192214) ((-635 . -499) 192195) ((-422 . -735) T) ((-118 . -38) 192140) ((-492 . -499) 192121) ((-635 . -622) 192087) ((-422 . -482) T) ((-220 . -499) 192068) ((-492 . -622) 192034) ((-362 . -102) T) ((-220 . -622) 192000) ((-1224 . -1070) T) ((-351 . -655) 191930) ((-720 . -1070) T) ((-1187 . -47) 191907) ((-1186 . -47) 191877) ((-1180 . -47) 191854) ((-129 . -295) 191829) ((-1047 . -152) 191775) ((-920 . -297) T) ((-1138 . -47) 191747) ((-703 . -316) NIL) ((-524 . -622) 191729) ((-519 . -622) 191711) ((-517 . -622) 191693) ((-334 . -1112) 191643) ((-721 . -461) 191574) ((-48 . -102) T) ((-1264 . -293) 191532) ((-1243 . -293) 191432) ((-653 . -675) 191416) ((-653 . -660) 191400) ((-347 . -21) T) ((-347 . -25) T) ((-40 . -357) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-653 . -381) 191384) ((-614 . -499) 191366) ((-611 . -293) 191318) ((-614 . -622) 191285) ((-397 . -102) T) ((-1132 . -144) T) ((-127 . -622) 191217) ((-883 . -1112) T) ((-667 . -420) 191201) ((-723 . -622) 191183) ((-254 . -622) 191150) ((-189 . -622) 191132) ((-163 . -622) 191114) ((-158 . -622) 191096) ((-1295 . -735) T) ((-1114 . -34) T) ((-880 . -804) NIL) ((-880 . -801) NIL) ((-867 . -859) T) ((-740 . -896) NIL) ((-1304 . -132) T) ((-389 . -132) T) ((-902 . -625) 191064) ((-914 . -102) T) ((-740 . -1050) 190940) ((-1187 . -1230) T) ((-540 . -132) T) ((-1186 . -1230) T) ((-1099 . -420) 190924) ((-1012 . -498) 190908) ((-118 . -409) 190885) ((-1180 . -1230) T) ((-791 . -420) 190869) ((-789 . -420) 190853) ((-953 . -34) T) ((-703 . -1164) NIL) ((-257 . -657) 190625) ((-256 . -657) 190384) ((-826 . -930) 190363) ((-463 . -420) 190347) ((-611 . -19) 190331) ((-1158 . -1223) 190300) ((-1180 . -896) NIL) ((-1180 . -894) 190252) ((-611 . -613) 190229) ((-1216 . -622) 190161) ((-1188 . -622) 190143) ((-62 . -404) T) ((-1186 . -1050) 190078) ((-1180 . -1050) 190044) ((-703 . -38) 189994) ((-40 . -655) 189924) ((-483 . -293) 189882) ((-1236 . -622) 189864) ((-740 . -385) 189848) ((-847 . -622) 189830) ((-667 . -1070) T) ((-1264 . -1014) 189796) ((-1243 . -1014) 189762) ((-255 . -1230) T) ((-1100 . -625) 189746) ((-1075 . -1206) 189721) ((-1088 . -625) 189698) ((-881 . -623) 189505) ((-881 . -622) 189487) ((-710 . -235) 189474) ((-1202 . -498) 189411) ((-427 . -1034) 189389) ((-48 . -316) 189376) ((-1075 . -107) 189322) ((-488 . -498) 189259) ((-529 . -1230) T) ((-1180 . -346) 189211) ((-1153 . -498) 189182) ((-1180 . -385) 189134) ((-1099 . -1070) T) ((-446 . -102) T) ((-185 . -1112) T) ((-257 . -34) T) ((-256 . -34) T) ((-791 . -1070) T) ((-789 . -1070) T) ((-740 . -910) 189111) ((-463 . -1070) T) ((-59 . -498) 189095) ((-1046 . -1068) 189069) ((-528 . -498) 189053) ((-525 . -498) 189037) ((-506 . -498) 189021) ((-505 . -498) 189005) ((-250 . -523) 188938) ((-1046 . -111) 188905) ((-1187 . -910) 188818) ((-1186 . -910) 188724) ((-1180 . -910) 188557) ((-1138 . -910) 188541) ((-679 . -1124) T) ((-654 . -93) T) ((-362 . -1164) T) ((-329 . -1068) 188523) ((-257 . -800) 188502) ((-257 . -803) 188453) ((-31 . -499) 188434) ((-257 . -802) 188413) ((-256 . -800) 188392) ((-256 . -803) 188343) ((-256 . -802) 188322) ((-31 . -622) 188288) ((-50 . -1070) T) ((-257 . -735) 188198) ((-256 . -735) 188108) ((-1224 . -1112) T) ((-679 . -23) T) ((-590 . -1070) T) ((-527 . -1070) T) ((-387 . -1068) 188073) ((-329 . -111) 188048) ((-73 . -391) T) ((-73 . -404) T) ((-1036 . -38) 187985) ((-703 . -409) 187967) ((-99 . -102) T) ((-720 . -1112) T) ((-1309 . -1063) 187954) ((-1015 . -146) 187926) ((-1015 . -148) 187898) ((-879 . -655) 187870) ((-387 . -111) 187826) ((-326 . -1234) 187805) ((-483 . -1014) 187771) ((-362 . -38) 187736) ((-40 . -378) 187708) ((-882 . -622) 187580) ((-128 . -126) 187564) ((-122 . -126) 187548) ((-845 . -1068) 187518) ((-842 . -21) 187470) ((-836 . -1068) 187454) ((-842 . -25) 187406) ((-326 . -565) 187357) ((-526 . -625) 187338) ((-573 . -837) T) ((-245 . -1230) T) ((-1046 . -625) 187307) ((-845 . -111) 187272) ((-836 . -111) 187251) ((-1264 . -622) 187233) ((-1243 . -622) 187215) ((-1243 . -623) 186886) ((-1185 . -919) 186865) ((-1137 . -919) 186844) ((-48 . -38) 186809) ((-1302 . -1124) T) ((-545 . -293) 186765) ((-611 . -622) 186677) ((-611 . -623) 186638) ((-1300 . -1124) T) ((-369 . -625) 186622) ((-329 . -625) 186606) ((-1154 . -237) 186585) ((-245 . -1050) 186412) ((-1185 . -657) 186301) ((-1137 . -657) 186190) ((-863 . -657) 186164) ((-727 . -622) 186146) ((-555 . -376) T) ((-1302 . -23) T) ((-1300 . -23) T) ((-500 . -1112) T) ((-387 . -625) 186096) ((-387 . -627) 186078) ((-1046 . -1061) T) ((-874 . -102) T) ((-1202 . -293) 186057) ((-171 . -376) 186008) ((-1016 . -1230) T) ((-845 . -625) 185962) ((-836 . -625) 185917) ((-44 . -23) T) ((-488 . -293) 185896) ((-595 . -1112) T) ((-1158 . -1121) 185865) ((-1116 . -1115) 185817) ((-399 . -21) T) ((-399 . -25) T) ((-153 . -1124) T) ((-1309 . -102) T) ((-1016 . -894) 185799) ((-1016 . -896) 185781) ((-1224 . -726) 185678) ((-632 . -233) 185662) ((-630 . -21) T) ((-296 . -565) T) ((-630 . -25) T) ((-1210 . -1112) T) ((-720 . -726) 185627) ((-245 . -385) 185596) ((-1016 . -1050) 185556) ((-387 . -1061) T) ((-225 . -1070) T) ((-118 . -233) 185533) ((-59 . -293) 185485) ((-153 . -23) T) ((-525 . -293) 185437) ((-334 . -523) 185370) ((-505 . -293) 185322) ((-387 . -248) T) ((-387 . -238) T) ((-845 . -1061) T) ((-836 . -1061) T) ((-721 . -959) 185291) ((-710 . -859) T) ((-483 . -622) 185273) ((-1266 . -1063) 185178) ((-589 . -655) 185150) ((-573 . -655) 185122) ((-504 . -655) 185072) ((-836 . -238) 185051) ((-135 . -859) T) ((-1266 . -649) 184943) ((-667 . -1112) T) ((-1202 . -613) 184922) ((-559 . -1206) 184901) ((-344 . -1112) T) ((-326 . -371) 184880) ((-416 . -148) 184859) ((-416 . -146) 184838) ((-974 . -1124) 184737) ((-245 . -910) 184669) ((-824 . -1124) 184579) ((-663 . -861) 184563) ((-488 . -613) 184542) ((-559 . -107) 184492) ((-1016 . -385) 184474) ((-1016 . -346) 184456) ((-1189 . -622) 184438) ((-97 . -1112) T) ((-974 . -23) 184249) ((-486 . -21) T) ((-486 . -25) T) ((-824 . -23) 184119) ((-1189 . -623) 184041) ((-59 . -19) 184025) ((-1185 . -735) T) ((-1137 . -735) T) ((-1099 . -1112) T) ((-525 . -19) 184009) ((-505 . -19) 183993) ((-59 . -613) 183970) ((-1015 . -237) 183942) ((-911 . -102) 183920) ((-863 . -735) T) ((-791 . -1112) T) ((-525 . -613) 183897) ((-505 . -613) 183874) ((-789 . -1112) T) ((-789 . -1077) 183841) ((-470 . -1112) T) ((-463 . -1112) T) ((-595 . -726) 183816) ((-658 . -1112) T) ((-1272 . -47) 183793) ((-1266 . -102) T) ((-1265 . -47) 183763) ((-1244 . -47) 183740) ((-1224 . -174) 183691) ((-1186 . -314) 183670) ((-1180 . -314) 183649) ((-1108 . -625) 183630) ((-1102 . -625) 183611) ((-1092 . -565) 183562) ((-1016 . -910) NIL) ((-1092 . -1234) 183513) ((-679 . -132) T) ((-636 . -1124) T) ((-1085 . -625) 183494) ((-1078 . -625) 183475) ((-1048 . -625) 183456) ((-1031 . -625) 183437) ((-708 . -655) 183387) ((-281 . -1112) T) ((-85 . -450) T) ((-85 . -404) T) ((-723 . -1068) 183357) ((-720 . -174) T) ((-50 . -1112) T) ((-604 . -47) 183334) ((-227 . -657) 183299) ((-590 . -1112) T) ((-527 . -1112) T) ((-496 . -829) T) ((-496 . -930) T) ((-367 . -1234) T) ((-361 . -1234) T) ((-353 . -1234) T) ((-326 . -1124) T) ((-323 . -1063) 183209) ((-320 . -1063) 183138) ((-108 . -1234) T) ((-635 . -625) 183119) ((-367 . -565) T) ((-219 . -930) T) ((-219 . -829) T) ((-323 . -649) 183029) ((-320 . -649) 182958) ((-361 . -565) T) ((-353 . -565) T) ((-492 . -625) 182939) ((-108 . -565) T) ((-667 . -726) 182909) ((-1180 . -1034) NIL) ((-220 . -625) 182890) ((-326 . -23) T) ((-67 . -1230) T) ((-1012 . -622) 182822) ((-703 . -233) 182804) ((-723 . -111) 182769) ((-653 . -34) T) ((-250 . -498) 182753) ((-1309 . -1164) T) ((-1304 . -21) T) ((-1304 . -25) T) ((-1302 . -132) T) ((-1114 . -1110) 182737) ((-173 . -1112) T) ((-1300 . -132) T) ((-1293 . -102) T) ((-1276 . -622) 182703) ((-1272 . -1230) T) ((-1265 . -1230) T) ((-962 . -919) 182682) ((-1265 . -1050) 182617) ((-1244 . -1230) T) ((-1244 . -896) NIL) ((-524 . -625) 182601) ((-1244 . -894) 182553) ((-1244 . -1050) 182519) ((-1224 . -523) 182486) ((-490 . -919) 182465) ((-1202 . -623) NIL) ((-1202 . -622) 182447) ((-1099 . -726) 182296) ((-1074 . -657) 182268) ((-962 . -657) 182157) ((-606 . -499) 182138) ((-594 . -499) 182119) ((-791 . -726) 181948) ((-606 . -622) 181914) ((-594 . -622) 181880) ((-545 . -622) 181862) ((-545 . -623) 181843) ((-789 . -726) 181692) ((-1089 . -102) T) ((-389 . -25) T) ((-632 . -655) 181664) ((-389 . -21) T) ((-490 . -657) 181553) ((-470 . -726) 181524) ((-463 . -726) 181373) ((-999 . -102) T) ((-1154 . -1135) 181318) ((-1058 . -1223) 181247) ((-911 . -316) 181185) ((-746 . -102) T) ((-118 . -655) 181115) ((-614 . -625) 181097) ((-885 . -93) T) ((-723 . -625) 181051) ((-540 . -25) T) ((-690 . -93) T) ((-685 . -93) T) ((-673 . -622) 181033) ((-654 . -499) 181014) ((-142 . -102) T) ((-44 . -132) T) ((-654 . -622) 180967) ((-604 . -1230) T) ((-351 . -1070) T) ((-296 . -1124) T) ((-487 . -93) T) ((-416 . -237) 180946) ((-363 . -622) 180928) ((-360 . -622) 180910) ((-352 . -622) 180892) ((-270 . -623) 180640) ((-270 . -622) 180622) ((-252 . -622) 180604) ((-252 . -623) 180465) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1153 . -622) 180447) ((-1132 . -649) 180434) ((-1132 . -1063) 180421) ((-828 . -735) T) ((-828 . -866) T) ((-611 . -295) 180398) ((-590 . -726) 180363) ((-488 . -623) NIL) ((-488 . -622) 180345) ((-527 . -726) 180290) ((-323 . -102) T) ((-320 . -102) T) ((-296 . -23) T) ((-153 . -132) T) ((-920 . -622) 180272) ((-920 . -623) 180254) ((-395 . -735) T) ((-881 . -1068) 180206) ((-881 . -111) 180144) ((-723 . -1061) T) ((-721 . -1256) 180128) ((-703 . -357) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-528 . -622) 180060) ((-387 . -804) T) ((-225 . -1112) T) ((-169 . -1230) T) ((-387 . -801) T) ((-227 . -803) T) ((-227 . -800) T) ((-59 . -623) 180021) ((-59 . -622) 179933) ((-227 . -735) T) ((-525 . -623) 179894) ((-525 . -622) 179806) ((-506 . -622) 179738) ((-505 . -623) 179699) ((-505 . -622) 179611) ((-1092 . -371) 179562) ((-40 . -420) 179539) ((-77 . -1230) T) ((-880 . -919) NIL) ((-367 . -336) 179523) ((-367 . -371) T) ((-361 . -336) 179507) ((-361 . -371) T) ((-353 . -336) 179491) ((-353 . -371) T) ((-323 . -291) 179470) ((-108 . -371) T) ((-70 . -1230) T) ((-1244 . -346) 179422) ((-880 . -657) 179367) ((-1244 . -385) 179319) ((-974 . -132) 179174) ((-824 . -132) 179044) ((-968 . -660) 179028) ((-1099 . -174) 178939) ((-968 . -381) 178923) ((-1074 . -803) T) ((-1074 . -800) T) ((-881 . -625) 178821) ((-791 . -174) 178712) ((-789 . -174) 178623) ((-825 . -47) 178585) ((-1074 . -735) T) ((-334 . -498) 178569) ((-962 . -735) T) ((-1293 . -316) 178507) ((-463 . -174) 178418) ((-250 . -293) 178370) ((-1272 . -910) 178283) ((-1265 . -910) 178189) ((-1264 . -1068) 178024) ((-490 . -735) T) ((-1244 . -910) 177857) ((-1243 . -1068) 177665) ((-1224 . -297) 177644) ((-1199 . -1230) T) ((-1196 . -376) T) ((-1195 . -376) T) ((-1158 . -152) 177628) ((-1132 . -102) T) ((-1130 . -1112) T) ((-1092 . -23) T) ((-1092 . -1124) T) ((-1087 . -102) T) ((-1069 . -622) 177595) ((-937 . -965) T) ((-746 . -316) 177533) ((-75 . -1230) T) ((-673 . -390) 177505) ((-171 . -919) 177458) ((-30 . -965) T) ((-112 . -853) T) ((-1 . -622) 177440) ((-1015 . -418) 177412) ((-129 . -660) 177394) ((-50 . -629) 177378) ((-703 . -655) 177313) ((-604 . -910) 177226) ((-447 . -102) T) ((-129 . -381) 177208) ((-142 . -316) NIL) ((-881 . -1061) T) ((-842 . -859) 177187) ((-81 . -1230) T) ((-720 . -297) T) ((-40 . -1070) T) ((-590 . -174) T) ((-527 . -174) T) ((-520 . -622) 177169) ((-171 . -657) 177043) ((-516 . -622) 177025) ((-359 . -148) 177007) ((-359 . -146) T) ((-367 . -1124) T) ((-361 . -1124) T) ((-353 . -1124) T) ((-1016 . -314) T) ((-924 . -314) T) ((-881 . -248) T) ((-108 . -1124) T) ((-881 . -238) 176986) ((-1264 . -111) 176807) ((-1243 . -111) 176596) ((-250 . -1268) 176580) ((-573 . -857) T) ((-367 . -23) T) ((-362 . -357) T) ((-323 . -316) 176567) ((-320 . -316) 176508) ((-361 . -23) T) ((-326 . -132) T) ((-353 . -23) T) ((-1016 . -1034) T) ((-31 . -625) 176489) ((-108 . -23) T) ((-663 . -1063) 176473) ((-250 . -613) 176450) ((-340 . -1112) T) ((-663 . -649) 176420) ((-1266 . -38) 176312) ((-1253 . -919) 176291) ((-112 . -1112) T) ((-825 . -1230) 176270) ((-1047 . -102) T) ((-1253 . -657) 176159) ((-880 . -803) NIL) ((-864 . -657) 176133) ((-880 . -800) NIL) ((-825 . -896) NIL) ((-880 . -735) T) ((-1099 . -523) 176006) ((-791 . -523) 175953) ((-789 . -523) 175905) ((-580 . -657) 175892) ((-825 . -1050) 175720) ((-463 . -523) 175663) ((-397 . -398) T) ((-1264 . -625) 175476) ((-1243 . -625) 175224) ((-60 . -1230) T) ((-630 . -859) 175203) ((-509 . -670) T) ((-1158 . -988) 175172) ((-1036 . -655) 175109) ((-1015 . -461) T) ((-708 . -857) T) ((-519 . -801) T) ((-483 . -1068) 174944) ((-509 . -113) T) ((-351 . -1112) T) ((-320 . -1164) NIL) ((-296 . -132) T) ((-403 . -1112) T) ((-879 . -1070) T) ((-703 . -378) 174911) ((-362 . -655) 174841) ((-225 . -629) 174818) ((-334 . -293) 174770) ((-483 . -111) 174591) ((-1264 . -1061) T) ((-1243 . -1061) T) ((-825 . -385) 174575) ((-171 . -735) T) ((-663 . -102) T) ((-1264 . -248) 174554) ((-1264 . -238) 174506) ((-1243 . -238) 174411) ((-1243 . -248) 174390) ((-1015 . -411) NIL) ((-679 . -648) 174338) ((-323 . -38) 174248) ((-320 . -38) 174177) ((-69 . -622) 174159) ((-326 . -502) 174125) ((-48 . -655) 174075) ((-1202 . -295) 174054) ((-1238 . -859) T) ((-1125 . -1124) 173964) ((-83 . -1230) T) ((-61 . -622) 173946) ((-488 . -295) 173925) ((-1295 . -1050) 173902) ((-1177 . -1112) T) ((-1125 . -23) 173772) ((-825 . -910) 173708) ((-1253 . -735) T) ((-1114 . -1230) T) ((-483 . -625) 173534) ((-359 . -237) T) ((-1099 . -297) 173465) ((-976 . -1112) T) ((-903 . -102) T) ((-791 . -297) 173376) ((-334 . -19) 173360) ((-59 . -295) 173337) ((-789 . -297) 173268) ((-864 . -735) T) ((-118 . -857) NIL) ((-525 . -295) 173245) ((-334 . -613) 173222) ((-505 . -295) 173199) ((-463 . -297) 173130) ((-1047 . -316) 172981) ((-885 . -499) 172962) ((-885 . -622) 172928) ((-690 . -499) 172909) ((-580 . -735) T) ((-685 . -499) 172890) ((-690 . -622) 172840) ((-685 . -622) 172806) ((-671 . -622) 172788) ((-487 . -499) 172769) ((-487 . -622) 172735) ((-250 . -623) 172696) ((-250 . -499) 172673) ((-139 . -499) 172654) ((-138 . -499) 172635) ((-134 . -499) 172616) ((-250 . -622) 172508) ((-215 . -102) T) ((-139 . -622) 172474) ((-138 . -622) 172440) ((-134 . -622) 172406) ((-1159 . -34) T) ((-953 . -1230) T) ((-351 . -726) 172351) ((-679 . -25) T) ((-679 . -21) T) ((-1189 . -625) 172332) ((-483 . -1061) T) ((-644 . -426) 172297) ((-616 . -426) 172262) ((-1132 . -1164) T) ((-721 . -1063) 172085) ((-590 . -297) T) ((-527 . -297) T) ((-1265 . -314) 172064) ((-483 . -238) 172016) ((-483 . -248) 171995) ((-1244 . -314) 171974) ((-721 . -649) 171803) ((-1244 . -1034) NIL) ((-1092 . -132) T) ((-881 . -804) 171782) ((-145 . -102) T) ((-40 . -1112) T) ((-881 . -801) 171761) ((-653 . -1022) 171745) ((-589 . -1070) T) ((-573 . -1070) T) ((-504 . -1070) T) ((-416 . -461) T) ((-367 . -132) T) ((-323 . -409) 171729) ((-320 . -409) 171690) ((-361 . -132) T) ((-353 . -132) T) ((-1194 . -1112) T) ((-1132 . -38) 171677) ((-1106 . -622) 171644) ((-108 . -132) T) ((-964 . -1112) T) ((-931 . -1112) T) ((-780 . -1112) T) ((-681 . -1112) T) ((-710 . -148) T) ((-117 . -148) T) ((-1302 . -21) T) ((-1302 . -25) T) ((-1300 . -21) T) ((-1300 . -25) T) ((-673 . -1068) 171628) ((-540 . -859) T) ((-509 . -859) T) ((-363 . -1068) 171580) ((-360 . -1068) 171532) ((-352 . -1068) 171484) ((-257 . -1230) T) ((-256 . -1230) T) ((-270 . -1068) 171327) ((-252 . -1068) 171170) ((-673 . -111) 171149) ((-556 . -853) T) ((-363 . -111) 171087) ((-360 . -111) 171025) ((-352 . -111) 170963) ((-270 . -111) 170792) ((-252 . -111) 170621) ((-826 . -1234) 170600) ((-632 . -420) 170584) ((-44 . -21) T) ((-44 . -25) T) ((-824 . -648) 170490) ((-826 . -565) 170469) ((-257 . -1050) 170296) ((-256 . -1050) 170123) ((-127 . -120) 170107) ((-920 . -1068) 170072) ((-721 . -102) T) ((-708 . -1070) T) ((-606 . -625) 170053) ((-594 . -625) 170034) ((-545 . -627) 169937) ((-351 . -174) T) ((-88 . -622) 169919) ((-153 . -21) T) ((-153 . -25) T) ((-920 . -111) 169875) ((-40 . -726) 169820) ((-879 . -1112) T) ((-673 . -625) 169797) ((-654 . -625) 169778) ((-363 . -625) 169715) ((-360 . -625) 169652) ((-556 . -1112) T) ((-352 . -625) 169589) ((-334 . -623) 169550) ((-334 . -622) 169462) ((-270 . -625) 169215) ((-252 . -625) 169000) ((-1243 . -801) 168953) ((-1243 . -804) 168906) ((-257 . -385) 168875) ((-256 . -385) 168844) ((-663 . -38) 168814) ((-617 . -34) T) ((-491 . -1124) 168724) ((-484 . -34) T) ((-1125 . -132) 168594) ((-974 . -25) 168405) ((-920 . -625) 168355) ((-883 . -622) 168337) ((-974 . -21) 168292) ((-824 . -21) 168202) ((-824 . -25) 168053) ((-1236 . -376) T) ((-632 . -1070) T) ((-1191 . -565) 168032) ((-1185 . -47) 168009) ((-363 . -1061) T) ((-360 . -1061) T) ((-491 . -23) 167879) ((-352 . -1061) T) ((-270 . -1061) T) ((-252 . -1061) T) ((-1137 . -47) 167851) ((-118 . -1070) T) ((-1046 . -657) 167825) ((-968 . -34) T) ((-363 . -238) 167804) ((-363 . -248) T) ((-360 . -238) 167783) ((-360 . -248) T) ((-352 . -238) 167762) ((-352 . -248) T) ((-270 . -333) 167734) ((-252 . -333) 167691) ((-270 . -238) 167670) ((-1169 . -152) 167654) ((-257 . -910) 167586) ((-256 . -910) 167518) ((-1094 . -859) T) ((-423 . -1124) T) ((-1066 . -23) T) ((-1036 . -857) T) ((-920 . -1061) T) ((-329 . -657) 167500) ((-710 . -237) T) ((-679 . -235) 167473) ((-1224 . -1014) 167439) ((-1186 . -930) 167418) ((-1180 . -930) 167397) ((-1180 . -829) NIL) ((-1011 . -1063) 167293) ((-977 . -1230) T) ((-920 . -248) T) ((-826 . -371) 167272) ((-393 . -23) T) ((-128 . -1112) 167250) ((-122 . -1112) 167228) ((-920 . -238) T) ((-129 . -34) T) ((-387 . -657) 167193) ((-1011 . -649) 167141) ((-879 . -726) 167128) ((-1309 . -655) 167100) ((-1058 . -152) 167065) ((-1005 . -1230) T) ((-40 . -174) T) ((-703 . -420) 167047) ((-721 . -316) 167034) ((-845 . -657) 166994) ((-836 . -657) 166968) ((-326 . -25) T) ((-326 . -21) T) ((-667 . -293) 166947) ((-589 . -1112) T) ((-573 . -1112) T) ((-504 . -1112) T) ((-250 . -295) 166924) ((-1185 . -1230) T) ((-320 . -233) 166885) ((-1185 . -896) NIL) ((-55 . -1112) T) ((-1137 . -896) 166744) ((-130 . -859) T) ((-1185 . -1050) 166624) ((-1137 . -1050) 166507) ((-185 . -622) 166489) ((-863 . -1050) 166385) ((-791 . -293) 166312) ((-826 . -1124) T) ((-1046 . -735) T) ((-611 . -660) 166296) ((-1058 . -988) 166225) ((-1011 . -102) T) ((-826 . -23) T) ((-721 . -1164) 166203) ((-703 . -1070) T) ((-611 . -381) 166187) ((-359 . -461) T) ((-351 . -297) T) ((-1281 . -1112) T) ((-253 . -1112) T) ((-408 . -102) T) ((-296 . -21) T) ((-296 . -25) T) ((-369 . -735) T) ((-719 . -1112) T) ((-708 . -1112) T) ((-369 . -482) T) ((-1224 . -622) 166169) ((-1185 . -385) 166153) ((-1137 . -385) 166137) ((-1036 . -420) 166099) ((-142 . -231) 166081) ((-387 . -803) T) ((-387 . -800) T) ((-879 . -174) T) ((-387 . -735) T) ((-720 . -622) 166063) ((-721 . -38) 165892) ((-1280 . -1278) 165876) ((-359 . -411) T) ((-1280 . -1112) 165826) ((-1203 . -1112) T) ((-589 . -726) 165813) ((-573 . -726) 165800) ((-504 . -726) 165765) ((-1266 . -655) 165655) ((-323 . -638) 165634) ((-845 . -735) T) ((-836 . -735) T) ((-653 . -1230) T) ((-1092 . -648) 165582) ((-1185 . -910) 165525) ((-1137 . -910) 165509) ((-824 . -235) 165455) ((-671 . -1068) 165439) ((-108 . -648) 165421) ((-491 . -132) 165291) ((-1191 . -1124) T) ((-962 . -47) 165260) ((-632 . -1112) T) ((-671 . -111) 165239) ((-500 . -622) 165205) ((-334 . -295) 165182) ((-490 . -47) 165139) ((-1191 . -23) T) ((-118 . -1112) T) ((-103 . -102) 165117) ((-1292 . -1124) T) ((-557 . -859) T) ((-227 . -1230) T) ((-1066 . -132) T) ((-1036 . -1070) T) ((-828 . -1050) 165101) ((-1292 . -23) T) ((-1015 . -733) 165073) ((-1210 . -622) 165055) ((-708 . -726) 165020) ((-595 . -622) 165002) ((-395 . -1050) 164986) ((-362 . -1070) T) ((-393 . -132) T) ((-331 . -1050) 164970) ((-1132 . -837) T) ((-1117 . -1112) T) ((-1092 . -21) T) ((-227 . -896) 164952) ((-1016 . -930) T) ((-91 . -34) T) ((-1016 . -829) T) ((-924 . -930) T) ((-1092 . -25) T) ((-1011 . -316) 164917) ((-496 . -1234) T) ((-885 . -625) 164898) ((-723 . -657) 164858) ((-690 . -625) 164839) ((-219 . -1234) T) ((-685 . -625) 164820) ((-227 . -1050) 164780) ((-40 . -297) T) ((-496 . -565) T) ((-487 . -625) 164761) ((-367 . -25) T) ((-323 . -655) 164416) ((-320 . -655) 164330) ((-367 . -21) T) ((-361 . -25) T) ((-361 . -21) T) ((-219 . -565) T) ((-353 . -25) T) ((-353 . -21) T) ((-326 . -235) 164276) ((-250 . -625) 164253) ((-139 . -625) 164234) ((-138 . -625) 164215) ((-134 . -625) 164196) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1070) T) ((-589 . -174) T) ((-573 . -174) T) ((-504 . -174) T) ((-1074 . -1230) T) ((-667 . -622) 164178) ((-746 . -745) 164162) ((-344 . -622) 164144) ((-68 . -391) T) ((-68 . -404) T) ((-1114 . -107) 164128) ((-1074 . -896) 164110) ((-962 . -896) 164035) ((-662 . -1124) T) ((-632 . -726) 164022) ((-490 . -896) NIL) ((-1158 . -102) T) ((-1106 . -627) 164006) ((-1074 . -1050) 163988) ((-97 . -622) 163970) ((-486 . -148) T) ((-962 . -1050) 163850) ((-118 . -726) 163795) ((-662 . -23) T) ((-490 . -1050) 163671) ((-1099 . -623) NIL) ((-1099 . -622) 163653) ((-791 . -623) NIL) ((-791 . -622) 163614) ((-789 . -623) 163248) ((-789 . -622) 163162) ((-1125 . -648) 163068) ((-470 . -622) 163050) ((-463 . -622) 163032) ((-463 . -623) 162893) ((-1047 . -231) 162839) ((-881 . -919) 162818) ((-127 . -34) T) ((-826 . -132) T) ((-658 . -622) 162800) ((-587 . -102) T) ((-363 . -1299) 162784) ((-360 . -1299) 162768) ((-352 . -1299) 162752) ((-128 . -523) 162685) ((-122 . -523) 162618) ((-520 . -801) T) ((-520 . -804) T) ((-519 . -803) T) ((-103 . -316) 162556) ((-224 . -102) 162534) ((-708 . -174) T) ((-703 . -1112) T) ((-881 . -657) 162450) ((-65 . -392) T) ((-281 . -622) 162432) ((-65 . -404) T) ((-962 . -385) 162416) ((-879 . -297) T) ((-50 . -622) 162398) ((-1011 . -38) 162346) ((-1132 . -655) 162318) ((-590 . -622) 162300) ((-490 . -385) 162284) ((-590 . -623) 162266) ((-527 . -622) 162248) ((-920 . -1299) 162235) ((-880 . -1230) T) ((-710 . -461) T) ((-504 . -523) 162201) ((-496 . -371) T) ((-363 . -376) 162180) ((-360 . -376) 162159) ((-352 . -376) 162138) ((-723 . -735) T) ((-219 . -371) T) ((-117 . -461) T) ((-1303 . -1294) 162122) ((-880 . -894) 162099) ((-880 . -896) NIL) ((-974 . -859) 161998) ((-824 . -859) 161949) ((-1237 . -102) T) ((-663 . -665) 161933) ((-1216 . -34) T) ((-173 . -622) 161915) ((-1125 . -21) 161825) ((-1125 . -25) 161676) ((-880 . -1050) 161653) ((-962 . -910) 161634) ((-1253 . -47) 161611) ((-920 . -376) T) ((-59 . -660) 161595) ((-525 . -660) 161579) ((-490 . -910) 161556) ((-71 . -450) T) ((-71 . -404) T) ((-505 . -660) 161540) ((-59 . -381) 161524) ((-632 . -174) T) ((-525 . -381) 161508) ((-505 . -381) 161492) ((-836 . -717) 161476) ((-1185 . -314) 161455) ((-1191 . -132) T) ((-1154 . -1063) 161439) ((-118 . -174) T) ((-1154 . -649) 161371) ((-1158 . -316) 161309) ((-171 . -1230) T) ((-1292 . -132) T) ((-875 . -1063) 161279) ((-644 . -753) 161263) ((-616 . -753) 161247) ((-1265 . -930) 161226) ((-1244 . -930) 161205) ((-1244 . -829) NIL) ((-875 . -649) 161175) ((-703 . -726) 161125) ((-1243 . -919) 161078) ((-1036 . -1112) T) ((-880 . -385) 161055) ((-880 . -346) 161032) ((-915 . -1124) T) ((-171 . -894) 161016) ((-171 . -896) 160941) ((-1280 . -523) 160874) ((-1092 . -235) 160793) ((-496 . -1124) T) ((-362 . -1112) T) ((-219 . -1124) T) ((-76 . -450) T) ((-76 . -404) T) ((-1264 . -657) 160690) ((-171 . -1050) 160586) ((-326 . -859) T) ((-1243 . -657) 160394) ((-881 . -803) 160373) ((-881 . -800) 160352) ((-881 . -735) T) ((-496 . -23) T) ((-367 . -235) 160325) ((-361 . -235) 160298) ((-353 . -235) 160271) ((-225 . -622) 160253) ((-176 . -461) T) ((-224 . -316) 160191) ((-86 . -450) T) ((-86 . -404) T) ((-108 . -235) 160178) ((-219 . -23) T) ((-1304 . -1297) 160157) ((-686 . -1050) 160141) ((-589 . -297) T) ((-573 . -297) T) ((-504 . -297) T) ((-137 . -479) 160096) ((-1253 . -1230) T) ((-663 . -655) 160055) ((-48 . -1112) T) ((-721 . -233) 160039) ((-880 . -910) NIL) ((-1253 . -896) NIL) ((-899 . -102) T) ((-895 . -102) T) ((-397 . -1112) T) ((-171 . -385) 160023) ((-171 . -346) 160007) ((-1253 . -1050) 159887) ((-864 . -1050) 159783) ((-1154 . -102) T) ((-671 . -801) 159762) ((-662 . -132) T) ((-671 . -804) 159741) ((-118 . -523) 159649) ((-580 . -1050) 159631) ((-301 . -1287) 159601) ((-875 . -102) T) ((-973 . -565) 159580) ((-1224 . -1068) 159463) ((-1015 . -1063) 159408) ((-491 . -648) 159314) ((-914 . -1112) T) ((-1036 . -726) 159251) ((-720 . -1068) 159216) ((-1015 . -649) 159161) ((-626 . -102) T) ((-611 . -34) T) ((-1159 . -1230) T) ((-1224 . -111) 159030) ((-483 . -657) 158927) ((-362 . -726) 158872) ((-171 . -910) 158831) ((-708 . -297) T) ((-703 . -174) T) ((-720 . -111) 158787) ((-1309 . -1070) T) ((-1253 . -385) 158771) ((-427 . -1234) 158749) ((-1130 . -622) 158731) ((-320 . -857) NIL) ((-427 . -565) T) ((-227 . -314) T) ((-1243 . -800) 158684) ((-1243 . -803) 158637) ((-1264 . -735) T) ((-1243 . -735) T) ((-48 . -726) 158602) ((-227 . -1034) T) ((-1266 . -420) 158568) ((-359 . -1287) 158545) ((-1253 . -910) 158488) ((-727 . -735) T) ((-340 . -622) 158470) ((-1224 . -625) 158352) ((-1125 . -235) 158298) ((-112 . -622) 158280) ((-112 . -623) 158262) ((-727 . -482) T) ((-720 . -625) 158212) ((-1303 . -1063) 158196) ((-491 . -21) 158106) ((-128 . -498) 158090) ((-122 . -498) 158074) ((-491 . -25) 157925) ((-1303 . -649) 157895) ((-632 . -297) T) ((-595 . -1068) 157870) ((-446 . -1112) T) ((-1074 . -314) T) ((-118 . -297) T) ((-1116 . -102) T) ((-1015 . -102) T) ((-595 . -111) 157838) ((-1154 . -316) 157776) ((-1224 . -1061) T) ((-1074 . -1034) T) ((-66 . -1230) T) ((-1066 . -25) T) ((-1066 . -21) T) ((-720 . -1061) T) ((-393 . -21) T) ((-393 . -25) T) ((-703 . -523) NIL) ((-1036 . -174) T) ((-720 . -248) T) ((-1074 . -554) T) ((-721 . -655) 157686) ((-515 . -102) T) ((-511 . -102) T) ((-362 . -174) T) ((-351 . -622) 157668) ((-416 . -1063) 157620) ((-403 . -622) 157602) ((-1132 . -857) T) ((-483 . -735) T) ((-902 . -1050) 157570) ((-416 . -649) 157522) ((-108 . -859) T) ((-667 . -1068) 157506) ((-496 . -132) T) ((-1266 . -1070) T) ((-219 . -132) T) ((-1169 . -102) 157484) ((-99 . -1112) T) ((-250 . -675) 157468) ((-250 . -660) 157452) ((-667 . -111) 157431) ((-595 . -625) 157415) ((-323 . -420) 157399) ((-250 . -381) 157383) ((-1172 . -240) 157330) ((-1011 . -233) 157314) ((-74 . -1230) T) ((-48 . -174) T) ((-710 . -396) T) ((-710 . -144) T) ((-1303 . -102) T) ((-1210 . -625) 157296) ((-1100 . -1230) T) ((-1099 . -1068) 157139) ((-1088 . -1230) T) ((-270 . -919) 157118) ((-252 . -919) 157097) ((-791 . -1068) 156920) ((-789 . -1068) 156763) ((-617 . -1230) T) ((-1177 . -622) 156745) ((-1099 . -111) 156574) ((-1058 . -102) T) ((-484 . -1230) T) ((-470 . -1068) 156545) ((-463 . -1068) 156388) ((-673 . -657) 156372) ((-880 . -314) T) ((-791 . -111) 156181) ((-789 . -111) 156010) ((-363 . -657) 155962) ((-360 . -657) 155914) ((-352 . -657) 155866) ((-270 . -657) 155755) ((-252 . -657) 155644) ((-1171 . -859) T) ((-1100 . -1050) 155628) ((-470 . -111) 155589) ((-463 . -111) 155418) ((-1088 . -1050) 155395) ((-1012 . -34) T) ((-976 . -622) 155377) ((-968 . -1230) T) ((-127 . -1022) 155361) ((-973 . -1124) T) ((-880 . -1034) NIL) ((-744 . -1124) T) ((-724 . -1124) T) ((-667 . -625) 155279) ((-1280 . -498) 155263) ((-1154 . -38) 155223) ((-973 . -23) T) ((-920 . -657) 155188) ((-874 . -1112) T) ((-852 . -102) T) ((-826 . -21) T) ((-644 . -1063) 155172) ((-616 . -1063) 155156) ((-826 . -25) T) ((-744 . -23) T) ((-724 . -23) T) ((-644 . -649) 155140) ((-110 . -670) T) ((-616 . -649) 155124) ((-590 . -1068) 155089) ((-527 . -1068) 155034) ((-229 . -57) 154992) ((-462 . -23) T) ((-416 . -102) T) ((-269 . -102) T) ((-110 . -113) T) ((-703 . -297) T) ((-875 . -38) 154962) ((-590 . -111) 154918) ((-527 . -111) 154847) ((-1099 . -625) 154583) ((-427 . -1124) T) ((-323 . -1070) 154473) ((-320 . -1070) T) ((-129 . -1230) T) ((-791 . -625) 154221) ((-789 . -625) 153987) ((-667 . -1061) T) ((-1309 . -1112) T) ((-463 . -625) 153772) ((-171 . -314) 153703) ((-427 . -23) T) ((-40 . -622) 153685) ((-40 . -623) 153669) ((-108 . -1004) 153651) ((-117 . -878) 153635) ((-658 . -625) 153619) ((-48 . -523) 153585) ((-1216 . -1022) 153569) ((-1194 . -622) 153536) ((-1202 . -34) T) ((-964 . -622) 153502) ((-931 . -622) 153484) ((-1125 . -859) 153435) ((-780 . -622) 153417) ((-681 . -622) 153399) ((-1169 . -316) 153337) ((-488 . -34) T) ((-1104 . -1230) T) ((-486 . -461) T) ((-1153 . -34) T) ((-1099 . -1061) T) ((-50 . -625) 153306) ((-791 . -1061) T) ((-789 . -1061) T) ((-656 . -240) 153290) ((-641 . -240) 153236) ((-590 . -625) 153186) ((-527 . -625) 153116) ((-491 . -235) 153062) ((-1253 . -314) 153041) ((-1099 . -333) 153002) ((-463 . -1061) T) ((-1191 . -21) T) ((-1099 . -238) 152981) ((-791 . -333) 152958) ((-791 . -238) T) ((-789 . -333) 152930) ((-740 . -1234) 152909) ((-334 . -660) 152893) ((-1191 . -25) T) ((-59 . -34) T) ((-528 . -34) T) ((-525 . -34) T) ((-463 . -333) 152872) ((-334 . -381) 152856) ((-506 . -34) T) ((-505 . -34) T) ((-1015 . -1164) NIL) ((-740 . -565) 152787) ((-644 . -102) T) ((-616 . -102) T) ((-363 . -735) T) ((-360 . -735) T) ((-352 . -735) T) ((-270 . -735) T) ((-252 . -735) T) ((-387 . -1230) T) ((-1058 . -316) 152695) ((-1292 . -21) T) ((-911 . -1112) 152673) ((-827 . -235) 152660) ((-50 . -1061) T) ((-1292 . -25) T) ((-1187 . -565) 152639) ((-1186 . -1234) 152618) ((-1186 . -565) 152569) ((-1180 . -1234) 152548) ((-1180 . -565) 152499) ((-590 . -1061) T) ((-527 . -1061) T) ((-1036 . -297) T) ((-369 . -1050) 152483) ((-329 . -1050) 152467) ((-1015 . -38) 152412) ((-387 . -896) 152394) ((-1011 . -655) 152317) ((-845 . -1230) T) ((-836 . -1230) 152296) ((-808 . -1124) T) ((-920 . -735) T) ((-590 . -248) T) ((-590 . -238) T) ((-527 . -238) T) ((-527 . -248) T) ((-1138 . -565) 152275) ((-362 . -297) T) ((-656 . -704) 152259) ((-387 . -1050) 152219) ((-301 . -1063) 152140) ((-1132 . -1070) T) ((-103 . -126) 152124) ((-301 . -649) 152066) ((-808 . -23) T) ((-1302 . -1297) 152042) ((-1280 . -293) 151994) ((-416 . -316) 151959) ((-1300 . -1297) 151938) ((-1266 . -1112) T) ((-879 . -622) 151920) ((-845 . -1050) 151889) ((-205 . -796) T) ((-204 . -796) T) ((-203 . -796) T) ((-202 . -796) T) ((-201 . -796) T) ((-200 . -796) T) ((-199 . -796) T) ((-198 . -796) T) ((-197 . -796) T) ((-196 . -796) T) ((-556 . -622) 151871) ((-504 . -1014) T) ((-280 . -848) T) ((-279 . -848) T) ((-278 . -848) T) ((-277 . -848) T) ((-48 . -297) T) ((-276 . -848) T) ((-275 . -848) T) ((-274 . -848) T) ((-195 . -796) T) ((-621 . -859) T) ((-663 . -420) 151855) ((-679 . -237) 151834) ((-225 . -625) 151796) ((-110 . -859) T) ((-662 . -21) T) ((-662 . -25) T) ((-1303 . -38) 151766) ((-118 . -293) 151717) ((-1280 . -19) 151701) ((-1280 . -613) 151678) ((-1293 . -1112) T) ((-359 . -1063) 151623) ((-1089 . -1112) T) ((-999 . -1112) T) ((-973 . -132) T) ((-826 . -235) 151610) ((-746 . -1112) T) ((-359 . -649) 151555) ((-744 . -132) T) ((-724 . -132) T) ((-520 . -802) T) ((-520 . -803) T) ((-462 . -132) T) ((-416 . -1164) 151533) ((-225 . -1061) T) ((-301 . -102) 151315) ((-142 . -1112) T) ((-708 . -1014) T) ((-1117 . -293) 151271) ((-91 . -1230) T) ((-128 . -622) 151203) ((-122 . -622) 151135) ((-1309 . -174) T) ((-1186 . -371) 151114) ((-1180 . -371) 151093) ((-323 . -1112) T) ((-427 . -132) T) ((-320 . -1112) T) ((-416 . -38) 151045) ((-1145 . -102) T) ((-1266 . -726) 150937) ((-663 . -1070) T) ((-1147 . -1275) T) ((-326 . -146) 150916) ((-326 . -148) 150895) ((-140 . -1112) T) ((-137 . -1112) T) ((-115 . -1112) T) ((-867 . -102) T) ((-589 . -622) 150877) ((-573 . -623) 150776) ((-573 . -622) 150758) ((-504 . -622) 150740) ((-504 . -623) 150685) ((-494 . -23) T) ((-491 . -859) 150636) ((-496 . -648) 150618) ((-975 . -622) 150600) ((-219 . -648) 150582) ((-227 . -413) T) ((-671 . -657) 150566) ((-55 . -622) 150548) ((-1185 . -930) 150527) ((-740 . -1124) T) ((-359 . -102) T) ((-1229 . -1095) T) ((-1132 . -853) T) ((-827 . -859) T) ((-740 . -23) T) ((-351 . -1068) 150472) ((-1171 . -1170) T) ((-1159 . -107) 150456) ((-1187 . -1124) T) ((-1186 . -1124) T) ((-524 . -1050) 150440) ((-1180 . -1124) T) ((-1138 . -1124) T) ((-351 . -111) 150369) ((-1016 . -1234) T) ((-127 . -1230) T) ((-924 . -1234) T) ((-703 . -293) NIL) ((-723 . -1230) T) ((-1281 . -622) 150351) ((-1187 . -23) T) ((-1186 . -23) T) ((-1180 . -23) T) ((-1154 . -233) 150335) ((-1016 . -565) T) ((-1138 . -23) T) ((-924 . -565) T) ((-1087 . -1112) T) ((-253 . -622) 150317) ((-824 . -237) 150269) ((-808 . -132) T) ((-719 . -622) 150251) ((-323 . -726) 150161) ((-320 . -726) 150090) ((-708 . -622) 150072) ((-708 . -623) 150017) ((-416 . -409) 150001) ((-447 . -1112) T) ((-496 . -25) T) ((-496 . -21) T) ((-1132 . -1112) T) ((-219 . -25) T) ((-219 . -21) T) ((-721 . -420) 149985) ((-723 . -1050) 149954) ((-1280 . -622) 149866) ((-1280 . -623) 149827) ((-1266 . -174) T) ((-1203 . -622) 149809) ((-250 . -34) T) ((-351 . -625) 149739) ((-403 . -625) 149721) ((-936 . -986) T) ((-1216 . -1230) T) ((-671 . -800) 149700) ((-671 . -803) 149679) ((-407 . -404) T) ((-532 . -102) 149657) ((-1047 . -1112) T) ((-224 . -1007) 149641) ((-513 . -102) T) ((-632 . -622) 149623) ((-45 . -859) NIL) ((-632 . -623) 149600) ((-1047 . -619) 149575) ((-911 . -523) 149508) ((-326 . -237) 149460) ((-351 . -1061) T) ((-118 . -623) NIL) ((-118 . -622) 149442) ((-881 . -1230) T) ((-679 . -426) 149426) ((-679 . -1135) 149371) ((-509 . -152) 149353) ((-351 . -238) T) ((-351 . -248) T) ((-40 . -1068) 149298) ((-881 . -894) 149282) ((-881 . -896) 149207) ((-721 . -1070) T) ((-703 . -1014) NIL) ((-1264 . -47) 149177) ((-1243 . -47) 149154) ((-1153 . -1022) 149125) ((-3 . |UnionCategory|) T) ((-1132 . -726) 149112) ((-1117 . -622) 149094) ((-1092 . -148) 149073) ((-1092 . -146) 149024) ((-976 . -625) 149008) ((-227 . -930) T) ((-40 . -111) 148937) ((-881 . -1050) 148801) ((-1016 . -371) T) ((-1015 . -233) 148778) ((-710 . -1063) 148765) ((-924 . -371) T) ((-710 . -649) 148752) ((-326 . -1218) 148718) ((-387 . -314) T) ((-326 . -1215) 148684) ((-323 . -174) 148663) ((-320 . -174) T) ((-590 . -1299) 148650) ((-527 . -1299) 148627) ((-367 . -148) 148606) ((-117 . -1063) 148593) ((-367 . -146) 148544) ((-361 . -148) 148523) ((-361 . -146) 148474) ((-353 . -148) 148453) ((-617 . -1206) 148429) ((-117 . -649) 148416) ((-353 . -146) 148367) ((-326 . -35) 148333) ((-484 . -1206) 148312) ((0 . |EnumerationCategory|) T) ((-326 . -95) 148278) ((-387 . -1034) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 148228) ((-663 . -1112) T) ((-617 . -107) 148175) ((-494 . -132) T) ((-484 . -107) 148125) ((-245 . -1124) 148035) ((-881 . -385) 148019) ((-881 . -346) 148003) ((-245 . -23) 147873) ((-40 . -625) 147803) ((-1074 . -930) T) ((-1074 . -829) T) ((-590 . -376) T) ((-527 . -376) T) ((-1293 . -523) 147736) ((-1272 . -565) 147715) ((-1265 . -1234) 147694) ((-359 . -1164) T) ((-334 . -34) T) ((-44 . -426) 147678) ((-1194 . -625) 147614) ((-882 . -1230) T) ((-399 . -753) 147598) ((-1265 . -565) 147549) ((-1264 . -1230) T) ((-1154 . -655) 147508) ((-740 . -132) T) ((-681 . -625) 147492) ((-1244 . -1234) 147471) ((-1244 . -565) 147422) ((-1243 . -1230) T) ((-1243 . -896) 147295) ((-1243 . -894) 147265) ((-1187 . -132) T) ((-318 . -1095) T) ((-1186 . -132) T) ((-746 . -523) 147198) ((-1180 . -132) T) ((-1138 . -132) T) ((-903 . -1112) T) ((-145 . -853) T) ((-1036 . -1014) T) ((-700 . -622) 147180) ((-1016 . -23) T) ((-532 . -316) 147118) ((-1016 . -1124) T) ((-142 . -523) NIL) ((-875 . -655) 147063) ((-1015 . -357) NIL) ((-983 . -23) T) ((-924 . -1124) T) ((-359 . -38) 147028) ((-924 . -23) T) ((-881 . -910) 146987) ((-82 . -622) 146969) ((-40 . -1061) T) ((-879 . -1068) 146956) ((-879 . -111) 146941) ((-710 . -102) T) ((-703 . -622) 146923) ((-611 . -1230) T) ((-605 . -565) 146902) ((-436 . -1124) T) ((-347 . -1063) 146886) ((-215 . -1112) T) ((-176 . -1063) 146818) ((-483 . -47) 146788) ((-40 . -238) 146760) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-604 . -565) 146739) ((-347 . -649) 146723) ((-703 . -623) 146631) ((-323 . -523) 146597) ((-176 . -649) 146529) ((-320 . -523) 146421) ((-496 . -235) 146408) ((-1264 . -1050) 146392) ((-1243 . -1050) 146178) ((-1011 . -420) 146162) ((-219 . -235) 146149) ((-436 . -23) T) ((-1132 . -174) T) ((-1266 . -297) T) ((-663 . -726) 146119) ((-145 . -1112) T) ((-48 . -1014) T) ((-416 . -233) 146103) ((-302 . -240) 146053) ((-880 . -930) T) ((-880 . -829) NIL) ((-879 . -625) 146025) ((-873 . -859) T) ((-1243 . -346) 145995) ((-1243 . -385) 145965) ((-1092 . -237) 145890) ((-224 . -1133) 145874) ((-1280 . -295) 145851) ((-367 . -237) 145830) ((-361 . -237) 145809) ((-483 . -1230) T) ((-353 . -237) 145788) ((-108 . -237) T) ((-1224 . -657) 145713) ((-1015 . -655) 145643) ((-973 . -21) T) ((-973 . -25) T) ((-744 . -21) T) ((-744 . -25) T) ((-724 . -21) T) ((-724 . -25) T) ((-720 . -657) 145608) ((-462 . -21) T) ((-462 . -25) T) ((-347 . -102) T) ((-176 . -102) T) ((-1011 . -1070) T) ((-879 . -1061) T) ((-783 . -102) T) ((-1265 . -371) 145587) ((-1264 . -910) 145493) ((-1244 . -371) 145472) ((-1243 . -910) 145323) ((-1036 . -622) 145305) ((-416 . -837) 145258) ((-1187 . -502) 145224) ((-171 . -930) 145155) ((-1186 . -502) 145121) ((-1180 . -502) 145087) ((-721 . -1112) T) ((-1138 . -502) 145053) ((-589 . -1068) 145040) ((-573 . -1068) 145027) ((-504 . -1068) 144992) ((-323 . -297) 144971) ((-320 . -297) T) ((-362 . -622) 144953) ((-427 . -25) T) ((-427 . -21) T) ((-99 . -293) 144932) ((-589 . -111) 144917) ((-573 . -111) 144902) ((-504 . -111) 144858) ((-1189 . -896) 144825) ((-911 . -498) 144809) ((-48 . -622) 144791) ((-48 . -623) 144736) ((-245 . -132) 144606) ((-1303 . -655) 144565) ((-1253 . -930) 144544) ((-825 . -1234) 144523) ((-397 . -499) 144504) ((-1047 . -523) 144348) ((-397 . -622) 144314) ((-825 . -565) 144245) ((-595 . -657) 144220) ((-270 . -47) 144192) ((-252 . -47) 144149) ((-540 . -518) 144126) ((-589 . -625) 144098) ((-573 . -625) 144070) ((-504 . -625) 144003) ((-1086 . -1230) T) ((-1012 . -1230) T) ((-1272 . -23) T) ((-1272 . -1124) T) ((-1265 . -1124) T) ((-708 . -1068) 143968) ((-1265 . -23) T) ((-1244 . -1124) T) ((-1244 . -23) T) ((-1224 . -735) T) ((-1132 . -297) T) ((-1015 . -378) 143940) ((-112 . -376) T) ((-483 . -910) 143846) ((-1125 . -237) 143798) ((-914 . -622) 143780) ((-55 . -625) 143762) ((-91 . -107) 143746) ((-1016 . -132) T) ((-915 . -859) 143697) ((-710 . -1164) T) ((-708 . -111) 143653) ((-852 . -655) 143570) ((-605 . -1124) T) ((-604 . -1124) T) ((-721 . -726) 143399) ((-720 . -735) T) ((-983 . -132) T) ((-924 . -132) T) ((-496 . -859) T) ((-808 . -25) T) ((-808 . -21) T) ((-589 . -1061) T) ((-219 . -859) T) ((-416 . -655) 143336) ((-573 . -1061) T) ((-545 . -1230) T) ((-504 . -1061) T) ((-605 . -23) T) ((-351 . -1299) 143313) ((-326 . -461) 143292) ((-347 . -316) 143279) ((-604 . -23) T) ((-436 . -132) T) ((-667 . -657) 143253) ((-250 . -1022) 143237) ((-881 . -314) T) ((-1304 . -1294) 143221) ((-780 . -801) T) ((-780 . -804) T) ((-710 . -38) 143208) ((-573 . -238) T) ((-504 . -248) T) ((-504 . -238) T) ((-1162 . -240) 143158) ((-1099 . -919) 143137) ((-117 . -38) 143124) ((-211 . -809) T) ((-210 . -809) T) ((-209 . -809) T) ((-208 . -809) T) ((-881 . -1034) 143102) ((-1293 . -498) 143086) ((-791 . -919) 143065) ((-789 . -919) 143044) ((-363 . -1230) 143023) ((-360 . -1230) 143002) ((-352 . -1230) 142981) ((-1202 . -1230) T) ((-270 . -1230) 142960) ((-463 . -919) 142939) ((-746 . -498) 142923) ((-1099 . -657) 142812) ((-708 . -625) 142747) ((-791 . -657) 142636) ((-632 . -1068) 142623) ((-488 . -1230) T) ((-351 . -376) T) ((-142 . -498) 142605) ((-789 . -657) 142494) ((-1153 . -1230) T) ((-558 . -859) T) ((-470 . -657) 142465) ((-270 . -896) 142324) ((-252 . -896) NIL) ((-118 . -1068) 142269) ((-463 . -657) 142158) ((-673 . -1050) 142135) ((-632 . -111) 142120) ((-399 . -1063) 142104) ((-363 . -1050) 142088) ((-360 . -1050) 142072) ((-352 . -1050) 142056) ((-270 . -1050) 141900) ((-252 . -1050) 141776) ((-920 . -1230) T) ((-118 . -111) 141705) ((-59 . -1230) T) ((-399 . -649) 141689) ((-630 . -1063) 141673) ((-528 . -1230) T) ((-525 . -1230) T) ((-506 . -1230) T) ((-505 . -1230) T) ((-446 . -622) 141655) ((-443 . -622) 141637) ((-630 . -649) 141621) ((-3 . -102) T) ((-1039 . -1223) 141590) ((-842 . -102) T) ((-698 . -57) 141548) ((-708 . -1061) T) ((-644 . -655) 141517) ((-616 . -655) 141486) ((-50 . -657) 141460) ((-296 . -461) T) ((-485 . -1223) 141429) ((0 . -102) T) ((-590 . -657) 141394) ((-527 . -657) 141339) ((-49 . -102) T) ((-920 . -1050) 141326) ((-708 . -248) T) ((-1092 . -418) 141305) ((-740 . -648) 141253) ((-1011 . -1112) T) ((-721 . -174) 141144) ((-632 . -625) 141039) ((-496 . -1004) 141021) ((-427 . -235) 140994) ((-270 . -385) 140978) ((-252 . -385) 140962) ((-408 . -1112) T) ((-1038 . -102) 140940) ((-347 . -38) 140924) ((-219 . -1004) 140906) ((-118 . -625) 140836) ((-176 . -38) 140768) ((-1264 . -314) 140747) ((-1243 . -314) 140726) ((-667 . -735) T) ((-99 . -622) 140708) ((-486 . -1063) 140673) ((-1180 . -648) 140625) ((-486 . -649) 140590) ((-494 . -25) T) ((-494 . -21) T) ((-1243 . -1034) 140542) ((-1069 . -1230) T) ((-632 . -1061) T) ((-387 . -413) T) ((-399 . -102) T) ((-1117 . -627) 140457) ((-270 . -910) 140403) ((-252 . -910) 140380) ((-118 . -1061) T) ((-825 . -1124) T) ((-1099 . -735) T) ((-632 . -238) 140359) ((-630 . -102) T) ((-791 . -735) T) ((-789 . -735) T) ((-422 . -1124) T) ((-118 . -248) T) ((-40 . -376) NIL) ((-118 . -238) NIL) ((-1235 . -859) T) ((-463 . -735) T) ((-825 . -23) T) ((-740 . -25) T) ((-740 . -21) T) ((-1089 . -293) 140338) ((-78 . -405) T) ((-78 . -404) T) ((-542 . -776) 140320) ((-703 . -1068) 140270) ((-1305 . -102) T) ((-1272 . -132) T) ((-1265 . -132) T) ((-1244 . -132) T) ((-1187 . -25) T) ((-1154 . -420) 140254) ((-644 . -375) 140186) ((-616 . -375) 140118) ((-1169 . -1161) 140102) ((-103 . -1112) 140080) ((-1187 . -21) T) ((-1186 . -21) T) ((-874 . -622) 140062) ((-1011 . -726) 140010) ((-225 . -657) 139977) ((-703 . -111) 139911) ((-50 . -735) T) ((-1186 . -25) T) ((-359 . -357) T) ((-1180 . -21) T) ((-1092 . -461) 139862) ((-1180 . -25) T) ((-721 . -523) 139809) ((-590 . -735) T) ((-527 . -735) T) ((-1138 . -21) T) ((-1138 . -25) T) ((-605 . -132) T) ((-604 . -132) T) ((-301 . -655) 139544) ((-491 . -237) 139496) ((-367 . -461) T) ((-361 . -461) T) ((-353 . -461) T) ((-483 . -314) 139475) ((-1238 . -102) T) ((-320 . -293) 139410) ((-108 . -461) T) ((-79 . -450) T) ((-79 . -404) T) ((-486 . -102) T) ((-700 . -625) 139394) ((-1309 . -622) 139376) ((-1309 . -623) 139358) ((-1092 . -411) 139337) ((-1047 . -498) 139268) ((-137 . -293) 139245) ((-573 . -804) T) ((-573 . -801) T) ((-1075 . -240) 139191) ((-367 . -411) 139142) ((-361 . -411) 139093) ((-353 . -411) 139044) ((-1295 . -1124) T) ((-1304 . -1063) 139028) ((-389 . -1063) 139012) ((-1304 . -649) 138982) ((-827 . -237) T) ((-389 . -649) 138952) ((-703 . -625) 138887) ((-1295 . -23) T) ((-1282 . -102) T) ((-177 . -622) 138869) ((-1154 . -1070) T) ((-556 . -376) T) ((-679 . -753) 138853) ((-1191 . -146) 138832) ((-1191 . -148) 138811) ((-1158 . -1112) T) ((-1158 . -1083) 138780) ((-69 . -1230) T) ((-1036 . -1068) 138717) ((-359 . -655) 138647) ((-875 . -1070) T) ((-245 . -648) 138553) ((-703 . -1061) T) ((-362 . -1068) 138498) ((-61 . -1230) T) ((-1036 . -111) 138414) ((-911 . -622) 138325) ((-703 . -248) T) ((-703 . -238) NIL) ((-852 . -857) 138304) ((-708 . -804) T) ((-708 . -801) T) ((-1015 . -420) 138281) ((-362 . -111) 138210) ((-387 . -930) T) ((-416 . -857) 138189) ((-721 . -297) 138100) ((-225 . -735) T) ((-1272 . -502) 138066) ((-1265 . -502) 138032) ((-1244 . -502) 137998) ((-587 . -1112) T) ((-323 . -1014) 137977) ((-224 . -1112) 137955) ((-1237 . -853) T) ((-326 . -985) 137917) ((-105 . -102) T) ((-48 . -1068) 137882) ((-1304 . -102) T) ((-389 . -102) T) ((-48 . -111) 137838) ((-1016 . -648) 137820) ((-1266 . -622) 137802) ((-540 . -102) T) ((-509 . -102) T) ((-1145 . -1146) 137786) ((-153 . -1287) 137770) ((-250 . -1230) T) ((-1229 . -102) T) ((-1036 . -625) 137707) ((-826 . -237) T) ((-1185 . -1234) 137686) ((-362 . -625) 137616) ((-1137 . -1234) 137595) ((-245 . -21) 137505) ((-245 . -25) 137356) ((-128 . -120) 137340) ((-122 . -120) 137324) ((-44 . -753) 137308) ((-1185 . -565) 137219) ((-1137 . -565) 137150) ((-1237 . -1112) T) ((-1047 . -293) 137125) ((-1179 . -1095) T) ((-1006 . -1095) T) ((-825 . -132) T) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-363 . -314) T) ((-360 . -314) T) ((-352 . -314) T) ((-257 . -1124) 137035) ((-256 . -1124) 136945) ((-1036 . -1061) T) ((-1015 . -1070) T) ((-48 . -625) 136878) ((-351 . -657) 136823) ((-630 . -38) 136807) ((-1293 . -622) 136769) ((-1293 . -623) 136730) ((-1089 . -622) 136712) ((-1036 . -248) T) ((-362 . -1061) T) ((-824 . -1287) 136682) ((-257 . -23) T) ((-256 . -23) T) ((-999 . -622) 136664) ((-1187 . -235) 136617) ((-1186 . -235) 136563) ((-746 . -623) 136524) ((-746 . -622) 136506) ((-1180 . -235) 136387) ((-808 . -859) 136366) ((-1172 . -152) 136313) ((-1011 . -523) 136225) ((-362 . -238) T) ((-362 . -248) T) ((-397 . -625) 136206) ((-1016 . -25) T) ((-142 . -622) 136188) ((-142 . -623) 136147) ((-920 . -314) T) ((-1016 . -21) T) ((-983 . -25) T) ((-924 . -21) T) ((-924 . -25) T) ((-436 . -21) T) ((-436 . -25) T) ((-852 . -420) 136131) ((-48 . -1061) T) ((-1302 . -1294) 136115) ((-1300 . -1294) 136099) ((-1047 . -613) 136074) ((-323 . -623) 135935) ((-323 . -622) 135917) ((-320 . -623) NIL) ((-320 . -622) 135899) ((-48 . -248) T) ((-48 . -238) T) ((-663 . -293) 135860) ((-559 . -240) 135810) ((-140 . -622) 135777) ((-137 . -622) 135759) ((-115 . -622) 135741) ((-486 . -38) 135706) ((-1304 . -1301) 135685) ((-1295 . -132) T) ((-1303 . -1070) T) ((-1094 . -102) T) ((-88 . -1230) T) ((-509 . -316) NIL) ((-1012 . -107) 135669) ((-899 . -1112) T) ((-895 . -1112) T) ((-1280 . -660) 135653) ((-1280 . -381) 135637) ((-334 . -1230) T) ((-602 . -859) T) ((-1154 . -1112) T) ((-1154 . -1065) 135577) ((-103 . -523) 135510) ((-937 . -622) 135492) ((-351 . -735) T) ((-30 . -622) 135474) ((-875 . -1112) T) ((-852 . -1070) 135453) ((-40 . -657) 135360) ((-227 . -1234) T) ((-416 . -1070) T) ((-1171 . -152) 135342) ((-1011 . -297) 135293) ((-626 . -1112) T) ((-227 . -565) T) ((-326 . -1261) 135277) ((-326 . -1258) 135247) ((-710 . -655) 135219) ((-1202 . -1206) 135198) ((-1087 . -622) 135180) ((-1202 . -107) 135130) ((-656 . -152) 135114) ((-641 . -152) 135060) ((-117 . -655) 135032) ((-488 . -1206) 135011) ((-496 . -148) T) ((-496 . -146) NIL) ((-1132 . -623) 134926) ((-447 . -622) 134908) ((-219 . -148) T) ((-219 . -146) NIL) ((-1132 . -622) 134890) ((-130 . -102) T) ((-52 . -102) T) ((-1244 . -648) 134842) ((-488 . -107) 134792) ((-1005 . -23) T) ((-1304 . -38) 134762) ((-1185 . -1124) T) ((-1137 . -1124) T) ((-1074 . -1234) T) ((-245 . -235) 134708) ((-318 . -102) T) ((-863 . -1124) T) ((-962 . -1234) 134687) ((-490 . -1234) 134666) ((-1074 . -565) T) ((-962 . -565) 134597) ((-1185 . -23) T) ((-1163 . -1095) T) ((-1137 . -23) T) ((-863 . -23) T) ((-490 . -565) 134528) ((-1154 . -726) 134460) ((-679 . -1063) 134444) ((-1158 . -523) 134377) ((-679 . -649) 134361) ((-1047 . -623) NIL) ((-1047 . -622) 134343) ((-96 . -1095) T) ((-875 . -726) 134313) ((-1309 . -1068) 134300) ((-1224 . -47) 134269) ((-257 . -132) T) ((-256 . -132) T) ((-1116 . -1112) T) ((-1015 . -1112) T) ((-62 . -622) 134251) ((-1180 . -859) NIL) ((-1036 . -801) T) ((-1036 . -804) T) ((-1309 . -111) 134236) ((-1272 . -25) T) ((-1272 . -21) T) ((-1265 . -21) T) ((-879 . -657) 134223) ((-1265 . -25) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1039 . -152) 134207) ((-1016 . -235) 134194) ((-881 . -829) 134173) ((-881 . -930) T) ((-721 . -293) 134100) ((-605 . -21) T) ((-347 . -655) 134059) ((-605 . -25) T) ((-604 . -21) T) ((-176 . -655) 133976) ((-40 . -735) T) ((-224 . -523) 133909) ((-604 . -25) T) ((-485 . -152) 133893) ((-472 . -152) 133877) ((-931 . -803) T) ((-931 . -735) T) ((-780 . -802) T) ((-780 . -803) T) ((-515 . -1112) T) ((-511 . -1112) T) ((-780 . -735) T) ((-227 . -371) T) ((-1302 . -1063) 133861) ((-1300 . -1063) 133845) ((-1302 . -649) 133815) ((-1169 . -1112) 133793) ((-880 . -1234) T) ((-1300 . -649) 133763) ((-663 . -622) 133745) ((-880 . -565) T) ((-703 . -376) NIL) ((-44 . -1063) 133729) ((-1309 . -625) 133711) ((-1303 . -1112) T) ((-679 . -102) T) ((-367 . -1287) 133695) ((-361 . -1287) 133679) ((-44 . -649) 133663) ((-353 . -1287) 133647) ((-557 . -102) T) ((-529 . -859) 133626) ((-496 . -237) T) ((-219 . -237) T) ((-1058 . -1112) T) ((-826 . -461) 133605) ((-153 . -1063) 133589) ((-1058 . -1083) 133518) ((-1039 . -988) 133487) ((-828 . -1124) T) ((-1015 . -726) 133432) ((-153 . -649) 133416) ((-395 . -1124) T) ((-485 . -988) 133385) ((-472 . -988) 133354) ((-110 . -152) 133336) ((-73 . -622) 133318) ((-903 . -622) 133300) ((-1092 . -733) 133279) ((-1309 . -1061) T) ((-825 . -648) 133227) ((-301 . -1070) 133169) ((-171 . -1234) 133074) ((-227 . -1124) T) ((-331 . -23) T) ((-1180 . -1004) 133026) ((-852 . -1112) T) ((-1266 . -1068) 132931) ((-1138 . -749) 132910) ((-1264 . -930) 132889) ((-1243 . -930) 132868) ((-879 . -735) T) ((-171 . -565) 132779) ((-589 . -657) 132766) ((-573 . -657) 132738) ((-416 . -1112) T) ((-269 . -1112) T) ((-215 . -622) 132720) ((-504 . -657) 132670) ((-227 . -23) T) ((-1243 . -829) 132623) ((-1302 . -102) T) ((-362 . -1299) 132600) ((-1300 . -102) T) ((-1266 . -111) 132492) ((-824 . -1063) 132389) ((-824 . -649) 132331) ((-145 . -622) 132313) ((-1005 . -132) T) ((-44 . -102) T) ((-245 . -859) 132264) ((-1253 . -1234) 132243) ((-103 . -498) 132227) ((-1303 . -726) 132197) ((-1099 . -47) 132158) ((-1074 . -1124) T) ((-962 . -1124) T) ((-128 . -34) T) ((-122 . -34) T) ((-791 . -47) 132135) ((-789 . -47) 132107) ((-1253 . -565) 132018) ((-362 . -376) T) ((-490 . -1124) T) ((-1185 . -132) T) ((-1137 . -132) T) ((-463 . -47) 131997) ((-880 . -371) T) ((-863 . -132) T) ((-153 . -102) T) ((-1074 . -23) T) ((-962 . -23) T) ((-580 . -565) T) ((-825 . -25) T) ((-825 . -21) T) ((-1154 . -523) 131930) ((-601 . -1095) T) ((-595 . -1050) 131914) ((-1266 . -625) 131788) ((-490 . -23) T) ((-359 . -1070) T) ((-1224 . -910) 131769) ((-679 . -316) 131707) ((-1125 . -1287) 131677) ((-708 . -657) 131642) ((-1016 . -859) T) ((-1015 . -174) T) ((-973 . -146) 131621) ((-644 . -1112) T) ((-616 . -1112) T) ((-973 . -148) 131600) ((-744 . -148) 131579) ((-744 . -146) 131558) ((-667 . -1230) T) ((-983 . -859) T) ((-1272 . -235) 131511) ((-1265 . -235) 131457) ((-1244 . -235) 131338) ((-842 . -655) 131255) ((-483 . -930) 131234) ((-326 . -1063) 131069) ((-323 . -1068) 130979) ((-320 . -1068) 130908) ((-1011 . -293) 130866) ((-416 . -726) 130818) ((-326 . -649) 130659) ((-604 . -235) 130612) ((-710 . -857) T) ((-1266 . -1061) T) ((-323 . -111) 130508) ((-320 . -111) 130421) ((-974 . -102) T) ((-824 . -102) 130211) ((-721 . -623) NIL) ((-721 . -622) 130193) ((-1266 . -333) 130137) ((-667 . -1050) 130033) ((-1099 . -1230) 130012) ((-1047 . -295) 129987) ((-589 . -735) T) ((-573 . -803) T) ((-171 . -371) 129938) ((-573 . -800) T) ((-573 . -735) T) ((-504 . -735) T) ((-791 . -1230) T) ((-1158 . -498) 129922) ((-1099 . -896) NIL) ((-880 . -1124) T) ((-118 . -919) NIL) ((-1302 . -1301) 129898) ((-1300 . -1301) 129877) ((-791 . -896) NIL) ((-789 . -896) 129736) ((-1295 . -25) T) ((-1295 . -21) T) ((-1227 . -102) 129714) ((-1118 . -404) T) ((-632 . -657) 129701) ((-463 . -896) NIL) ((-684 . -102) 129679) ((-1099 . -1050) 129506) ((-880 . -23) T) ((-791 . -1050) 129365) ((-789 . -1050) 129222) ((-118 . -657) 129167) ((-463 . -1050) 129043) ((-323 . -625) 128607) ((-320 . -625) 128490) ((-399 . -655) 128459) ((-658 . -1050) 128443) ((-590 . -1230) T) ((-636 . -102) T) ((-527 . -1230) T) ((-224 . -498) 128427) ((-1280 . -34) T) ((-630 . -655) 128386) ((-296 . -1063) 128373) ((-137 . -625) 128357) ((-296 . -649) 128344) ((-644 . -726) 128328) ((-616 . -726) 128312) ((-679 . -38) 128272) ((-326 . -102) T) ((-85 . -622) 128254) ((-50 . -1050) 128238) ((-1132 . -1068) 128225) ((-1099 . -385) 128209) ((-791 . -385) 128193) ((-708 . -735) T) ((-708 . -803) T) ((-708 . -800) T) ((-590 . -1050) 128180) ((-527 . -1050) 128157) ((-60 . -57) 128119) ((-331 . -132) T) ((-323 . -1061) 128009) ((-320 . -1061) T) ((-171 . -1124) T) ((-789 . -385) 127993) ((-45 . -152) 127943) ((-1016 . -1004) 127925) ((-463 . -385) 127909) ((-416 . -174) T) ((-323 . -248) 127888) ((-320 . -248) T) ((-320 . -238) NIL) ((-301 . -1112) 127670) ((-227 . -132) T) ((-1132 . -111) 127655) ((-171 . -23) T) ((-808 . -148) 127634) ((-808 . -146) 127613) ((-257 . -648) 127519) ((-256 . -648) 127425) ((-326 . -291) 127391) ((-1169 . -523) 127324) ((-486 . -655) 127274) ((-1145 . -1112) T) ((-227 . -1072) T) ((-824 . -316) 127212) ((-1099 . -910) 127147) ((-791 . -910) 127090) ((-789 . -910) 127074) ((-1302 . -38) 127044) ((-1300 . -38) 127014) ((-1253 . -1124) T) ((-864 . -1124) T) ((-463 . -910) 126991) ((-867 . -1112) T) ((-1253 . -23) T) ((-1132 . -625) 126963) ((-1074 . -132) T) ((-580 . -1124) T) ((-864 . -23) T) ((-632 . -735) T) ((-363 . -930) T) ((-360 . -930) T) ((-296 . -102) T) ((-352 . -930) T) ((-982 . -1095) T) ((-962 . -132) T) ((-825 . -235) 126936) ((-118 . -803) NIL) ((-118 . -800) NIL) ((-118 . -735) T) ((-1058 . -523) 126837) ((-703 . -919) NIL) ((-580 . -23) T) ((-490 . -132) T) ((-427 . -237) 126816) ((-684 . -316) 126754) ((-644 . -770) T) ((-616 . -770) T) ((-1244 . -859) NIL) ((-1092 . -1063) 126664) ((-1015 . -297) T) ((-703 . -657) 126614) ((-257 . -21) T) ((-359 . -1112) T) ((-257 . -25) T) ((-256 . -21) T) ((-256 . -25) T) ((-153 . -38) 126598) ((-2 . -102) T) ((-920 . -930) T) ((-1092 . -649) 126466) ((-491 . -1287) 126436) ((-1132 . -1061) T) ((-720 . -314) T) ((-367 . -1063) 126388) ((-361 . -1063) 126340) ((-353 . -1063) 126292) ((-367 . -649) 126244) ((-225 . -1050) 126221) ((-361 . -649) 126173) ((-108 . -1063) 126123) ((-353 . -649) 126075) ((-301 . -726) 126017) ((-710 . -1070) T) ((-496 . -461) T) ((-416 . -523) 125929) ((-108 . -649) 125879) ((-219 . -461) T) ((-1132 . -238) T) ((-302 . -152) 125829) ((-1011 . -623) 125790) ((-1011 . -622) 125772) ((-1001 . -622) 125754) ((-117 . -1070) T) ((-663 . -1068) 125738) ((-227 . -502) T) ((-408 . -622) 125720) ((-408 . -623) 125697) ((-1066 . -1287) 125667) ((-663 . -111) 125646) ((-1154 . -498) 125630) ((-1304 . -655) 125589) ((-389 . -655) 125558) ((-824 . -38) 125528) ((-63 . -450) T) ((-63 . -404) T) ((-1172 . -102) T) ((-880 . -132) T) ((-493 . -102) 125506) ((-1309 . -376) T) ((-1092 . -102) T) ((-1073 . -102) T) ((-359 . -726) 125451) ((-740 . -148) 125430) ((-740 . -146) 125409) ((-663 . -625) 125327) ((-1036 . -657) 125264) ((-532 . -1112) 125242) ((-367 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-108 . -102) T) ((-513 . -1112) T) ((-362 . -657) 125187) ((-1185 . -648) 125135) ((-1137 . -648) 125083) ((-393 . -518) 125062) ((-842 . -857) 125041) ((-387 . -1234) T) ((-703 . -735) T) ((-1244 . -1004) 124993) ((-347 . -1070) T) ((-112 . -1230) T) ((-176 . -1070) T) ((-103 . -622) 124925) ((-1187 . -146) 124904) ((-1187 . -148) 124883) ((-387 . -565) T) ((-1186 . -148) 124862) ((-1186 . -146) 124841) ((-1180 . -146) 124748) ((-416 . -297) T) ((-1180 . -148) 124655) ((-1138 . -148) 124634) ((-1138 . -146) 124613) ((-326 . -38) 124454) ((-171 . -132) T) ((-320 . -804) NIL) ((-320 . -801) NIL) ((-663 . -1061) T) ((-48 . -657) 124404) ((-1125 . -1063) 124301) ((-903 . -625) 124278) ((-1125 . -649) 124220) ((-1179 . -102) T) ((-1006 . -102) T) ((-1005 . -21) T) ((-128 . -1022) 124204) ((-122 . -1022) 124188) ((-1005 . -25) T) ((-911 . -120) 124172) ((-1171 . -102) T) ((-1253 . -132) T) ((-1185 . -25) T) ((-351 . -1230) T) ((-1185 . -21) T) ((-864 . -132) T) ((-1137 . -25) T) ((-1137 . -21) T) ((-863 . -25) T) ((-863 . -21) T) ((-791 . -314) 124151) ((-1172 . -316) 123946) ((-1169 . -498) 123930) ((-656 . -102) 123908) ((-641 . -102) T) ((-1162 . -152) 123858) ((-580 . -132) T) ((-630 . -857) 123837) ((-1158 . -622) 123799) ((-1158 . -623) 123760) ((-1036 . -800) T) ((-1036 . -803) T) ((-1036 . -735) T) ((-721 . -1068) 123583) ((-493 . -316) 123521) ((-462 . -426) 123491) ((-359 . -174) T) ((-296 . -38) 123478) ((-257 . -235) 123424) ((-256 . -235) 123370) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-351 . -1050) 123347) ((-274 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-362 . -735) T) ((-721 . -111) 123156) ((-679 . -233) 123140) ((-590 . -314) T) ((-527 . -314) T) ((-301 . -523) 123089) ((-108 . -316) NIL) ((-72 . -404) T) ((-1125 . -102) 122879) ((-842 . -420) 122863) ((-1132 . -804) T) ((-1132 . -801) T) ((-710 . -1112) T) ((-587 . -622) 122845) ((-387 . -371) T) ((-171 . -502) 122823) ((-224 . -622) 122755) ((-135 . -1112) T) ((-117 . -1112) T) ((-976 . -1230) T) ((-48 . -735) T) ((-1058 . -498) 122720) ((-142 . -434) 122702) ((-142 . -376) T) ((-1039 . -102) T) ((-521 . -518) 122681) ((-721 . -625) 122437) ((-1187 . -237) 122396) ((-485 . -102) T) ((-472 . -102) T) ((-1186 . -237) 122348) ((-1180 . -237) 122235) ((-1046 . -1124) T) ((-1237 . -622) 122217) ((-1194 . -1050) 122153) ((-1187 . -35) 122119) ((-1187 . -95) 122085) ((-1187 . -1218) 122051) ((-1187 . -1215) 122017) ((-1186 . -1215) 121983) ((-1186 . -1218) 121949) ((-1171 . -316) NIL) ((-89 . -405) T) ((-89 . -404) T) ((-1092 . -1164) 121928) ((-40 . -1230) 121900) ((-1186 . -95) 121866) ((-1046 . -23) T) ((-1186 . -35) 121832) ((-580 . -502) T) ((-1180 . -1215) 121798) ((-1180 . -1218) 121764) ((-1180 . -95) 121730) ((-1180 . -35) 121696) ((-369 . -1124) T) ((-367 . -1164) 121675) ((-361 . -1164) 121654) ((-353 . -1164) 121633) ((-1116 . -293) 121589) ((-1138 . -35) 121555) ((-1138 . -95) 121521) ((-108 . -1164) T) ((-1138 . -1218) 121487) ((-842 . -1070) 121466) ((-656 . -316) 121404) ((-641 . -316) 121255) ((-1138 . -1215) 121221) ((-721 . -1061) T) ((-1074 . -648) 121203) ((-1092 . -38) 121071) ((-962 . -648) 121019) ((-1016 . -148) T) ((-1016 . -146) NIL) ((-387 . -1124) T) ((-331 . -25) T) ((-329 . -23) T) ((-953 . -859) 120998) ((-721 . -333) 120975) ((-490 . -648) 120923) ((-40 . -1050) 120811) ((-721 . -238) T) ((-710 . -726) 120798) ((-347 . -1112) T) ((-176 . -1112) T) ((-338 . -859) T) ((-427 . -461) 120748) ((-387 . -23) T) ((-367 . -38) 120713) ((-361 . -38) 120678) ((-353 . -38) 120643) ((-80 . -450) T) ((-80 . -404) T) ((-227 . -25) T) ((-227 . -21) T) ((-845 . -1124) T) ((-108 . -38) 120593) ((-836 . -1124) T) ((-783 . -1112) T) ((-117 . -726) 120580) ((-681 . -1050) 120564) ((-621 . -102) T) ((-845 . -23) T) ((-836 . -23) T) ((-1169 . -293) 120516) ((-1125 . -316) 120454) ((-491 . -1063) 120351) ((-1114 . -240) 120335) ((-64 . -405) T) ((-64 . -404) T) ((-1163 . -102) T) ((-110 . -102) T) ((-491 . -649) 120277) ((-40 . -385) 120254) ((-96 . -102) T) ((-662 . -861) 120238) ((-1185 . -235) 120225) ((-1147 . -1095) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-1066 . -1063) 120209) ((-824 . -233) 120178) ((-962 . -25) T) ((-962 . -21) T) ((-1066 . -649) 120120) ((-630 . -1070) T) ((-1132 . -376) T) ((-1039 . -316) 120058) ((-679 . -655) 120017) ((-490 . -25) T) ((-490 . -21) T) ((-393 . -1063) 120001) ((-899 . -622) 119983) ((-895 . -622) 119965) ((-532 . -523) 119898) ((-257 . -859) 119849) ((-256 . -859) 119800) ((-393 . -649) 119770) ((-880 . -648) 119747) ((-485 . -316) 119685) ((-472 . -316) 119623) ((-359 . -297) T) ((-1169 . -1268) 119607) ((-1154 . -622) 119569) ((-1154 . -623) 119530) ((-1152 . -102) T) ((-1011 . -1068) 119426) ((-40 . -910) 119378) ((-1169 . -613) 119355) ((-1309 . -657) 119342) ((-875 . -499) 119319) ((-1075 . -152) 119265) ((-881 . -1234) T) ((-1011 . -111) 119147) ((-347 . -726) 119131) ((-875 . -622) 119093) ((-176 . -726) 119025) ((-881 . -565) T) ((-416 . -293) 118983) ((-245 . -237) 118935) ((-108 . -409) 118917) ((-84 . -392) T) ((-84 . -404) T) ((-710 . -174) T) ((-626 . -622) 118899) ((-99 . -735) T) ((-491 . -102) 118689) ((-99 . -482) T) ((-117 . -174) T) ((-1302 . -655) 118648) ((-1300 . -655) 118607) ((-1125 . -38) 118577) ((-171 . -648) 118525) ((-1066 . -102) T) ((-1011 . -625) 118415) ((-880 . -25) T) ((-824 . -243) 118394) ((-880 . -21) T) ((-827 . -102) T) ((-44 . -655) 118337) ((-1016 . -237) T) ((-423 . -102) T) ((-393 . -102) T) ((-110 . -316) NIL) ((-229 . -102) 118315) ((-128 . -1230) T) ((-122 . -1230) T) ((-826 . -1063) 118266) ((-826 . -649) 118208) ((-1046 . -132) T) ((-679 . -375) 118192) ((-153 . -655) 118151) ((-644 . -293) 118109) ((-616 . -293) 118067) ((-1309 . -735) T) ((-1011 . -1061) T) ((-1253 . -648) 118015) ((-1116 . -622) 117997) ((-1015 . -622) 117979) ((-573 . -1230) T) ((-504 . -1230) T) ((-524 . -23) T) ((-519 . -23) T) ((-351 . -314) T) ((-517 . -23) T) ((-329 . -132) T) ((-3 . -1112) T) ((-1015 . -623) 117963) ((-1011 . -248) 117942) ((-1011 . -238) 117921) ((-1272 . -146) 117900) ((-1272 . -148) 117879) ((-842 . -1112) T) ((-1265 . -148) 117858) ((-1265 . -146) 117837) ((-1264 . -1234) 117816) ((-1244 . -146) 117723) ((-1244 . -148) 117630) ((-1243 . -1234) 117609) ((-387 . -132) T) ((-227 . -235) 117596) ((-573 . -896) 117578) ((0 . -1112) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1112) T) ((-1266 . -657) 117483) ((-1264 . -565) 117434) ((-723 . -1124) T) ((-1243 . -565) 117385) ((-573 . -1050) 117367) ((-604 . -148) 117346) ((-604 . -146) 117325) ((-504 . -1050) 117268) ((-1147 . -1149) T) ((-87 . -392) T) ((-87 . -404) T) ((-881 . -371) T) ((-845 . -132) T) ((-836 . -132) T) ((-974 . -655) 117212) ((-723 . -23) T) ((-515 . -622) 117178) ((-511 . -622) 117160) ((-824 . -655) 116910) ((-1304 . -1070) T) ((-387 . -1072) T) ((-1038 . -1112) 116888) ((-55 . -1050) 116870) ((-911 . -34) T) ((-491 . -316) 116808) ((-601 . -102) T) ((-1169 . -623) 116769) ((-1169 . -622) 116701) ((-1191 . -1063) 116584) ((-45 . -102) T) ((-826 . -102) T) ((-1191 . -649) 116481) ((-1253 . -25) T) ((-1253 . -21) T) ((-1074 . -235) 116468) ((-864 . -25) T) ((-44 . -375) 116452) ((-864 . -21) T) ((-740 . -461) 116403) ((-1303 . -622) 116385) ((-1292 . -1063) 116355) ((-1066 . -316) 116293) ((-680 . -1095) T) ((-615 . -1095) T) ((-399 . -1112) T) ((-580 . -25) T) ((-580 . -21) T) ((-182 . -1095) T) ((-162 . -1095) T) ((-157 . -1095) T) ((-155 . -1095) T) ((-1292 . -649) 116263) ((-630 . -1112) T) ((-708 . -896) 116245) ((-1280 . -1230) T) ((-229 . -316) 116183) ((-145 . -376) T) ((-1058 . -623) 116125) ((-1058 . -622) 116068) ((-320 . -919) NIL) ((-1238 . -853) T) ((-708 . -1050) 116013) ((-720 . -930) T) ((-483 . -1234) 115992) ((-1186 . -461) 115971) ((-1180 . -461) 115950) ((-337 . -102) T) ((-881 . -1124) T) ((-326 . -655) 115832) ((-323 . -657) 115561) ((-320 . -657) 115490) ((-483 . -565) 115441) ((-347 . -523) 115407) ((-559 . -152) 115357) ((-40 . -314) T) ((-852 . -622) 115339) ((-710 . -297) T) ((-881 . -23) T) ((-387 . -502) T) ((-1092 . -233) 115309) ((-521 . -102) T) ((-416 . -623) 115116) ((-416 . -622) 115098) ((-269 . -622) 115080) ((-117 . -297) T) ((-1266 . -735) T) ((-632 . -1230) 115059) ((-1305 . -1112) T) ((-1264 . -371) 115038) ((-1243 . -371) 115017) ((-1293 . -34) T) ((-1238 . -1112) T) ((-118 . -1230) T) ((-108 . -233) 114999) ((-1191 . -102) T) ((-486 . -1112) T) ((-532 . -498) 114983) ((-746 . -34) T) ((-662 . -1063) 114967) ((-491 . -38) 114937) ((-662 . -649) 114907) ((-880 . -235) NIL) ((-142 . -34) T) ((-118 . -894) 114884) ((-118 . -896) NIL) ((-632 . -1050) 114767) ((-1292 . -102) T) ((-1272 . -237) 114726) ((-653 . -859) 114705) ((-1265 . -237) 114657) ((-1244 . -237) 114544) ((-302 . -102) T) ((-721 . -376) 114523) ((-118 . -1050) 114500) ((-399 . -726) 114484) ((-604 . -237) 114443) ((-630 . -726) 114427) ((-1117 . -1230) T) ((-45 . -316) 114231) ((-825 . -146) 114210) ((-825 . -148) 114189) ((-296 . -655) 114161) ((-1303 . -390) 114140) ((-828 . -859) T) ((-1282 . -1112) T) ((-1172 . -231) 114087) ((-395 . -859) 114066) ((-1272 . -1218) 114032) ((-1272 . -1215) 113998) ((-1265 . -1215) 113964) ((-524 . -132) T) ((-1265 . -1218) 113930) ((-1244 . -1215) 113896) ((-1244 . -1218) 113862) ((-1272 . -35) 113828) ((-1272 . -95) 113794) ((-1265 . -95) 113760) ((-644 . -622) 113729) ((-616 . -622) 113698) ((-227 . -859) T) ((-1265 . -35) 113664) ((-1264 . -1124) T) ((-1244 . -95) 113630) ((-1132 . -657) 113602) ((-1244 . -35) 113568) ((-1243 . -1124) T) ((-602 . -152) 113550) ((-1092 . -357) 113529) ((-176 . -297) T) ((-118 . -385) 113506) ((-118 . -346) 113483) ((-171 . -235) 113428) ((-879 . -314) T) ((-320 . -803) NIL) ((-320 . -800) NIL) ((-323 . -735) 113277) ((-320 . -735) T) ((-483 . -371) 113256) ((-367 . -357) 113235) ((-361 . -357) 113214) ((-353 . -357) 113193) ((-323 . -482) 113172) ((-1264 . -23) T) ((-1243 . -23) T) ((-727 . -1124) T) ((-723 . -132) T) ((-662 . -102) T) ((-486 . -726) 113137) ((-45 . -289) 113087) ((-105 . -1112) T) ((-68 . -622) 113069) ((-982 . -102) T) ((-873 . -102) T) ((-632 . -910) 113028) ((-1304 . -1112) T) ((-389 . -1112) T) ((-1253 . -235) 113015) ((-82 . -1230) T) ((-1229 . -1112) T) ((-1074 . -859) T) ((-118 . -910) NIL) ((-791 . -930) 112994) ((-722 . -859) T) ((-540 . -1112) T) ((-509 . -1112) T) ((-363 . -1234) T) ((-360 . -1234) T) ((-352 . -1234) T) ((-270 . -1234) 112973) ((-252 . -1234) 112952) ((-542 . -869) T) ((-1125 . -233) 112921) ((-1171 . -837) T) ((-1154 . -1068) 112905) ((-399 . -770) T) ((-703 . -1230) T) ((-700 . -1050) 112889) ((-363 . -565) T) ((-360 . -565) T) ((-352 . -565) T) ((-270 . -565) 112820) ((-252 . -565) 112751) ((-534 . -1095) T) ((-1154 . -111) 112730) ((-462 . -753) 112700) ((-875 . -1068) 112670) ((-826 . -38) 112612) ((-703 . -894) 112594) ((-703 . -896) 112576) ((-302 . -316) 112380) ((-920 . -1234) T) ((-1169 . -295) 112357) ((-1092 . -655) 112252) ((-679 . -420) 112236) ((-875 . -111) 112201) ((-1016 . -461) T) ((-703 . -1050) 112146) ((-920 . -565) T) ((-542 . -622) 112128) ((-590 . -930) T) ((-496 . -1063) 112078) ((-483 . -1124) T) ((-527 . -930) T) ((-924 . -461) T) ((-65 . -622) 112060) ((-219 . -1063) 112010) ((-496 . -649) 111960) ((-367 . -655) 111897) ((-361 . -655) 111834) ((-353 . -655) 111771) ((-641 . -231) 111717) ((-219 . -649) 111667) ((-108 . -655) 111617) ((-483 . -23) T) ((-1132 . -803) T) ((-881 . -132) T) ((-1132 . -800) T) ((-1295 . -1297) 111596) ((-1132 . -735) T) ((-663 . -657) 111570) ((-301 . -622) 111311) ((-1154 . -625) 111229) ((-1047 . -34) T) ((-825 . -237) 111208) ((-824 . -857) 111187) ((-589 . -314) T) ((-573 . -314) T) ((-504 . -314) T) ((-1304 . -726) 111157) ((-703 . -385) 111139) ((-703 . -346) 111121) ((-486 . -174) T) ((-389 . -726) 111091) ((-875 . -625) 111026) ((-880 . -859) NIL) ((-573 . -1034) T) ((-504 . -1034) T) ((-1145 . -622) 111008) ((-1125 . -243) 110987) ((-216 . -102) T) ((-1162 . -102) T) ((-71 . -622) 110969) ((-1154 . -1061) T) ((-1191 . -38) 110866) ((-867 . -622) 110848) ((-573 . -554) T) ((-679 . -1070) T) ((-740 . -959) 110801) ((-362 . -1230) T) ((-1154 . -238) 110780) ((-1094 . -1112) T) ((-1046 . -25) T) ((-1046 . -21) T) ((-1015 . -1068) 110725) ((-915 . -102) T) ((-875 . -1061) T) ((-703 . -910) NIL) ((-363 . -336) 110709) ((-363 . -371) T) ((-360 . -336) 110693) ((-360 . -371) T) ((-352 . -336) 110677) ((-352 . -371) T) ((-496 . -102) T) ((-1292 . -38) 110647) ((-555 . -859) T) ((-532 . -696) 110597) ((-219 . -102) T) ((-1036 . -1050) 110477) ((-1015 . -111) 110406) ((-1187 . -985) 110375) ((-1186 . -985) 110337) ((-529 . -152) 110321) ((-1092 . -378) 110300) ((-359 . -622) 110282) ((-329 . -21) T) ((-362 . -1050) 110259) ((-329 . -25) T) ((-1180 . -985) 110228) ((-48 . -1230) T) ((-76 . -622) 110210) ((-1138 . -985) 110177) ((-708 . -314) T) ((-130 . -853) T) ((-920 . -371) T) ((-387 . -25) T) ((-387 . -21) T) ((-920 . -336) 110164) ((-86 . -622) 110146) ((-708 . -1034) T) ((-686 . -859) T) ((-1264 . -132) T) ((-1243 . -132) T) ((-911 . -1022) 110130) ((-845 . -21) T) ((-48 . -1050) 110073) ((-845 . -25) T) ((-836 . -25) T) ((-836 . -21) T) ((-1125 . -655) 109823) ((-1302 . -1070) T) ((-558 . -102) T) ((-1300 . -1070) T) ((-663 . -735) T) ((-1116 . -627) 109726) ((-1015 . -625) 109656) ((-1303 . -1068) 109640) ((-824 . -420) 109609) ((-103 . -120) 109593) ((-130 . -1112) T) ((-52 . -1112) T) ((-936 . -622) 109575) ((-880 . -1004) 109552) ((-832 . -102) T) ((-1303 . -111) 109531) ((-662 . -38) 109501) ((-580 . -859) T) ((-363 . -1124) T) ((-360 . -1124) T) ((-352 . -1124) T) ((-270 . -1124) T) ((-252 . -1124) T) ((-1162 . -316) 109305) ((-632 . -314) 109284) ((-1100 . -235) 109271) ((-673 . -23) T) ((-533 . -1095) T) ((-318 . -1112) T) ((-491 . -233) 109240) ((-153 . -1070) T) ((-363 . -23) T) ((-360 . -23) T) ((-352 . -23) T) ((-118 . -314) T) ((-270 . -23) T) ((-252 . -23) T) ((-1015 . -1061) T) ((-721 . -919) 109219) ((-1169 . -625) 109196) ((-1015 . -238) 109168) ((-1015 . -248) T) ((-118 . -1034) NIL) ((-920 . -1124) T) ((-1265 . -461) 109147) ((-1244 . -461) 109126) ((-532 . -622) 109058) ((-721 . -657) 108947) ((-416 . -1068) 108899) ((-513 . -622) 108881) ((-920 . -23) T) ((-496 . -316) NIL) ((-1303 . -625) 108837) ((-483 . -132) T) ((-219 . -316) NIL) ((-416 . -111) 108775) ((-824 . -1070) 108705) ((-746 . -1110) 108689) ((-1264 . -502) 108655) ((-1243 . -502) 108621) ((-557 . -853) T) ((-142 . -1110) 108603) ((-486 . -297) T) ((-1303 . -1061) T) ((-257 . -237) 108555) ((-256 . -237) 108507) ((-1235 . -102) T) ((-1075 . -102) T) ((-852 . -625) 108375) ((-509 . -523) NIL) ((-491 . -243) 108354) ((-416 . -625) 108252) ((-973 . -1063) 108135) ((-744 . -1063) 108105) ((-973 . -649) 108002) ((-1185 . -146) 107981) ((-744 . -649) 107951) ((-462 . -1063) 107921) ((-1185 . -148) 107900) ((-1137 . -148) 107879) ((-1137 . -146) 107858) ((-644 . -1068) 107842) ((-616 . -1068) 107826) ((-462 . -649) 107796) ((-1187 . -1271) 107780) ((-1187 . -1258) 107757) ((-1186 . -1263) 107718) ((-679 . -1112) T) ((-679 . -1065) 107658) ((-1186 . -1258) 107628) ((-557 . -1112) T) ((-496 . -1164) T) ((-1186 . -1261) 107612) ((-1180 . -1242) 107573) ((-827 . -272) 107557) ((-219 . -1164) T) ((-351 . -930) T) ((-99 . -1230) T) ((-644 . -111) 107536) ((-616 . -111) 107515) ((-1180 . -1258) 107492) ((-852 . -1061) 107471) ((-1180 . -1240) 107455) ((-524 . -25) T) ((-504 . -309) T) ((-520 . -23) T) ((-519 . -25) T) ((-517 . -25) T) ((-516 . -23) T) ((-427 . -1063) 107429) ((-416 . -1061) T) ((-326 . -1070) T) ((-703 . -314) T) ((-427 . -649) 107403) ((-108 . -857) T) ((-721 . -735) T) ((-416 . -248) T) ((-416 . -238) 107382) ((-387 . -235) 107369) ((-496 . -38) 107319) ((-219 . -38) 107269) ((-483 . -502) 107235) ((-1237 . -376) T) ((-1171 . -1156) T) ((-1113 . -102) T) ((-836 . -235) 107208) ((-710 . -622) 107190) ((-710 . -623) 107105) ((-723 . -21) T) ((-723 . -25) T) ((-1147 . -102) T) ((-491 . -655) 106855) ((-135 . -622) 106837) ((-117 . -622) 106819) ((-158 . -25) T) ((-1302 . -1112) T) ((-881 . -648) 106767) ((-1300 . -1112) T) ((-973 . -102) T) ((-744 . -102) T) ((-724 . -102) T) ((-462 . -102) T) ((-825 . -461) 106718) ((-44 . -1112) T) ((-1100 . -859) T) ((-1075 . -316) 106569) ((-673 . -132) T) ((-1066 . -655) 106538) ((-679 . -726) 106522) ((-296 . -1070) T) ((-363 . -132) T) ((-360 . -132) T) ((-352 . -132) T) ((-270 . -132) T) ((-252 . -132) T) ((-393 . -655) 106491) ((-427 . -102) T) ((-153 . -1112) T) ((-45 . -231) 106441) ((-808 . -1063) 106425) ((-968 . -859) 106404) ((-1011 . -657) 106306) ((-808 . -649) 106290) ((-245 . -1287) 106260) ((-1036 . -314) T) ((-301 . -1068) 106181) ((-920 . -132) T) ((-40 . -930) T) ((-496 . -409) 106163) ((-362 . -314) T) ((-219 . -409) 106145) ((-1092 . -420) 106129) ((-301 . -111) 106045) ((-1196 . -859) T) ((-1195 . -859) T) ((-881 . -25) T) ((-881 . -21) T) ((-1266 . -47) 105989) ((-347 . -622) 105971) ((-1185 . -237) T) ((-227 . -148) T) ((-176 . -622) 105953) ((-1125 . -857) 105932) ((-783 . -622) 105914) ((-129 . -859) T) ((-617 . -240) 105861) ((-484 . -240) 105811) ((-1302 . -726) 105781) ((-48 . -314) T) ((-1300 . -726) 105751) ((-65 . -625) 105680) ((-974 . -1112) T) ((-824 . -1112) 105470) ((-319 . -102) T) ((-911 . -1230) T) ((-48 . -1034) T) ((-1243 . -648) 105378) ((-698 . -102) 105356) ((-44 . -726) 105340) ((-559 . -102) T) ((-301 . -625) 105271) ((-67 . -391) T) ((-67 . -404) T) ((-671 . -23) T) ((-826 . -655) 105207) ((-679 . -770) T) ((-1227 . -1112) 105185) ((-359 . -1068) 105130) ((-684 . -1112) 105108) ((-1074 . -148) T) ((-962 . -148) 105087) ((-962 . -146) 105066) ((-808 . -102) T) ((-153 . -726) 105050) ((-490 . -148) 105029) ((-490 . -146) 105008) ((-359 . -111) 104937) ((-1092 . -1070) T) ((-329 . -859) 104916) ((-1272 . -985) 104885) ((-636 . -1112) T) ((-1265 . -985) 104847) ((-520 . -132) T) ((-516 . -132) T) ((-302 . -231) 104797) ((-367 . -1070) T) ((-361 . -1070) T) ((-353 . -1070) T) ((-301 . -1061) 104739) ((-1244 . -985) 104708) ((-387 . -859) T) ((-108 . -1070) T) ((-1011 . -735) T) ((-879 . -930) T) ((-852 . -804) 104687) ((-852 . -801) 104666) ((-427 . -316) 104605) ((-477 . -102) T) ((-604 . -985) 104574) ((-326 . -1112) T) ((-416 . -804) 104553) ((-416 . -801) 104532) ((-509 . -498) 104514) ((-1266 . -1050) 104480) ((-1264 . -21) T) ((-1264 . -25) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-824 . -726) 104422) ((-359 . -625) 104352) ((-708 . -413) T) ((-1293 . -1230) T) ((-1125 . -420) 104321) ((-615 . -102) T) ((-1089 . -1230) T) ((-1015 . -376) NIL) ((-680 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1191 . -655) 104231) ((-746 . -1230) T) ((-740 . -1063) 104074) ((-44 . -770) T) ((-740 . -649) 103923) ((-602 . -102) T) ((-662 . -665) 103907) ((-77 . -405) T) ((-77 . -404) T) ((-142 . -1230) T) ((-880 . -148) T) ((-880 . -146) NIL) ((-1229 . -93) T) ((-359 . -1061) T) ((-227 . -237) T) ((-70 . -391) T) ((-70 . -404) T) ((-1178 . -102) T) ((-679 . -523) 103840) ((-1292 . -655) 103785) ((-698 . -316) 103723) ((-973 . -38) 103620) ((-1193 . -622) 103602) ((-744 . -38) 103572) ((-559 . -316) 103376) ((-1187 . -1063) 103259) ((-323 . -1230) T) ((-359 . -238) T) ((-359 . -248) T) ((-320 . -1230) T) ((-296 . -1112) T) ((-1186 . -1063) 103094) ((-1180 . -1063) 102884) ((-1138 . -1063) 102767) ((-1187 . -649) 102664) ((-1186 . -649) 102505) ((-720 . -1234) T) ((-1180 . -649) 102301) ((-1169 . -660) 102285) ((-1138 . -649) 102182) ((-1224 . -565) 102161) ((-828 . -394) 102145) ((-720 . -565) T) ((-323 . -894) 102129) ((-323 . -896) 102054) ((-137 . -1230) T) ((-320 . -894) 102015) ((-320 . -896) NIL) ((-808 . -316) 101980) ((-326 . -726) 101821) ((-395 . -394) 101805) ((-331 . -330) 101782) ((-494 . -102) T) ((-483 . -25) T) ((-483 . -21) T) ((-427 . -38) 101756) ((-323 . -1050) 101419) ((-227 . -1215) T) ((-227 . -1218) T) ((-3 . -622) 101401) ((-320 . -1050) 101331) ((-881 . -235) 101304) ((-2 . -1112) T) ((-2 . |RecordCategory|) T) ((-1125 . -1070) 101234) ((-842 . -622) 101216) ((-1074 . -237) T) ((-589 . -930) T) ((-573 . -829) T) ((-573 . -930) T) ((-504 . -930) T) ((-137 . -1050) 101200) ((-227 . -95) T) ((-171 . -148) 101179) ((-75 . -450) T) ((0 . -622) 101161) ((-75 . -404) T) ((-171 . -146) 101112) ((-227 . -35) T) ((-49 . -622) 101094) ((-486 . -1070) T) ((-496 . -233) 101076) ((-493 . -980) 101060) ((-491 . -857) 101039) ((-219 . -233) 101021) ((-81 . -450) T) ((-81 . -404) T) ((-1158 . -34) T) ((-824 . -174) 101000) ((-740 . -102) T) ((-662 . -655) 100959) ((-1038 . -622) 100926) ((-509 . -293) 100876) ((-323 . -385) 100845) ((-320 . -385) 100806) ((-320 . -346) 100767) ((-1097 . -622) 100749) ((-825 . -959) 100696) ((-671 . -132) T) ((-1253 . -146) 100675) ((-1253 . -148) 100654) ((-1187 . -102) T) ((-1186 . -102) T) ((-1180 . -102) T) ((-1172 . -1112) T) ((-1138 . -102) T) ((-224 . -34) T) ((-296 . -726) 100641) ((-1172 . -619) 100617) ((-602 . -316) NIL) ((-1272 . -1271) 100601) ((-493 . -1112) 100579) ((-1162 . -231) 100529) ((-399 . -622) 100511) ((-519 . -859) T) ((-1132 . -1230) T) ((-1272 . -1258) 100488) ((-1265 . -1263) 100449) ((-1265 . -1258) 100419) ((-1265 . -1261) 100403) ((-1244 . -1242) 100364) ((-1244 . -1258) 100341) ((-1244 . -1240) 100325) ((-630 . -622) 100307) ((-1187 . -291) 100273) ((-708 . -930) T) ((-1186 . -291) 100239) ((-1180 . -291) 100205) ((-1138 . -291) 100171) ((-1092 . -1112) T) ((-1073 . -1112) T) ((-48 . -309) T) ((-323 . -910) 100137) ((-320 . -910) NIL) ((-1073 . -1080) 100116) ((-1132 . -896) 100098) ((-808 . -38) 100082) ((-270 . -648) 100030) ((-252 . -648) 99978) ((-710 . -1068) 99965) ((-604 . -1258) 99942) ((-1132 . -1050) 99924) ((-326 . -174) 99855) ((-367 . -1112) T) ((-361 . -1112) T) ((-353 . -1112) T) ((-509 . -19) 99837) ((-1114 . -152) 99821) ((-880 . -237) NIL) ((-108 . -1112) T) ((-117 . -1068) 99808) ((-720 . -371) T) ((-509 . -613) 99783) ((-710 . -111) 99768) ((-1264 . -235) 99714) ((-1243 . -235) 99613) ((-445 . -102) T) ((-885 . -1275) T) ((-255 . -102) T) ((-45 . -1161) 99563) ((-117 . -111) 99548) ((-1305 . -622) 99515) ((-1305 . -499) 99497) ((-1282 . -622) 99479) ((-1253 . -237) T) ((-644 . -729) T) ((-616 . -729) T) ((-1238 . -622) 99461) ((-1236 . -859) T) ((-1224 . -1124) T) ((-1224 . -23) T) ((-1185 . -461) 99392) ((-824 . -523) 99325) ((-1047 . -1230) T) ((-245 . -1063) 99222) ((-1180 . -316) 99107) ((-1179 . -1112) T) ((-953 . -152) 99091) ((-1171 . -1112) T) ((-1154 . -657) 99029) ((-245 . -649) 98971) ((-1138 . -316) 98958) ((-1137 . -461) 98909) ((-1099 . -565) 98840) ((-534 . -102) T) ((-529 . -102) 98790) ((-1099 . -1234) 98769) ((-1092 . -726) 98637) ((-1016 . -1063) 98587) ((-791 . -1234) 98566) ((-789 . -1234) 98545) ((-62 . -1230) T) ((-486 . -622) 98497) ((-486 . -623) 98419) ((-1006 . -1112) T) ((-791 . -565) 98330) ((-789 . -565) 98261) ((-740 . -316) 98248) ((-491 . -420) 98217) ((-632 . -930) 98196) ((-463 . -1234) 98175) ((-710 . -625) 98147) ((-684 . -523) 98080) ((-407 . -622) 98062) ((-673 . -25) T) ((-673 . -21) T) ((-463 . -565) 97993) ((-363 . -25) T) ((-363 . -21) T) ((-360 . -25) T) ((-118 . -930) T) ((-118 . -829) NIL) ((-360 . -21) T) ((-352 . -25) T) ((-352 . -21) T) ((-270 . -25) T) ((-270 . -21) T) ((-252 . -25) T) ((-252 . -21) T) ((-171 . -237) 97944) ((-83 . -392) T) ((-83 . -404) T) ((-135 . -625) 97926) ((-117 . -625) 97898) ((-1016 . -649) 97848) ((-953 . -992) 97832) ((-924 . -649) 97784) ((-924 . -1063) 97736) ((-920 . -21) T) ((-920 . -25) T) ((-881 . -859) 97687) ((-875 . -657) 97647) ((-720 . -1124) T) ((-720 . -23) T) ((-710 . -1061) T) ((-710 . -238) T) ((-296 . -174) T) ((-663 . -1230) T) ((-318 . -93) T) ((-656 . -1112) 97625) ((-641 . -619) 97600) ((-641 . -1112) T) ((-590 . -1234) T) ((-590 . -565) T) ((-527 . -1234) T) ((-527 . -565) T) ((-496 . -655) 97550) ((-483 . -235) 97496) ((-436 . -1063) 97480) ((-436 . -649) 97464) ((-367 . -726) 97416) ((-361 . -726) 97368) ((-347 . -1068) 97352) ((-353 . -726) 97304) ((-347 . -111) 97283) ((-176 . -1068) 97215) ((-219 . -655) 97165) ((-176 . -111) 97076) ((-108 . -726) 97026) ((-280 . -1112) T) ((-279 . -1112) T) ((-278 . -1112) T) ((-277 . -1112) T) ((-276 . -1112) T) ((-275 . -1112) T) ((-274 . -1112) T) ((-214 . -1112) T) ((-213 . -1112) T) ((-171 . -1218) 97004) ((-171 . -1215) 96982) ((-211 . -1112) T) ((-210 . -1112) T) ((-117 . -1061) T) ((-209 . -1112) T) ((-208 . -1112) T) ((-205 . -1112) T) ((-204 . -1112) T) ((-203 . -1112) T) ((-202 . -1112) T) ((-201 . -1112) T) ((-200 . -1112) T) ((-199 . -1112) T) ((-198 . -1112) T) ((-197 . -1112) T) ((-196 . -1112) T) ((-195 . -1112) T) ((-245 . -102) 96772) ((-171 . -35) 96750) ((-171 . -95) 96728) ((-663 . -1050) 96624) ((-491 . -1070) 96554) ((-1125 . -1112) 96344) ((-1154 . -34) T) ((-679 . -498) 96328) ((-73 . -1230) T) ((-105 . -622) 96310) ((-1304 . -622) 96292) ((-389 . -622) 96274) ((-347 . -625) 96226) ((-176 . -625) 96143) ((-1229 . -499) 96124) ((-740 . -38) 95973) ((-580 . -1218) T) ((-580 . -1215) T) ((-540 . -622) 95955) ((-529 . -316) 95893) ((-509 . -622) 95875) ((-509 . -623) 95857) ((-1229 . -622) 95823) ((-1180 . -1164) NIL) ((-1039 . -1083) 95792) ((-1039 . -1112) T) ((-1016 . -102) T) ((-983 . -102) T) ((-924 . -102) T) ((-903 . -1050) 95769) ((-1154 . -735) T) ((-1015 . -657) 95676) ((-485 . -1112) T) ((-472 . -1112) T) ((-595 . -23) T) ((-580 . -35) T) ((-580 . -95) T) ((-436 . -102) T) ((-1075 . -231) 95622) ((-1187 . -38) 95519) ((-875 . -735) T) ((-703 . -930) T) ((-520 . -25) T) ((-516 . -21) T) ((-516 . -25) T) ((-1186 . -38) 95360) ((-347 . -1061) T) ((-1180 . -38) 95156) ((-1092 . -174) T) ((-176 . -1061) T) ((-1138 . -38) 95053) ((-721 . -47) 95030) ((-367 . -174) T) ((-361 . -174) T) ((-528 . -57) 95004) ((-506 . -57) 94954) ((-359 . -1299) 94931) ((-227 . -461) T) ((-326 . -297) 94882) ((-353 . -174) T) ((-176 . -248) T) ((-1243 . -859) 94781) ((-108 . -174) T) ((-881 . -1004) 94765) ((-667 . -1124) T) ((-590 . -371) T) ((-590 . -336) 94752) ((-527 . -336) 94729) ((-527 . -371) T) ((-323 . -314) 94708) ((-320 . -314) T) ((-611 . -859) 94687) ((-1125 . -726) 94629) ((-529 . -289) 94613) ((-667 . -23) T) ((-427 . -233) 94597) ((-320 . -1034) NIL) ((-344 . -23) T) ((-103 . -1022) 94581) ((-45 . -36) 94560) ((-621 . -1112) T) ((-359 . -376) T) ((-533 . -102) T) ((-504 . -27) T) ((-245 . -316) 94498) ((-1099 . -1124) T) ((-1303 . -657) 94472) ((-791 . -1124) T) ((-789 . -1124) T) ((-1191 . -420) 94456) ((-463 . -1124) T) ((-1074 . -461) T) ((-1163 . -1112) T) ((-962 . -461) 94407) ((-1127 . -1095) T) ((-110 . -1112) T) ((-1099 . -23) T) ((-1172 . -523) 94190) ((-826 . -1070) T) ((-791 . -23) T) ((-789 . -23) T) ((-490 . -461) 94141) ((-470 . -23) T) ((-389 . -390) 94120) ((-363 . -235) 94093) ((-360 . -235) 94066) ((-352 . -235) 94039) ((-463 . -23) T) ((-270 . -235) 94012) ((-96 . -1112) T) ((-721 . -1230) T) ((-679 . -293) 93989) ((-493 . -523) 93922) ((-1272 . -1063) 93805) ((-1272 . -649) 93702) ((-1265 . -649) 93543) ((-1265 . -1063) 93378) ((-1244 . -649) 93174) ((-296 . -297) T) ((-1244 . -1063) 92964) ((-1094 . -622) 92946) ((-1094 . -623) 92927) ((-416 . -919) 92906) ((-1224 . -132) T) ((-50 . -1124) T) ((-1180 . -409) 92858) ((-1036 . -930) T) ((-1015 . -735) T) ((-852 . -657) 92831) ((-721 . -896) NIL) ((-605 . -1063) 92791) ((-590 . -1124) T) ((-527 . -1124) T) ((-604 . -1063) 92674) ((-1169 . -34) T) ((-1016 . -316) NIL) ((-824 . -498) 92658) ((-605 . -649) 92631) ((-362 . -930) T) ((-604 . -649) 92528) ((-920 . -235) 92515) ((-416 . -657) 92431) ((-50 . -23) T) ((-720 . -132) T) ((-721 . -1050) 92311) ((-590 . -23) T) ((-108 . -523) NIL) ((-527 . -23) T) ((-171 . -418) 92282) ((-1152 . -1112) T) ((-1295 . -1294) 92266) ((-710 . -804) T) ((-710 . -801) T) ((-1132 . -314) T) ((-387 . -148) T) ((-287 . -622) 92248) ((-286 . -622) 92230) ((-1243 . -1004) 92200) ((-48 . -930) T) ((-684 . -498) 92184) ((-257 . -1287) 92154) ((-256 . -1287) 92124) ((-1189 . -859) T) ((-1100 . -237) T) ((-1125 . -174) 92103) ((-1132 . -1034) T) ((-1058 . -34) T) ((-845 . -148) 92082) ((-845 . -146) 92061) ((-746 . -107) 92045) ((-621 . -133) T) ((-491 . -1112) 91835) ((-1191 . -1070) T) ((-880 . -461) T) ((-85 . -1230) T) ((-245 . -38) 91805) ((-142 . -107) 91787) ((-721 . -385) 91771) ((-842 . -625) 91639) ((-1303 . -735) T) ((-1292 . -1070) T) ((-1272 . -102) T) ((-1132 . -554) T) ((-588 . -102) T) ((-130 . -499) 91621) ((-1265 . -102) T) ((-399 . -1068) 91605) ((-1185 . -959) 91574) ((-44 . -293) 91551) ((-130 . -622) 91518) ((-52 . -622) 91500) ((-1137 . -959) 91467) ((-662 . -420) 91451) ((-1244 . -102) T) ((-1171 . -523) NIL) ((-671 . -25) T) ((-630 . -1068) 91435) ((-671 . -21) T) ((-973 . -655) 91345) ((-744 . -655) 91290) ((-724 . -655) 91262) ((-399 . -111) 91241) ((-224 . -260) 91225) ((-1066 . -1065) 91165) ((-1066 . -1112) T) ((-1016 . -1164) T) ((-827 . -1112) T) ((-462 . -655) 91080) ((-351 . -1234) T) ((-644 . -657) 91064) ((-630 . -111) 91043) ((-616 . -657) 91027) ((-605 . -102) T) ((-318 . -499) 91008) ((-595 . -132) T) ((-604 . -102) T) ((-423 . -1112) T) ((-393 . -1112) T) ((-318 . -622) 90974) ((-229 . -1112) 90952) ((-656 . -523) 90885) ((-641 . -523) 90729) ((-842 . -1061) 90708) ((-653 . -152) 90692) ((-351 . -565) T) ((-721 . -910) 90635) ((-559 . -231) 90585) ((-1272 . -291) 90551) ((-1265 . -291) 90517) ((-1092 . -297) 90468) ((-496 . -857) T) ((-225 . -1124) T) ((-1244 . -291) 90434) ((-1224 . -502) 90400) ((-1016 . -38) 90350) ((-219 . -857) T) ((-427 . -655) 90309) ((-924 . -38) 90261) ((-852 . -803) 90240) ((-852 . -800) 90219) ((-852 . -735) 90198) ((-367 . -297) T) ((-361 . -297) T) ((-353 . -297) T) ((-171 . -461) 90129) ((-436 . -38) 90113) ((-225 . -23) T) ((-108 . -297) T) ((-416 . -803) 90092) ((-416 . -800) 90071) ((-416 . -735) T) ((-509 . -295) 90046) ((-486 . -1068) 90011) ((-667 . -132) T) ((-630 . -625) 89980) ((-1125 . -523) 89913) ((-344 . -132) T) ((-171 . -411) 89892) ((-491 . -726) 89834) ((-824 . -293) 89811) ((-486 . -111) 89767) ((-662 . -1070) T) ((-825 . -1063) 89610) ((-1291 . -1095) T) ((-1253 . -461) 89541) ((-825 . -649) 89390) ((-1290 . -1095) T) ((-1099 . -132) T) ((-1066 . -726) 89332) ((-1039 . -523) 89265) ((-791 . -132) T) ((-789 . -132) T) ((-580 . -461) T) ((-630 . -1061) T) ((-601 . -1112) T) ((-542 . -175) T) ((-470 . -132) T) ((-463 . -132) T) ((-387 . -237) T) ((-1011 . -1230) 89206) ((-45 . -1112) T) ((-393 . -726) 89176) ((-826 . -1112) T) ((-485 . -523) 89109) ((-472 . -523) 89042) ((-1305 . -625) 89024) ((-462 . -375) 88994) ((-45 . -619) 88973) ((-323 . -309) T) ((-836 . -237) 88952) ((-486 . -625) 88902) ((-1244 . -316) 88787) ((-679 . -622) 88749) ((-59 . -859) 88728) ((-1016 . -409) 88710) ((-557 . -622) 88692) ((-808 . -655) 88651) ((-824 . -613) 88628) ((-525 . -859) 88607) ((-505 . -859) 88586) ((-40 . -1234) T) ((-1011 . -1050) 88482) ((-50 . -132) T) ((-590 . -132) T) ((-527 . -132) T) ((-301 . -657) 88342) ((-351 . -336) 88319) ((-351 . -371) T) ((-329 . -330) 88296) ((-326 . -293) 88254) ((-40 . -565) T) ((-387 . -1215) T) ((-387 . -1218) T) ((-1047 . -1206) 88229) ((-1202 . -240) 88179) ((-1180 . -233) 88131) ((-337 . -1112) T) ((-387 . -95) T) ((-387 . -35) T) ((-1047 . -107) 88077) ((-486 . -1061) T) ((-1304 . -1068) 88061) ((-488 . -240) 88011) ((-1172 . -498) 87945) ((-1295 . -1063) 87929) ((-389 . -1068) 87913) ((-1295 . -649) 87883) ((-486 . -248) T) ((-825 . -102) T) ((-723 . -148) 87862) ((-723 . -146) 87841) ((-493 . -498) 87825) ((-494 . -343) 87794) ((-1304 . -111) 87773) ((-521 . -1112) T) ((-491 . -174) 87752) ((-1011 . -385) 87736) ((-422 . -102) T) ((-389 . -111) 87715) ((-1011 . -346) 87699) ((-285 . -995) 87683) ((-284 . -995) 87667) ((-1302 . -622) 87649) ((-1300 . -622) 87631) ((-110 . -523) NIL) ((-1185 . -1256) 87615) ((-863 . -861) 87599) ((-1191 . -1112) T) ((-103 . -1230) T) ((-962 . -959) 87560) ((-826 . -726) 87502) ((-1244 . -1164) NIL) ((-490 . -959) 87447) ((-1074 . -144) T) ((-60 . -102) 87425) ((-44 . -622) 87407) ((-78 . -622) 87389) ((-359 . -657) 87334) ((-1292 . -1112) T) ((-520 . -859) T) ((-296 . -293) 87313) ((-351 . -1124) T) ((-302 . -1112) T) ((-1011 . -910) 87272) ((-302 . -619) 87251) ((-1304 . -625) 87200) ((-1272 . -38) 87097) ((-1265 . -38) 86938) ((-1244 . -38) 86734) ((-496 . -1070) T) ((-389 . -625) 86718) ((-219 . -1070) T) ((-351 . -23) T) ((-153 . -622) 86700) ((-842 . -804) 86679) ((-842 . -801) 86658) ((-1229 . -625) 86639) ((-605 . -38) 86612) ((-604 . -38) 86509) ((-879 . -565) T) ((-225 . -132) T) ((-326 . -1014) 86475) ((-79 . -622) 86457) ((-721 . -314) 86436) ((-301 . -735) 86338) ((-833 . -102) T) ((-873 . -853) T) ((-301 . -482) 86317) ((-1295 . -102) T) ((-40 . -371) T) ((-881 . -148) 86296) ((-494 . -655) 86278) ((-881 . -146) 86257) ((-1171 . -498) 86239) ((-1304 . -1061) T) ((-491 . -523) 86172) ((-1158 . -1230) T) ((-974 . -622) 86154) ((-656 . -498) 86138) ((-641 . -498) 86069) ((-824 . -622) 85800) ((-48 . -27) T) ((-1191 . -726) 85697) ((-662 . -1112) T) ((-870 . -869) T) ((-445 . -372) 85671) ((-740 . -655) 85581) ((-1114 . -102) T) ((-982 . -1112) T) ((-873 . -1112) T) ((-825 . -316) 85568) ((-542 . -536) T) ((-542 . -585) T) ((-1300 . -390) 85540) ((-1066 . -523) 85473) ((-1172 . -293) 85449) ((-245 . -233) 85418) ((-257 . -1063) 85315) ((-256 . -1063) 85212) ((-1292 . -726) 85182) ((-1179 . -93) T) ((-1006 . -93) T) ((-826 . -174) 85161) ((-257 . -649) 85103) ((-256 . -649) 85045) ((-1227 . -499) 85022) ((-229 . -523) 84955) ((-630 . -804) 84934) ((-630 . -801) 84913) ((-1227 . -622) 84825) ((-224 . -1230) T) ((-684 . -622) 84757) ((-1187 . -655) 84667) ((-1169 . -1022) 84651) ((-953 . -102) 84601) ((-359 . -735) T) ((-870 . -622) 84583) ((-1186 . -655) 84465) ((-1180 . -655) 84302) ((-1138 . -655) 84212) ((-1244 . -409) 84164) ((-1125 . -498) 84148) ((-60 . -316) 84086) ((-338 . -102) T) ((-1224 . -21) T) ((-1224 . -25) T) ((-40 . -1124) T) ((-720 . -21) T) ((-636 . -622) 84068) ((-524 . -330) 84047) ((-720 . -25) T) ((-448 . -102) T) ((-108 . -293) NIL) ((-931 . -1124) T) ((-40 . -23) T) ((-780 . -1124) T) ((-573 . -1234) T) ((-504 . -1234) T) ((-326 . -622) 84029) ((-1016 . -233) 84011) ((-171 . -167) 83995) ((-589 . -565) T) ((-573 . -565) T) ((-504 . -565) T) ((-780 . -23) T) ((-1264 . -148) 83974) ((-1172 . -613) 83950) ((-1264 . -146) 83929) ((-1039 . -498) 83913) ((-1243 . -146) 83838) ((-1243 . -148) 83763) ((-1295 . -1301) 83742) ((-485 . -498) 83726) ((-472 . -498) 83710) ((-532 . -34) T) ((-662 . -726) 83680) ((-112 . -979) T) ((-671 . -859) 83659) ((-1191 . -174) 83610) ((-373 . -102) T) ((-245 . -243) 83589) ((-257 . -102) T) ((-256 . -102) T) ((-1253 . -959) 83558) ((-250 . -859) 83537) ((-825 . -38) 83386) ((-45 . -523) 83178) ((-1171 . -293) 83128) ((-216 . -1112) T) ((-1162 . -1112) T) ((-881 . -237) 83107) ((-1162 . -619) 83086) ((-595 . -25) T) ((-595 . -21) T) ((-1114 . -316) 83024) ((-973 . -420) 83008) ((-708 . -1234) T) ((-641 . -293) 82961) ((-1099 . -648) 82909) ((-791 . -648) 82857) ((-789 . -648) 82805) ((-351 . -132) T) ((-296 . -622) 82787) ((-915 . -1112) T) ((-708 . -565) T) ((-130 . -625) 82769) ((-879 . -1124) T) ((-463 . -648) 82717) ((-915 . -913) 82701) ((-387 . -461) T) ((-496 . -1112) T) ((-953 . -316) 82639) ((-710 . -657) 82611) ((-558 . -853) T) ((-219 . -1112) T) ((-323 . -930) 82590) ((-320 . -930) T) ((-320 . -829) NIL) ((-399 . -729) T) ((-879 . -23) T) ((-117 . -657) 82577) ((-483 . -146) 82556) ((-427 . -420) 82540) ((-483 . -148) 82519) ((-110 . -498) 82501) ((-318 . -625) 82482) ((-2 . -622) 82464) ((-188 . -102) T) ((-1171 . -19) 82446) ((-1171 . -613) 82421) ((-667 . -21) T) ((-667 . -25) T) ((-602 . -1156) T) ((-1125 . -293) 82398) ((-344 . -25) T) ((-344 . -21) T) ((-245 . -655) 82148) ((-504 . -371) T) ((-1302 . -1068) 82132) ((-1295 . -38) 82102) ((-1185 . -1063) 81925) ((-1154 . -1230) T) ((-1137 . -1063) 81768) ((-863 . -1063) 81752) ((-641 . -613) 81727) ((-1300 . -1068) 81711) ((-1264 . -1215) 81677) ((-1264 . -1218) 81643) ((-1185 . -649) 81472) ((-1137 . -649) 81321) ((-863 . -649) 81291) ((-1264 . -95) 81257) ((-1264 . -237) 81209) ((-558 . -1112) T) ((-1099 . -25) T) ((-1099 . -21) T) ((-540 . -801) T) ((-540 . -804) T) ((-118 . -1234) T) ((-973 . -1070) T) ((-632 . -565) T) ((-791 . -25) T) ((-791 . -21) T) ((-789 . -21) T) ((-789 . -25) T) ((-744 . -1070) T) ((-724 . -1070) T) ((-679 . -1068) 81193) ((-526 . -1095) T) ((-470 . -25) T) ((-118 . -565) T) ((-470 . -21) T) ((-463 . -25) T) ((-463 . -21) T) ((-1247 . -102) 81171) ((-1163 . -93) T) ((-1154 . -1050) 81067) ((-826 . -297) 81046) ((-1244 . -233) 80998) ((-832 . -1112) T) ((-976 . -979) T) ((-679 . -111) 80977) ((-626 . -1230) T) ((-302 . -523) 80769) ((-1243 . -1215) 80735) ((-1243 . -1218) 80701) ((-1243 . -237) 80606) ((-257 . -316) 80544) ((-256 . -316) 80482) ((-1238 . -376) T) ((-1172 . -623) NIL) ((-1172 . -622) 80464) ((-1235 . -853) T) ((-1154 . -385) 80448) ((-1132 . -829) T) ((-96 . -93) T) ((-1132 . -930) T) ((-1125 . -613) 80425) ((-1092 . -623) 80409) ((-1016 . -655) 80359) ((-924 . -655) 80296) ((-824 . -295) 80273) ((-493 . -622) 80205) ((-617 . -152) 80152) ((-496 . -726) 80102) ((-427 . -1070) T) ((-491 . -498) 80086) ((-436 . -655) 80045) ((-334 . -859) 80024) ((-347 . -657) 79998) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -726) 79948) ((-171 . -733) 79919) ((-176 . -657) 79851) ((-590 . -21) T) ((-590 . -25) T) ((-527 . -25) T) ((-527 . -21) T) ((-484 . -152) 79801) ((-1092 . -622) 79783) ((-1073 . -622) 79765) ((-1005 . -102) T) ((-871 . -102) T) ((-808 . -420) 79728) ((-40 . -132) T) ((-708 . -371) T) ((-710 . -735) T) ((-710 . -803) T) ((-710 . -800) T) ((-214 . -905) T) ((-589 . -1124) T) ((-573 . -1124) T) ((-504 . -1124) T) ((-367 . -622) 79710) ((-361 . -622) 79692) ((-353 . -622) 79674) ((-66 . -405) T) ((-66 . -404) T) ((-108 . -623) 79604) ((-108 . -622) 79546) ((-213 . -905) T) ((-968 . -152) 79530) ((-780 . -132) T) ((-679 . -625) 79448) ((-135 . -735) T) ((-117 . -735) T) ((-1264 . -35) 79414) ((-1066 . -498) 79398) ((-589 . -23) T) ((-573 . -23) T) ((-504 . -23) T) ((-1243 . -95) 79364) ((-1243 . -35) 79330) ((-1185 . -102) T) ((-1137 . -102) T) ((-863 . -102) T) ((-229 . -498) 79314) ((-1302 . -111) 79293) ((-1300 . -111) 79272) ((-44 . -1068) 79256) ((-1302 . -625) 79202) ((-1302 . -1061) T) ((-1300 . -625) 79131) ((-1253 . -1256) 79115) ((-1235 . -1112) T) ((-864 . -861) 79099) ((-1191 . -297) 79078) ((-1116 . -1230) T) ((-110 . -293) 79028) ((-1015 . -1230) 79000) ((-129 . -152) 78982) ((-1154 . -910) 78941) ((-44 . -111) 78920) ((-1194 . -1275) T) ((-1179 . -499) 78901) ((-1179 . -622) 78867) ((-1171 . -623) NIL) ((-679 . -1061) T) ((-1171 . -622) 78849) ((-1075 . -619) 78824) ((-483 . -237) 78776) ((-1075 . -1112) T) ((-1006 . -499) 78757) ((-74 . -450) T) ((-74 . -404) T) ((-1006 . -622) 78723) ((-153 . -1068) 78707) ((-679 . -238) 78686) ((-580 . -563) 78670) ((-363 . -148) 78649) ((-363 . -146) 78600) ((-360 . -148) 78579) ((-360 . -146) 78530) ((-352 . -148) 78509) ((-352 . -146) 78460) ((-270 . -146) 78439) ((-270 . -148) 78418) ((-257 . -38) 78388) ((-252 . -148) 78367) ((-118 . -371) T) ((-252 . -146) 78346) ((-256 . -38) 78316) ((-153 . -111) 78295) ((-1015 . -1050) 78183) ((-1180 . -857) NIL) ((-703 . -1234) T) ((-808 . -1070) T) ((-708 . -1124) T) ((-1300 . -1061) T) ((-1169 . -1230) T) ((-1015 . -385) 78160) ((-920 . -146) T) ((-920 . -148) 78142) ((-879 . -132) T) ((-824 . -1068) 78039) ((-708 . -23) T) ((-703 . -565) T) ((-227 . -1063) 78004) ((-656 . -622) 77936) ((-656 . -623) 77897) ((-641 . -623) NIL) ((-641 . -622) 77879) ((-496 . -174) T) ((-227 . -649) 77844) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-483 . -1218) 77810) ((-483 . -1215) 77776) ((-280 . -622) 77758) ((-279 . -622) 77740) ((-278 . -622) 77722) ((-277 . -622) 77704) ((-276 . -622) 77686) ((-509 . -660) 77668) ((-275 . -622) 77650) ((-347 . -735) T) ((-274 . -622) 77632) ((-110 . -19) 77614) ((-176 . -735) T) ((-509 . -381) 77596) ((-214 . -622) 77578) ((-529 . -1161) 77562) ((-509 . -124) T) ((-110 . -613) 77537) ((-213 . -622) 77519) ((-483 . -35) 77485) ((-483 . -95) 77451) ((-211 . -622) 77433) ((-210 . -622) 77415) ((-209 . -622) 77397) ((-208 . -622) 77379) ((-205 . -622) 77361) ((-204 . -622) 77343) ((-203 . -622) 77325) ((-202 . -622) 77307) ((-201 . -622) 77289) ((-200 . -622) 77271) ((-199 . -622) 77253) ((-545 . -1115) 77205) ((-198 . -622) 77187) ((-197 . -622) 77169) ((-45 . -498) 77106) ((-196 . -622) 77088) ((-195 . -622) 77070) ((-153 . -625) 77039) ((-1127 . -102) T) ((-824 . -111) 76929) ((-653 . -102) 76879) ((-491 . -293) 76856) ((-1303 . -1050) 76840) ((-1125 . -622) 76571) ((-1113 . -1112) T) ((-1058 . -1230) T) ((-1185 . -316) 76558) ((-1074 . -1063) 76545) ((-1147 . -1112) T) ((-962 . -1063) 76388) ((-1137 . -316) 76375) ((-1108 . -1095) T) ((-632 . -1124) T) ((-1074 . -649) 76362) ((-1102 . -1095) T) ((-962 . -649) 76211) ((-1099 . -235) 76184) ((-490 . -1063) 76027) ((-1085 . -1095) T) ((-1078 . -1095) T) ((-1048 . -1095) T) ((-1031 . -1095) T) ((-118 . -1124) T) ((-490 . -649) 75876) ((-791 . -235) 75863) ((-828 . -102) T) ((-635 . -1095) T) ((-632 . -23) T) ((-1162 . -523) 75655) ((-492 . -1095) T) ((-395 . -102) T) ((-331 . -102) T) ((-220 . -1095) T) ((-973 . -1112) T) ((-153 . -1061) T) ((-740 . -420) 75639) ((-118 . -23) T) ((-1015 . -910) 75591) ((-744 . -1112) T) ((-724 . -1112) T) ((-462 . -1112) T) ((-416 . -1230) T) ((-323 . -439) 75575) ((-601 . -93) T) ((-1272 . -655) 75485) ((-1039 . -623) 75446) ((-1036 . -1234) T) ((-227 . -102) T) ((-1039 . -622) 75408) ((-1265 . -655) 75290) ((-825 . -233) 75274) ((-824 . -625) 75004) ((-1244 . -655) 74841) ((-1036 . -565) T) ((-842 . -657) 74814) ((-362 . -1234) T) ((-485 . -622) 74776) ((-485 . -623) 74737) ((-472 . -623) 74698) ((-472 . -622) 74660) ((-605 . -655) 74619) ((-416 . -894) 74603) ((-326 . -1068) 74438) ((-416 . -896) 74363) ((-604 . -655) 74273) ((-852 . -1050) 74169) ((-496 . -523) NIL) ((-491 . -613) 74146) ((-590 . -235) 74133) ((-362 . -565) T) ((-527 . -235) 74120) ((-219 . -523) NIL) ((-881 . -461) T) ((-427 . -1112) T) ((-416 . -1050) 73984) ((-326 . -111) 73805) ((-703 . -371) T) ((-227 . -291) T) ((-1227 . -625) 73782) ((-48 . -1234) T) ((-1185 . -1164) 73760) ((-1172 . -295) 73736) ((-1074 . -102) T) ((-824 . -1061) 73666) ((-589 . -132) T) ((-573 . -132) T) ((-504 . -132) T) ((-363 . -237) 73645) ((-360 . -237) 73624) ((-352 . -237) 73603) ((-48 . -565) T) ((-962 . -102) T) ((-270 . -237) 73582) ((-880 . -1063) 73527) ((-323 . -27) 73506) ((-824 . -238) 73458) ((-254 . -844) 73440) ((-245 . -857) 73419) ((-189 . -844) 73401) ((-722 . -102) T) ((-302 . -498) 73338) ((-880 . -649) 73283) ((-490 . -102) T) ((-740 . -1070) T) ((-621 . -622) 73265) ((-621 . -623) 73126) ((-416 . -385) 73110) ((-416 . -346) 73094) ((-1185 . -38) 72923) ((-1137 . -38) 72772) ((-326 . -625) 72598) ((-920 . -237) T) ((-644 . -1230) 72572) ((-616 . -1230) 72546) ((-863 . -38) 72516) ((-399 . -657) 72500) ((-653 . -316) 72438) ((-1163 . -499) 72419) ((-1163 . -622) 72385) ((-973 . -726) 72282) ((-744 . -726) 72252) ((-224 . -107) 72236) ((-45 . -293) 72136) ((-630 . -657) 72110) ((-319 . -1112) T) ((-296 . -1068) 72097) ((-110 . -622) 72079) ((-110 . -623) 72061) ((-462 . -726) 72031) ((-825 . -259) 71970) ((-698 . -1112) 71948) ((-559 . -1112) T) ((-1187 . -1070) T) ((-1186 . -1070) T) ((-96 . -499) 71929) ((-1180 . -1070) T) ((-296 . -111) 71914) ((-1138 . -1070) T) ((-559 . -619) 71893) ((-96 . -622) 71859) ((-1016 . -857) T) ((-229 . -696) 71817) ((-703 . -1124) T) ((-1224 . -749) 71793) ((-1036 . -371) T) ((-847 . -844) 71775) ((-842 . -803) 71754) ((-416 . -910) 71713) ((-326 . -1061) T) ((-351 . -25) T) ((-351 . -21) T) ((-171 . -1063) 71623) ((-68 . -1230) T) ((-842 . -800) 71602) ((-427 . -726) 71576) ((-808 . -1112) T) ((-721 . -930) 71555) ((-708 . -132) T) ((-171 . -649) 71383) ((-703 . -23) T) ((-496 . -297) T) ((-842 . -735) 71362) ((-326 . -238) 71314) ((-326 . -248) 71293) ((-219 . -297) T) ((-130 . -376) T) ((-1264 . -461) 71272) ((-1243 . -461) 71251) ((-362 . -336) 71228) ((-362 . -371) T) ((-1152 . -622) 71210) ((-45 . -1268) 71160) ((-880 . -102) T) ((-653 . -289) 71144) ((-708 . -1072) T) ((-1291 . -102) T) ((-1290 . -102) T) ((-486 . -657) 71109) ((-477 . -1112) T) ((-45 . -613) 71034) ((-1171 . -295) 71009) ((-296 . -625) 70981) ((-40 . -648) 70920) ((-1253 . -1063) 70743) ((-864 . -1063) 70727) ((-48 . -371) T) ((-1118 . -622) 70709) ((-1253 . -649) 70538) ((-864 . -649) 70508) ((-641 . -295) 70483) ((-825 . -655) 70393) ((-580 . -1063) 70380) ((-491 . -622) 70111) ((-245 . -420) 70080) ((-962 . -316) 70067) ((-580 . -649) 70054) ((-65 . -1230) T) ((-1075 . -523) 69898) ((-680 . -1112) T) ((-632 . -132) T) ((-490 . -316) 69885) ((-615 . -1112) T) ((-555 . -102) T) ((-118 . -132) T) ((-296 . -1061) T) ((-182 . -1112) T) ((-162 . -1112) T) ((-157 . -1112) T) ((-155 . -1112) T) ((-462 . -770) T) ((-31 . -1095) T) ((-973 . -174) 69836) ((-982 . -93) T) ((-1092 . -1068) 69746) ((-630 . -803) 69725) ((-602 . -1112) T) ((-630 . -800) 69704) ((-630 . -735) T) ((-302 . -293) 69683) ((-301 . -1230) T) ((-1066 . -622) 69645) ((-1066 . -623) 69606) ((-1036 . -1124) T) ((-171 . -102) T) ((-281 . -859) T) ((-1178 . -1112) T) ((-827 . -622) 69588) ((-1125 . -295) 69565) ((-1114 . -231) 69549) ((-1015 . -314) T) ((-808 . -726) 69533) ((-367 . -1068) 69485) ((-362 . -1124) T) ((-361 . -1068) 69437) ((-423 . -622) 69419) ((-393 . -622) 69401) ((-353 . -1068) 69353) ((-229 . -622) 69285) ((-1092 . -111) 69181) ((-1036 . -23) T) ((-108 . -1068) 69131) ((-908 . -102) T) ((-850 . -102) T) ((-817 . -102) T) ((-778 . -102) T) ((-686 . -102) T) ((-483 . -461) 69110) ((-427 . -174) T) ((-367 . -111) 69048) ((-361 . -111) 68986) ((-353 . -111) 68924) ((-257 . -233) 68893) ((-256 . -233) 68862) ((-362 . -23) T) ((-71 . -1230) T) ((-227 . -38) 68827) ((-108 . -111) 68761) ((-40 . -25) T) ((-40 . -21) T) ((-679 . -729) T) ((-171 . -291) 68739) ((-48 . -1124) T) ((-931 . -25) T) ((-780 . -25) T) ((-1304 . -657) 68713) ((-1162 . -498) 68650) ((-494 . -1112) T) ((-1295 . -655) 68609) ((-1253 . -102) T) ((-1074 . -1164) T) ((-864 . -102) T) ((-245 . -1070) 68539) ((-974 . -801) 68492) ((-974 . -804) 68445) ((-389 . -657) 68429) ((-48 . -23) T) ((-824 . -804) 68380) ((-824 . -801) 68331) ((-557 . -376) T) ((-302 . -613) 68310) ((-486 . -735) T) ((-580 . -102) T) ((-1092 . -625) 68128) ((-254 . -187) T) ((-189 . -187) T) ((-880 . -316) 68085) ((-662 . -293) 68064) ((-112 . -670) T) ((-359 . -1230) T) ((-367 . -625) 68001) ((-361 . -625) 67938) ((-353 . -625) 67875) ((-76 . -1230) T) ((-108 . -625) 67825) ((-112 . -113) T) ((-1074 . -38) 67812) ((-673 . -382) 67791) ((-962 . -38) 67640) ((-740 . -1112) T) ((-490 . -38) 67489) ((-86 . -1230) T) ((-601 . -499) 67470) ((-1244 . -857) NIL) ((-580 . -291) T) ((-1187 . -1112) T) ((-601 . -622) 67436) ((-1186 . -1112) T) ((-1180 . -1112) T) ((-1092 . -1061) T) ((-359 . -1050) 67413) ((-826 . -499) 67397) ((-1016 . -1070) T) ((-45 . -622) 67379) ((-45 . -623) NIL) ((-924 . -1070) T) ((-826 . -622) 67348) ((-1159 . -102) 67326) ((-1092 . -248) 67277) ((-436 . -1070) T) ((-367 . -1061) T) ((-361 . -1061) T) ((-373 . -372) 67254) ((-353 . -1061) T) ((-351 . -235) 67241) ((-257 . -243) 67220) ((-256 . -243) 67199) ((-1092 . -238) 67124) ((-1138 . -1112) T) ((-301 . -910) 67083) ((-108 . -1061) T) ((-703 . -132) T) ((-427 . -523) 66925) ((-367 . -238) 66904) ((-367 . -248) T) ((-44 . -729) T) ((-361 . -238) 66883) ((-361 . -248) T) ((-353 . -238) 66862) ((-353 . -248) T) ((-1179 . -625) 66843) ((-171 . -316) 66808) ((-108 . -248) T) ((-108 . -238) T) ((-1006 . -625) 66789) ((-326 . -801) T) ((-879 . -21) T) ((-879 . -25) T) ((-416 . -314) T) ((-509 . -34) T) ((-110 . -295) 66764) ((-1125 . -1068) 66661) ((-880 . -1164) NIL) ((-337 . -622) 66643) ((-416 . -1034) 66621) ((-1125 . -111) 66511) ((-700 . -1275) T) ((-445 . -1112) T) ((-255 . -1112) T) ((-1304 . -735) T) ((-63 . -622) 66493) ((-880 . -38) 66438) ((-532 . -1230) T) ((-611 . -152) 66422) ((-521 . -622) 66404) ((-1253 . -316) 66391) ((-740 . -726) 66240) ((-540 . -802) T) ((-540 . -803) T) ((-573 . -648) 66222) ((-504 . -648) 66182) ((-363 . -461) T) ((-360 . -461) T) ((-352 . -461) T) ((-270 . -461) 66133) ((-534 . -1112) T) ((-529 . -1112) 66083) ((-252 . -461) 66034) ((-1162 . -293) 66013) ((-1191 . -622) 65995) ((-698 . -523) 65928) ((-973 . -297) 65907) ((-559 . -523) 65699) ((-257 . -655) 65519) ((-256 . -655) 65326) ((-1292 . -622) 65295) ((-1292 . -499) 65279) ((-1187 . -726) 65176) ((-1185 . -233) 65160) ((-1125 . -625) 64890) ((-171 . -1164) 64869) ((-1186 . -726) 64710) ((-1180 . -726) 64506) ((-976 . -113) T) ((-902 . -102) T) ((-1169 . -683) 64490) ((-1138 . -726) 64387) ((-1036 . -132) T) ((-363 . -411) 64338) ((-360 . -411) 64289) ((-352 . -411) 64240) ((-974 . -376) 64193) ((-808 . -523) 64105) ((-302 . -623) NIL) ((-302 . -622) 64087) ((-920 . -461) T) ((-915 . -293) 64066) ((-824 . -376) 64045) ((-519 . -518) 64024) ((-517 . -518) 64003) ((-496 . -293) NIL) ((-491 . -295) 63980) ((-427 . -297) T) ((-362 . -132) T) ((-219 . -293) NIL) ((-703 . -502) NIL) ((-99 . -1124) T) ((-40 . -235) 63946) ((-171 . -38) 63774) ((-1264 . -985) 63736) ((-1159 . -316) 63674) ((-1243 . -985) 63643) ((-920 . -411) T) ((-1125 . -1061) 63573) ((-1266 . -565) T) ((-1162 . -613) 63552) ((-112 . -859) T) ((-1075 . -498) 63483) ((-589 . -21) T) ((-589 . -25) T) ((-573 . -21) T) ((-573 . -25) T) ((-504 . -25) T) ((-504 . -21) T) ((-1253 . -1164) 63461) ((-1125 . -238) 63413) ((-48 . -132) T) ((-1211 . -102) T) ((-245 . -1112) 63203) ((-880 . -409) 63180) ((-1100 . -102) T) ((-1088 . -102) T) ((-617 . -102) T) ((-484 . -102) T) ((-1253 . -38) 63009) ((-864 . -38) 62979) ((-1046 . -1063) 62953) ((-740 . -174) 62864) ((-662 . -622) 62846) ((-654 . -1095) T) ((-1046 . -649) 62830) ((-580 . -38) 62817) ((-982 . -499) 62798) ((-982 . -622) 62764) ((-968 . -102) 62714) ((-873 . -622) 62696) ((-873 . -623) 62618) ((-602 . -523) NIL) ((-1272 . -1070) T) ((-1265 . -1070) T) ((-329 . -1063) 62600) ((-1244 . -1070) T) ((-1309 . -1124) T) ((-1224 . -148) 62579) ((-1224 . -146) 62558) ((-329 . -649) 62540) ((-710 . -1230) T) ((-1197 . -102) T) ((-1196 . -102) T) ((-1195 . -102) T) ((-1187 . -174) 62491) ((-605 . -1070) T) ((-604 . -1070) T) ((-1186 . -174) 62422) ((-1180 . -174) 62353) ((-387 . -1063) 62318) ((-1163 . -625) 62299) ((-1138 . -174) 62250) ((-1016 . -1112) T) ((-983 . -1112) T) ((-924 . -1112) T) ((-387 . -649) 62215) ((-808 . -806) 62199) ((-708 . -25) T) ((-708 . -21) T) ((-118 . -648) 62176) ((-710 . -896) 62158) ((-436 . -1112) T) ((-323 . -1234) 62137) ((-320 . -1234) T) ((-171 . -409) 62121) ((-845 . -1063) 62091) ((-483 . -985) 62053) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -622) 62035) ((-836 . -1063) 62019) ((-108 . -804) T) ((-108 . -801) T) ((-710 . -1050) 62001) ((-323 . -565) 61980) ((-320 . -565) T) ((-845 . -649) 61950) ((-836 . -649) 61920) ((-1309 . -23) T) ((-135 . -1050) 61902) ((-96 . -625) 61883) ((-1005 . -655) 61865) ((-491 . -1068) 61762) ((-45 . -295) 61687) ((-245 . -726) 61629) ((-526 . -102) T) ((-491 . -111) 61519) ((-1104 . -102) 61489) ((-1046 . -102) T) ((-1185 . -655) 61399) ((-1137 . -655) 61309) ((-863 . -655) 61268) ((-653 . -837) 61247) ((-740 . -523) 61190) ((-1066 . -1068) 61174) ((-1147 . -93) T) ((-1075 . -293) 61149) ((-632 . -21) T) ((-632 . -25) T) ((-533 . -1112) T) ((-679 . -657) 61087) ((-369 . -102) T) ((-329 . -102) T) ((-393 . -1068) 61071) ((-1066 . -111) 61050) ((-825 . -420) 61034) ((-118 . -25) T) ((-89 . -622) 61016) ((-118 . -21) T) ((-617 . -316) 60811) ((-484 . -316) 60615) ((-1162 . -623) NIL) ((-393 . -111) 60594) ((-387 . -102) T) ((-216 . -622) 60576) ((-1162 . -622) 60558) ((-1180 . -523) 60327) ((-1016 . -726) 60277) ((-1138 . -523) 60247) ((-924 . -726) 60199) ((-491 . -625) 59929) ((-359 . -314) T) ((-1202 . -152) 59879) ((-968 . -316) 59817) ((-845 . -102) T) ((-436 . -726) 59801) ((-227 . -837) T) ((-836 . -102) T) ((-834 . -102) T) ((-1302 . -657) 59775) ((-488 . -152) 59725) ((-1264 . -1263) 59704) ((-1132 . -1234) T) ((-347 . -1050) 59671) ((-1264 . -1258) 59641) ((-1264 . -1261) 59625) ((-1243 . -1242) 59604) ((-80 . -622) 59586) ((-915 . -622) 59568) ((-1243 . -1258) 59545) ((-1132 . -565) T) ((-931 . -859) T) ((-780 . -859) T) ((-681 . -859) T) ((-496 . -623) 59475) ((-496 . -622) 59416) ((-387 . -291) T) ((-1243 . -1240) 59400) ((-1266 . -1124) T) ((-219 . -623) 59330) ((-219 . -622) 59271) ((-1075 . -613) 59246) ((-827 . -625) 59230) ((-573 . -235) 59217) ((-525 . -152) 59201) ((-59 . -152) 59185) ((-505 . -152) 59169) ((-504 . -235) 59156) ((-367 . -1299) 59140) ((-361 . -1299) 59124) ((-353 . -1299) 59108) ((-323 . -371) 59087) ((-320 . -371) T) ((-491 . -1061) 59017) ((-703 . -648) 58999) ((-1300 . -657) 58973) ((-129 . -316) NIL) ((-1266 . -23) T) ((-698 . -498) 58957) ((-64 . -622) 58939) ((-1125 . -804) 58890) ((-1125 . -801) 58841) ((-559 . -498) 58778) ((-679 . -34) T) ((-491 . -238) 58730) ((-302 . -295) 58709) ((-245 . -174) 58688) ((-825 . -1070) T) ((-44 . -657) 58646) ((-1092 . -376) 58597) ((-1099 . -146) 58576) ((-740 . -297) 58507) ((-529 . -523) 58440) ((-826 . -1068) 58391) ((-1099 . -148) 58370) ((-558 . -622) 58352) ((-367 . -376) 58331) ((-361 . -376) 58310) ((-353 . -376) 58289) ((-978 . -1230) T) ((-880 . -233) 58266) ((-826 . -111) 58208) ((-791 . -146) 58187) ((-791 . -148) 58166) ((-270 . -959) 58133) ((-257 . -857) 58112) ((-252 . -959) 58057) ((-256 . -857) 58036) ((-789 . -146) 58015) ((-789 . -148) 57994) ((-153 . -657) 57968) ((-588 . -1112) T) ((-462 . -293) 57931) ((-463 . -148) 57910) ((-463 . -146) 57889) ((-679 . -735) T) ((-832 . -622) 57871) ((-1272 . -1112) T) ((-1265 . -1112) T) ((-1244 . -1112) T) ((-1224 . -1218) 57837) ((-1224 . -1215) 57803) ((-1187 . -297) 57782) ((-1186 . -297) 57733) ((-1180 . -297) 57684) ((-1138 . -297) 57663) ((-347 . -910) 57644) ((-1016 . -174) T) ((-924 . -174) T) ((-703 . -21) T) ((-703 . -25) T) ((-227 . -655) 57594) ((-605 . -1112) T) ((-604 . -1112) T) ((-483 . -1261) 57578) ((-483 . -1258) 57548) ((-427 . -293) 57476) ((-556 . -859) T) ((-323 . -1124) 57325) ((-320 . -1124) T) ((-1224 . -35) 57291) ((-1224 . -95) 57257) ((-84 . -622) 57239) ((-91 . -102) 57217) ((-1309 . -132) T) ((-723 . -1063) 57187) ((-601 . -625) 57168) ((-590 . -146) T) ((-590 . -148) 57150) ((-527 . -148) 57132) ((-527 . -146) T) ((-723 . -649) 57102) ((-323 . -23) 56954) ((-40 . -350) 56928) ((-320 . -23) T) ((-826 . -625) 56842) ((-1171 . -660) 56824) ((-1295 . -1070) T) ((-1171 . -381) 56806) ((-824 . -657) 56591) ((-1108 . -102) T) ((-1102 . -102) T) ((-1085 . -102) T) ((-171 . -233) 56575) ((-1078 . -102) T) ((-1048 . -102) T) ((-1031 . -102) T) ((-602 . -498) 56557) ((-635 . -102) T) ((-245 . -523) 56490) ((-492 . -102) T) ((-1302 . -735) T) ((-1300 . -735) T) ((-220 . -102) T) ((-1191 . -1068) 56373) ((-1074 . -655) 56345) ((-962 . -655) 56255) ((-1191 . -111) 56124) ((-885 . -1095) T) ((-870 . -175) T) ((-490 . -655) 56034) ((-826 . -1061) T) ((-690 . -1095) T) ((-685 . -1095) T) ((-632 . -235) 56007) ((-524 . -102) T) ((-519 . -102) T) ((-48 . -648) 55967) ((-517 . -102) T) ((-487 . -1095) T) ((-1292 . -1068) 55937) ((-118 . -235) NIL) ((-139 . -1095) T) ((-138 . -1095) T) ((-134 . -1095) T) ((-1046 . -38) 55921) ((-826 . -238) T) ((-826 . -248) 55900) ((-1292 . -111) 55865) ((-1272 . -726) 55762) ((-1265 . -726) 55603) ((-559 . -293) 55582) ((-1253 . -233) 55566) ((-1235 . -622) 55548) ((-615 . -93) T) ((-1075 . -623) NIL) ((-1075 . -622) 55530) ((-680 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1244 . -726) 55326) ((-1015 . -930) T) ((-153 . -735) T) ((-1191 . -625) 55179) ((-1125 . -376) 55158) ((-1036 . -25) T) ((-1016 . -523) NIL) ((-257 . -420) 55127) ((-256 . -420) 55096) ((-1036 . -21) T) ((-881 . -1063) 55048) ((-605 . -726) 55021) ((-604 . -726) 54918) ((-808 . -293) 54876) ((-127 . -102) 54854) ((-842 . -1050) 54750) ((-171 . -837) 54729) ((-326 . -657) 54626) ((-824 . -34) T) ((-723 . -102) T) ((-1132 . -1124) T) ((-1038 . -1230) T) ((-881 . -649) 54578) ((-387 . -38) 54543) ((-362 . -25) T) ((-362 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-254 . -102) T) ((-158 . -102) T) ((-363 . -1287) 54527) ((-360 . -1287) 54511) ((-352 . -1287) 54495) ((-171 . -357) 54474) ((-573 . -859) T) ((-1099 . -237) 54453) ((-1132 . -23) T) ((-87 . -622) 54435) ((-791 . -237) T) ((-710 . -314) T) ((-845 . -38) 54405) ((-836 . -38) 54375) ((-1292 . -625) 54317) ((-1266 . -132) T) ((-1162 . -295) 54296) ((-974 . -735) 54195) ((-974 . -802) 54148) ((-974 . -803) 54101) ((-824 . -800) 54080) ((-117 . -314) T) ((-91 . -316) 54018) ((-684 . -34) T) ((-559 . -613) 53997) ((-48 . -25) T) ((-48 . -21) T) ((-824 . -803) 53948) ((-824 . -802) 53927) ((-710 . -1034) T) ((-662 . -1068) 53911) ((-880 . -655) 53841) ((-824 . -735) 53751) ((-974 . -482) 53704) ((-491 . -804) 53655) ((-491 . -801) 53606) ((-920 . -1287) 53593) ((-1191 . -1061) T) ((-662 . -111) 53572) ((-1191 . -333) 53549) ((-1216 . -102) 53527) ((-1113 . -622) 53509) ((-710 . -554) T) ((-825 . -1112) T) ((-590 . -237) T) ((-527 . -237) T) ((-1292 . -1061) T) ((-1147 . -499) 53490) ((-1236 . -102) T) ((-422 . -1112) T) ((-1147 . -622) 53456) ((-257 . -1070) 53386) ((-256 . -1070) 53316) ((-847 . -102) T) ((-296 . -657) 53303) ((-602 . -293) 53253) ((-698 . -696) 53211) ((-973 . -622) 53193) ((-881 . -102) T) ((-744 . -622) 53175) ((-724 . -622) 53157) ((-1272 . -174) 53108) ((-1265 . -174) 53039) ((-1244 . -174) 52970) ((-708 . -859) T) ((-1016 . -297) T) ((-462 . -622) 52952) ((-636 . -735) T) ((-60 . -1112) 52930) ((-250 . -152) 52914) ((-924 . -297) T) ((-1036 . -1024) T) ((-636 . -482) T) ((-721 . -1234) 52893) ((-703 . -235) NIL) ((-662 . -625) 52811) ((-171 . -655) 52706) ((-1280 . -859) 52685) ((-605 . -174) 52664) ((-604 . -174) 52615) ((-1264 . -649) 52456) ((-1264 . -1063) 52291) ((-1243 . -649) 52105) ((-1243 . -1063) 51913) ((-721 . -565) 51824) ((-416 . -930) T) ((-416 . -829) 51803) ((-326 . -803) T) ((-982 . -625) 51784) ((-326 . -735) T) ((-653 . -1161) 51768) ((-427 . -622) 51750) ((-427 . -623) 51657) ((-110 . -660) 51639) ((-176 . -314) T) ((-127 . -316) 51577) ((-110 . -381) 51559) ((-407 . -1230) T) ((-323 . -132) 51430) ((-320 . -132) T) ((-69 . -404) T) ((-110 . -124) T) ((-529 . -498) 51414) ((-663 . -1124) T) ((-602 . -19) 51396) ((-61 . -450) T) ((-61 . -404) T) ((-833 . -1112) T) ((-602 . -613) 51371) ((-486 . -1050) 51331) ((-662 . -1061) T) ((-663 . -23) T) ((-1295 . -1112) T) ((-31 . -102) T) ((-1253 . -655) 51241) ((-864 . -655) 51200) ((-825 . -726) 51049) ((-586 . -869) T) ((-580 . -655) 51021) ((-118 . -859) NIL) ((-1185 . -420) 51005) ((-1137 . -420) 50989) ((-863 . -420) 50973) ((-882 . -102) 50924) ((-1264 . -102) T) ((-1244 . -523) 50693) ((-1243 . -102) T) ((-1216 . -316) 50631) ((-1187 . -293) 50596) ((-1186 . -293) 50554) ((-534 . -93) T) ((-1180 . -293) 50382) ((-319 . -622) 50364) ((-1114 . -1112) T) ((-1092 . -657) 50238) ((-720 . -461) T) ((-698 . -622) 50170) ((-296 . -735) T) ((-108 . -919) NIL) ((-698 . -623) 50131) ((-610 . -622) 50113) ((-586 . -622) 50095) ((-559 . -623) NIL) ((-559 . -622) 50077) ((-538 . -622) 50059) ((-520 . -518) 50038) ((-496 . -1068) 49988) ((-483 . -1063) 49823) ((-516 . -518) 49802) ((-483 . -649) 49643) ((-219 . -1068) 49593) ((-367 . -657) 49545) ((-361 . -657) 49497) ((-227 . -857) T) ((-353 . -657) 49449) ((-611 . -102) 49399) ((-496 . -111) 49333) ((-491 . -376) 49312) ((-108 . -657) 49262) ((-362 . -235) 49249) ((-245 . -498) 49233) ((-351 . -148) 49215) ((-351 . -146) T) ((-171 . -378) 49186) ((-953 . -1278) 49170) ((-219 . -111) 49104) ((-881 . -316) 49069) ((-953 . -1112) 49019) ((-808 . -623) 48980) ((-808 . -622) 48962) ((-727 . -102) T) ((-338 . -1112) T) ((-216 . -625) 48939) ((-1132 . -132) T) ((-723 . -38) 48909) ((-323 . -502) 48888) ((-509 . -1230) T) ((-1264 . -291) 48854) ((-1243 . -291) 48820) ((-334 . -152) 48804) ((-448 . -1112) T) ((-1075 . -295) 48779) ((-1295 . -726) 48749) ((-48 . -235) 48736) ((-1172 . -34) T) ((-1304 . -1050) 48713) ((-493 . -34) T) ((-477 . -622) 48695) ((-255 . -293) 48669) ((-389 . -1050) 48653) ((-1185 . -1070) T) ((-1137 . -1070) T) ((-863 . -1070) T) ((-1074 . -857) T) ((-496 . -625) 48603) ((-219 . -625) 48553) ((-825 . -174) 48464) ((-529 . -293) 48416) ((-1272 . -297) 48395) ((-1211 . -372) 48369) ((-1100 . -272) 48353) ((-680 . -499) 48334) ((-680 . -622) 48300) ((-615 . -499) 48281) ((-118 . -1004) 48258) ((-615 . -622) 48208) ((-483 . -102) T) ((-182 . -499) 48189) ((-182 . -622) 48155) ((-162 . -499) 48136) ((-162 . -622) 48102) ((-157 . -499) 48083) ((-155 . -499) 48064) ((-157 . -622) 48030) ((-373 . -1112) T) ((-257 . -1112) T) ((-256 . -1112) T) ((-155 . -622) 47996) ((-1265 . -297) 47947) ((-1244 . -297) 47898) ((-881 . -1164) 47876) ((-1187 . -1014) 47842) ((-617 . -372) 47782) ((-1186 . -1014) 47748) ((-617 . -231) 47695) ((-703 . -859) T) ((-602 . -622) 47677) ((-602 . -623) NIL) ((-484 . -231) 47627) ((-496 . -1061) T) ((-1180 . -1014) 47593) ((-88 . -449) T) ((-88 . -404) T) ((-219 . -1061) T) ((-1138 . -1014) 47559) ((-1092 . -735) T) ((-721 . -1124) T) ((-605 . -297) 47538) ((-604 . -297) 47517) ((-496 . -248) T) ((-496 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1178 . -622) 47499) ((-881 . -38) 47451) ((-367 . -735) T) ((-361 . -735) T) ((-353 . -735) T) ((-108 . -803) T) ((-108 . -800) T) ((-721 . -23) T) ((-108 . -735) T) ((-529 . -1268) 47435) ((-1309 . -25) T) ((-483 . -291) 47401) ((-1309 . -21) T) ((-1243 . -316) 47340) ((-1189 . -102) T) ((-40 . -146) 47312) ((-40 . -148) 47284) ((-529 . -613) 47261) ((-1125 . -657) 47046) ((-611 . -316) 46984) ((-45 . -660) 46934) ((-45 . -675) 46884) ((-45 . -381) 46834) ((-1171 . -34) T) ((-880 . -857) NIL) ((-663 . -132) T) ((-494 . -622) 46816) ((-245 . -293) 46793) ((-188 . -1112) T) ((-1099 . -461) 46744) ((-825 . -523) 46618) ((-791 . -461) 46549) ((-673 . -1063) 46533) ((-656 . -34) T) ((-641 . -34) T) ((-673 . -649) 46517) ((-363 . -1063) 46469) ((-351 . -237) T) ((-360 . -1063) 46421) ((-352 . -1063) 46373) ((-270 . -1063) 46216) ((-252 . -1063) 46059) ((-789 . -461) 46010) ((-363 . -649) 45962) ((-360 . -649) 45914) ((-352 . -649) 45866) ((-270 . -649) 45715) ((-252 . -649) 45564) ((-463 . -461) 45515) ((-962 . -420) 45499) ((-740 . -622) 45481) ((-257 . -726) 45423) ((-256 . -726) 45365) ((-740 . -623) 45226) ((-490 . -420) 45210) ((-347 . -309) T) ((-533 . -93) T) ((-359 . -930) T) ((-1012 . -102) 45188) ((-920 . -1063) 45153) ((-1036 . -859) T) ((-60 . -523) 45086) ((-920 . -649) 45051) ((-1243 . -1164) 45003) ((-1016 . -293) NIL) ((-227 . -1070) T) ((-387 . -837) T) ((-1125 . -34) T) ((-590 . -461) T) ((-527 . -461) T) ((-1247 . -1105) 44987) ((-1247 . -1112) 44965) ((-245 . -613) 44942) ((-1247 . -1107) 44899) ((-1187 . -622) 44881) ((-1186 . -622) 44863) ((-1180 . -622) 44845) ((-1180 . -623) NIL) ((-1138 . -622) 44827) ((-881 . -409) 44811) ((-606 . -102) T) ((-594 . -102) T) ((-545 . -102) T) ((-1264 . -38) 44652) ((-1243 . -38) 44466) ((-879 . -148) T) ((-590 . -411) T) ((-527 . -411) T) ((-1276 . -102) T) ((-1266 . -21) T) ((-1266 . -25) T) ((-1125 . -800) 44445) ((-1125 . -803) 44396) ((-1125 . -802) 44375) ((-1005 . -1112) T) ((-1039 . -34) T) ((-871 . -1112) T) ((-1125 . -735) 44285) ((-673 . -102) T) ((-654 . -102) T) ((-559 . -295) 44264) ((-1202 . -102) T) ((-485 . -34) T) ((-472 . -34) T) ((-363 . -102) T) ((-360 . -102) T) ((-352 . -102) T) ((-270 . -102) T) ((-252 . -102) T) ((-486 . -314) T) ((-1074 . -1070) T) ((-962 . -1070) T) ((-323 . -648) 44170) ((-320 . -648) 44131) ((-1185 . -1112) T) ((-490 . -1070) T) ((-488 . -102) T) ((-445 . -622) 44113) ((-1137 . -1112) T) ((-255 . -622) 44095) ((-863 . -1112) T) ((-1153 . -102) T) ((-825 . -297) 44026) ((-973 . -1068) 43909) ((-486 . -1034) T) ((-744 . -1068) 43879) ((-1046 . -655) 43838) ((-1159 . -1133) 43822) ((-462 . -1068) 43792) ((-1114 . -523) 43725) ((-973 . -111) 43594) ((-920 . -102) T) ((-40 . -237) 43566) ((-744 . -111) 43531) ((-534 . -499) 43512) ((-534 . -622) 43478) ((-59 . -102) 43428) ((-529 . -623) 43389) ((-529 . -622) 43301) ((-528 . -102) 43279) ((-525 . -102) 43229) ((-506 . -102) 43207) ((-505 . -102) 43157) ((-462 . -111) 43120) ((-257 . -174) 43099) ((-256 . -174) 43078) ((-329 . -655) 43060) ((-427 . -1068) 43034) ((-1224 . -985) 42996) ((-1011 . -1124) T) ((-387 . -655) 42946) ((-1147 . -625) 42927) ((-953 . -523) 42860) ((-496 . -804) T) ((-483 . -38) 42701) ((-427 . -111) 42668) ((-496 . -801) T) ((-1012 . -316) 42606) ((-219 . -804) T) ((-219 . -801) T) ((-1011 . -23) T) ((-721 . -132) T) ((-1243 . -409) 42576) ((-845 . -655) 42521) ((-836 . -655) 42480) ((-323 . -25) 42332) ((-171 . -420) 42316) ((-323 . -21) 42187) ((-320 . -25) T) ((-320 . -21) T) ((-873 . -376) T) ((-973 . -625) 42040) ((-110 . -34) T) ((-744 . -625) 41996) ((-724 . -625) 41978) ((-491 . -657) 41763) ((-880 . -1070) T) ((-602 . -295) 41738) ((-589 . -148) T) ((-573 . -148) T) ((-504 . -148) T) ((-1185 . -726) 41567) ((-1069 . -102) 41545) ((-1137 . -726) 41394) ((-1132 . -648) 41376) ((-863 . -726) 41346) ((-679 . -1230) T) ((-1 . -102) T) ((-427 . -625) 41254) ((-245 . -622) 40985) ((-1127 . -1112) T) ((-1253 . -420) 40969) ((-1202 . -316) 40773) ((-973 . -1061) T) ((-744 . -1061) T) ((-724 . -1061) T) ((-653 . -1112) 40723) ((-1066 . -657) 40707) ((-864 . -420) 40691) ((-520 . -102) T) ((-516 . -102) T) ((-270 . -316) 40678) ((-252 . -316) 40665) ((-973 . -333) 40644) ((-393 . -657) 40628) ((-679 . -1050) 40524) ((-488 . -316) 40328) ((-257 . -523) 40261) ((-256 . -523) 40194) ((-1153 . -316) 40120) ((-828 . -1112) T) ((-808 . -1068) 40104) ((-1272 . -293) 40069) ((-1265 . -293) 40027) ((-1244 . -293) 39855) ((-395 . -1112) T) ((-331 . -1112) T) ((-427 . -1061) T) ((-171 . -1070) T) ((-59 . -316) 39793) ((-808 . -111) 39772) ((-604 . -293) 39737) ((-528 . -316) 39675) ((-525 . -316) 39613) ((-506 . -316) 39551) ((-505 . -316) 39489) ((-427 . -238) 39468) ((-491 . -34) T) ((-227 . -1112) T) ((-1016 . -623) 39398) ((-1016 . -622) 39358) ((-983 . -622) 39318) ((-924 . -622) 39300) ((-708 . -148) T) ((-710 . -930) T) ((-710 . -829) T) ((-436 . -622) 39282) ((-1132 . -21) T) ((-1132 . -25) T) ((-679 . -385) 39266) ((-117 . -930) T) ((-881 . -233) 39250) ((-44 . -1230) T) ((-78 . -1230) T) ((-127 . -126) 39234) ((-1066 . -34) T) ((-1302 . -1050) 39208) ((-1300 . -1050) 39165) ((-1253 . -1070) T) ((-864 . -1070) T) ((-491 . -800) 39144) ((-363 . -1164) 39123) ((-360 . -1164) 39102) ((-352 . -1164) 39081) ((-491 . -803) 39032) ((-491 . -802) 39011) ((-229 . -34) T) ((-491 . -735) 38921) ((-808 . -625) 38767) ((-671 . -1063) 38751) ((-60 . -498) 38735) ((-580 . -1070) T) ((-671 . -649) 38719) ((-1185 . -174) 38610) ((-1137 . -174) 38521) ((-1074 . -1112) T) ((-1099 . -959) 38466) ((-962 . -1112) T) ((-826 . -657) 38417) ((-791 . -959) 38386) ((-722 . -1112) T) ((-789 . -959) 38353) ((-525 . -289) 38337) ((-679 . -910) 38296) ((-490 . -1112) T) ((-463 . -959) 38263) ((-79 . -1230) T) ((-363 . -38) 38228) ((-360 . -38) 38193) ((-352 . -38) 38158) ((-270 . -38) 38007) ((-252 . -38) 37856) ((-920 . -1164) T) ((-533 . -499) 37837) ((-632 . -148) 37816) ((-632 . -146) 37795) ((-533 . -622) 37761) ((-118 . -148) T) ((-118 . -146) NIL) ((-423 . -735) T) ((-808 . -1061) T) ((-573 . -237) T) ((-504 . -237) T) ((-351 . -461) T) ((-1272 . -1014) 37727) ((-1265 . -1014) 37693) ((-1244 . -1014) 37659) ((-920 . -38) 37624) ((-227 . -726) 37589) ((-326 . -47) 37559) ((-40 . -418) 37531) ((-141 . -622) 37513) ((-1011 . -132) T) ((-824 . -1230) T) ((-176 . -930) T) ((-558 . -376) T) ((-723 . -655) 37458) ((-615 . -625) 37439) ((-351 . -411) T) ((-680 . -625) 37420) ((-320 . -235) NIL) ((-182 . -625) 37401) ((-162 . -625) 37382) ((-157 . -625) 37363) ((-155 . -625) 37344) ((-529 . -295) 37321) ((-1243 . -233) 37291) ((-885 . -102) T) ((-824 . -1050) 37118) ((-45 . -34) T) ((-690 . -102) T) ((-685 . -102) T) ((-671 . -102) T) ((-663 . -21) T) ((-663 . -25) T) ((-1114 . -498) 37102) ((-684 . -1230) T) ((-487 . -102) T) ((-250 . -102) 37052) ((-555 . -853) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-880 . -1112) T) ((-1191 . -657) 36977) ((-1074 . -726) 36964) ((-740 . -1068) 36807) ((-1185 . -523) 36754) ((-962 . -726) 36603) ((-1137 . -523) 36555) ((-1291 . -1112) T) ((-1290 . -1112) T) ((-490 . -726) 36404) ((-67 . -622) 36386) ((-740 . -111) 36215) ((-953 . -498) 36199) ((-1292 . -657) 36159) ((-1187 . -1068) 36042) ((-826 . -735) T) ((-1186 . -1068) 35877) ((-1180 . -1068) 35667) ((-326 . -1230) T) ((-1138 . -1068) 35550) ((-1015 . -1234) T) ((-1106 . -102) 35528) ((-824 . -385) 35497) ((-588 . -622) 35479) ((-555 . -1112) T) ((-1015 . -565) T) ((-1187 . -111) 35348) ((-1186 . -111) 35169) ((-1180 . -111) 34938) ((-1138 . -111) 34807) ((-1117 . -1115) 34771) ((-387 . -857) T) ((-1272 . -622) 34753) ((-1265 . -622) 34735) ((-881 . -655) 34672) ((-1244 . -622) 34654) ((-1244 . -623) NIL) ((-245 . -295) 34631) ((-40 . -461) T) ((-227 . -174) T) ((-171 . -1112) T) ((-740 . -625) 34416) ((-703 . -148) T) ((-703 . -146) NIL) ((-605 . -622) 34398) ((-604 . -622) 34380) ((-1132 . -235) 34367) ((-908 . -1112) T) ((-850 . -1112) T) ((-817 . -1112) T) ((-778 . -1112) T) ((-686 . -1112) T) ((-667 . -861) 34351) ((-632 . -237) 34330) ((-824 . -910) 34262) ((-1235 . -376) T) ((-40 . -411) NIL) ((-118 . -237) NIL) ((-1187 . -625) 34144) ((-1132 . -670) T) ((-880 . -726) 34089) ((-257 . -498) 34073) ((-256 . -498) 34057) ((-1186 . -625) 33800) ((-1180 . -625) 33595) ((-721 . -648) 33543) ((-662 . -657) 33517) ((-1138 . -625) 33399) ((-302 . -34) T) ((-1132 . -113) T) ((-740 . -1061) T) ((-590 . -1287) 33386) ((-527 . -1287) 33363) ((-1253 . -1112) T) ((-1185 . -297) 33274) ((-1137 . -297) 33205) ((-1074 . -174) T) ((-296 . -1230) T) ((-864 . -1112) T) ((-962 . -174) 33116) ((-791 . -1256) 33100) ((-653 . -523) 33033) ((-77 . -622) 33015) ((-740 . -333) 32980) ((-1191 . -735) T) ((-580 . -1112) T) ((-490 . -174) 32891) ((-250 . -316) 32829) ((-1154 . -1124) T) ((-70 . -622) 32811) ((-1292 . -735) T) ((-1187 . -1061) T) ((-1186 . -1061) T) ((-334 . -102) 32761) ((-1180 . -1061) T) ((-1154 . -23) T) ((-1138 . -1061) T) ((-91 . -1133) 32745) ((-875 . -1124) T) ((-1187 . -238) 32704) ((-1186 . -248) 32683) ((-1186 . -238) 32635) ((-1180 . -238) 32522) ((-1180 . -248) 32501) ((-326 . -910) 32407) ((-875 . -23) T) ((-171 . -726) 32235) ((-416 . -1234) T) ((-1113 . -376) T) ((-1015 . -371) T) ((-879 . -461) T) ((-1036 . -148) T) ((-953 . -293) 32187) ((-320 . -859) NIL) ((-1264 . -655) 32069) ((-883 . -102) T) ((-1243 . -655) 31924) ((-721 . -25) T) ((-416 . -565) T) ((-721 . -21) T) ((-534 . -625) 31905) ((-362 . -148) 31887) ((-362 . -146) T) ((-1159 . -1112) 31865) ((-462 . -729) T) ((-75 . -622) 31847) ((-115 . -859) T) ((-250 . -289) 31831) ((-245 . -1068) 31728) ((-81 . -622) 31710) ((-744 . -376) 31663) ((-1189 . -837) T) ((-746 . -240) 31647) ((-1172 . -1230) T) ((-142 . -240) 31629) ((-245 . -111) 31519) ((-1253 . -726) 31348) ((-48 . -148) T) ((-880 . -174) T) ((-864 . -726) 31318) ((-493 . -1230) T) ((-962 . -523) 31265) ((-662 . -735) T) ((-580 . -726) 31252) ((-1046 . -1070) T) ((-703 . -237) NIL) ((-490 . -523) 31195) ((-953 . -19) 31179) ((-953 . -613) 31156) ((-1092 . -1230) 31081) ((-825 . -623) NIL) ((-825 . -622) 31063) ((-1224 . -1063) 30946) ((-1016 . -1068) 30896) ((-422 . -622) 30878) ((-257 . -293) 30855) ((-367 . -1230) 30834) ((-361 . -1230) 30813) ((-353 . -1230) 30792) ((-256 . -293) 30769) ((-496 . -919) NIL) ((-323 . -29) 30739) ((-108 . -1230) T) ((-1015 . -1124) T) ((-219 . -919) NIL) ((-1224 . -649) 30636) ((-924 . -1068) 30588) ((-1092 . -1050) 30484) ((-1016 . -111) 30418) ((-720 . -1063) 30383) ((-1015 . -23) T) ((-924 . -111) 30321) ((-746 . -704) 30305) ((-720 . -649) 30270) ((-270 . -233) 30254) ((-436 . -1068) 30238) ((-387 . -1070) T) ((-245 . -625) 29968) ((-703 . -1218) NIL) ((-496 . -657) 29918) ((-483 . -655) 29800) ((-108 . -894) 29782) ((-108 . -896) 29764) ((-703 . -1215) NIL) ((-219 . -657) 29714) ((-367 . -1050) 29698) ((-361 . -1050) 29682) ((-334 . -316) 29620) ((-353 . -1050) 29604) ((-227 . -297) T) ((-436 . -111) 29583) ((-60 . -622) 29515) ((-171 . -174) T) ((-1132 . -859) T) ((-108 . -1050) 29475) ((-902 . -1112) T) ((-845 . -1070) T) ((-836 . -1070) T) ((-703 . -35) NIL) ((-703 . -95) NIL) ((-320 . -1004) 29436) ((-185 . -102) T) ((-589 . -461) T) ((-573 . -461) T) ((-504 . -461) T) ((-416 . -371) T) ((-245 . -1061) 29366) ((-1162 . -34) T) ((-486 . -930) T) ((-1011 . -648) 29314) ((-257 . -613) 29291) ((-256 . -613) 29268) ((-1092 . -385) 29252) ((-880 . -523) 29160) ((-245 . -238) 29112) ((-1171 . -1230) T) ((-1016 . -625) 29062) ((-924 . -625) 28999) ((-833 . -622) 28981) ((-1303 . -1124) T) ((-1295 . -622) 28963) ((-1253 . -174) 28854) ((-436 . -625) 28823) ((-108 . -385) 28805) ((-108 . -346) 28787) ((-1074 . -297) T) ((-962 . -297) 28718) ((-808 . -376) 28697) ((-656 . -1230) T) ((-641 . -1230) T) ((-1303 . -23) T) ((-595 . -1063) 28672) ((-490 . -297) 28603) ((-580 . -174) T) ((-334 . -289) 28587) ((-362 . -237) T) ((-1224 . -102) T) ((-1211 . -1112) T) ((-1100 . -1112) T) ((-1088 . -1112) T) ((-595 . -649) 28562) ((-83 . -622) 28544) ((-1196 . -853) T) ((-1195 . -853) T) ((-720 . -102) T) ((-363 . -357) 28523) ((-617 . -1112) T) ((-360 . -357) 28502) ((-352 . -357) 28481) ((-484 . -1112) T) ((-1202 . -231) 28431) ((-270 . -259) 28393) ((-1154 . -132) T) ((-617 . -619) 28369) ((-1092 . -910) 28302) ((-1016 . -1061) T) ((-924 . -1061) T) ((-484 . -619) 28281) ((-1180 . -801) NIL) ((-1180 . -804) NIL) ((-1114 . -623) 28242) ((-1114 . -622) 28224) ((-488 . -231) 28174) ((-1016 . -248) T) ((-1016 . -238) T) ((-968 . -1112) 28124) ((-436 . -1061) T) ((-924 . -248) T) ((-875 . -132) T) ((-48 . -237) T) ((-708 . -461) T) ((-852 . -1124) 28103) ((-108 . -910) NIL) ((-1224 . -291) 28069) ((-1125 . -1230) T) ((-881 . -857) 28048) ((-1011 . -25) T) ((-915 . -735) T) ((-171 . -523) 27960) ((-1011 . -21) T) ((-915 . -482) T) ((-416 . -1124) T) ((-496 . -803) T) ((-496 . -800) T) ((-920 . -357) T) ((-496 . -735) T) ((-219 . -803) T) ((-219 . -800) T) ((-721 . -235) 27947) ((-219 . -735) T) ((-852 . -23) 27899) ((-1197 . -1112) T) ((-667 . -1063) 27883) ((-1196 . -1112) T) ((-533 . -625) 27864) ((-1195 . -1112) T) ((-326 . -314) 27843) ((-1047 . -240) 27789) ((-667 . -649) 27759) ((-416 . -23) T) ((-953 . -623) 27720) ((-953 . -622) 27632) ((-653 . -498) 27616) ((-45 . -1022) 27566) ((-1125 . -1050) 27393) ((-626 . -979) T) ((-500 . -102) T) ((-338 . -622) 27375) ((-1005 . -293) 27342) ((-602 . -660) 27324) ((-131 . -1112) T) ((-129 . -1112) T) ((-602 . -381) 27306) ((-351 . -1287) 27283) ((-448 . -622) 27265) ((-1253 . -523) 27212) ((-1099 . -1063) 27055) ((-1039 . -1230) T) ((-880 . -297) T) ((-1185 . -293) 26982) ((-1099 . -649) 26831) ((-1012 . -1007) 26815) ((-791 . -1063) 26638) ((-789 . -1063) 26481) ((-791 . -649) 26310) ((-789 . -649) 26159) ((-485 . -1230) T) ((-472 . -1230) T) ((-595 . -102) T) ((-470 . -1063) 26130) ((-463 . -1063) 25973) ((-673 . -655) 25942) ((-632 . -461) 25921) ((-470 . -649) 25892) ((-463 . -649) 25741) ((-363 . -655) 25678) ((-360 . -655) 25615) ((-352 . -655) 25552) ((-270 . -655) 25462) ((-252 . -655) 25372) ((-1295 . -390) 25344) ((-526 . -1112) T) ((-118 . -461) T) ((-1210 . -102) T) ((-1104 . -1112) 25314) ((-1046 . -1112) T) ((-1127 . -93) T) ((-903 . -859) T) ((-1272 . -111) 25183) ((-359 . -1234) T) ((-1272 . -1068) 25066) ((-1125 . -385) 25035) ((-1265 . -1068) 24870) ((-1244 . -1068) 24660) ((-1265 . -111) 24481) ((-1244 . -111) 24250) ((-1224 . -316) 24237) ((-1015 . -132) T) ((-920 . -655) 24187) ((-373 . -622) 24169) ((-359 . -565) T) ((-296 . -314) T) ((-605 . -1068) 24129) ((-604 . -1068) 24012) ((-590 . -1063) 23977) ((-527 . -1063) 23922) ((-369 . -1112) T) ((-329 . -1112) T) ((-257 . -622) 23883) ((-256 . -622) 23844) ((-590 . -649) 23809) ((-527 . -649) 23754) ((-703 . -418) 23721) ((-644 . -23) T) ((-616 . -23) T) ((-667 . -102) T) ((-605 . -111) 23674) ((-604 . -111) 23543) ((-387 . -1112) T) ((-344 . -102) T) ((-171 . -297) 23454) ((-1243 . -857) 23407) ((-723 . -1070) T) ((-1159 . -523) 23340) ((-1203 . -844) 23324) ((-1125 . -910) 23256) ((-845 . -1112) T) ((-836 . -1112) T) ((-834 . -1112) T) ((-97 . -102) T) ((-145 . -859) T) ((-621 . -894) 23240) ((-110 . -1230) T) ((-1099 . -102) T) ((-1075 . -34) T) ((-791 . -102) T) ((-789 . -102) T) ((-1272 . -625) 23122) ((-1265 . -625) 22865) ((-470 . -102) T) ((-463 . -102) T) ((-1244 . -625) 22660) ((-245 . -804) 22611) ((-245 . -801) 22562) ((-658 . -102) T) ((-605 . -625) 22520) ((-604 . -625) 22402) ((-1253 . -297) 22313) ((-673 . -643) 22297) ((-188 . -622) 22279) ((-653 . -293) 22231) ((-1046 . -726) 22215) ((-580 . -297) T) ((-973 . -657) 22140) ((-1303 . -132) T) ((-744 . -657) 22100) ((-724 . -657) 22087) ((-281 . -102) T) ((-462 . -657) 22017) ((-50 . -102) T) ((-590 . -102) T) ((-527 . -102) T) ((-1272 . -1061) T) ((-1265 . -1061) T) ((-1244 . -1061) T) ((-516 . -655) 21999) ((-329 . -726) 21981) ((-1272 . -238) 21940) ((-1265 . -248) 21919) ((-1265 . -238) 21871) ((-1244 . -238) 21758) ((-1244 . -248) 21737) ((-1224 . -38) 21634) ((-605 . -1061) T) ((-604 . -1061) T) ((-1016 . -804) T) ((-1016 . -801) T) ((-983 . -804) T) ((-983 . -801) T) ((-881 . -1070) T) ((-109 . -622) 21616) ((-703 . -461) T) ((-387 . -726) 21581) ((-427 . -657) 21555) ((-879 . -878) 21539) ((-720 . -38) 21504) ((-604 . -238) 21463) ((-40 . -733) 21435) ((-359 . -336) 21412) ((-359 . -371) T) ((-1092 . -314) 21363) ((-301 . -1124) 21244) ((-1118 . -1230) T) ((-1011 . -235) 21217) ((-173 . -102) T) ((-1247 . -622) 21184) ((-852 . -132) 21136) ((-653 . -1268) 21120) ((-845 . -726) 21090) ((-836 . -726) 21060) ((-491 . -1230) T) ((-367 . -314) T) ((-361 . -314) T) ((-353 . -314) T) ((-653 . -613) 21037) ((-416 . -132) T) ((-529 . -675) 21021) ((-108 . -314) T) ((-301 . -23) 20904) ((-529 . -660) 20888) ((-703 . -411) NIL) ((-529 . -381) 20872) ((-298 . -622) 20854) ((-91 . -1112) 20832) ((-108 . -1034) T) ((-573 . -144) T) ((-1280 . -152) 20816) ((-491 . -1050) 20643) ((-1266 . -146) 20604) ((-1266 . -148) 20565) ((-1066 . -1230) T) ((-1005 . -622) 20547) ((-827 . -1230) T) ((-871 . -622) 20529) ((-825 . -1068) 20372) ((-1291 . -93) T) ((-1290 . -93) T) ((-1185 . -623) NIL) ((-1108 . -1112) T) ((-1102 . -1112) T) ((-1099 . -316) 20359) ((-1085 . -1112) T) ((-229 . -1230) T) ((-1078 . -1112) T) ((-1048 . -1112) T) ((-1031 . -1112) T) ((-791 . -316) 20346) ((-789 . -316) 20333) ((-1185 . -622) 20315) ((-825 . -111) 20144) ((-1137 . -622) 20126) ((-635 . -1112) T) ((-586 . -175) T) ((-538 . -175) T) ((-463 . -316) 20113) ((-492 . -1112) T) ((-1137 . -623) 19861) ((-1046 . -174) T) ((-953 . -295) 19838) ((-220 . -1112) T) ((-863 . -622) 19820) ((-617 . -523) 19603) ((-81 . -625) 19544) ((-827 . -1050) 19528) ((-484 . -523) 19320) ((-973 . -735) T) ((-744 . -735) T) ((-724 . -735) T) ((-359 . -1124) T) ((-1192 . -622) 19302) ((-225 . -102) T) ((-491 . -385) 19271) ((-524 . -1112) T) ((-519 . -1112) T) ((-517 . -1112) T) ((-808 . -657) 19245) ((-1036 . -461) T) ((-968 . -523) 19178) ((-359 . -23) T) ((-644 . -132) T) ((-616 . -132) T) ((-362 . -461) T) ((-245 . -376) 19157) ((-387 . -174) T) ((-1264 . -1070) T) ((-1243 . -1070) T) ((-227 . -1014) T) ((-825 . -625) 18894) ((-708 . -396) T) ((-427 . -735) T) ((-710 . -1234) T) ((-1154 . -648) 18842) ((-589 . -878) 18826) ((-1295 . -1068) 18810) ((-1172 . -1206) 18786) ((-710 . -565) T) ((-127 . -1112) 18764) ((-723 . -1112) T) ((-667 . -38) 18734) ((-491 . -910) 18666) ((-254 . -1112) T) ((-189 . -1112) T) ((-362 . -411) T) ((-323 . -148) 18645) ((-323 . -146) 18624) ((-129 . -523) NIL) ((-117 . -565) T) ((-320 . -148) 18580) ((-320 . -146) 18536) ((-48 . -461) T) ((-163 . -1112) T) ((-158 . -1112) T) ((-1172 . -107) 18483) ((-791 . -1164) 18461) ((-698 . -34) T) ((-1295 . -111) 18440) ((-559 . -34) T) ((-493 . -107) 18424) ((-257 . -295) 18401) ((-256 . -295) 18378) ((-880 . -293) 18329) ((-45 . -1230) T) ((-1236 . -853) T) ((-826 . -1230) T) ((-825 . -1061) T) ((-671 . -655) 18298) ((-1191 . -47) 18275) ((-825 . -333) 18237) ((-1099 . -38) 18086) ((-825 . -238) 18065) ((-791 . -38) 17894) ((-789 . -38) 17743) ((-1127 . -499) 17724) ((-463 . -38) 17573) ((-1127 . -622) 17539) ((-1130 . -102) T) ((-653 . -623) 17500) ((-653 . -622) 17412) ((-590 . -1164) T) ((-527 . -1164) T) ((-1159 . -498) 17396) ((-351 . -1063) 17341) ((-1216 . -1112) 17319) ((-1154 . -25) T) ((-1154 . -21) T) ((-351 . -649) 17264) ((-1295 . -625) 17213) ((-483 . -1070) T) ((-1236 . -1112) T) ((-1244 . -801) NIL) ((-1244 . -804) NIL) ((-1011 . -859) 17192) ((-847 . -1112) T) ((-828 . -622) 17174) ((-875 . -21) T) ((-875 . -25) T) ((-808 . -735) T) ((-176 . -1234) T) ((-590 . -38) 17139) ((-527 . -38) 17104) ((-395 . -622) 17086) ((-340 . -102) T) ((-331 . -622) 17068) ((-171 . -293) 17026) ((-63 . -1230) T) ((-112 . -102) T) ((-881 . -1112) T) ((-176 . -565) T) ((-723 . -726) 16996) ((-301 . -132) 16879) ((-227 . -622) 16861) ((-227 . -623) 16791) ((-1015 . -648) 16730) ((-1295 . -1061) T) ((-1132 . -148) T) ((-641 . -1206) 16705) ((-740 . -919) 16684) ((-602 . -34) T) ((-656 . -107) 16668) ((-641 . -107) 16614) ((-1253 . -293) 16541) ((-740 . -657) 16430) ((-302 . -1230) T) ((-1191 . -1050) 16326) ((-953 . -627) 16303) ((-586 . -585) T) ((-586 . -536) T) ((-538 . -536) T) ((-1180 . -919) NIL) ((-1074 . -623) 16218) ((-1074 . -622) 16200) ((-962 . -622) 16182) ((-722 . -499) 16132) ((-351 . -102) T) ((-257 . -1068) 16029) ((-256 . -1068) 15926) ((-403 . -102) T) ((-31 . -1112) T) ((-962 . -623) 15787) ((-722 . -622) 15722) ((-1293 . -1223) 15691) ((-490 . -622) 15673) ((-490 . -623) 15534) ((-270 . -420) 15518) ((-252 . -420) 15502) ((-320 . -237) NIL) ((-257 . -111) 15392) ((-256 . -111) 15282) ((-1187 . -657) 15207) ((-1186 . -657) 15104) ((-1180 . -657) 14956) ((-1138 . -657) 14881) ((-359 . -132) T) ((-82 . -450) T) ((-82 . -404) T) ((-1015 . -25) T) ((-1015 . -21) T) ((-882 . -1112) 14832) ((-40 . -1063) 14777) ((-881 . -726) 14729) ((-40 . -649) 14674) ((-387 . -297) T) ((-171 . -1014) 14625) ((-703 . -396) T) ((-1011 . -1009) 14609) ((-710 . -1124) T) ((-703 . -167) 14591) ((-1264 . -1112) T) ((-1243 . -1112) T) ((-323 . -1215) 14570) ((-323 . -1218) 14549) ((-1177 . -102) T) ((-323 . -969) 14528) ((-135 . -1124) T) ((-117 . -1124) T) ((-662 . -1230) T) ((-611 . -1278) 14512) ((-710 . -23) T) ((-611 . -1112) 14462) ((-323 . -95) 14441) ((-91 . -523) 14374) ((-176 . -371) T) ((-257 . -625) 14104) ((-256 . -625) 13834) ((-323 . -35) 13813) ((-617 . -498) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-976 . -102) T) ((-727 . -1112) T) ((-484 . -498) 13684) ((-416 . -648) 13632) ((-662 . -1050) 13528) ((-968 . -498) 13512) ((-363 . -1070) T) ((-360 . -1070) T) ((-352 . -1070) T) ((-270 . -1070) T) ((-252 . -1070) T) ((-880 . -623) NIL) ((-880 . -622) 13494) ((-1291 . -499) 13475) ((-1290 . -499) 13456) ((-1303 . -21) T) ((-1291 . -622) 13422) ((-1290 . -622) 13388) ((-580 . -1014) T) ((-740 . -735) T) ((-1303 . -25) T) ((-257 . -1061) 13318) ((-256 . -1061) 13248) ((-72 . -1230) T) ((-1154 . -235) 13221) ((-257 . -238) 13173) ((-256 . -238) 13125) ((-1132 . -237) T) ((-40 . -102) T) ((-920 . -1070) T) ((-1194 . -102) T) ((-129 . -498) 13107) ((-1187 . -735) T) ((-1186 . -735) T) ((-1180 . -735) T) ((-1180 . -800) NIL) ((-1180 . -803) NIL) ((-964 . -102) T) ((-931 . -102) T) ((-879 . -1063) 13094) ((-1138 . -735) T) ((-780 . -102) T) ((-681 . -102) T) ((-879 . -649) 13081) ((-555 . -622) 13063) ((-483 . -1112) T) ((-347 . -1124) T) ((-176 . -1124) T) ((-326 . -930) 13042) ((-1264 . -726) 12883) ((-881 . -174) T) ((-1243 . -726) 12697) ((-852 . -21) 12649) ((-852 . -25) 12601) ((-250 . -1161) 12585) ((-127 . -523) 12518) ((-416 . -25) T) ((-416 . -21) T) ((-347 . -23) T) ((-171 . -623) 12284) ((-171 . -622) 12266) ((-176 . -23) T) ((-653 . -295) 12243) ((-529 . -34) T) ((-908 . -622) 12225) ((-89 . -1230) T) ((-850 . -622) 12207) ((-817 . -622) 12189) ((-778 . -622) 12171) ((-686 . -622) 12153) ((-245 . -657) 11938) ((-626 . -113) T) ((-1189 . -1112) T) ((-1185 . -1068) 11761) ((-1162 . -1230) T) ((-1137 . -1068) 11604) ((-863 . -1068) 11588) ((-1247 . -627) 11572) ((-1185 . -111) 11381) ((-1137 . -111) 11210) ((-863 . -111) 11189) ((-1237 . -859) T) ((-1253 . -623) NIL) ((-1253 . -622) 11171) ((-351 . -1164) T) ((-864 . -622) 11153) ((-1088 . -293) 11132) ((-80 . -1230) T) ((-915 . -1230) T) ((-1016 . -919) NIL) ((-1224 . -655) 11042) ((-617 . -293) 11018) ((-1216 . -523) 10951) ((-496 . -1230) T) ((-580 . -622) 10933) ((-484 . -293) 10912) ((-1099 . -233) 10896) ((-526 . -93) T) ((-1016 . -657) 10846) ((-219 . -1230) T) ((-1015 . -235) 10812) ((-968 . -293) 10764) ((-296 . -930) T) ((-826 . -314) 10743) ((-879 . -102) T) ((-791 . -233) 10727) ((-924 . -657) 10679) ((-720 . -655) 10629) ((-703 . -733) 10596) ((-644 . -21) T) ((-644 . -25) T) ((-616 . -21) T) ((-556 . -102) T) ((-351 . -38) 10561) ((-496 . -894) 10543) ((-496 . -896) 10525) ((-483 . -726) 10366) ((-219 . -894) 10348) ((-64 . -1230) T) ((-219 . -896) 10330) ((-616 . -25) T) ((-436 . -657) 10304) ((-1185 . -625) 10073) ((-496 . -1050) 10033) ((-881 . -523) 9945) ((-1137 . -625) 9737) ((-863 . -625) 9655) ((-219 . -1050) 9615) ((-245 . -34) T) ((-1012 . -1112) 9593) ((-589 . -1063) 9580) ((-573 . -1063) 9567) ((-504 . -1063) 9532) ((-1264 . -174) 9463) ((-1243 . -174) 9394) ((-589 . -649) 9381) ((-573 . -649) 9368) ((-504 . -649) 9333) ((-721 . -146) 9312) ((-721 . -148) 9291) ((-710 . -132) T) ((-137 . -474) 9268) ((-1159 . -622) 9200) ((-667 . -665) 9184) ((-129 . -293) 9134) ((-117 . -132) T) ((-486 . -1234) T) ((-617 . -613) 9110) ((-484 . -613) 9089) ((-344 . -343) 9058) ((-606 . -1112) T) ((-594 . -1112) T) ((-545 . -1112) T) ((-486 . -565) T) ((-1185 . -1061) T) ((-1137 . -1061) T) ((-863 . -1061) T) ((-245 . -800) 9037) ((-245 . -803) 8988) ((-245 . -802) 8967) ((-1185 . -333) 8944) ((-245 . -735) 8854) ((-968 . -19) 8838) ((-496 . -385) 8820) ((-496 . -346) 8802) ((-1137 . -333) 8774) ((-362 . -1287) 8751) ((-219 . -385) 8733) ((-219 . -346) 8715) ((-968 . -613) 8692) ((-1185 . -238) T) ((-1276 . -1112) T) ((-673 . -1112) T) ((-654 . -1112) T) ((-1202 . -1112) T) ((-1099 . -259) 8629) ((-595 . -655) 8589) ((-363 . -1112) T) ((-360 . -1112) T) ((-352 . -1112) T) ((-270 . -1112) T) ((-252 . -1112) T) ((-84 . -1230) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1243 . -523) 8405) ((-1202 . -619) 8384) ((-1153 . -1112) T) ((-1127 . -625) 8365) ((-1092 . -930) 8316) ((-488 . -1112) T) ((-1016 . -803) T) ((-1016 . -800) T) ((-488 . -619) 8295) ((-257 . -804) 8246) ((-257 . -801) 8197) ((-256 . -804) 8148) ((-40 . -1164) NIL) ((-256 . -801) 8099) ((-1016 . -735) T) ((-129 . -19) 8081) ((-983 . -803) T) ((-708 . -1063) 8046) ((-924 . -735) T) ((-920 . -1112) T) ((-902 . -622) 8028) ((-129 . -613) 8003) ((-708 . -649) 7968) ((-91 . -498) 7952) ((-496 . -910) NIL) ((-881 . -297) T) ((-227 . -1068) 7917) ((-845 . -293) 7896) ((-219 . -910) NIL) ((-842 . -1124) 7875) ((-59 . -1112) 7825) ((-528 . -1112) 7803) ((-525 . -1112) 7753) ((-506 . -1112) 7731) ((-505 . -1112) 7681) ((-589 . -102) T) ((-573 . -102) T) ((-504 . -102) T) ((-483 . -174) 7612) ((-367 . -930) T) ((-361 . -930) T) ((-353 . -930) T) ((-227 . -111) 7568) ((-842 . -23) 7520) ((-436 . -735) T) ((-108 . -930) T) ((-40 . -38) 7465) ((-108 . -829) T) ((-590 . -357) T) ((-527 . -357) T) ((-667 . -655) 7424) ((-323 . -461) 7403) ((-320 . -461) T) ((-611 . -523) 7336) ((-416 . -235) 7309) ((-347 . -132) T) ((-176 . -132) T) ((-301 . -25) 7173) ((-301 . -21) 7056) ((-45 . -1206) 7035) ((-66 . -622) 7017) ((-55 . -102) T) ((-344 . -655) 6999) ((-1281 . -102) T) ((-1280 . -102) 6949) ((-45 . -107) 6899) ((-828 . -625) 6883) ((-1272 . -657) 6808) ((-1265 . -657) 6705) ((-1244 . -657) 6557) ((-1244 . -919) NIL) ((-1211 . -622) 6539) ((-1114 . -434) 6523) ((-1114 . -376) 6502) ((-395 . -625) 6486) ((-331 . -625) 6470) ((-1203 . -102) T) ((-1108 . -93) T) ((-1075 . -1230) T) ((-1099 . -655) 6380) ((-1074 . -1068) 6367) ((-1074 . -111) 6352) ((-962 . -1068) 6195) ((-962 . -111) 6024) ((-791 . -655) 5934) ((-789 . -655) 5844) ((-632 . -1063) 5831) ((-673 . -726) 5815) ((-632 . -649) 5802) ((-490 . -1068) 5645) ((-486 . -371) T) ((-470 . -655) 5601) ((-463 . -655) 5511) ((-227 . -625) 5461) ((-363 . -726) 5413) ((-360 . -726) 5365) ((-118 . -1063) 5310) ((-352 . -726) 5262) ((-270 . -726) 5111) ((-252 . -726) 4960) ((-1102 . -93) T) ((-1085 . -93) T) ((-118 . -649) 4905) ((-1078 . -93) T) ((-953 . -660) 4889) ((-1069 . -1112) 4867) ((-490 . -111) 4696) ((-1048 . -93) T) ((-1031 . -93) T) ((-953 . -381) 4680) ((-253 . -102) T) ((-973 . -47) 4659) ((-74 . -622) 4641) ((-721 . -237) T) ((-719 . -102) T) ((-708 . -102) T) ((-1 . -1112) T) ((-630 . -1124) T) ((-1100 . -622) 4623) ((-635 . -93) T) ((-1088 . -622) 4605) ((-920 . -726) 4570) ((-127 . -498) 4554) ((-492 . -93) T) ((-630 . -23) T) ((-399 . -23) T) ((-87 . -1230) T) ((-220 . -93) T) ((-617 . -622) 4536) ((-617 . -623) NIL) ((-484 . -623) NIL) ((-484 . -622) 4518) ((-359 . -25) T) ((-359 . -21) T) ((-50 . -655) 4477) ((-520 . -1112) T) ((-516 . -1112) T) ((-128 . -316) 4415) ((-122 . -316) 4353) ((-605 . -657) 4327) ((-604 . -657) 4252) ((-590 . -655) 4202) ((-227 . -1061) T) ((-527 . -655) 4132) ((-387 . -1014) T) ((-227 . -248) T) ((-227 . -238) T) ((-1074 . -625) 4104) ((-1074 . -627) 4085) ((-968 . -623) 4046) ((-968 . -622) 3958) ((-962 . -625) 3747) ((-879 . -38) 3734) ((-722 . -625) 3684) ((-1264 . -297) 3635) ((-1243 . -297) 3586) ((-490 . -625) 3371) ((-1132 . -461) T) ((-511 . -859) T) ((-323 . -1151) 3350) ((-1011 . -148) 3329) ((-1011 . -146) 3308) ((-504 . -316) 3295) ((-302 . -1206) 3274) ((-1197 . -622) 3256) ((-1196 . -622) 3238) ((-1195 . -622) 3220) ((-880 . -1068) 3165) ((-486 . -1124) T) ((-140 . -844) 3147) ((-115 . -844) 3128) ((-632 . -102) T) ((-1216 . -498) 3112) ((-257 . -376) 3091) ((-256 . -376) 3070) ((-1074 . -1061) T) ((-302 . -107) 3020) ((-131 . -622) 3002) ((-129 . -623) NIL) ((-129 . -622) 2946) ((-118 . -102) T) ((-962 . -1061) T) ((-880 . -111) 2875) ((-486 . -23) T) ((-462 . -1230) T) ((-490 . -1061) T) ((-1074 . -238) T) ((-962 . -333) 2844) ((-490 . -333) 2801) ((-363 . -174) T) ((-360 . -174) T) ((-352 . -174) T) ((-270 . -174) 2712) ((-252 . -174) 2623) ((-973 . -1050) 2519) ((-526 . -499) 2500) ((-744 . -1050) 2471) ((-526 . -622) 2437) ((-427 . -1230) 2354) ((-1117 . -102) T) ((-1104 . -622) 2313) ((-1046 . -622) 2295) ((-703 . -1063) 2245) ((-1293 . -152) 2229) ((-1291 . -625) 2210) ((-1290 . -625) 2191) ((-1285 . -622) 2173) ((-1272 . -735) T) ((-703 . -649) 2123) ((-1265 . -735) T) ((-1244 . -800) NIL) ((-1244 . -803) NIL) ((-171 . -1068) 2033) ((-920 . -174) T) ((-880 . -625) 1963) ((-1244 . -735) T) ((-1015 . -350) 1937) ((-225 . -655) 1889) ((-1012 . -523) 1822) ((-852 . -859) 1801) ((-573 . -1164) T) ((-483 . -297) 1752) ((-605 . -735) T) ((-369 . -622) 1734) ((-329 . -622) 1716) ((-427 . -1050) 1612) ((-604 . -735) T) ((-416 . -859) 1563) ((-171 . -111) 1459) ((-842 . -132) 1411) ((-746 . -152) 1395) ((-1280 . -316) 1333) ((-496 . -314) T) ((-387 . -622) 1300) ((-529 . -1022) 1284) ((-387 . -623) 1198) ((-219 . -314) T) ((-142 . -152) 1180) ((-723 . -293) 1159) ((-496 . -1034) T) ((-589 . -38) 1146) ((-573 . -38) 1133) ((-504 . -38) 1098) ((-219 . -1034) T) ((-880 . -1061) T) ((-845 . -622) 1080) ((-836 . -622) 1062) ((-834 . -622) 1044) ((-825 . -919) 1023) ((-1304 . -1124) T) ((-1253 . -1068) 846) ((-864 . -1068) 830) ((-880 . -248) T) ((-880 . -238) NIL) ((-698 . -1230) T) ((-1304 . -23) T) ((-825 . -657) 719) ((-559 . -1230) T) ((-427 . -346) 703) ((-580 . -1068) 690) ((-1253 . -111) 499) ((-710 . -648) 481) ((-864 . -111) 460) ((-389 . -23) T) ((-171 . -625) 238) ((-1202 . -523) 30) ((-885 . -1112) T) ((-690 . -1112) T) ((-685 . -1112) T) ((-671 . -1112) T))
\ No newline at end of file +(-2832 (|has| |#1| (-860)) (|has| |#1| (-1115))) +((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-488 . -1115) T) ((-271 . -524) 195259) ((-253 . -524) 195202) ((-251 . -1115) 195152) ((-581 . -111) 195137) ((-541 . -23) T) ((-134 . -1115) T) ((-139 . -1115) T) ((-118 . -317) 195094) ((-138 . -1115) T) ((-1014 . -238) 195073) ((-809 . -1233) 195042) ((-489 . -524) 194834) ((-687 . -626) 194818) ((-704 . -102) T) ((-1156 . -524) 194737) ((-400 . -132) T) ((-1296 . -991) 194706) ((-1039 . -1066) 194643) ((-31 . -93) T) ((-612 . -499) 194627) ((-1039 . -650) 194564) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 194514) ((-529 . -524) 194447) ((-360 . -235) 194434) ((-363 . -1066) 194379) ((-59 . -524) 194312) ((-526 . -524) 194245) ((-428 . -913) 194204) ((-171 . -1064) T) ((-507 . -524) 194137) ((-506 . -524) 194070) ((-363 . -650) 194015) ((-809 . -1053) 193795) ((-709 . -38) 193760) ((-1256 . -626) 193508) ((-352 . -358) T) ((-1109 . -1108) 193492) ((-1109 . -1115) 193470) ((-865 . -626) 193367) ((-171 . -249) 193318) ((-171 . -239) 193269) ((-1109 . -1110) 193227) ((-882 . -294) 193185) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 193157) ((-1165 . -1209) 193136) ((-417 . -1007) 193120) ((-48 . -1066) 193085) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 193050) ((-1298 . -658) 193024) ((-324 . -161) 193003) ((-324 . -144) 192982) ((-1165 . -107) 192932) ((-117 . -21) T) ((-40 . -233) 192909) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 192885) ((-485 . -296) 192864) ((-1256 . -334) 192841) ((-1256 . -1064) T) ((-865 . -1064) T) ((-809 . -347) 192825) ((-140 . -187) T) ((-118 . -1167) NIL) ((-91 . -623) 192757) ((-487 . -132) T) ((-1256 . -239) T) ((-1111 . -500) 192738) ((-1111 . -623) 192704) ((-1105 . -500) 192685) ((-1105 . -623) 192651) ((-603 . -1233) T) ((-1088 . -500) 192632) ((-581 . -1064) T) ((-1088 . -623) 192598) ((-672 . -727) 192582) ((-1081 . -500) 192563) ((-1081 . -623) 192529) ((-971 . -296) 192506) ((-60 . -34) T) ((-1077 . -805) T) ((-1077 . -802) T) ((-1051 . -500) 192487) ((-1034 . -500) 192468) ((-826 . -736) T) ((-741 . -47) 192433) ((-633 . -38) 192420) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 192351) ((-253 . -298) 192282) ((-1051 . -623) 192248) ((-1039 . -102) T) ((-1034 . -623) 192214) ((-636 . -500) 192195) ((-423 . -736) T) ((-118 . -38) 192140) ((-493 . -500) 192121) ((-636 . -623) 192087) ((-423 . -483) T) ((-220 . -500) 192068) ((-493 . -623) 192034) ((-363 . -102) T) ((-220 . -623) 192000) ((-1227 . -1073) T) ((-352 . -656) 191930) ((-721 . -1073) T) ((-1190 . -47) 191907) ((-1189 . -47) 191877) ((-1183 . -47) 191854) ((-129 . -296) 191829) ((-1050 . -152) 191775) ((-923 . -298) T) ((-1141 . -47) 191747) ((-704 . -317) NIL) ((-525 . -623) 191729) ((-520 . -623) 191711) ((-518 . -623) 191693) ((-335 . -1115) 191643) ((-722 . -462) 191574) ((-48 . -102) T) ((-1267 . -294) 191532) ((-1246 . -294) 191432) ((-654 . -676) 191416) ((-654 . -661) 191400) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 191384) ((-615 . -500) 191366) ((-612 . -294) 191318) ((-615 . -623) 191285) ((-398 . -102) T) ((-1135 . -144) T) ((-127 . -623) 191217) ((-884 . -1115) T) ((-668 . -421) 191201) ((-724 . -623) 191183) ((-255 . -623) 191150) ((-189 . -623) 191132) ((-163 . -623) 191114) ((-158 . -623) 191096) ((-1298 . -736) T) ((-1117 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1307 . -132) T) ((-390 . -132) T) ((-903 . -626) 191064) ((-917 . -102) T) ((-741 . -1053) 190940) ((-1190 . -1233) T) ((-541 . -132) T) ((-1189 . -1233) T) ((-1102 . -421) 190924) ((-1015 . -499) 190908) ((-118 . -410) 190885) ((-1183 . -1233) T) ((-792 . -421) 190869) ((-790 . -421) 190853) ((-956 . -34) T) ((-704 . -1167) NIL) ((-258 . -658) 190625) ((-257 . -658) 190384) ((-827 . -933) 190363) ((-464 . -421) 190347) ((-612 . -19) 190331) ((-1161 . -1226) 190300) ((-1183 . -897) NIL) ((-1183 . -895) 190252) ((-612 . -614) 190229) ((-1219 . -623) 190161) ((-1191 . -623) 190143) ((-62 . -405) T) ((-1189 . -1053) 190078) ((-1183 . -1053) 190044) ((-704 . -38) 189994) ((-40 . -656) 189924) ((-484 . -294) 189882) ((-1239 . -623) 189864) ((-741 . -386) 189848) ((-848 . -623) 189830) ((-668 . -1073) T) ((-1267 . -1017) 189796) ((-1246 . -1017) 189762) ((-256 . -1233) T) ((-1103 . -626) 189746) ((-1078 . -1209) 189721) ((-1091 . -626) 189698) ((-882 . -624) 189505) ((-882 . -623) 189487) ((-711 . -235) 189474) ((-1205 . -499) 189411) ((-428 . -1037) 189389) ((-48 . -317) 189376) ((-1078 . -107) 189322) ((-489 . -499) 189259) ((-530 . -1233) T) ((-1183 . -347) 189211) ((-1156 . -499) 189182) ((-1183 . -386) 189134) ((-1102 . -1073) T) ((-447 . -102) T) ((-185 . -1115) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1073) T) ((-790 . -1073) T) ((-741 . -913) 189111) ((-464 . -1073) T) ((-59 . -499) 189095) ((-1049 . -1071) 189069) ((-529 . -499) 189053) ((-526 . -499) 189037) ((-507 . -499) 189021) ((-506 . -499) 189005) ((-251 . -524) 188938) ((-1049 . -111) 188905) ((-1190 . -913) 188818) ((-1189 . -913) 188724) ((-1183 . -913) 188557) ((-1141 . -913) 188541) ((-680 . -1127) T) ((-655 . -93) T) ((-363 . -1167) T) ((-330 . -1071) 188523) ((-258 . -801) 188502) ((-258 . -804) 188453) ((-31 . -500) 188434) ((-258 . -803) 188413) ((-257 . -801) 188392) ((-257 . -804) 188343) ((-257 . -803) 188322) ((-31 . -623) 188288) ((-50 . -1073) T) ((-258 . -736) 188198) ((-257 . -736) 188108) ((-1227 . -1115) T) ((-680 . -23) T) ((-591 . -1073) T) ((-528 . -1073) T) ((-388 . -1071) 188073) ((-330 . -111) 188048) ((-73 . -392) T) ((-73 . -405) T) ((-1039 . -38) 187985) ((-704 . -410) 187967) ((-99 . -102) T) ((-721 . -1115) T) ((-1312 . -1066) 187954) ((-1018 . -146) 187926) ((-1018 . -148) 187898) ((-880 . -656) 187870) ((-388 . -111) 187826) ((-327 . -1237) 187805) ((-484 . -1017) 187771) ((-363 . -38) 187736) ((-40 . -379) 187708) ((-883 . -623) 187580) ((-128 . -126) 187564) ((-122 . -126) 187548) ((-846 . -1071) 187518) ((-843 . -21) 187470) ((-837 . -1071) 187454) ((-843 . -25) 187406) ((-327 . -566) 187357) ((-527 . -626) 187338) ((-574 . -838) T) ((-246 . -1233) T) ((-1049 . -626) 187307) ((-846 . -111) 187272) ((-837 . -111) 187251) ((-1267 . -623) 187233) ((-1246 . -623) 187215) ((-1246 . -624) 186886) ((-1188 . -922) 186865) ((-1140 . -922) 186844) ((-48 . -38) 186809) ((-1305 . -1127) T) ((-546 . -294) 186765) ((-612 . -623) 186677) ((-612 . -624) 186638) ((-1303 . -1127) T) ((-370 . -626) 186622) ((-330 . -626) 186606) ((-1157 . -238) 186585) ((-246 . -1053) 186412) ((-1188 . -658) 186301) ((-1140 . -658) 186190) ((-864 . -658) 186164) ((-728 . -623) 186146) ((-556 . -377) T) ((-1305 . -23) T) ((-1303 . -23) T) ((-501 . -1115) T) ((-388 . -626) 186096) ((-388 . -628) 186078) ((-1049 . -1064) T) ((-875 . -102) T) ((-1205 . -294) 186057) ((-171 . -377) 186008) ((-1019 . -1233) T) ((-846 . -626) 185962) ((-837 . -626) 185917) ((-44 . -23) T) ((-489 . -294) 185896) ((-596 . -1115) T) ((-1161 . -1124) 185865) ((-1119 . -1118) 185817) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1127) T) ((-1312 . -102) T) ((-1019 . -895) 185799) ((-1019 . -897) 185781) ((-1227 . -727) 185678) ((-633 . -233) 185662) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1213 . -1115) T) ((-721 . -727) 185627) ((-246 . -386) 185596) ((-1019 . -1053) 185556) ((-388 . -1064) T) ((-225 . -1073) T) ((-118 . -233) 185533) ((-59 . -294) 185485) ((-153 . -23) T) ((-526 . -294) 185437) ((-335 . -524) 185370) ((-506 . -294) 185322) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1064) T) ((-837 . -1064) T) ((-722 . -962) 185291) ((-711 . -860) T) ((-484 . -623) 185273) ((-1269 . -1066) 185178) ((-590 . -656) 185150) ((-574 . -656) 185122) ((-505 . -656) 185072) ((-837 . -239) 185051) ((-135 . -860) T) ((-1269 . -650) 184943) ((-668 . -1115) T) ((-1205 . -614) 184922) ((-560 . -1209) 184901) ((-345 . -1115) T) ((-327 . -372) 184880) ((-417 . -148) 184859) ((-417 . -146) 184838) ((-977 . -1127) 184737) ((-246 . -913) 184669) ((-825 . -1127) 184579) ((-664 . -862) 184563) ((-489 . -614) 184542) ((-560 . -107) 184492) ((-1019 . -386) 184474) ((-1019 . -347) 184456) ((-1192 . -623) 184438) ((-97 . -1115) T) ((-977 . -23) 184249) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 184119) ((-1192 . -624) 184041) ((-59 . -19) 184025) ((-1188 . -736) T) ((-1140 . -736) T) ((-1102 . -1115) T) ((-526 . -19) 184009) ((-506 . -19) 183993) ((-59 . -614) 183970) ((-1018 . -238) 183942) ((-914 . -102) 183920) ((-864 . -736) T) ((-792 . -1115) T) ((-526 . -614) 183897) ((-506 . -614) 183874) ((-790 . -1115) T) ((-790 . -1080) 183841) ((-471 . -1115) T) ((-464 . -1115) T) ((-596 . -727) 183816) ((-659 . -1115) T) ((-1275 . -47) 183793) ((-1269 . -102) T) ((-1268 . -47) 183763) ((-1247 . -47) 183740) ((-1227 . -174) 183691) ((-1189 . -315) 183670) ((-1183 . -315) 183649) ((-1111 . -626) 183630) ((-1105 . -626) 183611) ((-1095 . -566) 183562) ((-1019 . -913) NIL) ((-1095 . -1237) 183513) ((-680 . -132) T) ((-637 . -1127) T) ((-1088 . -626) 183494) ((-1081 . -626) 183475) ((-1051 . -626) 183456) ((-1034 . -626) 183437) ((-709 . -656) 183387) ((-282 . -1115) T) ((-85 . -451) T) ((-85 . -405) T) ((-724 . -1071) 183357) ((-721 . -174) T) ((-50 . -1115) T) ((-605 . -47) 183334) ((-227 . -658) 183299) ((-591 . -1115) T) ((-528 . -1115) T) ((-497 . -830) T) ((-497 . -933) T) ((-368 . -1237) T) ((-362 . -1237) T) ((-354 . -1237) T) ((-327 . -1127) T) ((-324 . -1066) 183209) ((-321 . -1066) 183138) ((-108 . -1237) T) ((-636 . -626) 183119) ((-368 . -566) T) ((-219 . -933) T) ((-219 . -830) T) ((-324 . -650) 183029) ((-321 . -650) 182958) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 182939) ((-108 . -566) T) ((-668 . -727) 182909) ((-1183 . -1037) NIL) ((-220 . -626) 182890) ((-327 . -23) T) ((-67 . -1233) T) ((-1015 . -623) 182822) ((-704 . -233) 182804) ((-724 . -111) 182769) ((-654 . -34) T) ((-251 . -499) 182753) ((-1312 . -1167) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-1305 . -132) T) ((-1117 . -1113) 182737) ((-173 . -1115) T) ((-1303 . -132) T) ((-1296 . -102) T) ((-1279 . -623) 182703) ((-1275 . -1233) T) ((-1268 . -1233) T) ((-965 . -922) 182682) ((-1268 . -1053) 182617) ((-1247 . -1233) T) ((-1247 . -897) NIL) ((-525 . -626) 182601) ((-1247 . -895) 182553) ((-1247 . -1053) 182519) ((-1227 . -524) 182486) ((-491 . -922) 182465) ((-1205 . -624) NIL) ((-1205 . -623) 182447) ((-1102 . -727) 182296) ((-1077 . -658) 182268) ((-965 . -658) 182157) ((-607 . -500) 182138) ((-595 . -500) 182119) ((-792 . -727) 181948) ((-607 . -623) 181914) ((-595 . -623) 181880) ((-546 . -623) 181862) ((-546 . -624) 181843) ((-790 . -727) 181692) ((-1092 . -102) T) ((-390 . -25) T) ((-633 . -656) 181664) ((-390 . -21) T) ((-491 . -658) 181553) ((-471 . -727) 181524) ((-464 . -727) 181373) ((-1002 . -102) T) ((-1157 . -1138) 181318) ((-1061 . -1226) 181247) ((-914 . -317) 181185) ((-747 . -102) T) ((-118 . -656) 181115) ((-615 . -626) 181097) ((-886 . -93) T) ((-724 . -626) 181051) ((-541 . -25) T) ((-691 . -93) T) ((-686 . -93) T) ((-674 . -623) 181033) ((-655 . -500) 181014) ((-142 . -102) T) ((-44 . -132) T) ((-655 . -623) 180967) ((-605 . -1233) T) ((-352 . -1073) T) ((-297 . -1127) T) ((-488 . -93) T) ((-417 . -238) 180946) ((-364 . -623) 180928) ((-361 . -623) 180910) ((-353 . -623) 180892) ((-271 . -624) 180640) ((-271 . -623) 180622) ((-253 . -623) 180604) ((-253 . -624) 180465) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1156 . -623) 180447) ((-1135 . -650) 180434) ((-1135 . -1066) 180421) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 180398) ((-591 . -727) 180363) ((-489 . -624) NIL) ((-489 . -623) 180345) ((-528 . -727) 180290) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-923 . -623) 180272) ((-923 . -624) 180254) ((-396 . -736) T) ((-882 . -1071) 180206) ((-882 . -111) 180144) ((-724 . -1064) T) ((-722 . -1259) 180128) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 180060) ((-388 . -805) T) ((-225 . -1115) T) ((-169 . -1233) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 180021) ((-59 . -623) 179933) ((-227 . -736) T) ((-526 . -624) 179894) ((-526 . -623) 179806) ((-507 . -623) 179738) ((-506 . -624) 179699) ((-506 . -623) 179611) ((-1095 . -372) 179562) ((-40 . -421) 179539) ((-77 . -1233) T) ((-881 . -922) NIL) ((-368 . -337) 179523) ((-368 . -372) T) ((-362 . -337) 179507) ((-362 . -372) T) ((-354 . -337) 179491) ((-354 . -372) T) ((-324 . -292) 179470) ((-108 . -372) T) ((-70 . -1233) T) ((-1247 . -347) 179422) ((-881 . -658) 179367) ((-1247 . -386) 179319) ((-977 . -132) 179174) ((-825 . -132) 179044) ((-971 . -661) 179028) ((-1102 . -174) 178939) ((-971 . -382) 178923) ((-1077 . -804) T) ((-1077 . -801) T) ((-882 . -626) 178821) ((-792 . -174) 178712) ((-790 . -174) 178623) ((-826 . -47) 178585) ((-1077 . -736) T) ((-335 . -499) 178569) ((-965 . -736) T) ((-1296 . -317) 178507) ((-464 . -174) 178418) ((-251 . -294) 178370) ((-1275 . -913) 178283) ((-1268 . -913) 178189) ((-1267 . -1071) 178024) ((-491 . -736) T) ((-1247 . -913) 177857) ((-1246 . -1071) 177665) ((-1227 . -298) 177644) ((-1202 . -1233) T) ((-1199 . -377) T) ((-1198 . -377) T) ((-1161 . -152) 177628) ((-1135 . -102) T) ((-1133 . -1115) T) ((-1095 . -23) T) ((-1095 . -1127) T) ((-1090 . -102) T) ((-1072 . -623) 177595) ((-940 . -968) T) ((-747 . -317) 177533) ((-75 . -1233) T) ((-674 . -391) 177505) ((-171 . -922) 177458) ((-30 . -968) T) ((-112 . -854) T) ((-1 . -623) 177440) ((-1018 . -419) 177412) ((-129 . -661) 177394) ((-50 . -630) 177378) ((-704 . -656) 177313) ((-605 . -913) 177226) ((-448 . -102) T) ((-129 . -382) 177208) ((-142 . -317) NIL) ((-882 . -1064) T) ((-843 . -860) 177187) ((-81 . -1233) T) ((-721 . -298) T) ((-40 . -1073) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 177169) ((-171 . -658) 177043) ((-517 . -623) 177025) ((-360 . -148) 177007) ((-360 . -146) T) ((-368 . -1127) T) ((-362 . -1127) T) ((-354 . -1127) T) ((-1019 . -315) T) ((-927 . -315) T) ((-882 . -249) T) ((-108 . -1127) T) ((-882 . -239) 176986) ((-1267 . -111) 176807) ((-1246 . -111) 176596) ((-251 . -1271) 176580) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 176567) ((-321 . -317) 176508) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1019 . -1037) T) ((-31 . -626) 176489) ((-108 . -23) T) ((-664 . -1066) 176473) ((-251 . -614) 176450) ((-341 . -1115) T) ((-664 . -650) 176420) ((-1269 . -38) 176312) ((-1256 . -922) 176291) ((-112 . -1115) T) ((-826 . -1233) 176270) ((-1050 . -102) T) ((-1256 . -658) 176159) ((-881 . -804) NIL) ((-865 . -658) 176133) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1102 . -524) 176006) ((-792 . -524) 175953) ((-790 . -524) 175905) ((-581 . -658) 175892) ((-826 . -1053) 175720) ((-464 . -524) 175663) ((-398 . -399) T) ((-1267 . -626) 175476) ((-1246 . -626) 175224) ((-60 . -1233) T) ((-631 . -860) 175203) ((-510 . -671) T) ((-1161 . -991) 175172) ((-1039 . -656) 175109) ((-1018 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1071) 174944) ((-510 . -113) T) ((-352 . -1115) T) ((-321 . -1167) NIL) ((-297 . -132) T) ((-404 . -1115) T) ((-880 . -1073) T) ((-704 . -379) 174911) ((-363 . -656) 174841) ((-225 . -630) 174818) ((-335 . -294) 174770) ((-484 . -111) 174591) ((-1267 . -1064) T) ((-1246 . -1064) T) ((-826 . -386) 174575) ((-171 . -736) T) ((-664 . -102) T) ((-1267 . -249) 174554) ((-1267 . -239) 174506) ((-1246 . -239) 174411) ((-1246 . -249) 174390) ((-1018 . -412) NIL) ((-680 . -649) 174338) ((-324 . -38) 174248) ((-321 . -38) 174177) ((-69 . -623) 174159) ((-327 . -503) 174125) ((-48 . -656) 174075) ((-1205 . -296) 174054) ((-1241 . -860) T) ((-1128 . -1127) 173964) ((-83 . -1233) T) ((-61 . -623) 173946) ((-489 . -296) 173925) ((-1298 . -1053) 173902) ((-1180 . -1115) T) ((-1128 . -23) 173772) ((-826 . -913) 173708) ((-1256 . -736) T) ((-1117 . -1233) T) ((-484 . -626) 173534) ((-360 . -238) T) ((-1102 . -298) 173465) ((-979 . -1115) T) ((-904 . -102) T) ((-792 . -298) 173376) ((-335 . -19) 173360) ((-59 . -296) 173337) ((-790 . -298) 173268) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 173245) ((-335 . -614) 173222) ((-506 . -296) 173199) ((-464 . -298) 173130) ((-1050 . -317) 172981) ((-886 . -500) 172962) ((-886 . -623) 172928) ((-691 . -500) 172909) ((-581 . -736) T) ((-686 . -500) 172890) ((-691 . -623) 172840) ((-686 . -623) 172806) ((-672 . -623) 172788) ((-488 . -500) 172769) ((-488 . -623) 172735) ((-251 . -624) 172696) ((-251 . -500) 172673) ((-139 . -500) 172654) ((-138 . -500) 172635) ((-134 . -500) 172616) ((-251 . -623) 172508) ((-215 . -102) T) ((-139 . -623) 172474) ((-138 . -623) 172440) ((-134 . -623) 172406) ((-1162 . -34) T) ((-956 . -1233) T) ((-352 . -727) 172351) ((-680 . -25) T) ((-680 . -21) T) ((-1192 . -626) 172332) ((-484 . -1064) T) ((-645 . -427) 172297) ((-617 . -427) 172262) ((-1135 . -1167) T) ((-722 . -1066) 172085) ((-591 . -298) T) ((-528 . -298) T) ((-1268 . -315) 172064) ((-484 . -239) 172016) ((-484 . -249) 171995) ((-1247 . -315) 171974) ((-722 . -650) 171803) ((-1247 . -1037) NIL) ((-1095 . -132) T) ((-882 . -805) 171782) ((-145 . -102) T) ((-40 . -1115) T) ((-882 . -802) 171761) ((-654 . -1025) 171745) ((-590 . -1073) T) ((-574 . -1073) T) ((-505 . -1073) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 171729) ((-321 . -410) 171690) ((-362 . -132) T) ((-354 . -132) T) ((-1197 . -1115) T) ((-1135 . -38) 171677) ((-1109 . -623) 171644) ((-108 . -132) T) ((-967 . -1115) T) ((-934 . -1115) T) ((-781 . -1115) T) ((-682 . -1115) T) ((-711 . -148) T) ((-117 . -148) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-674 . -1071) 171628) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1071) 171580) ((-361 . -1071) 171532) ((-353 . -1071) 171484) ((-258 . -1233) T) ((-257 . -1233) T) ((-271 . -1071) 171327) ((-253 . -1071) 171170) ((-674 . -111) 171149) ((-557 . -854) T) ((-364 . -111) 171087) ((-361 . -111) 171025) ((-353 . -111) 170963) ((-271 . -111) 170792) ((-253 . -111) 170621) ((-827 . -1237) 170600) ((-633 . -421) 170584) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 170490) ((-827 . -566) 170469) ((-258 . -1053) 170296) ((-257 . -1053) 170123) ((-127 . -120) 170107) ((-923 . -1071) 170072) ((-722 . -102) T) ((-709 . -1073) T) ((-607 . -626) 170053) ((-595 . -626) 170034) ((-546 . -628) 169937) ((-352 . -174) T) ((-88 . -623) 169919) ((-153 . -21) T) ((-153 . -25) T) ((-923 . -111) 169875) ((-40 . -727) 169820) ((-880 . -1115) T) ((-674 . -626) 169797) ((-655 . -626) 169778) ((-364 . -626) 169715) ((-361 . -626) 169652) ((-557 . -1115) T) ((-353 . -626) 169589) ((-335 . -624) 169550) ((-335 . -623) 169462) ((-271 . -626) 169215) ((-253 . -626) 169000) ((-1246 . -802) 168953) ((-1246 . -805) 168906) ((-258 . -386) 168875) ((-257 . -386) 168844) ((-664 . -38) 168814) ((-618 . -34) T) ((-492 . -1127) 168724) ((-485 . -34) T) ((-1128 . -132) 168594) ((-977 . -25) 168405) ((-923 . -626) 168355) ((-884 . -623) 168337) ((-977 . -21) 168292) ((-825 . -21) 168202) ((-825 . -25) 168053) ((-1239 . -377) T) ((-633 . -1073) T) ((-1194 . -566) 168032) ((-1188 . -47) 168009) ((-364 . -1064) T) ((-361 . -1064) T) ((-492 . -23) 167879) ((-353 . -1064) T) ((-271 . -1064) T) ((-253 . -1064) T) ((-1140 . -47) 167851) ((-118 . -1073) T) ((-1049 . -658) 167825) ((-971 . -34) T) ((-364 . -239) 167804) ((-364 . -249) T) ((-361 . -239) 167783) ((-361 . -249) T) ((-353 . -239) 167762) ((-353 . -249) T) ((-271 . -334) 167734) ((-253 . -334) 167691) ((-271 . -239) 167670) ((-1172 . -152) 167654) ((-258 . -913) 167586) ((-257 . -913) 167518) ((-1097 . -860) T) ((-424 . -1127) T) ((-1069 . -23) T) ((-1039 . -858) T) ((-923 . -1064) T) ((-330 . -658) 167500) ((-711 . -238) T) ((-680 . -235) 167473) ((-1227 . -1017) 167439) ((-1189 . -933) 167418) ((-1183 . -933) 167397) ((-1183 . -830) NIL) ((-1014 . -1066) 167293) ((-980 . -1233) T) ((-923 . -249) T) ((-827 . -372) 167272) ((-394 . -23) T) ((-128 . -1115) 167250) ((-122 . -1115) 167228) ((-923 . -239) T) ((-129 . -34) T) ((-388 . -658) 167193) ((-1014 . -650) 167141) ((-880 . -727) 167128) ((-1312 . -656) 167100) ((-1061 . -152) 167065) ((-1008 . -1233) T) ((-40 . -174) T) ((-704 . -421) 167047) ((-722 . -317) 167034) ((-846 . -658) 166994) ((-837 . -658) 166968) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 166947) ((-590 . -1115) T) ((-574 . -1115) T) ((-505 . -1115) T) ((-251 . -296) 166924) ((-1188 . -1233) T) ((-321 . -233) 166885) ((-1188 . -897) NIL) ((-55 . -1115) T) ((-1140 . -897) 166744) ((-130 . -860) T) ((-1188 . -1053) 166624) ((-1140 . -1053) 166507) ((-185 . -623) 166489) ((-864 . -1053) 166385) ((-792 . -294) 166312) ((-827 . -1127) T) ((-1049 . -736) T) ((-612 . -661) 166296) ((-1061 . -991) 166225) ((-1014 . -102) T) ((-827 . -23) T) ((-722 . -1167) 166203) ((-704 . -1073) T) ((-612 . -382) 166187) ((-360 . -462) T) ((-352 . -298) T) ((-1284 . -1115) T) ((-254 . -1115) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1115) T) ((-709 . -1115) T) ((-370 . -483) T) ((-1227 . -623) 166169) ((-1188 . -386) 166153) ((-1140 . -386) 166137) ((-1039 . -421) 166099) ((-142 . -231) 166081) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 166063) ((-722 . -38) 165892) ((-1283 . -1281) 165876) ((-360 . -412) T) ((-1283 . -1115) 165826) ((-1206 . -1115) T) ((-590 . -727) 165813) ((-574 . -727) 165800) ((-505 . -727) 165765) ((-1269 . -656) 165655) ((-324 . -639) 165634) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1233) T) ((-1095 . -649) 165582) ((-1188 . -913) 165525) ((-1140 . -913) 165509) ((-825 . -235) 165455) ((-672 . -1071) 165439) ((-108 . -649) 165421) ((-492 . -132) 165291) ((-1194 . -1127) T) ((-965 . -47) 165260) ((-633 . -1115) T) ((-672 . -111) 165239) ((-501 . -623) 165205) ((-335 . -296) 165182) ((-491 . -47) 165139) ((-1194 . -23) T) ((-118 . -1115) T) ((-103 . -102) 165117) ((-1295 . -1127) T) ((-558 . -860) T) ((-227 . -1233) T) ((-1069 . -132) T) ((-1039 . -1073) T) ((-829 . -1053) 165101) ((-1295 . -23) T) ((-1018 . -734) 165073) ((-1213 . -623) 165055) ((-709 . -727) 165020) ((-596 . -623) 165002) ((-396 . -1053) 164986) ((-363 . -1073) T) ((-394 . -132) T) ((-332 . -1053) 164970) ((-1135 . -838) T) ((-1120 . -1115) T) ((-1095 . -21) T) ((-227 . -897) 164952) ((-1019 . -933) T) ((-91 . -34) T) ((-1019 . -830) T) ((-927 . -933) T) ((-1095 . -25) T) ((-1014 . -317) 164917) ((-497 . -1237) T) ((-886 . -626) 164898) ((-724 . -658) 164858) ((-691 . -626) 164839) ((-219 . -1237) T) ((-686 . -626) 164820) ((-227 . -1053) 164780) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 164761) ((-368 . -25) T) ((-324 . -656) 164416) ((-321 . -656) 164330) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 164276) ((-251 . -626) 164253) ((-139 . -626) 164234) ((-138 . -626) 164215) ((-134 . -626) 164196) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1073) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1077 . -1233) T) ((-668 . -623) 164178) ((-747 . -746) 164162) ((-345 . -623) 164144) ((-68 . -392) T) ((-68 . -405) T) ((-1117 . -107) 164128) ((-1077 . -897) 164110) ((-965 . -897) 164035) ((-663 . -1127) T) ((-633 . -727) 164022) ((-491 . -897) NIL) ((-1161 . -102) T) ((-1109 . -628) 164006) ((-1077 . -1053) 163988) ((-97 . -623) 163970) ((-487 . -148) T) ((-965 . -1053) 163850) ((-118 . -727) 163795) ((-663 . -23) T) ((-491 . -1053) 163671) ((-1102 . -624) NIL) ((-1102 . -623) 163653) ((-792 . -624) NIL) ((-792 . -623) 163614) ((-790 . -624) 163248) ((-790 . -623) 163162) ((-1128 . -649) 163068) ((-471 . -623) 163050) ((-464 . -623) 163032) ((-464 . -624) 162893) ((-1050 . -231) 162839) ((-882 . -922) 162818) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 162800) ((-588 . -102) T) ((-364 . -1302) 162784) ((-361 . -1302) 162768) ((-353 . -1302) 162752) ((-128 . -524) 162685) ((-122 . -524) 162618) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 162556) ((-224 . -102) 162534) ((-709 . -174) T) ((-704 . -1115) T) ((-882 . -658) 162450) ((-65 . -393) T) ((-282 . -623) 162432) ((-65 . -405) T) ((-965 . -386) 162416) ((-880 . -298) T) ((-50 . -623) 162398) ((-1014 . -38) 162346) ((-1135 . -656) 162318) ((-591 . -623) 162300) ((-491 . -386) 162284) ((-591 . -624) 162266) ((-528 . -623) 162248) ((-923 . -1302) 162235) ((-881 . -1233) T) ((-711 . -462) T) ((-505 . -524) 162201) ((-497 . -372) T) ((-364 . -377) 162180) ((-361 . -377) 162159) ((-353 . -377) 162138) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1306 . -1297) 162122) ((-881 . -895) 162099) ((-881 . -897) NIL) ((-977 . -860) 161998) ((-825 . -860) 161949) ((-1240 . -102) T) ((-664 . -666) 161933) ((-1219 . -34) T) ((-173 . -623) 161915) ((-1128 . -21) 161825) ((-1128 . -25) 161676) ((-881 . -1053) 161653) ((-965 . -913) 161634) ((-1256 . -47) 161611) ((-923 . -377) T) ((-59 . -661) 161595) ((-526 . -661) 161579) ((-491 . -913) 161556) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 161540) ((-59 . -382) 161524) ((-633 . -174) T) ((-526 . -382) 161508) ((-506 . -382) 161492) ((-837 . -718) 161476) ((-1188 . -315) 161455) ((-1194 . -132) T) ((-1157 . -1066) 161439) ((-118 . -174) T) ((-1157 . -650) 161371) ((-1161 . -317) 161309) ((-171 . -1233) T) ((-1295 . -132) T) ((-876 . -1066) 161279) ((-645 . -754) 161263) ((-617 . -754) 161247) ((-1268 . -933) 161226) ((-1247 . -933) 161205) ((-1247 . -830) NIL) ((-876 . -650) 161175) ((-704 . -727) 161125) ((-1246 . -922) 161078) ((-1039 . -1115) T) ((-881 . -386) 161055) ((-881 . -347) 161032) ((-918 . -1127) T) ((-171 . -895) 161016) ((-171 . -897) 160941) ((-1283 . -524) 160874) ((-1095 . -235) 160793) ((-497 . -1127) T) ((-363 . -1115) T) ((-219 . -1127) T) ((-76 . -451) T) ((-76 . -405) T) ((-1267 . -658) 160690) ((-171 . -1053) 160586) ((-327 . -860) T) ((-1246 . -658) 160394) ((-882 . -804) 160373) ((-882 . -801) 160352) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 160325) ((-362 . -235) 160298) ((-354 . -235) 160271) ((-225 . -623) 160253) ((-176 . -462) T) ((-224 . -317) 160191) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 160178) ((-219 . -23) T) ((-1307 . -1300) 160157) ((-687 . -1053) 160141) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 160096) ((-1256 . -1233) T) ((-664 . -656) 160055) ((-48 . -1115) T) ((-722 . -233) 160039) ((-881 . -913) NIL) ((-1256 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1115) T) ((-171 . -386) 160023) ((-171 . -347) 160007) ((-1256 . -1053) 159887) ((-865 . -1053) 159783) ((-1157 . -102) T) ((-672 . -802) 159762) ((-663 . -132) T) ((-672 . -805) 159741) ((-118 . -524) 159649) ((-581 . -1053) 159631) ((-302 . -1290) 159601) ((-876 . -102) T) ((-976 . -566) 159580) ((-1227 . -1071) 159463) ((-1018 . -1066) 159408) ((-492 . -649) 159314) ((-917 . -1115) T) ((-1039 . -727) 159251) ((-721 . -1071) 159216) ((-1018 . -650) 159161) ((-627 . -102) T) ((-612 . -34) T) ((-1162 . -1233) T) ((-1227 . -111) 159030) ((-484 . -658) 158927) ((-363 . -727) 158872) ((-171 . -913) 158831) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 158787) ((-1312 . -1073) T) ((-1256 . -386) 158771) ((-428 . -1237) 158749) ((-1133 . -623) 158731) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1246 . -801) 158684) ((-1246 . -804) 158637) ((-1267 . -736) T) ((-1246 . -736) T) ((-48 . -727) 158602) ((-227 . -1037) T) ((-1269 . -421) 158568) ((-360 . -1290) 158545) ((-1256 . -913) 158488) ((-728 . -736) T) ((-341 . -623) 158470) ((-1227 . -626) 158352) ((-1128 . -235) 158298) ((-112 . -623) 158280) ((-112 . -624) 158262) ((-728 . -483) T) ((-721 . -626) 158212) ((-1306 . -1066) 158196) ((-492 . -21) 158106) ((-128 . -499) 158090) ((-122 . -499) 158074) ((-492 . -25) 157925) ((-1306 . -650) 157895) ((-633 . -298) T) ((-596 . -1071) 157870) ((-447 . -1115) T) ((-1077 . -315) T) ((-118 . -298) T) ((-1119 . -102) T) ((-1018 . -102) T) ((-596 . -111) 157838) ((-1157 . -317) 157776) ((-1227 . -1064) T) ((-1077 . -1037) T) ((-66 . -1233) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-721 . -1064) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1039 . -174) T) ((-721 . -249) T) ((-1077 . -555) T) ((-722 . -656) 157686) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 157668) ((-417 . -1066) 157620) ((-404 . -623) 157602) ((-1135 . -858) T) ((-484 . -736) T) ((-903 . -1053) 157570) ((-417 . -650) 157522) ((-108 . -860) T) ((-668 . -1071) 157506) ((-497 . -132) T) ((-1269 . -1073) T) ((-219 . -132) T) ((-1172 . -102) 157484) ((-99 . -1115) T) ((-251 . -676) 157468) ((-251 . -661) 157452) ((-668 . -111) 157431) ((-596 . -626) 157415) ((-324 . -421) 157399) ((-251 . -382) 157383) ((-1175 . -241) 157330) ((-1014 . -233) 157314) ((-74 . -1233) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1306 . -102) T) ((-1213 . -626) 157296) ((-1103 . -1233) T) ((-1102 . -1071) 157139) ((-1091 . -1233) T) ((-271 . -922) 157118) ((-253 . -922) 157097) ((-792 . -1071) 156920) ((-790 . -1071) 156763) ((-618 . -1233) T) ((-1180 . -623) 156745) ((-1102 . -111) 156574) ((-1061 . -102) T) ((-485 . -1233) T) ((-471 . -1071) 156545) ((-464 . -1071) 156388) ((-674 . -658) 156372) ((-881 . -315) T) ((-792 . -111) 156181) ((-790 . -111) 156010) ((-364 . -658) 155962) ((-361 . -658) 155914) ((-353 . -658) 155866) ((-271 . -658) 155755) ((-253 . -658) 155644) ((-1174 . -860) T) ((-1103 . -1053) 155628) ((-471 . -111) 155589) ((-464 . -111) 155418) ((-1091 . -1053) 155395) ((-1015 . -34) T) ((-979 . -623) 155377) ((-971 . -1233) T) ((-127 . -1025) 155361) ((-976 . -1127) T) ((-881 . -1037) NIL) ((-745 . -1127) T) ((-725 . -1127) T) ((-668 . -626) 155279) ((-1283 . -499) 155263) ((-1157 . -38) 155223) ((-976 . -23) T) ((-923 . -658) 155188) ((-875 . -1115) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1066) 155172) ((-617 . -1066) 155156) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 155140) ((-110 . -671) T) ((-617 . -650) 155124) ((-591 . -1071) 155089) ((-528 . -1071) 155034) ((-229 . -57) 154992) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 154962) ((-591 . -111) 154918) ((-528 . -111) 154847) ((-1102 . -626) 154583) ((-428 . -1127) T) ((-324 . -1073) 154473) ((-321 . -1073) T) ((-129 . -1233) T) ((-792 . -626) 154221) ((-790 . -626) 153987) ((-668 . -1064) T) ((-1312 . -1115) T) ((-464 . -626) 153772) ((-171 . -315) 153703) ((-428 . -23) T) ((-40 . -623) 153685) ((-40 . -624) 153669) ((-108 . -1007) 153651) ((-117 . -879) 153635) ((-659 . -626) 153619) ((-48 . -524) 153585) ((-1219 . -1025) 153569) ((-1197 . -623) 153536) ((-1205 . -34) T) ((-967 . -623) 153502) ((-934 . -623) 153484) ((-1128 . -860) 153435) ((-781 . -623) 153417) ((-682 . -623) 153399) ((-1172 . -317) 153337) ((-489 . -34) T) ((-1107 . -1233) T) ((-487 . -462) T) ((-1156 . -34) T) ((-1102 . -1064) T) ((-50 . -626) 153306) ((-792 . -1064) T) ((-790 . -1064) T) ((-657 . -241) 153290) ((-642 . -241) 153236) ((-591 . -626) 153186) ((-528 . -626) 153116) ((-492 . -235) 153062) ((-1256 . -315) 153041) ((-1102 . -334) 153002) ((-464 . -1064) T) ((-1194 . -21) T) ((-1102 . -239) 152981) ((-792 . -334) 152958) ((-792 . -239) T) ((-790 . -334) 152930) ((-741 . -1237) 152909) ((-335 . -661) 152893) ((-1194 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 152872) ((-335 . -382) 152856) ((-507 . -34) T) ((-506 . -34) T) ((-1018 . -1167) NIL) ((-741 . -566) 152787) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1233) T) ((-1061 . -317) 152695) ((-1295 . -21) T) ((-914 . -1115) 152673) ((-828 . -235) 152660) ((-50 . -1064) T) ((-1295 . -25) T) ((-1190 . -566) 152639) ((-1189 . -1237) 152618) ((-1189 . -566) 152569) ((-1183 . -1237) 152548) ((-1183 . -566) 152499) ((-591 . -1064) T) ((-528 . -1064) T) ((-1039 . -298) T) ((-370 . -1053) 152483) ((-330 . -1053) 152467) ((-1018 . -38) 152412) ((-388 . -897) 152394) ((-1014 . -656) 152317) ((-846 . -1233) T) ((-837 . -1233) 152296) ((-809 . -1127) T) ((-923 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1141 . -566) 152275) ((-363 . -298) T) ((-657 . -705) 152259) ((-388 . -1053) 152219) ((-302 . -1066) 152140) ((-1135 . -1073) T) ((-103 . -126) 152124) ((-302 . -650) 152066) ((-809 . -23) T) ((-1305 . -1300) 152042) ((-1283 . -294) 151994) ((-417 . -317) 151959) ((-1303 . -1300) 151938) ((-1269 . -1115) T) ((-880 . -623) 151920) ((-846 . -1053) 151889) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 151871) ((-505 . -1017) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 151855) ((-680 . -238) 151834) ((-225 . -626) 151796) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1306 . -38) 151766) ((-118 . -294) 151717) ((-1283 . -19) 151701) ((-1283 . -614) 151678) ((-1296 . -1115) T) ((-360 . -1066) 151623) ((-1092 . -1115) T) ((-1002 . -1115) T) ((-976 . -132) T) ((-827 . -235) 151610) ((-747 . -1115) T) ((-360 . -650) 151555) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1167) 151533) ((-225 . -1064) T) ((-302 . -102) 151315) ((-142 . -1115) T) ((-709 . -1017) T) ((-1120 . -294) 151271) ((-91 . -1233) T) ((-128 . -623) 151203) ((-122 . -623) 151135) ((-1312 . -174) T) ((-1189 . -372) 151114) ((-1183 . -372) 151093) ((-324 . -1115) T) ((-428 . -132) T) ((-321 . -1115) T) ((-417 . -38) 151045) ((-1148 . -102) T) ((-1269 . -727) 150937) ((-664 . -1073) T) ((-1150 . -1278) T) ((-327 . -146) 150916) ((-327 . -148) 150895) ((-140 . -1115) T) ((-137 . -1115) T) ((-115 . -1115) T) ((-868 . -102) T) ((-590 . -623) 150877) ((-574 . -624) 150776) ((-574 . -623) 150758) ((-505 . -623) 150740) ((-505 . -624) 150685) ((-495 . -23) T) ((-492 . -860) 150636) ((-497 . -649) 150618) ((-978 . -623) 150600) ((-219 . -649) 150582) ((-227 . -414) T) ((-672 . -658) 150566) ((-55 . -623) 150548) ((-1188 . -933) 150527) ((-741 . -1127) T) ((-360 . -102) T) ((-1232 . -1098) T) ((-1135 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1071) 150472) ((-1174 . -1173) T) ((-1162 . -107) 150456) ((-1190 . -1127) T) ((-1189 . -1127) T) ((-525 . -1053) 150440) ((-1183 . -1127) T) ((-1141 . -1127) T) ((-352 . -111) 150369) ((-1019 . -1237) T) ((-127 . -1233) T) ((-927 . -1237) T) ((-704 . -294) NIL) ((-724 . -1233) T) ((-1284 . -623) 150351) ((-1190 . -23) T) ((-1189 . -23) T) ((-1183 . -23) T) ((-1157 . -233) 150335) ((-1019 . -566) T) ((-1141 . -23) T) ((-927 . -566) T) ((-1090 . -1115) T) ((-254 . -623) 150317) ((-825 . -238) 150269) ((-809 . -132) T) ((-720 . -623) 150251) ((-324 . -727) 150161) ((-321 . -727) 150090) ((-709 . -623) 150072) ((-709 . -624) 150017) ((-417 . -410) 150001) ((-448 . -1115) T) ((-497 . -25) T) ((-497 . -21) T) ((-1135 . -1115) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 149985) ((-724 . -1053) 149954) ((-1283 . -623) 149866) ((-1283 . -624) 149827) ((-1269 . -174) T) ((-1206 . -623) 149809) ((-251 . -34) T) ((-352 . -626) 149739) ((-404 . -626) 149721) ((-939 . -989) T) ((-1219 . -1233) T) ((-672 . -801) 149700) ((-672 . -804) 149679) ((-408 . -405) T) ((-533 . -102) 149657) ((-1050 . -1115) T) ((-224 . -1010) 149641) ((-514 . -102) T) ((-633 . -623) 149623) ((-45 . -860) NIL) ((-633 . -624) 149600) ((-1050 . -620) 149575) ((-914 . -524) 149508) ((-327 . -238) 149460) ((-352 . -1064) T) ((-118 . -624) NIL) ((-118 . -623) 149442) ((-882 . -1233) T) ((-680 . -427) 149426) ((-680 . -1138) 149371) ((-510 . -152) 149353) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1071) 149298) ((-882 . -895) 149282) ((-882 . -897) 149207) ((-722 . -1073) T) ((-704 . -1017) NIL) ((-1267 . -47) 149177) ((-1246 . -47) 149154) ((-1156 . -1025) 149125) ((-3 . |UnionCategory|) T) ((-1135 . -727) 149112) ((-1120 . -623) 149094) ((-1095 . -148) 149073) ((-1095 . -146) 149024) ((-979 . -626) 149008) ((-227 . -933) T) ((-40 . -111) 148937) ((-882 . -1053) 148801) ((-1019 . -372) T) ((-1018 . -233) 148778) ((-711 . -1066) 148765) ((-927 . -372) T) ((-711 . -650) 148752) ((-327 . -1221) 148718) ((-388 . -315) T) ((-327 . -1218) 148684) ((-324 . -174) 148663) ((-321 . -174) T) ((-591 . -1302) 148650) ((-528 . -1302) 148627) ((-368 . -148) 148606) ((-117 . -1066) 148593) ((-368 . -146) 148544) ((-362 . -148) 148523) ((-362 . -146) 148474) ((-354 . -148) 148453) ((-618 . -1209) 148429) ((-117 . -650) 148416) ((-354 . -146) 148367) ((-327 . -35) 148333) ((-485 . -1209) 148312) ((0 . |EnumerationCategory|) T) ((-327 . -95) 148278) ((-388 . -1037) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 148228) ((-664 . -1115) T) ((-618 . -107) 148175) ((-495 . -132) T) ((-485 . -107) 148125) ((-246 . -1127) 148035) ((-882 . -386) 148019) ((-882 . -347) 148003) ((-246 . -23) 147873) ((-40 . -626) 147803) ((-1077 . -933) T) ((-1077 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1296 . -524) 147736) ((-1275 . -566) 147715) ((-1268 . -1237) 147694) ((-360 . -1167) T) ((-335 . -34) T) ((-44 . -427) 147678) ((-1197 . -626) 147614) ((-883 . -1233) T) ((-400 . -754) 147598) ((-1268 . -566) 147549) ((-1267 . -1233) T) ((-1157 . -656) 147508) ((-741 . -132) T) ((-682 . -626) 147492) ((-1247 . -1237) 147471) ((-1247 . -566) 147422) ((-1246 . -1233) T) ((-1246 . -897) 147295) ((-1246 . -895) 147265) ((-1190 . -132) T) ((-319 . -1098) T) ((-1189 . -132) T) ((-747 . -524) 147198) ((-1183 . -132) T) ((-1141 . -132) T) ((-904 . -1115) T) ((-145 . -854) T) ((-1039 . -1017) T) ((-701 . -623) 147180) ((-1019 . -23) T) ((-533 . -317) 147118) ((-1019 . -1127) T) ((-142 . -524) NIL) ((-876 . -656) 147063) ((-1018 . -358) NIL) ((-986 . -23) T) ((-927 . -1127) T) ((-360 . -38) 147028) ((-927 . -23) T) ((-882 . -913) 146987) ((-82 . -623) 146969) ((-40 . -1064) T) ((-880 . -1071) 146956) ((-880 . -111) 146941) ((-711 . -102) T) ((-704 . -623) 146923) ((-612 . -1233) T) ((-606 . -566) 146902) ((-437 . -1127) T) ((-348 . -1066) 146886) ((-215 . -1115) T) ((-176 . -1066) 146818) ((-484 . -47) 146788) ((-40 . -239) 146760) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-605 . -566) 146739) ((-348 . -650) 146723) ((-704 . -624) 146631) ((-324 . -524) 146597) ((-176 . -650) 146529) ((-321 . -524) 146421) ((-497 . -235) 146408) ((-1267 . -1053) 146392) ((-1246 . -1053) 146178) ((-1014 . -421) 146162) ((-219 . -235) 146149) ((-437 . -23) T) ((-1135 . -174) T) ((-1269 . -298) T) ((-664 . -727) 146119) ((-145 . -1115) T) ((-48 . -1017) T) ((-417 . -233) 146103) ((-303 . -241) 146053) ((-881 . -933) T) ((-881 . -830) NIL) ((-880 . -626) 146025) ((-874 . -860) T) ((-1246 . -347) 145995) ((-1246 . -386) 145965) ((-1095 . -238) 145890) ((-224 . -1136) 145874) ((-1283 . -296) 145851) ((-368 . -238) 145830) ((-362 . -238) 145809) ((-484 . -1233) T) ((-354 . -238) 145788) ((-108 . -238) T) ((-1227 . -658) 145713) ((-1018 . -656) 145643) ((-976 . -21) T) ((-976 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 145608) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1014 . -1073) T) ((-880 . -1064) T) ((-784 . -102) T) ((-1268 . -372) 145587) ((-1267 . -913) 145493) ((-1247 . -372) 145472) ((-1246 . -913) 145323) ((-1039 . -623) 145305) ((-417 . -838) 145258) ((-1190 . -503) 145224) ((-171 . -933) 145155) ((-1189 . -503) 145121) ((-1183 . -503) 145087) ((-722 . -1115) T) ((-1141 . -503) 145053) ((-590 . -1071) 145040) ((-574 . -1071) 145027) ((-505 . -1071) 144992) ((-324 . -298) 144971) ((-321 . -298) T) ((-363 . -623) 144953) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 144932) ((-590 . -111) 144917) ((-574 . -111) 144902) ((-505 . -111) 144858) ((-1192 . -897) 144825) ((-914 . -499) 144809) ((-48 . -623) 144791) ((-48 . -624) 144736) ((-246 . -132) 144606) ((-1306 . -656) 144565) ((-1256 . -933) 144544) ((-826 . -1237) 144523) ((-398 . -500) 144504) ((-1050 . -524) 144348) ((-398 . -623) 144314) ((-826 . -566) 144245) ((-596 . -658) 144220) ((-271 . -47) 144192) ((-253 . -47) 144149) ((-541 . -519) 144126) ((-590 . -626) 144098) ((-574 . -626) 144070) ((-505 . -626) 144003) ((-1089 . -1233) T) ((-1015 . -1233) T) ((-1275 . -23) T) ((-1275 . -1127) T) ((-1268 . -1127) T) ((-709 . -1071) 143968) ((-1268 . -23) T) ((-1247 . -1127) T) ((-1247 . -23) T) ((-1227 . -736) T) ((-1135 . -298) T) ((-1018 . -379) 143940) ((-112 . -377) T) ((-484 . -913) 143846) ((-1128 . -238) 143798) ((-917 . -623) 143780) ((-55 . -626) 143762) ((-91 . -107) 143746) ((-1019 . -132) T) ((-918 . -860) 143697) ((-711 . -1167) T) ((-709 . -111) 143653) ((-853 . -656) 143570) ((-606 . -1127) T) ((-605 . -1127) T) ((-722 . -727) 143399) ((-721 . -736) T) ((-986 . -132) T) ((-927 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1064) T) ((-219 . -860) T) ((-417 . -656) 143336) ((-574 . -1064) T) ((-546 . -1233) T) ((-505 . -1064) T) ((-606 . -23) T) ((-352 . -1302) 143313) ((-327 . -462) 143292) ((-348 . -317) 143279) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 143253) ((-251 . -1025) 143237) ((-882 . -315) T) ((-1307 . -1297) 143221) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 143208) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1165 . -241) 143158) ((-1102 . -922) 143137) ((-117 . -38) 143124) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1037) 143102) ((-1296 . -499) 143086) ((-792 . -922) 143065) ((-790 . -922) 143044) ((-364 . -1233) 143023) ((-361 . -1233) 143002) ((-353 . -1233) 142981) ((-1205 . -1233) T) ((-271 . -1233) 142960) ((-464 . -922) 142939) ((-747 . -499) 142923) ((-1102 . -658) 142812) ((-709 . -626) 142747) ((-792 . -658) 142636) ((-633 . -1071) 142623) ((-489 . -1233) T) ((-352 . -377) T) ((-142 . -499) 142605) ((-790 . -658) 142494) ((-1156 . -1233) T) ((-559 . -860) T) ((-471 . -658) 142465) ((-271 . -897) 142324) ((-253 . -897) NIL) ((-118 . -1071) 142269) ((-464 . -658) 142158) ((-674 . -1053) 142135) ((-633 . -111) 142120) ((-400 . -1066) 142104) ((-364 . -1053) 142088) ((-361 . -1053) 142072) ((-353 . -1053) 142056) ((-271 . -1053) 141900) ((-253 . -1053) 141776) ((-923 . -1233) T) ((-118 . -111) 141705) ((-59 . -1233) T) ((-400 . -650) 141689) ((-631 . -1066) 141673) ((-529 . -1233) T) ((-526 . -1233) T) ((-507 . -1233) T) ((-506 . -1233) T) ((-447 . -623) 141655) ((-444 . -623) 141637) ((-631 . -650) 141621) ((-3 . -102) T) ((-1042 . -1226) 141590) ((-843 . -102) T) ((-699 . -57) 141548) ((-709 . -1064) T) ((-645 . -656) 141517) ((-617 . -656) 141486) ((-50 . -658) 141460) ((-297 . -462) T) ((-486 . -1226) 141429) ((0 . -102) T) ((-591 . -658) 141394) ((-528 . -658) 141339) ((-49 . -102) T) ((-923 . -1053) 141326) ((-709 . -249) T) ((-1095 . -419) 141305) ((-741 . -649) 141253) ((-1014 . -1115) T) ((-722 . -174) 141144) ((-633 . -626) 141039) ((-497 . -1007) 141021) ((-428 . -235) 140994) ((-271 . -386) 140978) ((-253 . -386) 140962) ((-409 . -1115) T) ((-1041 . -102) 140940) ((-348 . -38) 140924) ((-219 . -1007) 140906) ((-118 . -626) 140836) ((-176 . -38) 140768) ((-1267 . -315) 140747) ((-1246 . -315) 140726) ((-668 . -736) T) ((-99 . -623) 140708) ((-487 . -1066) 140673) ((-1183 . -649) 140625) ((-487 . -650) 140590) ((-495 . -25) T) ((-495 . -21) T) ((-1246 . -1037) 140542) ((-1072 . -1233) T) ((-633 . -1064) T) ((-388 . -414) T) ((-400 . -102) T) ((-1120 . -628) 140457) ((-271 . -913) 140403) ((-253 . -913) 140380) ((-118 . -1064) T) ((-826 . -1127) T) ((-1102 . -736) T) ((-633 . -239) 140359) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1127) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1238 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-1092 . -294) 140338) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 140320) ((-704 . -1071) 140270) ((-1308 . -102) T) ((-1275 . -132) T) ((-1268 . -132) T) ((-1247 . -132) T) ((-1190 . -25) T) ((-1157 . -421) 140254) ((-645 . -376) 140186) ((-617 . -376) 140118) ((-1172 . -1164) 140102) ((-103 . -1115) 140080) ((-1190 . -21) T) ((-1189 . -21) T) ((-875 . -623) 140062) ((-1014 . -727) 140010) ((-225 . -658) 139977) ((-704 . -111) 139911) ((-50 . -736) T) ((-1189 . -25) T) ((-360 . -358) T) ((-1183 . -21) T) ((-1095 . -462) 139862) ((-1183 . -25) T) ((-722 . -524) 139809) ((-591 . -736) T) ((-528 . -736) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-606 . -132) T) ((-605 . -132) T) ((-302 . -656) 139544) ((-492 . -238) 139496) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 139475) ((-1241 . -102) T) ((-321 . -294) 139410) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 139394) ((-1312 . -623) 139376) ((-1312 . -624) 139358) ((-1095 . -412) 139337) ((-1050 . -499) 139268) ((-137 . -294) 139245) ((-574 . -805) T) ((-574 . -802) T) ((-1078 . -241) 139191) ((-368 . -412) 139142) ((-362 . -412) 139093) ((-354 . -412) 139044) ((-1298 . -1127) T) ((-1307 . -1066) 139028) ((-390 . -1066) 139012) ((-1307 . -650) 138982) ((-828 . -238) T) ((-390 . -650) 138952) ((-704 . -626) 138887) ((-1298 . -23) T) ((-1285 . -102) T) ((-177 . -623) 138869) ((-1157 . -1073) T) ((-557 . -377) T) ((-680 . -754) 138853) ((-1194 . -146) 138832) ((-1194 . -148) 138811) ((-1161 . -1115) T) ((-1161 . -1086) 138780) ((-69 . -1233) T) ((-1039 . -1071) 138717) ((-360 . -656) 138647) ((-876 . -1073) T) ((-246 . -649) 138553) ((-704 . -1064) T) ((-363 . -1071) 138498) ((-61 . -1233) T) ((-1039 . -111) 138414) ((-914 . -623) 138325) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 138304) ((-709 . -805) T) ((-709 . -802) T) ((-1018 . -421) 138281) ((-363 . -111) 138210) ((-388 . -933) T) ((-417 . -858) 138189) ((-722 . -298) 138100) ((-225 . -736) T) ((-1275 . -503) 138066) ((-1268 . -503) 138032) ((-1247 . -503) 137998) ((-588 . -1115) T) ((-324 . -1017) 137977) ((-224 . -1115) 137955) ((-1240 . -854) T) ((-327 . -988) 137917) ((-105 . -102) T) ((-48 . -1071) 137882) ((-1307 . -102) T) ((-390 . -102) T) ((-48 . -111) 137838) ((-1019 . -649) 137820) ((-1269 . -623) 137802) ((-541 . -102) T) ((-510 . -102) T) ((-1148 . -1149) 137786) ((-153 . -1290) 137770) ((-251 . -1233) T) ((-1232 . -102) T) ((-1039 . -626) 137707) ((-827 . -238) T) ((-1188 . -1237) 137686) ((-363 . -626) 137616) ((-1140 . -1237) 137595) ((-246 . -21) 137505) ((-246 . -25) 137356) ((-128 . -120) 137340) ((-122 . -120) 137324) ((-44 . -754) 137308) ((-1188 . -566) 137219) ((-1140 . -566) 137150) ((-1240 . -1115) T) ((-1050 . -294) 137125) ((-1182 . -1098) T) ((-1009 . -1098) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1127) 137035) ((-257 . -1127) 136945) ((-1039 . -1064) T) ((-1018 . -1073) T) ((-48 . -626) 136878) ((-352 . -658) 136823) ((-631 . -38) 136807) ((-1296 . -623) 136769) ((-1296 . -624) 136730) ((-1092 . -623) 136712) ((-1039 . -249) T) ((-363 . -1064) T) ((-825 . -1290) 136682) ((-258 . -23) T) ((-257 . -23) T) ((-1002 . -623) 136664) ((-1190 . -235) 136617) ((-1189 . -235) 136563) ((-747 . -624) 136524) ((-747 . -623) 136506) ((-1183 . -235) 136387) ((-809 . -860) 136366) ((-1175 . -152) 136313) ((-1014 . -524) 136225) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 136206) ((-1019 . -25) T) ((-142 . -623) 136188) ((-142 . -624) 136147) ((-923 . -315) T) ((-1019 . -21) T) ((-986 . -25) T) ((-927 . -21) T) ((-927 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 136131) ((-48 . -1064) T) ((-1305 . -1297) 136115) ((-1303 . -1297) 136099) ((-1050 . -614) 136074) ((-324 . -624) 135935) ((-324 . -623) 135917) ((-321 . -624) NIL) ((-321 . -623) 135899) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 135860) ((-560 . -241) 135810) ((-140 . -623) 135777) ((-137 . -623) 135759) ((-115 . -623) 135741) ((-487 . -38) 135706) ((-1307 . -1304) 135685) ((-1298 . -132) T) ((-1306 . -1073) T) ((-1097 . -102) T) ((-88 . -1233) T) ((-510 . -317) NIL) ((-1015 . -107) 135669) ((-900 . -1115) T) ((-896 . -1115) T) ((-1283 . -661) 135653) ((-1283 . -382) 135637) ((-335 . -1233) T) ((-603 . -860) T) ((-1157 . -1115) T) ((-1157 . -1068) 135577) ((-103 . -524) 135510) ((-940 . -623) 135492) ((-352 . -736) T) ((-30 . -623) 135474) ((-876 . -1115) T) ((-853 . -1073) 135453) ((-40 . -658) 135360) ((-227 . -1237) T) ((-417 . -1073) T) ((-1174 . -152) 135342) ((-1014 . -298) 135293) ((-627 . -1115) T) ((-227 . -566) T) ((-327 . -1264) 135277) ((-327 . -1261) 135247) ((-711 . -656) 135219) ((-1205 . -1209) 135198) ((-1090 . -623) 135180) ((-1205 . -107) 135130) ((-657 . -152) 135114) ((-642 . -152) 135060) ((-117 . -656) 135032) ((-489 . -1209) 135011) ((-497 . -148) T) ((-497 . -146) NIL) ((-1135 . -624) 134926) ((-448 . -623) 134908) ((-219 . -148) T) ((-219 . -146) NIL) ((-1135 . -623) 134890) ((-130 . -102) T) ((-52 . -102) T) ((-1247 . -649) 134842) ((-489 . -107) 134792) ((-1008 . -23) T) ((-1307 . -38) 134762) ((-1188 . -1127) T) ((-1140 . -1127) T) ((-1077 . -1237) T) ((-246 . -235) 134708) ((-319 . -102) T) ((-864 . -1127) T) ((-965 . -1237) 134687) ((-491 . -1237) 134666) ((-1077 . -566) T) ((-965 . -566) 134597) ((-1188 . -23) T) ((-1166 . -1098) T) ((-1140 . -23) T) ((-864 . -23) T) ((-491 . -566) 134528) ((-1157 . -727) 134460) ((-680 . -1066) 134444) ((-1161 . -524) 134377) ((-680 . -650) 134361) ((-1050 . -624) NIL) ((-1050 . -623) 134343) ((-96 . -1098) T) ((-876 . -727) 134313) ((-1312 . -1071) 134300) ((-1227 . -47) 134269) ((-258 . -132) T) ((-257 . -132) T) ((-1119 . -1115) T) ((-1018 . -1115) T) ((-62 . -623) 134251) ((-1183 . -860) NIL) ((-1039 . -802) T) ((-1039 . -805) T) ((-1312 . -111) 134236) ((-1275 . -25) T) ((-1275 . -21) T) ((-1268 . -21) T) ((-880 . -658) 134223) ((-1268 . -25) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-1042 . -152) 134207) ((-1019 . -235) 134194) ((-882 . -830) 134173) ((-882 . -933) T) ((-722 . -294) 134100) ((-606 . -21) T) ((-348 . -656) 134059) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 133976) ((-40 . -736) T) ((-224 . -524) 133909) ((-605 . -25) T) ((-486 . -152) 133893) ((-473 . -152) 133877) ((-934 . -804) T) ((-934 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1115) T) ((-512 . -1115) T) ((-781 . -736) T) ((-227 . -372) T) ((-1305 . -1066) 133861) ((-1303 . -1066) 133845) ((-1305 . -650) 133815) ((-1172 . -1115) 133793) ((-881 . -1237) T) ((-1303 . -650) 133763) ((-664 . -623) 133745) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1066) 133729) ((-1312 . -626) 133711) ((-1306 . -1115) T) ((-680 . -102) T) ((-368 . -1290) 133695) ((-362 . -1290) 133679) ((-44 . -650) 133663) ((-354 . -1290) 133647) ((-558 . -102) T) ((-530 . -860) 133626) ((-497 . -238) T) ((-219 . -238) T) ((-1061 . -1115) T) ((-827 . -462) 133605) ((-153 . -1066) 133589) ((-1061 . -1086) 133518) ((-1042 . -991) 133487) ((-829 . -1127) T) ((-1018 . -727) 133432) ((-153 . -650) 133416) ((-396 . -1127) T) ((-486 . -991) 133385) ((-473 . -991) 133354) ((-110 . -152) 133336) ((-73 . -623) 133318) ((-904 . -623) 133300) ((-1095 . -734) 133279) ((-1312 . -1064) T) ((-826 . -649) 133227) ((-302 . -1073) 133169) ((-171 . -1237) 133074) ((-227 . -1127) T) ((-332 . -23) T) ((-1183 . -1007) 133026) ((-853 . -1115) T) ((-1269 . -1071) 132931) ((-1141 . -750) 132910) ((-1267 . -933) 132889) ((-1246 . -933) 132868) ((-880 . -736) T) ((-171 . -566) 132779) ((-590 . -658) 132766) ((-574 . -658) 132738) ((-417 . -1115) T) ((-270 . -1115) T) ((-215 . -623) 132720) ((-505 . -658) 132670) ((-227 . -23) T) ((-1246 . -830) 132623) ((-1305 . -102) T) ((-363 . -1302) 132600) ((-1303 . -102) T) ((-1269 . -111) 132492) ((-825 . -1066) 132389) ((-825 . -650) 132331) ((-145 . -623) 132313) ((-1008 . -132) T) ((-44 . -102) T) ((-246 . -860) 132264) ((-1256 . -1237) 132243) ((-103 . -499) 132227) ((-1306 . -727) 132197) ((-1102 . -47) 132158) ((-1077 . -1127) T) ((-965 . -1127) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 132135) ((-790 . -47) 132107) ((-1256 . -566) 132018) ((-363 . -377) T) ((-491 . -1127) T) ((-1188 . -132) T) ((-1140 . -132) T) ((-464 . -47) 131997) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1077 . -23) T) ((-965 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1157 . -524) 131930) ((-602 . -1098) T) ((-596 . -1053) 131914) ((-1269 . -626) 131788) ((-491 . -23) T) ((-360 . -1073) T) ((-1227 . -913) 131769) ((-680 . -317) 131707) ((-1128 . -1290) 131677) ((-709 . -658) 131642) ((-1019 . -860) T) ((-1018 . -174) T) ((-976 . -146) 131621) ((-645 . -1115) T) ((-617 . -1115) T) ((-976 . -148) 131600) ((-745 . -148) 131579) ((-745 . -146) 131558) ((-668 . -1233) T) ((-986 . -860) T) ((-1275 . -235) 131511) ((-1268 . -235) 131457) ((-1247 . -235) 131338) ((-843 . -656) 131255) ((-484 . -933) 131234) ((-327 . -1066) 131069) ((-324 . -1071) 130979) ((-321 . -1071) 130908) ((-1014 . -294) 130866) ((-417 . -727) 130818) ((-327 . -650) 130659) ((-605 . -235) 130612) ((-711 . -858) T) ((-1269 . -1064) T) ((-324 . -111) 130508) ((-321 . -111) 130421) ((-977 . -102) T) ((-825 . -102) 130211) ((-722 . -624) NIL) ((-722 . -623) 130193) ((-1269 . -334) 130137) ((-668 . -1053) 130033) ((-1102 . -1233) 130012) ((-1050 . -296) 129987) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 129938) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1233) T) ((-1161 . -499) 129922) ((-1102 . -897) NIL) ((-881 . -1127) T) ((-118 . -922) NIL) ((-1305 . -1304) 129898) ((-1303 . -1304) 129877) ((-792 . -897) NIL) ((-790 . -897) 129736) ((-1298 . -25) T) ((-1298 . -21) T) ((-1230 . -102) 129714) ((-1121 . -405) T) ((-633 . -658) 129701) ((-464 . -897) NIL) ((-685 . -102) 129679) ((-1102 . -1053) 129506) ((-881 . -23) T) ((-792 . -1053) 129365) ((-790 . -1053) 129222) ((-118 . -658) 129167) ((-464 . -1053) 129043) ((-324 . -626) 128607) ((-321 . -626) 128490) ((-400 . -656) 128459) ((-659 . -1053) 128443) ((-591 . -1233) T) ((-637 . -102) T) ((-528 . -1233) T) ((-224 . -499) 128427) ((-1283 . -34) T) ((-631 . -656) 128386) ((-297 . -1066) 128373) ((-137 . -626) 128357) ((-297 . -650) 128344) ((-645 . -727) 128328) ((-617 . -727) 128312) ((-680 . -38) 128272) ((-327 . -102) T) ((-85 . -623) 128254) ((-50 . -1053) 128238) ((-1135 . -1071) 128225) ((-1102 . -386) 128209) ((-792 . -386) 128193) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1053) 128180) ((-528 . -1053) 128157) ((-60 . -57) 128119) ((-332 . -132) T) ((-324 . -1064) 128009) ((-321 . -1064) T) ((-171 . -1127) T) ((-790 . -386) 127993) ((-45 . -152) 127943) ((-1019 . -1007) 127925) ((-464 . -386) 127909) ((-417 . -174) T) ((-324 . -249) 127888) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1115) 127670) ((-227 . -132) T) ((-1135 . -111) 127655) ((-171 . -23) T) ((-809 . -148) 127634) ((-809 . -146) 127613) ((-258 . -649) 127519) ((-257 . -649) 127425) ((-327 . -292) 127391) ((-1172 . -524) 127324) ((-487 . -656) 127274) ((-1148 . -1115) T) ((-227 . -1075) T) ((-825 . -317) 127212) ((-1102 . -913) 127147) ((-792 . -913) 127090) ((-790 . -913) 127074) ((-1305 . -38) 127044) ((-1303 . -38) 127014) ((-1256 . -1127) T) ((-865 . -1127) T) ((-464 . -913) 126991) ((-868 . -1115) T) ((-1256 . -23) T) ((-1135 . -626) 126963) ((-1077 . -132) T) ((-581 . -1127) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -933) T) ((-361 . -933) T) ((-297 . -102) T) ((-353 . -933) T) ((-985 . -1098) T) ((-965 . -132) T) ((-826 . -235) 126936) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-1061 . -524) 126837) ((-704 . -922) NIL) ((-581 . -23) T) ((-491 . -132) T) ((-428 . -238) 126816) ((-685 . -317) 126754) ((-645 . -771) T) ((-617 . -771) T) ((-1247 . -860) NIL) ((-1095 . -1066) 126664) ((-1018 . -298) T) ((-704 . -658) 126614) ((-258 . -21) T) ((-360 . -1115) T) ((-258 . -25) T) ((-257 . -21) T) ((-257 . -25) T) ((-153 . -38) 126598) ((-2 . -102) T) ((-923 . -933) T) ((-1095 . -650) 126466) ((-492 . -1290) 126436) ((-1135 . -1064) T) ((-721 . -315) T) ((-368 . -1066) 126388) ((-362 . -1066) 126340) ((-354 . -1066) 126292) ((-368 . -650) 126244) ((-225 . -1053) 126221) ((-362 . -650) 126173) ((-108 . -1066) 126123) ((-354 . -650) 126075) ((-302 . -727) 126017) ((-711 . -1073) T) ((-497 . -462) T) ((-417 . -524) 125929) ((-108 . -650) 125879) ((-219 . -462) T) ((-1135 . -239) T) ((-303 . -152) 125829) ((-1014 . -624) 125790) ((-1014 . -623) 125772) ((-1004 . -623) 125754) ((-117 . -1073) T) ((-664 . -1071) 125738) ((-227 . -503) T) ((-409 . -623) 125720) ((-409 . -624) 125697) ((-1069 . -1290) 125667) ((-664 . -111) 125646) ((-1157 . -499) 125630) ((-1307 . -656) 125589) ((-390 . -656) 125558) ((-825 . -38) 125528) ((-63 . -451) T) ((-63 . -405) T) ((-1175 . -102) T) ((-881 . -132) T) ((-494 . -102) 125506) ((-1312 . -377) T) ((-1095 . -102) T) ((-1076 . -102) T) ((-360 . -727) 125451) ((-741 . -148) 125430) ((-741 . -146) 125409) ((-664 . -626) 125327) ((-1039 . -658) 125264) ((-533 . -1115) 125242) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1115) T) ((-363 . -658) 125187) ((-1188 . -649) 125135) ((-1140 . -649) 125083) ((-394 . -519) 125062) ((-843 . -858) 125041) ((-388 . -1237) T) ((-704 . -736) T) ((-1247 . -1007) 124993) ((-348 . -1073) T) ((-112 . -1233) T) ((-176 . -1073) T) ((-103 . -623) 124925) ((-1190 . -146) 124904) ((-1190 . -148) 124883) ((-388 . -566) T) ((-1189 . -148) 124862) ((-1189 . -146) 124841) ((-1183 . -146) 124748) ((-417 . -298) T) ((-1183 . -148) 124655) ((-1141 . -148) 124634) ((-1141 . -146) 124613) ((-327 . -38) 124454) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1064) T) ((-48 . -658) 124404) ((-1128 . -1066) 124301) ((-904 . -626) 124278) ((-1128 . -650) 124220) ((-1182 . -102) T) ((-1009 . -102) T) ((-1008 . -21) T) ((-128 . -1025) 124204) ((-122 . -1025) 124188) ((-1008 . -25) T) ((-914 . -120) 124172) ((-1174 . -102) T) ((-1256 . -132) T) ((-1188 . -25) T) ((-352 . -1233) T) ((-1188 . -21) T) ((-865 . -132) T) ((-1140 . -25) T) ((-1140 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 124151) ((-1175 . -317) 123946) ((-1172 . -499) 123930) ((-657 . -102) 123908) ((-642 . -102) T) ((-1165 . -152) 123858) ((-581 . -132) T) ((-631 . -858) 123837) ((-1161 . -623) 123799) ((-1161 . -624) 123760) ((-1039 . -801) T) ((-1039 . -804) T) ((-1039 . -736) T) ((-722 . -1071) 123583) ((-494 . -317) 123521) ((-463 . -427) 123491) ((-360 . -174) T) ((-297 . -38) 123478) ((-258 . -235) 123424) ((-257 . -235) 123370) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1053) 123347) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 123156) ((-680 . -233) 123140) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 123089) ((-108 . -317) NIL) ((-72 . -405) T) ((-1128 . -102) 122879) ((-843 . -421) 122863) ((-1135 . -805) T) ((-1135 . -802) T) ((-711 . -1115) T) ((-588 . -623) 122845) ((-388 . -372) T) ((-171 . -503) 122823) ((-224 . -623) 122755) ((-135 . -1115) T) ((-117 . -1115) T) ((-979 . -1233) T) ((-48 . -736) T) ((-1061 . -499) 122720) ((-142 . -435) 122702) ((-142 . -377) T) ((-1042 . -102) T) ((-522 . -519) 122681) ((-722 . -626) 122437) ((-1190 . -238) 122396) ((-486 . -102) T) ((-473 . -102) T) ((-1189 . -238) 122348) ((-1183 . -238) 122235) ((-1049 . -1127) T) ((-1240 . -623) 122217) ((-1197 . -1053) 122153) ((-1190 . -35) 122119) ((-1190 . -95) 122085) ((-1190 . -1221) 122051) ((-1190 . -1218) 122017) ((-1189 . -1218) 121983) ((-1189 . -1221) 121949) ((-1174 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1095 . -1167) 121928) ((-40 . -1233) 121900) ((-1189 . -95) 121866) ((-1049 . -23) T) ((-1189 . -35) 121832) ((-581 . -503) T) ((-1183 . -1218) 121798) ((-1183 . -1221) 121764) ((-1183 . -95) 121730) ((-1183 . -35) 121696) ((-370 . -1127) T) ((-368 . -1167) 121675) ((-362 . -1167) 121654) ((-354 . -1167) 121633) ((-1119 . -294) 121589) ((-1141 . -35) 121555) ((-1141 . -95) 121521) ((-108 . -1167) T) ((-1141 . -1221) 121487) ((-843 . -1073) 121466) ((-657 . -317) 121404) ((-642 . -317) 121255) ((-1141 . -1218) 121221) ((-722 . -1064) T) ((-1077 . -649) 121203) ((-1095 . -38) 121071) ((-965 . -649) 121019) ((-1019 . -148) T) ((-1019 . -146) NIL) ((-388 . -1127) T) ((-332 . -25) T) ((-330 . -23) T) ((-956 . -860) 120998) ((-722 . -334) 120975) ((-491 . -649) 120923) ((-40 . -1053) 120811) ((-722 . -239) T) ((-711 . -727) 120798) ((-348 . -1115) T) ((-176 . -1115) T) ((-339 . -860) T) ((-428 . -462) 120748) ((-388 . -23) T) ((-368 . -38) 120713) ((-362 . -38) 120678) ((-354 . -38) 120643) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1127) T) ((-108 . -38) 120593) ((-837 . -1127) T) ((-784 . -1115) T) ((-117 . -727) 120580) ((-682 . -1053) 120564) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1172 . -294) 120516) ((-1128 . -317) 120454) ((-492 . -1066) 120351) ((-1117 . -241) 120335) ((-64 . -406) T) ((-64 . -405) T) ((-1166 . -102) T) ((-110 . -102) T) ((-492 . -650) 120277) ((-40 . -386) 120254) ((-96 . -102) T) ((-663 . -862) 120238) ((-1188 . -235) 120225) ((-1150 . -1098) T) ((-1077 . -21) T) ((-1077 . -25) T) ((-1069 . -1066) 120209) ((-825 . -233) 120178) ((-965 . -25) T) ((-965 . -21) T) ((-1069 . -650) 120120) ((-631 . -1073) T) ((-1135 . -377) T) ((-1042 . -317) 120058) ((-680 . -656) 120017) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1066) 120001) ((-900 . -623) 119983) ((-896 . -623) 119965) ((-533 . -524) 119898) ((-258 . -860) 119849) ((-257 . -860) 119800) ((-394 . -650) 119770) ((-881 . -649) 119747) ((-486 . -317) 119685) ((-473 . -317) 119623) ((-360 . -298) T) ((-1172 . -1271) 119607) ((-1157 . -623) 119569) ((-1157 . -624) 119530) ((-1155 . -102) T) ((-1014 . -1071) 119426) ((-40 . -913) 119378) ((-1172 . -614) 119355) ((-1312 . -658) 119342) ((-876 . -500) 119319) ((-1078 . -152) 119265) ((-882 . -1237) T) ((-1014 . -111) 119147) ((-348 . -727) 119131) ((-876 . -623) 119093) ((-176 . -727) 119025) ((-882 . -566) T) ((-417 . -294) 118983) ((-246 . -238) 118935) ((-108 . -410) 118917) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 118899) ((-99 . -736) T) ((-492 . -102) 118689) ((-99 . -483) T) ((-117 . -174) T) ((-1305 . -656) 118648) ((-1303 . -656) 118607) ((-1128 . -38) 118577) ((-171 . -649) 118525) ((-1069 . -102) T) ((-1014 . -626) 118415) ((-881 . -25) T) ((-825 . -244) 118394) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 118337) ((-1019 . -238) T) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 118315) ((-128 . -1233) T) ((-122 . -1233) T) ((-827 . -1066) 118266) ((-827 . -650) 118208) ((-1049 . -132) T) ((-680 . -376) 118192) ((-153 . -656) 118151) ((-645 . -294) 118109) ((-617 . -294) 118067) ((-1312 . -736) T) ((-1014 . -1064) T) ((-1256 . -649) 118015) ((-1119 . -623) 117997) ((-1018 . -623) 117979) ((-574 . -1233) T) ((-505 . -1233) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1115) T) ((-1018 . -624) 117963) ((-1014 . -249) 117942) ((-1014 . -239) 117921) ((-1275 . -146) 117900) ((-1275 . -148) 117879) ((-843 . -1115) T) ((-1268 . -148) 117858) ((-1268 . -146) 117837) ((-1267 . -1237) 117816) ((-1247 . -146) 117723) ((-1247 . -148) 117630) ((-1246 . -1237) 117609) ((-388 . -132) T) ((-227 . -235) 117596) ((-574 . -897) 117578) ((0 . -1115) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1115) T) ((-1269 . -658) 117483) ((-1267 . -566) 117434) ((-724 . -1127) T) ((-1246 . -566) 117385) ((-574 . -1053) 117367) ((-605 . -148) 117346) ((-605 . -146) 117325) ((-505 . -1053) 117268) ((-1150 . -1152) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-977 . -656) 117212) ((-724 . -23) T) ((-516 . -623) 117178) ((-512 . -623) 117160) ((-825 . -656) 116910) ((-1307 . -1073) T) ((-388 . -1075) T) ((-1041 . -1115) 116888) ((-55 . -1053) 116870) ((-914 . -34) T) ((-492 . -317) 116808) ((-602 . -102) T) ((-1172 . -624) 116769) ((-1172 . -623) 116701) ((-1194 . -1066) 116584) ((-45 . -102) T) ((-827 . -102) T) ((-1194 . -650) 116481) ((-1256 . -25) T) ((-1256 . -21) T) ((-1077 . -235) 116468) ((-865 . -25) T) ((-44 . -376) 116452) ((-865 . -21) T) ((-741 . -462) 116403) ((-1306 . -623) 116385) ((-1295 . -1066) 116355) ((-1069 . -317) 116293) ((-681 . -1098) T) ((-616 . -1098) T) ((-400 . -1115) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1098) T) ((-162 . -1098) T) ((-157 . -1098) T) ((-155 . -1098) T) ((-1295 . -650) 116263) ((-631 . -1115) T) ((-709 . -897) 116245) ((-1283 . -1233) T) ((-229 . -317) 116183) ((-145 . -377) T) ((-1061 . -624) 116125) ((-1061 . -623) 116068) ((-321 . -922) NIL) ((-1241 . -854) T) ((-709 . -1053) 116013) ((-721 . -933) T) ((-484 . -1237) 115992) ((-1189 . -462) 115971) ((-1183 . -462) 115950) ((-338 . -102) T) ((-882 . -1127) T) ((-327 . -656) 115832) ((-324 . -658) 115561) ((-321 . -658) 115490) ((-484 . -566) 115441) ((-348 . -524) 115407) ((-560 . -152) 115357) ((-40 . -315) T) ((-853 . -623) 115339) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1095 . -233) 115309) ((-522 . -102) T) ((-417 . -624) 115116) ((-417 . -623) 115098) ((-270 . -623) 115080) ((-117 . -298) T) ((-1269 . -736) T) ((-633 . -1233) 115059) ((-1308 . -1115) T) ((-1267 . -372) 115038) ((-1246 . -372) 115017) ((-1296 . -34) T) ((-1241 . -1115) T) ((-118 . -1233) T) ((-108 . -233) 114999) ((-1194 . -102) T) ((-487 . -1115) T) ((-533 . -499) 114983) ((-747 . -34) T) ((-663 . -1066) 114967) ((-492 . -38) 114937) ((-663 . -650) 114907) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 114884) ((-118 . -897) NIL) ((-633 . -1053) 114767) ((-1295 . -102) T) ((-1275 . -238) 114726) ((-654 . -860) 114705) ((-1268 . -238) 114657) ((-1247 . -238) 114544) ((-303 . -102) T) ((-722 . -377) 114523) ((-118 . -1053) 114500) ((-400 . -727) 114484) ((-605 . -238) 114443) ((-631 . -727) 114427) ((-1120 . -1233) T) ((-45 . -317) 114231) ((-826 . -146) 114210) ((-826 . -148) 114189) ((-297 . -656) 114161) ((-1306 . -391) 114140) ((-829 . -860) T) ((-1285 . -1115) T) ((-1175 . -231) 114087) ((-396 . -860) 114066) ((-1275 . -1221) 114032) ((-1275 . -1218) 113998) ((-1268 . -1218) 113964) ((-525 . -132) T) ((-1268 . -1221) 113930) ((-1247 . -1218) 113896) ((-1247 . -1221) 113862) ((-1275 . -35) 113828) ((-1275 . -95) 113794) ((-1268 . -95) 113760) ((-645 . -623) 113729) ((-617 . -623) 113698) ((-227 . -860) T) ((-1268 . -35) 113664) ((-1267 . -1127) T) ((-1247 . -95) 113630) ((-1135 . -658) 113602) ((-1247 . -35) 113568) ((-1246 . -1127) T) ((-603 . -152) 113550) ((-1095 . -358) 113529) ((-176 . -298) T) ((-118 . -386) 113506) ((-118 . -347) 113483) ((-171 . -235) 113428) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 113277) ((-321 . -736) T) ((-484 . -372) 113256) ((-368 . -358) 113235) ((-362 . -358) 113214) ((-354 . -358) 113193) ((-324 . -483) 113172) ((-1267 . -23) T) ((-1246 . -23) T) ((-728 . -1127) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 113137) ((-45 . -290) 113087) ((-105 . -1115) T) ((-68 . -623) 113069) ((-985 . -102) T) ((-874 . -102) T) ((-633 . -913) 113028) ((-1307 . -1115) T) ((-390 . -1115) T) ((-1256 . -235) 113015) ((-82 . -1233) T) ((-1232 . -1115) T) ((-1077 . -860) T) ((-118 . -913) NIL) ((-792 . -933) 112994) ((-723 . -860) T) ((-541 . -1115) T) ((-510 . -1115) T) ((-364 . -1237) T) ((-361 . -1237) T) ((-353 . -1237) T) ((-271 . -1237) 112973) ((-253 . -1237) 112952) ((-543 . -870) T) ((-1128 . -233) 112921) ((-1174 . -838) T) ((-1157 . -1071) 112905) ((-400 . -771) T) ((-704 . -1233) T) ((-701 . -1053) 112889) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 112820) ((-253 . -566) 112751) ((-535 . -1098) T) ((-1157 . -111) 112730) ((-463 . -754) 112700) ((-876 . -1071) 112670) ((-827 . -38) 112612) ((-704 . -895) 112594) ((-704 . -897) 112576) ((-303 . -317) 112380) ((-923 . -1237) T) ((-1172 . -296) 112357) ((-1095 . -656) 112252) ((-680 . -421) 112236) ((-876 . -111) 112201) ((-1019 . -462) T) ((-704 . -1053) 112146) ((-923 . -566) T) ((-543 . -623) 112128) ((-591 . -933) T) ((-497 . -1066) 112078) ((-484 . -1127) T) ((-528 . -933) T) ((-927 . -462) T) ((-65 . -623) 112060) ((-219 . -1066) 112010) ((-497 . -650) 111960) ((-368 . -656) 111897) ((-362 . -656) 111834) ((-354 . -656) 111771) ((-642 . -231) 111717) ((-219 . -650) 111667) ((-108 . -656) 111617) ((-484 . -23) T) ((-1135 . -804) T) ((-882 . -132) T) ((-1135 . -801) T) ((-1298 . -1300) 111596) ((-1135 . -736) T) ((-664 . -658) 111570) ((-302 . -623) 111311) ((-1157 . -626) 111229) ((-1050 . -34) T) ((-826 . -238) 111208) ((-825 . -858) 111187) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1307 . -727) 111157) ((-704 . -386) 111139) ((-704 . -347) 111121) ((-487 . -174) T) ((-390 . -727) 111091) ((-876 . -626) 111026) ((-881 . -860) NIL) ((-574 . -1037) T) ((-505 . -1037) T) ((-1148 . -623) 111008) ((-1128 . -244) 110987) ((-216 . -102) T) ((-1165 . -102) T) ((-71 . -623) 110969) ((-1157 . -1064) T) ((-1194 . -38) 110866) ((-868 . -623) 110848) ((-574 . -555) T) ((-680 . -1073) T) ((-741 . -962) 110801) ((-363 . -1233) T) ((-1157 . -239) 110780) ((-1097 . -1115) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-1018 . -1071) 110725) ((-918 . -102) T) ((-876 . -1064) T) ((-704 . -913) NIL) ((-364 . -337) 110709) ((-364 . -372) T) ((-361 . -337) 110693) ((-361 . -372) T) ((-353 . -337) 110677) ((-353 . -372) T) ((-497 . -102) T) ((-1295 . -38) 110647) ((-556 . -860) T) ((-533 . -697) 110597) ((-219 . -102) T) ((-1039 . -1053) 110477) ((-1018 . -111) 110406) ((-1190 . -988) 110375) ((-1189 . -988) 110337) ((-530 . -152) 110321) ((-1095 . -379) 110300) ((-360 . -623) 110282) ((-330 . -21) T) ((-363 . -1053) 110259) ((-330 . -25) T) ((-1183 . -988) 110228) ((-48 . -1233) T) ((-76 . -623) 110210) ((-1141 . -988) 110177) ((-709 . -315) T) ((-130 . -854) T) ((-923 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-923 . -337) 110164) ((-86 . -623) 110146) ((-709 . -1037) T) ((-687 . -860) T) ((-1267 . -132) T) ((-1246 . -132) T) ((-914 . -1025) 110130) ((-846 . -21) T) ((-48 . -1053) 110073) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1128 . -656) 109823) ((-1305 . -1073) T) ((-559 . -102) T) ((-1303 . -1073) T) ((-664 . -736) T) ((-1119 . -628) 109726) ((-1018 . -626) 109656) ((-1306 . -1071) 109640) ((-825 . -421) 109609) ((-103 . -120) 109593) ((-130 . -1115) T) ((-52 . -1115) T) ((-939 . -623) 109575) ((-881 . -1007) 109552) ((-833 . -102) T) ((-1306 . -111) 109531) ((-663 . -38) 109501) ((-581 . -860) T) ((-364 . -1127) T) ((-361 . -1127) T) ((-353 . -1127) T) ((-271 . -1127) T) ((-253 . -1127) T) ((-1165 . -317) 109305) ((-633 . -315) 109284) ((-1103 . -235) 109271) ((-674 . -23) T) ((-534 . -1098) T) ((-319 . -1115) T) ((-492 . -233) 109240) ((-153 . -1073) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1018 . -1064) T) ((-722 . -922) 109219) ((-1172 . -626) 109196) ((-1018 . -239) 109168) ((-1018 . -249) T) ((-118 . -1037) NIL) ((-923 . -1127) T) ((-1268 . -462) 109147) ((-1247 . -462) 109126) ((-533 . -623) 109058) ((-722 . -658) 108947) ((-417 . -1071) 108899) ((-514 . -623) 108881) ((-923 . -23) T) ((-497 . -317) NIL) ((-1306 . -626) 108837) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 108775) ((-825 . -1073) 108705) ((-747 . -1113) 108689) ((-1267 . -503) 108655) ((-1246 . -503) 108621) ((-558 . -854) T) ((-142 . -1113) 108603) ((-487 . -298) T) ((-1306 . -1064) T) ((-258 . -238) 108555) ((-257 . -238) 108507) ((-1238 . -102) T) ((-1078 . -102) T) ((-853 . -626) 108375) ((-510 . -524) NIL) ((-492 . -244) 108354) ((-417 . -626) 108252) ((-976 . -1066) 108135) ((-745 . -1066) 108105) ((-976 . -650) 108002) ((-1188 . -146) 107981) ((-745 . -650) 107951) ((-463 . -1066) 107921) ((-1188 . -148) 107900) ((-1140 . -148) 107879) ((-1140 . -146) 107858) ((-645 . -1071) 107842) ((-617 . -1071) 107826) ((-463 . -650) 107796) ((-1190 . -1274) 107780) ((-1190 . -1261) 107757) ((-1189 . -1266) 107718) ((-680 . -1115) T) ((-680 . -1068) 107658) ((-1189 . -1261) 107628) ((-558 . -1115) T) ((-497 . -1167) T) ((-1189 . -1264) 107612) ((-1183 . -1245) 107573) ((-828 . -273) 107557) ((-219 . -1167) T) ((-352 . -933) T) ((-99 . -1233) T) ((-645 . -111) 107536) ((-617 . -111) 107515) ((-1183 . -1261) 107492) ((-853 . -1064) 107471) ((-1183 . -1243) 107455) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1066) 107429) ((-417 . -1064) T) ((-327 . -1073) T) ((-704 . -315) T) ((-428 . -650) 107403) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 107382) ((-388 . -235) 107369) ((-497 . -38) 107319) ((-219 . -38) 107269) ((-484 . -503) 107235) ((-1240 . -377) T) ((-1174 . -1159) T) ((-1116 . -102) T) ((-837 . -235) 107208) ((-711 . -623) 107190) ((-711 . -624) 107105) ((-724 . -21) T) ((-724 . -25) T) ((-1150 . -102) T) ((-492 . -656) 106855) ((-135 . -623) 106837) ((-117 . -623) 106819) ((-158 . -25) T) ((-1305 . -1115) T) ((-882 . -649) 106767) ((-1303 . -1115) T) ((-976 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 106718) ((-44 . -1115) T) ((-1103 . -860) T) ((-1078 . -317) 106569) ((-674 . -132) T) ((-1069 . -656) 106538) ((-680 . -727) 106522) ((-297 . -1073) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 106491) ((-428 . -102) T) ((-153 . -1115) T) ((-45 . -231) 106441) ((-809 . -1066) 106425) ((-971 . -860) 106404) ((-1014 . -658) 106306) ((-809 . -650) 106290) ((-246 . -1290) 106260) ((-1039 . -315) T) ((-302 . -1071) 106181) ((-923 . -132) T) ((-40 . -933) T) ((-497 . -410) 106163) ((-363 . -315) T) ((-219 . -410) 106145) ((-1095 . -421) 106129) ((-302 . -111) 106045) ((-1199 . -860) T) ((-1198 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-1269 . -47) 105989) ((-348 . -623) 105971) ((-1188 . -238) T) ((-227 . -148) T) ((-176 . -623) 105953) ((-1128 . -858) 105932) ((-784 . -623) 105914) ((-129 . -860) T) ((-618 . -241) 105861) ((-485 . -241) 105811) ((-1305 . -727) 105781) ((-48 . -315) T) ((-1303 . -727) 105751) ((-65 . -626) 105680) ((-977 . -1115) T) ((-825 . -1115) 105470) ((-320 . -102) T) ((-914 . -1233) T) ((-48 . -1037) T) ((-1246 . -649) 105378) ((-699 . -102) 105356) ((-44 . -727) 105340) ((-560 . -102) T) ((-302 . -626) 105271) ((-67 . -392) T) ((-67 . -405) T) ((-672 . -23) T) ((-827 . -656) 105207) ((-680 . -771) T) ((-1230 . -1115) 105185) ((-360 . -1071) 105130) ((-685 . -1115) 105108) ((-1077 . -148) T) ((-965 . -148) 105087) ((-965 . -146) 105066) ((-809 . -102) T) ((-153 . -727) 105050) ((-491 . -148) 105029) ((-491 . -146) 105008) ((-360 . -111) 104937) ((-1095 . -1073) T) ((-330 . -860) 104916) ((-1275 . -988) 104885) ((-637 . -1115) T) ((-1268 . -988) 104847) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 104797) ((-368 . -1073) T) ((-362 . -1073) T) ((-354 . -1073) T) ((-302 . -1064) 104739) ((-1247 . -988) 104708) ((-388 . -860) T) ((-108 . -1073) T) ((-1014 . -736) T) ((-880 . -933) T) ((-853 . -805) 104687) ((-853 . -802) 104666) ((-428 . -317) 104605) ((-478 . -102) T) ((-605 . -988) 104574) ((-327 . -1115) T) ((-417 . -805) 104553) ((-417 . -802) 104532) ((-510 . -499) 104514) ((-1269 . -1053) 104480) ((-1267 . -21) T) ((-1267 . -25) T) ((-1246 . -21) T) ((-1246 . -25) T) ((-825 . -727) 104422) ((-360 . -626) 104352) ((-709 . -414) T) ((-1296 . -1233) T) ((-1128 . -421) 104321) ((-616 . -102) T) ((-1092 . -1233) T) ((-1018 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1194 . -656) 104231) ((-747 . -1233) T) ((-741 . -1066) 104074) ((-44 . -771) T) ((-741 . -650) 103923) ((-603 . -102) T) ((-663 . -666) 103907) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1233) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1232 . -93) T) ((-360 . -1064) T) ((-227 . -238) T) ((-70 . -392) T) ((-70 . -405) T) ((-1181 . -102) T) ((-680 . -524) 103840) ((-1295 . -656) 103785) ((-699 . -317) 103723) ((-976 . -38) 103620) ((-1196 . -623) 103602) ((-745 . -38) 103572) ((-560 . -317) 103376) ((-1190 . -1066) 103259) ((-324 . -1233) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1233) T) ((-297 . -1115) T) ((-1189 . -1066) 103094) ((-1183 . -1066) 102884) ((-1141 . -1066) 102767) ((-1190 . -650) 102664) ((-1189 . -650) 102505) ((-721 . -1237) T) ((-1183 . -650) 102301) ((-1172 . -661) 102285) ((-1141 . -650) 102182) ((-1227 . -566) 102161) ((-829 . -395) 102145) ((-721 . -566) T) ((-324 . -895) 102129) ((-324 . -897) 102054) ((-137 . -1233) T) ((-321 . -895) 102015) ((-321 . -897) NIL) ((-809 . -317) 101980) ((-327 . -727) 101821) ((-396 . -395) 101805) ((-332 . -331) 101782) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 101756) ((-324 . -1053) 101419) ((-227 . -1218) T) ((-227 . -1221) T) ((-3 . -623) 101401) ((-321 . -1053) 101331) ((-882 . -235) 101304) ((-2 . -1115) T) ((-2 . |RecordCategory|) T) ((-1128 . -1073) 101234) ((-843 . -623) 101216) ((-1077 . -238) T) ((-590 . -933) T) ((-574 . -830) T) ((-574 . -933) T) ((-505 . -933) T) ((-137 . -1053) 101200) ((-227 . -95) T) ((-171 . -148) 101179) ((-75 . -451) T) ((0 . -623) 101161) ((-75 . -405) T) ((-171 . -146) 101112) ((-227 . -35) T) ((-49 . -623) 101094) ((-487 . -1073) T) ((-497 . -233) 101076) ((-494 . -983) 101060) ((-492 . -858) 101039) ((-219 . -233) 101021) ((-81 . -451) T) ((-81 . -405) T) ((-1161 . -34) T) ((-825 . -174) 101000) ((-741 . -102) T) ((-663 . -656) 100959) ((-1041 . -623) 100926) ((-510 . -294) 100876) ((-324 . -386) 100845) ((-321 . -386) 100806) ((-321 . -347) 100767) ((-1100 . -623) 100749) ((-826 . -962) 100696) ((-672 . -132) T) ((-1256 . -146) 100675) ((-1256 . -148) 100654) ((-1190 . -102) T) ((-1189 . -102) T) ((-1183 . -102) T) ((-1175 . -1115) T) ((-1141 . -102) T) ((-224 . -34) T) ((-297 . -727) 100641) ((-1175 . -620) 100617) ((-603 . -317) NIL) ((-1275 . -1274) 100601) ((-494 . -1115) 100579) ((-1165 . -231) 100529) ((-400 . -623) 100511) ((-520 . -860) T) ((-1135 . -1233) T) ((-1275 . -1261) 100488) ((-1268 . -1266) 100449) ((-1268 . -1261) 100419) ((-1268 . -1264) 100403) ((-1247 . -1245) 100364) ((-1247 . -1261) 100341) ((-1247 . -1243) 100325) ((-631 . -623) 100307) ((-1190 . -292) 100273) ((-709 . -933) T) ((-1189 . -292) 100239) ((-1183 . -292) 100205) ((-1141 . -292) 100171) ((-1095 . -1115) T) ((-1076 . -1115) T) ((-48 . -310) T) ((-324 . -913) 100137) ((-321 . -913) NIL) ((-1076 . -1083) 100116) ((-1135 . -897) 100098) ((-809 . -38) 100082) ((-271 . -649) 100030) ((-253 . -649) 99978) ((-711 . -1071) 99965) ((-605 . -1261) 99942) ((-1135 . -1053) 99924) ((-327 . -174) 99855) ((-368 . -1115) T) ((-362 . -1115) T) ((-354 . -1115) T) ((-510 . -19) 99837) ((-1117 . -152) 99821) ((-881 . -238) NIL) ((-108 . -1115) T) ((-117 . -1071) 99808) ((-721 . -372) T) ((-510 . -614) 99783) ((-711 . -111) 99768) ((-1267 . -235) 99714) ((-1246 . -235) 99613) ((-446 . -102) T) ((-886 . -1278) T) ((-256 . -102) T) ((-45 . -1164) 99563) ((-117 . -111) 99548) ((-1308 . -623) 99515) ((-1308 . -500) 99497) ((-1285 . -623) 99479) ((-1256 . -238) T) ((-645 . -730) T) ((-617 . -730) T) ((-1241 . -623) 99461) ((-1239 . -860) T) ((-1227 . -1127) T) ((-1227 . -23) T) ((-1188 . -462) 99392) ((-825 . -524) 99325) ((-1050 . -1233) T) ((-246 . -1066) 99222) ((-1183 . -317) 99107) ((-1182 . -1115) T) ((-956 . -152) 99091) ((-1174 . -1115) T) ((-1157 . -658) 99029) ((-246 . -650) 98971) ((-1141 . -317) 98958) ((-1140 . -462) 98909) ((-1102 . -566) 98840) ((-535 . -102) T) ((-530 . -102) 98790) ((-1102 . -1237) 98769) ((-1095 . -727) 98637) ((-1019 . -1066) 98587) ((-792 . -1237) 98566) ((-790 . -1237) 98545) ((-62 . -1233) T) ((-487 . -623) 98497) ((-487 . -624) 98419) ((-1009 . -1115) T) ((-792 . -566) 98330) ((-790 . -566) 98261) ((-741 . -317) 98248) ((-492 . -421) 98217) ((-633 . -933) 98196) ((-464 . -1237) 98175) ((-711 . -626) 98147) ((-685 . -524) 98080) ((-408 . -623) 98062) ((-674 . -25) T) ((-674 . -21) T) ((-464 . -566) 97993) ((-364 . -25) T) ((-364 . -21) T) ((-361 . -25) T) ((-118 . -933) T) ((-118 . -830) NIL) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 97944) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 97926) ((-117 . -626) 97898) ((-1019 . -650) 97848) ((-956 . -995) 97832) ((-927 . -650) 97784) ((-927 . -1066) 97736) ((-923 . -21) T) ((-923 . -25) T) ((-882 . -860) 97687) ((-876 . -658) 97647) ((-721 . -1127) T) ((-721 . -23) T) ((-711 . -1064) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1233) T) ((-319 . -93) T) ((-657 . -1115) 97625) ((-642 . -620) 97600) ((-642 . -1115) T) ((-591 . -1237) T) ((-591 . -566) T) ((-528 . -1237) T) ((-528 . -566) T) ((-497 . -656) 97550) ((-484 . -235) 97496) ((-437 . -1066) 97480) ((-437 . -650) 97464) ((-368 . -727) 97416) ((-362 . -727) 97368) ((-348 . -1071) 97352) ((-354 . -727) 97304) ((-348 . -111) 97283) ((-176 . -1071) 97215) ((-219 . -656) 97165) ((-176 . -111) 97076) ((-108 . -727) 97026) ((-281 . -1115) T) ((-280 . -1115) T) ((-279 . -1115) T) ((-278 . -1115) T) ((-277 . -1115) T) ((-276 . -1115) T) ((-275 . -1115) T) ((-214 . -1115) T) ((-213 . -1115) T) ((-171 . -1221) 97004) ((-171 . -1218) 96982) ((-211 . -1115) T) ((-210 . -1115) T) ((-117 . -1064) T) ((-209 . -1115) T) ((-208 . -1115) T) ((-205 . -1115) T) ((-204 . -1115) T) ((-203 . -1115) T) ((-202 . -1115) T) ((-201 . -1115) T) ((-200 . -1115) T) ((-199 . -1115) T) ((-198 . -1115) T) ((-197 . -1115) T) ((-196 . -1115) T) ((-195 . -1115) T) ((-246 . -102) 96772) ((-171 . -35) 96750) ((-171 . -95) 96728) ((-664 . -1053) 96624) ((-492 . -1073) 96554) ((-1128 . -1115) 96344) ((-1157 . -34) T) ((-680 . -499) 96328) ((-73 . -1233) T) ((-105 . -623) 96310) ((-1307 . -623) 96292) ((-390 . -623) 96274) ((-348 . -626) 96226) ((-176 . -626) 96143) ((-1232 . -500) 96124) ((-741 . -38) 95973) ((-581 . -1221) T) ((-581 . -1218) T) ((-541 . -623) 95955) ((-530 . -317) 95893) ((-510 . -623) 95875) ((-510 . -624) 95857) ((-1232 . -623) 95823) ((-1183 . -1167) NIL) ((-1042 . -1086) 95792) ((-1042 . -1115) T) ((-1019 . -102) T) ((-986 . -102) T) ((-927 . -102) T) ((-904 . -1053) 95769) ((-1157 . -736) T) ((-1018 . -658) 95676) ((-486 . -1115) T) ((-473 . -1115) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1078 . -231) 95622) ((-1190 . -38) 95519) ((-876 . -736) T) ((-704 . -933) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1189 . -38) 95360) ((-348 . -1064) T) ((-1183 . -38) 95156) ((-1095 . -174) T) ((-176 . -1064) T) ((-1141 . -38) 95053) ((-722 . -47) 95030) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 95004) ((-507 . -57) 94954) ((-360 . -1302) 94931) ((-227 . -462) T) ((-327 . -298) 94882) ((-354 . -174) T) ((-176 . -249) T) ((-1246 . -860) 94781) ((-108 . -174) T) ((-882 . -1007) 94765) ((-668 . -1127) T) ((-591 . -372) T) ((-591 . -337) 94752) ((-528 . -337) 94729) ((-528 . -372) T) ((-324 . -315) 94708) ((-321 . -315) T) ((-612 . -860) 94687) ((-1128 . -727) 94629) ((-530 . -290) 94613) ((-668 . -23) T) ((-428 . -233) 94597) ((-321 . -1037) NIL) ((-345 . -23) T) ((-103 . -1025) 94581) ((-45 . -36) 94560) ((-622 . -1115) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 94498) ((-1102 . -1127) T) ((-1306 . -658) 94472) ((-792 . -1127) T) ((-790 . -1127) T) ((-1194 . -421) 94456) ((-464 . -1127) T) ((-1077 . -462) T) ((-1166 . -1115) T) ((-965 . -462) 94407) ((-1130 . -1098) T) ((-110 . -1115) T) ((-1102 . -23) T) ((-1175 . -524) 94190) ((-827 . -1073) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 94141) ((-471 . -23) T) ((-390 . -391) 94120) ((-364 . -235) 94093) ((-361 . -235) 94066) ((-353 . -235) 94039) ((-464 . -23) T) ((-271 . -235) 94012) ((-96 . -1115) T) ((-722 . -1233) T) ((-680 . -294) 93989) ((-494 . -524) 93922) ((-1275 . -1066) 93805) ((-1275 . -650) 93702) ((-1268 . -650) 93543) ((-1268 . -1066) 93378) ((-1247 . -650) 93174) ((-297 . -298) T) ((-1247 . -1066) 92964) ((-1097 . -623) 92946) ((-1097 . -624) 92927) ((-417 . -922) 92906) ((-1227 . -132) T) ((-50 . -1127) T) ((-1183 . -410) 92858) ((-1039 . -933) T) ((-1018 . -736) T) ((-853 . -658) 92831) ((-722 . -897) NIL) ((-606 . -1066) 92791) ((-591 . -1127) T) ((-528 . -1127) T) ((-605 . -1066) 92674) ((-1172 . -34) T) ((-1019 . -317) NIL) ((-825 . -499) 92658) ((-606 . -650) 92631) ((-363 . -933) T) ((-605 . -650) 92528) ((-923 . -235) 92515) ((-417 . -658) 92431) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1053) 92311) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 92282) ((-1155 . -1115) T) ((-1298 . -1297) 92266) ((-711 . -805) T) ((-711 . -802) T) ((-1135 . -315) T) ((-388 . -148) T) ((-288 . -623) 92248) ((-287 . -623) 92230) ((-1246 . -1007) 92200) ((-48 . -933) T) ((-685 . -499) 92184) ((-258 . -1290) 92154) ((-257 . -1290) 92124) ((-1192 . -860) T) ((-1103 . -238) T) ((-1128 . -174) 92103) ((-1135 . -1037) T) ((-1061 . -34) T) ((-846 . -148) 92082) ((-846 . -146) 92061) ((-747 . -107) 92045) ((-622 . -133) T) ((-492 . -1115) 91835) ((-1194 . -1073) T) ((-881 . -462) T) ((-85 . -1233) T) ((-246 . -38) 91805) ((-142 . -107) 91787) ((-722 . -386) 91771) ((-843 . -626) 91639) ((-1306 . -736) T) ((-1295 . -1073) T) ((-1275 . -102) T) ((-1135 . -555) T) ((-589 . -102) T) ((-130 . -500) 91621) ((-1268 . -102) T) ((-400 . -1071) 91605) ((-1188 . -962) 91574) ((-44 . -294) 91551) ((-130 . -623) 91518) ((-52 . -623) 91500) ((-1140 . -962) 91467) ((-663 . -421) 91451) ((-1247 . -102) T) ((-1174 . -524) NIL) ((-672 . -25) T) ((-631 . -1071) 91435) ((-672 . -21) T) ((-976 . -656) 91345) ((-745 . -656) 91290) ((-725 . -656) 91262) ((-400 . -111) 91241) ((-224 . -261) 91225) ((-1069 . -1068) 91165) ((-1069 . -1115) T) ((-1019 . -1167) T) ((-828 . -1115) T) ((-463 . -656) 91080) ((-352 . -1237) T) ((-645 . -658) 91064) ((-631 . -111) 91043) ((-617 . -658) 91027) ((-606 . -102) T) ((-319 . -500) 91008) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1115) T) ((-394 . -1115) T) ((-319 . -623) 90974) ((-229 . -1115) 90952) ((-657 . -524) 90885) ((-642 . -524) 90729) ((-843 . -1064) 90708) ((-654 . -152) 90692) ((-352 . -566) T) ((-722 . -913) 90635) ((-560 . -231) 90585) ((-1275 . -292) 90551) ((-1268 . -292) 90517) ((-1095 . -298) 90468) ((-497 . -858) T) ((-225 . -1127) T) ((-1247 . -292) 90434) ((-1227 . -503) 90400) ((-1019 . -38) 90350) ((-219 . -858) T) ((-428 . -656) 90309) ((-927 . -38) 90261) ((-853 . -804) 90240) ((-853 . -801) 90219) ((-853 . -736) 90198) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 90129) ((-437 . -38) 90113) ((-225 . -23) T) ((-108 . -298) T) ((-417 . -804) 90092) ((-417 . -801) 90071) ((-417 . -736) T) ((-510 . -296) 90046) ((-487 . -1071) 90011) ((-668 . -132) T) ((-631 . -626) 89980) ((-1128 . -524) 89913) ((-345 . -132) T) ((-171 . -412) 89892) ((-492 . -727) 89834) ((-825 . -294) 89811) ((-487 . -111) 89767) ((-663 . -1073) T) ((-826 . -1066) 89610) ((-1294 . -1098) T) ((-1256 . -462) 89541) ((-826 . -650) 89390) ((-1293 . -1098) T) ((-1102 . -132) T) ((-1069 . -727) 89332) ((-1042 . -524) 89265) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-631 . -1064) T) ((-602 . -1115) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-388 . -238) T) ((-1014 . -1233) 89206) ((-45 . -1115) T) ((-394 . -727) 89176) ((-827 . -1115) T) ((-486 . -524) 89109) ((-473 . -524) 89042) ((-1308 . -626) 89024) ((-463 . -376) 88994) ((-45 . -620) 88973) ((-324 . -310) T) ((-837 . -238) 88952) ((-487 . -626) 88902) ((-1247 . -317) 88787) ((-680 . -623) 88749) ((-59 . -860) 88728) ((-1019 . -410) 88710) ((-558 . -623) 88692) ((-809 . -656) 88651) ((-825 . -614) 88628) ((-526 . -860) 88607) ((-506 . -860) 88586) ((-40 . -1237) T) ((-1014 . -1053) 88482) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 88342) ((-352 . -337) 88319) ((-352 . -372) T) ((-330 . -331) 88296) ((-327 . -294) 88254) ((-40 . -566) T) ((-388 . -1218) T) ((-388 . -1221) T) ((-1050 . -1209) 88229) ((-1205 . -241) 88179) ((-1183 . -233) 88131) ((-338 . -1115) T) ((-388 . -95) T) ((-388 . -35) T) ((-1050 . -107) 88077) ((-487 . -1064) T) ((-1307 . -1071) 88061) ((-489 . -241) 88011) ((-1175 . -499) 87945) ((-1298 . -1066) 87929) ((-390 . -1071) 87913) ((-1298 . -650) 87883) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 87862) ((-724 . -146) 87841) ((-494 . -499) 87825) ((-495 . -344) 87794) ((-1307 . -111) 87773) ((-522 . -1115) T) ((-492 . -174) 87752) ((-1014 . -386) 87736) ((-423 . -102) T) ((-390 . -111) 87715) ((-1014 . -347) 87699) ((-286 . -998) 87683) ((-285 . -998) 87667) ((-1305 . -623) 87649) ((-1303 . -623) 87631) ((-110 . -524) NIL) ((-1188 . -1259) 87615) ((-864 . -862) 87599) ((-1194 . -1115) T) ((-103 . -1233) T) ((-965 . -962) 87560) ((-827 . -727) 87502) ((-1247 . -1167) NIL) ((-491 . -962) 87447) ((-1077 . -144) T) ((-60 . -102) 87425) ((-44 . -623) 87407) ((-78 . -623) 87389) ((-360 . -658) 87334) ((-1295 . -1115) T) ((-521 . -860) T) ((-297 . -294) 87313) ((-352 . -1127) T) ((-303 . -1115) T) ((-1014 . -913) 87272) ((-303 . -620) 87251) ((-1307 . -626) 87200) ((-1275 . -38) 87097) ((-1268 . -38) 86938) ((-1247 . -38) 86734) ((-497 . -1073) T) ((-390 . -626) 86718) ((-219 . -1073) T) ((-352 . -23) T) ((-153 . -623) 86700) ((-843 . -805) 86679) ((-843 . -802) 86658) ((-1232 . -626) 86639) ((-606 . -38) 86612) ((-605 . -38) 86509) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1017) 86475) ((-79 . -623) 86457) ((-722 . -315) 86436) ((-302 . -736) 86338) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 86317) ((-1298 . -102) T) ((-40 . -372) T) ((-882 . -148) 86296) ((-495 . -656) 86278) ((-882 . -146) 86257) ((-1174 . -499) 86239) ((-1307 . -1064) T) ((-492 . -524) 86172) ((-1161 . -1233) T) ((-977 . -623) 86154) ((-657 . -499) 86138) ((-642 . -499) 86069) ((-825 . -623) 85800) ((-48 . -27) T) ((-1194 . -727) 85697) ((-663 . -1115) T) ((-871 . -870) T) ((-446 . -373) 85671) ((-741 . -656) 85581) ((-1117 . -102) T) ((-985 . -1115) T) ((-874 . -1115) T) ((-826 . -317) 85568) ((-543 . -537) T) ((-543 . -586) T) ((-1303 . -391) 85540) ((-1069 . -524) 85473) ((-1175 . -294) 85449) ((-246 . -233) 85418) ((-258 . -1066) 85315) ((-257 . -1066) 85212) ((-1295 . -727) 85182) ((-1182 . -93) T) ((-1009 . -93) T) ((-827 . -174) 85161) ((-258 . -650) 85103) ((-257 . -650) 85045) ((-1230 . -500) 85022) ((-229 . -524) 84955) ((-631 . -805) 84934) ((-631 . -802) 84913) ((-1230 . -623) 84825) ((-224 . -1233) T) ((-685 . -623) 84757) ((-1190 . -656) 84667) ((-1172 . -1025) 84651) ((-956 . -102) 84601) ((-360 . -736) T) ((-871 . -623) 84583) ((-1189 . -656) 84465) ((-1183 . -656) 84302) ((-1141 . -656) 84212) ((-1247 . -410) 84164) ((-1128 . -499) 84148) ((-60 . -317) 84086) ((-339 . -102) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-40 . -1127) T) ((-721 . -21) T) ((-637 . -623) 84068) ((-525 . -331) 84047) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-934 . -1127) T) ((-40 . -23) T) ((-781 . -1127) T) ((-574 . -1237) T) ((-505 . -1237) T) ((-327 . -623) 84029) ((-1019 . -233) 84011) ((-171 . -167) 83995) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1267 . -148) 83974) ((-1175 . -614) 83950) ((-1267 . -146) 83929) ((-1042 . -499) 83913) ((-1246 . -146) 83838) ((-1246 . -148) 83763) ((-1298 . -1304) 83742) ((-486 . -499) 83726) ((-473 . -499) 83710) ((-533 . -34) T) ((-663 . -727) 83680) ((-112 . -982) T) ((-672 . -860) 83659) ((-1194 . -174) 83610) ((-374 . -102) T) ((-246 . -244) 83589) ((-258 . -102) T) ((-257 . -102) T) ((-1256 . -962) 83558) ((-251 . -860) 83537) ((-826 . -38) 83386) ((-45 . -524) 83178) ((-1174 . -294) 83128) ((-216 . -1115) T) ((-1165 . -1115) T) ((-882 . -238) 83107) ((-1165 . -620) 83086) ((-596 . -25) T) ((-596 . -21) T) ((-1117 . -317) 83024) ((-976 . -421) 83008) ((-709 . -1237) T) ((-642 . -294) 82961) ((-1102 . -649) 82909) ((-792 . -649) 82857) ((-790 . -649) 82805) ((-352 . -132) T) ((-297 . -623) 82787) ((-918 . -1115) T) ((-709 . -566) T) ((-130 . -626) 82769) ((-880 . -1127) T) ((-464 . -649) 82717) ((-918 . -916) 82701) ((-388 . -462) T) ((-497 . -1115) T) ((-956 . -317) 82639) ((-711 . -658) 82611) ((-559 . -854) T) ((-219 . -1115) T) ((-324 . -933) 82590) ((-321 . -933) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 82577) ((-484 . -146) 82556) ((-428 . -421) 82540) ((-484 . -148) 82519) ((-110 . -499) 82501) ((-319 . -626) 82482) ((-2 . -623) 82464) ((-188 . -102) T) ((-1174 . -19) 82446) ((-1174 . -614) 82421) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1159) T) ((-1128 . -294) 82398) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 82148) ((-505 . -372) T) ((-1305 . -1071) 82132) ((-1298 . -38) 82102) ((-1188 . -1066) 81925) ((-1157 . -1233) T) ((-1140 . -1066) 81768) ((-864 . -1066) 81752) ((-642 . -614) 81727) ((-1303 . -1071) 81711) ((-1267 . -1218) 81677) ((-1267 . -1221) 81643) ((-1188 . -650) 81472) ((-1140 . -650) 81321) ((-864 . -650) 81291) ((-1267 . -95) 81257) ((-1267 . -238) 81209) ((-559 . -1115) T) ((-1102 . -25) T) ((-1102 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1237) T) ((-976 . -1073) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1073) T) ((-725 . -1073) T) ((-680 . -1071) 81193) ((-527 . -1098) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1250 . -102) 81171) ((-1166 . -93) T) ((-1157 . -1053) 81067) ((-827 . -298) 81046) ((-1247 . -233) 80998) ((-833 . -1115) T) ((-979 . -982) T) ((-680 . -111) 80977) ((-627 . -1233) T) ((-303 . -524) 80769) ((-1246 . -1218) 80735) ((-1246 . -1221) 80701) ((-1246 . -238) 80606) ((-258 . -317) 80544) ((-257 . -317) 80482) ((-1241 . -377) T) ((-1175 . -624) NIL) ((-1175 . -623) 80464) ((-1238 . -854) T) ((-1157 . -386) 80448) ((-1135 . -830) T) ((-96 . -93) T) ((-1135 . -933) T) ((-1128 . -614) 80425) ((-1095 . -624) 80409) ((-1019 . -656) 80359) ((-927 . -656) 80296) ((-825 . -296) 80273) ((-494 . -623) 80205) ((-618 . -152) 80152) ((-497 . -727) 80102) ((-428 . -1073) T) ((-492 . -499) 80086) ((-437 . -656) 80045) ((-335 . -860) 80024) ((-348 . -658) 79998) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 79948) ((-171 . -734) 79919) ((-176 . -658) 79851) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 79801) ((-1095 . -623) 79783) ((-1076 . -623) 79765) ((-1008 . -102) T) ((-872 . -102) T) ((-809 . -421) 79728) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -908) T) ((-590 . -1127) T) ((-574 . -1127) T) ((-505 . -1127) T) ((-368 . -623) 79710) ((-362 . -623) 79692) ((-354 . -623) 79674) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 79604) ((-108 . -623) 79546) ((-213 . -908) T) ((-971 . -152) 79530) ((-781 . -132) T) ((-680 . -626) 79448) ((-135 . -736) T) ((-117 . -736) T) ((-1267 . -35) 79414) ((-1069 . -499) 79398) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1246 . -95) 79364) ((-1246 . -35) 79330) ((-1188 . -102) T) ((-1140 . -102) T) ((-864 . -102) T) ((-229 . -499) 79314) ((-1305 . -111) 79293) ((-1303 . -111) 79272) ((-44 . -1071) 79256) ((-1305 . -626) 79202) ((-1305 . -1064) T) ((-1303 . -626) 79131) ((-1256 . -1259) 79115) ((-1238 . -1115) T) ((-865 . -862) 79099) ((-1194 . -298) 79078) ((-1119 . -1233) T) ((-110 . -294) 79028) ((-1018 . -1233) 79000) ((-129 . -152) 78982) ((-1157 . -913) 78941) ((-44 . -111) 78920) ((-1197 . -1278) T) ((-1182 . -500) 78901) ((-1182 . -623) 78867) ((-1174 . -624) NIL) ((-680 . -1064) T) ((-1174 . -623) 78849) ((-1078 . -620) 78824) ((-484 . -238) 78776) ((-1078 . -1115) T) ((-1009 . -500) 78757) ((-74 . -451) T) ((-74 . -405) T) ((-1009 . -623) 78723) ((-153 . -1071) 78707) ((-680 . -239) 78686) ((-581 . -564) 78670) ((-364 . -148) 78649) ((-364 . -146) 78600) ((-361 . -148) 78579) ((-361 . -146) 78530) ((-353 . -148) 78509) ((-353 . -146) 78460) ((-271 . -146) 78439) ((-271 . -148) 78418) ((-258 . -38) 78388) ((-253 . -148) 78367) ((-118 . -372) T) ((-253 . -146) 78346) ((-257 . -38) 78316) ((-153 . -111) 78295) ((-1018 . -1053) 78183) ((-1183 . -858) NIL) ((-704 . -1237) T) ((-809 . -1073) T) ((-709 . -1127) T) ((-1303 . -1064) T) ((-1172 . -1233) T) ((-1018 . -386) 78160) ((-923 . -146) T) ((-923 . -148) 78142) ((-880 . -132) T) ((-825 . -1071) 78039) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1066) 78004) ((-657 . -623) 77936) ((-657 . -624) 77897) ((-642 . -624) NIL) ((-642 . -623) 77879) ((-497 . -174) T) ((-227 . -650) 77844) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1221) 77810) ((-484 . -1218) 77776) ((-281 . -623) 77758) ((-280 . -623) 77740) ((-279 . -623) 77722) ((-278 . -623) 77704) ((-277 . -623) 77686) ((-510 . -661) 77668) ((-276 . -623) 77650) ((-348 . -736) T) ((-275 . -623) 77632) ((-110 . -19) 77614) ((-176 . -736) T) ((-510 . -382) 77596) ((-214 . -623) 77578) ((-530 . -1164) 77562) ((-510 . -124) T) ((-110 . -614) 77537) ((-213 . -623) 77519) ((-484 . -35) 77485) ((-484 . -95) 77451) ((-211 . -623) 77433) ((-210 . -623) 77415) ((-209 . -623) 77397) ((-208 . -623) 77379) ((-205 . -623) 77361) ((-204 . -623) 77343) ((-203 . -623) 77325) ((-202 . -623) 77307) ((-201 . -623) 77289) ((-200 . -623) 77271) ((-199 . -623) 77253) ((-546 . -1118) 77205) ((-198 . -623) 77187) ((-197 . -623) 77169) ((-45 . -499) 77106) ((-196 . -623) 77088) ((-195 . -623) 77070) ((-153 . -626) 77039) ((-1130 . -102) T) ((-825 . -111) 76929) ((-654 . -102) 76879) ((-492 . -294) 76856) ((-1306 . -1053) 76840) ((-1128 . -623) 76571) ((-1116 . -1115) T) ((-1061 . -1233) T) ((-1188 . -317) 76558) ((-1077 . -1066) 76545) ((-1150 . -1115) T) ((-965 . -1066) 76388) ((-1140 . -317) 76375) ((-1111 . -1098) T) ((-633 . -1127) T) ((-1077 . -650) 76362) ((-1105 . -1098) T) ((-965 . -650) 76211) ((-1102 . -235) 76184) ((-491 . -1066) 76027) ((-1088 . -1098) T) ((-1081 . -1098) T) ((-1051 . -1098) T) ((-1034 . -1098) T) ((-118 . -1127) T) ((-491 . -650) 75876) ((-792 . -235) 75863) ((-829 . -102) T) ((-636 . -1098) T) ((-633 . -23) T) ((-1165 . -524) 75655) ((-493 . -1098) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1098) T) ((-976 . -1115) T) ((-153 . -1064) T) ((-741 . -421) 75639) ((-118 . -23) T) ((-1018 . -913) 75591) ((-745 . -1115) T) ((-725 . -1115) T) ((-463 . -1115) T) ((-417 . -1233) T) ((-324 . -440) 75575) ((-602 . -93) T) ((-1275 . -656) 75485) ((-1042 . -624) 75446) ((-1039 . -1237) T) ((-227 . -102) T) ((-1042 . -623) 75408) ((-1268 . -656) 75290) ((-826 . -233) 75274) ((-825 . -626) 75004) ((-1247 . -656) 74841) ((-1039 . -566) T) ((-843 . -658) 74814) ((-363 . -1237) T) ((-486 . -623) 74776) ((-486 . -624) 74737) ((-473 . -624) 74698) ((-473 . -623) 74660) ((-606 . -656) 74619) ((-417 . -895) 74603) ((-327 . -1071) 74438) ((-417 . -897) 74363) ((-605 . -656) 74273) ((-853 . -1053) 74169) ((-497 . -524) NIL) ((-492 . -614) 74146) ((-591 . -235) 74133) ((-363 . -566) T) ((-528 . -235) 74120) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1115) T) ((-417 . -1053) 73984) ((-327 . -111) 73805) ((-704 . -372) T) ((-227 . -292) T) ((-1230 . -626) 73782) ((-48 . -1237) T) ((-1188 . -1167) 73760) ((-1175 . -296) 73736) ((-1077 . -102) T) ((-825 . -1064) 73666) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-364 . -238) 73645) ((-361 . -238) 73624) ((-353 . -238) 73603) ((-48 . -566) T) ((-965 . -102) T) ((-271 . -238) 73582) ((-881 . -1066) 73527) ((-324 . -27) 73506) ((-825 . -239) 73458) ((-255 . -845) 73440) ((-246 . -858) 73419) ((-189 . -845) 73401) ((-723 . -102) T) ((-303 . -499) 73338) ((-881 . -650) 73283) ((-491 . -102) T) ((-741 . -1073) T) ((-622 . -623) 73265) ((-622 . -624) 73126) ((-417 . -386) 73110) ((-417 . -347) 73094) ((-1188 . -38) 72923) ((-1140 . -38) 72772) ((-327 . -626) 72598) ((-923 . -238) T) ((-645 . -1233) 72572) ((-617 . -1233) 72546) ((-864 . -38) 72516) ((-400 . -658) 72500) ((-654 . -317) 72438) ((-1166 . -500) 72419) ((-1166 . -623) 72385) ((-976 . -727) 72282) ((-745 . -727) 72252) ((-224 . -107) 72236) ((-45 . -294) 72136) ((-631 . -658) 72110) ((-320 . -1115) T) ((-297 . -1071) 72097) ((-110 . -623) 72079) ((-110 . -624) 72061) ((-463 . -727) 72031) ((-826 . -260) 71970) ((-699 . -1115) 71948) ((-560 . -1115) T) ((-1190 . -1073) T) ((-1189 . -1073) T) ((-96 . -500) 71929) ((-1183 . -1073) T) ((-297 . -111) 71914) ((-1141 . -1073) T) ((-560 . -620) 71893) ((-96 . -623) 71859) ((-1019 . -858) T) ((-229 . -697) 71817) ((-704 . -1127) T) ((-1227 . -750) 71793) ((-1039 . -372) T) ((-848 . -845) 71775) ((-843 . -804) 71754) ((-417 . -913) 71713) ((-327 . -1064) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1066) 71623) ((-68 . -1233) T) ((-843 . -801) 71602) ((-428 . -727) 71576) ((-809 . -1115) T) ((-722 . -933) 71555) ((-709 . -132) T) ((-171 . -650) 71383) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 71362) ((-327 . -239) 71314) ((-327 . -249) 71293) ((-219 . -298) T) ((-130 . -377) T) ((-1267 . -462) 71272) ((-1246 . -462) 71251) ((-363 . -337) 71228) ((-363 . -372) T) ((-1155 . -623) 71210) ((-45 . -1271) 71160) ((-881 . -102) T) ((-654 . -290) 71144) ((-709 . -1075) T) ((-1294 . -102) T) ((-1293 . -102) T) ((-487 . -658) 71109) ((-478 . -1115) T) ((-45 . -614) 71034) ((-1174 . -296) 71009) ((-297 . -626) 70981) ((-40 . -649) 70920) ((-1256 . -1066) 70743) ((-865 . -1066) 70727) ((-48 . -372) T) ((-1121 . -623) 70709) ((-1256 . -650) 70538) ((-865 . -650) 70508) ((-642 . -296) 70483) ((-826 . -656) 70393) ((-581 . -1066) 70380) ((-492 . -623) 70111) ((-246 . -421) 70080) ((-965 . -317) 70067) ((-581 . -650) 70054) ((-65 . -1233) T) ((-1078 . -524) 69898) ((-681 . -1115) T) ((-633 . -132) T) ((-491 . -317) 69885) ((-616 . -1115) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1064) T) ((-182 . -1115) T) ((-162 . -1115) T) ((-157 . -1115) T) ((-155 . -1115) T) ((-463 . -771) T) ((-31 . -1098) T) ((-976 . -174) 69836) ((-985 . -93) T) ((-1095 . -1071) 69746) ((-631 . -804) 69725) ((-603 . -1115) T) ((-631 . -801) 69704) ((-631 . -736) T) ((-303 . -294) 69683) ((-302 . -1233) T) ((-1069 . -623) 69645) ((-1069 . -624) 69606) ((-1039 . -1127) T) ((-171 . -102) T) ((-282 . -860) T) ((-1181 . -1115) T) ((-828 . -623) 69588) ((-1128 . -296) 69565) ((-1117 . -231) 69549) ((-1018 . -315) T) ((-809 . -727) 69533) ((-368 . -1071) 69485) ((-363 . -1127) T) ((-362 . -1071) 69437) ((-424 . -623) 69419) ((-394 . -623) 69401) ((-354 . -1071) 69353) ((-229 . -623) 69285) ((-1095 . -111) 69181) ((-1039 . -23) T) ((-108 . -1071) 69131) ((-911 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 69110) ((-428 . -174) T) ((-368 . -111) 69048) ((-362 . -111) 68986) ((-354 . -111) 68924) ((-258 . -233) 68893) ((-257 . -233) 68862) ((-363 . -23) T) ((-71 . -1233) T) ((-227 . -38) 68827) ((-108 . -111) 68761) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 68739) ((-48 . -1127) T) ((-934 . -25) T) ((-781 . -25) T) ((-1307 . -658) 68713) ((-1165 . -499) 68650) ((-495 . -1115) T) ((-1298 . -656) 68609) ((-1256 . -102) T) ((-1077 . -1167) T) ((-865 . -102) T) ((-246 . -1073) 68539) ((-977 . -802) 68492) ((-977 . -805) 68445) ((-390 . -658) 68429) ((-48 . -23) T) ((-825 . -805) 68380) ((-825 . -802) 68331) ((-558 . -377) T) ((-303 . -614) 68310) ((-487 . -736) T) ((-581 . -102) T) ((-1095 . -626) 68128) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 68085) ((-663 . -294) 68064) ((-112 . -671) T) ((-360 . -1233) T) ((-368 . -626) 68001) ((-362 . -626) 67938) ((-354 . -626) 67875) ((-76 . -1233) T) ((-108 . -626) 67825) ((-112 . -113) T) ((-1077 . -38) 67812) ((-674 . -383) 67791) ((-965 . -38) 67640) ((-741 . -1115) T) ((-491 . -38) 67489) ((-86 . -1233) T) ((-602 . -500) 67470) ((-1247 . -858) NIL) ((-581 . -292) T) ((-1190 . -1115) T) ((-602 . -623) 67436) ((-1189 . -1115) T) ((-1183 . -1115) T) ((-1095 . -1064) T) ((-360 . -1053) 67413) ((-827 . -500) 67397) ((-1019 . -1073) T) ((-45 . -623) 67379) ((-45 . -624) NIL) ((-927 . -1073) T) ((-827 . -623) 67348) ((-1162 . -102) 67326) ((-1095 . -249) 67277) ((-437 . -1073) T) ((-368 . -1064) T) ((-362 . -1064) T) ((-374 . -373) 67254) ((-354 . -1064) T) ((-352 . -235) 67241) ((-258 . -244) 67220) ((-257 . -244) 67199) ((-1095 . -239) 67124) ((-1141 . -1115) T) ((-302 . -913) 67083) ((-108 . -1064) T) ((-704 . -132) T) ((-428 . -524) 66925) ((-368 . -239) 66904) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 66883) ((-362 . -249) T) ((-354 . -239) 66862) ((-354 . -249) T) ((-1182 . -626) 66843) ((-171 . -317) 66808) ((-108 . -249) T) ((-108 . -239) T) ((-1009 . -626) 66789) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 66764) ((-1128 . -1071) 66661) ((-881 . -1167) NIL) ((-338 . -623) 66643) ((-417 . -1037) 66621) ((-1128 . -111) 66511) ((-701 . -1278) T) ((-446 . -1115) T) ((-256 . -1115) T) ((-1307 . -736) T) ((-63 . -623) 66493) ((-881 . -38) 66438) ((-533 . -1233) T) ((-612 . -152) 66422) ((-522 . -623) 66404) ((-1256 . -317) 66391) ((-741 . -727) 66240) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 66222) ((-505 . -649) 66182) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 66133) ((-535 . -1115) T) ((-530 . -1115) 66083) ((-253 . -462) 66034) ((-1165 . -294) 66013) ((-1194 . -623) 65995) ((-699 . -524) 65928) ((-976 . -298) 65907) ((-560 . -524) 65699) ((-258 . -656) 65519) ((-257 . -656) 65326) ((-1295 . -623) 65295) ((-1295 . -500) 65279) ((-1190 . -727) 65176) ((-1188 . -233) 65160) ((-1128 . -626) 64890) ((-171 . -1167) 64869) ((-1189 . -727) 64710) ((-1183 . -727) 64506) ((-979 . -113) T) ((-903 . -102) T) ((-1172 . -684) 64490) ((-1141 . -727) 64387) ((-1039 . -132) T) ((-364 . -412) 64338) ((-361 . -412) 64289) ((-353 . -412) 64240) ((-977 . -377) 64193) ((-809 . -524) 64105) ((-303 . -624) NIL) ((-303 . -623) 64087) ((-923 . -462) T) ((-918 . -294) 64066) ((-825 . -377) 64045) ((-520 . -519) 64024) ((-518 . -519) 64003) ((-497 . -294) NIL) ((-492 . -296) 63980) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1127) T) ((-40 . -235) 63946) ((-171 . -38) 63774) ((-1267 . -988) 63736) ((-1162 . -317) 63674) ((-1246 . -988) 63643) ((-923 . -412) T) ((-1128 . -1064) 63573) ((-1269 . -566) T) ((-1165 . -614) 63552) ((-112 . -860) T) ((-1078 . -499) 63483) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1256 . -1167) 63461) ((-1128 . -239) 63413) ((-48 . -132) T) ((-1214 . -102) T) ((-246 . -1115) 63203) ((-881 . -410) 63180) ((-1103 . -102) T) ((-1091 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1256 . -38) 63009) ((-865 . -38) 62979) ((-1049 . -1066) 62953) ((-741 . -174) 62864) ((-663 . -623) 62846) ((-655 . -1098) T) ((-1049 . -650) 62830) ((-581 . -38) 62817) ((-985 . -500) 62798) ((-985 . -623) 62764) ((-971 . -102) 62714) ((-874 . -623) 62696) ((-874 . -624) 62618) ((-603 . -524) NIL) ((-1275 . -1073) T) ((-1268 . -1073) T) ((-330 . -1066) 62600) ((-1247 . -1073) T) ((-1312 . -1127) T) ((-1227 . -148) 62579) ((-1227 . -146) 62558) ((-330 . -650) 62540) ((-711 . -1233) T) ((-1200 . -102) T) ((-1199 . -102) T) ((-1198 . -102) T) ((-1190 . -174) 62491) ((-606 . -1073) T) ((-605 . -1073) T) ((-1189 . -174) 62422) ((-1183 . -174) 62353) ((-388 . -1066) 62318) ((-1166 . -626) 62299) ((-1141 . -174) 62250) ((-1019 . -1115) T) ((-986 . -1115) T) ((-927 . -1115) T) ((-388 . -650) 62215) ((-809 . -807) 62199) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 62176) ((-711 . -897) 62158) ((-437 . -1115) T) ((-324 . -1237) 62137) ((-321 . -1237) T) ((-171 . -410) 62121) ((-846 . -1066) 62091) ((-484 . -988) 62053) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 62035) ((-837 . -1066) 62019) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1053) 62001) ((-324 . -566) 61980) ((-321 . -566) T) ((-846 . -650) 61950) ((-837 . -650) 61920) ((-1312 . -23) T) ((-135 . -1053) 61902) ((-96 . -626) 61883) ((-1008 . -656) 61865) ((-492 . -1071) 61762) ((-45 . -296) 61687) ((-246 . -727) 61629) ((-527 . -102) T) ((-492 . -111) 61519) ((-1107 . -102) 61489) ((-1049 . -102) T) ((-1188 . -656) 61399) ((-1140 . -656) 61309) ((-864 . -656) 61268) ((-654 . -838) 61247) ((-741 . -524) 61190) ((-1069 . -1071) 61174) ((-1150 . -93) T) ((-1078 . -294) 61149) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1115) T) ((-680 . -658) 61087) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1071) 61071) ((-1069 . -111) 61050) ((-826 . -421) 61034) ((-118 . -25) T) ((-89 . -623) 61016) ((-118 . -21) T) ((-618 . -317) 60811) ((-485 . -317) 60615) ((-1165 . -624) NIL) ((-394 . -111) 60594) ((-388 . -102) T) ((-216 . -623) 60576) ((-1165 . -623) 60558) ((-1183 . -524) 60327) ((-1019 . -727) 60277) ((-1141 . -524) 60247) ((-927 . -727) 60199) ((-492 . -626) 59929) ((-360 . -315) T) ((-1205 . -152) 59879) ((-971 . -317) 59817) ((-846 . -102) T) ((-437 . -727) 59801) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1305 . -658) 59775) ((-489 . -152) 59725) ((-1267 . -1266) 59704) ((-1135 . -1237) T) ((-348 . -1053) 59671) ((-1267 . -1261) 59641) ((-1267 . -1264) 59625) ((-1246 . -1245) 59604) ((-80 . -623) 59586) ((-918 . -623) 59568) ((-1246 . -1261) 59545) ((-1135 . -566) T) ((-934 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 59475) ((-497 . -623) 59416) ((-388 . -292) T) ((-1246 . -1243) 59400) ((-1269 . -1127) T) ((-219 . -624) 59330) ((-219 . -623) 59271) ((-1078 . -614) 59246) ((-828 . -626) 59230) ((-574 . -235) 59217) ((-526 . -152) 59201) ((-59 . -152) 59185) ((-506 . -152) 59169) ((-505 . -235) 59156) ((-368 . -1302) 59140) ((-362 . -1302) 59124) ((-354 . -1302) 59108) ((-324 . -372) 59087) ((-321 . -372) T) ((-492 . -1064) 59017) ((-704 . -649) 58999) ((-1303 . -658) 58973) ((-129 . -317) NIL) ((-1269 . -23) T) ((-699 . -499) 58957) ((-64 . -623) 58939) ((-1128 . -805) 58890) ((-1128 . -802) 58841) ((-560 . -499) 58778) ((-680 . -34) T) ((-492 . -239) 58730) ((-303 . -296) 58709) ((-246 . -174) 58688) ((-826 . -1073) T) ((-44 . -658) 58646) ((-1095 . -377) 58597) ((-1102 . -146) 58576) ((-741 . -298) 58507) ((-530 . -524) 58440) ((-827 . -1071) 58391) ((-1102 . -148) 58370) ((-559 . -623) 58352) ((-368 . -377) 58331) ((-362 . -377) 58310) ((-354 . -377) 58289) ((-981 . -1233) T) ((-881 . -233) 58266) ((-827 . -111) 58208) ((-792 . -146) 58187) ((-792 . -148) 58166) ((-271 . -962) 58133) ((-258 . -858) 58112) ((-253 . -962) 58057) ((-257 . -858) 58036) ((-790 . -146) 58015) ((-790 . -148) 57994) ((-153 . -658) 57968) ((-589 . -1115) T) ((-463 . -294) 57931) ((-464 . -148) 57910) ((-464 . -146) 57889) ((-680 . -736) T) ((-833 . -623) 57871) ((-1275 . -1115) T) ((-1268 . -1115) T) ((-1247 . -1115) T) ((-1227 . -1221) 57837) ((-1227 . -1218) 57803) ((-1190 . -298) 57782) ((-1189 . -298) 57733) ((-1183 . -298) 57684) ((-1141 . -298) 57663) ((-348 . -913) 57644) ((-1019 . -174) T) ((-927 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 57594) ((-606 . -1115) T) ((-605 . -1115) T) ((-484 . -1264) 57578) ((-484 . -1261) 57548) ((-428 . -294) 57476) ((-557 . -860) T) ((-324 . -1127) 57325) ((-321 . -1127) T) ((-1227 . -35) 57291) ((-1227 . -95) 57257) ((-84 . -623) 57239) ((-91 . -102) 57217) ((-1312 . -132) T) ((-724 . -1066) 57187) ((-602 . -626) 57168) ((-591 . -146) T) ((-591 . -148) 57150) ((-528 . -148) 57132) ((-528 . -146) T) ((-724 . -650) 57102) ((-324 . -23) 56954) ((-40 . -351) 56928) ((-321 . -23) T) ((-827 . -626) 56842) ((-1174 . -661) 56824) ((-1298 . -1073) T) ((-1174 . -382) 56806) ((-825 . -658) 56591) ((-1111 . -102) T) ((-1105 . -102) T) ((-1088 . -102) T) ((-171 . -233) 56575) ((-1081 . -102) T) ((-1051 . -102) T) ((-1034 . -102) T) ((-603 . -499) 56557) ((-636 . -102) T) ((-246 . -524) 56490) ((-493 . -102) T) ((-1305 . -736) T) ((-1303 . -736) T) ((-220 . -102) T) ((-1194 . -1071) 56373) ((-1077 . -656) 56345) ((-965 . -656) 56255) ((-1194 . -111) 56124) ((-886 . -1098) T) ((-871 . -175) T) ((-491 . -656) 56034) ((-827 . -1064) T) ((-691 . -1098) T) ((-686 . -1098) T) ((-633 . -235) 56007) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 55967) ((-518 . -102) T) ((-488 . -1098) T) ((-1295 . -1071) 55937) ((-118 . -235) NIL) ((-139 . -1098) T) ((-138 . -1098) T) ((-134 . -1098) T) ((-1049 . -38) 55921) ((-827 . -239) T) ((-827 . -249) 55900) ((-1295 . -111) 55865) ((-1275 . -727) 55762) ((-1268 . -727) 55603) ((-560 . -294) 55582) ((-1256 . -233) 55566) ((-1238 . -623) 55548) ((-616 . -93) T) ((-1078 . -624) NIL) ((-1078 . -623) 55530) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1247 . -727) 55326) ((-1018 . -933) T) ((-153 . -736) T) ((-1194 . -626) 55179) ((-1128 . -377) 55158) ((-1039 . -25) T) ((-1019 . -524) NIL) ((-258 . -421) 55127) ((-257 . -421) 55096) ((-1039 . -21) T) ((-882 . -1066) 55048) ((-606 . -727) 55021) ((-605 . -727) 54918) ((-809 . -294) 54876) ((-127 . -102) 54854) ((-843 . -1053) 54750) ((-171 . -838) 54729) ((-327 . -658) 54626) ((-825 . -34) T) ((-724 . -102) T) ((-1135 . -1127) T) ((-1041 . -1233) T) ((-882 . -650) 54578) ((-388 . -38) 54543) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1290) 54527) ((-361 . -1290) 54511) ((-353 . -1290) 54495) ((-171 . -358) 54474) ((-574 . -860) T) ((-1102 . -238) 54453) ((-1135 . -23) T) ((-87 . -623) 54435) ((-792 . -238) T) ((-711 . -315) T) ((-846 . -38) 54405) ((-837 . -38) 54375) ((-1295 . -626) 54317) ((-1269 . -132) T) ((-1165 . -296) 54296) ((-977 . -736) 54195) ((-977 . -803) 54148) ((-977 . -804) 54101) ((-825 . -801) 54080) ((-117 . -315) T) ((-91 . -317) 54018) ((-685 . -34) T) ((-560 . -614) 53997) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 53948) ((-825 . -803) 53927) ((-711 . -1037) T) ((-663 . -1071) 53911) ((-881 . -656) 53841) ((-825 . -736) 53751) ((-977 . -483) 53704) ((-492 . -805) 53655) ((-492 . -802) 53606) ((-923 . -1290) 53593) ((-1194 . -1064) T) ((-663 . -111) 53572) ((-1194 . -334) 53549) ((-1219 . -102) 53527) ((-1116 . -623) 53509) ((-711 . -555) T) ((-826 . -1115) T) ((-591 . -238) T) ((-528 . -238) T) ((-1295 . -1064) T) ((-1150 . -500) 53490) ((-1239 . -102) T) ((-423 . -1115) T) ((-1150 . -623) 53456) ((-258 . -1073) 53386) ((-257 . -1073) 53316) ((-848 . -102) T) ((-297 . -658) 53303) ((-603 . -294) 53253) ((-699 . -697) 53211) ((-976 . -623) 53193) ((-882 . -102) T) ((-745 . -623) 53175) ((-725 . -623) 53157) ((-1275 . -174) 53108) ((-1268 . -174) 53039) ((-1247 . -174) 52970) ((-709 . -860) T) ((-1019 . -298) T) ((-463 . -623) 52952) ((-637 . -736) T) ((-60 . -1115) 52930) ((-251 . -152) 52914) ((-927 . -298) T) ((-1039 . -1027) T) ((-637 . -483) T) ((-722 . -1237) 52893) ((-704 . -235) NIL) ((-663 . -626) 52811) ((-171 . -656) 52706) ((-1283 . -860) 52685) ((-606 . -174) 52664) ((-605 . -174) 52615) ((-1267 . -650) 52456) ((-1267 . -1066) 52291) ((-1246 . -650) 52105) ((-1246 . -1066) 51913) ((-722 . -566) 51824) ((-417 . -933) T) ((-417 . -830) 51803) ((-327 . -804) T) ((-985 . -626) 51784) ((-327 . -736) T) ((-654 . -1164) 51768) ((-428 . -623) 51750) ((-428 . -624) 51657) ((-110 . -661) 51639) ((-176 . -315) T) ((-127 . -317) 51577) ((-110 . -382) 51559) ((-408 . -1233) T) ((-324 . -132) 51430) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 51414) ((-664 . -1127) T) ((-603 . -19) 51396) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1115) T) ((-603 . -614) 51371) ((-487 . -1053) 51331) ((-663 . -1064) T) ((-664 . -23) T) ((-1298 . -1115) T) ((-31 . -102) T) ((-1256 . -656) 51241) ((-865 . -656) 51200) ((-826 . -727) 51049) ((-587 . -870) T) ((-581 . -656) 51021) ((-118 . -860) NIL) ((-1188 . -421) 51005) ((-1140 . -421) 50989) ((-864 . -421) 50973) ((-883 . -102) 50924) ((-1267 . -102) T) ((-1247 . -524) 50693) ((-1246 . -102) T) ((-1219 . -317) 50631) ((-1190 . -294) 50596) ((-1189 . -294) 50554) ((-535 . -93) T) ((-1183 . -294) 50382) ((-320 . -623) 50364) ((-1117 . -1115) T) ((-1095 . -658) 50238) ((-721 . -462) T) ((-699 . -623) 50170) ((-297 . -736) T) ((-108 . -922) NIL) ((-699 . -624) 50131) ((-611 . -623) 50113) ((-587 . -623) 50095) ((-560 . -624) NIL) ((-560 . -623) 50077) ((-539 . -623) 50059) ((-521 . -519) 50038) ((-497 . -1071) 49988) ((-484 . -1066) 49823) ((-517 . -519) 49802) ((-484 . -650) 49643) ((-219 . -1071) 49593) ((-368 . -658) 49545) ((-362 . -658) 49497) ((-227 . -858) T) ((-354 . -658) 49449) ((-612 . -102) 49399) ((-497 . -111) 49333) ((-492 . -377) 49312) ((-108 . -658) 49262) ((-363 . -235) 49249) ((-246 . -499) 49233) ((-352 . -148) 49215) ((-352 . -146) T) ((-171 . -379) 49186) ((-956 . -1281) 49170) ((-219 . -111) 49104) ((-882 . -317) 49069) ((-956 . -1115) 49019) ((-809 . -624) 48980) ((-809 . -623) 48962) ((-728 . -102) T) ((-339 . -1115) T) ((-216 . -626) 48939) ((-1135 . -132) T) ((-724 . -38) 48909) ((-324 . -503) 48888) ((-510 . -1233) T) ((-1267 . -292) 48854) ((-1246 . -292) 48820) ((-335 . -152) 48804) ((-449 . -1115) T) ((-1078 . -296) 48779) ((-1298 . -727) 48749) ((-48 . -235) 48736) ((-1175 . -34) T) ((-1307 . -1053) 48713) ((-494 . -34) T) ((-478 . -623) 48695) ((-256 . -294) 48669) ((-390 . -1053) 48653) ((-1188 . -1073) T) ((-1140 . -1073) T) ((-864 . -1073) T) ((-1077 . -858) T) ((-497 . -626) 48603) ((-219 . -626) 48553) ((-826 . -174) 48464) ((-530 . -294) 48416) ((-1275 . -298) 48395) ((-1214 . -373) 48369) ((-1103 . -273) 48353) ((-681 . -500) 48334) ((-681 . -623) 48300) ((-616 . -500) 48281) ((-118 . -1007) 48258) ((-616 . -623) 48208) ((-484 . -102) T) ((-182 . -500) 48189) ((-182 . -623) 48155) ((-162 . -500) 48136) ((-162 . -623) 48102) ((-157 . -500) 48083) ((-155 . -500) 48064) ((-157 . -623) 48030) ((-374 . -1115) T) ((-258 . -1115) T) ((-257 . -1115) T) ((-155 . -623) 47996) ((-1268 . -298) 47947) ((-1247 . -298) 47898) ((-882 . -1167) 47876) ((-1190 . -1017) 47842) ((-618 . -373) 47782) ((-1189 . -1017) 47748) ((-618 . -231) 47695) ((-704 . -860) T) ((-603 . -623) 47677) ((-603 . -624) NIL) ((-485 . -231) 47627) ((-497 . -1064) T) ((-1183 . -1017) 47593) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1064) T) ((-1141 . -1017) 47559) ((-1095 . -736) T) ((-722 . -1127) T) ((-606 . -298) 47538) ((-605 . -298) 47517) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1181 . -623) 47499) ((-882 . -38) 47451) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1271) 47435) ((-1312 . -25) T) ((-484 . -292) 47401) ((-1312 . -21) T) ((-1246 . -317) 47340) ((-1192 . -102) T) ((-40 . -146) 47312) ((-40 . -148) 47284) ((-530 . -614) 47261) ((-1128 . -658) 47046) ((-612 . -317) 46984) ((-45 . -661) 46934) ((-45 . -676) 46884) ((-45 . -382) 46834) ((-1174 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 46816) ((-246 . -294) 46793) ((-188 . -1115) T) ((-1102 . -462) 46744) ((-826 . -524) 46618) ((-792 . -462) 46549) ((-674 . -1066) 46533) ((-657 . -34) T) ((-642 . -34) T) ((-674 . -650) 46517) ((-364 . -1066) 46469) ((-352 . -238) T) ((-361 . -1066) 46421) ((-353 . -1066) 46373) ((-271 . -1066) 46216) ((-253 . -1066) 46059) ((-790 . -462) 46010) ((-364 . -650) 45962) ((-361 . -650) 45914) ((-353 . -650) 45866) ((-271 . -650) 45715) ((-253 . -650) 45564) ((-464 . -462) 45515) ((-965 . -421) 45499) ((-741 . -623) 45481) ((-258 . -727) 45423) ((-257 . -727) 45365) ((-741 . -624) 45226) ((-491 . -421) 45210) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -933) T) ((-1015 . -102) 45188) ((-923 . -1066) 45153) ((-1039 . -860) T) ((-60 . -524) 45086) ((-923 . -650) 45051) ((-1246 . -1167) 45003) ((-1019 . -294) NIL) ((-227 . -1073) T) ((-388 . -838) T) ((-1128 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1250 . -1108) 44987) ((-1250 . -1115) 44965) ((-246 . -614) 44942) ((-1250 . -1110) 44899) ((-1190 . -623) 44881) ((-1189 . -623) 44863) ((-1183 . -623) 44845) ((-1183 . -624) NIL) ((-1141 . -623) 44827) ((-882 . -410) 44811) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1267 . -38) 44652) ((-1246 . -38) 44466) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1279 . -102) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-1128 . -801) 44445) ((-1128 . -804) 44396) ((-1128 . -803) 44375) ((-1008 . -1115) T) ((-1042 . -34) T) ((-872 . -1115) T) ((-1128 . -736) 44285) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 44264) ((-1205 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1077 . -1073) T) ((-965 . -1073) T) ((-324 . -649) 44170) ((-321 . -649) 44131) ((-1188 . -1115) T) ((-491 . -1073) T) ((-489 . -102) T) ((-446 . -623) 44113) ((-1140 . -1115) T) ((-256 . -623) 44095) ((-864 . -1115) T) ((-1156 . -102) T) ((-826 . -298) 44026) ((-976 . -1071) 43909) ((-487 . -1037) T) ((-745 . -1071) 43879) ((-1049 . -656) 43838) ((-1162 . -1136) 43822) ((-463 . -1071) 43792) ((-1117 . -524) 43725) ((-976 . -111) 43594) ((-923 . -102) T) ((-40 . -238) 43566) ((-745 . -111) 43531) ((-535 . -500) 43512) ((-535 . -623) 43478) ((-59 . -102) 43428) ((-530 . -624) 43389) ((-530 . -623) 43301) ((-529 . -102) 43279) ((-526 . -102) 43229) ((-507 . -102) 43207) ((-506 . -102) 43157) ((-463 . -111) 43120) ((-258 . -174) 43099) ((-257 . -174) 43078) ((-330 . -656) 43060) ((-428 . -1071) 43034) ((-1227 . -988) 42996) ((-1014 . -1127) T) ((-388 . -656) 42946) ((-1150 . -626) 42927) ((-956 . -524) 42860) ((-497 . -805) T) ((-484 . -38) 42701) ((-428 . -111) 42668) ((-497 . -802) T) ((-1015 . -317) 42606) ((-219 . -805) T) ((-219 . -802) T) ((-1014 . -23) T) ((-722 . -132) T) ((-1246 . -410) 42576) ((-846 . -656) 42521) ((-837 . -656) 42480) ((-324 . -25) 42332) ((-171 . -421) 42316) ((-324 . -21) 42187) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-976 . -626) 42040) ((-110 . -34) T) ((-745 . -626) 41996) ((-725 . -626) 41978) ((-492 . -658) 41763) ((-881 . -1073) T) ((-603 . -296) 41738) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1188 . -727) 41567) ((-1072 . -102) 41545) ((-1140 . -727) 41394) ((-1135 . -649) 41376) ((-864 . -727) 41346) ((-680 . -1233) T) ((-1 . -102) T) ((-428 . -626) 41254) ((-246 . -623) 40985) ((-1130 . -1115) T) ((-1256 . -421) 40969) ((-1205 . -317) 40773) ((-976 . -1064) T) ((-745 . -1064) T) ((-725 . -1064) T) ((-654 . -1115) 40723) ((-1069 . -658) 40707) ((-865 . -421) 40691) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 40678) ((-253 . -317) 40665) ((-976 . -334) 40644) ((-394 . -658) 40628) ((-680 . -1053) 40524) ((-489 . -317) 40328) ((-258 . -524) 40261) ((-257 . -524) 40194) ((-1156 . -317) 40120) ((-829 . -1115) T) ((-809 . -1071) 40104) ((-1275 . -294) 40069) ((-1268 . -294) 40027) ((-1247 . -294) 39855) ((-396 . -1115) T) ((-332 . -1115) T) ((-428 . -1064) T) ((-171 . -1073) T) ((-59 . -317) 39793) ((-809 . -111) 39772) ((-605 . -294) 39737) ((-529 . -317) 39675) ((-526 . -317) 39613) ((-507 . -317) 39551) ((-506 . -317) 39489) ((-428 . -239) 39468) ((-492 . -34) T) ((-227 . -1115) T) ((-1019 . -624) 39398) ((-1019 . -623) 39358) ((-986 . -623) 39318) ((-927 . -623) 39300) ((-709 . -148) T) ((-711 . -933) T) ((-711 . -830) T) ((-437 . -623) 39282) ((-1135 . -21) T) ((-1135 . -25) T) ((-680 . -386) 39266) ((-117 . -933) T) ((-882 . -233) 39250) ((-44 . -1233) T) ((-78 . -1233) T) ((-127 . -126) 39234) ((-1069 . -34) T) ((-1305 . -1053) 39208) ((-1303 . -1053) 39165) ((-1256 . -1073) T) ((-865 . -1073) T) ((-492 . -801) 39144) ((-364 . -1167) 39123) ((-361 . -1167) 39102) ((-353 . -1167) 39081) ((-492 . -804) 39032) ((-492 . -803) 39011) ((-229 . -34) T) ((-492 . -736) 38921) ((-809 . -626) 38767) ((-672 . -1066) 38751) ((-60 . -499) 38735) ((-581 . -1073) T) ((-672 . -650) 38719) ((-1188 . -174) 38610) ((-1140 . -174) 38521) ((-1077 . -1115) T) ((-1102 . -962) 38466) ((-965 . -1115) T) ((-827 . -658) 38417) ((-792 . -962) 38386) ((-723 . -1115) T) ((-790 . -962) 38353) ((-526 . -290) 38337) ((-680 . -913) 38296) ((-491 . -1115) T) ((-464 . -962) 38263) ((-79 . -1233) T) ((-364 . -38) 38228) ((-361 . -38) 38193) ((-353 . -38) 38158) ((-271 . -38) 38007) ((-253 . -38) 37856) ((-923 . -1167) T) ((-534 . -500) 37837) ((-633 . -148) 37816) ((-633 . -146) 37795) ((-534 . -623) 37761) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1064) T) ((-574 . -238) T) ((-505 . -238) T) ((-352 . -462) T) ((-1275 . -1017) 37727) ((-1268 . -1017) 37693) ((-1247 . -1017) 37659) ((-923 . -38) 37624) ((-227 . -727) 37589) ((-327 . -47) 37559) ((-40 . -419) 37531) ((-141 . -623) 37513) ((-1014 . -132) T) ((-825 . -1233) T) ((-176 . -933) T) ((-559 . -377) T) ((-724 . -656) 37458) ((-616 . -626) 37439) ((-352 . -412) T) ((-681 . -626) 37420) ((-321 . -235) NIL) ((-182 . -626) 37401) ((-162 . -626) 37382) ((-157 . -626) 37363) ((-155 . -626) 37344) ((-530 . -296) 37321) ((-1246 . -233) 37291) ((-886 . -102) T) ((-825 . -1053) 37118) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1117 . -499) 37102) ((-685 . -1233) T) ((-488 . -102) T) ((-251 . -102) 37052) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-881 . -1115) T) ((-1194 . -658) 36977) ((-1077 . -727) 36964) ((-741 . -1071) 36807) ((-1188 . -524) 36754) ((-965 . -727) 36603) ((-1140 . -524) 36555) ((-1294 . -1115) T) ((-1293 . -1115) T) ((-491 . -727) 36404) ((-67 . -623) 36386) ((-741 . -111) 36215) ((-956 . -499) 36199) ((-1295 . -658) 36159) ((-1190 . -1071) 36042) ((-827 . -736) T) ((-1189 . -1071) 35877) ((-1183 . -1071) 35667) ((-327 . -1233) T) ((-1141 . -1071) 35550) ((-1018 . -1237) T) ((-1109 . -102) 35528) ((-825 . -386) 35497) ((-589 . -623) 35479) ((-556 . -1115) T) ((-1018 . -566) T) ((-1190 . -111) 35348) ((-1189 . -111) 35169) ((-1183 . -111) 34938) ((-1141 . -111) 34807) ((-1120 . -1118) 34771) ((-388 . -858) T) ((-1275 . -623) 34753) ((-1268 . -623) 34735) ((-882 . -656) 34672) ((-1247 . -623) 34654) ((-1247 . -624) NIL) ((-246 . -296) 34631) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1115) T) ((-741 . -626) 34416) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34398) ((-605 . -623) 34380) ((-1135 . -235) 34367) ((-911 . -1115) T) ((-851 . -1115) T) ((-818 . -1115) T) ((-779 . -1115) T) ((-687 . -1115) T) ((-668 . -862) 34351) ((-633 . -238) 34330) ((-825 . -913) 34262) ((-1238 . -377) T) ((-40 . -412) NIL) ((-118 . -238) NIL) ((-1190 . -626) 34144) ((-1135 . -671) T) ((-881 . -727) 34089) ((-258 . -499) 34073) ((-257 . -499) 34057) ((-1189 . -626) 33800) ((-1183 . -626) 33595) ((-722 . -649) 33543) ((-663 . -658) 33517) ((-1141 . -626) 33399) ((-303 . -34) T) ((-1135 . -113) T) ((-741 . -1064) T) ((-591 . -1290) 33386) ((-528 . -1290) 33363) ((-1256 . -1115) T) ((-1188 . -298) 33274) ((-1140 . -298) 33205) ((-1077 . -174) T) ((-297 . -1233) T) ((-865 . -1115) T) ((-965 . -174) 33116) ((-792 . -1259) 33100) ((-654 . -524) 33033) ((-77 . -623) 33015) ((-741 . -334) 32980) ((-1194 . -736) T) ((-581 . -1115) T) ((-491 . -174) 32891) ((-251 . -317) 32829) ((-1157 . -1127) T) ((-70 . -623) 32811) ((-1295 . -736) T) ((-1190 . -1064) T) ((-1189 . -1064) T) ((-335 . -102) 32761) ((-1183 . -1064) T) ((-1157 . -23) T) ((-1141 . -1064) T) ((-91 . -1136) 32745) ((-876 . -1127) T) ((-1190 . -239) 32704) ((-1189 . -249) 32683) ((-1189 . -239) 32635) ((-1183 . -239) 32522) ((-1183 . -249) 32501) ((-327 . -913) 32407) ((-876 . -23) T) ((-171 . -727) 32235) ((-417 . -1237) T) ((-1116 . -377) T) ((-1018 . -372) T) ((-880 . -462) T) ((-1039 . -148) T) ((-956 . -294) 32187) ((-321 . -860) NIL) ((-1267 . -656) 32069) ((-884 . -102) T) ((-1246 . -656) 31924) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31905) ((-363 . -148) 31887) ((-363 . -146) T) ((-1162 . -1115) 31865) ((-463 . -730) T) ((-75 . -623) 31847) ((-115 . -860) T) ((-251 . -290) 31831) ((-246 . -1071) 31728) ((-81 . -623) 31710) ((-745 . -377) 31663) ((-1192 . -838) T) ((-747 . -241) 31647) ((-1175 . -1233) T) ((-142 . -241) 31629) ((-246 . -111) 31519) ((-1256 . -727) 31348) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 31318) ((-494 . -1233) T) ((-965 . -524) 31265) ((-663 . -736) T) ((-581 . -727) 31252) ((-1049 . -1073) T) ((-704 . -238) NIL) ((-491 . -524) 31195) ((-956 . -19) 31179) ((-956 . -614) 31156) ((-1095 . -1233) 31081) ((-826 . -624) NIL) ((-826 . -623) 31063) ((-1227 . -1066) 30946) ((-1019 . -1071) 30896) ((-423 . -623) 30878) ((-258 . -294) 30855) ((-368 . -1233) 30834) ((-362 . -1233) 30813) ((-354 . -1233) 30792) ((-257 . -294) 30769) ((-497 . -922) NIL) ((-324 . -29) 30739) ((-108 . -1233) T) ((-1018 . -1127) T) ((-219 . -922) NIL) ((-1227 . -650) 30636) ((-927 . -1071) 30588) ((-1095 . -1053) 30484) ((-1019 . -111) 30418) ((-721 . -1066) 30383) ((-1018 . -23) T) ((-927 . -111) 30321) ((-747 . -705) 30305) ((-721 . -650) 30270) ((-271 . -233) 30254) ((-437 . -1071) 30238) ((-388 . -1073) T) ((-246 . -626) 29968) ((-704 . -1221) NIL) ((-497 . -658) 29918) ((-484 . -656) 29800) ((-108 . -895) 29782) ((-108 . -897) 29764) ((-704 . -1218) NIL) ((-219 . -658) 29714) ((-368 . -1053) 29698) ((-362 . -1053) 29682) ((-335 . -317) 29620) ((-354 . -1053) 29604) ((-227 . -298) T) ((-437 . -111) 29583) ((-60 . -623) 29515) ((-171 . -174) T) ((-1135 . -860) T) ((-108 . -1053) 29475) ((-903 . -1115) T) ((-846 . -1073) T) ((-837 . -1073) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1007) 29436) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1064) 29366) ((-1165 . -34) T) ((-487 . -933) T) ((-1014 . -649) 29314) ((-258 . -614) 29291) ((-257 . -614) 29268) ((-1095 . -386) 29252) ((-881 . -524) 29160) ((-246 . -239) 29112) ((-1174 . -1233) T) ((-1019 . -626) 29062) ((-927 . -626) 28999) ((-834 . -623) 28981) ((-1306 . -1127) T) ((-1298 . -623) 28963) ((-1256 . -174) 28854) ((-437 . -626) 28823) ((-108 . -386) 28805) ((-108 . -347) 28787) ((-1077 . -298) T) ((-965 . -298) 28718) ((-809 . -377) 28697) ((-657 . -1233) T) ((-642 . -1233) T) ((-1306 . -23) T) ((-596 . -1066) 28672) ((-491 . -298) 28603) ((-581 . -174) T) ((-335 . -290) 28587) ((-363 . -238) T) ((-1227 . -102) T) ((-1214 . -1115) T) ((-1103 . -1115) T) ((-1091 . -1115) T) ((-596 . -650) 28562) ((-83 . -623) 28544) ((-1199 . -854) T) ((-1198 . -854) T) ((-721 . -102) T) ((-364 . -358) 28523) ((-618 . -1115) T) ((-361 . -358) 28502) ((-353 . -358) 28481) ((-485 . -1115) T) ((-1205 . -231) 28431) ((-271 . -260) 28393) ((-1157 . -132) T) ((-618 . -620) 28369) ((-1095 . -913) 28302) ((-1019 . -1064) T) ((-927 . -1064) T) ((-485 . -620) 28281) ((-1183 . -802) NIL) ((-1183 . -805) NIL) ((-1117 . -624) 28242) ((-1117 . -623) 28224) ((-489 . -231) 28174) ((-1019 . -249) T) ((-1019 . -239) T) ((-971 . -1115) 28124) ((-437 . -1064) T) ((-927 . -249) T) ((-876 . -132) T) ((-48 . -238) T) ((-709 . -462) T) ((-853 . -1127) 28103) ((-108 . -913) NIL) ((-1227 . -292) 28069) ((-1128 . -1233) T) ((-882 . -858) 28048) ((-1014 . -25) T) ((-918 . -736) T) ((-171 . -524) 27960) ((-1014 . -21) T) ((-918 . -483) T) ((-417 . -1127) T) ((-497 . -804) T) ((-497 . -801) T) ((-923 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27947) ((-219 . -736) T) ((-853 . -23) 27899) ((-1200 . -1115) T) ((-668 . -1066) 27883) ((-1199 . -1115) T) ((-534 . -626) 27864) ((-1198 . -1115) T) ((-327 . -315) 27843) ((-1050 . -241) 27789) ((-668 . -650) 27759) ((-417 . -23) T) ((-956 . -624) 27720) ((-956 . -623) 27632) ((-654 . -499) 27616) ((-45 . -1025) 27566) ((-1128 . -1053) 27393) ((-627 . -982) T) ((-501 . -102) T) ((-339 . -623) 27375) ((-1008 . -294) 27342) ((-603 . -661) 27324) ((-131 . -1115) T) ((-129 . -1115) T) ((-603 . -382) 27306) ((-352 . -1290) 27283) ((-449 . -623) 27265) ((-1256 . -524) 27212) ((-1102 . -1066) 27055) ((-1042 . -1233) T) ((-881 . -298) T) ((-1188 . -294) 26982) ((-1102 . -650) 26831) ((-1015 . -1010) 26815) ((-792 . -1066) 26638) ((-790 . -1066) 26481) ((-792 . -650) 26310) ((-790 . -650) 26159) ((-486 . -1233) T) ((-473 . -1233) T) ((-596 . -102) T) ((-471 . -1066) 26130) ((-464 . -1066) 25973) ((-674 . -656) 25942) ((-633 . -462) 25921) ((-471 . -650) 25892) ((-464 . -650) 25741) ((-364 . -656) 25678) ((-361 . -656) 25615) ((-353 . -656) 25552) ((-271 . -656) 25462) ((-253 . -656) 25372) ((-1298 . -391) 25344) ((-527 . -1115) T) ((-118 . -462) T) ((-1213 . -102) T) ((-1107 . -1115) 25314) ((-1049 . -1115) T) ((-1130 . -93) T) ((-904 . -860) T) ((-1275 . -111) 25183) ((-360 . -1237) T) ((-1275 . -1071) 25066) ((-1128 . -386) 25035) ((-1268 . -1071) 24870) ((-1247 . -1071) 24660) ((-1268 . -111) 24481) ((-1247 . -111) 24250) ((-1227 . -317) 24237) ((-1018 . -132) T) ((-923 . -656) 24187) ((-374 . -623) 24169) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1071) 24129) ((-605 . -1071) 24012) ((-591 . -1066) 23977) ((-528 . -1066) 23922) ((-370 . -1115) T) ((-330 . -1115) T) ((-258 . -623) 23883) ((-257 . -623) 23844) ((-591 . -650) 23809) ((-528 . -650) 23754) ((-704 . -419) 23721) ((-645 . -23) T) ((-617 . -23) T) ((-668 . -102) T) ((-606 . -111) 23674) ((-605 . -111) 23543) ((-388 . -1115) T) ((-345 . -102) T) ((-171 . -298) 23454) ((-1246 . -858) 23407) ((-724 . -1073) T) ((-1162 . -524) 23340) ((-1206 . -845) 23324) ((-1128 . -913) 23256) ((-846 . -1115) T) ((-837 . -1115) T) ((-835 . -1115) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 23240) ((-110 . -1233) T) ((-1102 . -102) T) ((-1078 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1275 . -626) 23122) ((-1268 . -626) 22865) ((-471 . -102) T) ((-464 . -102) T) ((-1247 . -626) 22660) ((-246 . -805) 22611) ((-246 . -802) 22562) ((-659 . -102) T) ((-606 . -626) 22520) ((-605 . -626) 22402) ((-1256 . -298) 22313) ((-674 . -644) 22297) ((-188 . -623) 22279) ((-654 . -294) 22231) ((-1049 . -727) 22215) ((-581 . -298) T) ((-976 . -658) 22140) ((-1306 . -132) T) ((-745 . -658) 22100) ((-725 . -658) 22087) ((-282 . -102) T) ((-463 . -658) 22017) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1275 . -1064) T) ((-1268 . -1064) T) ((-1247 . -1064) T) ((-517 . -656) 21999) ((-330 . -727) 21981) ((-1275 . -239) 21940) ((-1268 . -249) 21919) ((-1268 . -239) 21871) ((-1247 . -239) 21758) ((-1247 . -249) 21737) ((-1227 . -38) 21634) ((-606 . -1064) T) ((-605 . -1064) T) ((-1019 . -805) T) ((-1019 . -802) T) ((-986 . -805) T) ((-986 . -802) T) ((-882 . -1073) T) ((-109 . -623) 21616) ((-704 . -462) T) ((-388 . -727) 21581) ((-428 . -658) 21555) ((-880 . -879) 21539) ((-721 . -38) 21504) ((-605 . -239) 21463) ((-40 . -734) 21435) ((-360 . -337) 21412) ((-360 . -372) T) ((-1095 . -315) 21363) ((-302 . -1127) 21244) ((-1121 . -1233) T) ((-1014 . -235) 21217) ((-173 . -102) T) ((-1250 . -623) 21184) ((-853 . -132) 21136) ((-654 . -1271) 21120) ((-846 . -727) 21090) ((-837 . -727) 21060) ((-492 . -1233) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 21037) ((-417 . -132) T) ((-530 . -676) 21021) ((-108 . -315) T) ((-302 . -23) 20904) ((-530 . -661) 20888) ((-704 . -412) NIL) ((-530 . -382) 20872) ((-299 . -623) 20854) ((-91 . -1115) 20832) ((-108 . -1037) T) ((-574 . -144) T) ((-1283 . -152) 20816) ((-492 . -1053) 20643) ((-1269 . -146) 20604) ((-1269 . -148) 20565) ((-1069 . -1233) T) ((-1008 . -623) 20547) ((-828 . -1233) T) ((-872 . -623) 20529) ((-826 . -1071) 20372) ((-1294 . -93) T) ((-1293 . -93) T) ((-1188 . -624) NIL) ((-1111 . -1115) T) ((-1105 . -1115) T) ((-1102 . -317) 20359) ((-1088 . -1115) T) ((-229 . -1233) T) ((-1081 . -1115) T) ((-1051 . -1115) T) ((-1034 . -1115) T) ((-792 . -317) 20346) ((-790 . -317) 20333) ((-1188 . -623) 20315) ((-826 . -111) 20144) ((-1140 . -623) 20126) ((-636 . -1115) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 20113) ((-493 . -1115) T) ((-1140 . -624) 19861) ((-1049 . -174) T) ((-956 . -296) 19838) ((-220 . -1115) T) ((-864 . -623) 19820) ((-618 . -524) 19603) ((-81 . -626) 19544) ((-828 . -1053) 19528) ((-485 . -524) 19320) ((-976 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1127) T) ((-1195 . -623) 19302) ((-225 . -102) T) ((-492 . -386) 19271) ((-525 . -1115) T) ((-520 . -1115) T) ((-518 . -1115) T) ((-809 . -658) 19245) ((-1039 . -462) T) ((-971 . -524) 19178) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 19157) ((-388 . -174) T) ((-1267 . -1073) T) ((-1246 . -1073) T) ((-227 . -1017) T) ((-826 . -626) 18894) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1237) T) ((-1157 . -649) 18842) ((-590 . -879) 18826) ((-1298 . -1071) 18810) ((-1175 . -1209) 18786) ((-711 . -566) T) ((-127 . -1115) 18764) ((-724 . -1115) T) ((-668 . -38) 18734) ((-492 . -913) 18666) ((-255 . -1115) T) ((-189 . -1115) T) ((-363 . -412) T) ((-324 . -148) 18645) ((-324 . -146) 18624) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18580) ((-321 . -146) 18536) ((-48 . -462) T) ((-163 . -1115) T) ((-158 . -1115) T) ((-1175 . -107) 18483) ((-792 . -1167) 18461) ((-699 . -34) T) ((-1298 . -111) 18440) ((-560 . -34) T) ((-494 . -107) 18424) ((-258 . -296) 18401) ((-257 . -296) 18378) ((-881 . -294) 18329) ((-45 . -1233) T) ((-1239 . -854) T) ((-827 . -1233) T) ((-826 . -1064) T) ((-672 . -656) 18298) ((-1194 . -47) 18275) ((-826 . -334) 18237) ((-1102 . -38) 18086) ((-826 . -239) 18065) ((-792 . -38) 17894) ((-790 . -38) 17743) ((-1130 . -500) 17724) ((-464 . -38) 17573) ((-1130 . -623) 17539) ((-1133 . -102) T) ((-654 . -624) 17500) ((-654 . -623) 17412) ((-591 . -1167) T) ((-528 . -1167) T) ((-1162 . -499) 17396) ((-352 . -1066) 17341) ((-1219 . -1115) 17319) ((-1157 . -25) T) ((-1157 . -21) T) ((-352 . -650) 17264) ((-1298 . -626) 17213) ((-484 . -1073) T) ((-1239 . -1115) T) ((-1247 . -802) NIL) ((-1247 . -805) NIL) ((-1014 . -860) 17192) ((-848 . -1115) T) ((-829 . -623) 17174) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1237) T) ((-591 . -38) 17139) ((-528 . -38) 17104) ((-396 . -623) 17086) ((-341 . -102) T) ((-332 . -623) 17068) ((-171 . -294) 17026) ((-63 . -1233) T) ((-112 . -102) T) ((-882 . -1115) T) ((-176 . -566) T) ((-724 . -727) 16996) ((-302 . -132) 16879) ((-227 . -623) 16861) ((-227 . -624) 16791) ((-1018 . -649) 16730) ((-1298 . -1064) T) ((-1135 . -148) T) ((-642 . -1209) 16705) ((-741 . -922) 16684) ((-603 . -34) T) ((-657 . -107) 16668) ((-642 . -107) 16614) ((-1256 . -294) 16541) ((-741 . -658) 16430) ((-303 . -1233) T) ((-1194 . -1053) 16326) ((-956 . -628) 16303) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-1183 . -922) NIL) ((-1077 . -624) 16218) ((-1077 . -623) 16200) ((-965 . -623) 16182) ((-723 . -500) 16132) ((-352 . -102) T) ((-258 . -1071) 16029) ((-257 . -1071) 15926) ((-404 . -102) T) ((-31 . -1115) T) ((-965 . -624) 15787) ((-723 . -623) 15722) ((-1296 . -1226) 15691) ((-491 . -623) 15673) ((-491 . -624) 15534) ((-271 . -421) 15518) ((-253 . -421) 15502) ((-321 . -238) NIL) ((-258 . -111) 15392) ((-257 . -111) 15282) ((-1190 . -658) 15207) ((-1189 . -658) 15104) ((-1183 . -658) 14956) ((-1141 . -658) 14881) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1018 . -25) T) ((-1018 . -21) T) ((-883 . -1115) 14832) ((-40 . -1066) 14777) ((-882 . -727) 14729) ((-40 . -650) 14674) ((-388 . -298) T) ((-171 . -1017) 14625) ((-704 . -397) T) ((-1014 . -1012) 14609) ((-711 . -1127) T) ((-704 . -167) 14591) ((-1267 . -1115) T) ((-1246 . -1115) T) ((-324 . -1218) 14570) ((-324 . -1221) 14549) ((-1180 . -102) T) ((-324 . -972) 14528) ((-135 . -1127) T) ((-117 . -1127) T) ((-663 . -1233) T) ((-612 . -1281) 14512) ((-711 . -23) T) ((-612 . -1115) 14462) ((-324 . -95) 14441) ((-91 . -524) 14374) ((-176 . -372) T) ((-258 . -626) 14104) ((-257 . -626) 13834) ((-324 . -35) 13813) ((-618 . -499) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-979 . -102) T) ((-728 . -1115) T) ((-485 . -499) 13684) ((-417 . -649) 13632) ((-663 . -1053) 13528) ((-971 . -499) 13512) ((-364 . -1073) T) ((-361 . -1073) T) ((-353 . -1073) T) ((-271 . -1073) T) ((-253 . -1073) T) ((-881 . -624) NIL) ((-881 . -623) 13494) ((-1294 . -500) 13475) ((-1293 . -500) 13456) ((-1306 . -21) T) ((-1294 . -623) 13422) ((-1293 . -623) 13388) ((-581 . -1017) T) ((-741 . -736) T) ((-1306 . -25) T) ((-258 . -1064) 13318) ((-257 . -1064) 13248) ((-72 . -1233) T) ((-1157 . -235) 13221) ((-258 . -239) 13173) ((-257 . -239) 13125) ((-1135 . -238) T) ((-40 . -102) T) ((-923 . -1073) T) ((-1197 . -102) T) ((-129 . -499) 13107) ((-1190 . -736) T) ((-1189 . -736) T) ((-1183 . -736) T) ((-1183 . -801) NIL) ((-1183 . -804) NIL) ((-967 . -102) T) ((-934 . -102) T) ((-880 . -1066) 13094) ((-1141 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 13081) ((-556 . -623) 13063) ((-484 . -1115) T) ((-348 . -1127) T) ((-176 . -1127) T) ((-327 . -933) 13042) ((-1267 . -727) 12883) ((-882 . -174) T) ((-1246 . -727) 12697) ((-853 . -21) 12649) ((-853 . -25) 12601) ((-251 . -1164) 12585) ((-127 . -524) 12518) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12284) ((-171 . -623) 12266) ((-176 . -23) T) ((-654 . -296) 12243) ((-530 . -34) T) ((-911 . -623) 12225) ((-89 . -1233) T) ((-851 . -623) 12207) ((-818 . -623) 12189) ((-779 . -623) 12171) ((-687 . -623) 12153) ((-246 . -658) 11938) ((-627 . -113) T) ((-1192 . -1115) T) ((-1188 . -1071) 11761) ((-1165 . -1233) T) ((-1140 . -1071) 11604) ((-864 . -1071) 11588) ((-1250 . -628) 11572) ((-1188 . -111) 11381) ((-1140 . -111) 11210) ((-864 . -111) 11189) ((-1240 . -860) T) ((-1256 . -624) NIL) ((-1256 . -623) 11171) ((-352 . -1167) T) ((-865 . -623) 11153) ((-1091 . -294) 11132) ((-80 . -1233) T) ((-918 . -1233) T) ((-1019 . -922) NIL) ((-1227 . -656) 11042) ((-618 . -294) 11018) ((-1219 . -524) 10951) ((-497 . -1233) T) ((-581 . -623) 10933) ((-485 . -294) 10912) ((-1102 . -233) 10896) ((-527 . -93) T) ((-1019 . -658) 10846) ((-219 . -1233) T) ((-1018 . -235) 10812) ((-971 . -294) 10764) ((-297 . -933) T) ((-827 . -315) 10743) ((-880 . -102) T) ((-792 . -233) 10727) ((-927 . -658) 10679) ((-721 . -656) 10629) ((-704 . -734) 10596) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10561) ((-497 . -895) 10543) ((-497 . -897) 10525) ((-484 . -727) 10366) ((-219 . -895) 10348) ((-64 . -1233) T) ((-219 . -897) 10330) ((-617 . -25) T) ((-437 . -658) 10304) ((-1188 . -626) 10073) ((-497 . -1053) 10033) ((-882 . -524) 9945) ((-1140 . -626) 9737) ((-864 . -626) 9655) ((-219 . -1053) 9615) ((-246 . -34) T) ((-1015 . -1115) 9593) ((-590 . -1066) 9580) ((-574 . -1066) 9567) ((-505 . -1066) 9532) ((-1267 . -174) 9463) ((-1246 . -174) 9394) ((-590 . -650) 9381) ((-574 . -650) 9368) ((-505 . -650) 9333) ((-722 . -146) 9312) ((-722 . -148) 9291) ((-711 . -132) T) ((-137 . -475) 9268) ((-1162 . -623) 9200) ((-668 . -666) 9184) ((-129 . -294) 9134) ((-117 . -132) T) ((-487 . -1237) T) ((-618 . -614) 9110) ((-485 . -614) 9089) ((-345 . -344) 9058) ((-607 . -1115) T) ((-595 . -1115) T) ((-546 . -1115) T) ((-487 . -566) T) ((-1188 . -1064) T) ((-1140 . -1064) T) ((-864 . -1064) T) ((-246 . -801) 9037) ((-246 . -804) 8988) ((-246 . -803) 8967) ((-1188 . -334) 8944) ((-246 . -736) 8854) ((-971 . -19) 8838) ((-497 . -386) 8820) ((-497 . -347) 8802) ((-1140 . -334) 8774) ((-363 . -1290) 8751) ((-219 . -386) 8733) ((-219 . -347) 8715) ((-971 . -614) 8692) ((-1188 . -239) T) ((-1279 . -1115) T) ((-674 . -1115) T) ((-655 . -1115) T) ((-1205 . -1115) T) ((-1102 . -260) 8629) ((-596 . -656) 8589) ((-364 . -1115) T) ((-361 . -1115) T) ((-353 . -1115) T) ((-271 . -1115) T) ((-253 . -1115) T) ((-84 . -1233) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1246 . -524) 8405) ((-1205 . -620) 8384) ((-1156 . -1115) T) ((-1130 . -626) 8365) ((-1095 . -933) 8316) ((-489 . -1115) T) ((-1019 . -804) T) ((-1019 . -801) T) ((-489 . -620) 8295) ((-258 . -805) 8246) ((-258 . -802) 8197) ((-257 . -805) 8148) ((-40 . -1167) NIL) ((-257 . -802) 8099) ((-1019 . -736) T) ((-129 . -19) 8081) ((-986 . -804) T) ((-709 . -1066) 8046) ((-927 . -736) T) ((-923 . -1115) T) ((-903 . -623) 8028) ((-129 . -614) 8003) ((-709 . -650) 7968) ((-91 . -499) 7952) ((-497 . -913) NIL) ((-882 . -298) T) ((-227 . -1071) 7917) ((-846 . -294) 7896) ((-219 . -913) NIL) ((-843 . -1127) 7875) ((-59 . -1115) 7825) ((-529 . -1115) 7803) ((-526 . -1115) 7753) ((-507 . -1115) 7731) ((-506 . -1115) 7681) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7612) ((-368 . -933) T) ((-362 . -933) T) ((-354 . -933) T) ((-227 . -111) 7568) ((-843 . -23) 7520) ((-437 . -736) T) ((-108 . -933) T) ((-40 . -38) 7465) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7424) ((-324 . -462) 7403) ((-321 . -462) T) ((-612 . -524) 7336) ((-417 . -235) 7309) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7173) ((-302 . -21) 7056) ((-45 . -1209) 7035) ((-66 . -623) 7017) ((-55 . -102) T) ((-345 . -656) 6999) ((-1284 . -102) T) ((-1283 . -102) 6949) ((-45 . -107) 6899) ((-829 . -626) 6883) ((-1275 . -658) 6808) ((-1268 . -658) 6705) ((-1247 . -658) 6557) ((-1247 . -922) NIL) ((-1214 . -623) 6539) ((-1117 . -435) 6523) ((-1117 . -377) 6502) ((-396 . -626) 6486) ((-332 . -626) 6470) ((-1206 . -102) T) ((-1111 . -93) T) ((-1078 . -1233) T) ((-1102 . -656) 6380) ((-1077 . -1071) 6367) ((-1077 . -111) 6352) ((-965 . -1071) 6195) ((-965 . -111) 6024) ((-792 . -656) 5934) ((-790 . -656) 5844) ((-633 . -1066) 5831) ((-674 . -727) 5815) ((-633 . -650) 5802) ((-491 . -1071) 5645) ((-487 . -372) T) ((-471 . -656) 5601) ((-464 . -656) 5511) ((-227 . -626) 5461) ((-364 . -727) 5413) ((-361 . -727) 5365) ((-118 . -1066) 5310) ((-353 . -727) 5262) ((-271 . -727) 5111) ((-253 . -727) 4960) ((-1105 . -93) T) ((-1088 . -93) T) ((-118 . -650) 4905) ((-1081 . -93) T) ((-956 . -661) 4889) ((-1072 . -1115) 4867) ((-491 . -111) 4696) ((-1051 . -93) T) ((-1034 . -93) T) ((-956 . -382) 4680) ((-254 . -102) T) ((-976 . -47) 4659) ((-74 . -623) 4641) ((-722 . -238) T) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1115) T) ((-631 . -1127) T) ((-1103 . -623) 4623) ((-636 . -93) T) ((-1091 . -623) 4605) ((-923 . -727) 4570) ((-127 . -499) 4554) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1233) T) ((-220 . -93) T) ((-618 . -623) 4536) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4518) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4477) ((-521 . -1115) T) ((-517 . -1115) T) ((-128 . -317) 4415) ((-122 . -317) 4353) ((-606 . -658) 4327) ((-605 . -658) 4252) ((-591 . -656) 4202) ((-227 . -1064) T) ((-528 . -656) 4132) ((-388 . -1017) T) ((-227 . -249) T) ((-227 . -239) T) ((-1077 . -626) 4104) ((-1077 . -628) 4085) ((-971 . -624) 4046) ((-971 . -623) 3958) ((-965 . -626) 3747) ((-880 . -38) 3734) ((-723 . -626) 3684) ((-1267 . -298) 3635) ((-1246 . -298) 3586) ((-491 . -626) 3371) ((-1135 . -462) T) ((-512 . -860) T) ((-324 . -1154) 3350) ((-1014 . -148) 3329) ((-1014 . -146) 3308) ((-505 . -317) 3295) ((-303 . -1209) 3274) ((-1200 . -623) 3256) ((-1199 . -623) 3238) ((-1198 . -623) 3220) ((-881 . -1071) 3165) ((-487 . -1127) T) ((-140 . -845) 3147) ((-115 . -845) 3128) ((-633 . -102) T) ((-1219 . -499) 3112) ((-258 . -377) 3091) ((-257 . -377) 3070) ((-1077 . -1064) T) ((-303 . -107) 3020) ((-131 . -623) 3002) ((-129 . -624) NIL) ((-129 . -623) 2946) ((-118 . -102) T) ((-965 . -1064) T) ((-881 . -111) 2875) ((-487 . -23) T) ((-463 . -1233) T) ((-491 . -1064) T) ((-1077 . -239) T) ((-965 . -334) 2844) ((-491 . -334) 2801) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2712) ((-253 . -174) 2623) ((-976 . -1053) 2519) ((-527 . -500) 2500) ((-745 . -1053) 2471) ((-527 . -623) 2437) ((-428 . -1233) 2354) ((-1120 . -102) T) ((-1107 . -623) 2313) ((-1049 . -623) 2295) ((-704 . -1066) 2245) ((-1296 . -152) 2229) ((-1294 . -626) 2210) ((-1293 . -626) 2191) ((-1288 . -623) 2173) ((-1275 . -736) T) ((-704 . -650) 2123) ((-1268 . -736) T) ((-1247 . -801) NIL) ((-1247 . -804) NIL) ((-171 . -1071) 2033) ((-923 . -174) T) ((-881 . -626) 1963) ((-1247 . -736) T) ((-1018 . -351) 1937) ((-225 . -656) 1889) ((-1015 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1167) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1053) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1283 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1025) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1037) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1037) T) ((-881 . -1064) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -922) 1023) ((-1307 . -1127) T) ((-1256 . -1071) 846) ((-865 . -1071) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1233) T) ((-1307 . -23) T) ((-826 . -658) 719) ((-560 . -1233) T) ((-428 . -347) 703) ((-581 . -1071) 690) ((-1256 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1205 . -524) 30) ((-886 . -1115) T) ((-691 . -1115) T) ((-686 . -1115) T) ((-672 . -1115) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index c4645cd3..e2819076 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3485684124) -(4458 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3485693907) +(4461 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -68,15 +68,15 @@ |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| - |DifferentialDomain&| |DifferentialDomain| |DifferentialSpace&| - |DifferentialSpace| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| - |DirectProductCategory&| |DirectProductCategory| - |DirectProductFunctions2| |DirectProduct| |DisplayPackage| - |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| - |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| - |Domain| |DomainConstructor| |DomainTemplate| - |DirectProductMatrixModule| |DirectProductModule| + |DifferentialDomain&| |DifferentialDomain| |DifferentialModule| + |DifferentialSpace&| |DifferentialSpace| |DifferentialRing| + |DictionaryOperations&| |DictionaryOperations| + |DiophantineSolutionPackage| |DirectProductCategory&| + |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| + |DisplayPackage| |DivisionRing&| |DivisionRing| + |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| + |DistributedMultivariatePolynomial| |Domain| |DomainConstructor| + |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| @@ -329,6 +329,7 @@ |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| + |PartialDifferentialDomain&| |PartialDifferentialDomain| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| @@ -485,667 +486,667 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |wrregime| |parents| |clipPointsDefault| |const| - |cycleElt| |minRowIndex| |tryFunctionalDecomposition| |permutations| - |systemCommand| |inv| |ravel| |match?| |infinityNorm| |mapUnivariate| - |laplacian| |groebgen| |putColorInfo| |autoCoerce| - |leadingCoefficientRicDE| |useNagFunctions| |heap| |exportedOperators| - |outputFixed| |ground?| |reshape| |ideal| |arrayStack| - |processTemplate| |makeMulti| |unmakeSUP| |pointColor| |unit?| - |oblateSpheroidal| |setStatus!| |ground| |edf2fi| |vedf2vef| |gderiv| - |patternMatch| |logpart| |singRicDE| |closed?| |expextendedint| - |clearTable!| |leadingMonomial| |normal| |primaryDecomp| - |numberOfPrimitivePoly| |csch2sinh| |iisec| |iFTable| |finiteBasis| - |mkPrim| |distdfact| |pseudoDivide| |leadingCoefficient| |ratPoly| - |symbolIfCan| |internalLastSubResultant| |bit?| |e01bgf| - |basisOfLeftAnnihilator| |numericIfCan| |d01gaf| |debug3D| - |primitiveMonomials| |close| |torsionIfCan| |mapExponents| - |contractSolve| |strongGenerators| F |subresultantSequence| - |fixedPoint| |collectQuasiMonic| |droot| |rightTrace| |reductum| - |update| |primeFactor| |setClipValue| |property| |radicalSimplify| - |OMputSymbol| |prinpolINFO| |e02ajf| |realEigenvalues| |pureLex| - |display| |makeprod| |factorsOfDegree| |divide| |isOr| |retractable?| - |OMputBVar| |maxrow| |prepareDecompose| |direction| - |lazyIrreducibleFactors| |rangePascalTriangle| |palglimint0| |palgint| - |repSq| |hypergeometric0F1| |midpoints| |nand| |positiveRemainder| - |localAbs| |firstUncouplingMatrix| |mat| |besselY| |ptFunc| |e02ahf| - |OMgetEndAtp| |whatInfinity| |increase| |createThreeSpace| |cLog| - |s17agf| |LagrangeInterpolation| |factorSquareFreeByRecursion| |lquo| - |complexRoots| |exprex| |f01qcf| |Lazard2| |position| - |setAttributeButtonStep| |truncate| |conditionP| |expr| - |maximumExponent| |noLinearFactor?| |leftUnits| |headReduce| - |setMinPoints3D| |airyAi| |input| ** |mainVariable| |rightTraceMatrix| - |c06ebf| |collect| |finiteBound| |operation| |gbasis| - |particularSolution| |lexGroebner| |changeThreshhold| |library| |tab1| - |integralRepresents| |c05pbf| |exactQuotient| |continuedFraction| - |antiCommutative?| |nextItem| |encodingDirectory| - |eisensteinIrreducible?| |sorted?| |insertTop!| |cPower| |redPo| - |createPrimitivePoly| |component| |palgLODE0| |merge| |leadingSupport| - |calcRanges| |goodPoint| |stopMusserTrials| |d01fcf| |size| |variable| - |pole?| |insertRoot!| |OMserve| |principalAncestors| - |stoseInvertibleSetreg| |iicoth| |antisymmetric?| - |partialDenominators| |factorset| |idealiserMatrix| |iterators| - |mainCharacterization| |iroot| |distance| |alphabetic| |Beta| |root| - |bracket| |set| |imaginary| |pack!| |elRow1!| |bandedJacobian| - |constantOpIfCan| |cycleEntry| |hclf| |splitNodeOf!| |maxPoints3D| - |showClipRegion| |OMgetString| |lepol| |pushup| |quatern| |previous| - |iiexp| |youngGroup| |toseSquareFreePart| |contours| |constantRight| - |nlde| |newReduc| |linearMatrix| |curryLeft| |getGoodPrime| |iiacos| - |generalPosition| |shrinkable| |entries| |allRootsOf| |weierstrass| - |binomThmExpt| |functorData| |nonQsign| |setnext!| |paraboloidal| - |resultantReduit| |s17acf| |characteristic| |rightRecip| |member?| - |external?| |wreath| |OMgetInteger| |divisorCascade| |measure2Result| - |normalizedDivide| |stronglyReduce| |qPot| |OMbindTCP| |say| - |groebnerFactorize| |SturmHabichtCoefficients| |inputBinaryFile| - |true| |polygamma| |arguments| |shanksDiscLogAlgorithm| - |lieAdmissible?| |iiabs| |complexIntegrate| |baseRDE| |HenselLift| - |showTheFTable| |stFunc2| |s17def| |category| |fortranComplex| - |every?| |directSum| |isConnected?| |doubleFloatFormat| |bivariate?| - |reset| |node| |algebraicOf| |realZeros| |unitsColorDefault| |mindeg| - |domain| |e01bhf| |e04dgf| |s20acf| |graphs| |repeating?| |curve?| - |insert| |parabolic| |expintegrate| |OMgetType| |package| |principal?| - |removeDuplicates!| |squareFreePolynomial| |addMatchRestricted| - |write| |mix| |df2ef| |inc| |changeNameToObjf| |s18acf| |exp| - |fractRadix| |polarCoordinates| |save| |listOfLists| |setTex!| - |setref| |closedCurve?| |e01daf| |show| |singleFactorBound| - |radicalEigenvalues| |tubeRadiusDefault| |environment| - |nextIrreduciblePoly| |mathieu24| |rationalApproximation| - |exponential1| |integrate| |screenResolution| |cyclic?| |Frobenius| - |palginfieldint| |getMeasure| |bounds| |diagonalMatrix| - |totalDifferential| |trace| |createZechTable| |discreteLog| |traverse| - |sylvesterMatrix| |linkToFortran| |hex| |unit| |f04mcf| |trapezoidal| - |c06gqf| |any?| F2FG |cAcsc| |hdmpToP| |semiSubResultantGcdEuclidean1| - |contract| |s18dcf| |varList| |setScreenResolution| |factorPolynomial| - |stiffnessAndStabilityOfODEIF| |printStatement| |totalfract| - |wordInGenerators| |abs| |e02bef| |terms| |mainForm| - |conditionsForIdempotents| |getlo| |OMgetEndBVar| |is?| |applyRules| - |bernoulli| UP2UTS |indiceSubResultant| |dn| |randomR| |open| - |invertibleElseSplit?| |laplace| |binomial| |iisin| |d03eef| |rquo| - |scalarMatrix| |complexZeros| |e04mbf| |mesh| |exprHasAlgebraicWeight| - |coerceListOfPairs| |factors| |subCase?| |mainVariable?| - |replaceKthElement| |elseBranch| |invertibleSet| |mainExpression| - |obj| |retractIfCan| |approxNthRoot| |fixedDivisor| |ScanArabic| - |double| |s18aff| |denominators| |acotIfCan| |writeLine!| |cache| - |constant| |startPolynomial| |cAcos| |primitive?| |currentSubProgram| - |ramifiedAtInfinity?| |antisymmetricTensors| |OMreceive| - |printingInfo?| |operations| |outputSpacing| |child?| |clikeUniv| - |quadratic?| |infiniteProduct| |regularRepresentation| - |rischNormalize| |lazy?| |setClosed| |transpose| |doublyTransitive?| - |headAst| |ocf2ocdf| |internalInfRittWu?| |leftRegularRepresentation| - |separant| |log10| |rootOf| |complexElementary| |swapRows!| - |generalLambert| |reducedDiscriminant| |readIfCan!| - |rewriteSetByReducingWithParticularGenerators| |printCode| - |normFactors| |bitand| |lambert| |infinity| |fortranTypeOf| |central?| - |putProperty| |OMgetBind| |zero?| |rootRadius| - |exprHasLogarithmicWeights| |extractClosed| |bitior| |resize| - |quartic| |csubst| |compound?| |f02aaf| |ScanFloatIgnoreSpacesIfCan| - |genericLeftNorm| |curryRight| |s17ajf| |keys| |viewWriteAvailable| - |unexpand| |idealiser| |xn| |useEisensteinCriterion?| |tanAn| |makeop| - |outputFloating| |iicsc| |prod| |shiftRoots| |kernel| |writable?| - |map| |univariatePolynomialsGcds| |infLex?| |isQuotient| |taylorIfCan| - |FormatRoman| |cosIfCan| |symmetricRemainder| |alphabetic?| |region| - |zeroSquareMatrix| |list| |setRealSteps| |modularFactor| - |bivariateSLPEBR| |showTheRoutinesTable| |trapezoidalo| |vconcat| - |print| |lhs| |janko2| |factorOfDegree| |tRange| |draw| |KrullNumber| - |resolve| |cExp| |rowEchelonLocal| |f01bsf| |color| |quoByVar| - |iterationVar| |rhs| |nextPrime| |skewSFunction| |children| - |basisOfRightAnnihilator| |d01ajf| |polyRDE| |updatD| |OMsetEncoding| - |number?| |Gamma| |ramified?| |iisqrt3| |red| |extractPoint| - |currentEnv| |qinterval| |palglimint| |failed?| |B1solve| |f04adf| - |gcdPrimitive| |extractIfCan| |rootSplit| |multiple?| - |leadingBasisTerm| |localReal?| |convert| |lSpaceBasis| |OMputEndAttr| - |OMUnknownCD?| |height| |just| |lazyPquo| |s01eaf| |numberOfCycles| - |internalAugment| |makeObject| |nextLatticePermutation| |irVar| - |setIntersection| |roughSubIdeal?| |sts2stst| |fortranLinkerArgs| - |OMputAttr| |uniform01| |tubeRadius| |ksec| |s14aaf| |coef| |light| - |mainValue| |signAround| |isOp| |palgRDE| |parts| - |removeIrreducibleRedundantFactors| |factorSFBRlcUnit| |euler| - |vectorise| |dom| |reduceBasisAtInfinity| |readByte!| |OMgetEndBind| - |graphStates| |halfExtendedSubResultantGcd2| |binary| |solid| - |quadratic| |rename!| |An| |enterPointData| Y |imagI| |addiag| - |weighted| |eigenMatrix| |eq?| |addMatch| |abelianGroup| |someBasis| - |quote| |fglmIfCan| |printStats!| |completeHermite| |lazyIntegrate| - |iiacoth| |OMputEndBVar| |split!| |label| |perfectSquare?| - |rationalPower| |getButtonValue| |lagrange| |basisOfMiddleNucleus| - |explicitlyFinite?| |changeName| |totolex| |torsion?| |entry| - |initializeGroupForWordProblem| |tube| |createMultiplicationMatrix| - |mapGen| |leftDiscriminant| |iisech| |contains?| |palgextint0| - |square?| |elaborate| |zeroMatrix| |indicialEquation| |coefficients| - |column| |lieAlgebra?| |interReduce| |bat1| |expandPower| |lfunc| - |normalDenom| |OMputAtp| |divideExponents| |push| |c05nbf| |bringDown| - |rootKerSimp| |critMonD1| |showTheIFTable| |ParCond| |mainVariables| - |trace2PowMod| |fortranLiteralLine| |vark| |lazyPseudoDivide| - |intChoose| |yCoordinates| |firstNumer| |generalTwoFactor| - |clearDenominator| |d01bbf| |addPointLast| |graphImage| - |wordsForStrongGenerators| |isPower| |incr| |simplify| - |makeGraphImage| |lex| |chiSquare1| |OMgetAttr| |sdf2lst| |one?| - |writeBytes!| |middle| |connect| |constructor| |curry| |hi| - |externalList| |var2StepsDefault| |minIndex| |tail| |quotientByP| - |areEquivalent?| |mainPrimitivePart| |headReduced?| |fullDisplay| - |rowEch| |moebiusMu| |indices| |semiResultantEuclidean1| |option| - |inrootof| |close!| |Aleph| |sign| |showSummary| |orthonormalBasis| - |youngDiagram| |firstDenom| |subNode?| |halfExtendedResultant1| - |rangeIsFinite| |ReduceOrder| |cycleTail| |makeFloatFunction| |solve| - |rules| |units| |e02daf| |comparison| |irForm| |leftMinimalPolynomial| - |top| |resetAttributeButtons| |cap| |rotatex| |d02bhf| |iiasec| - |showAttributes| |partitions| |normalise| |triangularSystems| - |brillhartTrials| |continue| |style| |exprToGenUPS| |constantLeft| - |setlast!| |normalizeIfCan| |monicModulo| |primintegrate| - |triangular?| |redPol| |leftPower| |oddlambert| |polar| |elColumn2!| - |maxPoints| |setPoly| |s17dcf| |box| |head| |name| |unknown| - |numberOfComponents| |writeByte!| |selectPDERoutines| |find| - |tanintegrate| |distFact| |alphanumeric| |comment| - |discriminantEuclidean| |separateDegrees| |body| |getVariableOrder| - |presuper| |lighting| |iisinh| |rst| |code| |Ci| - |createLowComplexityTable| |ignore?| |curveColor| |typeList| - |OMParseError?| |semiDiscriminantEuclidean| |getZechTable| - |triangulate| |minPoints3D| |approximants| |setLabelValue| - |selectMultiDimensionalRoutines| |irDef| |null| |hue| |compose| - |nsqfree| |OMputVariable| |isobaric?| |minPoints| |pdf2ef| - |BasicMethod| |nodeOf?| |delta| |not| EQ |attributeData| |more?| - |e01bef| |revert| |nextColeman| |compBound| |increment| |root?| - |nextPartition| |and| |complexEigenvectors| |quasiRegular?| - |splitLinear| |fullPartialFraction| |matrixConcat3D| |generate| - |monic?| |numerators| |lazyVariations| |henselFact| |or| |inR?| - |elements| |pointColorPalette| |e02adf| |showIntensityFunctions| - |c06fpf| |primeFrobenius| |cRationalPower| |lyndon| |linearPart| |xor| - |exprToXXP| |invmultisect| |pr2dmp| |assert| |dmpToP| |traceMatrix| - |incrementBy| |mainContent| |port| |mainCoefficients| |branchIfCan| - |pattern| |case| |lfinfieldint| |coordinates| |e04fdf| |trigs| |ord| - |expand| |leftRemainder| |complexExpand| |symmetricPower| - |radicalOfLeftTraceForm| |Zero| |s17dgf| |rotate| |digit| |unparse| - |getProperties| |hasoln| |filterWhile| |selectFiniteRoutines| - |removeRedundantFactorsInContents| |t| |printHeader| |One| - |OMgetObject| |symbol?| |fprindINFO| |f04qaf| |build| |horizConcat| - |filterUntil| |clipWithRanges| |simplifyExp| |pseudoQuotient| |lambda| - |Nul| |exponentialOrder| |axesColorDefault| |cCot| |corrPoly| |search| - |lineColorDefault| |euclideanSize| |select| |shallowExpand| - |errorKind| |drawComplexVectorField| |message| |reopen!| - |currentCategoryFrame| |userOrdered?| |d03edf| |e04jaf| |cAsin| - |reindex| |reverse!| |prefixRagits| |f02aef| |pToDmp| - |symmetricDifference| |c06gbf| |f02aff| |setelt!| |algDsolve| - |OMreadFile| |internalSubPolSet?| |coerceS| |nrows| |elementary| - |oddintegers| |thenBranch| |f04mbf| |f01qdf| |roughUnitIdeal?| |curve| - |nullary| |ncols| |elt| |rur| |deriv| |nonSingularModel| |critB| - |divisor| |f04faf| |retract| |cyclicSubmodule| |smith| |ran| - |representationType| |f02axf| |s15aef| |extend| |dilog| |e02dff| - |zero| |sin2csc| |sqfrFactor| |supRittWu?| |lazyGintegrate| |dioSolve| - |constantToUnaryFunction| |singularAtInfinity?| |subTriSet?| |cons| - |sin| |largest| |makeRecord| |Si| |intcompBasis| |removeZeroes| - |reseed| |recip| |nothing| |f01ref| |And| |cos| |testModulus| - |OMputFloat| |rdHack1| |nonLinearPart| |supersub| |scopes| - |internalSubQuasiComponent?| |Or| |list?| |tan| |polygon| |repeating| - |OMencodingUnknown| |odd?| |setOrder| |coefChoose| |radicalRoots| - |Not| |cot| |ode| |f2st| |lintgcd| |components| |pascalTriangle| - |stronglyReduced?| |numberOfIrreduciblePoly| |createRandomElement| - |condition| |totalLex| |sec| |atom?| |balancedBinaryTree| - |clipBoolean| |even?| |mergeFactors| |ode2| |constantOperator| |csc| - |OMgetApp| |cycleRagits| |resultant| |selectODEIVPRoutines| |d02ejf| - |zeroSetSplitIntoTriangularSystems| |stiffnessAndStabilityFactor| - |f07aef| |interpret| |e02bbf| |source| |asin| |mapUnivariateIfCan| - |quasiAlgebraicSet| |safetyMargin| |iiacosh| |s18adf| |myDegree| - |enumerate| |dec| |cycle| |acos| |minimalPolynomial| |solveInField| - |HermiteIntegrate| |OMputEndAtp| |stoseSquareFreePart| |solid?| - |OMgetVariable| |atan| |plusInfinity| |totalGroebner| |selectsecond| - |setValue!| |stripCommentsAndBlanks| |dequeue| |mainMonomial| - |fortranLiteral| |internalZeroSetSplit| |acot| |minusInfinity| - |subHeight| |ratDsolve| |char| |OMgetAtp| |withPredicates| - |nextPrimitivePoly| |solveid| |cyclic| |asec| |heapSort| |maxColIndex| - |makeSeries| |null?| |quasiRegular| |iiacot| |shiftLeft| - |separateFactors| |acsc| |target| |nullary?| |integerBound| |hexDigit| - |hyperelliptic| |irreducibleRepresentation| |unaryFunction| - |pointPlot| |sinh| |pomopo!| |resultantReduitEuclidean| - |outputMeasure| |rewriteIdealWithRemainder| |clearFortranOutputStack| - |setMaxPoints| |leadingExponent| |round| |has?| |cosh| |reverseLex| - |rischDEsys| |semicolonSeparate| |hasHi| |setright!| - |numberOfVariables| |adaptive| |cyclicParents| |type| - |numberOfOperations| |tanh| |whitePoint| |dimension| |binaryTree| - |setvalue!| |outputList| |squareFreePrim| |closedCurve| |critBonD| - |c06ekf| |multinomial| |coth| |conical| |element?| - |definingInequation| |bumprow| |genericLeftTrace| |physicalLength!| - |d02cjf| |splitDenominator| |float| |qelt| |polynomialZeros| - |OMgetEndError| |roman| |sech| |LazardQuotient2| |status| |upperCase| - |second| |capacity| |qsetelt| |lastSubResultant| |categoryFrame| - |scaleRoots| |internalIntegrate0| |partialQuotients| |rowEchLocal| - |csch| |mapmult| |monicRightFactorIfCan| |third| |qqq| |double?| - |resetBadValues| |fractionPart| |setEmpty!| |xRange| |back| - |leftFactor| |asinh| |tracePowMod| |stoseInvertible?reg| |atanhIfCan| - |aQuartic| |binarySearchTree| |toroidal| |compile| |bytes| - |lowerCase!| |yRange| |monicDivide| |void| |acosh| |squareFree| - |dictionary| |polygon?| |completeEchelonBasis| |minordet| - |balancedFactorisation| |cyclePartition| |pointColorDefault| |assign| - |zRange| |ceiling| |weights| |atanh| |limitPlus| |sn| |f02agf| - |makeTerm| |expt| |reflect| |map!| |selectAndPolynomials| - |setFieldInfo| |paren| |prem| |shade| |acoth| |doubleComplex?| - |OMclose| |stirling2| |unitCanonical| |qsetelt!| |newSubProgram| - |leftFactorIfCan| |mulmod| |f02bbf| |pointSizeDefault| - |toseInvertible?| |asech| |iibinom| |interpretString| |optAttributes| - |cCos| |convergents| |ScanFloatIgnoreSpaces| |extractTop!| - |unprotectedRemoveRedundantFactors| |imagE| - |createLowComplexityNormalBasis| |rewriteIdealWithHeadRemainder| - |subQuasiComponent?| |doubleRank| |decompose| |screenResolution3D| - |semiLastSubResultantEuclidean| |sechIfCan| GE |tab| |UnVectorise| - |accuracyIF| |multiple| |inspect| |power| |leviCivitaSymbol| - |cyclotomicFactorization| |iflist2Result| |rightAlternative?| - |duplicates| |algintegrate| GT |meshPar2Var| |applyQuote| |linear?| - |complementaryBasis| |extendedint| |c06gcf| |viewWriteDefault| - |UP2ifCan| |c06gsf| |f07fdf| LE |endOfFile?| |primes| |jordanAlgebra?| - |createPrimitiveElement| |logIfCan| |enterInCache| |factorSquareFree| - |predicate| |operators| |associates?| |characteristicPolynomial| - |monomials| LT |acsch| |f02akf| |integralDerivationMatrix| - |rootDirectory| |kovacic| |f04jgf| |insertionSort!| - |radicalEigenvector| |startTableInvSet!| |determinant| |diagonal?| - |positiveSolve| |float?| |ruleset| |order| |iidsum| |iiacsc| |iitan| - |controlPanel| |scalarTypeOf| |componentUpperBound| |exprToUPS| - |zeroDimPrimary?| |basisOfLeftNucloid| |subst| |leastAffineMultiple| - |implies| |entry?| |dequeue!| |generic?| |setAdaptive| |rational?| - |eyeDistance| |prinshINFO| |setrest!| |option?| |figureUnits| - |matrixGcd| |innerEigenvectors| |c06fqf| |index?| |vspace| - |seriesSolve| |drawCurves| |setFormula!| |degree| |directory| - |stoseLastSubResultant| |noValueMode| |exQuo| |suchThat| - |LyndonWordsList1| |mathieu23| |isExpt| |tree| |index| |gcdprim| - |trivialIdeal?| |explicitlyEmpty?| |sample| |lexico| |algSplitSimple| - |leftTraceMatrix| |adaptive3D?| |interactiveEnv| |invmod| |isPlus| - |subSet| |integral?| |complexNumericIfCan| |initial| |simpsono| - |realElementary| |f01qef| |transcendentalDecompose| |jacobi| |remove!| - |minPoly| |setsubMatrix!| |asinIfCan| |radicalEigenvectors| - |chainSubResultants| |df2mf| |partition| |tableForDiscreteLogarithm| - |sumOfKthPowerDivisors| |leftLcm| |cot2tan| |pair| |basisOfCenter| - |unrankImproperPartitions0| |raisePolynomial| |physicalLength| - |objects| |infRittWu?| |complex?| |rightTrim| |fortranDouble| - |safeFloor| |bright| |sinhcosh| |f02ajf| |hdmpToDmp| |parameters| - |fTable| |imagk| |varselect| |rroot| |bits| |base| |leftTrim| |cAcot| - |elRow2!| |symFunc| |littleEndian| |zeroDimPrime?| |arg1| - |permutation| |pushuconst| |iiperm| |backOldPos| |splitSquarefree| - |ffactor| |crest| |OMputApp| |eval| |listConjugateBases| |setfirst!| - |arg2| |associatorDependence| |rightCharacteristicPolynomial| - |lowerPolynomial| |identitySquareMatrix| |charClass| |setOfMinN| - |relerror| |iExquo| |sech2cosh| |dot| |unravel| |quasiComponent| - |associative?| |denominator| |primextendedint| - |semiIndiceSubResultantEuclidean| |randomLC| |moduleSum| |rename| - |tanh2trigh| |conditions| |LiePoly| |supDimElseRittWu?| - |constantIfCan| |less?| |rightLcm| |error| |realSolve| - |padicallyExpand| |returnType!| |bag| |unknownEndian| |badValues| - |match| |rightExactQuotient| |diophantineSystem| |removeDuplicates| - |poisson| |explicitEntries?| |completeHensel| |SturmHabicht| - |gcdcofact| |equation| |e04ycf| |isImplies| |extendedSubResultantGcd| - |aLinear| |prime?| |generalizedInverse| |subResultantChain| |cfirst| - |linearAssociatedLog| |iicsch| |f07adf| |simplifyPower| |besselI| - |colorFunction| |voidMode| |removeSuperfluousQuasiComponents| - |function| |overbar| |cSin| |optimize| |univariateSolve| - |principalIdeal| |purelyAlgebraicLeadingMonomial?| |adaptive?| - |stFunc1| |genus| |addPoint2| |rarrow| |setchildren!| |OMputBind| - |s14abf| |frst| |removeSquaresIfCan| |dfRange| |intensity| |decimal| - |generic| |lllip| |viewZoomDefault| |readInt16!| BY |doubleResultant| - |s19acf| |solveRetract| |factorAndSplit| |trueEqual| |pushucoef| - |cyclicGroup| |bezoutResultant| |parametric?| |leftExtendedGcd| - |rightRankPolynomial| |alternative?| |moebius| |nthExponent| - |compiledFunction| |sort!| |bumptab1| |associatedEquations| |randnum| - |palgRDE0| |jacobian| |OMcloseConn| |support| |e01sff| - |deleteRoutine!| |explimitedint| |reducedSystem| |multiEuclideanTree| - |lyndon?| |ef2edf| |bubbleSort!| |rotatey| |duplicates?| - |restorePrecision| |solveLinearPolynomialEquationByRecursion| - |useSingleFactorBound| |totalDegree| |sort| |minimumExponent| - |inGroundField?| |OMgetEndObject| |commutative?| |acschIfCan| - |RemainderList| |e01sbf| |orbits| |radPoly| |leftRecip| |tanQ| - |mkAnswer| |kroneckerDelta| |rem| |birth| |derivative| |consnewpol| - |byteBuffer| |cosh2sech| |setColumn!| |genericLeftMinimalPolynomial| - |rightDivide| |properties| |intPatternMatch| |decrease| |quo| - |fixedPoints| |UpTriBddDenomInv| |BumInSepFFE| |sizeLess?| - |rowEchelon| |id| |bigEndian| NOT |rk4f| |mathieu12| |translate| - |OMwrite| |bumptab| |removeCoshSq| |rightUnits| - |stoseInternalLastSubResultant| |differentialVariables| |real?| |lo| - |sizeMultiplication| OR |qualifier| |random| |shellSort| - |extendedResultant| |cosSinInfo| |div| |indiceSubResultantEuclidean| - |legendreP| |fmecg| |increasePrecision| |f07fef| |lcm| AND - |identityMatrix| |numberOfImproperPartitions| |connectTo| |mpsode| - |cCsc| |delete| |exquo| |roughEqualIdeals?| |integralLastSubResultant| - |linearAssociatedExp| |nthFactor| |prolateSpheroidal| |rightRemainder| - |interpolate| |point?| |monomRDE| |s21baf| ~= |binaryFunction| - |Hausdorff| |f02awf| |normalize| |lift| |represents| |position!| - |primlimitedint| |approxSqrt| |append| |outlineRender| - |rightExtendedGcd| |multiplyCoefficients| |#| |uniform| - |clearTheSymbolTable| |extendIfCan| |univariatePolynomial| |reduce| - |polyPart| |lprop| |initials| |composite| |gcd| |radicalSolve| - |integerIfCan| |showRegion| ~ |factor1| |changeMeasure| - |selectOptimizationRoutines| |leaf?| |unitNormalize| |OMsend| |false| - |untab| |atoms| |flagFactor| |fractionFreeGauss!| |gcdPolynomial| - |binding| |multMonom| |f02fjf| |OMlistCDs| |binaryTournament| |e01baf| - |subspace| |computeBasis| |part?| |solveLinear| |f04arf| |apply| - |anticoord| |e02baf| |e01saf| |f02xef| |cAtan| |e02zaf| |epilogue| - |numberOfComputedEntries| |/\\| |OMputEndObject| |topPredicate| - |orbit| |matrix| |first| |leftZero| |mainDefiningPolynomial| |hconcat| - |selectOrPolynomials| |branchPointAtInfinity?| |llprop| |usingTable?| - |toseLastSubResultant| |leastMonomial| |\\/| |rest| |hspace| |surface| - |nullity| |unvectorise| |lp| |iicos| |symmetric?| |mainMonomials| - |sinh2csch| |quoted?| |neglist| |regime| |s21bcf| - |isAbsolutelyIrreducible?| |host| |e02gaf| |coerce| * |mainKernel| - |exp1| |realRoots| |pmintegrate| |push!| |readable?| |gcdcofactprim| - |mapUp!| |coerceP| |palgextint| |htrigs| |construct| |primextintfrac| - |categoryMode| |getSyntaxFormsFromFile| |OMUnknownSymbol?| - |constDsolve| |goodnessOfFit| |semiResultantEuclidean2| - |factorSquareFreePolynomial| |redmat| |numer| |dualSignature| - |relationsIdeal| |bfEntry| |generator| |generalInfiniteProduct| - |create| |optpair| |sturmVariationsOf| |elliptic?| |denom| - |multiplyExponents| |virtualDegree| |PollardSmallFactor| |zag| - |transform| = |problemPoints| |subtractIfCan| |definingPolynomial| - |decreasePrecision| |meshPar1Var| |ip4Address| |s17ahf| - |rationalPoints| |showScalarValues| |linearAssociatedOrder| |mapdiv| - |diag| |redpps| |setProperty| |polCase| |perspective| |tValues| |pi| - |viewport2D| |byte| |normalDeriv| |credPol| FG2F < |digits| - |monicRightDivide| |dflist| |plenaryPower| |schwerpunkt| |rubiksGroup| - |rightScalarTimes!| |width| |expressIdealMember| > |padicFraction| - |selectPolynomials| |green| |infieldIntegrate| |SturmHabichtMultiple| - |nthr| |removeSinhSq| |fillPascalTriangle| |s19aaf| - |bivariatePolynomials| |cschIfCan| <= |leftDivide| |overlabel| |cSinh| - |palgint0| |univariate?| |pmComplexintegrate| |bandedHessian| - |beauzamyBound| |in?| |nthFlag| |mapMatrixIfCan| |autoReduced?| >= - |numerator| |pushNewContour| |countRealRoots| |product| |routines| - |iitanh| |genericRightTraceForm| |recoverAfterFail| |algebraicSort| - |iicosh| |integralBasisAtInfinity| |viewThetaDefault| |infieldint| - |listBranches| |ratDenom| |e04gcf| |setStatus| |zoom| |setUnion| - |purelyTranscendental?| |firstSubsetGray| - |semiSubResultantGcdEuclidean2| |modifyPointData| - |lazyPseudoRemainder| |diagonals| |iiacsch| |startTableGcd!| - |OMputEndBind| |OMconnOutDevice| |thetaCoord| |OMgetError| |pop!| - |showFortranOutputStack| |halfExtendedResultant2| |over| - |countRealRootsMultiple| + |conjug| |lookupFunction| - |rightFactorCandidate| |iiasech| |value| |shuffle| |clearCache| - |e02dcf| |numberOfComposites| |call| |numeric| |twist| |int| |d02raf| - |showArrayValues| - |scan| |block| |recur| |quadraticNorm| - |OMopenString| |factorByRecursion| |argumentListOf| |radical| |d02bbf| - / |optional| |symmetricGroup| |taylorRep| |commaSeparate| |xCoord| - |belong?| |scripted?| |dihedral| |fill!| |nodes| |sparsityIF| - |transcendenceDegree| |setDifference| |reduceByQuasiMonic| |log| - |structuralConstants| |laurentRep| |getRef| |listexp| - |trailingCoefficient| |maxRowIndex| |besselJ| - |nextNormalPrimitivePoly| |legendre| |primitivePart!| |coleman| - |expint| |fintegrate| |remainder| |removeSinSq| |sinIfCan| |leftMult| - |sec2cos| |constantCoefficientRicDE| |normal01| |signature| - |elaborateFile| |noKaratsuba| |setelt| |btwFact| |mathieu22| - |roughBase?| |OMmakeConn| |rotate!| |zerosOf| |mapSolve| - |integralCoordinates| |interval| |quotient| |prepareSubResAlgo| - |tanSum| |magnitude| |digit?| |integers| |declare!| |integer?| - |degreeSubResultant| |initiallyReduced?| |acothIfCan| |cyclicEntries| - |symmetricSquare| |d01akf| |copy| |OMencodingBinary| |shiftRight| - |e04naf| |coordinate| |cothIfCan| |cyclotomic| |complexNormalize| - |infix| |pToHdmp| |closed| |resultantEuclidean| |rombergo| |polyRicDE| - |latex| |insert!| |rootProduct| |c02agf| |indicialEquationAtInfinity| - |scanOneDimSubspaces| |csc2sin| |datalist| |iCompose| |diff| - |invertible?| |preprocess| |arbitrary| |getCode| |putGraph| - |choosemon| |asinhIfCan| |computeInt| |badNum| |zeroVector| |copies| - |powers| |functionIsContinuousAtEndPoints| |enqueue!| |conjugate| - |viewDeltaYDefault| |tanIfCan| |groebner| |node?| |flexible?| - |genericLeftDiscriminant| |coerceL| |options| |minimize| |members| - |createPrimitiveNormalPoly| |extensionDegree| |reciprocalPolynomial| - |factorFraction| |bipolarCylindrical| |delete!| - |resultantEuclideannaif| |exponents| |phiCoord| |s17akf| |numFunEvals| - |linGenPos| |imagj| |leadingTerm| |row| |setImagSteps| - |parabolicCylindrical| |mainSquareFreePart| |isAtom| |getCurve| - |laguerre| |karatsuba| |multiset| |nil?| |cTanh| - |removeRoughlyRedundantFactorsInPols| |segment| - |leftCharacteristicPolynomial| |crushedSet| |complexLimit| |tanh2coth| - |primitivePart| |output| |string| |iipow| |rightOne| |RittWuCompare| - |cubic| |basisOfCentroid| |hcrf| |complement| |ListOfTerms| |content| - |cAsinh| UTS2UP |exteriorDifferential| |degreePartition| |factorials| - |tan2trig| |stoseInvertible?| |makeViewport2D| |sinhIfCan| - |getConstant| |numberOfDivisors| - |removeRoughlyRedundantFactorsInContents| |sincos| |LyndonBasis| - |morphism| |stopTableInvSet!| |e02akf| |OMsupportsSymbol?| - |chineseRemainder| |cAsec| |alphanumeric?| |bat| |sup| |roughBasicSet| - |cond| |bombieriNorm| |modularGcd| |OMsupportsCD?| |iiasinh| |pow| - |cartesian| |branchPoint?| |modifyPoint| |simpson| |getStream| - |setLength!| |possiblyNewVariety?| |removeSuperfluousCases| - |subscript| |asecIfCan| |gensym| |inverse| |irCtor| |symmetricTensors| - |rationalPoint?| |mathieu11| |omError| |linearPolynomials| - |LazardQuotient| |nextPrimitiveNormalPoly| |cCosh| |SFunction| - |readInt8!| |invertIfCan| |OMconnectTCP| |jordanAdmissible?| - |dAndcExp| |upperCase!| |taylorQuoByVar| |certainlySubVariety?| - |s17dlf| |subset?| |monomialIntegrate| |squareTop| |OMread| - |lastSubResultantEuclidean| |sPol| |digamma| |leftQuotient| |reorder| - |LyndonCoordinates| |sylvesterSequence| |algebraicDecompose| - |absolutelyIrreducible?| |f02adf| |exactQuotient!| |remove| |clip| - |power!| |maxint| |mvar| |negative?| |curveColorPalette| - |nativeModuleExtension| |primPartElseUnitCanonical!| - |commonDenominator| |lfintegrate| |selectIntegrationRoutines| - |deepestInitial| |loopPoints| |sh| |checkForZero| |defineProperty| - |dihedralGroup| |critT| |mappingMode| |bitCoef| |limitedint| - |createIrreduciblePoly| |setCondition!| |center| |last| |rightUnit| - |leftScalarTimes!| |copy!| |signatureAst| - |generalizedContinuumHypothesisAssumed| |move| |aspFilename| - |compactFraction| |assoc| |leftOne| - |solveLinearPolynomialEquationByFractions| |safeCeiling| |diagonal| - |idealSimplify| |FormatArabic| |irreducible?| |integral| - |OMconnInDevice| |wholeRagits| |formula| |univcase| |d01alf| - |associatedSystem| |factorGroebnerBasis| |internalDecompose| - |minGbasis| |eigenvectors| |getGraph| |log2| |prevPrime| - |internalIntegrate| |equiv| |linearlyDependentOverZ?| |lifting1| - |normDeriv2| |equality| |closeComponent| |rightMinimalPolynomial| - |lyndonIfCan| |readLineIfCan!| |maxdeg| |deepExpand| |augment| - |replace| |setLegalFortranSourceExtensions| - |semiResultantEuclideannaif| |testDim| |rightFactorIfCan| - |hostPlatform| |divideIfCan| |createNormalPoly| |constantKernel| - |setprevious!| |iiasin| |brillhartIrreducible?| - |linearDependenceOverZ| |listLoops| |jokerMode| |computePowers| - |zCoord| |leftNorm| |norm| |getProperty| |twoFactor| |modTree| - |OMgetSymbol| |patternVariable| |forLoop| |putProperties| |s20adf| - |initiallyReduce| |setVariableOrder| |integralAtInfinity?| - |reducedQPowers| |cCsch| |possiblyInfinite?| |sizePascalTriangle| - |d01gbf| |Lazard| |printTypes| |findCycle| |generalSqFr| - |seriesToOutputForm| |updateStatus!| |swap| |subResultantsChain| - |viewPhiDefault| |weight| |sin?| |chebyshevU| |size?| |aromberg| - |OMgetFloat| |open?| |singular?| |leftAlternative?| - |inverseIntegralMatrix| |gradient| |exists?| |lazyResidueClass| - |tubePlot| |radix| |sumSquares| |ref| |readUInt16!| |scale| - |primintfldpoly| |wordInStrongGenerators| |cAtanh| |mappingAst| - |maxIndex| |outputForm| |minus!| |extractSplittingLeaf| - |squareFreeLexTriangular| |overset?| |pair?| |highCommonTerms| - |nextsousResultant2| |create3Space| |mapCoef| |f01maf| |eof?| - |zeroDimensional?| |getOperator| |argumentList!| |typeLists| |s17adf| - |commutativeEquality| |var1Steps| |resetVariableOrder| - |purelyAlgebraic?| |makeYoungTableau| |pastel| |baseRDEsys| |parent| - |collectUnder| |variationOfParameters| |clearTheFTable| - |quotedOperators| |GospersMethod| |palgintegrate| |exponential| - |child| |cyclotomicDecomposition| |leaves| |setAdaptive3D| |before?| - |empty| |upperCase?| |iifact| |transcendent?| |rootPoly| |complexForm| - |normal?| |univariatePolynomials| |setErrorBound| |cot2trig| |polyred| - |submod| |nil| |yellow| |meshFun2Var| |cAcsch| |d01amf| |macroExpand| - |coshIfCan| |zeroSetSplit| |OMReadError?| |integralBasis| |s18def| - |associator| |nextNormalPoly| |tryFunctionalDecomposition?| - |writeUInt8!| |addPoint| |knownInfBasis| |f02abf| - |createMultiplicationTable| |sub| |characteristicSet| - |leftExactQuotient| |outputGeneral| |coerceImages| |makeSketch| - |mkcomm| |e02agf| |quasiMonicPolynomials| |fortranCarriageReturn| - |isOpen?| |approximate| |extension| |fractRagits| |cardinality| - |getOrder| |OMgetEndApp| |lowerCase?| |select!| |nextsubResultant2| - |sum| |dominantTerm| |complex| |edf2ef| |minset| |imports| - |iteratedInitials| |stosePrepareSubResAlgo| |reducedForm| - |fortranCompilerName| |showAllElements| |padecf| |drawToScale| - |factorList| |viewSizeDefault| |localIntegralBasis| |iilog| - |ellipticCylindrical| |getIdentifier| |lfextlimint| |check| |bitTruth| - |acscIfCan| |headRemainder| |rank| |mapExpon| |wronskianMatrix| - |dmpToHdmp| |returns| |flexibleArray| |lookup| |point| |rk4a| - |discriminant| |cn| |divideIfCan!| |countable?| |vertConcat| |s19abf| - |debug| |fortranReal| |failed| |setRow!| |degreeSubResultantEuclidean| - |nilFactor| |qfactor| |isEquiv| |cTan| |argument| |Vectorise| D - |coercePreimagesImages| |iprint| |rightRegularRepresentation| - |lowerBound| |space| |outputAsTex| |evenlambert| |eulerE| |d02kef| - |leftTrace| |ridHack1| |modulus| |series| |basisOfLeftNucleus| - |squareFreeFactors| |lflimitedint| |e02bdf| |evaluateInverse| - |romberg| |uncouplingMatrices| |evaluate| |difference| |OMgetBVar| - |semiResultantReduitEuclidean| |setMinPoints| |genericRightNorm| - |normalForm| |inputOutputBinaryFile| |extractProperty| |mapDown!| - |cycles| |reducedContinuedFraction| |expandTrigProducts| |powmod| - |inverseIntegralMatrixAtInfinity| |resultantnaif| |boundOfCauchy| - |reify| |iisqrt2| |specialTrigs| |super| |perfectNthRoot| |lists| - |systemSizeIF| |fixedPointExquo| |coth2tanh| - |createNormalPrimitivePoly| |fortranInteger| |solve1| |min| - |bezoutMatrix| |sayLength| |coth2trigh| |prinb| |s13acf| |rk4qc| - |parseString| |coord| |listRepresentation| |printInfo| |eigenvector| - |deepestTail| |expenseOfEvaluation| - |dimensionOfIrreducibleRepresentation| |checkRur| |leftUnit| - |monomial?| |pushdterm| |ParCondList| |splitConstant| - |monicCompleteDecompose| |rightPower| |rootsOf| |hasTopPredicate?| - |getMultiplicationTable| |monomialIntPoly| |checkPrecision| - |complexEigenvalues| |sqfree| |substring?| |unitVector| - |matrixDimensions| |key| |bfKeys| |satisfy?| |nor| |rotatez| - |fortranLogical| |conjugates| |ldf2vmf| |predicates| |froot| - |whileLoop| |tensorProduct| |expintfldpoly| |leader| |nary?| - |integralMatrix| |overlap| |pointData| |suffix?| - |solveLinearPolynomialEquation| |filename| |graphCurves| - |mightHaveRoots| |argscript| |intersect| |iidprod| |genericPosition| - |minPol| |powerAssociative?| |makeResult| |symbolTable| - |loadNativeModule| |drawComplex| |zeroDim?| |mdeg| |distribute| - |insertBottom!| |rightNorm| |df2st| |primitiveElement| |prefix?| - |floor| |algebraicVariables| |parse| |mapBivariate| |e02def| |tableau| - |plus| |fortran| |OMencodingXML| |karatsubaOnce| |shufflein| |pdct| - |reduceLODE| |algebraicCoefficients?| |pushFortranOutputStack| - |domainTemplate| |blue| |readLine!| |max| |numericalOptimization| - |leftRankPolynomial| |airyBi| |leastPower| |cAcosh| - |popFortranOutputStack| |rectangularMatrix| |useEisensteinCriterion| - |removeZero| |weakBiRank| |graphState| |presub| |fixPredicate| |plus!| - |octon| |outputAsFortran| |c02aff| |readUInt8!| |wholePart| - |quickSort| |numberOfMonomials| |ddFact| |selectNonFiniteRoutines| - |f04axf| |rspace| |table| |colorDef| |OMreadStr| |cyclicEqual?| - |mindegTerm| |tubePoints| |lexTriangular| |e02aef| |precision| |times| - |inconsistent?| |hostByteOrder| |new| |stopTableGcd!| |swap!| - |semiDegreeSubResultantEuclidean| |mkIntegral| |appendPoint| - |cyclicCopy| |bernoulliB| |removeRedundantFactorsInPols| |viewpoint| - |infix?| |ptree| |oneDimensionalArray| |partialFraction| |printInfo!| - |nthFractionalTerm| |freeOf?| |flatten| |plotPolar| |mask| |e04ucf| - |rationalIfCan| |empty?| |subResultantGcdEuclidean| |addmod| - |quadraticForm| |extract!| |init| |getPickedPoints| |frobenius| - |s15adf| |setButtonValue| |range| |leadingIndex| |multisect| - |viewport3D| |homogeneous?| |functionIsOscillatory| |makeUnit| - |OMunhandledSymbol| |rewriteIdealWithQuasiMonicGenerators| - |selectSumOfSquaresRoutines| |monom| |stFuncN| |numberOfHues| |split| - |atanIfCan| |rootSimp| |setleft!| |critM| |cycleSplit!| |charpol| - |rule| |removeConstantTerm| |findConstructor| |makeVariable| - |setPrologue!| |genericRightMinimalPolynomial| |euclideanNormalForm| - |LyndonWordsList| |laguerreL| |dmp2rfi| |leftRank| |OMputInteger| - |yCoord| |finite?| |functionIsFracPolynomial?| |diagonalProduct| - |groebSolve| |hessian| |common| |wholeRadix| |ratpart| - |removeRoughlyRedundantFactorsInPol| |numberOfChildren| |notelem| - |script| |superHeight| |eigenvalues| |cscIfCan| GF2FG |bsolve| - |ODESolve| |combineFeatureCompatibility| |companionBlocks| - |subPolSet?| |imagJ| |title| |logGamma| |lowerCase| |OMputError| - |setEpilogue!| |pol| |lazyPremWithDefault| |subNodeOf?| |nthExpon| - |var1StepsDefault| |e02bcf| |prologue| |sequences| - |subresultantVector| |left| |vector| |nthCoef| |cAcoth| |f04atf| - |characteristicSerie| |tex| |front| |outerProduct| |d02gaf| - |disjunction| |alternatingGroup| |startTable!| |right| |differentiate| - |rischDE| |setProperties| |exponent| |buildSyntax| - |basisOfRightNucloid| |e| |inverseColeman| |d01anf| |makeViewport3D| - |basis| |extractIndex| |bindings| |alternating| |clipSurface| - |copyInto!| |numberOfFractionalTerms| |internal?| |coHeight| - |hitherPlane| |innerint| |cross| |returnTypeOf| |top!| |deepCopy| - |LowTriBddDenomInv| |escape| |complexSolve| |nextSublist| |makeFR| - |perfectNthPower?| |callForm?| |updatF| |slex| |var2Steps| |anfactor| - |rightRank| |outputAsScript| |lazyEvaluate| |newTypeLists| - |elaboration| |extractBottom!| |chebyshevT| |completeEval| |errorInfo| - |identity| |queue| |e01sef| |trim| |linears| |fracPart| |basicSet| - |repeatUntilLoop| |leadingIdeal| |shift| |unary?| |ricDsolve| - |selectfirst| |shape| |any| |po| |hash| |ipow| |axes| |makeCos| - |sequence| |edf2df| |primlimintfrac| |makeCrit| |packageCall| |count| - |subMatrix| |OMputEndError| |patternMatchTimes| |next| |s17dhf| - LODO2FUN |f04maf| |showTheSymbolTable| |readBytes!| |medialSet| - |module| |fi2df| |upDateBranches| |nextSubsetGray| |OMputEndApp| - |hexDigit?| |variable?| |deleteProperty!| |makeEq| |asechIfCan| - |clearTheIFTable| |concat!| |rationalFunction| |d02gbf| |points| - |blankSeparate| |oddInfiniteProduct| |qroot| |viewDefaults| |symbol| - |monicLeftDivide| |setPredicates| |delay| |doubleDisc| |powerSum| - |arity| |minColIndex| RF2UTS |substitute| |sturmSequence| |expression| - |separate| |probablyZeroDim?| |tan2cot| |extendedEuclidean| |bottom!| - |basisOfNucleus| |normalized?| |df2fi| |critpOrder| |integer| - |genericRightDiscriminant| |elliptic| |viewPosDefault| |cCoth| - |localUnquote| |f2df| |inHallBasis?| |linear| |f04asf| |addBadValue| - |minimumDegree| |sumOfSquares| |viewDeltaXDefault| |atrapezoidal| - |inf| |cAsech| |setScreenResolution3D| |c06frf| |constant?| - |generalizedEigenvector| |getMultiplicationMatrix| |elem?| |isAnd| - |normInvertible?| |relativeApprox| |car| |polynomial| - |rightDiscriminant| |moduloP| |high| |generalizedEigenvectors| - |shallowCopy| |lllp| |permutationRepresentation| |cup| |limit| - |linearlyDependent?| |s17aff| |laurentIfCan| |fibonacci| - |inverseLaplace| |basisOfRightNucleus| |erf| |aQuadratic| |result| - |denomLODE| |cycleLength| |maxrank| |startStats!| |algint| |Ei| - |s21bdf| |li| |makingStats?| |summation| |normalElement| |isTimes| - |computeCycleLength| |c06fuf| |stoseInvertibleSet| |insertMatch| - |deref| |stack| |dimensions| |tower| |isNot| - |lastSubResultantElseSplit| |s21bbf| |upperBound| |simpleBounds?| - |changeVar| |OMputObject| |linSolve| |euclideanGroebner| - |getBadValues| |complete| |optional?| |ode1| |s19adf| |pleskenSplit| - |chiSquare| |swapColumns!| |f01rcf| |normalizeAtInfinity| |isList| - |trigs2explogs| |makeSUP| |multiEuclidean| |character?| |reduction| - |harmonic| |rCoord| |zeroOf| |ranges| |pushdown| |asimpson| |eq| - |rightMult| |seed| |getMatch| |hermite| |chvar| |iter| |s14baf| - |psolve| |dim| |acoshIfCan| |d01aqf| |length| |c05adf| |minrank| - |iiGamma| |triangSolve| |irreducibleFactor| |f01rdf| |low| - |complexNumeric| |refine| |att2Result| |step| |scripts| - |numberOfFactors| |s13aaf| |tablePow| |toScale| |rightQuotient| - |positive?| |basisOfCommutingElements| |infinite?| |findBinding| - |concat| |schema| |irreducibleFactors| |expenseOfEvaluationIF| - |compdegd| |test| |computeCycleEntry| |kernels| |showAll?| - |decomposeFunc| |iiatan| |midpoint| |normalizedAssociate| |f01mcf| - |getDatabase| |aCubic| |divisors| |operator| |OMputString| |iomode| - |pquo| |drawStyle| |halfExtendedSubResultantGcd1| |recolor| |s13adf| - |moreAlgebraic?| |secIfCan| |subResultantGcd| |palgLODE| |gramschmidt| - |powern| |limitedIntegrate| |read!| |acosIfCan| |evenInfiniteProduct| - |stirling1| |integralMatrixAtInfinity| |univariate| |monomRDEsys| - |setTopPredicate| |tanhIfCan| |stoseIntegralLastSubResultant| |tanNa| - |factorsOfCyclicGroupSize| |d01asf| |key?| |generateIrredPoly| - |string?| |imagi| |iiatanh| |bitLength| |tubePointsDefault| |s17aef| - |nullSpace| |bipolar| |eulerPhi| |e01bff| |listYoungTableaus| |prefix| - |fortranDoubleComplex| |setleaves!| |cos2sec| |factor| |currentScope| - |mesh?| |messagePrint| |postfix| |measure| |sortConstraints| |goto| - |intermediateResultsIF| |innerSolve| |sqrt| |makeSin| |s18aef| |imagK| - |createNormalElement| |socf2socdf| |singularitiesOf| - |primPartElseUnitCanonical| |OMlistSymbols| |besselK| |real| - |setPosition| |exptMod| |merge!| |perfectSqrt| |antiAssociative?| - |graeffe| |ldf2lst| |pdf2df| |geometric| |imag| |clipParametric| - |declare| |OMgetEndAttr| |unrankImproperPartitions1| |stop| - |inRadical?| |f02bjf| |gethi| |modularGcdPrimitive| |musserTrials| - |OMopenFile| |directProduct| |squareMatrix| |c06eaf| |karatsubaDivide| - |factorial| |mr| |sncndn| |rootOfIrreduciblePoly| - |standardBasisOfCyclicSubmodule| |SturmHabichtSequence| - |incrementKthElement| |extendedIntegrate| |pseudoRemainder| - |permutationGroup| |rootNormalize| |noncommutativeJordanAlgebra?| - |expPot| SEGMENT |identification| |charthRoot| |brace| |kind| - |superscript| |numberOfNormalPoly| |LiePolyIfCan| |squareFreePart| - |rootPower| |linearDependence| |write!| |categories| |parametersOf| - |changeWeightLevel| |destruct| |jacobiIdentity?| |outputBinaryFile| - |cSec| |op| |spherical| |hasSolution?| |mantissa| |changeBase| - |d01apf| |depth| |derivationCoordinates| |rewriteSetWithReduction| - |d03faf| |subscriptedVariables| |c06ecf| |PDESolve| |typeForm| - |reduced?| |hMonic| |removeCosSq| |plot| |stoseInvertibleSetsqfreg| - |lfextendedint| |opeval| |coefficient| |validExponential| |leftGcd| - |level| |dimensionsOf| |stoseInvertible?sqfreg| |ScanRoman| |pade| - |nthRoot| |times!| |permanent| |cSech| |fortranCharacter| |biRank| - |exprHasWeightCosWXorSinWX| |se2rfi| |algebraic?| |monomial| - |lazyPrem| |conjunction| |dual| |rk4| |sumOfDivisors| |writeInt8!| - |nthRootIfCan| |removeRedundantFactors| |endSubProgram| |multivariate| - |topFortranOutputStack| |f01brf| |cdr| |f02wef| |solveLinearlyOverQ| - |definingEquations| |monicDecomposeIfCan| - |generalizedContinuumHypothesisAssumed?| |cylindrical| |variables| - |critMTonD1| |kmax| |union| |completeSmith| |unitNormal| - |realEigenvectors| |lifting| |composites| |rdregime| |getExplanations| - |genericLeftTraceForm| |antiCommutator| |cotIfCan| |saturate| - |prindINFO| |readUInt32!| |simplifyLog| |adjoint| |toseInvertibleSet| - |resetNew| |innerSolve1| |rightGcd| |numericalIntegration| |npcoef| - |mergeDifference| |commutator| |indicialEquations| |dark| |prime| - |iicot| |setMaxPoints3D| |mirror| |generators| |logical?| |initTable!| - |symbolTableOf| |expandLog| |denomRicDE| |universe| |OMencodingSGML| - |readInt32!| |createGenericMatrix| |hermiteH| |trunc| - |bezoutDiscriminant| |slash| |taylor| |useSingleFactorBound?| - |numFunEvals3D| |bothWays| |comp| |genericRightTrace| |explogs2trigs| - |pile| |collectUpper| |groebner?| |hasPredicate?| |laurent| |newLine| - |rightZero| |divergence| |lazyPseudoQuotient| |Is| |listOfMonoms| - |getOperands| |partialNumerators| |quasiMonic?| |reverse| |puiseux| - |meatAxe| |isMult| |symmetricProduct| |outputArgs| |edf2efi| - |rootBound| |expIfCan| |pointLists| |groebnerIdeal| |e02ddf| - |rational| |stopTable!| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |toScale| |conditionP| |parents| |e01bgf| + |stoseInvertibleSetreg| |multiset| |trigs| |radPoly| + |removeConstantTerm| |systemCommand| |inv| |ravel| |match?| + |nextPrime| |ScanFloatIgnoreSpaces| |coshIfCan| |maximumExponent| + |rightQuotient| |basisOfLeftAnnihilator| |iicoth| |autoCoerce| |ord| + |nil?| |findConstructor| |leftRecip| |ground?| |reshape| + |skewSFunction| |extractTop!| |zeroSetSplit| |noLinearFactor?| + |positive?| |antisymmetric?| |cTanh| |leftRemainder| |makeVariable| + |tanQ| |ground| |children| |OMReadError?| + |unprotectedRemoveRedundantFactors| |basisOfCommutingElements| + |leftUnits| |partialDenominators| |complexExpand| + |removeRoughlyRedundantFactorsInPols| |mkAnswer| |setPrologue!| + |leadingMonomial| |normal| |basisOfRightAnnihilator| |imagE| + |integralBasis| |infinite?| |headReduce| |factorset| + |leftCharacteristicPolynomial| |symmetricPower| |kroneckerDelta| + |genericRightMinimalPolynomial| |leadingCoefficient| |d01ajf| + |createLowComplexityNormalBasis| |s18def| |findBinding| + |setMinPoints3D| |idealiserMatrix| |radicalOfLeftTraceForm| + |crushedSet| |euclideanNormalForm| |birth| |primitiveMonomials| + |close| |polyRDE| |associator| |rewriteIdealWithHeadRemainder| + |schema| |airyAi| F |mainCharacterization| |complexLimit| |s17dgf| + |derivative| |LyndonWordsList| |reductum| |update| |updatD| + |nextNormalPoly| |subQuasiComponent?| |irreducibleFactors| + |mainVariable| |iroot| |tanh2coth| |rotate| |consnewpol| |laguerreL| + |display| |OMsetEncoding| |doubleRank| |tryFunctionalDecomposition?| + |expenseOfEvaluationIF| |distance| |digit| |primitivePart| + |byteBuffer| |dmp2rfi| |number?| |writeUInt8!| |decompose| |compdegd| + |alphabetic| |iipow| |unparse| |leftRank| |cosh2sech| |OMputBVar| + |Gamma| |screenResolution3D| |addPoint| |computeCycleEntry| |Beta| + |getProperties| |rightOne| |setColumn!| |OMputInteger| |ramified?| + |knownInfBasis| |semiLastSubResultantEuclidean| |showAll?| |root| + |hasoln| |RittWuCompare| |genericLeftMinimalPolynomial| |yCoord| + |position| |iisqrt3| |f02abf| |sechIfCan| |expr| |decomposeFunc| + |bracket| |selectFiniteRoutines| |cubic| |finite?| |rightDivide| + |input| ** |red| |createMultiplicationTable| |tab| |iiatan| + |imaginary| |operation| |basisOfCentroid| + |removeRedundantFactorsInContents| |functionIsFracPolynomial?| + |intPatternMatch| |library| |extractPoint| |UnVectorise| |sub| + |midpoint| |pack!| |hcrf| |printHeader| |decrease| |diagonalProduct| + |qinterval| |accuracyIF| |characteristicSet| |normalizedAssociate| + |complement| |elRow1!| |groebSolve| |OMgetObject| |wrregime| + |fixedPoints| |inspect| |palglimint| |leftExactQuotient| |size| + |variable| |f01mcf| |clipPointsDefault| |bandedJacobian| |ListOfTerms| + |symbol?| |hessian| |UpTriBddDenomInv| |outputGeneral| |failed?| + |iterators| |power| |getDatabase| |constantOpIfCan| |fprindINFO| + |const| |content| |wholeRadix| |BumInSepFFE| |set| |B1solve| + |leviCivitaSymbol| |coerceImages| |aCubic| |cycleElt| |cycleEntry| + |cAsinh| |f04qaf| |sizeLess?| |ratpart| |f04adf| |makeSketch| + |cyclotomicFactorization| |divisors| |previous| |hclf| |build| UTS2UP + |minRowIndex| |removeRoughlyRedundantFactorsInPol| |rowEchelon| + |gcdPrimitive| |mkcomm| |iflist2Result| |OMputString| |bigEndian| + |splitNodeOf!| |exteriorDifferential| |horizConcat| + |tryFunctionalDecomposition| |numberOfChildren| |extractIfCan| + |rightAlternative?| |e02agf| |iomode| |clipWithRanges| |maxPoints3D| + |degreePartition| |notelem| |rk4f| |permutations| |rootSplit| + |duplicates| |quasiMonicPolynomials| |pquo| |factorials| + |infinityNorm| |simplifyExp| |superHeight| |mathieu12| |say| + |fortranCarriageReturn| |multiple?| |algintegrate| |true| |drawStyle| + |arguments| |eigenvalues| |tan2trig| |pseudoQuotient| |mapUnivariate| + |OMwrite| |leadingBasisTerm| |meshPar2Var| |isOpen?| + |halfExtendedSubResultantGcd1| |category| |Nul| |laplacian| + |stoseInvertible?| |property| |reset| |cscIfCan| |bumptab| |node| + |localReal?| |extension| |linear?| |recolor| |domain| + |exponentialOrder| GF2FG |groebgen| |makeViewport2D| |radicalSimplify| + |removeCoshSq| |insert| |complementaryBasis| |fractRagits| |s13adf| + |package| |rightUnits| |putColorInfo| |sinhIfCan| |axesColorDefault| + |write| |bsolve| |inc| |cAcos| |cardinality| |extendedint| |exp| + |moreAlgebraic?| |getConstant| |save| |cCot| |leadingCoefficientRicDE| + |ODESolve| |stoseInternalLastSubResultant| |primitive?| |show| + |c06gcf| |getOrder| |secIfCan| |combineFeatureCompatibility| + |numberOfDivisors| |corrPoly| |differentialVariables| + |useNagFunctions| |currentSubProgram| |OMgetEndApp| + |internalLastSubResultant| |viewWriteDefault| |subResultantGcd| |heap| + |companionBlocks| |real?| |ramifiedAtInfinity?| |trace| |lowerCase?| + |UP2ifCan| |bit?| |palgLODE| |integralCoordinates| |oddlambert| + |exportedOperators| |sizeMultiplication| |subPolSet?| + |antisymmetricTensors| |select!| |c06gsf| |gramschmidt| |polar| + |interval| |outputFixed| |imagJ| |qualifier| |varList| |OMreceive| + |f07fdf| |nextsubResultant2| |powern| |quotient| |elColumn2!| + |logGamma| |shellSort| |ideal| |printingInfo?| |limitedIntegrate| + |maxPoints| |prepareSubResAlgo| |arrayStack| |extendedResultant| + |lowerCase| |outputSpacing| |squareFreePrim| |updateStatus!| |read!| + |open| |setPoly| |tanSum| |processTemplate| |OMputError| |cosSinInfo| + |child?| |swap| |closedCurve| |acosIfCan| |s17dcf| |magnitude| + |makeMulti| |indiceSubResultantEuclidean| |setEpilogue!| |clikeUniv| + |critBonD| |subResultantsChain| |evenInfiniteProduct| |obj| + |retractIfCan| |digit?| |head| |unmakeSUP| |double| |quadratic?| + |c06ekf| |viewPhiDefault| |stirling1| |cache| |constant| + |numberOfComponents| |integers| |leftRankPolynomial| |cfirst| + |pointColor| |infiniteProduct| |multinomial| |weight| |operations| + |integralMatrixAtInfinity| |writeByte!| |integer?| + |linearAssociatedLog| |airyBi| |unit?| |regularRepresentation| + |conical| |sin?| |monomRDEsys| |degreeSubResultant| + |selectPDERoutines| |iicsch| |leastPower| |oblateSpheroidal| + |rischNormalize| |log10| |element?| |chebyshevU| |find| + |initiallyReduced?| |cAcosh| |f07adf| |setStatus!| |size?| |lazy?| + |definingInequation| |bitand| |inverseLaplace| |infinity| + |tanintegrate| |acothIfCan| |simplifyPower| |rectangularMatrix| + |edf2fi| |aromberg| |setClosed| |bumprow| |bitior| + |basisOfRightNucleus| |distFact| |cyclicEntries| + |useEisensteinCriterion| |besselI| |vedf2vef| |genericLeftTrace| + |transpose| |keys| |OMgetFloat| |aQuadratic| |alphanumeric| + |symmetricSquare| |colorFunction| |removeZero| |gderiv| + |doublyTransitive?| |physicalLength!| |open?| |kernel| |denomLODE| + |weakBiRank| |map| |d01akf| |discriminantEuclidean| |voidMode| + |isQuotient| |mirror| |patternMatch| |headAst| |singular?| |d02cjf| + |list| |cycleLength| |separateDegrees| |logpart| |OMencodingBinary| + |generators| |removeSuperfluousQuasiComponents| |graphState| |print| + |lhs| |ocf2ocdf| |leftAlternative?| |splitDenominator| |draw| + |maxrank| |logical?| |resolve| |getVariableOrder| |shiftRight| + |overbar| |presub| |rhs| |singRicDE| |internalInfRittWu?| + |polynomialZeros| |inverseIntegralMatrix| |startStats!| |e04naf| + |presuper| |cSin| |fixPredicate| |initTable!| |closed?| + |leftRegularRepresentation| |gradient| |OMgetEndError| |algint| + |currentEnv| |coordinate| |lighting| |plus!| |univariateSolve| + |expextendedint| |symbolTableOf| |separant| |exists?| |roman| |Ei| + |iisinh| |convert| |cothIfCan| |octon| |height| |principalIdeal| + |expandLog| |clearTable!| |rootOf| |LazardQuotient2| + |lazyResidueClass| |makeObject| |s21bdf| |rst| |cyclotomic| |c02aff| + |purelyAlgebraicLeadingMonomial?| |primaryDecomp| |denomRicDE| + |complexElementary| |tubePlot| |status| |makingStats?| |coef| |Ci| + |complexNormalize| |readUInt8!| |adaptive?| |universe| |parts| + |swapRows!| |radix| |upperCase| |summation| |dom| + |createLowComplexityTable| |infix| |wholePart| |stFunc1| + |OMencodingSGML| |generalLambert| |capacity| |sumSquares| + |normalElement| |ignore?| |pToHdmp| Y |genus| |quickSort| |readInt32!| + |reducedDiscriminant| |ref| |lastSubResultant| |isTimes| |curveColor| + |closed| |numberOfMonomials| |addPoint2| |createGenericMatrix| + |readIfCan!| |categoryFrame| |readUInt16!| |computeCycleLength| + |label| |resultantEuclidean| |typeList| |ddFact| |rarrow| |hermiteH| + |rewriteSetByReducingWithParticularGenerators| |scaleRoots| |scale| + |c06fuf| |entry| |rombergo| |OMParseError?| |setchildren!| + |selectNonFiniteRoutines| |trunc| |printCode| |internalIntegrate0| + |primintfldpoly| |stoseInvertibleSet| |polyRicDE| + |semiDiscriminantEuclidean| |f04axf| |OMputBind| |bezoutDiscriminant| + |normFactors| |partialQuotients| |wordInStrongGenerators| + |insertMatch| |getZechTable| |latex| |s14abf| |rspace| + |numberOfPrimitivePoly| |slash| |lambert| |cAtanh| |rowEchLocal| + |deref| |triangulate| |insert!| |frst| |colorDef| + |useSingleFactorBound?| |csch2sinh| |fortranTypeOf| |mappingAst| + |mapmult| |dimensions| |debug3D| |rootProduct| |minPoints3D| + |OMreadStr| |removeSquaresIfCan| |numFunEvals3D| |central?| |incr| + |maxIndex| |monicRightFactorIfCan| |isNot| |torsionIfCan| + |approximants| |c02agf| |dfRange| |cyclicEqual?| |bothWays| + |constructor| |putProperty| |hi| |outputForm| |qqq| + |lastSubResultantElseSplit| |tail| |setLabelValue| + |indicialEquationAtInfinity| |intensity| |mindegTerm| + |genericRightTrace| |OMgetBind| |double?| |minus!| |s21bbf| |option| + |scanOneDimSubspaces| |selectMultiDimensionalRoutines| |decimal| + |tubePoints| |showSummary| |explogs2trigs| |zero?| |resetBadValues| + |extractSplittingLeaf| |upperBound| |generic| |irDef| |csc2sin| + |lexTriangular| |pile| |rules| |units| |rootRadius| + |squareFreeLexTriangular| |fractionPart| |simpleBounds?| |top| + |iCompose| |hue| |e02aef| |lllip| |showAttributes| |collectUpper| + |exprHasLogarithmicWeights| |overset?| |setEmpty!| |changeVar| + |continue| |diff| |compose| |inconsistent?| |viewZoomDefault| + |groebner?| |extractClosed| |back| |pair?| |OMputObject| |nsqfree| + |invertible?| |readInt16!| |hostByteOrder| |hasPredicate?| + |highCommonTerms| |resize| |leftFactor| |name| |unknown| |linSolve| + |OMputVariable| |preprocess| |doubleResultant| |stopTableGcd!| + |newLine| |tracePowMod| |comment| |quartic| |nextsousResultant2| + |body| |euclideanGroebner| |arbitrary| |isobaric?| |swap!| |s19acf| + |rightZero| |code| |csubst| |stoseInvertible?reg| |create3Space| + |getBadValues| |getCode| |minPoints| |semiDegreeSubResultantEuclidean| + |solveRetract| |divergence| |compound?| |mapCoef| |atanhIfCan| + |complete| |null| |pdf2ef| |putGraph| |mkIntegral| |factorAndSplit| + |lazyPseudoQuotient| |f02aaf| |box| |f01maf| |aQuartic| |optional?| + |delta| |not| EQ |BasicMethod| |choosemon| |appendPoint| |trueEqual| + |Is| |ScanFloatIgnoreSpacesIfCan| |binarySearchTree| |eof?| |ode1| + |and| |asinhIfCan| |nodeOf?| |pushucoef| |cyclicCopy| |listOfMonoms| + |genericLeftNorm| |generate| |toroidal| |zeroDimensional?| |s19adf| + |or| |computeInt| |attributeData| |bernoulliB| |cyclicGroup| + |getOperands| |curryRight| |bytes| |getOperator| |pleskenSplit| + |bezoutResultant| |xor| |badNum| |more?| |assert| + |removeRedundantFactorsInPols| |partialNumerators| |incrementBy| + |s17ajf| |port| |lowerCase!| |argumentList!| |chiSquare| |pattern| + |case| |zeroVector| |e01bef| |parametric?| |viewpoint| |quasiMonic?| + |expand| |viewWriteAvailable| |typeLists| |monicDivide| |swapColumns!| + |Zero| |copies| |revert| |oneDimensionalArray| |leftExtendedGcd| + |meatAxe| |s17adf| |filterWhile| |unexpand| |t| |squareFree| |f01rcf| + |One| |powers| |nextColeman| |rightRankPolynomial| |partialFraction| + |isMult| |idealiser| |filterUntil| |dictionary| |commutativeEquality| + |normalizeAtInfinity| |lambda| |functionIsContinuousAtEndPoints| + |iisec| |compBound| |alternative?| |printInfo!| |search| + |symmetricProduct| |xn| |select| |var1Steps| |polygon?| |isList| + |message| |increment| |iFTable| |enqueue!| |moebius| + |nthFractionalTerm| |outputArgs| |useEisensteinCriterion?| + |completeEchelonBasis| |resetVariableOrder| |trigs2explogs| + |conjugate| |root?| |freeOf?| |nthExponent| |edf2efi| |tanAn| + |purelyAlgebraic?| |minordet| |makeSUP| |nrows| |nextPartition| + |viewDeltaYDefault| |compiledFunction| |plotPolar| |rootBound| + |balancedFactorisation| |makeYoungTableau| |multiEuclidean| |ncols| + |elt| |complexEigenvectors| |tanIfCan| |sort!| |e04ucf| |expIfCan| + |trapezoidal| |retract| |pastel| |cyclePartition| |character?| + |groebner| |quasiRegular?| |rationalIfCan| |bumptab1| |pointLists| + |dilog| |c06gqf| |zero| |baseRDEsys| |pointColorDefault| |reduction| + |splitLinear| |node?| |associatedEquations| |empty?| |any?| + |groebnerIdeal| |cons| |sin| |makeRecord| |assign| |parent| |harmonic| + F2FG |subResultantGcdEuclidean| |randnum| |nothing| |e02ddf| |And| + |cos| |collectUnder| |ceiling| |rCoord| |e02dcf| |OMgetAttr| |addmod| + |palgRDE0| |cAcsc| |rational| |Or| |tan| |weights| + |variationOfParameters| |zeroOf| |sdf2lst| |numberOfComposites| + |jacobian| |quadraticForm| |Not| |stopTable!| |hdmpToP| |cot| + |clearTheFTable| |limitPlus| |ranges| |call| |one?| |extract!| + |OMcloseConn| |condition| |semiSubResultantGcdEuclidean1| |sec| + |pushdown| |fixedPoint| |twist| |writeBytes!| |support| + |getPickedPoints| |contract| |csc| |OMputEndAtp| |getGraph| |asimpson| + |collectQuasiMonic| |d02raf| |middle| |frobenius| |e01sff| |interpret| + |s18dcf| |source| |asin| |log2| |stoseSquareFreePart| |rightMult| + |showArrayValues| |connect| |s15adf| |deleteRoutine!| |dec| + |setScreenResolution| |acos| |solid?| |prevPrime| |seed| |curry| + |scan| |internalIntegrate| |factorPolynomial| |atan| |OMgetVariable| + |plusInfinity| |getMatch| |block| |externalList| |permutation| + |getMultiplicationTable| |stiffnessAndStabilityOfODEIF| + |minusInfinity| |acot| |totalGroebner| |equiv| |hermite| |char| + |recur| |var2StepsDefault| |monomialIntPoly| |pushuconst| + |printStatement| |asec| |selectsecond| |linearlyDependentOverZ?| + |chvar| |quadraticNorm| |minIndex| |iiperm| |complexEigenvalues| + |totalfract| |acsc| |target| |lifting1| |setValue!| |OMopenString| + |quotientByP| |backOldPos| |sqfree| |wordInGenerators| |sinh| + |normDeriv2| |stripCommentsAndBlanks| |OMUnknownSymbol?| + |setPredicates| |factorByRecursion| |areEquivalent?| |splitSquarefree| + |unitVector| |abs| |cosh| |equality| |dequeue| |constDsolve| |delay| + |mainPrimitivePart| |argumentListOf| |ffactor| |matrixDimensions| + |type| |e02bef| |tanh| |mainMonomial| |closeComponent| |goodnessOfFit| + |doubleDisc| |outputList| |d02bbf| |headReduced?| |bfKeys| |crest| + |coth| |terms| |rightMinimalPolynomial| |fortranLiteral| |powerSum| + |semiResultantEuclidean2| |fullDisplay| |OMputApp| |satisfy?| + |symmetricGroup| |float| |qelt| |times!| |lyndonIfCan| |mainForm| + |sech| |arity| |internalZeroSetSplit| |factorSquareFreePolynomial| + |second| |nor| |rowEch| |taylorRep| |qsetelt| |listConjugateBases| + |permanent| |conditionsForIdempotents| |csch| |redmat| |subHeight| + |readLineIfCan!| |minColIndex| |third| |rotatez| |moebiusMu| + |commaSeparate| |setfirst!| |xRange| |cSech| |getlo| |asinh| + |ratDsolve| |maxdeg| |dualSignature| RF2UTS |associatorDependence| + |fortranCharacter| |indices| |xCoord| |fortranLogical| |yRange| + |compile| |void| |OMgetEndBVar| |acosh| |deepExpand| |OMgetAtp| + |relationsIdeal| |substitute| |rightCharacteristicPolynomial| + |belong?| |semiResultantEuclidean1| |conjugates| |zRange| |biRank| + |bfEntry| |is?| |atanh| |withPredicates| |augment| |sn| + |sturmSequence| |inrootof| |ldf2vmf| |scripted?| |lowerPolynomial| + |map!| |exprHasWeightCosWXorSinWX| |applyRules| |acoth| + |nextPrimitivePoly| |replace| |generalInfiniteProduct| |separate| + |dihedral| |qsetelt!| |close!| |identitySquareMatrix| |predicates| + |se2rfi| |bernoulli| |asech| |setLegalFortranSourceExtensions| + |solveid| |probablyZeroDim?| |create| |Aleph| |fill!| |charClass| + |froot| |algebraic?| UP2UTS |cyclic| |semiResultantEuclideannaif| + |optpair| |tan2cot| |whileLoop| |nodes| |sign| |setOfMinN| GE + |lazyPrem| |multiple| |indiceSubResultant| |heapSort| |testDim| + |extendedEuclidean| |sturmVariationsOf| |sparsityIF| |relerror| + |orthonormalBasis| |tensorProduct| GT |conjunction| |dn| |applyQuote| + |maxColIndex| |rightFactorIfCan| |elliptic?| |bottom!| |expintfldpoly| + |transcendenceDegree| |youngDiagram| |iExquo| LE |dual| |randomR| + |makeSeries| |hostPlatform| |basisOfNucleus| |multiplyExponents| + |predicate| |nary?| |setDifference| LT |firstDenom| |sech2cosh| + |acsch| |rk4| |virtualDegree| |invertibleElseSplit?| |null?| + |divideIfCan| |normalized?| |pureLex| |subNode?| |reduceByQuasiMonic| + |integralMatrix| |dot| |sumOfDivisors| |laplace| |ruleset| + |createNormalPoly| |quasiRegular| |df2fi| |PollardSmallFactor| + |halfExtendedResultant1| |structuralConstants| |unravel| |overlap| + |subst| |writeInt8!| |iiacot| |binomial| |critpOrder| |constantKernel| + |zag| |makeprod| |rangeIsFinite| |laurentRep| |pointData| + |quasiComponent| |nthRootIfCan| |setprevious!| |iisin| + |factorsOfDegree| |shiftLeft| |genericRightDiscriminant| |transform| + |getRef| |ReduceOrder| |associative?| |solveLinearPolynomialEquation| + |directory| |removeRedundantFactors| |iiasin| |d03eef| |suchThat| + |problemPoints| |separateFactors| |elliptic| |tree| |index| |listexp| + |cycleTail| |denominator| |graphCurves| |endSubProgram| |rquo| + |nullary?| |brillhartIrreducible?| |subtractIfCan| |viewPosDefault| + |trailingCoefficient| |makeFloatFunction| |primextendedint| + |mightHaveRoots| |initial| |topFortranOutputStack| |scalarMatrix| + |integerBound| |linearDependenceOverZ| |cCoth| |definingPolynomial| + |maxRowIndex| |solve| |semiIndiceSubResultantEuclidean| |argscript| + |f01brf| |ratPoly| |complexZeros| |hexDigit| |listLoops| + |localUnquote| |decreasePrecision| |pair| |e02daf| |besselJ| + |randomLC| |intersect| |objects| |cdr| |f2df| |rightTrim| + |hyperelliptic| |e04mbf| |jokerMode| |bright| |symbolIfCan| + |meshPar1Var| |parameters| |comparison| |nextNormalPrimitivePoly| + |iidprod| |moduleSum| |f02wef| |base| |leftTrim| |mesh| + |irreducibleRepresentation| |computePowers| |inHallBasis?| + |ip4Address| |arg1| |irForm| |legendre| |genericPosition| |rename| + |solveLinearlyOverQ| |exprHasAlgebraicWeight| |unaryFunction| |zCoord| + |eval| |f04asf| |s17ahf| |arg2| |leftMinimalPolynomial| + |primitivePart!| |minPol| |tanh2trigh| |definingEquations| + |coerceListOfPairs| |leftNorm| |pointPlot| |rationalPoints| + |addBadValue| |resetAttributeButtons| |coleman| |powerAssociative?| + |LiePoly| |monicDecomposeIfCan| |factors| |pomopo!| |norm| + |minimumDegree| |showScalarValues| |conditions| |cap| |expint| + |makeResult| |supDimElseRittWu?| + |generalizedContinuumHypothesisAssumed?| |getProperty| |subCase?| + |error| |resultantReduitEuclidean| |sumOfSquares| + |linearAssociatedOrder| |divide| |match| |rotatex| |fintegrate| + |drawComplex| |constantIfCan| |cylindrical| |outputMeasure| + |mainVariable?| |equation| |twoFactor| |mapdiv| |viewDeltaXDefault| + |isOr| |d02bhf| |remainder| |zeroDim?| |less?| |critMTonD1| + |replaceKthElement| |modTree| |rewriteIdealWithRemainder| |diag| + |atrapezoidal| |iiasec| |function| |removeSinSq| |rightLcm| |mdeg| + |kmax| |optimize| |elseBranch| |clearFortranOutputStack| |OMgetSymbol| + |inf| |redpps| |partitions| |sinIfCan| |distribute| |realSolve| + |completeSmith| |invertibleSet| |patternVariable| |setMaxPoints| + |setProperty| |cAsech| |leftMult| |normalise| |insertBottom!| + |padicallyExpand| |unitNormal| BY |mainExpression| |forLoop| + |leadingExponent| |polCase| |setScreenResolution3D| + |triangularSystems| |sec2cos| |rightNorm| |returnType!| + |realEigenvectors| |approxNthRoot| |putProperties| |round| |c06frf| + |perspective| |brillhartTrials| |constantCoefficientRicDE| |bag| + |df2st| |lifting| |fixedDivisor| |has?| |s20adf| |tValues| |constant?| + |style| |normal01| |unknownEndian| |primitiveElement| |composites| + |ScanArabic| |reverseLex| |initiallyReduce| |generalizedEigenvector| + |viewport2D| |elaborateFile| |exprToGenUPS| |sort| |badValues| |floor| + |rdregime| |s18aff| |rischDEsys| |setVariableOrder| |normalDeriv| + |getMultiplicationMatrix| |constantLeft| |noKaratsuba| + |rightExactQuotient| |algebraicVariables| |getExplanations| + |denominators| |rem| |integralAtInfinity?| |semicolonSeparate| + |credPol| |elem?| |properties| |btwFact| |setlast!| |mapBivariate| + |diophantineSystem| |genericLeftTraceForm| |quo| |acotIfCan| + |reducedQPowers| |hasHi| FG2F |isAnd| |id| |removeDuplicates| NOT + |normalizeIfCan| |mathieu22| |e02def| |translate| |antiCommutator| + |writeLine!| |setright!| |cCsch| |normInvertible?| |digits| |lo| + |roughBase?| OR |monicModulo| |random| |poisson| |tableau| |cotIfCan| + |startPolynomial| |div| |numberOfVariables| |possiblyInfinite?| + |monicRightDivide| |relativeApprox| |lcm| AND |primintegrate| + |OMmakeConn| |explicitEntries?| |OMencodingXML| |saturate| + |sizePascalTriangle| |exquo| |adaptive| |delete| |dflist| |car| + |triangular?| |rotate!| |completeHensel| |karatsubaOnce| |prindINFO| + |isConnected?| ~= |d01gbf| |cyclicParents| |rightDiscriminant| + |plenaryPower| |lift| |zerosOf| |redPol| |append| |shufflein| + |SturmHabicht| |readUInt32!| |doubleFloatFormat| |#| + |numberOfOperations| |Lazard| |schwerpunkt| |moduloP| |reduce| + |gcdcofact| |leftPower| |mapSolve| |pdct| |gcd| |simplifyLog| + |bivariate?| ~ |whitePoint| |printTypes| |rubiksGroup| |high| |e04ycf| + |reduceLODE| |false| |adjoint| |algebraicOf| |findCycle| |dimension| + |generalizedEigenvectors| |rightScalarTimes!| |s19aaf| |rationalPower| + |isImplies| |algebraicCoefficients?| |toseInvertibleSet| |realZeros| + |binaryTree| |generalSqFr| |apply| |expressIdealMember| |shallowCopy| + |getButtonValue| |bivariatePolynomials| |domainTemplate| + |extendedSubResultantGcd| |resetNew| |seriesToOutputForm| + |unitsColorDefault| |/\\| |setvalue!| |matrix| |first| |padicFraction| + |lllp| |cschIfCan| |lagrange| |blue| |aLinear| |innerSolve1| |mindeg| + |\\/| |rest| |selectPolynomials| |permutationRepresentation| + |basisOfMiddleNucleus| |leftDivide| |lp| |readLine!| |prime?| + |rightGcd| |e01bhf| |intcompBasis| |leftQuotient| |cup| |green| + |overlabel| |explicitlyFinite?| |coerce| * |generalizedInverse| |max| + |numericalIntegration| |e04dgf| |reorder| |removeZeroes| + |infieldIntegrate| |limit| |changeName| |cSinh| |construct| + |numericalOptimization| |subResultantChain| |npcoef| |s20acf| + |LyndonCoordinates| |reseed| |linearlyDependent?| |numer| + |SturmHabichtMultiple| |palgint0| |totolex| |generator| + |mergeDifference| |graphs| |sylvesterSequence| |recip| |s17aff| |nthr| + |denom| |exQuo| |torsion?| |univariate?| = |squareFreeFactors| + |commutator| |repeating?| |f01ref| |algebraicDecompose| |removeSinhSq| + |laurentIfCan| |pmComplexintegrate| |initializeGroupForWordProblem| + |lflimitedint| |LyndonWordsList1| |indicialEquations| |curve?| + |absolutelyIrreducible?| |testModulus| |fillPascalTriangle| + |fibonacci| |pi| |byte| |bandedHessian| |e02bdf| |tube| < |mathieu23| + |dark| |parabolic| |f02adf| |OMputFloat| |createMultiplicationMatrix| + |width| |beauzamyBound| > |evaluateInverse| |isExpt| |prime| + |expintegrate| |rdHack1| |exactQuotient!| |binaryTournament| + |elaboration| |gcdprim| |in?| |mapGen| <= |romberg| |iicot| + |OMgetType| |clip| |nonLinearPart| |extractBottom!| |e01baf| + |uncouplingMatrices| |leftDiscriminant| |nthFlag| >= |maxrow| + |trivialIdeal?| |setMaxPoints3D| |principal?| |power!| |supersub| + |chebyshevT| |subspace| |iisech| |mapMatrixIfCan| |explicitlyEmpty?| + |prepareDecompose| |evaluate| |removeDuplicates!| |scopes| |maxint| + |completeEval| |computeBasis| |contains?| |autoReduced?| |direction| + |difference| |sample| |musserTrials| |squareFreePolynomial| |mvar| + |internalSubQuasiComponent?| |errorInfo| |part?| |palgextint0| + |numerator| |lazyIrreducibleFactors| + |lexico| |OMgetBVar| + |OMopenFile| |identity| |value| |addMatchRestricted| |clearCache| + |negative?| |list?| |solveLinear| |numeric| |algSplitSimple| |int| + |square?| |pushNewContour| - |semiResultantReduitEuclidean| + |squareMatrix| |curveColorPalette| |mix| |radical| |polygon| |f04arf| + |queue| |elaborate| |optional| |leftTraceMatrix| |countRealRoots| / + |setMinPoints| |c06eaf| |df2ef| |repeating| |nativeModuleExtension| + |anticoord| |e01sef| |zeroMatrix| |log| |product| |genericRightNorm| + |adaptive3D?| |karatsubaDivide| |changeNameToObjf| |OMencodingUnknown| + |primPartElseUnitCanonical!| |e02baf| |trim| |indicialEquation| + |routines| |interactiveEnv| |normalForm| |factorial| |s18acf| |odd?| + |commonDenominator| |linears| |e01saf| |signature| |iitanh| + |coefficients| |setelt| |invmod| |inputOutputBinaryFile| |sncndn| + |fractRadix| |lfintegrate| |setOrder| |fracPart| |f02xef| + |genericRightTraceForm| |column| |isPlus| |extractProperty| + |rootOfIrreduciblePoly| |declare!| |polarCoordinates| |coefChoose| + |selectIntegrationRoutines| |cAtan| |basicSet| |lieAlgebra?| + |recoverAfterFail| |copy| |mapDown!| |subSet| + |standardBasisOfCyclicSubmodule| |listOfLists| |deepestInitial| + |radicalRoots| |repeatUntilLoop| |e02zaf| |interReduce| + |algebraicSort| |integral?| |cycles| |SturmHabichtSequence| |setTex!| + |loopPoints| |ode| |leadingIdeal| |epilogue| |datalist| |iicosh| + |bat1| |reducedContinuedFraction| |complexNumericIfCan| + |incrementKthElement| |setref| |f2st| |sh| |unary?| + |numberOfComputedEntries| |droot| |integralBasisAtInfinity| + |expandPower| |simpsono| |expandTrigProducts| |extendedIntegrate| + |closedCurve?| |checkForZero| |lintgcd| |ricDsolve| |OMputEndObject| + |rightTrace| |options| |lfunc| |viewThetaDefault| |realElementary| + |powmod| |pseudoRemainder| |e01daf| |components| |defineProperty| + |topPredicate| |selectfirst| |infieldint| |normalDenom| + |inverseIntegralMatrixAtInfinity| |f01qef| |permutationGroup| + |singleFactorBound| |pascalTriangle| |dihedralGroup| |orbit| |shape| + |OMputAtp| |listBranches| |resultantnaif| |transcendentalDecompose| + |rootNormalize| |segment| |leftZero| |radicalEigenvalues| |critT| + |stronglyReduced?| |po| |output| |string| |ratDenom| |divideExponents| + |jacobi| |boundOfCauchy| |noncommutativeJordanAlgebra?| + |tubeRadiusDefault| |numberOfIrreduciblePoly| |mappingMode| |ipow| + |mainDefiningPolynomial| |push| |e04gcf| |reify| |remove!| |expPot| + |environment| |bitCoef| |createRandomElement| |hconcat| |axes| + |primeFactor| |c05nbf| |setStatus| |iisqrt2| |minPoly| + |identification| |distdfact| |nextIrreduciblePoly| |limitedint| + |totalLex| |makeCos| |selectOrPolynomials| |setClipValue| |cond| + |bringDown| |zoom| |specialTrigs| |setsubMatrix!| |charthRoot| + |mathieu24| |createIrreduciblePoly| |atom?| |branchPointAtInfinity?| + |sequence| |pseudoDivide| |rootKerSimp| |setUnion| |perfectNthRoot| + |asinIfCan| |superscript| |rationalApproximation| |balancedBinaryTree| + |setCondition!| |edf2df| |llprop| |critMonD1| |purelyTranscendental?| + |systemSizeIF| |radicalEigenvectors| |numberOfNormalPoly| + |exponential1| |clipBoolean| |rightUnit| |primlimintfrac| + |usingTable?| |firstSubsetGray| |showTheIFTable| |chainSubResultants| + |fixedPointExquo| |LiePolyIfCan| |integrate| |leftScalarTimes!| + |even?| |makeCrit| |toseLastSubResultant| |numericIfCan| |ParCond| + |semiSubResultantGcdEuclidean2| |remove| |df2mf| |coth2tanh| + |squareFreePart| |screenResolution| |mergeFactors| |copy!| + |packageCall| |leastMonomial| |d01gaf| |mainVariables| + |modifyPointData| |createNormalPrimitivePoly| |partition| |rootPower| + |cyclic?| |signatureAst| |ode2| |subMatrix| |hspace| |trace2PowMod| + |lazyPseudoRemainder| |center| |last| |tableForDiscreteLogarithm| + |fortranInteger| |linearDependence| |Frobenius| |constantOperator| + |generalizedContinuumHypothesisAssumed| |OMputEndError| |surface| + |assoc| |fortranLiteralLine| |diagonals| |solve1| + |sumOfKthPowerDivisors| |write!| |palginfieldint| |OMgetApp| |move| + |patternMatchTimes| |nullity| |formula| |iiacsch| |vark| + |bezoutMatrix| |leftLcm| |parametersOf| |getMeasure| |aspFilename| + |cycleRagits| |s17dhf| |unvectorise| |sayLength| |lazyPseudoDivide| + |startTableGcd!| |OMputSymbol| |cot2tan| |changeWeightLevel| |bounds| + |compactFraction| |resultant| |iicos| LODO2FUN |basisOfCenter| + |intChoose| |OMputEndBind| |prinpolINFO| |coth2trigh| + |jacobiIdentity?| |diagonalMatrix| |leftOne| |selectODEIVPRoutines| + |f04maf| |symmetric?| |yCoordinates| |OMconnOutDevice| |prinb| + |unrankImproperPartitions0| |outputBinaryFile| |totalDifferential| + |solveLinearPolynomialEquationByFractions| |d02ejf| |mainMonomials| + |showTheSymbolTable| |firstNumer| |thetaCoord| |raisePolynomial| + |s13acf| |cSec| |createZechTable| |safeCeiling| + |zeroSetSplitIntoTriangularSystems| |readBytes!| |sinh2csch| + |OMgetError| |generalTwoFactor| |physicalLength| |rk4qc| |spherical| + |discreteLog| |stiffnessAndStabilityFactor| |diagonal| |quoted?| + |medialSet| |pop!| |clearDenominator| |parseString| |infRittWu?| + |hasSolution?| |traverse| |f07aef| |idealSimplify| |neglist| |module| + |showFortranOutputStack| |d01bbf| |complex?| |coord| |changeBase| + |sylvesterMatrix| |e02bbf| |FormatArabic| |fi2df| |regime| + |halfExtendedResultant2| |addPointLast| |fortranDouble| + |listRepresentation| |d01apf| |linkToFortran| |irreducible?| + |mapUnivariateIfCan| |s21bcf| |upDateBranches| |graphImage| |over| + |eigenvector| |safeFloor| |derivationCoordinates| |hex| |integral| + |quasiAlgebraicSet| |nextSubsetGray| |isAbsolutelyIrreducible?| + |e02ajf| |wordsForStrongGenerators| |countRealRootsMultiple| + |deepestTail| |sinhcosh| |rewriteSetWithReduction| |unit| + |safetyMargin| |OMconnInDevice| |host| |OMputEndApp| + |expenseOfEvaluation| |conjug| |isPower| |f02ajf| |realEigenvalues| + |d03faf| |f04mcf| |iiacosh| |wholeRagits| |hexDigit?| |e02gaf| + |lookupFunction| |dimensionOfIrreducibleRepresentation| |simplify| + |hdmpToDmp| |leaves| |subscriptedVariables| |univcase| |s18adf| + |variable?| |mainKernel| |makeGraphImage| |rightFactorCandidate| + |fTable| |checkRur| |c06ecf| |showClipRegion| |nil| |myDegree| + |d01alf| |deleteProperty!| |exp1| |macroExpand| |iiasech| |lex| + |leftUnit| |imagk| |PDESolve| |OMgetString| |associatedSystem| + |enumerate| |realRoots| |makeEq| |shuffle| |chiSquare1| |varselect| + |monomial?| |reduced?| |lepol| |factorGroebnerBasis| |cycle| + |pmintegrate| |asechIfCan| |pushdterm| |rroot| |hMonic| |pushup| + |approximate| |minimalPolynomial| |internalDecompose| + |clearTheIFTable| |push!| |lSpaceBasis| |bits| |ParCondList| + |removeCosSq| |quatern| |sum| |complex| |minGbasis| |solveInField| + |readable?| |concat!| |OMputEndAttr| |splitConstant| |cAcot| |plot| + |iiexp| |eigenvectors| |HermiteIntegrate| |gcdcofactprim| + |rationalFunction| |OMUnknownCD?| |elRow2!| |monicCompleteDecompose| + |stoseInvertibleSetsqfreg| |youngGroup| |mapUp!| |d02gbf| |just| + |rank| |rightPower| |symFunc| |lfextendedint| + |removeRoughlyRedundantFactorsInContents| |toseSquareFreePart| |point| + |lineColorDefault| |coerceP| |points| |cn| |lazyPquo| |rootsOf| + |littleEndian| |opeval| |debug| |failed| |contours| |euclideanSize| + |sincos| |mapExponents| |palgextint| |blankSeparate| |s01eaf| + |zeroDimPrime?| |hasTopPredicate?| D |coefficient| |constantRight| + |shallowExpand| |LyndonBasis| |contractSolve| |oddInfiniteProduct| + |htrigs| |numberOfCycles| |validExponential| |morphism| |nlde| + |errorKind| |series| |primextintfrac| |qroot| |internalAugment| + |endOfFile?| |dominantTerm| |leftGcd| |newReduc| + |drawComplexVectorField| |stopTableInvSet!| |categoryMode| + |viewDefaults| |nextLatticePermutation| |edf2ef| |primes| + |dimensionsOf| |linearMatrix| |reopen!| |e02akf| |monicLeftDivide| + |getSyntaxFormsFromFile| |irVar| |jordanAlgebra?| |minset| + |stoseInvertible?sqfreg| |curryLeft| |OMsupportsSymbol?| + |currentCategoryFrame| |super| |setIntersection| |lists| + |createPrimitiveElement| |imports| |ScanRoman| |chineseRemainder| + |getGoodPrime| |min| |userOrdered?| |pol| |legendreP| |roughSubIdeal?| + |logIfCan| |iteratedInitials| |pade| |iiacos| |cAsec| |d03edf| + |printInfo| |lazyPremWithDefault| |fmecg| |sts2stst| |enterInCache| + |stosePrepareSubResAlgo| |nthRoot| |generalPosition| |alphanumeric?| + |e04jaf| |increasePrecision| |subNodeOf?| |fortranLinkerArgs| + |reducedForm| |factorSquareFree| |shrinkable| |cAsin| |checkPrecision| + |nthExpon| |bat| |f07fef| |substring?| |OMputAttr| |key| |operators| + |fortranCompilerName| |setTopPredicate| |entries| |reindex| |sup| + |identityMatrix| |var1StepsDefault| |uniform01| |associates?| + |showAllElements| |tanhIfCan| |leader| |reverse!| |allRootsOf| + |e02bcf| |roughBasicSet| |suffix?| |numberOfImproperPartitions| + |tubeRadius| |filename| |characteristicPolynomial| |padecf| + |stoseIntegralLastSubResultant| |weierstrass| |bombieriNorm| + |prefixRagits| |connectTo| |prologue| |symbolTable| |loadNativeModule| + |ksec| |drawToScale| |monomials| |tanNa| |binomThmExpt| |modularGcd| + |f02aef| |prefix?| |sequences| |mpsode| |s14aaf| |parse| |factorList| + |f02akf| |factorsOfCyclicGroupSize| |functorData| |fortran| |cCsc| + |OMsupportsCD?| |retractable?| |pToDmp| |plus| |subresultantVector| + |pushFortranOutputStack| |light| |integralDerivationMatrix| + |viewSizeDefault| |d01asf| |nonQsign| |iiasinh| |symmetricDifference| + |nthCoef| |roughEqualIdeals?| |popFortranOutputStack| |mainValue| + |rootDirectory| |localIntegralBasis| |key?| |setnext!| |pow| |c06gbf| + |cAcoth| |integralLastSubResultant| |outputAsFortran| |signAround| + |iilog| |kovacic| |generateIrredPoly| |paraboloidal| |cartesian| + |f02aff| |linearAssociatedExp| |f04atf| |table| |isOp| + |ellipticCylindrical| |f04jgf| |string?| |branchPoint?| |nthFactor| + |resultantReduit| |setelt!| |precision| |times| |characteristicSerie| + |new| |palgRDE| |getIdentifier| |insertionSort!| |imagi| + |prolateSpheroidal| |s17acf| |algDsolve| |modifyPoint| |front| + |infix?| |ptree| |removeIrreducibleRedundantFactors| |lfextlimint| + |radicalEigenvector| |iiatanh| |flatten| |mask| |characteristic| + |simpson| |OMreadFile| |d02gaf| |rightRemainder| |factorSFBRlcUnit| + |startTableInvSet!| |check| |bitLength| |rightRecip| |init| + |getStream| |internalSubPolSet?| |disjunction| |interpolate| |euler| + |bitTruth| |determinant| |tubePointsDefault| |setLength!| |member?| + |coerceS| |alternatingGroup| |point?| |monom| |vectorise| |acscIfCan| + |diagonal?| |s17aef| |elementary| |external?| |monomRDE| + |possiblyNewVariety?| |startTable!| |rule| |reduceBasisAtInfinity| + |headRemainder| |positiveSolve| |nullSpace| |wreath| + |removeSuperfluousCases| |oddintegers| |s21baf| |rischDE| |readByte!| + |mapExpon| |float?| |bipolar| |setProperties| |OMgetInteger| + |thenBranch| |subscript| |common| |binaryFunction| |OMgetEndBind| + |wronskianMatrix| |order| |eulerPhi| |script| |divisorCascade| + |f04mbf| |asecIfCan| |exponent| |Hausdorff| |graphStates| |iidsum| + |dmpToHdmp| |e01bff| |measure2Result| |title| |gensym| |f01qdf| + |f02awf| |buildSyntax| |halfExtendedSubResultantGcd2| |iiacsc| + |returns| |listYoungTableaus| |normalizedDivide| |roughUnitIdeal?| + |inverse| |basisOfRightNucloid| |normalize| |left| |vector| |binary| + |iitan| |flexibleArray| |fortranDoubleComplex| |tex| |stronglyReduce| + |outerProduct| |irCtor| |curve| |represents| |inverseColeman| |right| + |differentiate| |solid| |lookup| |controlPanel| |setleaves!| |e| + |finiteBasis| |qPot| |nullary| |symmetricTensors| |position!| |d01anf| + |quadratic| |scalarTypeOf| |rk4a| |cos2sec| |mkPrim| |OMbindTCP| + |rationalPoint?| |rur| |primlimitedint| |makeViewport3D| |rename!| + |componentUpperBound| |discriminant| |currentScope| + |groebnerFactorize| |mathieu11| |deriv| |basis| |approxSqrt| |An| + |exprToUPS| |divideIfCan!| |mesh?| |SturmHabichtCoefficients| + |nonSingularModel| |omError| |extractIndex| |outlineRender| + |enterPointData| |countable?| |zeroDimPrimary?| |messagePrint| + |inputBinaryFile| |critB| |linearPolynomials| |bindings| + |rightExtendedGcd| |imagI| |basisOfLeftNucloid| |vertConcat| |postfix| + |shift| |polygamma| |divisor| |LazardQuotient| |alternating| + |multiplyCoefficients| |any| |addiag| |hash| |leastAffineMultiple| + |s19abf| |measure| |shanksDiscLogAlgorithm| |nextPrimitiveNormalPoly| + |f04faf| |uniform| |clipSurface| |count| |weighted| |fortranReal| + |implies| |next| |sortConstraints| |lieAdmissible?| |cCosh| + |cyclicSubmodule| |copyInto!| |clearTheSymbolTable| |eigenMatrix| + |setRow!| |entry?| |goto| |iiabs| |SFunction| |smith| + |numberOfFractionalTerms| |extendIfCan| |eq?| + |degreeSubResultantEuclidean| |dequeue!| |intermediateResultsIF| |ran| + |complexIntegrate| |readInt8!| |strongGenerators| |internal?| + |univariatePolynomial| |symbol| |addMatch| |nilFactor| |generic?| + |innerSolve| |representationType| |baseRDE| |invertIfCan| + |subresultantSequence| |polyPart| |coHeight| |expression| + |abelianGroup| |qfactor| |setAdaptive| |makeSin| |HenselLift| |f02axf| + |OMconnectTCP| |lprop| |hitherPlane| |integer| |someBasis| |isEquiv| + |rational?| |s18aef| |jordanAdmissible?| |showTheFTable| |s15aef| + |linear| |innerint| |initials| |quote| |cTan| |eyeDistance| |imagK| + |stFunc2| |dAndcExp| |extend| |composite| |cross| |fglmIfCan| + |prinshINFO| |argument| |createNormalElement| |e02dff| |s17def| + |upperCase!| |polynomial| |radicalSolve| |returnTypeOf| |printStats!| + |Vectorise| |setrest!| |socf2socdf| |fortranComplex| |taylorQuoByVar| + |sin2csc| |top!| |integerIfCan| |completeHermite| |option?| + |coercePreimagesImages| |singularitiesOf| |sqfrFactor| |every?| |erf| + |result| |certainlySubVariety?| |deepCopy| |showRegion| + |lazyIntegrate| |figureUnits| |iprint| |li| + |primPartElseUnitCanonical| |directSum| |s17dlf| |supRittWu?| + |factor1| |LowTriBddDenomInv| |iiacoth| |rightRegularRepresentation| + |matrixGcd| |OMlistSymbols| |stack| |escape| |subset?| + |lazyGintegrate| |tower| |changeMeasure| |OMputEndBVar| + |innerEigenvectors| |lowerBound| |besselK| |rightTraceMatrix| + |dioSolve| |monomialIntegrate| |complexSolve| + |selectOptimizationRoutines| |split!| |space| |c06fqf| |setPosition| + |c06ebf| |constantToUnaryFunction| |squareTop| |nextSublist| |leaf?| + |perfectSquare?| |index?| |outputAsTex| |exptMod| |collect| + |singularAtInfinity?| |unitNormalize| |OMread| |makeFR| |eq| |vspace| + |evenlambert| |merge!| |finiteBound| |perfectNthPower?| |iter| + |lastSubResultantEuclidean| |subTriSet?| |OMsend| |dim| |makeop| + |length| |seriesSolve| |eulerE| |perfectSqrt| |gbasis| |callForm?| + |sPol| |largest| |complexNumeric| |untab| |outputFloating| + |rangePascalTriangle| |step| |scripts| |d02kef| |drawCurves| + |antiAssociative?| |particularSolution| |Si| |digamma| |updatF| + |atoms| |iicsc| |concat| |leftTrace| |setFormula!| |palglimint0| + |graeffe| |lexGroebner| |test| |kernels| |flagFactor| |slex| |prod| + |palgint| |ridHack1| |degree| |ldf2lst| |changeThreshhold| |flexible?| + |fullPartialFraction| |var2Steps| |fractionFreeGauss!| |operator| + |shiftRoots| |repSq| |modulus| |stoseLastSubResultant| |pdf2df| |tab1| + |genericLeftDiscriminant| |matrixConcat3D| |anfactor| |gcdPolynomial| + |writable?| |basisOfLeftNucleus| |hypergeometric0F1| |noValueMode| + |geometric| |integralRepresents| |coerceL| |monic?| |rightRank| + |binding| |univariate| |univariatePolynomialsGcds| |midpoints| + |clipParametric| |c05pbf| |numerators| |minimize| |multMonom| + |outputAsScript| |infLex?| |f02agf| |quotedOperators| |nand| + |OMgetEndAttr| |exactQuotient| |members| |lazyVariations| + |lazyEvaluate| |f02fjf| |taylorIfCan| |GospersMethod| |makeTerm| + |positiveRemainder| |unrankImproperPartitions1| |prefix| + |continuedFraction| |createPrimitiveNormalPoly| |henselFact| |factor| + |OMlistCDs| |newTypeLists| |FormatRoman| |palgintegrate| |expt| + |localAbs| |inRadical?| |antiCommutative?| |inR?| |extensionDegree| + |sqrt| |cosIfCan| |reflect| |exponential| |firstUncouplingMatrix| + |f02bjf| |nextItem| |reciprocalPolynomial| |elements| |setButtonValue| + |explimitedint| |real| |symmetricRemainder| |selectAndPolynomials| + |child| |mat| |gethi| |encodingDirectory| |pointColorPalette| + |factorFraction| |range| |reducedSystem| |imag| |alphabetic?| + |cyclotomicDecomposition| |setFieldInfo| |declare| |besselY| |stop| + |modularGcdPrimitive| |eisensteinIrreducible?| |bipolarCylindrical| + |e02adf| |multiEuclideanTree| |leadingIndex| |directProduct| |region| + |paren| |setAdaptive3D| |ptFunc| |sorted?| |mr| |delete!| + |showIntensityFunctions| |lyndon?| |multisect| |zeroSquareMatrix| + |prem| |before?| |e02ahf| |s14baf| |insertTop!| |c06fpf| SEGMENT + |resultantEuclideannaif| |ef2edf| |viewport3D| |brace| |kind| + |setRealSteps| |shade| |empty| |psolve| |OMgetEndAtp| |homogeneous?| + |cPower| |exponents| |primeFrobenius| |categories| |bubbleSort!| + |destruct| |upperCase?| |modularFactor| |doubleComplex?| |op| + |acoshIfCan| |whatInfinity| |redPo| |cRationalPower| |mantissa| + |phiCoord| |depth| |functionIsOscillatory| |rotatey| |bivariateSLPEBR| + |iifact| |OMclose| |increase| |d01aqf| |typeForm| + |createPrimitivePoly| |lyndon| |s17akf| |duplicates?| |makeUnit| + |showTheRoutinesTable| |stirling2| |transcendent?| |c05adf| + |createThreeSpace| |component| |level| |linearPart| |numFunEvals| + |restorePrecision| |OMunhandledSymbol| |trapezoidalo| |rootPoly| + |unitCanonical| |cLog| |minrank| |palgLODE0| |exprToXXP| |linGenPos| + |solveLinearPolynomialEquationByRecursion| + |rewriteIdealWithQuasiMonicGenerators| |monomial| |vconcat| + |newSubProgram| |complexForm| |iiGamma| |s17agf| |merge| |imagj| + |invmultisect| |useSingleFactorBound| |selectSumOfSquaresRoutines| + |multivariate| |janko2| |normal?| |leftFactorIfCan| |triangSolve| + |LagrangeInterpolation| |leadingSupport| |leadingTerm| |pr2dmp| + |totalDegree| |stFuncN| |variables| |factorOfDegree| |mulmod| + |univariatePolynomials| |union| |irreducibleFactor| + |factorSquareFreeByRecursion| |calcRanges| |dmpToP| |row| + |numberOfHues| |minimumExponent| |tRange| |setErrorBound| |f02bbf| + |f01rdf| |lquo| |goodPoint| |setImagSteps| |traceMatrix| |split| + |inGroundField?| |KrullNumber| |cot2trig| |pointSizeDefault| + |complexRoots| |low| |stopMusserTrials| |parabolicCylindrical| + |mainContent| |OMgetEndObject| |atanIfCan| |cExp| |polyred| + |toseInvertible?| |exprex| |refine| |d01fcf| |mainSquareFreePart| + |mainCoefficients| |rootSimp| |commutative?| |rowEchelonLocal| + |iibinom| |submod| |att2Result| |f01qcf| |pole?| |isAtom| + |branchIfCan| |setleft!| |acschIfCan| |taylor| |yellow| |f01bsf| + |comp| |interpretString| |numberOfFactors| |Lazard2| |insertRoot!| + |lfinfieldint| |getCurve| |critM| |RemainderList| |laurent| |color| + |optAttributes| |meshFun2Var| |setAttributeButtonStep| |s13aaf| + |OMserve| |laguerre| |coordinates| |e01sbf| |cycleSplit!| |reverse| + |puiseux| |quoByVar| |cAcsch| |cCos| |tablePow| |truncate| + |principalAncestors| |e04fdf| |karatsuba| |charpol| |orbits| + |iterationVar| |convergents| |d01amf| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index d35d99fc..17565dfa 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5405 +1,5419 @@ -(3238358 . 3485684148) -((-1473 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2748 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3142 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-1247 (-573)) |#2|) 44)) (-2176 (($ $) 80)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1440 (((-573) (-1 (-112) |#2|) $) 27) (((-573) |#2| $) NIL) (((-573) |#2| $ (-573)) 96)) (-1863 (((-653 |#2|) $) 13)) (-1480 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2446 (($ (-1 |#2| |#2|) $) 37)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1593 (($ |#2| $ (-573)) NIL) (($ $ $ (-573)) 67)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1575 (((-112) (-1 (-112) |#2|) $) 23)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL) (($ $ (-1247 (-573))) 66)) (-2836 (($ $ (-573)) 76) (($ $ (-1247 (-573))) 75)) (-3974 (((-780) (-1 (-112) |#2|) $) 34) (((-780) |#2| $) NIL)) (-3919 (($ $ $ (-573)) 69)) (-3166 (($ $) 68)) (-2955 (($ (-653 |#2|)) 73)) (-4156 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-653 $)) 85)) (-2942 (((-871) $) 92)) (-1646 (((-112) (-1 (-112) |#2|) $) 22)) (-2981 (((-112) $ $) 95)) (-3005 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -1473 ((-112) |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) (-19 |#2|) (-1230)) (T -18)) +(3239780 . 3485693932) +((-4251 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2212 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3134 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1250 (-574)) |#2|) 44)) (-3680 (($ $) 80)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1451 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1874 (((-654 |#2|) $) 13)) (-4333 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2464 (($ (-1 |#2| |#2|) $) 37)) (-1787 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1604 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-1745 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4043 (((-112) (-1 (-112) |#2|) $) 23)) (-2209 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1250 (-574))) 66)) (-2854 (($ $ (-574)) 76) (($ $ (-1250 (-574))) 75)) (-3948 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-3957 (($ $ $ (-574)) 69)) (-3156 (($ $) 68)) (-2962 (($ (-654 |#2|)) 73)) (-4131 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2950 (((-872) $) 92)) (-2235 (((-112) (-1 (-112) |#2|) $) 22)) (-2985 (((-112) $ $) 95)) (-3008 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -3957 (|#1| |#1| |#1| (-574))) (-15 -4251 ((-112) |#1|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2962 (|#1| (-654 |#2|))) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -1874 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) (-19 |#2|) (-1233)) (T -18)) NIL -(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -1473 ((-112) |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-19 |#1|) (-141) (-1230)) (T -19)) +(-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -3957 (|#1| |#1| |#1| (-574))) (-15 -4251 ((-112) |#1|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2962 (|#1| (-654 |#2|))) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -1874 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-19 |#1|) (-141) (-1233)) (T -19)) NIL -(-13 (-381 |t#1|) (-10 -7 (-6 -4456))) -(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) -((-2983 (((-3 $ "failed") $ $) 12)) (-3093 (($ $) NIL) (($ $ $) 9)) (* (($ (-931) $) NIL) (($ (-780) $) 16) (($ (-573) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2983 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-21)) (T -20)) +(-13 (-382 |t#1|) (-10 -7 (-6 -4459))) +(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) +((-2599 (((-3 $ "failed") $ $) 12)) (-3089 (($ $) NIL) (($ $ $) 9)) (* (($ (-934) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2599 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2983 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24))) +(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2599 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) (((-21) (-141)) (T -21)) -((-3093 (*1 *1 *1) (-4 *1 (-21))) (-3093 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-655 (-573)) (-10 -8 (-15 -3093 ($ $)) (-15 -3093 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1112) . T)) -((-1748 (((-112) $) 10)) (-2579 (($) 15)) (* (($ (-931) $) 14) (($ (-780) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 * (|#1| (-931) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) +((-3089 (*1 *1 *1) (-4 *1 (-21))) (-3089 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3089 ($ $)) (-15 -3089 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1115) . T)) +((-1997 (((-112) $) 10)) (-3063 (($) 15)) (* (($ (-934) $) 14) (($ (-781) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 -3063 (|#1|)) (-15 * (|#1| (-934) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 -3063 (|#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) (((-23) (-141)) (T -23)) -((-2132 (*1 *1) (-4 *1 (-23))) (-2579 (*1 *1) (-4 *1 (-23))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-780))))) -(-13 (-25) (-10 -8 (-15 (-2132) ($) -1705) (-15 -2579 ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ (-780) $)))) -(((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((* (($ (-931) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-931) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14))) +((-2143 (*1 *1) (-4 *1 (-23))) (-3063 (*1 *1) (-4 *1 (-23))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))) +(-13 (-25) (-10 -8 (-15 (-2143) ($) -1716) (-15 -3063 ($) -1716) (-15 -1997 ((-112) $)) (-15 * ($ (-781) $)))) +(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((* (($ (-934) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-934) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14))) (((-25) (-141)) (T -25)) -((-3077 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-931))))) -(-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ (-931) $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3148 (((-653 $) (-962 $)) 32) (((-653 $) (-1185 $)) 16) (((-653 $) (-1185 $) (-1189)) 20)) (-4118 (($ (-962 $)) 30) (($ (-1185 $)) 11) (($ (-1185 $) (-1189)) 60)) (-3682 (((-653 $) (-962 $)) 33) (((-653 $) (-1185 $)) 18) (((-653 $) (-1185 $) (-1189)) 19)) (-1732 (($ (-962 $)) 31) (($ (-1185 $)) 13) (($ (-1185 $) (-1189)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) -((-2848 (((-112) $ $) 7)) (-3148 (((-653 $) (-962 $)) 88) (((-653 $) (-1185 $)) 87) (((-653 $) (-1185 $) (-1189)) 86)) (-4118 (($ (-962 $)) 91) (($ (-1185 $)) 90) (($ (-1185 $) (-1189)) 89)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 100)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-3682 (((-653 $) (-962 $)) 94) (((-653 $) (-1185 $)) 93) (((-653 $) (-1185 $) (-1189)) 92)) (-1732 (($ (-962 $)) 97) (($ (-1185 $)) 96) (($ (-1185 $) (-1189)) 95)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 98)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +((-3073 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-934))))) +(-13 (-1115) (-10 -8 (-15 -3073 ($ $ $)) (-15 * ($ (-934) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2869 (((-654 $) (-965 $)) 32) (((-654 $) (-1188 $)) 16) (((-654 $) (-1188 $) (-1192)) 20)) (-2263 (($ (-965 $)) 30) (($ (-1188 $)) 11) (($ (-1188 $) (-1192)) 60)) (-3569 (((-654 $) (-965 $)) 33) (((-654 $) (-1188 $)) 18) (((-654 $) (-1188 $) (-1192)) 19)) (-1853 (($ (-965 $)) 31) (($ (-1188 $)) 13) (($ (-1188 $) (-1192)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2869 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -2869 ((-654 |#1|) (-1188 |#1|))) (-15 -2869 ((-654 |#1|) (-965 |#1|))) (-15 -2263 (|#1| (-1188 |#1|) (-1192))) (-15 -2263 (|#1| (-1188 |#1|))) (-15 -2263 (|#1| (-965 |#1|))) (-15 -3569 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3569 ((-654 |#1|) (-1188 |#1|))) (-15 -3569 ((-654 |#1|) (-965 |#1|))) (-15 -1853 (|#1| (-1188 |#1|) (-1192))) (-15 -1853 (|#1| (-1188 |#1|))) (-15 -1853 (|#1| (-965 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2869 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -2869 ((-654 |#1|) (-1188 |#1|))) (-15 -2869 ((-654 |#1|) (-965 |#1|))) (-15 -2263 (|#1| (-1188 |#1|) (-1192))) (-15 -2263 (|#1| (-1188 |#1|))) (-15 -2263 (|#1| (-965 |#1|))) (-15 -3569 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3569 ((-654 |#1|) (-1188 |#1|))) (-15 -3569 ((-654 |#1|) (-965 |#1|))) (-15 -1853 (|#1| (-1188 |#1|) (-1192))) (-15 -1853 (|#1| (-1188 |#1|))) (-15 -1853 (|#1| (-965 |#1|)))) +((-2863 (((-112) $ $) 7)) (-2869 (((-654 $) (-965 $)) 88) (((-654 $) (-1188 $)) 87) (((-654 $) (-1188 $) (-1192)) 86)) (-2263 (($ (-965 $)) 91) (($ (-1188 $)) 90) (($ (-1188 $) (-1192)) 89)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-4211 (($ $) 100)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-3569 (((-654 $) (-965 $)) 94) (((-654 $) (-1188 $)) 93) (((-654 $) (-1188 $) (-1192)) 92)) (-1853 (($ (-965 $)) 97) (($ (-1188 $)) 96) (($ (-1188 $) (-1192)) 95)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 99)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) (((-27) (-141)) (T -27)) -((-1732 (*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) (-1732 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) (-5 *2 (-653 *1))))) -(-13 (-371) (-1014) (-10 -8 (-15 -1732 ($ (-962 $))) (-15 -1732 ($ (-1185 $))) (-15 -1732 ($ (-1185 $) (-1189))) (-15 -3682 ((-653 $) (-962 $))) (-15 -3682 ((-653 $) (-1185 $))) (-15 -3682 ((-653 $) (-1185 $) (-1189))) (-15 -4118 ($ (-962 $))) (-15 -4118 ($ (-1185 $))) (-15 -4118 ($ (-1185 $) (-1189))) (-15 -3148 ((-653 $) (-962 $))) (-15 -3148 ((-653 $) (-1185 $))) (-15 -3148 ((-653 $) (-1185 $) (-1189))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1014) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-3148 (((-653 $) (-962 $)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 $) (-1189)) 55) (((-653 $) $) 22) (((-653 $) $ (-1189)) 46)) (-4118 (($ (-962 $)) NIL) (($ (-1185 $)) NIL) (($ (-1185 $) (-1189)) 57) (($ $) 20) (($ $ (-1189)) 40)) (-3682 (((-653 $) (-962 $)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 $) (-1189)) 53) (((-653 $) $) 18) (((-653 $) $ (-1189)) 48)) (-1732 (($ (-962 $)) NIL) (($ (-1185 $)) NIL) (($ (-1185 $) (-1189)) NIL) (($ $) 15) (($ $ (-1189)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3148 ((-653 |#1|) |#1| (-1189))) (-15 -4118 (|#1| |#1| (-1189))) (-15 -3148 ((-653 |#1|) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3682 ((-653 |#1|) |#1| (-1189))) (-15 -1732 (|#1| |#1| (-1189))) (-15 -3682 ((-653 |#1|) |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) (-29 |#2|) (-565)) (T -28)) -NIL -(-10 -8 (-15 -3148 ((-653 |#1|) |#1| (-1189))) (-15 -4118 (|#1| |#1| (-1189))) (-15 -3148 ((-653 |#1|) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3682 ((-653 |#1|) |#1| (-1189))) (-15 -1732 (|#1| |#1| (-1189))) (-15 -3682 ((-653 |#1|) |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) -((-2848 (((-112) $ $) 7)) (-3148 (((-653 $) (-962 $)) 88) (((-653 $) (-1185 $)) 87) (((-653 $) (-1185 $) (-1189)) 86) (((-653 $) $) 136) (((-653 $) $ (-1189)) 134)) (-4118 (($ (-962 $)) 91) (($ (-1185 $)) 90) (($ (-1185 $) (-1189)) 89) (($ $) 137) (($ $ (-1189)) 135)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1189)) $) 205)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 237 (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-4090 (((-653 (-621 $)) $) 168)) (-2983 (((-3 $ "failed") $ $) 20)) (-2544 (($ $ (-653 (-621 $)) (-653 $)) 158) (($ $ (-653 (-301 $))) 157) (($ $ (-301 $)) 156)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 100)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-3682 (((-653 $) (-962 $)) 94) (((-653 $) (-1185 $)) 93) (((-653 $) (-1185 $) (-1189)) 92) (((-653 $) $) 140) (((-653 $) $ (-1189)) 138)) (-1732 (($ (-962 $)) 97) (($ (-1185 $)) 96) (($ (-1185 $) (-1189)) 95) (($ $) 141) (($ $ (-1189)) 139)) (-1695 (((-3 (-962 |#1|) "failed") $) 255 (|has| |#1| (-1061))) (((-3 (-416 (-962 |#1|)) "failed") $) 239 (|has| |#1| (-565))) (((-3 |#1| "failed") $) 201) (((-3 (-573) "failed") $) 198 (|has| |#1| (-1050 (-573)))) (((-3 (-1189) "failed") $) 192) (((-3 (-621 $) "failed") $) 143) (((-3 (-416 (-573)) "failed") $) 131 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-962 |#1|) $) 254 (|has| |#1| (-1061))) (((-416 (-962 |#1|)) $) 238 (|has| |#1| (-565))) ((|#1| $) 200) (((-573) $) 199 (|has| |#1| (-1050 (-573)))) (((-1189) $) 191) (((-621 $) $) 142) (((-416 (-573)) $) 132 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) 61)) (-2759 (((-698 |#1|) (-1280 $)) 245 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 244 (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 243 (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 130 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (((-698 (-573)) (-698 $)) 129 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (((-698 (-573)) (-1280 $)) 128 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 197 (|has| |#1| (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 196 (|has| |#1| (-896 (-573))))) (-2449 (($ (-653 $)) 162) (($ $) 161)) (-2515 (((-653 (-115)) $) 169)) (-4173 (((-115) (-115)) 170)) (-1959 (((-112) $) 35)) (-2250 (((-112) $) 190 (|has| $ (-1050 (-573))))) (-3041 (($ $) 222 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 221 (|has| |#1| (-1061)))) (-4325 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2597 (((-1185 $) (-621 $)) 187 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 176)) (-2944 (((-3 (-621 $) "failed") $) 166)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 167)) (-1774 (($ (-115) (-653 $)) 175) (($ (-115) $) 174)) (-4082 (((-3 (-653 $) "failed") $) 216 (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 225 (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 218 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 219 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 224 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 223 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 217 (|has| |#1| (-1124)))) (-1667 (((-112) $ (-1189)) 173) (((-112) $ (-115)) 172)) (-1323 (($ $) 78)) (-1839 (((-780) $) 165)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 203)) (-1348 ((|#1| $) 204)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-3805 (((-112) $ (-1189)) 178) (((-112) $ $) 177)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2270 (((-112) $) 189 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-1189) (-780) (-1 $ $)) 229 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) 228 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 227 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 226 (|has| |#1| (-1061))) (($ $ (-653 (-115)) (-653 $) (-1189)) 215 (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 214 (|has| |#1| (-623 (-545)))) (($ $) 213 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) 212 (|has| |#1| (-623 (-545)))) (($ $ (-1189)) 211 (|has| |#1| (-623 (-545)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-653 $))) 185) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 184) (($ $ (-653 (-115)) (-653 (-1 $ $))) 183) (($ $ (-1189) (-1 $ $)) 182) (($ $ (-1189) (-1 $ (-653 $))) 181) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 180) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 179) (($ $ (-653 $) (-653 $)) 150) (($ $ $ $) 149) (($ $ (-301 $)) 148) (($ $ (-653 (-301 $))) 147) (($ $ (-653 (-621 $)) (-653 $)) 146) (($ $ (-621 $) $) 145)) (-2163 (((-780) $) 64)) (-2198 (($ (-115) (-653 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3727 (($ $ $) 164) (($ $) 163)) (-3904 (($ $ (-1189)) 253 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 252 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 251 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) 250 (|has| |#1| (-1061)))) (-2662 (($ $) 232 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 231 (|has| |#1| (-565)))) (-2984 (($ $) 188 (|has| $ (-1061)))) (-1835 (((-545) $) 259 (|has| |#1| (-623 (-545)))) (($ (-427 $)) 230 (|has| |#1| (-565))) (((-902 (-387)) $) 195 (|has| |#1| (-623 (-902 (-387))))) (((-902 (-573)) $) 194 (|has| |#1| (-623 (-902 (-573)))))) (-3204 (($ $ $) 258 (|has| |#1| (-482)))) (-4380 (($ $ $) 257 (|has| |#1| (-482)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-962 |#1|)) 256 (|has| |#1| (-1061))) (($ (-416 (-962 |#1|))) 240 (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) 236 (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) 235 (|has| |#1| (-565))) (($ (-416 |#1|)) 234 (|has| |#1| (-565))) (($ (-1137 |#1| (-621 $))) 220 (|has| |#1| (-1061))) (($ |#1|) 202) (($ (-1189)) 193) (($ (-621 $)) 144)) (-4279 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-2029 (($ (-653 $)) 160) (($ $) 159)) (-3109 (((-112) (-115)) 171)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2497 (($ (-1189) (-653 $)) 210) (($ (-1189) $ $ $ $) 209) (($ (-1189) $ $ $) 208) (($ (-1189) $ $) 207) (($ (-1189) $) 206)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1189)) 249 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 248 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 247 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) 246 (|has| |#1| (-1061)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 233 (|has| |#1| (-565)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 98)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1061))))) -(((-29 |#1|) (-141) (-565)) (T -29)) -((-1732 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) (-3682 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) (-1732 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) (-3682 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *4)))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) (-3148 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-439 |t#1|) (-10 -8 (-15 -1732 ($ $)) (-15 -3682 ((-653 $) $)) (-15 -1732 ($ $ (-1189))) (-15 -3682 ((-653 $) $ (-1189))) (-15 -4118 ($ $)) (-15 -3148 ((-653 $) $)) (-15 -4118 ($ $ (-1189))) (-15 -3148 ((-653 $) $ (-1189))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 #1=(-416 (-962 |#1|))) |has| |#1| (-565)) ((-625 (-573)) . T) ((-625 #2=(-621 $)) . T) ((-625 #3=(-962 |#1|)) |has| |#1| (-1061)) ((-625 #4=(-1189)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-248) . T) ((-297) . T) ((-314) . T) ((-316 $) . T) ((-309) . T) ((-371) . T) ((-385 |#1|) |has| |#1| (-1061)) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-439 |#1|) . T) ((-461) . T) ((-482) |has| |#1| (-482)) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-655 $) . T) ((-657 #0#) . T) ((-657 #5=(-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-657 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) . T) ((-648 #5#) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-648 |#1|) |has| |#1| (-1061)) ((-726 #0#) . T) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-1061)) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-930) . T) ((-1014) . T) ((-1050 (-416 (-573))) -2817 (|has| |#1| (-1050 (-416 (-573)))) (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) ((-1050 #1#) |has| |#1| (-565)) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 #3#) |has| |#1| (-1061)) ((-1050 #4#) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) |has| |#1| (-174)) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T) ((-1234) . T)) -((-2423 (((-1106 (-227)) $) NIL)) (-2410 (((-1106 (-227)) $) NIL)) (-4143 (($ $ (-227)) 164)) (-3544 (($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573)))) 104)) (-3054 (((-653 (-653 (-953 (-227)))) $) 180)) (-2942 (((-871) $) 194))) -(((-30) (-13 (-965) (-10 -8 (-15 -3544 ($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573))))) (-15 -4143 ($ $ (-227)))))) (T -30)) -((-3544 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-962 (-573))) (-5 *3 (-1189)) (-5 *4 (-1106 (-416 (-573)))) (-5 *1 (-30)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-965) (-10 -8 (-15 -3544 ($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573))))) (-15 -4143 ($ $ (-227))))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 11)) (-3507 (((-112) $ $) NIL)) (-2629 (((-1147) $) 9)) (-2981 (((-112) $ $) NIL))) -(((-31) (-13 (-1095) (-10 -8 (-15 -2629 ((-1147) $)) (-15 -2043 ((-1147) $))))) (T -31)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31))))) -(-13 (-1095) (-10 -8 (-15 -2629 ((-1147) $)) (-15 -2043 ((-1147) $)))) -((-1732 ((|#2| (-1185 |#2|) (-1189)) 41)) (-4173 (((-115) (-115)) 55)) (-2597 (((-1185 |#2|) (-621 |#2|)) 149 (|has| |#1| (-1050 (-573))))) (-1500 ((|#2| |#1| (-573)) 137 (|has| |#1| (-1050 (-573))))) (-1980 ((|#2| (-1185 |#2|) |#2|) 29)) (-1389 (((-871) (-653 |#2|)) 86)) (-2984 ((|#2| |#2|) 144 (|has| |#1| (-1050 (-573))))) (-3109 (((-112) (-115)) 17)) (** ((|#2| |#2| (-416 (-573))) 103 (|has| |#1| (-1050 (-573)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -1732 (|#2| (-1185 |#2|) (-1189))) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1980 (|#2| (-1185 |#2|) |#2|)) (-15 -1389 ((-871) (-653 |#2|))) (IF (|has| |#1| (-1050 (-573))) (PROGN (-15 ** (|#2| |#2| (-416 (-573)))) (-15 -2597 ((-1185 |#2|) (-621 |#2|))) (-15 -2984 (|#2| |#2|)) (-15 -1500 (|#2| |#1| (-573)))) |%noBranch|)) (-565) (-439 |#1|)) (T -32)) -((-1500 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *2 (-439 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1050 *4)) (-4 *3 (-565)))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-1050 (-573))) (-4 *3 (-565)) (-5 *1 (-32 *3 *2)) (-4 *2 (-439 *3)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-439 *4)) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) (-5 *2 (-1185 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) (-5 *1 (-32 *4 *2)) (-4 *2 (-439 *4)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-565)) (-5 *2 (-871)) (-5 *1 (-32 *4 *5)))) (-1980 (*1 *2 *3 *2) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-32 *4 *2)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-439 *4)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-32 *3 *4)) (-4 *4 (-439 *3)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *2)) (-5 *4 (-1189)) (-4 *2 (-439 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-565))))) -(-10 -7 (-15 -1732 (|#2| (-1185 |#2|) (-1189))) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1980 (|#2| (-1185 |#2|) |#2|)) (-15 -1389 ((-871) (-653 |#2|))) (IF (|has| |#1| (-1050 (-573))) (PROGN (-15 ** (|#2| |#2| (-416 (-573)))) (-15 -2597 ((-1185 |#2|) (-621 |#2|))) (-15 -2984 (|#2| |#2|)) (-15 -1500 (|#2| |#1| (-573)))) |%noBranch|)) -((-3450 (((-112) $ (-780)) 20)) (-2579 (($) 10)) (-2078 (((-112) $ (-780)) 19)) (-2673 (((-112) $ (-780)) 17)) (-1885 (((-112) $ $) 8)) (-3811 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -2579 (|#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3811 ((-112) |#1|)) (-15 -1885 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2579 (|#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3811 ((-112) |#1|)) (-15 -1885 ((-112) |#1| |#1|))) -((-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-2078 (((-112) $ (-780)) 9)) (-2673 (((-112) $ (-780)) 10)) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3166 (($ $) 13)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +((-1853 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) (-1853 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) (-2263 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) (-5 *2 (-654 *1))))) +(-13 (-372) (-1017) (-10 -8 (-15 -1853 ($ (-965 $))) (-15 -1853 ($ (-1188 $))) (-15 -1853 ($ (-1188 $) (-1192))) (-15 -3569 ((-654 $) (-965 $))) (-15 -3569 ((-654 $) (-1188 $))) (-15 -3569 ((-654 $) (-1188 $) (-1192))) (-15 -2263 ($ (-965 $))) (-15 -2263 ($ (-1188 $))) (-15 -2263 ($ (-1188 $) (-1192))) (-15 -2869 ((-654 $) (-965 $))) (-15 -2869 ((-654 $) (-1188 $))) (-15 -2869 ((-654 $) (-1188 $) (-1192))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1017) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-2869 (((-654 $) (-965 $)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 $) (-1192)) 55) (((-654 $) $) 22) (((-654 $) $ (-1192)) 46)) (-2263 (($ (-965 $)) NIL) (($ (-1188 $)) NIL) (($ (-1188 $) (-1192)) 57) (($ $) 20) (($ $ (-1192)) 40)) (-3569 (((-654 $) (-965 $)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 $) (-1192)) 53) (((-654 $) $) 18) (((-654 $) $ (-1192)) 48)) (-1853 (($ (-965 $)) NIL) (($ (-1188 $)) NIL) (($ (-1188 $) (-1192)) NIL) (($ $) 15) (($ $ (-1192)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2869 ((-654 |#1|) |#1| (-1192))) (-15 -2263 (|#1| |#1| (-1192))) (-15 -2869 ((-654 |#1|) |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -3569 ((-654 |#1|) |#1| (-1192))) (-15 -1853 (|#1| |#1| (-1192))) (-15 -3569 ((-654 |#1|) |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -2869 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -2869 ((-654 |#1|) (-1188 |#1|))) (-15 -2869 ((-654 |#1|) (-965 |#1|))) (-15 -2263 (|#1| (-1188 |#1|) (-1192))) (-15 -2263 (|#1| (-1188 |#1|))) (-15 -2263 (|#1| (-965 |#1|))) (-15 -3569 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3569 ((-654 |#1|) (-1188 |#1|))) (-15 -3569 ((-654 |#1|) (-965 |#1|))) (-15 -1853 (|#1| (-1188 |#1|) (-1192))) (-15 -1853 (|#1| (-1188 |#1|))) (-15 -1853 (|#1| (-965 |#1|)))) (-29 |#2|) (-566)) (T -28)) +NIL +(-10 -8 (-15 -2869 ((-654 |#1|) |#1| (-1192))) (-15 -2263 (|#1| |#1| (-1192))) (-15 -2869 ((-654 |#1|) |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -3569 ((-654 |#1|) |#1| (-1192))) (-15 -1853 (|#1| |#1| (-1192))) (-15 -3569 ((-654 |#1|) |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -2869 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -2869 ((-654 |#1|) (-1188 |#1|))) (-15 -2869 ((-654 |#1|) (-965 |#1|))) (-15 -2263 (|#1| (-1188 |#1|) (-1192))) (-15 -2263 (|#1| (-1188 |#1|))) (-15 -2263 (|#1| (-965 |#1|))) (-15 -3569 ((-654 |#1|) (-1188 |#1|) (-1192))) (-15 -3569 ((-654 |#1|) (-1188 |#1|))) (-15 -3569 ((-654 |#1|) (-965 |#1|))) (-15 -1853 (|#1| (-1188 |#1|) (-1192))) (-15 -1853 (|#1| (-1188 |#1|))) (-15 -1853 (|#1| (-965 |#1|)))) +((-2863 (((-112) $ $) 7)) (-2869 (((-654 $) (-965 $)) 88) (((-654 $) (-1188 $)) 87) (((-654 $) (-1188 $) (-1192)) 86) (((-654 $) $) 136) (((-654 $) $ (-1192)) 134)) (-2263 (($ (-965 $)) 91) (($ (-1188 $)) 90) (($ (-1188 $) (-1192)) 89) (($ $) 137) (($ $ (-1192)) 135)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1192)) $) 205)) (-4172 (((-417 (-1188 $)) $ (-622 $)) 237 (|has| |#1| (-566)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4067 (((-654 (-622 $)) $) 168)) (-2599 (((-3 $ "failed") $ $) 20)) (-2558 (($ $ (-654 (-622 $)) (-654 $)) 158) (($ $ (-654 (-302 $))) 157) (($ $ (-302 $)) 156)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-4211 (($ $) 100)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-3569 (((-654 $) (-965 $)) 94) (((-654 $) (-1188 $)) 93) (((-654 $) (-1188 $) (-1192)) 92) (((-654 $) $) 140) (((-654 $) $ (-1192)) 138)) (-1853 (($ (-965 $)) 97) (($ (-1188 $)) 96) (($ (-1188 $) (-1192)) 95) (($ $) 141) (($ $ (-1192)) 139)) (-1706 (((-3 (-965 |#1|) "failed") $) 255 (|has| |#1| (-1064))) (((-3 (-417 (-965 |#1|)) "failed") $) 239 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 201) (((-3 (-574) "failed") $) 198 (|has| |#1| (-1053 (-574)))) (((-3 (-1192) "failed") $) 192) (((-3 (-622 $) "failed") $) 143) (((-3 (-417 (-574)) "failed") $) 131 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-965 |#1|) $) 254 (|has| |#1| (-1064))) (((-417 (-965 |#1|)) $) 238 (|has| |#1| (-566))) ((|#1| $) 200) (((-574) $) 199 (|has| |#1| (-1053 (-574)))) (((-1192) $) 191) (((-622 $) $) 142) (((-417 (-574)) $) 132 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2800 (($ $ $) 61)) (-4232 (((-699 |#1|) (-1283 $)) 245 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 244 (|has| |#1| (-1064))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 243 (|has| |#1| (-1064))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 130 (-2832 (-2097 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (((-699 (-574)) (-699 $)) 129 (-2832 (-2097 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (((-699 (-574)) (-1283 $)) 128 (-2832 (-2097 (|has| |#1| (-1064)) (|has| |#1| (-649 (-574)))) (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 197 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 196 (|has| |#1| (-897 (-574))))) (-4248 (($ (-654 $)) 162) (($ $) 161)) (-3667 (((-654 (-115)) $) 169)) (-4151 (((-115) (-115)) 170)) (-2276 (((-112) $) 35)) (-3127 (((-112) $) 190 (|has| $ (-1053 (-574))))) (-3071 (($ $) 222 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 221 (|has| |#1| (-1064)))) (-3649 (($ $ (-574)) 99)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3256 (((-1188 $) (-622 $)) 187 (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) 176)) (-3487 (((-3 (-622 $) "failed") $) 166)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 167)) (-1784 (($ (-115) (-654 $)) 175) (($ (-115) $) 174)) (-1898 (((-3 (-654 $) "failed") $) 216 (|has| |#1| (-1127)))) (-3469 (((-3 (-2 (|:| |val| $) (|:| -3843 (-574))) "failed") $) 225 (|has| |#1| (-1064)))) (-3145 (((-3 (-654 $) "failed") $) 218 (|has| |#1| (-25)))) (-2160 (((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 $))) "failed") $) 219 (|has| |#1| (-25)))) (-3019 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-1192)) 224 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-115)) 223 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $) 217 (|has| |#1| (-1127)))) (-2454 (((-112) $ (-1192)) 173) (((-112) $ (-115)) 172)) (-1327 (($ $) 78)) (-1849 (((-781) $) 165)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 203)) (-1354 ((|#1| $) 204)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2192 (((-112) $ (-1192)) 178) (((-112) $ $) 177)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3304 (((-112) $) 189 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-1192) (-781) (-1 $ $)) 229 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) 228 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 227 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 226 (|has| |#1| (-1064))) (($ $ (-654 (-115)) (-654 $) (-1192)) 215 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 214 (|has| |#1| (-624 (-546)))) (($ $) 213 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) 212 (|has| |#1| (-624 (-546)))) (($ $ (-1192)) 211 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-654 $))) 185) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 184) (($ $ (-654 (-115)) (-654 (-1 $ $))) 183) (($ $ (-1192) (-1 $ $)) 182) (($ $ (-1192) (-1 $ (-654 $))) 181) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 180) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 179) (($ $ (-654 $) (-654 $)) 150) (($ $ $ $) 149) (($ $ (-302 $)) 148) (($ $ (-654 (-302 $))) 147) (($ $ (-654 (-622 $)) (-654 $)) 146) (($ $ (-622 $) $) 145)) (-3575 (((-781) $) 64)) (-2209 (($ (-115) (-654 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2734 (($ $ $) 164) (($ $) 163)) (-3878 (($ $ (-1192)) 253 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 252 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 251 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) 250 (|has| |#1| (-1064)))) (-2593 (($ $) 232 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 231 (|has| |#1| (-566)))) (-2611 (($ $) 188 (|has| $ (-1064)))) (-1846 (((-546) $) 259 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 230 (|has| |#1| (-566))) (((-903 (-388)) $) 195 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 194 (|has| |#1| (-624 (-903 (-574)))))) (-2190 (($ $ $) 258 (|has| |#1| (-483)))) (-2987 (($ $ $) 257 (|has| |#1| (-483)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-965 |#1|)) 256 (|has| |#1| (-1064))) (($ (-417 (-965 |#1|))) 240 (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) 236 (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) 235 (|has| |#1| (-566))) (($ (-417 |#1|)) 234 (|has| |#1| (-566))) (($ (-1140 |#1| (-622 $))) 220 (|has| |#1| (-1064))) (($ |#1|) 202) (($ (-1192)) 193) (($ (-622 $)) 144)) (-3270 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-2081 (($ (-654 $)) 160) (($ $) 159)) (-2448 (((-112) (-115)) 171)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2513 (($ (-1192) (-654 $)) 210) (($ (-1192) $ $ $ $) 209) (($ (-1192) $ $ $) 208) (($ (-1192) $ $) 207) (($ (-1192) $) 206)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1192)) 249 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 248 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 247 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) 246 (|has| |#1| (-1064)))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73) (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 233 (|has| |#1| (-566)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1064))))) +(((-29 |#1|) (-141) (-566)) (T -29)) +((-1853 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-1853 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-2263 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-2869 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-2869 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -1853 ($ $)) (-15 -3569 ((-654 $) $)) (-15 -1853 ($ $ (-1192))) (-15 -3569 ((-654 $) $ (-1192))) (-15 -2263 ($ $)) (-15 -2869 ((-654 $) $)) (-15 -2263 ($ $ (-1192))) (-15 -2869 ((-654 $) $ (-1192))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-965 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-965 |#1|)) |has| |#1| (-1064)) ((-626 #4=(-1192)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1064)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-658 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-649 |#1|) |has| |#1| (-1064)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-1064)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-933) . T) ((-1017) . T) ((-1053 (-417 (-574))) -2832 (|has| |#1| (-1053 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) ((-1053 #1#) |has| |#1| (-566)) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 #3#) |has| |#1| (-1064)) ((-1053 #4#) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) |has| |#1| (-174)) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T) ((-1237) . T)) +((-2438 (((-1109 (-227)) $) NIL)) (-2425 (((-1109 (-227)) $) NIL)) (-4385 (($ $ (-227)) 164)) (-1529 (($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574)))) 104)) (-3220 (((-654 (-654 (-956 (-227)))) $) 180)) (-2950 (((-872) $) 194))) +(((-30) (-13 (-968) (-10 -8 (-15 -1529 ($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574))))) (-15 -4385 ($ $ (-227)))))) (T -30)) +((-1529 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-965 (-574))) (-5 *3 (-1192)) (-5 *4 (-1109 (-417 (-574)))) (-5 *1 (-30)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-968) (-10 -8 (-15 -1529 ($ (-965 (-574)) (-1192) (-1192) (-1109 (-417 (-574))) (-1109 (-417 (-574))))) (-15 -4385 ($ $ (-227))))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 11)) (-4259 (((-112) $ $) NIL)) (-2644 (((-1150) $) 9)) (-2985 (((-112) $ $) NIL))) +(((-31) (-13 (-1098) (-10 -8 (-15 -2644 ((-1150) $)) (-15 -2053 ((-1150) $))))) (T -31)) +((-2644 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31))))) +(-13 (-1098) (-10 -8 (-15 -2644 ((-1150) $)) (-15 -2053 ((-1150) $)))) +((-1853 ((|#2| (-1188 |#2|) (-1192)) 41)) (-4151 (((-115) (-115)) 55)) (-3256 (((-1188 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1053 (-574))))) (-1408 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1053 (-574))))) (-2460 ((|#2| (-1188 |#2|) |#2|) 29)) (-3186 (((-872) (-654 |#2|)) 86)) (-2611 ((|#2| |#2|) 144 (|has| |#1| (-1053 (-574))))) (-2448 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1053 (-574)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1853 (|#2| (-1188 |#2|) (-1192))) (-15 -4151 ((-115) (-115))) (-15 -2448 ((-112) (-115))) (-15 -2460 (|#2| (-1188 |#2|) |#2|)) (-15 -3186 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1053 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -3256 ((-1188 |#2|) (-622 |#2|))) (-15 -2611 (|#2| |#2|)) (-15 -1408 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32)) +((-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1053 *4)) (-4 *3 (-566)))) (-2611 (*1 *2 *2) (-12 (-4 *3 (-1053 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) (-5 *2 (-1188 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *2)) (-5 *4 (-1192)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))) +(-10 -7 (-15 -1853 (|#2| (-1188 |#2|) (-1192))) (-15 -4151 ((-115) (-115))) (-15 -2448 ((-112) (-115))) (-15 -2460 (|#2| (-1188 |#2|) |#2|)) (-15 -3186 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1053 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -3256 ((-1188 |#2|) (-622 |#2|))) (-15 -2611 (|#2| |#2|)) (-15 -1408 (|#2| |#1| (-574)))) |%noBranch|)) +((-1750 (((-112) $ (-781)) 20)) (-3063 (($) 10)) (-2121 (((-112) $ (-781)) 19)) (-2713 (((-112) $ (-781)) 17)) (-3968 (((-112) $ $) 8)) (-2234 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3063 (|#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781))) (-15 -2234 ((-112) |#1|)) (-15 -3968 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3063 (|#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781))) (-15 -2234 ((-112) |#1|)) (-15 -3968 ((-112) |#1| |#1|))) +((-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-2121 (((-112) $ (-781)) 9)) (-2713 (((-112) $ (-781)) 10)) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3156 (($ $) 13)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) (((-34) (-141)) (T -34)) -((-1885 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3166 (*1 *1 *1) (-4 *1 (-34))) (-3508 (*1 *1) (-4 *1 (-34))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-2078 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-3450 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-2579 (*1 *1) (-4 *1 (-34))) (-2862 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-34)) (-5 *2 (-780))))) -(-13 (-1230) (-10 -8 (-15 -1885 ((-112) $ $)) (-15 -3166 ($ $)) (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -2673 ((-112) $ (-780))) (-15 -2078 ((-112) $ (-780))) (-15 -3450 ((-112) $ (-780))) (-15 -2579 ($) -1705) (IF (|has| $ (-6 -4455)) (-15 -2862 ((-780) $)) |%noBranch|))) -(((-1230) . T)) -((-2439 (($ $) 11)) (-2413 (($ $) 10)) (-2464 (($ $) 9)) (-2520 (($ $) 8)) (-2452 (($ $) 7)) (-2426 (($ $) 6))) +((-3968 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3156 (*1 *1 *1) (-4 *1 (-34))) (-4272 (*1 *1) (-4 *1 (-34))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2713 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-1750 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3063 (*1 *1) (-4 *1 (-34))) (-2876 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-34)) (-5 *2 (-781))))) +(-13 (-1233) (-10 -8 (-15 -3968 ((-112) $ $)) (-15 -3156 ($ $)) (-15 -4272 ($)) (-15 -2234 ((-112) $)) (-15 -2713 ((-112) $ (-781))) (-15 -2121 ((-112) $ (-781))) (-15 -1750 ((-112) $ (-781))) (-15 -3063 ($) -1716) (IF (|has| $ (-6 -4458)) (-15 -2876 ((-781) $)) |%noBranch|))) +(((-1233) . T)) +((-2455 (($ $) 11)) (-2428 (($ $) 10)) (-2479 (($ $) 9)) (-2535 (($ $) 8)) (-2467 (($ $) 7)) (-2442 (($ $) 6))) (((-35) (-141)) (T -35)) -((-2439 (*1 *1 *1) (-4 *1 (-35))) (-2413 (*1 *1 *1) (-4 *1 (-35))) (-2464 (*1 *1 *1) (-4 *1 (-35))) (-2520 (*1 *1 *1) (-4 *1 (-35))) (-2452 (*1 *1 *1) (-4 *1 (-35))) (-2426 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2426 ($ $)) (-15 -2452 ($ $)) (-15 -2520 ($ $)) (-15 -2464 ($ $)) (-15 -2413 ($ $)) (-15 -2439 ($ $)))) -((-2848 (((-112) $ $) 19 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3082 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 127)) (-2404 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 150)) (-1969 (($ $) 148)) (-3777 (($) 73) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 72)) (-3791 (((-1285) $ |#1| |#1|) 100 (|has| $ (-6 -4456))) (((-1285) $ (-573) (-573)) 180 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 161 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2748 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 202 (|has| $ (-6 -4456))) (($ $) 201 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-2367 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 136 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 157 (|has| $ (-6 -4456)))) (-2016 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 159 (|has| $ (-6 -4456)))) (-2647 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 155 (|has| $ (-6 -4456)))) (-3142 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 191 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-1247 (-573)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 162 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 160 (|has| $ (-6 -4456))) (($ $ "rest" $) 158 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 156 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 135 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 134 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 218)) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 177 (|has| $ (-6 -4455)))) (-2392 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 149)) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2176 (($ $) 203 (|has| $ (-6 -4456)))) (-4422 (($ $) 213)) (-2925 (($ $ (-780)) 144) (($ $) 142)) (-1599 (($ $) 216 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2685 (($ $) 59 (-2817 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))) (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 222) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 217 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 176 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 178 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 175 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 174 (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 192 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 89) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 190)) (-3435 (((-112) $) 194)) (-1440 (((-573) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 210) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 209 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 208 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455))) (((-653 |#2|) $) 80 (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 116 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 125)) (-3208 (((-112) $ $) 133 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3789 (($ (-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 170)) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 97 (|has| |#1| (-859))) (((-573) $) 182 (|has| (-573) (-859)))) (-3659 (($ $ $) 200 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-4241 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-1480 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455))) (((-653 |#2|) $) 81 (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 117 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 96 (|has| |#1| (-859))) (((-573) $) 183 (|has| (-573) (-859)))) (-3751 (($ $ $) 199 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 112 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 111)) (-1787 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 227)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 130)) (-2880 (((-112) $) 126)) (-3180 (((-1171) $) 22 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3359 (($ $ (-780)) 147) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 145)) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 221) (($ $ $ (-573)) 220)) (-1593 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 164) (($ $ $ (-573)) 163)) (-1977 (((-653 |#1|) $) 94) (((-653 (-573)) $) 185)) (-2560 (((-112) |#1| $) 93) (((-112) (-573) $) 186)) (-3965 (((-1132) $) 21 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2914 ((|#2| $) 98 (|has| |#1| (-859))) (($ $ (-780)) 141) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 139)) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52) (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 173)) (-3112 (($ $ |#2|) 99 (|has| $ (-6 -4456))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 181 (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1903 (((-112) $) 193)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 114 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 87 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 85 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) 84 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 123 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 122 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 121 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 120 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 184 (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1535 (((-653 |#2|) $) 92) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 187)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 189) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 188) (($ $ (-1247 (-573))) 171) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first") 140) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value") 128)) (-1501 (((-573) $ $) 131)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3220 (($ $ (-573)) 224) (($ $ (-1247 (-573))) 223)) (-2836 (($ $ (-573)) 166) (($ $ (-1247 (-573))) 165)) (-1628 (((-112) $) 129)) (-1992 (($ $) 153)) (-3839 (($ $) 154 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 152)) (-1512 (($ $) 151)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) |#2| $) 82 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 115 (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) 204 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545)))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 172)) (-3996 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 226) (($ $ $) 225)) (-4156 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 169) (($ (-653 $)) 168) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 138) (($ $ $) 137)) (-2942 (((-871) $) 18 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))))) (-1811 (((-653 $) $) 124)) (-1716 (((-112) $ $) 132 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3507 (((-112) $ $) 23 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-3368 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 110)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 113 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 197 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3015 (((-112) $ $) 196 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2981 (((-112) $ $) 20 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3027 (((-112) $ $) 198 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3005 (((-112) $ $) 195 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-36 |#1| |#2|) (-141) (-1112) (-1112)) (T -36)) -((-3368 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| -3692 *3) (|:| -1907 *4)))))) -(-13 (-1206 |t#1| |t#2|) (-675 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -3368 ((-3 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #1=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-293 #2=(-573) #1#) . T) ((-293 (-1247 (-573)) $) . T) ((-293 |#1| |#2|) . T) ((-295 #2# #1#) . T) ((-295 |#1| |#2|) . T) ((-316 #1#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-289 #1#) . T) ((-381 #1#) . T) ((-498 #1#) . T) ((-498 |#2|) . T) ((-613 #2# #1#) . T) ((-613 |#1| |#2|) . T) ((-523 #1# #1#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-619 |#1| |#2|) . T) ((-660 #1#) . T) ((-675 #1#) . T) ((-859) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) ((-1022 #1#) . T) ((-1112) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))) ((-1161 #1#) . T) ((-1206 |#1| |#2|) . T) ((-1230) . T) ((-1268 #1#) . T)) -((-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-2455 (*1 *1 *1) (-4 *1 (-35))) (-2428 (*1 *1 *1) (-4 *1 (-35))) (-2479 (*1 *1 *1) (-4 *1 (-35))) (-2535 (*1 *1 *1) (-4 *1 (-35))) (-2467 (*1 *1 *1) (-4 *1 (-35))) (-2442 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2442 ($ $)) (-15 -2467 ($ $)) (-15 -2535 ($ $)) (-15 -2479 ($ $)) (-15 -2428 ($ $)) (-15 -2455 ($ $)))) +((-2863 (((-112) $ $) 19 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3078 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 127)) (-2420 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 150)) (-1980 (($ $) 148)) (-3751 (($) 73) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 72)) (-2057 (((-1288) $ |#1| |#1|) 100 (|has| $ (-6 -4459))) (((-1288) $ (-574) (-574)) 180 (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 161 (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2212 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 202 (|has| $ (-6 -4459))) (($ $) 201 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-1750 (((-112) $ (-781)) 8)) (-2922 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 136 (|has| $ (-6 -4459)))) (-4031 (($ $ $) 157 (|has| $ (-6 -4459)))) (-2807 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 159 (|has| $ (-6 -4459)))) (-2424 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 155 (|has| $ (-6 -4459)))) (-3134 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 191 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-1250 (-574)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 162 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "last" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 160 (|has| $ (-6 -4459))) (($ $ "rest" $) 158 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "first" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 156 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "value" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 135 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 134 (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 218)) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 177 (|has| $ (-6 -4458)))) (-2407 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 149)) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-3063 (($) 7 T CONST)) (-3680 (($ $) 203 (|has| $ (-6 -4459)))) (-4424 (($ $) 213)) (-2934 (($ $ (-781)) 144) (($ $) 142)) (-3054 (($ $) 216 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-2818 (($ $) 59 (-2832 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))) (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 222) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 217 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 176 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 178 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 175 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 174 (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 192 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 89) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) 190)) (-2841 (((-112) $) 194)) (-1451 (((-574) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 210) (((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 209 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) (((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4458))) (((-654 |#2|) $) 80 (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 116 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 125)) (-2232 (((-112) $ $) 133 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-3763 (($ (-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 170)) (-2121 (((-112) $ (-781)) 9)) (-2344 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3632 (($ $ $) 200 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4099 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4333 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4458))) (((-654 |#2|) $) 81 (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 117 (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-1965 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-2953 (($ $ $) 199 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 112 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 111)) (-1797 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 227)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 130)) (-4086 (((-112) $) 126)) (-1938 (((-1174) $) 22 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3333 (($ $ (-781)) 147) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 145)) (-1773 (((-654 |#1|) $) 64)) (-3735 (((-112) |#1| $) 65)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 40)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 41) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1604 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-2435 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-4088 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3939 (((-1135) $) 21 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-2924 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 139)) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 52) (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 173)) (-2485 (($ $ |#2|) 99 (|has| $ (-6 -4459))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 181 (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 42)) (-2949 (((-112) $) 193)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 114 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 123 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 122 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 121 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) 120 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 184 (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3670 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 187)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 189) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) 188) (($ $ (-1250 (-574))) 171) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "first") 140) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "value") 128)) (-1418 (((-574) $ $) 131)) (-2163 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 49)) (-4253 (($ $ (-574)) 224) (($ $ (-1250 (-574))) 223)) (-2854 (($ $ (-574)) 166) (($ $ (-1250 (-574))) 165)) (-3325 (((-112) $) 129)) (-2592 (($ $) 153)) (-4423 (($ $) 154 (|has| $ (-6 -4459)))) (-1798 (((-781) $) 152)) (-1523 (($ $) 151)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 115 (|has| $ (-6 -4458)))) (-3957 (($ $ $ (-574)) 204 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546)))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 51) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 172)) (-3539 (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 226) (($ $ $) 225)) (-4131 (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 138) (($ $ $) 137)) (-2950 (((-872) $) 18 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872)))))) (-1355 (((-654 $) $) 124)) (-1692 (((-112) $ $) 132 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-4259 (((-112) $ $) 23 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 43)) (-3342 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") |#1| $) 110)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 113 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 197 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-3017 (((-112) $ $) 196 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2985 (((-112) $ $) 20 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3029 (((-112) $ $) 198 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-3008 (((-112) $ $) 195 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-36 |#1| |#2|) (-141) (-1115) (-1115)) (T -36)) +((-3342 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| -3666 *3) (|:| -1918 *4)))))) +(-13 (-1209 |t#1| |t#2|) (-676 (-2 (|:| -3666 |t#1|) (|:| -1918 |t#2|))) (-10 -8 (-15 -3342 ((-3 (-2 (|:| -3666 |t#1|) (|:| -1918 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((-102) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1250 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)) ((-1025 #1#) . T) ((-1115) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860))) ((-1164 #1#) . T) ((-1209 |#1| |#2|) . T) ((-1233) . T) ((-1271 #1#) . T)) +((-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1061) (-726 |t#1|) (-625 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3834 (((-427 |#1|) |#1|) 41)) (-4218 (((-427 |#1|) |#1|) 30) (((-427 |#1|) |#1| (-653 (-48))) 33)) (-1725 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1| (-653 (-48)))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -3834 ((-427 |#1|) |#1|)) (-15 -1725 ((-112) |#1|))) (-1256 (-48))) (T -39)) -((-1725 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48)))))) -(-10 -7 (-15 -4218 ((-427 |#1|) |#1| (-653 (-48)))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -3834 ((-427 |#1|) |#1|)) (-15 -1725 ((-112) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| (-416 |#2|) (-371)))) (-2456 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) NIL) (((-698 (-416 |#2|))) NIL)) (-1635 (((-416 |#2|) $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) NIL (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) NIL)) (-3454 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) NIL)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) NIL) (($ (-1280 (-416 |#2|))) 61) (($ (-1280 |#2|) |#2|) 131)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) NIL) (((-698 (-416 |#2|)) (-698 $)) NIL) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1869 (((-1280 $) (-1280 $)) NIL)) (-2867 (($ |#3|) NIL) (((-3 $ "failed") (-416 |#3|)) NIL (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2989 (((-653 (-653 |#1|))) NIL (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) NIL)) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) NIL)) (-1819 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2796 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-416 |#2|) (-371)))) (-3246 (($ $) NIL)) (-3731 (($) NIL (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) NIL (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) NIL (|has| (-416 |#2|) (-357))) (($ $) NIL (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) NIL (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) NIL (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) NIL)) (-2033 (((-780)) NIL)) (-4109 (((-1280 $) (-1280 $)) 106)) (-3421 (((-416 |#2|) $) NIL)) (-2201 (((-653 (-962 |#1|)) (-1189)) NIL (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) NIL (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) NIL (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) NIL)) (-3536 (((-1285) (-780)) 84)) (-3644 (((-698 (-416 |#2|))) 56)) (-3456 (((-698 (-416 |#2|))) 49)) (-1323 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 132)) (-4192 (((-698 (-416 |#2|))) 50)) (-3707 (((-698 (-416 |#2|))) 48)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 68)) (-3051 (((-1280 $)) 47)) (-3529 (((-1280 $)) 46)) (-3432 (((-112) $) NIL)) (-2588 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) NIL)) (-3965 (((-1132) $) NIL)) (-2717 (((-780)) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) NIL (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) NIL)) (-4027 (((-3 |#2| "failed")) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) NIL) (((-416 |#2|)) 44)) (-1637 (((-780) $) NIL (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) NIL (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 55)) (-2510 (($) NIL (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 |#2|)) $) 62) (((-698 (-416 |#2|)) (-1280 $)) 107)) (-1835 (((-1280 (-416 |#2|)) $) NIL) (($ (-1280 (-416 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 |#2|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-371)))) (($ $) NIL (|has| (-416 |#2|) (-371)))) (-4279 (($ $) NIL (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-2919 (((-112)) 42)) (-3289 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3331 (((-112)) NIL)) (-2132 (($) 17 T CONST)) (-2144 (($) 27 T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 |#2|)) NIL) (($ (-416 |#2|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) NIL (|has| (-416 |#2|) (-371))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-350 |#1| |#2| |#3|) (-10 -7 (-15 -3536 ((-1285) (-780))))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) |#3|) (T -40)) -((-3536 (*1 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *2 (-1285)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1256 (-416 *5))) (-14 *7 *6)))) -(-13 (-350 |#1| |#2| |#3|) (-10 -7 (-15 -3536 ((-1285) (-780))))) -((-1831 ((|#2| |#2|) 47)) (-3836 ((|#2| |#2|) 139 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-3182 ((|#2| |#2|) 100 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-4286 ((|#2| |#2|) 101 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-1933 ((|#2| (-115) |#2| (-780)) 135 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-1370 (((-1185 |#2|) |#2|) 44)) (-3055 ((|#2| |#2| (-653 (-621 |#2|))) 18) ((|#2| |#2| (-653 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1831 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3055 (|#2| |#2| |#2|)) (-15 -3055 (|#2| |#2| (-653 |#2|))) (-15 -3055 (|#2| |#2| (-653 (-621 |#2|)))) (-15 -1370 ((-1185 |#2|) |#2|)) (IF (|has| |#1| (-13 (-461) (-1050 (-573)))) (IF (|has| |#2| (-439 |#1|)) (PROGN (-15 -4286 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -1933 (|#2| (-115) |#2| (-780)))) |%noBranch|) |%noBranch|)) (-565) (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 |#1| (-621 $)) $)) (-15 -2975 ((-1137 |#1| (-621 $)) $)) (-15 -2942 ($ (-1137 |#1| (-621 $))))))) (T -41)) -((-1933 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)))) (-4 *5 (-565)) (-5 *1 (-41 *5 *2)) (-4 *2 (-439 *5)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *5 (-621 $)) $)) (-15 -2975 ((-1137 *5 (-621 $)) $)) (-15 -2942 ($ (-1137 *5 (-621 $))))))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-1185 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))))) (-3055 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-621 *2))) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))) (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) (-3055 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))) (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) (-3055 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) -(-10 -7 (-15 -1831 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3055 (|#2| |#2| |#2|)) (-15 -3055 (|#2| |#2| (-653 |#2|))) (-15 -3055 (|#2| |#2| (-653 (-621 |#2|)))) (-15 -1370 ((-1185 |#2|) |#2|)) (IF (|has| |#1| (-13 (-461) (-1050 (-573)))) (IF (|has| |#2| (-439 |#1|)) (PROGN (-15 -4286 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -1933 (|#2| (-115) |#2| (-780)))) |%noBranch|) |%noBranch|)) -((-4218 (((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))) 23) (((-427 |#3|) |#3| (-653 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3| (-653 (-48)))) (-15 -4218 ((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))))) (-859) (-802) (-959 (-48) |#2| |#1|)) (T -42)) -((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *7 (-959 (-48) *6 *5)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *2 (-427 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-959 (-48) *6 *5))))) -(-10 -7 (-15 -4218 ((-427 |#3|) |#3| (-653 (-48)))) (-15 -4218 ((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))))) -((-3761 (((-780) |#2|) 70)) (-3940 (((-780) |#2|) 74)) (-2131 (((-653 |#2|)) 37)) (-3851 (((-780) |#2|) 73)) (-2477 (((-780) |#2|) 69)) (-4330 (((-780) |#2|) 72)) (-3909 (((-653 (-698 |#1|))) 65)) (-4067 (((-653 |#2|)) 60)) (-1812 (((-653 |#2|) |#2|) 48)) (-4021 (((-653 |#2|)) 62)) (-1902 (((-653 |#2|)) 61)) (-2543 (((-653 (-698 |#1|))) 53)) (-3623 (((-653 |#2|)) 59)) (-1375 (((-653 |#2|) |#2|) 47)) (-4153 (((-653 |#2|)) 55)) (-3253 (((-653 (-698 |#1|))) 66)) (-2609 (((-653 |#2|)) 64)) (-3914 (((-1280 |#2|) (-1280 |#2|)) 99 (|has| |#1| (-314))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3851 ((-780) |#2|)) (-15 -3940 ((-780) |#2|)) (-15 -2477 ((-780) |#2|)) (-15 -3761 ((-780) |#2|)) (-15 -4330 ((-780) |#2|)) (-15 -4153 ((-653 |#2|))) (-15 -1375 ((-653 |#2|) |#2|)) (-15 -1812 ((-653 |#2|) |#2|)) (-15 -3623 ((-653 |#2|))) (-15 -4067 ((-653 |#2|))) (-15 -1902 ((-653 |#2|))) (-15 -4021 ((-653 |#2|))) (-15 -2609 ((-653 |#2|))) (-15 -2543 ((-653 (-698 |#1|)))) (-15 -3909 ((-653 (-698 |#1|)))) (-15 -3253 ((-653 (-698 |#1|)))) (-15 -2131 ((-653 |#2|))) (IF (|has| |#1| (-314)) (-15 -3914 ((-1280 |#2|) (-1280 |#2|))) |%noBranch|)) (-565) (-426 |#1|)) (T -43)) -((-3914 (*1 *2 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-426 *3)) (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-43 *3 *4)))) (-2131 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3253 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3909 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-2543 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-2609 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4021 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-1902 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4067 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3623 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-1812 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-1375 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-4153 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4330 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4))))) -(-10 -7 (-15 -3851 ((-780) |#2|)) (-15 -3940 ((-780) |#2|)) (-15 -2477 ((-780) |#2|)) (-15 -3761 ((-780) |#2|)) (-15 -4330 ((-780) |#2|)) (-15 -4153 ((-653 |#2|))) (-15 -1375 ((-653 |#2|) |#2|)) (-15 -1812 ((-653 |#2|) |#2|)) (-15 -3623 ((-653 |#2|))) (-15 -4067 ((-653 |#2|))) (-15 -1902 ((-653 |#2|))) (-15 -4021 ((-653 |#2|))) (-15 -2609 ((-653 |#2|))) (-15 -2543 ((-653 (-698 |#1|)))) (-15 -3909 ((-653 (-698 |#1|)))) (-15 -3253 ((-653 (-698 |#1|)))) (-15 -2131 ((-653 |#2|))) (IF (|has| |#1| (-314)) (-15 -3914 ((-1280 |#2|) (-1280 |#2|))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) NIL) (((-1280 (-698 |#1|))) 24)) (-1888 (((-1280 $)) 52)) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-1390 ((|#1| $) NIL)) (-3612 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| |#1| (-565)))) (-2743 (((-1185 (-962 |#1|))) NIL (|has| |#1| (-371)))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL)) (-3397 (((-1185 |#1|) $) NIL (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-2650 (((-1185 |#1|) $) NIL)) (-2492 (((-112)) 99)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) NIL)) (-2232 (((-3 $ "failed") $) 14 (|has| |#1| (-565)))) (-3583 (((-931)) 53)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) 101)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-3619 ((|#1| $) NIL)) (-1729 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| |#1| (-565)))) (-3753 (((-1185 (-962 |#1|))) NIL (|has| |#1| (-371)))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL)) (-2000 (((-1185 |#1|) $) NIL (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-3242 (((-1185 |#1|) $) NIL)) (-3455 (((-112)) 98)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) 106)) (-3313 (((-112)) 105)) (-4293 (((-112)) 107)) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) 100)) (-2198 ((|#1| $ (-573)) 55)) (-2123 (((-1280 |#1|) $ (-1280 $)) 48) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) 28) (((-698 |#1|) (-1280 $)) NIL)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) NIL) (((-653 (-962 |#1|))) NIL)) (-4380 (($ $ $) NIL)) (-2774 (((-112)) 95)) (-2942 (((-871) $) 71) (($ (-1280 |#1|)) 22)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 51)) (-2649 (((-653 (-1280 |#1|))) NIL (|has| |#1| (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) 91)) (-2900 (($ (-698 |#1|) $) 18)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) 97)) (-4243 (((-112)) 92)) (-2744 (((-112)) 90)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1154 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-426 |#1|) (-657 (-1154 |#2| |#1|)) (-10 -8 (-15 -2942 ($ (-1280 |#1|))))) (-371) (-931) (-653 (-1189)) (-1280 (-698 |#1|))) (T -44)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-14 *6 (-1280 (-698 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189)))))) -(-13 (-426 |#1|) (-657 (-1154 |#2| |#1|)) (-10 -8 (-15 -2942 ($ (-1280 |#1|))))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3082 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2404 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1969 (($ $) NIL)) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456))) (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2748 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))))) (-2770 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-2367 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 33 (|has| $ (-6 -4456)))) (-2016 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2647 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 35 (|has| $ (-6 -4456)))) (-3142 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-1247 (-573)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2392 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2161 (((-3 |#2| "failed") |#1| $) 43)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $ (-780)) NIL) (($ $) 29)) (-1599 (($ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3789 (($ (-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859))) (((-573) $) 38 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-4241 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-1480 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859))) (((-573) $) 40 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-1787 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) 49 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3359 (($ $ (-780)) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1762 (((-653 |#1|) $) 22)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1593 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 |#1|) $) NIL) (((-653 (-573)) $) NIL)) (-2560 (((-112) |#1| $) NIL) (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859))) (($ $ (-780)) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 27)) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1535 (((-653 |#2|) $) NIL) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 19)) (-3811 (((-112) $) 18)) (-3508 (($) 14)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first") NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value") NIL)) (-1501 (((-573) $ $) NIL)) (-2428 (($) 13) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3220 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3996 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (($ $ $) NIL)) (-4156 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (($ (-653 $)) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 31) (($ $ $) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3368 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 51)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3027 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2862 (((-780) $) 25 (|has| $ (-6 -4455))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1112) (-1112)) (T -45)) +(-13 (-1064) (-727 |t#1|) (-626 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-4369 (((-428 |#1|) |#1|) 41)) (-4200 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-1781 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4369 ((-428 |#1|) |#1|)) (-15 -1781 ((-112) |#1|))) (-1259 (-48))) (T -39)) +((-1781 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-4369 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48)))))) +(-10 -7 (-15 -4200 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4369 ((-428 |#1|) |#1|)) (-15 -1781 ((-112) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3386 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-4319 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1731 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-4368 (((-699 (-417 |#2|)) (-1283 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1646 (((-417 |#2|) $) NIL)) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2153 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1526 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1497 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4092 (((-112)) NIL)) (-1795 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3875 (($ (-1283 (-417 |#2|)) (-1283 $)) NIL) (($ (-1283 (-417 |#2|))) 61) (($ (-1283 |#2|) |#2|) 131)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1732 (((-699 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-3816 (((-1283 $) (-1283 $)) NIL)) (-2881 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-2978 (((-3 $ "failed") $) NIL)) (-2672 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-3896 (((-112) |#1| |#1|) NIL)) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-417 |#2|) (-377)))) (-1645 (((-112)) NIL)) (-1442 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2811 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1420 (($ $) NIL)) (-2776 (($) NIL (|has| (-417 |#2|) (-358)))) (-1627 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-4278 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-2941 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3837 (((-934) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) NIL (|has| (-417 |#2|) (-358)))) (-2276 (((-112) $) NIL)) (-1717 (((-781)) NIL)) (-2165 (((-1283 $) (-1283 $)) 106)) (-2681 (((-417 |#2|) $) NIL)) (-3914 (((-654 (-965 |#1|)) (-1192)) NIL (|has| |#1| (-372)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3525 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3880 (((-934) $) NIL (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1938 (((-1174) $) NIL)) (-1443 (((-1288) (-781)) 84)) (-3211 (((-699 (-417 |#2|))) 56)) (-1822 (((-699 (-417 |#2|))) 49)) (-1327 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-4167 (($ (-1283 |#2|) |#2|) 132)) (-1726 (((-699 (-417 |#2|))) 50)) (-2545 (((-699 (-417 |#2|))) 48)) (-3723 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-1651 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 68)) (-3187 (((-1283 $)) 47)) (-1369 (((-1283 $)) 46)) (-2801 (((-112) $) NIL)) (-3167 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-417 |#2|) (-377)))) (-2632 (((-3 |#2| "failed")) NIL)) (-3939 (((-1135) $) NIL)) (-1892 (((-781)) NIL)) (-2974 (($) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3575 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2209 ((|#1| $ |#1| |#1|) NIL)) (-2588 (((-3 |#2| "failed")) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-3902 (((-417 |#2|) (-1283 $)) NIL) (((-417 |#2|)) 44)) (-3411 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3450 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2611 ((|#3|) 55)) (-3627 (($) NIL (|has| (-417 |#2|) (-358)))) (-4421 (((-1283 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1283 $)) 107)) (-1846 (((-1283 (-417 |#2|)) $) NIL) (($ (-1283 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-1605 (((-1283 $) (-1283 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3270 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-3688 ((|#3| $) NIL)) (-3781 (((-781)) NIL T CONST)) (-3274 (((-112)) 42)) (-3756 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL)) (-3676 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-3085 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2999 (((-112)) NIL)) (-2143 (($) 17 T CONST)) (-2155 (($) 27 T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -1443 ((-1288) (-781))))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) |#3|) (T -40)) +((-1443 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *2 (-1288)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1259 (-417 *5))) (-14 *7 *6)))) +(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -1443 ((-1288) (-781))))) +((-1559 ((|#2| |#2|) 47)) (-4389 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-1958 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-3324 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-3277 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1053 (-574))))))) (-2617 (((-1188 |#2|) |#2|) 44)) (-3232 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1559 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -3232 (|#2| |#2| |#2|)) (-15 -3232 (|#2| |#2| (-654 |#2|))) (-15 -3232 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2617 ((-1188 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1053 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3324 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -4389 (|#2| |#2|)) (-15 -3277 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 |#1| (-622 $)) $)) (-15 -2981 ((-1140 |#1| (-622 $)) $)) (-15 -2950 ($ (-1140 |#1| (-622 $))))))) (T -41)) +((-3277 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *5 (-622 $)) $)) (-15 -2981 ((-1140 *5 (-622 $)) $)) (-15 -2950 ($ (-1140 *5 (-622 $))))))))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-3324 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1188 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) (-15 -2981 ((-1140 *4 (-622 $)) $)) (-15 -2950 ($ (-1140 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-3232 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $))))))))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) (-15 -2981 ((-1140 *3 (-622 $)) $)) (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) +(-10 -7 (-15 -1559 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -3232 (|#2| |#2| |#2|)) (-15 -3232 (|#2| |#2| (-654 |#2|))) (-15 -3232 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -2617 ((-1188 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1053 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3324 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -4389 (|#2| |#2|)) (-15 -3277 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) +((-4200 (((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4200 ((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))))) (-860) (-803) (-962 (-48) |#2| |#1|)) (T -42)) +((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-962 (-48) *6 *5)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-962 (-48) *6 *5))))) +(-10 -7 (-15 -4200 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4200 ((-428 (-1188 |#3|)) (-1188 |#3|) (-654 (-48))))) +((-1786 (((-781) |#2|) 70)) (-4170 (((-781) |#2|) 74)) (-1384 (((-654 |#2|)) 37)) (-1430 (((-781) |#2|) 73)) (-1415 (((-781) |#2|) 69)) (-2452 (((-781) |#2|) 72)) (-3862 (((-654 (-699 |#1|))) 65)) (-1765 (((-654 |#2|)) 60)) (-1367 (((-654 |#2|) |#2|) 48)) (-2527 (((-654 |#2|)) 62)) (-2937 (((-654 |#2|)) 61)) (-3928 (((-654 (-699 |#1|))) 53)) (-4163 (((-654 |#2|)) 59)) (-1335 (((-654 |#2|) |#2|) 47)) (-1358 (((-654 |#2|)) 55)) (-1470 (((-654 (-699 |#1|))) 66)) (-3375 (((-654 |#2|)) 64)) (-3907 (((-1283 |#2|) (-1283 |#2|)) 99 (|has| |#1| (-315))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1430 ((-781) |#2|)) (-15 -4170 ((-781) |#2|)) (-15 -1415 ((-781) |#2|)) (-15 -1786 ((-781) |#2|)) (-15 -2452 ((-781) |#2|)) (-15 -1358 ((-654 |#2|))) (-15 -1335 ((-654 |#2|) |#2|)) (-15 -1367 ((-654 |#2|) |#2|)) (-15 -4163 ((-654 |#2|))) (-15 -1765 ((-654 |#2|))) (-15 -2937 ((-654 |#2|))) (-15 -2527 ((-654 |#2|))) (-15 -3375 ((-654 |#2|))) (-15 -3928 ((-654 (-699 |#1|)))) (-15 -3862 ((-654 (-699 |#1|)))) (-15 -1470 ((-654 (-699 |#1|)))) (-15 -1384 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -3907 ((-1283 |#2|) (-1283 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43)) +((-3907 (*1 *2 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-1384 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1470 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3862 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3928 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3375 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2527 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2937 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1765 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-4163 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1367 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1358 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1786 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1415 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1430 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4))))) +(-10 -7 (-15 -1430 ((-781) |#2|)) (-15 -4170 ((-781) |#2|)) (-15 -1415 ((-781) |#2|)) (-15 -1786 ((-781) |#2|)) (-15 -2452 ((-781) |#2|)) (-15 -1358 ((-654 |#2|))) (-15 -1335 ((-654 |#2|) |#2|)) (-15 -1367 ((-654 |#2|) |#2|)) (-15 -4163 ((-654 |#2|))) (-15 -1765 ((-654 |#2|))) (-15 -2937 ((-654 |#2|))) (-15 -2527 ((-654 |#2|))) (-15 -3375 ((-654 |#2|))) (-15 -3928 ((-654 (-699 |#1|)))) (-15 -3862 ((-654 (-699 |#1|)))) (-15 -1470 ((-654 (-699 |#1|)))) (-15 -1384 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -3907 ((-1283 |#2|) (-1283 |#2|))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3462 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-2555 (((-1283 (-699 |#1|)) (-1283 $)) NIL) (((-1283 (-699 |#1|))) 24)) (-4000 (((-1283 $)) 52)) (-3063 (($) NIL T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3294 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-4073 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-3197 ((|#1| $) NIL)) (-4060 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-3790 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-2158 (((-1188 (-965 |#1|))) NIL (|has| |#1| (-372)))) (-3558 (($ $ (-934)) NIL)) (-2755 ((|#1| $) NIL)) (-2390 (((-1188 |#1|) $) NIL (|has| |#1| (-566)))) (-2866 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-2447 (((-1188 |#1|) $) NIL)) (-1550 (((-112)) 99)) (-3875 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) NIL)) (-2978 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3557 (((-934)) 53)) (-2676 (((-112)) NIL)) (-2867 (($ $ (-934)) NIL)) (-3236 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-3954 (((-112)) 101)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3502 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-3100 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-4132 ((|#1| $) NIL)) (-1830 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-1341 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-1719 (((-1188 (-965 |#1|))) NIL (|has| |#1| (-372)))) (-2883 (($ $ (-934)) NIL)) (-2670 ((|#1| $) NIL)) (-2664 (((-1188 |#1|) $) NIL (|has| |#1| (-566)))) (-3038 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-1373 (((-1188 |#1|) $) NIL)) (-1808 (((-112)) 98)) (-1938 (((-1174) $) NIL)) (-3618 (((-112)) 106)) (-4004 (((-112)) 105)) (-3380 (((-112)) 107)) (-3939 (((-1135) $) NIL)) (-4147 (((-112)) 100)) (-2209 ((|#1| $ (-574)) 55)) (-4421 (((-1283 |#1|) $ (-1283 $)) 48) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) 28) (((-699 |#1|) (-1283 $)) NIL)) (-1846 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL)) (-2414 (((-654 (-965 |#1|)) (-1283 $)) NIL) (((-654 (-965 |#1|))) NIL)) (-2987 (($ $ $) NIL)) (-4390 (((-112)) 95)) (-2950 (((-872) $) 71) (($ (-1283 |#1|)) 22)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 51)) (-2433 (((-654 (-1283 |#1|))) NIL (|has| |#1| (-566)))) (-1391 (($ $ $ $) NIL)) (-2579 (((-112)) 91)) (-2911 (($ (-699 |#1|) $) 18)) (-2824 (($ $ $) NIL)) (-4208 (((-112)) 97)) (-4124 (((-112)) 92)) (-2170 (((-112)) 90)) (-2143 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1157 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1157 |#2| |#1|)) (-10 -8 (-15 -2950 ($ (-1283 |#1|))))) (-372) (-934) (-654 (-1192)) (-1283 (-699 |#1|))) (T -44)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-14 *6 (-1283 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192)))))) +(-13 (-427 |#1|) (-658 (-1157 |#2| |#1|)) (-10 -8 (-15 -2950 ($ (-1283 |#1|))))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3078 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2420 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1980 (($ $) NIL)) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459))) (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2212 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860))))) (-2785 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-2922 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459)))) (-4031 (($ $ $) 33 (|has| $ (-6 -4459)))) (-2807 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459)))) (-2424 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 35 (|has| $ (-6 -4459)))) (-3134 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-1250 (-574)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "last" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "first" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "value" (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2407 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2172 (((-3 |#2| "failed") |#1| $) 43)) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $ (-781)) NIL) (($ $) 29)) (-3054 (($ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) NIL)) (-2841 (((-112) $) NIL)) (-1451 (((-574) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) (((-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 20 (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 20 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-3763 (($ (-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4099 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4333 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-1797 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) 49 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3333 (($ $ (-781)) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1773 (((-654 |#1|) $) 22)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1604 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-4088 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 27)) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2949 (((-112) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3670 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 19)) (-2234 (((-112) $) 18)) (-4272 (($) 14)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "first") NIL) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $ "value") NIL)) (-1418 (((-574) $ $) NIL)) (-2163 (($) 13) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-4253 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3325 (((-112) $) NIL)) (-2592 (($ $) NIL)) (-4423 (($ $) NIL (|has| $ (-6 -4459)))) (-1798 (((-781) $) NIL)) (-1523 (($ $) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3539 (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL) (($ $ $) NIL)) (-4131 (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 31) (($ $ $) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3342 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") |#1| $) 51)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3029 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-860)))) (-2876 (((-781) $) 25 (|has| $ (-6 -4458))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1115) (-1115)) (T -45)) NIL (-36 |#1| |#2|) -((-3676 (((-112) $) 12)) (-1776 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-416 (-573)) $) 25) (($ $ (-416 (-573))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3676 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-47 |#2| |#3|) (-1061) (-801)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3676 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-47 |#1| |#2|) (-141) (-1061) (-801)) (T -47)) -((-1369 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-112)))) (-4334 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-371))))) -(-13 (-1061) (-111 |t#1| |t#1|) (-10 -8 (-15 -1369 (|t#1| $)) (-15 -1358 ($ $)) (-15 -2565 (|t#2| $)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -3676 ((-112) $)) (-15 -4334 ($ |t#1| |t#2|)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-565)) (-6 (-565)) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (-6 (-38 (-416 (-573)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-4118 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1748 (((-112) $) 9)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-4090 (((-653 (-621 $)) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-3682 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-1732 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-573) $) NIL) (((-416 (-573)) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-416 (-573)))) (|:| |vec| (-1280 (-416 (-573))))) (-698 $) (-1280 $)) NIL) (((-698 (-416 (-573))) (-698 $)) NIL) (((-698 (-416 (-573))) (-1280 $)) NIL)) (-2867 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) 11)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2965 (((-1137 (-573) (-621 $)) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3421 (((-1185 $) (-1185 $) (-621 $)) NIL) (((-1185 $) (-1185 $) (-653 (-621 $))) NIL) (($ $ (-621 $)) NIL) (($ $ (-653 (-621 $))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2597 (((-1185 $) (-621 $)) NIL (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1323 (($ $) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2163 (((-780) $) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2975 (((-1137 (-573) (-621 $)) $) NIL)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-171 (-387)) $) NIL)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-1137 (-573) (-621 $))) NIL)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) NIL)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 6 T CONST)) (-2144 (($) 10 T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) 13)) (-3103 (($ $ $) NIL)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-416 (-573))) NIL) (($ $ (-573)) NIL) (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) -(((-48) (-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $))))))) (T -48)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2867 (*1 *1 *1) (-5 *1 (-48))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-621 (-48))) (-5 *1 (-48)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-653 (-621 (-48)))) (-5 *1 (-48)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-48))) (-5 *1 (-48)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-48)))) (-5 *1 (-48))))) -(-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $)))))) -((-2848 (((-112) $ $) NIL)) (-2623 (((-653 (-515)) $) 17)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-2043 (((-1194) $) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-49) (-13 (-1112) (-10 -8 (-15 -2623 ((-653 (-515)) $)) (-15 -2043 ((-1194) $))))) (T -49)) -((-2623 (*1 *2 *1) (-12 (-5 *2 (-653 (-515))) (-5 *1 (-49)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-49))))) -(-13 (-1112) (-10 -8 (-15 -2623 ((-653 (-515)) $)) (-15 -2043 ((-1194) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 85)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1407 (((-112) $) 30)) (-1695 (((-3 |#1| "failed") $) 33)) (-2205 ((|#1| $) 34)) (-1391 (($ $) 40)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1369 ((|#1| $) 31)) (-1833 (($ $) 74)) (-3180 (((-1171) $) NIL)) (-3825 (((-112) $) 43)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) 72)) (-1608 (($ (-653 (-573))) 73)) (-2565 (((-780) $) 44)) (-2942 (((-871) $) 91) (($ (-573)) 69) (($ |#1|) 67)) (-4317 ((|#1| $ $) 28)) (-1545 (((-780)) 71 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 45 T CONST)) (-2144 (($) 17 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 64)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-629 |#1|) (-1050 |#1|) (-10 -8 (-15 -1369 (|#1| $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 (|#1| $ $)) (-15 -2969 ($ (-780))) (-15 -1608 ($ (-653 (-573)))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-780) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)))) (-1061) (-653 (-1189))) (T -50)) -((-1369 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) (-4317 (*1 *2 *1 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-50 *3 *4)) (-14 *4 (-653 (-1189)))))) -(-13 (-629 |#1|) (-1050 |#1|) (-10 -8 (-15 -1369 (|#1| $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 (|#1| $ $)) (-15 -2969 ($ (-780))) (-15 -1608 ($ (-653 (-573)))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-780) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)))) -((-1407 (((-112) (-52)) 18)) (-1695 (((-3 |#1| "failed") (-52)) 20)) (-2205 ((|#1| (-52)) 21)) (-2942 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -2942 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -1407 ((-112) (-52))) (-15 -2205 (|#1| (-52)))) (-1230)) (T -51)) -((-2205 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1230)))) (-1695 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1230))))) -(-10 -7 (-15 -2942 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -1407 ((-112) (-52))) (-15 -2205 (|#1| (-52)))) -((-2848 (((-112) $ $) NIL)) (-1694 (((-783) $) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1868 (((-1116) $) 10)) (-2942 (((-871) $) 15)) (-3507 (((-112) $ $) NIL)) (-3963 (($ (-1116) (-783)) 16)) (-2981 (((-112) $ $) 12))) -(((-52) (-13 (-1112) (-10 -8 (-15 -3963 ($ (-1116) (-783))) (-15 -1868 ((-1116) $)) (-15 -1694 ((-783) $))))) (T -52)) -((-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *3 (-783)) (-5 *1 (-52)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-52)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-52))))) -(-13 (-1112) (-10 -8 (-15 -3963 ($ (-1116) (-783))) (-15 -1868 ((-1116) $)) (-15 -1694 ((-783) $)))) -((-2900 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2900 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1061) (-657 |#1|) (-861 |#1|)) (T -53)) -((-2900 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-657 *5)) (-4 *5 (-1061)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-861 *5))))) -(-10 -7 (-15 -2900 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-4030 ((|#3| |#3| (-653 (-1189))) 44)) (-1668 ((|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931)) 32) ((|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|)) (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931))) (-15 -4030 (|#3| |#3| (-653 (-1189))))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -54)) -((-4030 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-1668 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 (-1088 *5 *6 *2))) (-5 *4 (-931)) (-4 *5 (-1112)) (-4 *6 (-13 (-1061) (-896 *5) (-623 (-902 *5)))) (-4 *2 (-13 (-439 *6) (-896 *5) (-623 (-902 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1668 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-1088 *4 *5 *2))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|)) (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931))) (-15 -4030 (|#3| |#3| (-653 (-1189))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 14)) (-1695 (((-3 (-780) "failed") $) 34)) (-2205 (((-780) $) NIL)) (-1959 (((-112) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) 18)) (-2942 (((-871) $) 23) (($ (-780)) 29)) (-3507 (((-112) $ $) NIL)) (-3192 (($) 11 T CONST)) (-2981 (((-112) $ $) 20))) -(((-55) (-13 (-1112) (-1050 (-780)) (-10 -8 (-15 -3192 ($) -1705) (-15 -1748 ((-112) $)) (-15 -1959 ((-112) $))))) (T -55)) -((-3192 (*1 *1) (-5 *1 (-55))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1112) (-1050 (-780)) (-10 -8 (-15 -3192 ($) -1705) (-15 -1748 ((-112) $)) (-15 -1959 ((-112) $)))) -((-3450 (((-112) $ (-780)) 27)) (-3601 (($ $ (-573) |#3|) 66)) (-2790 (($ $ (-573) |#4|) 70)) (-3229 ((|#3| $ (-573)) 79)) (-1863 (((-653 |#2|) $) 47)) (-2078 (((-112) $ (-780)) 31)) (-1547 (((-112) |#2| $) 74)) (-2446 (($ (-1 |#2| |#2|) $) 55)) (-1776 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2673 (((-112) $ (-780)) 29)) (-3112 (($ $ |#2|) 52)) (-1575 (((-112) (-1 (-112) |#2|) $) 21)) (-2198 ((|#2| $ (-573) (-573)) NIL) ((|#2| $ (-573) (-573) |#2|) 35)) (-3974 (((-780) (-1 (-112) |#2|) $) 41) (((-780) |#2| $) 76)) (-3166 (($ $) 51)) (-1921 ((|#4| $ (-573)) 82)) (-2942 (((-871) $) 88)) (-1646 (((-112) (-1 (-112) |#2|) $) 20)) (-2981 (((-112) $ $) 73)) (-2862 (((-780) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| |#1| (-573) |#4|)) (-15 -3601 (|#1| |#1| (-573) |#3|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -1921 (|#4| |#1| (-573))) (-15 -3229 (|#3| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3166 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1230) (-381 |#2|) (-381 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| |#1| (-573) |#4|)) (-15 -3601 (|#1| |#1| (-573) |#3|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -1921 (|#4| |#1| (-573))) (-15 -3229 (|#3| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3166 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) (-573) |#1|) 45)) (-3601 (($ $ (-573) |#2|) 43)) (-2790 (($ $ (-573) |#3|) 42)) (-2579 (($) 7 T CONST)) (-3229 ((|#2| $ (-573)) 47)) (-2457 ((|#1| $ (-573) (-573) |#1|) 44)) (-2384 ((|#1| $ (-573) (-573)) 49)) (-1863 (((-653 |#1|) $) 31)) (-2188 (((-780) $) 52)) (-3789 (($ (-780) (-780) |#1|) 58)) (-2197 (((-780) $) 51)) (-2078 (((-112) $ (-780)) 9)) (-1319 (((-573) $) 56)) (-4011 (((-573) $) 54)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 55)) (-2326 (((-573) $) 53)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) 57)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) (-573)) 50) ((|#1| $ (-573) (-573) |#1|) 48)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1921 ((|#3| $ (-573)) 46)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-57 |#1| |#2| |#3|) (-141) (-1230) (-381 |t#1|) (-381 |t#1|)) (T -57)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-780)) (-4 *3 (-1230)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3112 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-780)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-780)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-1230)))) (-2384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-3229 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-653 *3)))) (-3142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-2457 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-3601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-381 *4)) (-4 *5 (-381 *4)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *3 (-381 *4)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1776 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) -(-13 (-498 |t#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3789 ($ (-780) (-780) |t#1|)) (-15 -3112 ($ $ |t#1|)) (-15 -1319 ((-573) $)) (-15 -3124 ((-573) $)) (-15 -4011 ((-573) $)) (-15 -2326 ((-573) $)) (-15 -2188 ((-780) $)) (-15 -2197 ((-780) $)) (-15 -2198 (|t#1| $ (-573) (-573))) (-15 -2384 (|t#1| $ (-573) (-573))) (-15 -2198 (|t#1| $ (-573) (-573) |t#1|)) (-15 -3229 (|t#2| $ (-573))) (-15 -1921 (|t#3| $ (-573))) (-15 -1863 ((-653 |t#1|) $)) (-15 -3142 (|t#1| $ (-573) (-573) |t#1|)) (-15 -2457 (|t#1| $ (-573) (-573) |t#1|)) (-15 -3601 ($ $ (-573) |t#2|)) (-15 -2790 ($ $ (-573) |t#3|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-3094 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1776 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -3094 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1230) (-1230)) (T -58)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-58 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -3094 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3801 (($ (-653 |#1|)) 11) (($ (-780) |#1|) 14)) (-3789 (($ (-780) |#1|) 13)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 10)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3801 ($ (-653 |#1|))) (-15 -3801 ($ (-780) |#1|)))) (-1230)) (T -59)) -((-3801 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-59 *3)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-59 *3)) (-4 *3 (-1230))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3801 ($ (-653 |#1|))) (-15 -3801 ($ (-780) |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL)) (-3601 (($ $ (-573) (-59 |#1|)) NIL)) (-2790 (($ $ (-573) (-59 |#1|)) NIL)) (-2579 (($) NIL T CONST)) (-3229 (((-59 |#1|) $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-59 |#1|) $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4456))) (-1230)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4456))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 74) (((-3 $ "failed") (-1280 (-323 (-573)))) 63) (((-3 $ "failed") (-1280 (-962 (-387)))) 94) (((-3 $ "failed") (-1280 (-962 (-573)))) 84) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 52) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 39)) (-2205 (($ (-1280 (-323 (-387)))) 70) (($ (-1280 (-323 (-573)))) 59) (($ (-1280 (-962 (-387)))) 90) (($ (-1280 (-962 (-573)))) 80) (($ (-1280 (-416 (-962 (-387))))) 48) (($ (-1280 (-416 (-962 (-573))))) 32)) (-3767 (((-1285) $) 124)) (-2942 (((-871) $) 118) (($ (-653 (-337))) 103) (($ (-337)) 97) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 101) (($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708)))) 31))) -(((-61 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708))))))) (-1189)) (T -61)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708)))) (-5 *1 (-61 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708))))))) -((-3767 (((-1285) $) 54) (((-1285)) 55)) (-2942 (((-871) $) 51))) -(((-62 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -62)) -((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-62 *3)) (-14 *3 (-1189))))) -(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 150) (((-3 $ "failed") (-1280 (-323 (-573)))) 140) (((-3 $ "failed") (-1280 (-962 (-387)))) 170) (((-3 $ "failed") (-1280 (-962 (-573)))) 160) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 129) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 117)) (-2205 (($ (-1280 (-323 (-387)))) 146) (($ (-1280 (-323 (-573)))) 136) (($ (-1280 (-962 (-387)))) 166) (($ (-1280 (-962 (-573)))) 156) (($ (-1280 (-416 (-962 (-387))))) 125) (($ (-1280 (-416 (-962 (-573))))) 110)) (-3767 (((-1285) $) 103)) (-2942 (((-871) $) 97) (($ (-653 (-337))) 30) (($ (-337)) 35) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 33) (($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) 95))) -(((-63 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) (-1189)) (T -63)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) (-5 *1 (-63 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) -((-1695 (((-3 $ "failed") (-323 (-387))) 41) (((-3 $ "failed") (-323 (-573))) 46) (((-3 $ "failed") (-962 (-387))) 50) (((-3 $ "failed") (-962 (-573))) 54) (((-3 $ "failed") (-416 (-962 (-387)))) 36) (((-3 $ "failed") (-416 (-962 (-573)))) 29)) (-2205 (($ (-323 (-387))) 39) (($ (-323 (-573))) 44) (($ (-962 (-387))) 48) (($ (-962 (-573))) 52) (($ (-416 (-962 (-387)))) 34) (($ (-416 (-962 (-573)))) 26)) (-3767 (((-1285) $) 76)) (-2942 (((-871) $) 69) (($ (-653 (-337))) 61) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 64) (($ (-347 (-2955 (QUOTE X)) (-2955) (-708))) 25))) -(((-64 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955) (-708)))))) (-1189)) (T -64)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955 (QUOTE X)) (-2955) (-708))) (-5 *1 (-64 *3)) (-14 *3 (-1189))))) -(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955) (-708)))))) -((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 111) (((-3 $ "failed") (-698 (-323 (-573)))) 99) (((-3 $ "failed") (-698 (-962 (-387)))) 133) (((-3 $ "failed") (-698 (-962 (-573)))) 122) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 87) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 73)) (-2205 (($ (-698 (-323 (-387)))) 107) (($ (-698 (-323 (-573)))) 95) (($ (-698 (-962 (-387)))) 129) (($ (-698 (-962 (-573)))) 118) (($ (-698 (-416 (-962 (-387))))) 83) (($ (-698 (-416 (-962 (-573))))) 66)) (-3767 (((-1285) $) 141)) (-2942 (((-871) $) 135) (($ (-653 (-337))) 29) (($ (-337)) 34) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 32) (($ (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708)))) 56))) -(((-65 |#1|) (-13 (-392) (-625 (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708))))) (-1189)) (T -65)) -NIL -(-13 (-392) (-625 (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708))))) -((-1695 (((-3 $ "failed") (-323 (-387))) 60) (((-3 $ "failed") (-323 (-573))) 65) (((-3 $ "failed") (-962 (-387))) 69) (((-3 $ "failed") (-962 (-573))) 73) (((-3 $ "failed") (-416 (-962 (-387)))) 55) (((-3 $ "failed") (-416 (-962 (-573)))) 48)) (-2205 (($ (-323 (-387))) 58) (($ (-323 (-573))) 63) (($ (-962 (-387))) 67) (($ (-962 (-573))) 71) (($ (-416 (-962 (-387)))) 53) (($ (-416 (-962 (-573)))) 45)) (-3767 (((-1285) $) 82)) (-2942 (((-871) $) 76) (($ (-653 (-337))) 29) (($ (-337)) 34) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 32) (($ (-347 (-2955) (-2955 (QUOTE XC)) (-708))) 40))) -(((-66 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE XC)) (-708)))))) (-1189)) (T -66)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE XC)) (-708))) (-5 *1 (-66 *3)) (-14 *3 (-1189))))) -(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE XC)) (-708)))))) -((-3767 (((-1285) $) 65)) (-2942 (((-871) $) 59) (($ (-698 (-708))) 51) (($ (-653 (-337))) 50) (($ (-337)) 57) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 55))) -(((-67 |#1|) (-391) (-1189)) (T -67)) -NIL -(-391) -((-3767 (((-1285) $) 66)) (-2942 (((-871) $) 60) (($ (-698 (-708))) 52) (($ (-653 (-337))) 51) (($ (-337)) 54) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 57))) -(((-68 |#1|) (-391) (-1189)) (T -68)) -NIL -(-391) -((-3767 (((-1285) $) NIL) (((-1285)) 33)) (-2942 (((-871) $) NIL))) -(((-69 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -69)) -((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-69 *3)) (-14 *3 (-1189))))) -(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) -((-3767 (((-1285) $) 75)) (-2942 (((-871) $) 69) (($ (-698 (-708))) 61) (($ (-653 (-337))) 63) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 60))) -(((-70 |#1|) (-391) (-1189)) (T -70)) -NIL -(-391) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 109) (((-3 $ "failed") (-1280 (-323 (-573)))) 98) (((-3 $ "failed") (-1280 (-962 (-387)))) 129) (((-3 $ "failed") (-1280 (-962 (-573)))) 119) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 87) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 74)) (-2205 (($ (-1280 (-323 (-387)))) 105) (($ (-1280 (-323 (-573)))) 94) (($ (-1280 (-962 (-387)))) 125) (($ (-1280 (-962 (-573)))) 115) (($ (-1280 (-416 (-962 (-387))))) 83) (($ (-1280 (-416 (-962 (-573))))) 67)) (-3767 (((-1285) $) 142)) (-2942 (((-871) $) 136) (($ (-653 (-337))) 131) (($ (-337)) 134) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 59) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) 60))) -(((-71 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) (-1189)) (T -71)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-71 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) -((-3767 (((-1285) $) 33) (((-1285)) 32)) (-2942 (((-871) $) 36))) -(((-72 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -72)) -((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-72 *3)) (-14 *3 (-1189))))) -(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) -((-3767 (((-1285) $) 65)) (-2942 (((-871) $) 59) (($ (-698 (-708))) 51) (($ (-653 (-337))) 53) (($ (-337)) 56) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 50))) -(((-73 |#1|) (-391) (-1189)) (T -73)) -NIL -(-391) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 127) (((-3 $ "failed") (-1280 (-323 (-573)))) 117) (((-3 $ "failed") (-1280 (-962 (-387)))) 147) (((-3 $ "failed") (-1280 (-962 (-573)))) 137) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 107) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 95)) (-2205 (($ (-1280 (-323 (-387)))) 123) (($ (-1280 (-323 (-573)))) 113) (($ (-1280 (-962 (-387)))) 143) (($ (-1280 (-962 (-573)))) 133) (($ (-1280 (-416 (-962 (-387))))) 103) (($ (-1280 (-416 (-962 (-573))))) 88)) (-3767 (((-1285) $) 80)) (-2942 (((-871) $) 28) (($ (-653 (-337))) 70) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 73) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 67))) -(((-74 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) (-1189)) (T -74)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) (-5 *1 (-74 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 132) (((-3 $ "failed") (-1280 (-323 (-573)))) 121) (((-3 $ "failed") (-1280 (-962 (-387)))) 152) (((-3 $ "failed") (-1280 (-962 (-573)))) 142) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 110) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 97)) (-2205 (($ (-1280 (-323 (-387)))) 128) (($ (-1280 (-323 (-573)))) 117) (($ (-1280 (-962 (-387)))) 148) (($ (-1280 (-962 (-573)))) 138) (($ (-1280 (-416 (-962 (-387))))) 106) (($ (-1280 (-416 (-962 (-573))))) 90)) (-3767 (((-1285) $) 82)) (-2942 (((-871) $) 74) (($ (-653 (-337))) NIL) (($ (-337)) NIL) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) NIL) (($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708))))))) (-1189) (-1189) (-1189)) (T -75)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) (-14 *5 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 138) (((-3 $ "failed") (-1280 (-323 (-573)))) 127) (((-3 $ "failed") (-1280 (-962 (-387)))) 158) (((-3 $ "failed") (-1280 (-962 (-573)))) 148) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 116) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 103)) (-2205 (($ (-1280 (-323 (-387)))) 134) (($ (-1280 (-323 (-573)))) 123) (($ (-1280 (-962 (-387)))) 154) (($ (-1280 (-962 (-573)))) 144) (($ (-1280 (-416 (-962 (-387))))) 112) (($ (-1280 (-416 (-962 (-573))))) 96)) (-3767 (((-1285) $) 88)) (-2942 (((-871) $) 80) (($ (-653 (-337))) NIL) (($ (-337)) NIL) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) NIL) (($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708))))))) (-1189) (-1189) (-1189)) (T -76)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) (-14 *5 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708))))))) -((-1695 (((-3 $ "failed") (-323 (-387))) 83) (((-3 $ "failed") (-323 (-573))) 88) (((-3 $ "failed") (-962 (-387))) 92) (((-3 $ "failed") (-962 (-573))) 96) (((-3 $ "failed") (-416 (-962 (-387)))) 78) (((-3 $ "failed") (-416 (-962 (-573)))) 71)) (-2205 (($ (-323 (-387))) 81) (($ (-323 (-573))) 86) (($ (-962 (-387))) 90) (($ (-962 (-573))) 94) (($ (-416 (-962 (-387)))) 76) (($ (-416 (-962 (-573)))) 68)) (-3767 (((-1285) $) 63)) (-2942 (((-871) $) 51) (($ (-653 (-337))) 47) (($ (-337)) 57) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 55) (($ (-347 (-2955) (-2955 (QUOTE X)) (-708))) 48))) -(((-77 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) (-1189)) (T -77)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE X)) (-708))) (-5 *1 (-77 *3)) (-14 *3 (-1189))))) -(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) -((-1695 (((-3 $ "failed") (-323 (-387))) 47) (((-3 $ "failed") (-323 (-573))) 52) (((-3 $ "failed") (-962 (-387))) 56) (((-3 $ "failed") (-962 (-573))) 60) (((-3 $ "failed") (-416 (-962 (-387)))) 42) (((-3 $ "failed") (-416 (-962 (-573)))) 35)) (-2205 (($ (-323 (-387))) 45) (($ (-323 (-573))) 50) (($ (-962 (-387))) 54) (($ (-962 (-573))) 58) (($ (-416 (-962 (-387)))) 40) (($ (-416 (-962 (-573)))) 32)) (-3767 (((-1285) $) 81)) (-2942 (((-871) $) 75) (($ (-653 (-337))) 67) (($ (-337)) 72) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 70) (($ (-347 (-2955) (-2955 (QUOTE X)) (-708))) 31))) -(((-78 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) (-1189)) (T -78)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE X)) (-708))) (-5 *1 (-78 *3)) (-14 *3 (-1189))))) -(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 90) (((-3 $ "failed") (-1280 (-323 (-573)))) 79) (((-3 $ "failed") (-1280 (-962 (-387)))) 110) (((-3 $ "failed") (-1280 (-962 (-573)))) 100) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 68) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 55)) (-2205 (($ (-1280 (-323 (-387)))) 86) (($ (-1280 (-323 (-573)))) 75) (($ (-1280 (-962 (-387)))) 106) (($ (-1280 (-962 (-573)))) 96) (($ (-1280 (-416 (-962 (-387))))) 64) (($ (-1280 (-416 (-962 (-573))))) 48)) (-3767 (((-1285) $) 126)) (-2942 (((-871) $) 120) (($ (-653 (-337))) 113) (($ (-337)) 38) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 116) (($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) 39))) -(((-79 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) (-1189)) (T -79)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) (-5 *1 (-79 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 151) (((-3 $ "failed") (-1280 (-323 (-573)))) 141) (((-3 $ "failed") (-1280 (-962 (-387)))) 171) (((-3 $ "failed") (-1280 (-962 (-573)))) 161) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 131) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 119)) (-2205 (($ (-1280 (-323 (-387)))) 147) (($ (-1280 (-323 (-573)))) 137) (($ (-1280 (-962 (-387)))) 167) (($ (-1280 (-962 (-573)))) 157) (($ (-1280 (-416 (-962 (-387))))) 127) (($ (-1280 (-416 (-962 (-573))))) 112)) (-3767 (((-1285) $) 105)) (-2942 (((-871) $) 99) (($ (-653 (-337))) 90) (($ (-337)) 97) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 95) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 91))) -(((-80 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) (-1189)) (T -80)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) (-5 *1 (-80 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 79) (((-3 $ "failed") (-1280 (-323 (-573)))) 68) (((-3 $ "failed") (-1280 (-962 (-387)))) 99) (((-3 $ "failed") (-1280 (-962 (-573)))) 89) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 57) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 44)) (-2205 (($ (-1280 (-323 (-387)))) 75) (($ (-1280 (-323 (-573)))) 64) (($ (-1280 (-962 (-387)))) 95) (($ (-1280 (-962 (-573)))) 85) (($ (-1280 (-416 (-962 (-387))))) 53) (($ (-1280 (-416 (-962 (-573))))) 37)) (-3767 (((-1285) $) 125)) (-2942 (((-871) $) 119) (($ (-653 (-337))) 110) (($ (-337)) 116) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 114) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 36))) -(((-81 |#1|) (-13 (-450) (-625 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))) (-1189)) (T -81)) -NIL -(-13 (-450) (-625 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 98) (((-3 $ "failed") (-1280 (-323 (-573)))) 87) (((-3 $ "failed") (-1280 (-962 (-387)))) 118) (((-3 $ "failed") (-1280 (-962 (-573)))) 108) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 76) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 63)) (-2205 (($ (-1280 (-323 (-387)))) 94) (($ (-1280 (-323 (-573)))) 83) (($ (-1280 (-962 (-387)))) 114) (($ (-1280 (-962 (-573)))) 104) (($ (-1280 (-416 (-962 (-387))))) 72) (($ (-1280 (-416 (-962 (-573))))) 56)) (-3767 (((-1285) $) 48)) (-2942 (((-871) $) 42) (($ (-653 (-337))) 32) (($ (-337)) 35) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 38) (($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) 33))) -(((-82 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) (-1189)) (T -82)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) (-5 *1 (-82 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) -((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 118) (((-3 $ "failed") (-698 (-323 (-573)))) 107) (((-3 $ "failed") (-698 (-962 (-387)))) 140) (((-3 $ "failed") (-698 (-962 (-573)))) 129) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 96) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 83)) (-2205 (($ (-698 (-323 (-387)))) 114) (($ (-698 (-323 (-573)))) 103) (($ (-698 (-962 (-387)))) 136) (($ (-698 (-962 (-573)))) 125) (($ (-698 (-416 (-962 (-387))))) 92) (($ (-698 (-416 (-962 (-573))))) 76)) (-3767 (((-1285) $) 66)) (-2942 (((-871) $) 53) (($ (-653 (-337))) 60) (($ (-337)) 49) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 58) (($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) 50))) -(((-83 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) (-1189)) (T -83)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) (-5 *1 (-83 *3)) (-14 *3 (-1189))))) -(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) -((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 113) (((-3 $ "failed") (-698 (-323 (-573)))) 101) (((-3 $ "failed") (-698 (-962 (-387)))) 135) (((-3 $ "failed") (-698 (-962 (-573)))) 124) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 89) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 75)) (-2205 (($ (-698 (-323 (-387)))) 109) (($ (-698 (-323 (-573)))) 97) (($ (-698 (-962 (-387)))) 131) (($ (-698 (-962 (-573)))) 120) (($ (-698 (-416 (-962 (-387))))) 85) (($ (-698 (-416 (-962 (-573))))) 68)) (-3767 (((-1285) $) 60)) (-2942 (((-871) $) 54) (($ (-653 (-337))) 48) (($ (-337)) 51) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 45) (($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) 46))) -(((-84 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) (-1189)) (T -84)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) (-5 *1 (-84 *3)) (-14 *3 (-1189))))) -(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 105) (((-3 $ "failed") (-1280 (-323 (-573)))) 94) (((-3 $ "failed") (-1280 (-962 (-387)))) 125) (((-3 $ "failed") (-1280 (-962 (-573)))) 115) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 83) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 70)) (-2205 (($ (-1280 (-323 (-387)))) 101) (($ (-1280 (-323 (-573)))) 90) (($ (-1280 (-962 (-387)))) 121) (($ (-1280 (-962 (-573)))) 111) (($ (-1280 (-416 (-962 (-387))))) 79) (($ (-1280 (-416 (-962 (-573))))) 63)) (-3767 (((-1285) $) 47)) (-2942 (((-871) $) 41) (($ (-653 (-337))) 50) (($ (-337)) 37) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 53) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) 38))) -(((-85 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) (-1189)) (T -85)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) (-5 *1 (-85 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 80) (((-3 $ "failed") (-1280 (-323 (-573)))) 69) (((-3 $ "failed") (-1280 (-962 (-387)))) 100) (((-3 $ "failed") (-1280 (-962 (-573)))) 90) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 58) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 45)) (-2205 (($ (-1280 (-323 (-387)))) 76) (($ (-1280 (-323 (-573)))) 65) (($ (-1280 (-962 (-387)))) 96) (($ (-1280 (-962 (-573)))) 86) (($ (-1280 (-416 (-962 (-387))))) 54) (($ (-1280 (-416 (-962 (-573))))) 38)) (-3767 (((-1285) $) 126)) (-2942 (((-871) $) 120) (($ (-653 (-337))) 111) (($ (-337)) 117) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 115) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) 37))) -(((-86 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) (-1189)) (T -86)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-86 *3)) (-14 *3 (-1189))))) -(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) -((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 117) (((-3 $ "failed") (-698 (-323 (-573)))) 105) (((-3 $ "failed") (-698 (-962 (-387)))) 139) (((-3 $ "failed") (-698 (-962 (-573)))) 128) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 93) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 79)) (-2205 (($ (-698 (-323 (-387)))) 113) (($ (-698 (-323 (-573)))) 101) (($ (-698 (-962 (-387)))) 135) (($ (-698 (-962 (-573)))) 124) (($ (-698 (-416 (-962 (-387))))) 89) (($ (-698 (-416 (-962 (-573))))) 72)) (-3767 (((-1285) $) 63)) (-2942 (((-871) $) 57) (($ (-653 (-337))) 47) (($ (-337)) 54) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 52) (($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708)))) 48))) -(((-87 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708))))))) (-1189)) (T -87)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708)))) (-5 *1 (-87 *3)) (-14 *3 (-1189))))) -(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708))))))) -((-3767 (((-1285) $) 45)) (-2942 (((-871) $) 39) (($ (-1280 (-708))) 100) (($ (-653 (-337))) 31) (($ (-337)) 36) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 34))) -(((-88 |#1|) (-449) (-1189)) (T -88)) -NIL -(-449) -((-1695 (((-3 $ "failed") (-323 (-387))) 48) (((-3 $ "failed") (-323 (-573))) 53) (((-3 $ "failed") (-962 (-387))) 57) (((-3 $ "failed") (-962 (-573))) 61) (((-3 $ "failed") (-416 (-962 (-387)))) 43) (((-3 $ "failed") (-416 (-962 (-573)))) 36)) (-2205 (($ (-323 (-387))) 46) (($ (-323 (-573))) 51) (($ (-962 (-387))) 55) (($ (-962 (-573))) 59) (($ (-416 (-962 (-387)))) 41) (($ (-416 (-962 (-573)))) 33)) (-3767 (((-1285) $) 91)) (-2942 (((-871) $) 85) (($ (-653 (-337))) 79) (($ (-337)) 82) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 77) (($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))) 32))) -(((-89 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))))) (-1189)) (T -89)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))) (-5 *1 (-89 *3)) (-14 *3 (-1189))))) -(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))))) -((-3629 (((-1280 (-698 |#1|)) (-698 |#1|)) 61)) (-3382 (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931)) 49)) (-2750 (((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931)) 72 (|has| |#1| (-371))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -3382 ((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931))) (-15 -3629 ((-1280 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-371)) (-15 -2750 ((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931))) |%noBranch|)) (-565) (-665 |#1|)) (T -90)) -((-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |minor| (-653 (-931))) (|:| -4122 *3) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5)))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-698 *4)) (-4 *5 (-665 *4)))) (-3382 (*1 *2 *3 *4) (-12 (-4 *5 (-565)) (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 (-653 (-931)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) -(-10 -7 (-15 -3382 ((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931))) (-15 -3629 ((-1280 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-371)) (-15 -2750 ((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931))) |%noBranch|)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2001 ((|#1| $) 40)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2948 ((|#1| |#1| $) 35)) (-3072 ((|#1| $) 33)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) NIL)) (-3181 (($ |#1| $) 36)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 34)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 18)) (-3508 (($) 45)) (-4302 (((-780) $) 31)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 17)) (-2942 (((-871) $) 30 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-1340 (($ (-653 |#1|)) 42)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 15 (|has| |#1| (-1112)))) (-2862 (((-780) $) 12 (|has| $ (-6 -4455))))) -(((-91 |#1|) (-13 (-1133 |#1|) (-10 -8 (-15 -1340 ($ (-653 |#1|))))) (-1112)) (T -91)) -((-1340 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-91 *3))))) -(-13 (-1133 |#1|) (-10 -8 (-15 -1340 ($ (-653 |#1|))))) -((-2942 (((-871) $) 13) (($ (-1194)) 9) (((-1194) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2942 ((-1194) |#1|)) (-15 -2942 (|#1| (-1194))) (-15 -2942 ((-871) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2942 ((-1194) |#1|)) (-15 -2942 (|#1| (-1194))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +((-3513 (((-112) $) 12)) (-1787 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-47 |#2| |#3|) (-1064) (-802)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3513 ((-112) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-3513 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4144 ((|#2| $) 76)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3584 ((|#1| $ |#2|) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-47 |#1| |#2|) (-141) (-1064) (-802)) (T -47)) +((-1377 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-1365 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4327 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-372))))) +(-13 (-1064) (-111 |t#1| |t#1|) (-10 -8 (-15 -1377 (|t#1| $)) (-15 -1365 ($ $)) (-15 -4144 (|t#2| $)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -3513 ((-112) $)) (-15 -4327 ($ |t#1| |t#2|)) (-15 -1401 ($ $)) (-15 -3584 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3102 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-2869 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-2263 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1997 (((-112) $) 9)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4067 (((-654 (-622 $)) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-3569 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-1853 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1706 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2800 (($ $ $) NIL)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 (-417 (-574)))) (|:| |vec| (-1283 (-417 (-574))))) (-699 $) (-1283 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1283 $)) NIL)) (-2881 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-4248 (($ $) NIL) (($ (-654 $)) NIL)) (-3667 (((-654 (-115)) $) NIL)) (-4151 (((-115) (-115)) NIL)) (-2276 (((-112) $) 11)) (-3127 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2970 (((-1140 (-574) (-622 $)) $) NIL)) (-3649 (($ $ (-574)) NIL)) (-2681 (((-1188 $) (-1188 $) (-622 $)) NIL) (((-1188 $) (-1188 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3256 (((-1188 $) (-622 $)) NIL (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) NIL)) (-3487 (((-3 (-622 $) "failed") $) NIL)) (-2844 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1784 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2454 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1327 (($ $) NIL)) (-1849 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2192 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3575 (((-781) $) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2734 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2981 (((-1140 (-574) (-622 $)) $) NIL)) (-2611 (($ $) NIL (|has| $ (-1064)))) (-1846 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1140 (-574) (-622 $))) NIL)) (-3781 (((-781)) NIL T CONST)) (-2081 (($ $) NIL) (($ (-654 $)) NIL)) (-2448 (((-112) (-115)) NIL)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 6 T CONST)) (-2155 (($) 10 T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) 13)) (-3102 (($ $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) +(((-48) (-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -2681 ((-1188 $) (-1188 $) (-622 $))) (-15 -2681 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -2681 ($ $ (-622 $))) (-15 -2681 ($ $ (-654 (-622 $))))))) (T -48)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2881 (*1 *1 *1) (-5 *1 (-48))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))) +(-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -2681 ((-1188 $) (-1188 $) (-622 $))) (-15 -2681 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -2681 ($ $ (-622 $))) (-15 -2681 ($ $ (-654 (-622 $)))))) +((-2863 (((-112) $ $) NIL)) (-2638 (((-654 (-516)) $) 17)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-2053 (((-1197) $) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-49) (-13 (-1115) (-10 -8 (-15 -2638 ((-654 (-516)) $)) (-15 -2053 ((-1197) $))))) (T -49)) +((-2638 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-49))))) +(-13 (-1115) (-10 -8 (-15 -2638 ((-654 (-516)) $)) (-15 -2053 ((-1197) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 85)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3717 (((-112) $) 30)) (-1706 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1401 (($ $) 40)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1377 ((|#1| $) 31)) (-1580 (($ $) 74)) (-1938 (((-1174) $) NIL)) (-4275 (((-112) $) 43)) (-3939 (((-1135) $) NIL)) (-2974 (($ (-781)) 72)) (-1619 (($ (-654 (-574))) 73)) (-4144 (((-781) $) 44)) (-2950 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-3584 ((|#1| $ $) 28)) (-3781 (((-781)) 71 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 45 T CONST)) (-2155 (($) 17 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 64)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1053 |#1|) (-10 -8 (-15 -1377 (|#1| $)) (-15 -1580 ($ $)) (-15 -1401 ($ $)) (-15 -3584 (|#1| $ $)) (-15 -2974 ($ (-781))) (-15 -1619 ($ (-654 (-574)))) (-15 -4275 ((-112) $)) (-15 -3717 ((-112) $)) (-15 -4144 ((-781) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)))) (-1064) (-654 (-1192))) (T -50)) +((-1377 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) (-1580 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) (-3584 (*1 *2 *1 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) (-14 *4 (-654 (-1192))))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1192)))))) +(-13 (-630 |#1|) (-1053 |#1|) (-10 -8 (-15 -1377 (|#1| $)) (-15 -1580 ($ $)) (-15 -1401 ($ $)) (-15 -3584 (|#1| $ $)) (-15 -2974 ($ (-781))) (-15 -1619 ($ (-654 (-574)))) (-15 -4275 ((-112) $)) (-15 -3717 ((-112) $)) (-15 -4144 ((-781) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)))) +((-3717 (((-112) (-52)) 18)) (-1706 (((-3 |#1| "failed") (-52)) 20)) (-2216 ((|#1| (-52)) 21)) (-2950 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -2950 ((-52) |#1|)) (-15 -1706 ((-3 |#1| "failed") (-52))) (-15 -3717 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) (-1233)) (T -51)) +((-2216 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1233)))) (-1706 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1233))))) +(-10 -7 (-15 -2950 ((-52) |#1|)) (-15 -1706 ((-3 |#1| "failed") (-52))) (-15 -3717 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) +((-2863 (((-112) $ $) NIL)) (-1705 (((-784) $) 8)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1879 (((-1119) $) 10)) (-2950 (((-872) $) 15)) (-4259 (((-112) $ $) NIL)) (-3937 (($ (-1119) (-784)) 16)) (-2985 (((-112) $ $) 12))) +(((-52) (-13 (-1115) (-10 -8 (-15 -3937 ($ (-1119) (-784))) (-15 -1879 ((-1119) $)) (-15 -1705 ((-784) $))))) (T -52)) +((-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-52)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) +(-13 (-1115) (-10 -8 (-15 -3937 ($ (-1119) (-784))) (-15 -1879 ((-1119) $)) (-15 -1705 ((-784) $)))) +((-2911 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2911 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1064) (-658 |#1|) (-862 |#1|)) (T -53)) +((-2911 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1064)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))) +(-10 -7 (-15 -2911 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2621 ((|#3| |#3| (-654 (-1192))) 44)) (-2466 ((|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934)) 32) ((|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2466 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|)) (-15 -2466 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934))) (-15 -2621 (|#3| |#3| (-654 (-1192))))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54)) +((-2621 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2466 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1091 *5 *6 *2))) (-5 *4 (-934)) (-4 *5 (-1115)) (-4 *6 (-13 (-1064) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2466 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1091 *4 *5 *2))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2466 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3|)) (-15 -2466 (|#3| (-654 (-1091 |#1| |#2| |#3|)) |#3| (-934))) (-15 -2621 (|#3| |#3| (-654 (-1192))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 14)) (-1706 (((-3 (-781) "failed") $) 34)) (-2216 (((-781) $) NIL)) (-2276 (((-112) $) 16)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) 18)) (-2950 (((-872) $) 23) (($ (-781)) 29)) (-4259 (((-112) $ $) NIL)) (-2055 (($) 11 T CONST)) (-2985 (((-112) $ $) 20))) +(((-55) (-13 (-1115) (-1053 (-781)) (-10 -8 (-15 -2055 ($) -1716) (-15 -1997 ((-112) $)) (-15 -2276 ((-112) $))))) (T -55)) +((-2055 (*1 *1) (-5 *1 (-55))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1115) (-1053 (-781)) (-10 -8 (-15 -2055 ($) -1716) (-15 -1997 ((-112) $)) (-15 -2276 ((-112) $)))) +((-1750 (((-112) $ (-781)) 27)) (-3960 (($ $ (-574) |#3|) 66)) (-1440 (($ $ (-574) |#4|) 70)) (-4358 ((|#3| $ (-574)) 79)) (-1874 (((-654 |#2|) $) 47)) (-2121 (((-112) $ (-781)) 31)) (-3801 (((-112) |#2| $) 74)) (-2464 (($ (-1 |#2| |#2|) $) 55)) (-1787 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2713 (((-112) $ (-781)) 29)) (-2485 (($ $ |#2|) 52)) (-4043 (((-112) (-1 (-112) |#2|) $) 21)) (-2209 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3948 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3156 (($ $) 51)) (-3144 ((|#4| $ (-574)) 82)) (-2950 (((-872) $) 88)) (-2235 (((-112) (-1 (-112) |#2|) $) 20)) (-2985 (((-112) $ $) 73)) (-2876 (((-781) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1440 (|#1| |#1| (-574) |#4|)) (-15 -3960 (|#1| |#1| (-574) |#3|)) (-15 -1874 ((-654 |#2|) |#1|)) (-15 -3144 (|#4| |#1| (-574))) (-15 -4358 (|#3| |#1| (-574))) (-15 -2209 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574))) (-15 -2485 (|#1| |#1| |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781))) (-15 -3156 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1233) (-382 |#2|) (-382 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1440 (|#1| |#1| (-574) |#4|)) (-15 -3960 (|#1| |#1| (-574) |#3|)) (-15 -1874 ((-654 |#2|) |#1|)) (-15 -3144 (|#4| |#1| (-574))) (-15 -4358 (|#3| |#1| (-574))) (-15 -2209 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574))) (-15 -2485 (|#1| |#1| |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781))) (-15 -3156 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) (-574) |#1|) 45)) (-3960 (($ $ (-574) |#2|) 43)) (-1440 (($ $ (-574) |#3|) 42)) (-3063 (($) 7 T CONST)) (-4358 ((|#2| $ (-574)) 47)) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2399 ((|#1| $ (-574) (-574)) 49)) (-1874 (((-654 |#1|) $) 31)) (-2199 (((-781) $) 52)) (-3763 (($ (-781) (-781) |#1|) 58)) (-2208 (((-781) $) 51)) (-2121 (((-112) $ (-781)) 9)) (-1536 (((-574) $) 56)) (-2419 (((-574) $) 54)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2612 (((-574) $) 55)) (-2514 (((-574) $) 53)) (-2464 (($ (-1 |#1| |#1|) $) 35)) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) 57)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-3144 ((|#3| $ (-574)) 46)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-57 |#1| |#2| |#3|) (-141) (-1233) (-382 |t#1|) (-382 |t#1|)) (T -57)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3763 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1233)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2485 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1233)))) (-2399 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1233)))) (-2209 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-4358 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-3144 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3134 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2473 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-3960 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-1440 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1233)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2464 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1787 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -3763 ($ (-781) (-781) |t#1|)) (-15 -2485 ($ $ |t#1|)) (-15 -1536 ((-574) $)) (-15 -2612 ((-574) $)) (-15 -2419 ((-574) $)) (-15 -2514 ((-574) $)) (-15 -2199 ((-781) $)) (-15 -2208 ((-781) $)) (-15 -2209 (|t#1| $ (-574) (-574))) (-15 -2399 (|t#1| $ (-574) (-574))) (-15 -2209 (|t#1| $ (-574) (-574) |t#1|)) (-15 -4358 (|t#2| $ (-574))) (-15 -3144 (|t#3| $ (-574))) (-15 -1874 ((-654 |t#1|) $)) (-15 -3134 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2473 (|t#1| $ (-574) (-574) |t#1|)) (-15 -3960 ($ $ (-574) |t#2|)) (-15 -1440 ($ $ (-574) |t#3|)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -2464 ($ (-1 |t#1| |t#1|) $)) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2316 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1787 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2316 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1787 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1233) (-1233)) (T -58)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-58 *5 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2316 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1787 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2146 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3763 (($ (-781) |#1|) 13)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 10)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2146 ($ (-654 |#1|))) (-15 -2146 ($ (-781) |#1|)))) (-1233)) (T -59)) +((-2146 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-59 *3)))) (-2146 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1233))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2146 ($ (-654 |#1|))) (-15 -2146 ($ (-781) |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL)) (-3960 (($ $ (-574) (-59 |#1|)) NIL)) (-1440 (($ $ (-574) (-59 |#1|)) NIL)) (-3063 (($) NIL T CONST)) (-4358 (((-59 |#1|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1874 (((-654 |#1|) $) NIL)) (-2199 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-3144 (((-59 |#1|) $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4459))) (-1233)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4459))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 74) (((-3 $ "failed") (-1283 (-324 (-574)))) 63) (((-3 $ "failed") (-1283 (-965 (-388)))) 94) (((-3 $ "failed") (-1283 (-965 (-574)))) 84) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 52) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 39)) (-2216 (($ (-1283 (-324 (-388)))) 70) (($ (-1283 (-324 (-574)))) 59) (($ (-1283 (-965 (-388)))) 90) (($ (-1283 (-965 (-574)))) 80) (($ (-1283 (-417 (-965 (-388))))) 48) (($ (-1283 (-417 (-965 (-574))))) 32)) (-3741 (((-1288) $) 124)) (-2950 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 101) (($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709)))) 31))) +(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709))))))) (-1192)) (T -61)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2962) (-709))))))) +((-3741 (((-1288) $) 54) (((-1288)) 55)) (-2950 (((-872) $) 51))) +(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -62)) +((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-62 *3)) (-14 *3 (-1192))))) +(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 150) (((-3 $ "failed") (-1283 (-324 (-574)))) 140) (((-3 $ "failed") (-1283 (-965 (-388)))) 170) (((-3 $ "failed") (-1283 (-965 (-574)))) 160) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 129) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 117)) (-2216 (($ (-1283 (-324 (-388)))) 146) (($ (-1283 (-324 (-574)))) 136) (($ (-1283 (-965 (-388)))) 166) (($ (-1283 (-965 (-574)))) 156) (($ (-1283 (-417 (-965 (-388))))) 125) (($ (-1283 (-417 (-965 (-574))))) 110)) (-3741 (((-1288) $) 103)) (-2950 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 33) (($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) 95))) +(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) (-1192)) (T -63)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) +((-1706 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-965 (-388))) 50) (((-3 $ "failed") (-965 (-574))) 54) (((-3 $ "failed") (-417 (-965 (-388)))) 36) (((-3 $ "failed") (-417 (-965 (-574)))) 29)) (-2216 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-965 (-388))) 48) (($ (-965 (-574))) 52) (($ (-417 (-965 (-388)))) 34) (($ (-417 (-965 (-574)))) 26)) (-3741 (((-1288) $) 76)) (-2950 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 64) (($ (-348 (-2962 (QUOTE X)) (-2962) (-709))) 25))) +(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962) (-709)))))) (-1192)) (T -64)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962 (QUOTE X)) (-2962) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1192))))) +(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962) (-709)))))) +((-1706 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-965 (-388)))) 133) (((-3 $ "failed") (-699 (-965 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 73)) (-2216 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-965 (-388)))) 129) (($ (-699 (-965 (-574)))) 118) (($ (-699 (-417 (-965 (-388))))) 83) (($ (-699 (-417 (-965 (-574))))) 66)) (-3741 (((-1288) $) 141)) (-2950 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 32) (($ (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709)))) 56))) +(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709))))) (-1192)) (T -65)) +NIL +(-13 (-393) (-626 (-699 (-348 (-2962) (-2962 (QUOTE X) (QUOTE HESS)) (-709))))) +((-1706 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-965 (-388))) 69) (((-3 $ "failed") (-965 (-574))) 73) (((-3 $ "failed") (-417 (-965 (-388)))) 55) (((-3 $ "failed") (-417 (-965 (-574)))) 48)) (-2216 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-965 (-388))) 67) (($ (-965 (-574))) 71) (($ (-417 (-965 (-388)))) 53) (($ (-417 (-965 (-574)))) 45)) (-3741 (((-1288) $) 82)) (-2950 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 32) (($ (-348 (-2962) (-2962 (QUOTE XC)) (-709))) 40))) +(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE XC)) (-709)))))) (-1192)) (T -66)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1192))))) +(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE XC)) (-709)))))) +((-3741 (((-1288) $) 65)) (-2950 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 55))) +(((-67 |#1|) (-392) (-1192)) (T -67)) +NIL +(-392) +((-3741 (((-1288) $) 66)) (-2950 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 57))) +(((-68 |#1|) (-392) (-1192)) (T -68)) +NIL +(-392) +((-3741 (((-1288) $) NIL) (((-1288)) 33)) (-2950 (((-872) $) NIL))) +(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -69)) +((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-69 *3)) (-14 *3 (-1192))))) +(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) +((-3741 (((-1288) $) 75)) (-2950 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 60))) +(((-70 |#1|) (-392) (-1192)) (T -70)) +NIL +(-392) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 109) (((-3 $ "failed") (-1283 (-324 (-574)))) 98) (((-3 $ "failed") (-1283 (-965 (-388)))) 129) (((-3 $ "failed") (-1283 (-965 (-574)))) 119) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 87) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 74)) (-2216 (($ (-1283 (-324 (-388)))) 105) (($ (-1283 (-324 (-574)))) 94) (($ (-1283 (-965 (-388)))) 125) (($ (-1283 (-965 (-574)))) 115) (($ (-1283 (-417 (-965 (-388))))) 83) (($ (-1283 (-417 (-965 (-574))))) 67)) (-3741 (((-1288) $) 142)) (-2950 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 59) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))) 60))) +(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))))))) (-1192)) (T -71)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))))))) +((-3741 (((-1288) $) 33) (((-1288)) 32)) (-2950 (((-872) $) 36))) +(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) (-1192)) (T -72)) +((-3741 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-72 *3)) (-14 *3 (-1192))))) +(-13 (-405) (-10 -7 (-15 -3741 ((-1288))))) +((-3741 (((-1288) $) 65)) (-2950 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 50))) +(((-73 |#1|) (-392) (-1192)) (T -73)) +NIL +(-392) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 127) (((-3 $ "failed") (-1283 (-324 (-574)))) 117) (((-3 $ "failed") (-1283 (-965 (-388)))) 147) (((-3 $ "failed") (-1283 (-965 (-574)))) 137) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 107) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 95)) (-2216 (($ (-1283 (-324 (-388)))) 123) (($ (-1283 (-324 (-574)))) 113) (($ (-1283 (-965 (-388)))) 143) (($ (-1283 (-965 (-574)))) 133) (($ (-1283 (-417 (-965 (-388))))) 103) (($ (-1283 (-417 (-965 (-574))))) 88)) (-3741 (((-1288) $) 80)) (-2950 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 73) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 67))) +(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) (-1192)) (T -74)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 132) (((-3 $ "failed") (-1283 (-324 (-574)))) 121) (((-3 $ "failed") (-1283 (-965 (-388)))) 152) (((-3 $ "failed") (-1283 (-965 (-574)))) 142) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 110) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 97)) (-2216 (($ (-1283 (-324 (-388)))) 128) (($ (-1283 (-324 (-574)))) 117) (($ (-1283 (-965 (-388)))) 148) (($ (-1283 (-965 (-574)))) 138) (($ (-1283 (-417 (-965 (-388))))) 106) (($ (-1283 (-417 (-965 (-574))))) 90)) (-3741 (((-1288) $) 82)) (-2950 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) NIL) (($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1891)) (-709)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1891)) (-709))))))) (-1192) (-1192) (-1192)) (T -75)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1891)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) (-14 *5 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE EPS)) (-2962 (QUOTE -1891)) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 138) (((-3 $ "failed") (-1283 (-324 (-574)))) 127) (((-3 $ "failed") (-1283 (-965 (-388)))) 158) (((-3 $ "failed") (-1283 (-965 (-574)))) 148) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 116) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 103)) (-2216 (($ (-1283 (-324 (-388)))) 134) (($ (-1283 (-324 (-574)))) 123) (($ (-1283 (-965 (-388)))) 154) (($ (-1283 (-965 (-574)))) 144) (($ (-1283 (-417 (-965 (-388))))) 112) (($ (-1283 (-417 (-965 (-574))))) 96)) (-3741 (((-1288) $) 88)) (-2950 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) NIL) (($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1192) (-1192) (-1192)) (T -76)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) (-14 *5 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE EPS)) (-2962 (QUOTE YA) (QUOTE YB)) (-709))))))) +((-1706 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-965 (-388))) 92) (((-3 $ "failed") (-965 (-574))) 96) (((-3 $ "failed") (-417 (-965 (-388)))) 78) (((-3 $ "failed") (-417 (-965 (-574)))) 71)) (-2216 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-965 (-388))) 90) (($ (-965 (-574))) 94) (($ (-417 (-965 (-388)))) 76) (($ (-417 (-965 (-574)))) 68)) (-3741 (((-1288) $) 63)) (-2950 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 55) (($ (-348 (-2962) (-2962 (QUOTE X)) (-709))) 48))) +(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) (-1192)) (T -77)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1192))))) +(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) +((-1706 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-965 (-388))) 56) (((-3 $ "failed") (-965 (-574))) 60) (((-3 $ "failed") (-417 (-965 (-388)))) 42) (((-3 $ "failed") (-417 (-965 (-574)))) 35)) (-2216 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-965 (-388))) 54) (($ (-965 (-574))) 58) (($ (-417 (-965 (-388)))) 40) (($ (-417 (-965 (-574)))) 32)) (-3741 (((-1288) $) 81)) (-2950 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 70) (($ (-348 (-2962) (-2962 (QUOTE X)) (-709))) 31))) +(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) (-1192)) (T -78)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962) (-2962 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1192))))) +(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962) (-2962 (QUOTE X)) (-709)))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 90) (((-3 $ "failed") (-1283 (-324 (-574)))) 79) (((-3 $ "failed") (-1283 (-965 (-388)))) 110) (((-3 $ "failed") (-1283 (-965 (-574)))) 100) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 68) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 55)) (-2216 (($ (-1283 (-324 (-388)))) 86) (($ (-1283 (-324 (-574)))) 75) (($ (-1283 (-965 (-388)))) 106) (($ (-1283 (-965 (-574)))) 96) (($ (-1283 (-417 (-965 (-388))))) 64) (($ (-1283 (-417 (-965 (-574))))) 48)) (-3741 (((-1288) $) 126)) (-2950 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 116) (($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) 39))) +(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) (-1192)) (T -79)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE XC)) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 151) (((-3 $ "failed") (-1283 (-324 (-574)))) 141) (((-3 $ "failed") (-1283 (-965 (-388)))) 171) (((-3 $ "failed") (-1283 (-965 (-574)))) 161) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 131) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 119)) (-2216 (($ (-1283 (-324 (-388)))) 147) (($ (-1283 (-324 (-574)))) 137) (($ (-1283 (-965 (-388)))) 167) (($ (-1283 (-965 (-574)))) 157) (($ (-1283 (-417 (-965 (-388))))) 127) (($ (-1283 (-417 (-965 (-574))))) 112)) (-3741 (((-1288) $) 105)) (-2950 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 95) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 91))) +(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) (-1192)) (T -80)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 79) (((-3 $ "failed") (-1283 (-324 (-574)))) 68) (((-3 $ "failed") (-1283 (-965 (-388)))) 99) (((-3 $ "failed") (-1283 (-965 (-574)))) 89) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 57) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 44)) (-2216 (($ (-1283 (-324 (-388)))) 75) (($ (-1283 (-324 (-574)))) 64) (($ (-1283 (-965 (-388)))) 95) (($ (-1283 (-965 (-574)))) 85) (($ (-1283 (-417 (-965 (-388))))) 53) (($ (-1283 (-417 (-965 (-574))))) 37)) (-3741 (((-1288) $) 125)) (-2950 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 114) (($ (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709)))) 36))) +(((-81 |#1|) (-13 (-451) (-626 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))) (-1192)) (T -81)) +NIL +(-13 (-451) (-626 (-1283 (-348 (-2962) (-2962 (QUOTE X)) (-709))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 98) (((-3 $ "failed") (-1283 (-324 (-574)))) 87) (((-3 $ "failed") (-1283 (-965 (-388)))) 118) (((-3 $ "failed") (-1283 (-965 (-574)))) 108) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 76) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 63)) (-2216 (($ (-1283 (-324 (-388)))) 94) (($ (-1283 (-324 (-574)))) 83) (($ (-1283 (-965 (-388)))) 114) (($ (-1283 (-965 (-574)))) 104) (($ (-1283 (-417 (-965 (-388))))) 72) (($ (-1283 (-417 (-965 (-574))))) 56)) (-3741 (((-1288) $) 48)) (-2950 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 38) (($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709)))) 33))) +(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709))))))) (-1192)) (T -82)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709))))))) +((-1706 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-965 (-388)))) 140) (((-3 $ "failed") (-699 (-965 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 83)) (-2216 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-965 (-388)))) 136) (($ (-699 (-965 (-574)))) 125) (($ (-699 (-417 (-965 (-388))))) 92) (($ (-699 (-417 (-965 (-574))))) 76)) (-3741 (((-1288) $) 66)) (-2950 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 58) (($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709)))) 50))) +(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709))))))) (-1192)) (T -83)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1192))))) +(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X) (QUOTE -1891)) (-2962) (-709))))))) +((-1706 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-965 (-388)))) 135) (((-3 $ "failed") (-699 (-965 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 75)) (-2216 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-965 (-388)))) 131) (($ (-699 (-965 (-574)))) 120) (($ (-699 (-417 (-965 (-388))))) 85) (($ (-699 (-417 (-965 (-574))))) 68)) (-3741 (((-1288) $) 60)) (-2950 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 45) (($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) 46))) +(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) (-1192)) (T -84)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1192))))) +(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 105) (((-3 $ "failed") (-1283 (-324 (-574)))) 94) (((-3 $ "failed") (-1283 (-965 (-388)))) 125) (((-3 $ "failed") (-1283 (-965 (-574)))) 115) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 83) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 70)) (-2216 (($ (-1283 (-324 (-388)))) 101) (($ (-1283 (-324 (-574)))) 90) (($ (-1283 (-965 (-388)))) 121) (($ (-1283 (-965 (-574)))) 111) (($ (-1283 (-417 (-965 (-388))))) 79) (($ (-1283 (-417 (-965 (-574))))) 63)) (-3741 (((-1288) $) 47)) (-2950 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 53) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) 38))) +(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) (-1192)) (T -85)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962) (-709))))))) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 80) (((-3 $ "failed") (-1283 (-324 (-574)))) 69) (((-3 $ "failed") (-1283 (-965 (-388)))) 100) (((-3 $ "failed") (-1283 (-965 (-574)))) 90) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 58) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 45)) (-2216 (($ (-1283 (-324 (-388)))) 76) (($ (-1283 (-324 (-574)))) 65) (($ (-1283 (-965 (-388)))) 96) (($ (-1283 (-965 (-574)))) 86) (($ (-1283 (-417 (-965 (-388))))) 54) (($ (-1283 (-417 (-965 (-574))))) 38)) (-3741 (((-1288) $) 126)) (-2950 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 115) (($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))) 37))) +(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))))))) (-1192)) (T -86)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1192))))) +(-13 (-451) (-10 -8 (-15 -2950 ($ (-1283 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))))))) +((-1706 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-965 (-388)))) 139) (((-3 $ "failed") (-699 (-965 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 79)) (-2216 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-965 (-388)))) 135) (($ (-699 (-965 (-574)))) 124) (($ (-699 (-417 (-965 (-388))))) 89) (($ (-699 (-417 (-965 (-574))))) 72)) (-3741 (((-1288) $) 63)) (-2950 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 52) (($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709)))) 48))) +(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709))))))) (-1192)) (T -87)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1192))))) +(-13 (-393) (-10 -8 (-15 -2950 ($ (-699 (-348 (-2962 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2962) (-709))))))) +((-3741 (((-1288) $) 45)) (-2950 (((-872) $) 39) (($ (-1283 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 34))) +(((-88 |#1|) (-450) (-1192)) (T -88)) +NIL +(-450) +((-1706 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-965 (-388))) 57) (((-3 $ "failed") (-965 (-574))) 61) (((-3 $ "failed") (-417 (-965 (-388)))) 43) (((-3 $ "failed") (-417 (-965 (-574)))) 36)) (-2216 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-965 (-388))) 55) (($ (-965 (-574))) 59) (($ (-417 (-965 (-388)))) 41) (($ (-417 (-965 (-574)))) 33)) (-3741 (((-1288) $) 91)) (-2950 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 77) (($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))) 32))) +(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))))) (-1192)) (T -89)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1192))))) +(-13 (-406) (-10 -8 (-15 -2950 ($ (-348 (-2962 (QUOTE X)) (-2962 (QUOTE -1891)) (-709)))))) +((-3037 (((-1283 (-699 |#1|)) (-699 |#1|)) 61)) (-3506 (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934)) 49)) (-2233 (((-2 (|:| |minor| (-654 (-934))) (|:| -4096 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934)) 72 (|has| |#1| (-372))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3506 ((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934))) (-15 -3037 ((-1283 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -2233 ((-2 (|:| |minor| (-654 (-934))) (|:| -4096 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934))) |%noBranch|)) (-566) (-666 |#1|)) (T -90)) +((-2233 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-934))) (|:| -4096 *3) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5)))) (-3037 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-3506 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -4226 (-699 *5)) (|:| |vec| (-1283 (-654 (-934)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) +(-10 -7 (-15 -3506 ((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 (-654 (-934))))) |#2| (-934))) (-15 -3037 ((-1283 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -2233 ((-2 (|:| |minor| (-654 (-934))) (|:| -4096 |#2|) (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 |#2|))) |#2| (-934))) |%noBranch|)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2012 ((|#1| $) 40)) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-3528 ((|#1| |#1| $) 35)) (-3416 ((|#1| $) 33)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) NIL)) (-1948 (($ |#1| $) 36)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2277 ((|#1| $) 34)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 18)) (-4272 (($) 45)) (-4292 (((-781) $) 31)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 17)) (-2950 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) NIL)) (-1679 (($ (-654 |#1|)) 42)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 15 (|has| |#1| (-1115)))) (-2876 (((-781) $) 12 (|has| $ (-6 -4458))))) +(((-91 |#1|) (-13 (-1136 |#1|) (-10 -8 (-15 -1679 ($ (-654 |#1|))))) (-1115)) (T -91)) +((-1679 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-91 *3))))) +(-13 (-1136 |#1|) (-10 -8 (-15 -1679 ($ (-654 |#1|))))) +((-2950 (((-872) $) 13) (($ (-1197)) 9) (((-1197) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2950 ((-1197) |#1|)) (-15 -2950 (|#1| (-1197))) (-15 -2950 ((-872) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2950 ((-1197) |#1|)) (-15 -2950 (|#1| (-1197))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) (((-93) (-141)) (T -93)) NIL -(-13 (-1112) (-499 (-1194))) -(((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) -((-2324 (($ $) 10)) (-2333 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1115) (-500 (-1197))) +(((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) +((-2339 (($ $) 10)) (-2348 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|))) -((-2304 (($ $) 11)) (-2286 (($ $) 10)) (-2324 (($ $) 9)) (-2333 (($ $) 8)) (-2314 (($ $) 7)) (-2296 (($ $) 6))) +(-10 -8 (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|))) +((-2319 (($ $) 11)) (-2301 (($ $) 10)) (-2339 (($ $) 9)) (-2348 (($ $) 8)) (-2329 (($ $) 7)) (-2311 (($ $) 6))) (((-95) (-141)) (T -95)) -((-2304 (*1 *1 *1) (-4 *1 (-95))) (-2286 (*1 *1 *1) (-4 *1 (-95))) (-2324 (*1 *1 *1) (-4 *1 (-95))) (-2333 (*1 *1 *1) (-4 *1 (-95))) (-2314 (*1 *1 *1) (-4 *1 (-95))) (-2296 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2296 ($ $)) (-15 -2314 ($ $)) (-15 -2333 ($ $)) (-15 -2324 ($ $)) (-15 -2286 ($ $)) (-15 -2304 ($ $)))) -((-2848 (((-112) $ $) NIL)) (-2031 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-96) (-13 (-1095) (-10 -8 (-15 -2031 ((-1147) $))))) (T -96)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-96))))) -(-13 (-1095) (-10 -8 (-15 -2031 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-3820 (((-387) (-1171) (-387)) 46) (((-387) (-1171) (-1171) (-387)) 44)) (-1441 (((-387) (-387)) 35)) (-2002 (((-1285)) 37)) (-3180 (((-1171) $) NIL)) (-1429 (((-387) (-1171) (-1171)) 50) (((-387) (-1171)) 52)) (-3965 (((-1132) $) NIL)) (-1900 (((-387) (-1171) (-1171)) 51)) (-2795 (((-387) (-1171) (-1171)) 53) (((-387) (-1171)) 54)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-97) (-13 (-1112) (-10 -7 (-15 -1429 ((-387) (-1171) (-1171))) (-15 -1429 ((-387) (-1171))) (-15 -2795 ((-387) (-1171) (-1171))) (-15 -2795 ((-387) (-1171))) (-15 -1900 ((-387) (-1171) (-1171))) (-15 -2002 ((-1285))) (-15 -1441 ((-387) (-387))) (-15 -3820 ((-387) (-1171) (-387))) (-15 -3820 ((-387) (-1171) (-1171) (-387))) (-6 -4455)))) (T -97)) -((-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2002 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-97)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-97)))) (-3820 (*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97)))) (-3820 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97))))) -(-13 (-1112) (-10 -7 (-15 -1429 ((-387) (-1171) (-1171))) (-15 -1429 ((-387) (-1171))) (-15 -2795 ((-387) (-1171) (-1171))) (-15 -2795 ((-387) (-1171))) (-15 -1900 ((-387) (-1171) (-1171))) (-15 -2002 ((-1285))) (-15 -1441 ((-387) (-387))) (-15 -3820 ((-387) (-1171) (-387))) (-15 -3820 ((-387) (-1171) (-1171) (-387))) (-6 -4455))) +((-2319 (*1 *1 *1) (-4 *1 (-95))) (-2301 (*1 *1 *1) (-4 *1 (-95))) (-2339 (*1 *1 *1) (-4 *1 (-95))) (-2348 (*1 *1 *1) (-4 *1 (-95))) (-2329 (*1 *1 *1) (-4 *1 (-95))) (-2311 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2311 ($ $)) (-15 -2329 ($ $)) (-15 -2348 ($ $)) (-15 -2339 ($ $)) (-15 -2301 ($ $)) (-15 -2319 ($ $)))) +((-2863 (((-112) $ $) NIL)) (-2041 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-96) (-13 (-1098) (-10 -8 (-15 -2041 ((-1150) $))))) (T -96)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-96))))) +(-13 (-1098) (-10 -8 (-15 -2041 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-4220 (((-388) (-1174) (-388)) 46) (((-388) (-1174) (-1174) (-388)) 44)) (-4417 (((-388) (-388)) 35)) (-2674 (((-1288)) 37)) (-1938 (((-1174) $) NIL)) (-4298 (((-388) (-1174) (-1174)) 50) (((-388) (-1174)) 52)) (-3939 (((-1135) $) NIL)) (-2914 (((-388) (-1174) (-1174)) 51)) (-1482 (((-388) (-1174) (-1174)) 53) (((-388) (-1174)) 54)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-97) (-13 (-1115) (-10 -7 (-15 -4298 ((-388) (-1174) (-1174))) (-15 -4298 ((-388) (-1174))) (-15 -1482 ((-388) (-1174) (-1174))) (-15 -1482 ((-388) (-1174))) (-15 -2914 ((-388) (-1174) (-1174))) (-15 -2674 ((-1288))) (-15 -4417 ((-388) (-388))) (-15 -4220 ((-388) (-1174) (-388))) (-15 -4220 ((-388) (-1174) (-1174) (-388))) (-6 -4458)))) (T -97)) +((-4298 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2914 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2674 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-97)))) (-4417 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-4220 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97)))) (-4220 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97))))) +(-13 (-1115) (-10 -7 (-15 -4298 ((-388) (-1174) (-1174))) (-15 -4298 ((-388) (-1174))) (-15 -1482 ((-388) (-1174) (-1174))) (-15 -1482 ((-388) (-1174))) (-15 -2914 ((-388) (-1174) (-1174))) (-15 -2674 ((-1288))) (-15 -4417 ((-388) (-388))) (-15 -4220 ((-388) (-1174) (-388))) (-15 -4220 ((-388) (-1174) (-1174) (-388))) (-6 -4458))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4455) (-6 (-4457 "*")) (-6 -4456) (-6 -4452) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4453) (-6 -4447) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4443) (-6 -4451) (-6 -4454) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4442))) -((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3272 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-573))) 24)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 16)) (-3965 (((-1132) $) NIL)) (-2198 ((|#1| $ |#1|) 13)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 22)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 8 T CONST)) (-2981 (((-112) $ $) 10)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) 32) (($ $ (-780)) NIL) (($ $ (-573)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-482) (-293 |#1| |#1|) (-10 -8 (-15 -3272 ($ (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1| (-573)))))) (-1061)) (T -99)) -((-3272 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) (-3272 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) (-3272 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-99 *3))))) -(-13 (-482) (-293 |#1| |#1|) (-10 -8 (-15 -3272 ($ (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1| (-573)))))) -((-2432 (((-427 |#2|) |#2| (-653 |#2|)) 10) (((-427 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2432 ((-427 |#2|) |#2| |#2|)) (-15 -2432 ((-427 |#2|) |#2| (-653 |#2|)))) (-13 (-461) (-148)) (-1256 |#1|)) (T -100)) -((-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-13 (-461) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-100 *5 *3)))) (-2432 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-461) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -2432 ((-427 |#2|) |#2| |#2|)) (-15 -2432 ((-427 |#2|) |#2| (-653 |#2|)))) -((-2848 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2848 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2848 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-2981 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4458) (-6 (-4460 "*")) (-6 -4459) (-6 -4455) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4456) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4446) (-6 -4454) (-6 -4457) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4445))) +((-2863 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-3593 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 16)) (-3939 (((-1135) $) NIL)) (-2209 ((|#1| $ |#1|) 13)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) 22)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 8 T CONST)) (-2985 (((-112) $ $) 10)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -3593 ($ (-1 |#1| |#1|))) (-15 -3593 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3593 ($ (-1 |#1| |#1| (-574)))))) (-1064)) (T -99)) +((-3593 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) (-3593 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-99 *3))))) +(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -3593 ($ (-1 |#1| |#1|))) (-15 -3593 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3593 ($ (-1 |#1| |#1| (-574)))))) +((-2205 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2205 ((-428 |#2|) |#2| |#2|)) (-15 -2205 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1259 |#1|)) (T -100)) +((-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-2205 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -2205 ((-428 |#2|) |#2| |#2|)) (-15 -2205 ((-428 |#2|) |#2| (-654 |#2|)))) +((-2863 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2863 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2863 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-2985 (((-112) $ $) 6))) (((-102) (-141)) (T -102)) -((-2848 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2981 ((-112) $ $)) (-15 -2848 ((-112) $ $)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 24 (|has| $ (-6 -4456)))) (-2357 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3837 (($ $ $) NIL (|has| $ (-6 -4456)))) (-4216 (($ $ (-653 |#1|)) 30)) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 12)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 32)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2951 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3639 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|)) 49)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 11)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 9)) (-3508 (($) 31)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2268 (($ (-780) |#1|) 33)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2268 ($ (-780) |#1|)) (-15 -4216 ($ $ (-653 |#1|))) (-15 -2951 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2951 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|))))) (-1112)) (T -103)) -((-2268 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-103 *3)) (-4 *3 (-1112)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1112)))) (-2951 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) (-3639 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2)))) (-3639 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-653 *2) *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2268 ($ (-780) |#1|)) (-15 -4216 ($ $ (-653 |#1|))) (-15 -2951 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2951 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|))))) -((-1639 ((|#3| |#2| |#2|) 34)) (-2740 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4457 "*"))))) (-3660 ((|#3| |#2| |#2|) 36)) (-4399 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4457 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1639 (|#3| |#2| |#2|)) (-15 -3660 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4457 "*"))) (PROGN (-15 -2740 (|#1| |#2| |#2|)) (-15 -4399 (|#1| |#2|))) |%noBranch|)) (-1061) (-1256 |#1|) (-696 |#1| |#4| |#5|) (-381 |#1|) (-381 |#1|)) (T -104)) -((-4399 (*1 *2 *3) (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) (-4 *4 (-696 *2 *5 *6)))) (-2740 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) (-4 *4 (-696 *2 *5 *6)))) (-3660 (*1 *2 *3 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)))) (-1639 (*1 *2 *3 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4))))) -(-10 -7 (-15 -1639 (|#3| |#2| |#2|)) (-15 -3660 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4457 "*"))) (PROGN (-15 -2740 (|#1| |#2| |#2|)) (-15 -4399 (|#1| |#2|))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3693 (((-653 (-1189))) 37)) (-2968 (((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189)) 39)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-105) (-13 (-1112) (-10 -7 (-15 -3693 ((-653 (-1189)))) (-15 -2968 ((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189))) (-6 -4455)))) (T -105)) -((-3693 (*1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-105)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227))))) (-5 *1 (-105))))) -(-13 (-1112) (-10 -7 (-15 -3693 ((-653 (-1189)))) (-15 -2968 ((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189))) (-6 -4455))) -((-2679 (($ (-653 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| (-653 |#2|)))) (-107 |#2|) (-1230)) (T -106)) -NIL -(-10 -8 (-15 -2679 (|#1| (-653 |#2|)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-107 |#1|) (-141) (-1230)) (T -107)) -((-2679 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-107 *3)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) (-3181 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) -(-13 (-498 |t#1|) (-10 -8 (-6 -4456) (-15 -2679 ($ (-653 |t#1|))) (-15 -3815 (|t#1| $)) (-15 -3181 ($ |t#1| $)) (-15 -2487 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 2) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-1874 (($ (-416 (-573))) 9)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) -(((-108) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 2)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1874 ($ (-416 (-573))))))) (T -108)) -((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108))))) -(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 2)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1874 ($ (-416 (-573)))))) -((-2793 (((-653 (-975)) $) 13)) (-2031 (((-515) $) 9)) (-2942 (((-871) $) 20)) (-2889 (($ (-515) (-653 (-975))) 15))) -(((-109) (-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -2793 ((-653 (-975)) $)) (-15 -2889 ($ (-515) (-653 (-975))))))) (T -109)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-109)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-653 (-975))) (-5 *1 (-109)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-109))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -2793 ((-653 (-975)) $)) (-15 -2889 ($ (-515) (-653 (-975)))))) -((-2848 (((-112) $ $) NIL)) (-2876 (($ $) NIL)) (-2108 (($ $ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-859)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-112) $ (-1247 (-573)) (-112)) NIL (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3334 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2457 (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) NIL)) (-1440 (((-573) (-112) $ (-573)) NIL (|has| (-112) (-1112))) (((-573) (-112) $) NIL (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) NIL)) (-1863 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-2097 (($ $ $) NIL)) (-2075 (($ $) NIL)) (-3695 (($ $ $) NIL)) (-3789 (($ (-780) (-112)) 10)) (-1419 (($ $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL)) (-1480 (($ $ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3214 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ (-112) $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-112) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3112 (($ $ (-112)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (($ $ (-1247 (-573))) NIL) (((-112) $ (-573)) NIL) (((-112) $ (-573) (-112)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3974 (((-780) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112)))) (((-780) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) NIL)) (-4156 (($ (-653 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2942 (((-871) $) NIL)) (-2628 (($ (-780) (-112)) 11)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2086 (($ $ $) NIL)) (-2924 (($ $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-2909 (($ $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-110) (-13 (-124) (-10 -8 (-15 -2628 ($ (-780) (-112)))))) (T -110)) -((-2628 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -2628 ($ (-780) (-112))))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1061) (-1061)) (T -111)) -NIL -(-13 (-657 |t#1|) (-1068 |t#2|) (-10 -7 (-6 -4450) (-6 -4449))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-2876 (($ $) 10)) (-2108 (($ $ $) 15)) (-1561 (($) 7 T CONST)) (-4161 (($ $) 6)) (-1486 (((-780)) 24)) (-2819 (($) 32)) (-2097 (($ $ $) 13)) (-2075 (($ $) 9)) (-3695 (($ $ $) 16)) (-1419 (($ $ $) 17)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) 30)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 28)) (-2546 (($ $ $) 20)) (-3965 (((-1132) $) NIL)) (-2883 (($) 8 T CONST)) (-3391 (($ $ $) 21)) (-1835 (((-545) $) 34)) (-2942 (((-871) $) 36)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 11)) (-2924 (($ $ $) 14)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-2909 (($ $ $) 12))) -(((-112) (-13 (-853) (-670) (-979) (-623 (-545)) (-10 -8 (-15 -2108 ($ $ $)) (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -4161 ($ $))))) (T -112)) -((-2108 (*1 *1 *1 *1) (-5 *1 (-112))) (-1419 (*1 *1 *1 *1) (-5 *1 (-112))) (-3695 (*1 *1 *1 *1) (-5 *1 (-112))) (-4161 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-853) (-670) (-979) (-623 (-545)) (-10 -8 (-15 -2108 ($ $ $)) (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -4161 ($ $)))) -((-2097 (($ $ $) 6)) (-2075 (($ $) 8)) (-2086 (($ $ $) 7))) +((-2863 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2985 ((-112) $ $)) (-15 -2863 ((-112) $ $)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) 24 (|has| $ (-6 -4459)))) (-2826 (($ $ $) NIL (|has| $ (-6 -4459)))) (-4399 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3882 (($ $ (-654 |#1|)) 30)) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-3877 (($ $) 12)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1592 (($ $ |#1| $) 32)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3554 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3157 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3864 (($ $) 11)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) 13)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 9)) (-4272 (($) 31)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3283 (($ (-781) |#1|) 33)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3283 ($ (-781) |#1|)) (-15 -3882 ($ $ (-654 |#1|))) (-15 -3554 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3554 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3157 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3157 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1115)) (T -103)) +((-3283 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1115)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) (-3554 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1115)))) (-3554 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3283 ($ (-781) |#1|)) (-15 -3882 ($ $ (-654 |#1|))) (-15 -3554 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3554 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3157 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3157 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) +((-3431 ((|#3| |#2| |#2|) 34)) (-2118 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4460 "*"))))) (-3356 ((|#3| |#2| |#2|) 36)) (-1932 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4460 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 (|#3| |#2| |#2|)) (-15 -3356 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4460 "*"))) (PROGN (-15 -2118 (|#1| |#2| |#2|)) (-15 -1932 (|#1| |#2|))) |%noBranch|)) (-1064) (-1259 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104)) +((-1932 (*1 *2 *3) (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) (-4 *4 (-697 *2 *5 *6)))) (-2118 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-3431 (*1 *2 *3 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))))) +(-10 -7 (-15 -3431 (|#3| |#2| |#2|)) (-15 -3356 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4460 "*"))) (PROGN (-15 -2118 (|#1| |#2| |#2|)) (-15 -1932 (|#1| |#2|))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-2386 (((-654 (-1192))) 37)) (-2453 (((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192)) 39)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-105) (-13 (-1115) (-10 -7 (-15 -2386 ((-654 (-1192)))) (-15 -2453 ((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192))) (-6 -4458)))) (T -105)) +((-2386 (*1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-105)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227))))) (-5 *1 (-105))))) +(-13 (-1115) (-10 -7 (-15 -2386 ((-654 (-1192)))) (-15 -2453 ((-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) (|:| |singularities| (-1172 (-227)))) (-1192))) (-6 -4458))) +((-2765 (($ (-654 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2765 (|#1| (-654 |#2|)))) (-107 |#2|) (-1233)) (T -106)) +NIL +(-10 -8 (-15 -2765 (|#1| (-654 |#2|)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-107 |#1|) (-141) (-1233)) (T -107)) +((-2765 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-107 *3)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) (-1948 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4459) (-15 -2765 ($ (-654 |t#1|))) (-15 -2277 (|t#1| $)) (-15 -1948 ($ |t#1| $)) (-15 -1494 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-574) $) NIL (|has| (-574) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-574) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-574) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-3081 (((-112) $) NIL (|has| (-574) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-574) (-860)))) (-1787 (($ (-1 (-574) (-574)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2787 (((-574) $) NIL (|has| (-574) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1846 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 2) $) 10)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-574) $) NIL (|has| (-574) (-555)))) (-3866 (($ (-417 (-574))) 9)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-574) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3102 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-108) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 2)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3866 ($ (-417 (-574))))))) (T -108)) +((-2010 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-3866 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))) +(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 2)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3866 ($ (-417 (-574)))))) +((-2805 (((-654 (-978)) $) 13)) (-2041 (((-516) $) 9)) (-2950 (((-872) $) 20)) (-4171 (($ (-516) (-654 (-978))) 15))) +(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2041 ((-516) $)) (-15 -2805 ((-654 (-978)) $)) (-15 -4171 ($ (-516) (-654 (-978))))))) (T -109)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-654 (-978))) (-5 *1 (-109)))) (-4171 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-109))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2041 ((-516) $)) (-15 -2805 ((-654 (-978)) $)) (-15 -4171 ($ (-516) (-654 (-978)))))) +((-2863 (((-112) $ $) NIL)) (-2889 (($ $) NIL)) (-2119 (($ $ $) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2212 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-112) $ (-1250 (-574)) (-112)) NIL (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3310 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) NIL)) (-1451 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1115))) (((-574) (-112) $) NIL (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1874 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2108 (($ $ $) NIL)) (-2086 (($ $) NIL)) (-2408 (($ $ $) NIL)) (-3763 (($ (-781) (-112)) 10)) (-4184 (($ $ $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL)) (-4333 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4187 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL)) (-2464 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-112) $) NIL (|has| (-574) (-860)))) (-1745 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2485 (($ $ (-112)) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3670 (((-654 (-112)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 (($ $ (-1250 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3948 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) NIL)) (-4131 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2950 (((-872) $) NIL)) (-3530 (($ (-781) (-112)) 11)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2097 (($ $ $) NIL)) (-2933 (($ $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-2921 (($ $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-110) (-13 (-124) (-10 -8 (-15 -3530 ($ (-781) (-112)))))) (T -110)) +((-3530 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -3530 ($ (-781) (-112))))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1064) (-1064)) (T -111)) +NIL +(-13 (-658 |t#1|) (-1071 |t#2|) (-10 -7 (-6 -4453) (-6 -4452))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-2889 (($ $) 10)) (-2119 (($ $ $) 15)) (-1572 (($) 7 T CONST)) (-4137 (($ $) 6)) (-1497 (((-781)) 24)) (-2834 (($) 32)) (-2108 (($ $ $) 13)) (-2086 (($ $) 9)) (-2408 (($ $ $) 16)) (-4184 (($ $ $) 17)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) 30)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) 28)) (-3951 (($ $ $) 20)) (-3939 (((-1135) $) NIL)) (-2896 (($) 8 T CONST)) (-2331 (($ $ $) 21)) (-1846 (((-546) $) 34)) (-2950 (((-872) $) 36)) (-4259 (((-112) $ $) NIL)) (-2097 (($ $ $) 11)) (-2933 (($ $ $) 14)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 19)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 22)) (-2921 (($ $ $) 12))) +(((-112) (-13 (-854) (-671) (-982) (-624 (-546)) (-10 -8 (-15 -2119 ($ $ $)) (-15 -4184 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -4137 ($ $))))) (T -112)) +((-2119 (*1 *1 *1 *1) (-5 *1 (-112))) (-4184 (*1 *1 *1 *1) (-5 *1 (-112))) (-2408 (*1 *1 *1 *1) (-5 *1 (-112))) (-4137 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-854) (-671) (-982) (-624 (-546)) (-10 -8 (-15 -2119 ($ $ $)) (-15 -4184 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -4137 ($ $)))) +((-2108 (($ $ $) 6)) (-2086 (($ $) 8)) (-2097 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2075 (*1 *1 *1) (-4 *1 (-113))) (-2086 (*1 *1 *1 *1) (-4 *1 (-113))) (-2097 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1230) (-10 -8 (-15 -2075 ($ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)))) -(((-1230) . T)) -((-3630 (((-3 (-1 |#1| (-653 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-653 |#1|))) 11) (((-3 |#1| "failed") (-115) (-653 |#1|)) 25)) (-2786 (((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-653 (-1 |#1| (-653 |#1|)))) 30)) (-2273 (((-115) |#1|) 63)) (-1511 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -3630 ((-3 |#1| "failed") (-115) (-653 |#1|))) (-15 -3630 ((-115) (-115) (-1 |#1| (-653 |#1|)))) (-15 -3630 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3630 ((-3 (-1 |#1| (-653 |#1|)) "failed") (-115))) (-15 -2786 ((-115) (-115) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2786 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115))) (-15 -2273 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) (-1112)) (T -114)) -((-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1112)))) (-2273 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1112)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-1 *4 (-653 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1112)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 (-1 *4 (-653 *4)))) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-653 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1112)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-653 *4))) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-653 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1112))))) -(-10 -7 (-15 -3630 ((-3 |#1| "failed") (-115) (-653 |#1|))) (-15 -3630 ((-115) (-115) (-1 |#1| (-653 |#1|)))) (-15 -3630 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3630 ((-3 (-1 |#1| (-653 |#1|)) "failed") (-115))) (-15 -2786 ((-115) (-115) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2786 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115))) (-15 -2273 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) -((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) 91) (($ $ (-780)) 37)) (-3959 (((-112) $) 41)) (-2995 (($ $ (-1171) (-783)) 58) (($ $ (-515) (-783)) 33)) (-3906 (($ $ (-45 (-1171) (-783))) 16)) (-1395 (((-3 (-783) "failed") $ (-1171)) 27) (((-700 (-783)) $ (-515)) 32)) (-2793 (((-45 (-1171) (-783)) $) 15)) (-4173 (($ (-1189)) 20) (($ (-1189) (-780)) 23) (($ (-1189) (-55)) 24)) (-2335 (((-112) $) 39)) (-3706 (((-112) $) 43)) (-2031 (((-1189) $) 8)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ (-1189)) 11)) (-1451 (($ $ (-1 (-545) (-653 (-545)))) 64) (((-3 (-1 (-545) (-653 (-545))) "failed") $) 71)) (-3965 (((-1132) $) NIL)) (-2351 (((-112) $ (-515)) 36)) (-3395 (($ $ (-1 (-112) $ $)) 45)) (-1402 (((-3 (-1 (-871) (-653 (-871))) "failed") $) 69) (($ $ (-1 (-871) (-653 (-871)))) 51) (($ $ (-1 (-871) (-871))) 53)) (-3992 (($ $ (-1171)) 55) (($ $ (-515)) 56)) (-3166 (($ $) 77)) (-1998 (($ $ (-1 (-112) $ $)) 46)) (-2942 (((-871) $) 60)) (-3507 (((-112) $ $) NIL)) (-2112 (($ $ (-515)) 34)) (-4010 (((-55) $) 72)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 89)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 103))) -(((-115) (-13 (-859) (-844 (-1189)) (-10 -8 (-15 -2793 ((-45 (-1171) (-783)) $)) (-15 -3166 ($ $)) (-15 -4173 ($ (-1189))) (-15 -4173 ($ (-1189) (-780))) (-15 -4173 ($ (-1189) (-55))) (-15 -2335 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -3706 ((-112) $)) (-15 -3447 ((-780) $)) (-15 -3447 ($ $ (-780))) (-15 -3395 ($ $ (-1 (-112) $ $))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -1402 ((-3 (-1 (-871) (-653 (-871))) "failed") $)) (-15 -1402 ($ $ (-1 (-871) (-653 (-871))))) (-15 -1402 ($ $ (-1 (-871) (-871)))) (-15 -1451 ($ $ (-1 (-545) (-653 (-545))))) (-15 -1451 ((-3 (-1 (-545) (-653 (-545))) "failed") $)) (-15 -2351 ((-112) $ (-515))) (-15 -2112 ($ $ (-515))) (-15 -3992 ($ $ (-1171))) (-15 -3992 ($ $ (-515))) (-15 -1395 ((-3 (-783) "failed") $ (-1171))) (-15 -1395 ((-700 (-783)) $ (-515))) (-15 -2995 ($ $ (-1171) (-783))) (-15 -2995 ($ $ (-515) (-783))) (-15 -3906 ($ $ (-45 (-1171) (-783))))))) (T -115)) -((-2793 (*1 *2 *1) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115)))) (-3166 (*1 *1 *1) (-5 *1 (-115))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1402 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) (-1402 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) (-1402 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-871))) (-5 *1 (-115)))) (-1451 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) (-1451 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2112 (*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-115)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) (-1395 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-783)) (-5 *1 (-115)))) (-1395 (*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-783))) (-5 *1 (-115)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-783)) (-5 *1 (-115)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-783)) (-5 *1 (-115)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) -(-13 (-859) (-844 (-1189)) (-10 -8 (-15 -2793 ((-45 (-1171) (-783)) $)) (-15 -3166 ($ $)) (-15 -4173 ($ (-1189))) (-15 -4173 ($ (-1189) (-780))) (-15 -4173 ($ (-1189) (-55))) (-15 -2335 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -3706 ((-112) $)) (-15 -3447 ((-780) $)) (-15 -3447 ($ $ (-780))) (-15 -3395 ($ $ (-1 (-112) $ $))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -1402 ((-3 (-1 (-871) (-653 (-871))) "failed") $)) (-15 -1402 ($ $ (-1 (-871) (-653 (-871))))) (-15 -1402 ($ $ (-1 (-871) (-871)))) (-15 -1451 ($ $ (-1 (-545) (-653 (-545))))) (-15 -1451 ((-3 (-1 (-545) (-653 (-545))) "failed") $)) (-15 -2351 ((-112) $ (-515))) (-15 -2112 ($ $ (-515))) (-15 -3992 ($ $ (-1171))) (-15 -3992 ($ $ (-515))) (-15 -1395 ((-3 (-783) "failed") $ (-1171))) (-15 -1395 ((-700 (-783)) $ (-515))) (-15 -2995 ($ $ (-1171) (-783))) (-15 -2995 ($ $ (-515) (-783))) (-15 -3906 ($ $ (-45 (-1171) (-783)))))) -((-2336 (((-573) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -2336 ((-573) |#2|))) (-13 (-371) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -116)) -((-2336 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-1050 (-416 *2)))) (-5 *2 (-573)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -2336 ((-573) |#2|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1970 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) NIL)) (-4054 (((-573) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-1169 (-573)) $) NIL)) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-878 |#1|) (-573)) (T -117)) -NIL -(-878 |#1|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-117 |#1|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-573))))) (-2205 (((-117 |#1|) $) NIL) (((-1189) $) NIL (|has| (-117 |#1|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-117 |#1|) (-1050 (-573)))) (((-573) $) NIL (|has| (-117 |#1|) (-1050 (-573))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-117 |#1|))) (|:| |vec| (-1280 (-117 |#1|)))) (-698 $) (-1280 $)) NIL) (((-698 (-117 |#1|)) (-698 $)) NIL) (((-698 (-117 |#1|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-117 |#1|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-117 |#1|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-117 |#1|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-117 |#1|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-117 |#1|) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-117 |#1|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-117 |#1|) (-859)))) (-3751 (($ $ $) NIL (|has| (-117 |#1|) (-859)))) (-1776 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-117 |#1|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-117 |#1|) (-314)))) (-3733 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-117 |#1|)) (-653 (-117 |#1|))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-301 (-117 |#1|))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-653 (-301 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-653 (-1189)) (-653 (-117 |#1|))) NIL (|has| (-117 |#1|) (-523 (-1189) (-117 |#1|)))) (($ $ (-1189) (-117 |#1|)) NIL (|has| (-117 |#1|) (-523 (-1189) (-117 |#1|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-293 (-117 |#1|) (-117 |#1|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-117 |#1|) (-238))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-780)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-117 |#1|) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-117 |#1|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-117 |#1|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-117 |#1|) (-623 (-545)))) (((-387) $) NIL (|has| (-117 |#1|) (-1034))) (((-227) $) NIL (|has| (-117 |#1|) (-1034)))) (-1468 (((-176 (-416 (-573))) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-117 |#1|)) NIL) (($ (-1189)) NIL (|has| (-117 |#1|) (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-919))) (|has| (-117 |#1|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) NIL)) (-1660 (($ $) NIL (|has| (-117 |#1|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-117 |#1|) (-238))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-780)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3103 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1004 (-117 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573)) (T -118)) -((-3550 (*1 *2 *1 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-573)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-118 *3)) (-14 *3 (-573)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-573)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1004 (-117 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) -((-3142 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3113 (((-653 $) $) 31)) (-3208 (((-112) $ $) 36)) (-1547 (((-112) |#2| $) 40)) (-3505 (((-653 |#2|) $) 25)) (-2880 (((-112) $) 18)) (-2198 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1628 (((-112) $) 57)) (-2942 (((-871) $) 47)) (-1811 (((-653 $) $) 32)) (-2981 (((-112) $ $) 38)) (-2862 (((-780) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -3142 (|#1| |#1| "right" |#1|)) (-15 -3142 (|#1| |#1| "left" |#1|)) (-15 -2198 (|#1| |#1| "right")) (-15 -2198 (|#1| |#1| "left")) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -3505 ((-653 |#2|) |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -2862 ((-780) |#1|))) (-120 |#2|) (-1230)) (T -119)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -3142 (|#1| |#1| "right" |#1|)) (-15 -3142 (|#1| |#1| "left" |#1|)) (-15 -2198 (|#1| |#1| "right")) (-15 -2198 (|#1| |#1| "left")) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -3505 ((-653 |#2|) |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -2862 ((-780) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 55 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) (($ $ "left" $) 56 (|has| $ (-6 -4456))) (($ $ "right" $) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-3903 (($ $) 58)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3890 (($ $) 60)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-120 |#1|) (-141) (-1230)) (T -120)) -((-3890 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3903 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3837 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-2357 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) -(-13 (-1022 |t#1|) (-10 -8 (-15 -3890 ($ $)) (-15 -2198 ($ $ "left")) (-15 -3903 ($ $)) (-15 -2198 ($ $ "right")) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3142 ($ $ "left" $)) (-15 -3837 ($ $ $)) (-15 -3142 ($ $ "right" $)) (-15 -2357 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-1446 (((-112) |#1|) 29)) (-2011 (((-780) (-780)) 28) (((-780)) 27)) (-3414 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -3414 ((-112) |#1|)) (-15 -3414 ((-112) |#1| (-112))) (-15 -2011 ((-780))) (-15 -2011 ((-780) (-780))) (-15 -1446 ((-112) |#1|))) (-1256 (-573))) (T -121)) -((-1446 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-2011 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-3414 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) -(-10 -7 (-15 -3414 ((-112) |#1|)) (-15 -3414 ((-112) |#1| (-112))) (-15 -2011 ((-780))) (-15 -2011 ((-780) (-780))) (-15 -1446 ((-112) |#1|))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 18)) (-3834 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2357 (($ $ $) 21 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 23 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 20)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 27)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 22)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1489 (($ |#1| $) 28)) (-3181 (($ |#1| $) 15)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2418 (($ (-653 |#1|)) 16)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -2418 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)) (-15 -1489 ($ |#1| $)) (-15 -3834 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-859)) (T -122)) -((-2418 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-122 *3)))) (-3181 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) (-3834 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-859))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -2418 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)) (-15 -1489 ($ |#1| $)) (-15 -3834 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2876 (($ $) 13)) (-2075 (($ $) 11)) (-3695 (($ $ $) 23)) (-1419 (($ $ $) 21)) (-2924 (($ $ $) 19)) (-2909 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3695 (|#1| |#1| |#1|)) (-15 -1419 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3695 (|#1| |#1| |#1|)) (-15 -1419 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-2876 (($ $) 103)) (-2108 (($ $ $) 28)) (-3791 (((-1285) $ (-573) (-573)) 66 (|has| $ (-6 -4456)))) (-1473 (((-112) $) 98 (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2748 (($ $) 102 (-12 (|has| (-112) (-859)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4456)))) (-2770 (($ $) 97 (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3450 (((-112) $ (-780)) 37)) (-3142 (((-112) $ (-1247 (-573)) (-112)) 88 (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) 54 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4455)))) (-2579 (($) 38 T CONST)) (-2176 (($ $) 100 (|has| $ (-6 -4456)))) (-4422 (($ $) 90)) (-2685 (($ $) 68 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4455))) (($ (-112) $) 69 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-2457 (((-112) $ (-573) (-112)) 53 (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) 55)) (-1440 (((-573) (-112) $ (-573)) 95 (|has| (-112) (-1112))) (((-573) (-112) $) 94 (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) 93)) (-1863 (((-653 (-112)) $) 45 (|has| $ (-6 -4455)))) (-2097 (($ $ $) 108)) (-2075 (($ $) 106)) (-3695 (($ $ $) 29)) (-3789 (($ (-780) (-112)) 78)) (-1419 (($ $ $) 30)) (-2078 (((-112) $ (-780)) 36)) (-1968 (((-573) $) 63 (|has| (-573) (-859)))) (-3659 (($ $ $) 14)) (-1480 (($ $ $) 96 (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3214 (((-653 (-112)) $) 46 (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 62 (|has| (-573) (-859)))) (-3751 (($ $ $) 15)) (-2446 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2673 (((-112) $ (-780)) 35)) (-3180 (((-1171) $) 10)) (-1593 (($ $ $ (-573)) 87) (($ (-112) $ (-573)) 86)) (-1977 (((-653 (-573)) $) 60)) (-2560 (((-112) (-573) $) 59)) (-3965 (((-1132) $) 11)) (-2914 (((-112) $) 64 (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3112 (($ $ (-112)) 65 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) 52 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) 50 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) 49 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) 31)) (-2547 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) 58)) (-3811 (((-112) $) 34)) (-3508 (($) 33)) (-2198 (($ $ (-1247 (-573))) 77) (((-112) $ (-573)) 57) (((-112) $ (-573) (-112)) 56)) (-2836 (($ $ (-1247 (-573))) 85) (($ $ (-573)) 84)) (-3974 (((-780) (-112) $) 47 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) 99 (|has| $ (-6 -4456)))) (-3166 (($ $) 32)) (-1835 (((-545) $) 67 (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) 76)) (-4156 (($ (-653 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4455)))) (-2086 (($ $ $) 107)) (-2924 (($ $ $) 105)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-2909 (($ $ $) 104)) (-2862 (((-780) $) 39 (|has| $ (-6 -4455))))) +((-2086 (*1 *1 *1) (-4 *1 (-113))) (-2097 (*1 *1 *1 *1) (-4 *1 (-113))) (-2108 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1233) (-10 -8 (-15 -2086 ($ $)) (-15 -2097 ($ $ $)) (-15 -2108 ($ $ $)))) +(((-1233) . T)) +((-3053 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-1399 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-3338 (((-115) |#1|) 63)) (-1511 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -3053 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3053 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3053 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3053 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1399 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1399 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1399 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -3338 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) (-1115)) (T -114)) +((-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1115)))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1115)))) (-1399 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1115)))) (-1399 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-1399 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-3053 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1115)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1115)) (-5 *1 (-114 *4)))) (-3053 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1115))))) +(-10 -7 (-15 -3053 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3053 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3053 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3053 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -1399 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -1399 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1399 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -3338 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) +((-2863 (((-112) $ $) NIL)) (-1724 (((-781) $) 91) (($ $ (-781)) 37)) (-3184 (((-112) $) 41)) (-2740 (($ $ (-1174) (-784)) 58) (($ $ (-516) (-784)) 33)) (-3829 (($ $ (-45 (-1174) (-784))) 16)) (-1588 (((-3 (-784) "failed") $ (-1174)) 27) (((-701 (-784)) $ (-516)) 32)) (-2805 (((-45 (-1174) (-784)) $) 15)) (-4151 (($ (-1192)) 20) (($ (-1192) (-781)) 23) (($ (-1192) (-55)) 24)) (-2597 (((-112) $) 39)) (-2530 (((-112) $) 43)) (-2041 (((-1192) $) 8)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-2454 (((-112) $ (-1192)) 11)) (-1462 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3939 (((-1135) $) NIL)) (-2769 (((-112) $ (-516)) 36)) (-2368 (($ $ (-1 (-112) $ $)) 45)) (-1413 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-3497 (($ $ (-1174)) 55) (($ $ (-516)) 56)) (-3156 (($ $) 77)) (-2639 (($ $ (-1 (-112) $ $)) 46)) (-2950 (((-872) $) 60)) (-4259 (((-112) $ $) NIL)) (-2122 (($ $ (-516)) 34)) (-2404 (((-55) $) 72)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 89)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 103))) +(((-115) (-13 (-860) (-845 (-1192)) (-10 -8 (-15 -2805 ((-45 (-1174) (-784)) $)) (-15 -3156 ($ $)) (-15 -4151 ($ (-1192))) (-15 -4151 ($ (-1192) (-781))) (-15 -4151 ($ (-1192) (-55))) (-15 -2597 ((-112) $)) (-15 -3184 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -1724 ((-781) $)) (-15 -1724 ($ $ (-781))) (-15 -2368 ($ $ (-1 (-112) $ $))) (-15 -2639 ($ $ (-1 (-112) $ $))) (-15 -1413 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1413 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1413 ($ $ (-1 (-872) (-872)))) (-15 -1462 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1462 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -2769 ((-112) $ (-516))) (-15 -2122 ($ $ (-516))) (-15 -3497 ($ $ (-1174))) (-15 -3497 ($ $ (-516))) (-15 -1588 ((-3 (-784) "failed") $ (-1174))) (-15 -1588 ((-701 (-784)) $ (-516))) (-15 -2740 ($ $ (-1174) (-784))) (-15 -2740 ($ $ (-516) (-784))) (-15 -3829 ($ $ (-45 (-1174) (-784))))))) (T -115)) +((-2805 (*1 *2 *1) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115)))) (-3156 (*1 *1 *1) (-5 *1 (-115))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-115)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2639 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1413 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1462 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-115)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-1588 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-784)) (-5 *1 (-115)))) (-1588 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-2740 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2740 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) +(-13 (-860) (-845 (-1192)) (-10 -8 (-15 -2805 ((-45 (-1174) (-784)) $)) (-15 -3156 ($ $)) (-15 -4151 ($ (-1192))) (-15 -4151 ($ (-1192) (-781))) (-15 -4151 ($ (-1192) (-55))) (-15 -2597 ((-112) $)) (-15 -3184 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -1724 ((-781) $)) (-15 -1724 ($ $ (-781))) (-15 -2368 ($ $ (-1 (-112) $ $))) (-15 -2639 ($ $ (-1 (-112) $ $))) (-15 -1413 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1413 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1413 ($ $ (-1 (-872) (-872)))) (-15 -1462 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1462 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -2769 ((-112) $ (-516))) (-15 -2122 ($ $ (-516))) (-15 -3497 ($ $ (-1174))) (-15 -3497 ($ $ (-516))) (-15 -1588 ((-3 (-784) "failed") $ (-1174))) (-15 -1588 ((-701 (-784)) $ (-516))) (-15 -2740 ($ $ (-1174) (-784))) (-15 -2740 ($ $ (-516) (-784))) (-15 -3829 ($ $ (-45 (-1174) (-784)))))) +((-2608 (((-574) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -2608 ((-574) |#2|))) (-13 (-372) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -116)) +((-2608 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1053 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -2608 ((-574) |#2|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-1446 (($ (-1188 (-574)) (-574)) NIL)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2353 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-3837 (((-781) $) NIL)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4154 (((-574)) NIL)) (-2880 (((-574) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2829 (((-1172 (-574)) $) NIL)) (-2073 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-879 |#1|) (-574)) (T -117)) +NIL +(-879 |#1|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1053 (-574))))) (-2216 (((-117 |#1|) $) NIL) (((-1192) $) NIL (|has| (-117 |#1|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1053 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1053 (-574))))) (-2957 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-117 |#1|))) (|:| |vec| (-1283 (-117 |#1|)))) (-699 $) (-1283 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-117 |#1|) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-117 |#1|) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1167)))) (-3081 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-2953 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1787 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-117 |#1|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-2787 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-117 |#1|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1192)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1192) (-117 |#1|)))) (($ $ (-1192) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1192) (-117 |#1|))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-117 |#1|) $) NIL)) (-1846 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1037))) (((-227) $) NIL (|has| (-117 |#1|) (-1037)))) (-4197 (((-176 (-417 (-574))) $) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1192)) NIL (|has| (-117 |#1|) (-1053 (-1192))))) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-922))) (|has| (-117 |#1|) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) NIL)) (-2366 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-117 |#1|) (-913 (-1192)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3102 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1007 (-117 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) (-574)) (T -118)) +((-3524 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1007 (-117 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) +((-3134 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2495 (((-654 $) $) 31)) (-2232 (((-112) $ $) 36)) (-3801 (((-112) |#2| $) 40)) (-3482 (((-654 |#2|) $) 25)) (-4086 (((-112) $) 18)) (-2209 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3325 (((-112) $) 57)) (-2950 (((-872) $) 47)) (-1355 (((-654 $) $) 32)) (-2985 (((-112) $ $) 38)) (-2876 (((-781) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3134 (|#1| |#1| "right" |#1|)) (-15 -3134 (|#1| |#1| "left" |#1|)) (-15 -2209 (|#1| |#1| "right")) (-15 -2209 (|#1| |#1| "left")) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2232 ((-112) |#1| |#1|)) (-15 -3482 ((-654 |#2|) |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#2| |#1|)) (-15 -2876 ((-781) |#1|))) (-120 |#2|) (-1233)) (T -119)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -3134 (|#1| |#1| "right" |#1|)) (-15 -3134 (|#1| |#1| "left" |#1|)) (-15 -2209 (|#1| |#1| "right")) (-15 -2209 (|#1| |#1| "left")) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2232 ((-112) |#1| |#1|)) (-15 -3482 ((-654 |#2|) |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3801 ((-112) |#2| |#1|)) (-15 -2876 ((-781) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-2826 (($ $ $) 53 (|has| $ (-6 -4459)))) (-4399 (($ $ $) 55 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) (($ $ "left" $) 56 (|has| $ (-6 -4459))) (($ $ "right" $) 54 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-3877 (($ $) 58)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-3864 (($ $) 60)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1418 (((-574) $ $) 45)) (-3325 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-120 |#1|) (-141) (-1233)) (T -120)) +((-3864 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3877 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-4399 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) (-4 *3 (-1233)))) (-2826 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -3864 ($ $)) (-15 -2209 ($ $ "left")) (-15 -3877 ($ $)) (-15 -2209 ($ $ "right")) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3134 ($ $ "left" $)) (-15 -4399 ($ $ $)) (-15 -3134 ($ $ "right" $)) (-15 -2826 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-1347 (((-112) |#1|) 29)) (-2763 (((-781) (-781)) 28) (((-781)) 27)) (-2598 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -2598 ((-112) |#1|)) (-15 -2598 ((-112) |#1| (-112))) (-15 -2763 ((-781))) (-15 -2763 ((-781) (-781))) (-15 -1347 ((-112) |#1|))) (-1259 (-574))) (T -121)) +((-1347 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-2763 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-2598 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) +(-10 -7 (-15 -2598 ((-112) |#1|)) (-15 -2598 ((-112) |#1| (-112))) (-15 -2763 ((-781))) (-15 -2763 ((-781) (-781))) (-15 -1347 ((-112) |#1|))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 18)) (-4369 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-2826 (($ $ $) 21 (|has| $ (-6 -4459)))) (-4399 (($ $ $) 23 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-3877 (($ $) 20)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1592 (($ $ |#1| $) 27)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3864 (($ $) 22)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-4408 (($ |#1| $) 28)) (-1948 (($ |#1| $) 15)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2094 (($ (-654 |#1|)) 16)) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -2094 ($ (-654 |#1|))) (-15 -1948 ($ |#1| $)) (-15 -4408 ($ |#1| $)) (-15 -4369 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122)) +((-2094 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-4369 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -2094 ($ (-654 |#1|))) (-15 -1948 ($ |#1| $)) (-15 -4408 ($ |#1| $)) (-15 -4369 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2889 (($ $) 13)) (-2086 (($ $) 11)) (-2408 (($ $ $) 23)) (-4184 (($ $ $) 21)) (-2933 (($ $ $) 19)) (-2921 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -2408 (|#1| |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2921 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -2408 (|#1| |#1| |#1|)) (-15 -4184 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -2921 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-2889 (($ $) 103)) (-2119 (($ $ $) 28)) (-2057 (((-1288) $ (-574) (-574)) 66 (|has| $ (-6 -4459)))) (-4251 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2212 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4459)))) (-2785 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1750 (((-112) $ (-781)) 37)) (-3134 (((-112) $ (-1250 (-574)) (-112)) 88 (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4458)))) (-3063 (($) 38 T CONST)) (-3680 (($ $) 100 (|has| $ (-6 -4459)))) (-4424 (($ $) 90)) (-2818 (($ $) 68 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4458))) (($ (-112) $) 69 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-2473 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) 55)) (-1451 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1115))) (((-574) (-112) $) 94 (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) 93)) (-1874 (((-654 (-112)) $) 45 (|has| $ (-6 -4458)))) (-2108 (($ $ $) 108)) (-2086 (($ $) 106)) (-2408 (($ $ $) 29)) (-3763 (($ (-781) (-112)) 78)) (-4184 (($ $ $) 30)) (-2121 (((-112) $ (-781)) 36)) (-2344 (((-574) $) 63 (|has| (-574) (-860)))) (-3632 (($ $ $) 14)) (-4333 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-4187 (((-654 (-112)) $) 46 (|has| $ (-6 -4458)))) (-3801 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 62 (|has| (-574) (-860)))) (-2953 (($ $ $) 15)) (-2464 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2713 (((-112) $ (-781)) 35)) (-1938 (((-1174) $) 10)) (-1604 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-2435 (((-654 (-574)) $) 60)) (-4088 (((-112) (-574) $) 59)) (-3939 (((-1135) $) 11)) (-2924 (((-112) $) 64 (|has| (-574) (-860)))) (-1745 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2485 (($ $ (-112)) 65 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-3968 (((-112) $ $) 31)) (-3961 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3670 (((-654 (-112)) $) 58)) (-2234 (((-112) $) 34)) (-4272 (($) 33)) (-2209 (($ $ (-1250 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2854 (($ $ (-1250 (-574))) 85) (($ $ (-574)) 84)) (-3948 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4458)))) (-3957 (($ $ $ (-574)) 99 (|has| $ (-6 -4459)))) (-3156 (($ $) 32)) (-1846 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) 76)) (-4131 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2235 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4458)))) (-2097 (($ $ $) 107)) (-2933 (($ $ $) 105)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-2921 (($ $ $) 104)) (-2876 (((-781) $) 39 (|has| $ (-6 -4458))))) (((-124) (-141)) (T -124)) -((-1419 (*1 *1 *1 *1) (-4 *1 (-124))) (-3695 (*1 *1 *1 *1) (-4 *1 (-124))) (-2108 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-859) (-113) (-670) (-19 (-112)) (-10 -8 (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -2108 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-622 (-871)) . T) ((-152 #0=(-112)) . T) ((-623 (-545)) |has| (-112) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))) ((-660 #0#) . T) ((-670) . T) ((-19 #0#) . T) ((-859) . T) ((-1112) . T) ((-1230) . T)) -((-2446 (($ (-1 |#2| |#2|) $) 22)) (-3166 (($ $) 16)) (-2862 (((-780) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3166 (|#1| |#1|))) (-126 |#2|) (-1112)) (T -125)) -NIL -(-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3166 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 55 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) (($ $ "left" $) 56 (|has| $ (-6 -4456))) (($ $ "right" $) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-3903 (($ $) 58)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 61)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3890 (($ $) 60)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-126 |#1|) (-141) (-1112)) (T -126)) -((-1581 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1112))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -1581 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-120 |#1|) . T) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 18)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 22 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 23 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 21 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 24)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ |#1| $) 15)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 20)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2893 (($ (-653 |#1|)) 16)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-15 -2893 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)))) (-859)) (T -127)) -((-2893 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-127 *3)))) (-3181 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-859))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-15 -2893 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 30)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 32 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 36 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 34 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 23)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 16)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 22)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 25)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 20)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2366 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 10 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -2366 ($ $ |#1| $)))) (-1112)) (T -128)) -((-2366 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112)))) (-2366 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112))))) -(-13 (-126 |#1|) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -2366 ($ $ |#1| $)))) -((-2848 (((-112) $ $) NIL (|has| (-130) (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-859)))) (-2748 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-859))))) (-2770 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-130) $ (-573) (-130)) 26 (|has| $ (-6 -4456))) (((-130) $ (-1247 (-573)) (-130)) NIL (|has| $ (-6 -4456)))) (-3293 (((-780) $ (-780)) 34)) (-2164 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3334 (($ (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4455))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-130) $ (-573) (-130)) 25 (|has| $ (-6 -4456)))) (-2384 (((-130) $ (-573)) 20)) (-1440 (((-573) (-1 (-112) (-130)) $) NIL) (((-573) (-130) $) NIL (|has| (-130) (-1112))) (((-573) (-130) $ (-573)) NIL (|has| (-130) (-1112)))) (-1863 (((-653 (-130)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-130)) 14)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 27 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-130) (-859)))) (-1480 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-859)))) (-3214 (((-653 (-130)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3470 (((-573) $) 30 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-130) (-859)))) (-2446 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| (-130) (-1112)))) (-1593 (($ (-130) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| (-130) (-1112)))) (-2914 (((-130) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-3112 (($ $ (-130)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-130)))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-301 (-130))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-653 (-130)) (-653 (-130))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-1535 (((-653 (-130)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 12)) (-2198 (((-130) $ (-573) (-130)) NIL) (((-130) $ (-573)) 23) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455))) (((-780) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-130) (-623 (-545))))) (-2955 (($ (-653 (-130))) 46)) (-4156 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-653 $)) NIL)) (-2942 (((-968 (-130)) $) 35) (((-1171) $) 43) (((-871) $) NIL (|has| (-130) (-622 (-871))))) (-2393 (((-780) $) 18)) (-2788 (($ (-780)) 8)) (-3507 (((-112) $ $) NIL (|has| (-130) (-1112)))) (-1646 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-130) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-130) (-859)))) (-2981 (((-112) $ $) 32 (|has| (-130) (-1112)))) (-3027 (((-112) $ $) NIL (|has| (-130) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-130) (-859)))) (-2862 (((-780) $) 15 (|has| $ (-6 -4455))))) -(((-129) (-13 (-19 (-130)) (-622 (-968 (-130))) (-622 (-1171)) (-10 -8 (-15 -2788 ($ (-780))) (-15 -2393 ((-780) $)) (-15 -3293 ((-780) $ (-780))) (-6 -4455)))) (T -129)) -((-2788 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-129)))) (-3293 (*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-622 (-968 (-130))) (-622 (-1171)) (-10 -8 (-15 -2788 ($ (-780))) (-15 -2393 ((-780) $)) (-15 -3293 ((-780) $ (-780))) (-6 -4455))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 26)) (-2579 (($) NIL T CONST)) (-2819 (($) 35)) (-3659 (($ $ $) NIL) (($) 24 T CONST)) (-3751 (($ $ $) NIL) (($) 25 T CONST)) (-3589 (((-931) $) 33)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 31)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3001 (($ (-780)) 8)) (-1752 (($ $ $) 37)) (-1741 (($ $ $) 36)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) 22)) (-3015 (((-112) $ $) 20)) (-2981 (((-112) $ $) 18)) (-3027 (((-112) $ $) 21)) (-3005 (((-112) $ $) 19))) -(((-130) (-13 (-853) (-499 (-145)) (-10 -8 (-15 -3001 ($ (-780))) (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -130)) -((-3001 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-130)))) (-1741 (*1 *1 *1 *1) (-5 *1 (-130))) (-1752 (*1 *1 *1 *1) (-5 *1 (-130))) (-2579 (*1 *1) (-5 *1 (-130)))) -(-13 (-853) (-499 (-145)) (-10 -8 (-15 -3001 ($ (-780))) (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-4184 (*1 *1 *1 *1) (-4 *1 (-124))) (-2408 (*1 *1 *1 *1) (-4 *1 (-124))) (-2119 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -4184 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -2119 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1115) . T) ((-1233) . T)) +((-2464 (($ (-1 |#2| |#2|) $) 22)) (-3156 (($ $) 16)) (-2876 (((-781) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -3156 (|#1| |#1|))) (-126 |#2|) (-1115)) (T -125)) +NIL +(-10 -8 (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -3156 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-2826 (($ $ $) 53 (|has| $ (-6 -4459)))) (-4399 (($ $ $) 55 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) (($ $ "left" $) 56 (|has| $ (-6 -4459))) (($ $ "right" $) 54 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-3877 (($ $) 58)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-1592 (($ $ |#1| $) 61)) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-3864 (($ $) 60)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1418 (((-574) $ $) 45)) (-3325 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-126 |#1|) (-141) (-1115)) (T -126)) +((-1592 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1115))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1592 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-120 |#1|) . T) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 18)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) 22 (|has| $ (-6 -4459)))) (-2826 (($ $ $) 23 (|has| $ (-6 -4459)))) (-4399 (($ $ $) 21 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-3877 (($ $) 24)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1592 (($ $ |#1| $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3864 (($ $) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1948 (($ |#1| $) 15)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 20)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3024 (($ (-654 |#1|)) 16)) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-15 -3024 ($ (-654 |#1|))) (-15 -1948 ($ |#1| $)))) (-860)) (T -127)) +((-3024 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-15 -3024 ($ (-654 |#1|))) (-15 -1948 ($ |#1| $)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 30)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) 32 (|has| $ (-6 -4459)))) (-2826 (($ $ $) 36 (|has| $ (-6 -4459)))) (-4399 (($ $ $) 34 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-3877 (($ $) 23)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1592 (($ $ |#1| $) 16)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3864 (($ $) 22)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) 25)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 20)) (-4272 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2909 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 10 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2909 ($ |#1|)) (-15 -2909 ($ $ |#1| $)))) (-1115)) (T -128)) +((-2909 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115)))) (-2909 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115))))) +(-13 (-126 |#1|) (-10 -8 (-15 -2909 ($ |#1|)) (-15 -2909 ($ $ |#1| $)))) +((-2863 (((-112) $ $) NIL (|has| (-130) (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-2212 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-860))))) (-2785 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4459))) (((-130) $ (-1250 (-574)) (-130)) NIL (|has| $ (-6 -4459)))) (-3800 (((-781) $ (-781)) 34)) (-2175 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-3310 (($ (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4458))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2473 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4459)))) (-2399 (((-130) $ (-574)) 20)) (-1451 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1115))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1115)))) (-1874 (((-654 (-130)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-130)) 14)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 27 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-130) (-860)))) (-4333 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-4187 (((-654 (-130)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-1965 (((-574) $) 30 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-130) (-860)))) (-2464 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| (-130) (-1115)))) (-1604 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| (-130) (-1115)))) (-2924 (((-130) $) NIL (|has| (-574) (-860)))) (-1745 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2485 (($ $ (-130)) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-3670 (((-654 (-130)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 12)) (-2209 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1250 (-574))) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-130) (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2962 (($ (-654 (-130))) 46)) (-4131 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2950 (((-971 (-130)) $) 35) (((-1174) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-1886 (((-781) $) 18)) (-1421 (($ (-781)) 8)) (-4259 (((-112) $ $) NIL (|has| (-130) (-1115)))) (-2235 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2985 (((-112) $ $) 32 (|has| (-130) (-1115)))) (-3029 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2876 (((-781) $) 15 (|has| $ (-6 -4458))))) +(((-129) (-13 (-19 (-130)) (-623 (-971 (-130))) (-623 (-1174)) (-10 -8 (-15 -1421 ($ (-781))) (-15 -1886 ((-781) $)) (-15 -3800 ((-781) $ (-781))) (-6 -4458)))) (T -129)) +((-1421 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-3800 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-623 (-971 (-130))) (-623 (-1174)) (-10 -8 (-15 -1421 ($ (-781))) (-15 -1886 ((-781) $)) (-15 -3800 ((-781) $ (-781))) (-6 -4458))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) 26)) (-3063 (($) NIL T CONST)) (-2834 (($) 35)) (-3632 (($ $ $) NIL) (($) 24 T CONST)) (-2953 (($ $ $) NIL) (($) 25 T CONST)) (-3880 (((-934) $) 33)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) 31)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3004 (($ (-781)) 8)) (-1764 (($ $ $) 37)) (-1753 (($ $ $) 36)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) 22)) (-3017 (((-112) $ $) 20)) (-2985 (((-112) $ $) 18)) (-3029 (((-112) $ $) 21)) (-3008 (((-112) $ $) 19))) +(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3004 ($ (-781))) (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716)))) (T -130)) +((-3004 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1753 (*1 *1 *1 *1) (-5 *1 (-130))) (-1764 (*1 *1 *1 *1) (-5 *1 (-130))) (-3063 (*1 *1) (-5 *1 (-130)))) +(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3004 ($ (-781))) (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-2848 (((-112) $ $) NIL)) (-2680 (($) 6 T CONST)) (-2634 (($) 7 T CONST)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 14)) (-2803 (($) 8 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) -(((-131) (-13 (-1112) (-10 -8 (-15 -2634 ($) -1705) (-15 -2803 ($) -1705) (-15 -2680 ($) -1705)))) (T -131)) -((-2634 (*1 *1) (-5 *1 (-131))) (-2803 (*1 *1) (-5 *1 (-131))) (-2680 (*1 *1) (-5 *1 (-131)))) -(-13 (-1112) (-10 -8 (-15 -2634 ($) -1705) (-15 -2803 ($) -1705) (-15 -2680 ($) -1705))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) +((-2863 (((-112) $ $) NIL)) (-2775 (($) 6 T CONST)) (-3570 (($) 7 T CONST)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 14)) (-1543 (($) 8 T CONST)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 10))) +(((-131) (-13 (-1115) (-10 -8 (-15 -3570 ($) -1716) (-15 -1543 ($) -1716) (-15 -2775 ($) -1716)))) (T -131)) +((-3570 (*1 *1) (-5 *1 (-131))) (-1543 (*1 *1) (-5 *1 (-131))) (-2775 (*1 *1) (-5 *1 (-131)))) +(-13 (-1115) (-10 -8 (-15 -3570 ($) -1716) (-15 -1543 ($) -1716) (-15 -2775 ($) -1716))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) (((-132) (-141)) (T -132)) -((-2983 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -2983 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-4239 (((-1285) $ (-780)) 14)) (-1440 (((-780) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +((-2599 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2599 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-4081 (((-1288) $ (-781)) 14)) (-1451 (((-781) $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) (((-133) (-141)) (T -133)) -((-1440 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-780)))) (-4239 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-780)) (-5 *2 (-1285))))) -(-13 (-1112) (-10 -8 (-15 -1440 ((-780) $)) (-15 -4239 ((-1285) $ (-780))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-134) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $))))) (T -134)) -((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-134))))) -(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)))) -((-2848 (((-112) $ $) 49)) (-1748 (((-112) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-780) "failed") $) 58)) (-2205 (((-780) $) 56)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) 37)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4352 (((-112)) 59)) (-3364 (((-112) (-112)) 61)) (-3854 (((-112) $) 30)) (-3595 (((-112) $) 55)) (-2942 (((-871) $) 28) (($ (-780)) 20)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 18 T CONST)) (-2144 (($) 19 T CONST)) (-1982 (($ (-780)) 21)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) 40)) (-2981 (((-112) $ $) 32)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 35)) (-3093 (((-3 $ "failed") $ $) 42)) (-3077 (($ $ $) 38)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL) (($ $ $) 54)) (* (($ (-780) $) 48) (($ (-931) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-859) (-23) (-735) (-1050 (-780)) (-10 -8 (-6 (-4457 "*")) (-15 -3093 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1982 ($ (-780))) (-15 -3854 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -4352 ((-112))) (-15 -3364 ((-112) (-112)))))) (T -135)) -((-3093 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1982 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-135)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4352 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-859) (-23) (-735) (-1050 (-780)) (-10 -8 (-6 (-4457 "*")) (-15 -3093 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1982 ($ (-780))) (-15 -3854 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -4352 ((-112))) (-15 -3364 ((-112) (-112))))) -((-1338 (((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1776 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1338 ((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-573) (-780) (-174) (-174)) (T -136)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -1338 ((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-2848 (((-112) $ $) NIL)) (-2659 (($ (-653 |#3|)) 61)) (-1724 (($ $) 123) (($ $ (-573) (-573)) 122)) (-2579 (($) 20)) (-1695 (((-3 |#3| "failed") $) 83)) (-2205 ((|#3| $) NIL)) (-2175 (($ $ (-653 (-573))) 124)) (-1324 (((-653 |#3|) $) 56)) (-3583 (((-780) $) 66)) (-3044 (($ $ $) 117)) (-2489 (($) 65)) (-3180 (((-1171) $) NIL)) (-2783 (($) 19)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ (-573)) 69) ((|#3| $) 68) ((|#3| $ (-573) (-573)) 70) ((|#3| $ (-573) (-573) (-573)) 71) ((|#3| $ (-573) (-573) (-573) (-573)) 72) ((|#3| $ (-653 (-573))) 73)) (-2565 (((-780) $) 67)) (-1651 (($ $ (-573) $ (-573)) 118) (($ $ (-573) (-573)) 120)) (-2942 (((-871) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1154 |#2| |#3|)) 102) (($ (-653 |#3|)) 74) (($ (-653 $)) 80)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 93 T CONST)) (-2144 (($) 94 T CONST)) (-2981 (((-112) $ $) 104)) (-3093 (($ $) 110) (($ $ $) 108)) (-3077 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-573)) 113) (($ (-573) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-474 |#3| (-780)) (-479 (-573) (-780)) (-293 (-573) |#3|) (-10 -8 (-15 -2942 ($ (-245 |#2| |#3|))) (-15 -2942 ($ (-1154 |#2| |#3|))) (-15 -2942 ($ (-653 |#3|))) (-15 -2942 ($ (-653 $))) (-15 -3583 ((-780) $)) (-15 -2198 (|#3| $)) (-15 -2198 (|#3| $ (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-653 (-573)))) (-15 -3044 ($ $ $)) (-15 * ($ $ $)) (-15 -1651 ($ $ (-573) $ (-573))) (-15 -1651 ($ $ (-573) (-573))) (-15 -1724 ($ $)) (-15 -1724 ($ $ (-573) (-573))) (-15 -2175 ($ $ (-653 (-573)))) (-15 -2783 ($)) (-15 -2489 ($)) (-15 -1324 ((-653 |#3|) $)) (-15 -2659 ($ (-653 |#3|))) (-15 -2579 ($)))) (-573) (-780) (-174)) (T -137)) -((-3044 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 *2) (-4 *5 (-174)))) (-2198 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-573))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-573)) (-14 *5 (-780)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1651 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-1651 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1724 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2783 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-2489 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-653 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2579 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174))))) -(-13 (-474 |#3| (-780)) (-479 (-573) (-780)) (-293 (-573) |#3|) (-10 -8 (-15 -2942 ($ (-245 |#2| |#3|))) (-15 -2942 ($ (-1154 |#2| |#3|))) (-15 -2942 ($ (-653 |#3|))) (-15 -2942 ($ (-653 $))) (-15 -3583 ((-780) $)) (-15 -2198 (|#3| $)) (-15 -2198 (|#3| $ (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-653 (-573)))) (-15 -3044 ($ $ $)) (-15 * ($ $ $)) (-15 -1651 ($ $ (-573) $ (-573))) (-15 -1651 ($ $ (-573) (-573))) (-15 -1724 ($ $)) (-15 -1724 ($ $ (-573) (-573))) (-15 -2175 ($ $ (-653 (-573)))) (-15 -2783 ($)) (-15 -2489 ($)) (-15 -1324 ((-653 |#3|) $)) (-15 -2659 ($ (-653 |#3|))) (-15 -2579 ($)))) -((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-138) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -138)) -((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138))))) -(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-139) (-13 (-1095) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2043 ((-653 (-1147)) $))))) (T -139)) -((-4281 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-139))))) -(-13 (-1095) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2043 ((-653 (-1147)) $)))) -((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL) (((-189) $) 6)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-140) (-13 (-187) (-622 (-189)))) (T -140)) -NIL -(-13 (-187) (-622 (-189))) -((-1491 (((-653 (-185 (-140))) $) 13)) (-1315 (((-653 (-185 (-140))) $) 14)) (-1335 (((-653 (-847)) $) 10)) (-1963 (((-140) $) 7)) (-2942 (((-871) $) 16))) -(((-141) (-13 (-622 (-871)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -1335 ((-653 (-847)) $)) (-15 -1491 ((-653 (-185 (-140))) $)) (-15 -1315 ((-653 (-185 (-140))) $))))) (T -141)) -((-1963 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-653 (-847))) (-5 *1 (-141)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-622 (-871)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -1335 ((-653 (-847)) $)) (-15 -1491 ((-653 (-185 (-140))) $)) (-15 -1315 ((-653 (-185 (-140))) $)))) -((-2848 (((-112) $ $) NIL)) (-2391 (($) 17 T CONST)) (-4393 (($) NIL (|has| (-145) (-376)))) (-4357 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2180 (($ $ $) NIL)) (-3319 (((-112) $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| (-145) (-376)))) (-1506 (($) NIL) (($ (-653 (-145))) NIL)) (-3557 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2596 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (($ (-145) $) 60 (|has| $ (-6 -4455)))) (-3334 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2819 (($) NIL (|has| (-145) (-376)))) (-1863 (((-653 (-145)) $) 69 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3659 (((-145) $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3751 (((-145) $) NIL (|has| (-145) (-859)))) (-2446 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 64)) (-3878 (($) 18 T CONST)) (-3589 (((-931) $) NIL (|has| (-145) (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 30)) (-2487 (((-145) $) 61)) (-3181 (($ (-145) $) 59)) (-2575 (($ (-931)) NIL (|has| (-145) (-376)))) (-2337 (($) 16 T CONST)) (-3965 (((-1132) $) NIL)) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3815 (((-145) $) 62)) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 57)) (-2135 (($) 15 T CONST)) (-3631 (($ $ $) 32) (($ $ (-145)) NIL)) (-2428 (($ (-653 (-145))) NIL) (($) NIL)) (-3974 (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-1171) $) 37) (((-545) $) NIL (|has| (-145) (-623 (-545)))) (((-653 (-145)) $) 35)) (-2955 (($ (-653 (-145))) NIL)) (-3255 (($ $) 33 (|has| (-145) (-376)))) (-2942 (((-871) $) 53)) (-2653 (($ (-1171)) 14) (($ (-653 (-145))) 50)) (-3553 (((-780) $) NIL)) (-4280 (($) 58) (($ (-653 (-145))) NIL)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 (-145))) NIL)) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2039 (($) 21 T CONST)) (-1502 (($) 20 T CONST)) (-2981 (((-112) $ $) 24)) (-2862 (((-780) $) 56 (|has| $ (-6 -4455))))) -(((-142) (-13 (-1112) (-623 (-1171)) (-434 (-145)) (-623 (-653 (-145))) (-10 -8 (-15 -2653 ($ (-1171))) (-15 -2653 ($ (-653 (-145)))) (-15 -2135 ($) -1705) (-15 -2337 ($) -1705) (-15 -2391 ($) -1705) (-15 -3878 ($) -1705) (-15 -1502 ($) -1705) (-15 -2039 ($) -1705)))) (T -142)) -((-2653 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-142)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-653 (-145))) (-5 *1 (-142)))) (-2135 (*1 *1) (-5 *1 (-142))) (-2337 (*1 *1) (-5 *1 (-142))) (-2391 (*1 *1) (-5 *1 (-142))) (-3878 (*1 *1) (-5 *1 (-142))) (-1502 (*1 *1) (-5 *1 (-142))) (-2039 (*1 *1) (-5 *1 (-142)))) -(-13 (-1112) (-623 (-1171)) (-434 (-145)) (-623 (-653 (-145))) (-10 -8 (-15 -2653 ($ (-1171))) (-15 -2653 ($ (-653 (-145)))) (-15 -2135 ($) -1705) (-15 -2337 ($) -1705) (-15 -2391 ($) -1705) (-15 -3878 ($) -1705) (-15 -1502 ($) -1705) (-15 -2039 ($) -1705))) -((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3343 ((|#1| |#3|) 9)) (-1946 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-565) (-1004 |#1|) (-381 |#2|)) (T -143)) -((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-381 *5)))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-381 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-381 *4))))) -(-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2637 (($ $ $) 8)) (-4264 (($ $) 7)) (-1677 (($ $ $) 6))) +((-1451 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-4081 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1288))))) +(-13 (-1115) (-10 -8 (-15 -1451 ((-781) $)) (-15 -4081 ((-1288) $ (-781))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-654 (-1150)) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-134) (-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $))))) (T -134)) +((-2053 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-134))))) +(-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $)))) +((-2863 (((-112) $ $) 49)) (-1997 (((-112) $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-781) "failed") $) 58)) (-2216 (((-781) $) 56)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) 37)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2689 (((-112)) 59)) (-3339 (((-112) (-112)) 61)) (-1460 (((-112) $) 30)) (-3919 (((-112) $) 55)) (-2950 (((-872) $) 28) (($ (-781)) 20)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 18 T CONST)) (-2155 (($) 19 T CONST)) (-2484 (($ (-781)) 21)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) 40)) (-2985 (((-112) $ $) 32)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 35)) (-3089 (((-3 $ "failed") $ $) 42)) (-3073 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-934) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-860) (-23) (-736) (-1053 (-781)) (-10 -8 (-6 (-4460 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2484 ($ (-781))) (-15 -1460 ((-112) $)) (-15 -3919 ((-112) $)) (-15 -2689 ((-112))) (-15 -3339 ((-112) (-112)))))) (T -135)) +((-3089 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2689 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-860) (-23) (-736) (-1053 (-781)) (-10 -8 (-6 (-4460 "*")) (-15 -3089 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2484 ($ (-781))) (-15 -1460 ((-112) $)) (-15 -3919 ((-112) $)) (-15 -2689 ((-112))) (-15 -3339 ((-112) (-112))))) +((-1343 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1787 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1343 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1787 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -1343 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1787 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-2863 (((-112) $ $) NIL)) (-2556 (($ (-654 |#3|)) 61)) (-1772 (($ $) 123) (($ $ (-574) (-574)) 122)) (-3063 (($) 20)) (-1706 (((-3 |#3| "failed") $) 83)) (-2216 ((|#3| $) NIL)) (-3671 (($ $ (-654 (-574))) 124)) (-1328 (((-654 |#3|) $) 56)) (-3557 (((-781) $) 66)) (-3112 (($ $ $) 117)) (-1519 (($) 65)) (-1938 (((-1174) $) NIL)) (-1375 (($) 19)) (-3939 (((-1135) $) NIL)) (-2209 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-4144 (((-781) $) 67)) (-2288 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2950 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1157 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 93 T CONST)) (-2155 (($) 94 T CONST)) (-2985 (((-112) $ $) 104)) (-3089 (($ $) 110) (($ $ $) 108)) (-3073 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2950 ($ (-246 |#2| |#3|))) (-15 -2950 ($ (-1157 |#2| |#3|))) (-15 -2950 ($ (-654 |#3|))) (-15 -2950 ($ (-654 $))) (-15 -3557 ((-781) $)) (-15 -2209 (|#3| $)) (-15 -2209 (|#3| $ (-574) (-574))) (-15 -2209 (|#3| $ (-574) (-574) (-574))) (-15 -2209 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2209 (|#3| $ (-654 (-574)))) (-15 -3112 ($ $ $)) (-15 * ($ $ $)) (-15 -2288 ($ $ (-574) $ (-574))) (-15 -2288 ($ $ (-574) (-574))) (-15 -1772 ($ $)) (-15 -1772 ($ $ (-574) (-574))) (-15 -3671 ($ $ (-654 (-574)))) (-15 -1375 ($)) (-15 -1519 ($)) (-15 -1328 ((-654 |#3|) $)) (-15 -2556 ($ (-654 |#3|))) (-15 -3063 ($)))) (-574) (-781) (-174)) (T -137)) +((-3112 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2209 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2209 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2288 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2288 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1772 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-3671 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-1375 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1519 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-3063 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174))))) +(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2950 ($ (-246 |#2| |#3|))) (-15 -2950 ($ (-1157 |#2| |#3|))) (-15 -2950 ($ (-654 |#3|))) (-15 -2950 ($ (-654 $))) (-15 -3557 ((-781) $)) (-15 -2209 (|#3| $)) (-15 -2209 (|#3| $ (-574) (-574))) (-15 -2209 (|#3| $ (-574) (-574) (-574))) (-15 -2209 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2209 (|#3| $ (-654 (-574)))) (-15 -3112 ($ $ $)) (-15 * ($ $ $)) (-15 -2288 ($ $ (-574) $ (-574))) (-15 -2288 ($ $ (-574) (-574))) (-15 -1772 ($ $)) (-15 -1772 ($ $ (-574) (-574))) (-15 -3671 ($ $ (-654 (-574)))) (-15 -1375 ($)) (-15 -1519 ($)) (-15 -1328 ((-654 |#3|) $)) (-15 -2556 ($ (-654 |#3|))) (-15 -3063 ($)))) +((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1806 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-138) (-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -138)) +((-1806 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138))))) +(-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-4269 (((-188) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-654 (-1150)) $) 13)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-139) (-13 (-1098) (-10 -8 (-15 -4269 ((-188) $)) (-15 -2053 ((-654 (-1150)) $))))) (T -139)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-139))))) +(-13 (-1098) (-10 -8 (-15 -4269 ((-188) $)) (-15 -2053 ((-654 (-1150)) $)))) +((-2863 (((-112) $ $) NIL)) (-1725 (((-654 (-875)) $) NIL)) (-2041 (((-516) $) NIL)) (-1938 (((-1174) $) NIL)) (-4269 (((-188) $) NIL)) (-2454 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-2431 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL) (((-189) $) 6)) (-4259 (((-112) $ $) NIL)) (-2404 (((-55) $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-140) (-13 (-187) (-623 (-189)))) (T -140)) +NIL +(-13 (-187) (-623 (-189))) +((-4431 (((-654 (-185 (-140))) $) 13)) (-1319 (((-654 (-185 (-140))) $) 14)) (-1653 (((-654 (-848)) $) 10)) (-1974 (((-140) $) 7)) (-2950 (((-872) $) 16))) +(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1974 ((-140) $)) (-15 -1653 ((-654 (-848)) $)) (-15 -4431 ((-654 (-185 (-140))) $)) (-15 -1319 ((-654 (-185 (-140))) $))))) (T -141)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1974 ((-140) $)) (-15 -1653 ((-654 (-848)) $)) (-15 -4431 ((-654 (-185 (-140))) $)) (-15 -1319 ((-654 (-185 (-140))) $)))) +((-2863 (((-112) $ $) NIL)) (-1877 (($) 17 T CONST)) (-1873 (($) NIL (|has| (-145) (-377)))) (-4353 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3728 (($ $ $) NIL)) (-4065 (((-112) $ $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| (-145) (-377)))) (-1517 (($) NIL) (($ (-654 (-145))) NIL)) (-1657 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3245 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (($ (-145) $) 60 (|has| $ (-6 -4458)))) (-3310 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2834 (($) NIL (|has| (-145) (-377)))) (-1874 (((-654 (-145)) $) 69 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-3632 (((-145) $) NIL (|has| (-145) (-860)))) (-4187 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-2953 (((-145) $) NIL (|has| (-145) (-860)))) (-2464 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-145) (-145)) $) 64)) (-1681 (($) 18 T CONST)) (-3880 (((-934) $) NIL (|has| (-145) (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-2627 (($ $ $) 30)) (-1494 (((-145) $) 61)) (-1948 (($ (-145) $) 59)) (-2590 (($ (-934)) NIL (|has| (-145) (-377)))) (-2619 (($) 16 T CONST)) (-3939 (((-1135) $) NIL)) (-1745 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2277 (((-145) $) 62)) (-4043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 57)) (-1419 (($) 15 T CONST)) (-3062 (($ $ $) 32) (($ $ (-145)) NIL)) (-2163 (($ (-654 (-145))) NIL) (($) NIL)) (-3948 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-1174) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2962 (($ (-654 (-145))) NIL)) (-1488 (($ $) 33 (|has| (-145) (-377)))) (-2950 (((-872) $) 53)) (-2486 (($ (-1174)) 14) (($ (-654 (-145))) 50)) (-1617 (((-781) $) NIL)) (-4268 (($) 58) (($ (-654 (-145))) NIL)) (-4259 (((-112) $ $) NIL)) (-2765 (($ (-654 (-145))) NIL)) (-2235 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-1776 (($) 21 T CONST)) (-1427 (($) 20 T CONST)) (-2985 (((-112) $ $) 24)) (-2876 (((-781) $) 56 (|has| $ (-6 -4458))))) +(((-142) (-13 (-1115) (-624 (-1174)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -2486 ($ (-1174))) (-15 -2486 ($ (-654 (-145)))) (-15 -1419 ($) -1716) (-15 -2619 ($) -1716) (-15 -1877 ($) -1716) (-15 -1681 ($) -1716) (-15 -1427 ($) -1716) (-15 -1776 ($) -1716)))) (T -142)) +((-2486 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-142)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-1419 (*1 *1) (-5 *1 (-142))) (-2619 (*1 *1) (-5 *1 (-142))) (-1877 (*1 *1) (-5 *1 (-142))) (-1681 (*1 *1) (-5 *1 (-142))) (-1427 (*1 *1) (-5 *1 (-142))) (-1776 (*1 *1) (-5 *1 (-142)))) +(-13 (-1115) (-624 (-1174)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -2486 ($ (-1174))) (-15 -2486 ($ (-654 (-145)))) (-15 -1419 ($) -1716) (-15 -2619 ($) -1716) (-15 -1877 ($) -1716) (-15 -1681 ($) -1716) (-15 -1427 ($) -1716) (-15 -1776 ($) -1716))) +((-1809 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3128 ((|#1| |#3|) 9)) (-3417 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3128 (|#1| |#3|)) (-15 -3417 (|#3| |#3|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1007 |#1|) (-382 |#2|)) (T -143)) +((-1809 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-3417 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4))))) +(-10 -7 (-15 -3128 (|#1| |#3|)) (-15 -3417 (|#3| |#3|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2325 (($ $ $) 8)) (-3125 (($ $) 7)) (-2561 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-2637 (*1 *1 *1 *1) (-4 *1 (-144))) (-4264 (*1 *1 *1) (-4 *1 (-144))) (-1677 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1677 ($ $ $)) (-15 -4264 ($ $)) (-15 -2637 ($ $ $)))) -((-2848 (((-112) $ $) NIL)) (-3509 (((-112) $) 39)) (-2391 (($ $) 55)) (-3614 (($) 26 T CONST)) (-1486 (((-780)) 13)) (-2819 (($) 25)) (-1889 (($) 27 T CONST)) (-2126 (((-780) $) 21)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3556 (((-112) $) 41)) (-3878 (($ $) 56)) (-3589 (((-931) $) 23)) (-3180 (((-1171) $) 49)) (-2575 (($ (-931)) 20)) (-3990 (((-112) $) 37)) (-3965 (((-1132) $) NIL)) (-3930 (($) 28 T CONST)) (-3156 (((-112) $) 35)) (-2942 (((-871) $) 30)) (-2318 (($ (-780)) 19) (($ (-1171)) 54)) (-3507 (((-112) $ $) NIL)) (-3278 (((-112) $) 45)) (-1784 (((-112) $) 43)) (-3040 (((-112) $ $) 11)) (-3015 (((-112) $ $) 9)) (-2981 (((-112) $ $) 7)) (-3027 (((-112) $ $) 10)) (-3005 (((-112) $ $) 8))) -(((-145) (-13 (-853) (-10 -8 (-15 -2126 ((-780) $)) (-15 -2318 ($ (-780))) (-15 -2318 ($ (-1171))) (-15 -3614 ($) -1705) (-15 -1889 ($) -1705) (-15 -3930 ($) -1705) (-15 -2391 ($ $)) (-15 -3878 ($ $)) (-15 -3156 ((-112) $)) (-15 -3990 ((-112) $)) (-15 -1784 ((-112) $)) (-15 -3509 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -3278 ((-112) $))))) (T -145)) -((-2126 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-145)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-145)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-145)))) (-3614 (*1 *1) (-5 *1 (-145))) (-1889 (*1 *1) (-5 *1 (-145))) (-3930 (*1 *1) (-5 *1 (-145))) (-2391 (*1 *1 *1) (-5 *1 (-145))) (-3878 (*1 *1 *1) (-5 *1 (-145))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-853) (-10 -8 (-15 -2126 ((-780) $)) (-15 -2318 ($ (-780))) (-15 -2318 ($ (-1171))) (-15 -3614 ($) -1705) (-15 -1889 ($) -1705) (-15 -3930 ($) -1705) (-15 -2391 ($ $)) (-15 -3878 ($ $)) (-15 -3156 ((-112) $)) (-15 -3990 ((-112) $)) (-15 -1784 ((-112) $)) (-15 -3509 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -3278 ((-112) $)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-4279 (((-3 $ "failed") $) 39)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +((-2325 (*1 *1 *1 *1) (-4 *1 (-144))) (-3125 (*1 *1 *1) (-4 *1 (-144))) (-2561 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -2561 ($ $ $)) (-15 -3125 ($ $)) (-15 -2325 ($ $ $)))) +((-2863 (((-112) $ $) NIL)) (-4282 (((-112) $) 39)) (-1877 (($ $) 55)) (-4079 (($) 26 T CONST)) (-1497 (((-781)) 13)) (-2834 (($) 25)) (-4010 (($) 27 T CONST)) (-1338 (((-781) $) 21)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-1647 (((-112) $) 41)) (-1681 (($ $) 56)) (-3880 (((-934) $) 23)) (-1938 (((-1174) $) 49)) (-2590 (($ (-934)) 20)) (-3476 (((-112) $) 37)) (-3939 (((-1135) $) NIL)) (-4064 (($) 28 T CONST)) (-1707 (((-112) $) 35)) (-2950 (((-872) $) 30)) (-2333 (($ (-781)) 19) (($ (-1174)) 54)) (-4259 (((-112) $ $) NIL)) (-3651 (((-112) $) 45)) (-4234 (((-112) $) 43)) (-3040 (((-112) $ $) 11)) (-3017 (((-112) $ $) 9)) (-2985 (((-112) $ $) 7)) (-3029 (((-112) $ $) 10)) (-3008 (((-112) $ $) 8))) +(((-145) (-13 (-854) (-10 -8 (-15 -1338 ((-781) $)) (-15 -2333 ($ (-781))) (-15 -2333 ($ (-1174))) (-15 -4079 ($) -1716) (-15 -4010 ($) -1716) (-15 -4064 ($) -1716) (-15 -1877 ($ $)) (-15 -1681 ($ $)) (-15 -1707 ((-112) $)) (-15 -3476 ((-112) $)) (-15 -4234 ((-112) $)) (-15 -4282 ((-112) $)) (-15 -1647 ((-112) $)) (-15 -3651 ((-112) $))))) (T -145)) +((-1338 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2333 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-145)))) (-4079 (*1 *1) (-5 *1 (-145))) (-4010 (*1 *1) (-5 *1 (-145))) (-4064 (*1 *1) (-5 *1 (-145))) (-1877 (*1 *1 *1) (-5 *1 (-145))) (-1681 (*1 *1 *1) (-5 *1 (-145))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-854) (-10 -8 (-15 -1338 ((-781) $)) (-15 -2333 ($ (-781))) (-15 -2333 ($ (-1174))) (-15 -4079 ($) -1716) (-15 -4010 ($) -1716) (-15 -4064 ($) -1716) (-15 -1877 ($ $)) (-15 -1681 ($ $)) (-15 -1707 ((-112) $)) (-15 -3476 ((-112) $)) (-15 -4234 ((-112) $)) (-15 -4282 ((-112) $)) (-15 -1647 ((-112) $)) (-15 -3651 ((-112) $)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3270 (((-3 $ "failed") $) 39)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-4279 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1061) (-10 -8 (-15 -4279 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2517 ((|#1| (-698 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -2517 (|#1| (-698 |#1|) |#1|))) (-174)) (T -147)) -((-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-698 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -2517 (|#1| (-698 |#1|) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +((-3270 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1064) (-10 -8 (-15 -3270 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-3688 ((|#1| (-699 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -3688 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147)) +((-3688 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -3688 (|#1| (-699 |#1|) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1061)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3512 (((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780)) 76)) (-2779 (((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|) 56)) (-3793 (((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1483 ((|#1| |#3| |#3|) 44)) (-2645 ((|#3| |#3| (-416 |#2|) (-416 |#2|)) 20)) (-4127 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3793 ((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2779 ((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|)) (-15 -3512 ((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780))) (-15 -1483 (|#1| |#3| |#3|)) (-15 -2645 (|#3| |#3| (-416 |#2|) (-416 |#2|))) (-15 -4127 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|))) (-1234) (-1256 |#1|) (-1256 (-416 |#2|))) (T -149)) -((-4127 (*1 *2 *3 *3) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-416 *5)) (|:| |c2| (-416 *5)) (|:| |deg| (-780)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5))))) (-2645 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-416 *5)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1256 *3)))) (-1483 (*1 *2 *3 *3) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1234)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-416 *6)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-780)) (-4 *7 (-1256 *3)))) (-2779 (*1 *2 *3) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |radicand| (-416 *5)) (|:| |deg| (-780)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5))))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -1857 (-416 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) -(-10 -7 (-15 -3793 ((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2779 ((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|)) (-15 -3512 ((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780))) (-15 -1483 (|#1| |#3| |#3|)) (-15 -2645 (|#3| |#3| (-416 |#2|) (-416 |#2|))) (-15 -4127 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|))) -((-3711 (((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -3711 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)))) (-554) (-167 |#1|)) (T -150)) -((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) (-4 *5 (-167 *4)) (-4 *4 (-554)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -3711 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)))) -((-2164 (($ (-1 (-112) |#2|) $) 37)) (-2685 (($ $) 44)) (-3334 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1575 (((-112) (-1 (-112) |#2|) $) 24)) (-3974 (((-780) (-1 (-112) |#2|) $) 18) (((-780) |#2| $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) 21)) (-2862 (((-780) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -2685 (|#1| |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) (-152 |#2|) (-1230)) (T -151)) -NIL -(-10 -8 (-15 -2685 (|#1| |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2164 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 42 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455))) (($ |#1| $) 43 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 41 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 50)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-152 |#1|) (-141) (-1230)) (T -152)) -((-2955 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-152 *3)))) (-2036 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-2867 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-2867 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) (-4 *3 (-1230)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) (-4 *3 (-1230)))) (-2867 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-3334 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-2685 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) (-4 *2 (-1112))))) -(-13 (-498 |t#1|) (-10 -8 (-15 -2955 ($ (-653 |t#1|))) (-15 -2036 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3334 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3334 ($ |t#1| $)) (-15 -2685 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 111)) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-653 (-931))) 71)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3910 (($ (-931)) 57)) (-2365 (((-135)) 23)) (-2942 (((-871) $) 86) (($ (-573)) 53) (($ |#2|) 54)) (-4317 ((|#2| $ (-653 (-931))) 74)) (-1545 (((-780)) 20 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 47 T CONST)) (-2144 (($) 51 T CONST)) (-2981 (((-112) $ $) 33)) (-3103 (($ $ |#2|) NIL)) (-3093 (($ $) 42) (($ $ $) 40)) (-3077 (($ $ $) 38)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1061) (-38 |#2|) (-1287 |#2|) (-10 -8 (-15 -3910 ($ (-931))) (-15 -4334 ($ |#2| (-653 (-931)))) (-15 -4317 (|#2| $ (-653 (-931)))) (-15 -2232 ((-3 $ "failed") $)))) (-931) (-371) (-1005 |#1| |#2|)) (T -153)) -((-2232 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-931)) (-4 *3 (-371)) (-14 *4 (-1005 *2 *3)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-371)) (-14 *5 (-1005 *3 *4)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) (-4 *2 (-371)) (-14 *5 (-1005 *4 *2)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-931))) (-4 *2 (-371)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) (-14 *5 (-1005 *4 *2))))) -(-13 (-1061) (-38 |#2|) (-1287 |#2|) (-10 -8 (-15 -3910 ($ (-931))) (-15 -4334 ($ |#2| (-653 (-931)))) (-15 -4317 (|#2| $ (-653 (-931)))) (-15 -2232 ((-3 $ "failed") $)))) -((-2152 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-4249 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573))) 95) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937)) 96)) (-3335 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227))))) 99) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227)))) 98) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573))) 90) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937)) 91))) -(((-154) (-10 -7 (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -2152 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227))))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))))))) (T -154)) -((-3335 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 (-227))))))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)) (-5 *3 (-653 (-953 (-227)))))) (-2152 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 *4)))) (|:| |xValues| (-1106 *4)) (|:| |yValues| (-1106 *4)))) (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 *4)))))) (-4249 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-3335 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -2152 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227))))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227))))))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1498 (((-653 (-1147)) $) 20)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-155) (-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $))))) (T -155)) -((-1498 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-155)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-155))))) -(-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $)))) -((-1682 (((-653 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1682 ((-653 (-171 |#2|)) |#1| |#2|))) (-1256 (-171 (-573))) (-13 (-371) (-857))) (T -156)) -((-1682 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1256 (-171 (-573)))) (-4 *4 (-13 (-371) (-857)))))) -(-10 -7 (-15 -1682 ((-653 (-171 |#2|)) |#1| |#2|))) -((-2848 (((-112) $ $) NIL)) (-1808 (((-1229) $) 12)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-157) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1229) $))))) (T -157)) -((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-157)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-157))))) -(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1229) $)))) -((-2848 (((-112) $ $) NIL)) (-3521 (($) 41)) (-1821 (($) 40)) (-3833 (((-931)) 46)) (-3180 (((-1171) $) NIL)) (-2065 (((-573) $) 44)) (-3965 (((-1132) $) NIL)) (-3018 (($) 42)) (-1805 (($ (-573)) 47)) (-2942 (((-871) $) 53)) (-3749 (($) 43)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38)) (-3077 (($ $ $) 35)) (* (($ (-931) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-931) $)) (-15 * ($ (-227) $)) (-15 -3077 ($ $ $)) (-15 -1821 ($)) (-15 -3521 ($)) (-15 -3018 ($)) (-15 -3749 ($)) (-15 -2065 ((-573) $)) (-15 -3833 ((-931))) (-15 -1805 ($ (-573)))))) (T -158)) -((-3077 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1821 (*1 *1) (-5 *1 (-158))) (-3521 (*1 *1) (-5 *1 (-158))) (-3018 (*1 *1) (-5 *1 (-158))) (-3749 (*1 *1) (-5 *1 (-158))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) (-3833 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-931) $)) (-15 * ($ (-227) $)) (-15 -3077 ($ $ $)) (-15 -1821 ($)) (-15 -3521 ($)) (-15 -3018 ($)) (-15 -3749 ($)) (-15 -2065 ((-573) $)) (-15 -3833 ((-931))) (-15 -1805 ($ (-573))))) -((-4080 ((|#2| |#2| (-1104 |#2|)) 98) ((|#2| |#2| (-1189)) 75)) (-3044 ((|#2| |#2| (-1104 |#2|)) 97) ((|#2| |#2| (-1189)) 74)) (-2637 ((|#2| |#2| |#2|) 25)) (-4173 (((-115) (-115)) 111)) (-3966 ((|#2| (-653 |#2|)) 130)) (-3249 ((|#2| (-653 |#2|)) 151)) (-2639 ((|#2| (-653 |#2|)) 138)) (-3510 ((|#2| |#2|) 136)) (-2535 ((|#2| (-653 |#2|)) 124)) (-3717 ((|#2| (-653 |#2|)) 125)) (-2465 ((|#2| (-653 |#2|)) 149)) (-3262 ((|#2| |#2| (-1189)) 63) ((|#2| |#2|) 62)) (-4264 ((|#2| |#2|) 21)) (-1677 ((|#2| |#2| |#2|) 24)) (-3109 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2637 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3262 (|#2| |#2|)) (-15 -3262 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1104 |#2|))) (-15 -3044 (|#2| |#2| (-1189))) (-15 -3044 (|#2| |#2| (-1104 |#2|))) (-15 -3510 (|#2| |#2|)) (-15 -2465 (|#2| (-653 |#2|))) (-15 -2639 (|#2| (-653 |#2|))) (-15 -3249 (|#2| (-653 |#2|))) (-15 -2535 (|#2| (-653 |#2|))) (-15 -3717 (|#2| (-653 |#2|))) (-15 -3966 (|#2| (-653 |#2|)))) (-565) (-439 |#1|)) (T -159)) -((-3966 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-3044 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)))) (-3044 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-3262 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-3262 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-2637 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-1677 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-159 *3 *4)) (-4 *4 (-439 *3)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-439 *4))))) -(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2637 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3262 (|#2| |#2|)) (-15 -3262 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1104 |#2|))) (-15 -3044 (|#2| |#2| (-1189))) (-15 -3044 (|#2| |#2| (-1104 |#2|))) (-15 -3510 (|#2| |#2|)) (-15 -2465 (|#2| (-653 |#2|))) (-15 -2639 (|#2| (-653 |#2|))) (-15 -3249 (|#2| (-653 |#2|))) (-15 -2535 (|#2| (-653 |#2|))) (-15 -3717 (|#2| (-653 |#2|))) (-15 -3966 (|#2| (-653 |#2|)))) -((-2455 ((|#1| |#1| |#1|) 64)) (-4191 ((|#1| |#1| |#1|) 61)) (-2637 ((|#1| |#1| |#1|) 55)) (-2603 ((|#1| |#1|) 42)) (-2373 ((|#1| |#1| (-653 |#1|)) 53)) (-4264 ((|#1| |#1|) 46)) (-1677 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1677 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -2373 (|#1| |#1| (-653 |#1|))) (-15 -2603 (|#1| |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|))) (-554)) (T -160)) -((-2455 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-4191 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2637 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2603 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2373 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-554)) (-5 *1 (-160 *2)))) (-4264 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) -(-10 -7 (-15 -1677 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -2373 (|#1| |#1| (-653 |#1|))) (-15 -2603 (|#1| |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|))) -((-4080 (($ $ (-1189)) 12) (($ $ (-1104 $)) 11)) (-3044 (($ $ (-1189)) 10) (($ $ (-1104 $)) 9)) (-2637 (($ $ $) 8)) (-3262 (($ $) 14) (($ $ (-1189)) 13)) (-4264 (($ $) 7)) (-1677 (($ $ $) 6))) +(-13 (-1064)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-4318 (((-2 (|:| -3843 (-781)) (|:| -1868 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-1324 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-2077 (((-2 (|:| -1868 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4366 ((|#1| |#3| |#3|) 44)) (-2660 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-2342 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2077 ((-2 (|:| -1868 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1324 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -4318 ((-2 (|:| -3843 (-781)) (|:| -1868 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4366 (|#1| |#3| |#3|)) (-15 -2660 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2342 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1237) (-1259 |#1|) (-1259 (-417 |#2|))) (T -149)) +((-2342 (*1 *2 *3 *3) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5))))) (-2660 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1259 *3)))) (-4366 (*1 *2 *3 *3) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1237)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1259 *3)))) (-1324 (*1 *2 *3) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5))))) (-2077 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -1868 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) +(-10 -7 (-15 -2077 ((-2 (|:| -1868 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1324 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -4318 ((-2 (|:| -3843 (-781)) (|:| -1868 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4366 (|#1| |#3| |#3|)) (-15 -2660 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -2342 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) +((-2580 (((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2580 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)))) (-555) (-167 |#1|)) (T -150)) +((-2580 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -2580 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)))) +((-2175 (($ (-1 (-112) |#2|) $) 37)) (-2818 (($ $) 44)) (-3310 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1745 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-4043 (((-112) (-1 (-112) |#2|) $) 24)) (-3948 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-2235 (((-112) (-1 (-112) |#2|) $) 21)) (-2876 (((-781) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -2818 (|#1| |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) (-152 |#2|) (-1233)) (T -151)) +NIL +(-10 -8 (-15 -2818 (|#1| |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-2175 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2818 (($ $) 42 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458))) (($ |#1| $) 43 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 50)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-152 |#1|) (-141) (-1233)) (T -152)) +((-2962 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-152 *3)))) (-1745 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-2881 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-2881 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) (-4 *3 (-1233)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) (-4 *3 (-1233)))) (-2881 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)))) (-3310 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-2818 (*1 *1 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) (-4 *2 (-1115))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -2962 ($ (-654 |t#1|))) (-15 -1745 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4458)) (PROGN (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3310 ($ (-1 (-112) |t#1|) $)) (-15 -2175 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -2881 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3310 ($ |t#1| $)) (-15 -2818 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) 111)) (-2276 (((-112) $) NIL)) (-4327 (($ |#2| (-654 (-934))) 71)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3883 (($ (-934)) 57)) (-2900 (((-135)) 23)) (-2950 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-3584 ((|#2| $ (-654 (-934))) 74)) (-3781 (((-781)) 20 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 47 T CONST)) (-2155 (($) 51 T CONST)) (-2985 (((-112) $ $) 33)) (-3102 (($ $ |#2|) NIL)) (-3089 (($ $) 42) (($ $ $) 40)) (-3073 (($ $ $) 38)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1064) (-38 |#2|) (-1290 |#2|) (-10 -8 (-15 -3883 ($ (-934))) (-15 -4327 ($ |#2| (-654 (-934)))) (-15 -3584 (|#2| $ (-654 (-934)))) (-15 -2978 ((-3 $ "failed") $)))) (-934) (-372) (-1008 |#1| |#2|)) (T -153)) +((-2978 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-934)) (-4 *3 (-372)) (-14 *4 (-1008 *2 *3)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1008 *3 *4)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) (-4 *2 (-372)) (-14 *5 (-1008 *4 *2)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-934))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) (-14 *5 (-1008 *4 *2))))) +(-13 (-1064) (-38 |#2|) (-1290 |#2|) (-10 -8 (-15 -3883 ($ (-934))) (-15 -4327 ($ |#2| (-654 (-934)))) (-15 -3584 (|#2| $ (-654 (-934)))) (-15 -2978 ((-3 $ "failed") $)))) +((-1553 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-4175 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940)) 96)) (-3033 (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940)) 91))) +(((-154) (-10 -7 (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -4175 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -4175 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -1553 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227))))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))))))) (T -154)) +((-3033 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 (-227))))))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-956 (-227)))))) (-1553 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 *4)))) (|:| |xValues| (-1109 *4)) (|:| |yValues| (-1109 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 *4)))))) (-4175 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-3033 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -4175 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940))) (-15 -4175 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-940) (-417 (-574)) (-417 (-574)))) (-15 -1553 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-956 (-227))))) (-15 -3033 ((-2 (|:| |brans| (-654 (-654 (-956 (-227))))) (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227)))) (-654 (-654 (-956 (-227))))))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1508 (((-654 (-1150)) $) 20)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 9)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-155) (-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2053 ((-1150) $))))) (T -155)) +((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-155)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-155))))) +(-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2053 ((-1150) $)))) +((-2618 (((-654 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2618 ((-654 (-171 |#2|)) |#1| |#2|))) (-1259 (-171 (-574))) (-13 (-372) (-858))) (T -156)) +((-2618 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1259 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -2618 ((-654 (-171 |#2|)) |#1| |#2|))) +((-2863 (((-112) $ $) NIL)) (-1818 (((-1232) $) 12)) (-1806 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-157) (-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1232) $))))) (T -157)) +((-1806 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-157)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-157))))) +(-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1232) $)))) +((-2863 (((-112) $ $) NIL)) (-4402 (($) 41)) (-1464 (($) 40)) (-4359 (((-934)) 46)) (-1938 (((-1174) $) NIL)) (-2014 (((-574) $) 44)) (-3939 (((-1135) $) NIL)) (-2947 (($) 42)) (-4414 (($ (-574)) 47)) (-2950 (((-872) $) 53)) (-2929 (($) 43)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 38)) (-3073 (($ $ $) 35)) (* (($ (-934) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-934) $)) (-15 * ($ (-227) $)) (-15 -3073 ($ $ $)) (-15 -1464 ($)) (-15 -4402 ($)) (-15 -2947 ($)) (-15 -2929 ($)) (-15 -2014 ((-574) $)) (-15 -4359 ((-934))) (-15 -4414 ($ (-574)))))) (T -158)) +((-3073 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1464 (*1 *1) (-5 *1 (-158))) (-4402 (*1 *1) (-5 *1 (-158))) (-2947 (*1 *1) (-5 *1 (-158))) (-2929 (*1 *1) (-5 *1 (-158))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-4359 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) (-4414 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-934) $)) (-15 * ($ (-227) $)) (-15 -3073 ($ $ $)) (-15 -1464 ($)) (-15 -4402 ($)) (-15 -2947 ($)) (-15 -2929 ($)) (-15 -2014 ((-574) $)) (-15 -4359 ((-934))) (-15 -4414 ($ (-574))))) +((-1878 ((|#2| |#2| (-1107 |#2|)) 98) ((|#2| |#2| (-1192)) 75)) (-3112 ((|#2| |#2| (-1107 |#2|)) 97) ((|#2| |#2| (-1192)) 74)) (-2325 ((|#2| |#2| |#2|) 25)) (-4151 (((-115) (-115)) 111)) (-3240 ((|#2| (-654 |#2|)) 130)) (-1428 ((|#2| (-654 |#2|)) 151)) (-2345 ((|#2| (-654 |#2|)) 138)) (-4296 ((|#2| |#2|) 136)) (-3846 ((|#2| (-654 |#2|)) 124)) (-2641 ((|#2| (-654 |#2|)) 125)) (-4392 ((|#2| (-654 |#2|)) 149)) (-1563 ((|#2| |#2| (-1192)) 63) ((|#2| |#2|) 62)) (-3125 ((|#2| |#2|) 21)) (-2561 ((|#2| |#2| |#2|) 24)) (-2448 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2561 (|#2| |#2| |#2|)) (-15 -2325 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1563 (|#2| |#2| (-1192))) (-15 -1878 (|#2| |#2| (-1192))) (-15 -1878 (|#2| |#2| (-1107 |#2|))) (-15 -3112 (|#2| |#2| (-1192))) (-15 -3112 (|#2| |#2| (-1107 |#2|))) (-15 -4296 (|#2| |#2|)) (-15 -4392 (|#2| (-654 |#2|))) (-15 -2345 (|#2| (-654 |#2|))) (-15 -1428 (|#2| (-654 |#2|))) (-15 -3846 (|#2| (-654 |#2|))) (-15 -2641 (|#2| (-654 |#2|))) (-15 -3240 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159)) +((-3240 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4296 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1878 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-1878 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1563 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2325 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2561 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))) +(-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2561 (|#2| |#2| |#2|)) (-15 -2325 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1563 (|#2| |#2| (-1192))) (-15 -1878 (|#2| |#2| (-1192))) (-15 -1878 (|#2| |#2| (-1107 |#2|))) (-15 -3112 (|#2| |#2| (-1192))) (-15 -3112 (|#2| |#2| (-1107 |#2|))) (-15 -4296 (|#2| |#2|)) (-15 -4392 (|#2| (-654 |#2|))) (-15 -2345 (|#2| (-654 |#2|))) (-15 -1428 (|#2| (-654 |#2|))) (-15 -3846 (|#2| (-654 |#2|))) (-15 -2641 (|#2| (-654 |#2|))) (-15 -3240 (|#2| (-654 |#2|)))) +((-4307 ((|#1| |#1| |#1|) 64)) (-1714 ((|#1| |#1| |#1|) 61)) (-2325 ((|#1| |#1| |#1|) 55)) (-3323 ((|#1| |#1|) 42)) (-1723 ((|#1| |#1| (-654 |#1|)) 53)) (-3125 ((|#1| |#1|) 46)) (-2561 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -2561 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-654 |#1|))) (-15 -3323 (|#1| |#1|)) (-15 -2325 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#1|))) (-555)) (T -160)) +((-4307 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1714 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2325 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3323 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-3125 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2561 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(-10 -7 (-15 -2561 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-654 |#1|))) (-15 -3323 (|#1| |#1|)) (-15 -2325 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#1|))) +((-1878 (($ $ (-1192)) 12) (($ $ (-1107 $)) 11)) (-3112 (($ $ (-1192)) 10) (($ $ (-1107 $)) 9)) (-2325 (($ $ $) 8)) (-1563 (($ $) 14) (($ $ (-1192)) 13)) (-3125 (($ $) 7)) (-2561 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-3262 (*1 *1 *1) (-4 *1 (-161))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-4080 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) (-3044 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-3044 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -3262 ($ $)) (-15 -3262 ($ $ (-1189))) (-15 -4080 ($ $ (-1189))) (-15 -4080 ($ $ (-1104 $))) (-15 -3044 ($ $ (-1189))) (-15 -3044 ($ $ (-1104 $))))) +((-1563 (*1 *1 *1) (-4 *1 (-161))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-1878 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-1878 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) (-3112 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) (-3112 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -1563 ($ $)) (-15 -1563 ($ $ (-1192))) (-15 -1878 ($ $ (-1192))) (-15 -1878 ($ $ (-1107 $))) (-15 -3112 ($ $ (-1192))) (-15 -3112 ($ $ (-1107 $))))) (((-144) . T)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-162) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $))))) (T -162)) -((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-162))))) -(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)))) -((-2848 (((-112) $ $) NIL)) (-3545 (($ (-573)) 14) (($ $ $) 15)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-163) (-13 (-1112) (-10 -8 (-15 -3545 ($ (-573))) (-15 -3545 ($ $ $))))) (T -163)) -((-3545 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-163)))) (-3545 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1112) (-10 -8 (-15 -3545 ($ (-573))) (-15 -3545 ($ $ $)))) -((-4173 (((-115) (-1189)) 102))) -(((-164) (-10 -7 (-15 -4173 ((-115) (-1189))))) (T -164)) -((-4173 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -4173 ((-115) (-1189)))) -((-3444 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3444 (|#3| |#3|))) (-1061) (-1256 |#1|) (-1256 |#2|)) (T -165)) -((-3444 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-4 *4 (-1256 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1256 *4))))) -(-10 -7 (-15 -3444 (|#3| |#3|))) -((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 223)) (-1635 ((|#2| $) 102)) (-2363 (($ $) 256)) (-2246 (($ $) 250)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 47)) (-2342 (($ $) 254)) (-2225 (($ $) 248)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 144)) (-2784 (($ $ $) 229)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 160) (((-698 |#2|) (-698 $)) 154) (((-698 |#2|) (-1280 $)) NIL)) (-2867 (($ (-1185 |#2|)) 125) (((-3 $ "failed") (-416 (-1185 |#2|))) NIL)) (-2232 (((-3 $ "failed") $) 214)) (-3810 (((-3 (-416 (-573)) "failed") $) 204)) (-2551 (((-112) $) 199)) (-4434 (((-416 (-573)) $) 202)) (-3583 (((-931)) 96)) (-2796 (($ $ $) 231)) (-1610 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2999 (($) 245)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 193) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 198)) (-3421 ((|#2| $) 100)) (-2297 (((-1185 |#2|) $) 127)) (-1776 (($ (-1 |#2| |#2|) $) 108)) (-3118 (($ $) 247)) (-2853 (((-1185 |#2|) $) 126)) (-1323 (($ $) 207)) (-1507 (($) 103)) (-2963 (((-427 (-1185 $)) (-1185 $)) 95)) (-1655 (((-427 (-1185 $)) (-1185 $)) 64)) (-2837 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1608 (($ $) 246)) (-2163 (((-780) $) 226)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 236)) (-3592 ((|#2| (-1280 $)) NIL) ((|#2|) 98)) (-3904 (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2984 (((-1185 |#2|)) 120)) (-2352 (($ $) 255)) (-2236 (($ $) 249)) (-2123 (((-1280 |#2|) $ (-1280 $)) 136) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 116) (((-698 |#2|) (-1280 $)) NIL)) (-1835 (((-1280 |#2|) $) NIL) (($ (-1280 |#2|)) NIL) (((-1185 |#2|) $) NIL) (($ (-1185 |#2|)) NIL) (((-902 (-573)) $) 184) (((-902 (-387)) $) 188) (((-171 (-387)) $) 172) (((-171 (-227)) $) 167) (((-545) $) 180)) (-3204 (($ $) 104)) (-2942 (((-871) $) 143) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-416 (-573))) NIL) (($ $) NIL)) (-2517 (((-1185 |#2|) $) 32)) (-1545 (((-780)) 106)) (-3507 (((-112) $ $) 13)) (-2439 (($ $) 259)) (-2304 (($ $) 253)) (-2413 (($ $) 257)) (-2286 (($ $) 251)) (-3607 ((|#2| $) 242)) (-2426 (($ $) 258)) (-2296 (($ $) 252)) (-1660 (($ $) 162)) (-2981 (((-112) $ $) 110)) (-3093 (($ $) 112) (($ $ $) NIL)) (-3077 (($ $ $) 111)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-416 (-573))) 276) (($ $ $) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-387)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2999 (|#1|)) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1610 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3607 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3204 (|#1| |#1|)) (-15 -1507 (|#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -2867 ((-3 |#1| "failed") (-416 (-1185 |#2|)))) (-15 -2853 ((-1185 |#2|) |#1|)) (-15 -1835 (|#1| (-1185 |#2|))) (-15 -2867 (|#1| (-1185 |#2|))) (-15 -2984 ((-1185 |#2|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2517 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3421 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3583 ((-931))) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3583 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-931)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3592 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2984 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-387)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2999 (|#1|)) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1610 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3607 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3204 (|#1| |#1|)) (-15 -1507 (|#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -2867 ((-3 |#1| "failed") (-416 (-1185 |#2|)))) (-15 -2853 ((-1185 |#2|) |#1|)) (-15 -1835 (|#1| (-1185 |#2|))) (-15 -2867 (|#1| (-1185 |#2|))) (-15 -2984 ((-1185 |#2|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2517 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3421 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3583 ((-931))) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2456 (($ $) 104 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-1345 (((-112) $) 106 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2363 (($ $) 232 (|has| |#1| (-1215)))) (-2246 (($ $) 215 (|has| |#1| (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 246 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4285 (($ $) 123 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-2427 (((-427 $) $) 124 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4228 (($ $) 245 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 249 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-2800 (((-112) $ $) 114 (|has| |#1| (-314)))) (-1486 (((-780)) 97 (|has| |#1| (-376)))) (-2342 (($ $) 231 (|has| |#1| (-1215)))) (-2225 (($ $) 216 (|has| |#1| (-1215)))) (-2388 (($ $) 230 (|has| |#1| (-1215)))) (-2266 (($ $) 217 (|has| |#1| (-1215)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 176)) (-2205 (((-573) $) 180 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 177)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-357)))) (-2784 (($ $ $) 118 (|has| |#1| (-314)))) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 172) (((-698 |#1|) (-698 $)) 171) (((-698 |#1|) (-1280 $)) 170)) (-2867 (($ (-1185 |#1|)) 167) (((-3 $ "failed") (-416 (-1185 |#1|))) 164 (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 257)) (-3810 (((-3 (-416 (-573)) "failed") $) 250 (|has| |#1| (-554)))) (-2551 (((-112) $) 252 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 251 (|has| |#1| (-554)))) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| |#1| (-376)))) (-2796 (($ $ $) 117 (|has| |#1| (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| |#1| (-314)))) (-3731 (($) 158 (|has| |#1| (-357)))) (-1708 (((-112) $) 159 (|has| |#1| (-357)))) (-2104 (($ $ (-780)) 150 (|has| |#1| (-357))) (($ $) 149 (|has| |#1| (-357)))) (-2696 (((-112) $) 125 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-1610 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1072)) (|has| |#1| (-1215))))) (-2999 (($) 242 (|has| |#1| (-1215)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 265 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 264 (|has| |#1| (-896 (-387))))) (-2534 (((-931) $) 161 (|has| |#1| (-357))) (((-842 (-931)) $) 147 (|has| |#1| (-357)))) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 244 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3421 ((|#1| $) 58)) (-1470 (((-3 $ "failed") $) 151 (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| |#1| (-314)))) (-2297 (((-1185 |#1|) $) 51 (|has| |#1| (-371)))) (-1776 (($ (-1 |#1| |#1|) $) 266)) (-3589 (((-931) $) 99 (|has| |#1| (-376)))) (-3118 (($ $) 239 (|has| |#1| (-1215)))) (-2853 (((-1185 |#1|) $) 165)) (-2829 (($ (-653 $)) 110 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (($ $ $) 109 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 126 (|has| |#1| (-371)))) (-3816 (($) 152 (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| |#1| (-376)))) (-1507 (($) 261)) (-4248 ((|#1| $) 258)) (-3965 (((-1132) $) 11)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2872 (($ (-653 $)) 108 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (($ $ $) 107 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 248 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) 247 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4218 (((-427 $) $) 122 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| |#1| (-314)))) (-2837 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 102 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| |#1| (-314)))) (-1608 (($ $) 240 (|has| |#1| (-1215)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 272 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 270 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 269 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 268 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 267 (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) 115 (|has| |#1| (-314)))) (-2198 (($ $ |#1|) 273 (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| |#1| (-314)))) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-1637 (((-780) $) 160 (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) 148 (|has| |#1| (-357)))) (-3904 (($ $ (-1 |#1| |#1|) (-780)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-653 (-1189)) (-653 (-780))) 139 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 140 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 141 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 142 (|has| |#1| (-910 (-1189)))) (($ $) 143 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))))) (($ $ (-780)) 145 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371)))))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-371)))) (-2984 (((-1185 |#1|)) 168)) (-2401 (($ $) 229 (|has| |#1| (-1215)))) (-2274 (($ $) 218 (|has| |#1| (-1215)))) (-2510 (($) 157 (|has| |#1| (-357)))) (-2374 (($ $) 228 (|has| |#1| (-1215)))) (-2255 (($ $) 219 (|has| |#1| (-1215)))) (-2352 (($ $) 227 (|has| |#1| (-1215)))) (-2236 (($ $) 220 (|has| |#1| (-1215)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69) (((-1185 |#1|) $) 182) (($ (-1185 |#1|)) 166) (((-902 (-573)) $) 263 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 262 (|has| |#1| (-623 (-902 (-387))))) (((-171 (-387)) $) 214 (|has| |#1| (-1034))) (((-171 (-227)) $) 213 (|has| |#1| (-1034))) (((-545) $) 212 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 260)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (-2817 (-2086 (|has| $ (-146)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (|has| |#1| (-357))))) (-3561 (($ |#1| |#1|) 259)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 96 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) 101 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-4279 (($ $) 153 (|has| |#1| (-357))) (((-3 $ "failed") $) 50 (-2817 (-2086 (|has| $ (-146)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (|has| |#1| (-146))))) (-2517 (((-1185 |#1|) $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2439 (($ $) 238 (|has| |#1| (-1215)))) (-2304 (($ $) 226 (|has| |#1| (-1215)))) (-2516 (((-112) $ $) 105 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2413 (($ $) 237 (|has| |#1| (-1215)))) (-2286 (($ $) 225 (|has| |#1| (-1215)))) (-2464 (($ $) 236 (|has| |#1| (-1215)))) (-2324 (($ $) 224 (|has| |#1| (-1215)))) (-3607 ((|#1| $) 254 (|has| |#1| (-1215)))) (-2520 (($ $) 235 (|has| |#1| (-1215)))) (-2333 (($ $) 223 (|has| |#1| (-1215)))) (-2452 (($ $) 234 (|has| |#1| (-1215)))) (-2314 (($ $) 222 (|has| |#1| (-1215)))) (-2426 (($ $) 233 (|has| |#1| (-1215)))) (-2296 (($ $) 221 (|has| |#1| (-1215)))) (-1660 (($ $) 255 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#1| |#1|) (-780)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-653 (-1189)) (-653 (-780))) 135 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 136 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 137 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 138 (|has| |#1| (-910 (-1189)))) (($ $) 144 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))))) (($ $ (-780)) 146 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-416 (-573))) 243 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215)))) (($ $ $) 241 (|has| |#1| (-1215))) (($ $ (-573)) 127 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-416 (-573)) $) 129 (|has| |#1| (-371))) (($ $ (-416 (-573))) 128 (|has| |#1| (-371))))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-654 (-1150)) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-162) (-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $))))) (T -162)) +((-2053 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-162))))) +(-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $)))) +((-2863 (((-112) $ $) NIL)) (-1540 (($ (-574)) 14) (($ $ $) 15)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) +(((-163) (-13 (-1115) (-10 -8 (-15 -1540 ($ (-574))) (-15 -1540 ($ $ $))))) (T -163)) +((-1540 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-1540 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1115) (-10 -8 (-15 -1540 ($ (-574))) (-15 -1540 ($ $ $)))) +((-4151 (((-115) (-1192)) 102))) +(((-164) (-10 -7 (-15 -4151 ((-115) (-1192))))) (T -164)) +((-4151 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -4151 ((-115) (-1192)))) +((-1693 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1693 (|#3| |#3|))) (-1064) (-1259 |#1|) (-1259 |#2|)) (T -165)) +((-1693 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-4 *4 (-1259 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1259 *4))))) +(-10 -7 (-15 -1693 (|#3| |#3|))) +((-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 223)) (-1646 ((|#2| $) 102)) (-2378 (($ $) 256)) (-2260 (($ $) 250)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 47)) (-2357 (($ $) 254)) (-2238 (($ $) 248)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2800 (($ $ $) 229)) (-4232 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1283 $)) NIL)) (-2881 (($ (-1188 |#2|)) 125) (((-3 $ "failed") (-417 (-1188 |#2|))) NIL)) (-2978 (((-3 $ "failed") $) 214)) (-2222 (((-3 (-417 (-574)) "failed") $) 204)) (-4002 (((-112) $) 199)) (-2258 (((-417 (-574)) $) 202)) (-3557 (((-934)) 96)) (-2811 (($ $ $) 231)) (-3149 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3003 (($) 245)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-2681 ((|#2| $) 100)) (-3525 (((-1188 |#2|) $) 127)) (-1787 (($ (-1 |#2| |#2|) $) 108)) (-3111 (($ $) 247)) (-2868 (((-1188 |#2|) $) 126)) (-1327 (($ $) 207)) (-1468 (($) 103)) (-2406 (((-428 (-1188 $)) (-1188 $)) 95)) (-2318 (((-428 (-1188 $)) (-1188 $)) 64)) (-2852 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1619 (($ $) 246)) (-3575 (((-781) $) 226)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 236)) (-3902 ((|#2| (-1283 $)) NIL) ((|#2|) 98)) (-3878 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2611 (((-1188 |#2|)) 120)) (-2367 (($ $) 255)) (-2249 (($ $) 249)) (-4421 (((-1283 |#2|) $ (-1283 $)) 136) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 116) (((-699 |#2|) (-1283 $)) NIL)) (-1846 (((-1283 |#2|) $) NIL) (($ (-1283 |#2|)) NIL) (((-1188 |#2|) $) NIL) (($ (-1188 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-2190 (($ $) 104)) (-2950 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-3688 (((-1188 |#2|) $) 32)) (-3781 (((-781)) 106)) (-4259 (((-112) $ $) 13)) (-2455 (($ $) 259)) (-2319 (($ $) 253)) (-2428 (($ $) 257)) (-2301 (($ $) 251)) (-4021 ((|#2| $) 242)) (-2442 (($ $) 258)) (-2311 (($ $) 252)) (-2366 (($ $) 162)) (-2985 (((-112) $ $) 110)) (-3089 (($ $) 112) (($ $ $) NIL)) (-3073 (($ $ $) 111)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2950 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3575 ((-781) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-171 (-227)) |#1|)) (-15 -1846 ((-171 (-388)) |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3003 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -1468 (|#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2881 ((-3 |#1| "failed") (-417 (-1188 |#2|)))) (-15 -2868 ((-1188 |#2|) |#1|)) (-15 -1846 (|#1| (-1188 |#2|))) (-15 -2881 (|#1| (-1188 |#2|))) (-15 -2611 ((-1188 |#2|))) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 ((-1188 |#2|) |#1|)) (-15 -3902 (|#2|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3525 ((-1188 |#2|) |#1|)) (-15 -3688 ((-1188 |#2|) |#1|)) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -2681 (|#2| |#1|)) (-15 -1646 (|#2| |#1|)) (-15 -3557 ((-934))) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-3781 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3557 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-934)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3902 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2611 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2950 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3575 ((-781) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-171 (-227)) |#1|)) (-15 -1846 ((-171 (-388)) |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3003 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -3149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -1468 (|#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2881 ((-3 |#1| "failed") (-417 (-1188 |#2|)))) (-15 -2868 ((-1188 |#2|) |#1|)) (-15 -1846 (|#1| (-1188 |#2|))) (-15 -2881 (|#1| (-1188 |#2|))) (-15 -2611 ((-1188 |#2|))) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 ((-1188 |#2|) |#1|)) (-15 -3902 (|#2|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3525 ((-1188 |#2|) |#1|)) (-15 -3688 ((-1188 |#2|) |#1|)) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -2681 (|#2| |#1|)) (-15 -1646 (|#2| |#1|)) (-15 -3557 ((-934))) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-4319 (($ $) 104 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-1731 (((-112) $) 106 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-4368 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-2378 (($ $) 232 (|has| |#1| (-1218)))) (-2260 (($ $) 215 (|has| |#1| (-1218)))) (-3334 (((-1205 (-934) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 246 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3313 (($ $) 123 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2153 (((-428 $) $) 124 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-4211 (($ $) 245 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-1526 (((-112) $ $) 114 (|has| |#1| (-315)))) (-1497 (((-781)) 97 (|has| |#1| (-377)))) (-2357 (($ $) 231 (|has| |#1| (-1218)))) (-2238 (($ $) 216 (|has| |#1| (-1218)))) (-2403 (($ $) 230 (|has| |#1| (-1218)))) (-2281 (($ $) 217 (|has| |#1| (-1218)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2216 (((-574) $) 180 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 177)) (-3875 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2800 (($ $ $) 118 (|has| |#1| (-315)))) (-1732 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-4232 (((-699 (-574)) (-1283 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1283 $)) 170)) (-2881 (($ (-1188 |#1|)) 167) (((-3 $ "failed") (-417 (-1188 |#1|))) 164 (|has| |#1| (-372)))) (-2978 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 257)) (-2222 (((-3 (-417 (-574)) "failed") $) 250 (|has| |#1| (-555)))) (-4002 (((-112) $) 252 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 251 (|has| |#1| (-555)))) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| |#1| (-377)))) (-2811 (($ $ $) 117 (|has| |#1| (-315)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 112 (|has| |#1| (-315)))) (-2776 (($) 158 (|has| |#1| (-358)))) (-1627 (((-112) $) 159 (|has| |#1| (-358)))) (-4278 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-2941 (((-112) $) 125 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1075)) (|has| |#1| (-1218))))) (-3003 (($) 242 (|has| |#1| (-1218)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 265 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 264 (|has| |#1| (-897 (-388))))) (-3837 (((-934) $) 161 (|has| |#1| (-358))) (((-843 (-934)) $) 147 (|has| |#1| (-358)))) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 244 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2681 ((|#1| $) 58)) (-4217 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-315)))) (-3525 (((-1188 |#1|) $) 51 (|has| |#1| (-372)))) (-1787 (($ (-1 |#1| |#1|) $) 266)) (-3880 (((-934) $) 99 (|has| |#1| (-377)))) (-3111 (($ $) 239 (|has| |#1| (-1218)))) (-2868 (((-1188 |#1|) $) 165)) (-2844 (($ (-654 $)) 110 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (($ $ $) 109 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 126 (|has| |#1| (-372)))) (-3791 (($) 152 (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| |#1| (-377)))) (-1468 (($) 261)) (-4233 ((|#1| $) 258)) (-3939 (((-1135) $) 11)) (-2974 (($) 169)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 111 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2886 (($ (-654 $)) 108 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (($ $ $) 107 (-2832 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 155 (|has| |#1| (-358)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-2318 (((-428 (-1188 $)) (-1188 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4200 (((-428 $) $) 122 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 119 (|has| |#1| (-315)))) (-2852 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 102 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-315)))) (-1619 (($ $) 240 (|has| |#1| (-1218)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 272 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 269 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 268 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 267 (|has| |#1| (-524 (-1192) |#1|)))) (-3575 (((-781) $) 115 (|has| |#1| (-315)))) (-2209 (($ $ |#1|) 273 (|has| |#1| (-294 |#1| |#1|)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 116 (|has| |#1| (-315)))) (-3902 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-3411 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3878 (($ $ (-1 |#1| |#1|) (-781)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-654 (-1192)) (-654 (-781))) 139 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 140 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 141 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 142 (|has| |#1| (-913 (-1192)))) (($ $) 143 (-2832 (-2097 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 145 (-2832 (-2097 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2097 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-3450 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-2611 (((-1188 |#1|)) 168)) (-2415 (($ $) 229 (|has| |#1| (-1218)))) (-2289 (($ $) 218 (|has| |#1| (-1218)))) (-3627 (($) 157 (|has| |#1| (-358)))) (-2388 (($ $) 228 (|has| |#1| (-1218)))) (-2271 (($ $) 219 (|has| |#1| (-1218)))) (-2367 (($ $) 227 (|has| |#1| (-1218)))) (-2249 (($ $) 220 (|has| |#1| (-1218)))) (-4421 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1846 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69) (((-1188 |#1|) $) 182) (($ (-1188 |#1|)) 166) (((-903 (-574)) $) 263 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 262 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 214 (|has| |#1| (-1037))) (((-171 (-227)) $) 213 (|has| |#1| (-1037))) (((-546) $) 212 (|has| |#1| (-624 (-546))))) (-2190 (($ $) 260)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 154 (-2832 (-2097 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (|has| |#1| (-358))))) (-3535 (($ |#1| |#1|) 259)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 96 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) 101 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-3270 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2832 (-2097 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))) (|has| |#1| (-146))))) (-3688 (((-1188 |#1|) $) 52)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 74)) (-2455 (($ $) 238 (|has| |#1| (-1218)))) (-2319 (($ $) 226 (|has| |#1| (-1218)))) (-3676 (((-112) $ $) 105 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922)))))) (-2428 (($ $) 237 (|has| |#1| (-1218)))) (-2301 (($ $) 225 (|has| |#1| (-1218)))) (-2479 (($ $) 236 (|has| |#1| (-1218)))) (-2339 (($ $) 224 (|has| |#1| (-1218)))) (-4021 ((|#1| $) 254 (|has| |#1| (-1218)))) (-2535 (($ $) 235 (|has| |#1| (-1218)))) (-2348 (($ $) 223 (|has| |#1| (-1218)))) (-2467 (($ $) 234 (|has| |#1| (-1218)))) (-2329 (($ $) 222 (|has| |#1| (-1218)))) (-2442 (($ $) 233 (|has| |#1| (-1218)))) (-2311 (($ $) 221 (|has| |#1| (-1218)))) (-2366 (($ $) 255 (|has| |#1| (-1075)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1 |#1| |#1|) (-781)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-654 (-1192)) (-654 (-781))) 135 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 136 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 137 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 138 (|has| |#1| (-913 (-1192)))) (($ $) 144 (-2832 (-2097 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 146 (-2832 (-2097 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2097 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 130 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 243 (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218)))) (($ $ $) 241 (|has| |#1| (-1218))) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-3421 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1507 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3561 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1215)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1072)) (-4 *3 (-1215)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573)))))) -(-13 (-733 |t#1| (-1185 |t#1|)) (-420 |t#1|) (-233 |t#1|) (-346 |t#1|) (-409 |t#1|) (-894 |t#1|) (-385 |t#1|) (-174) (-10 -8 (-6 -3561) (-15 -1507 ($)) (-15 -3204 ($ $)) (-15 -3561 ($ |t#1| |t#1|)) (-15 -4248 (|t#1| $)) (-15 -4238 (|t#1| $)) (-15 -3421 (|t#1| $)) (IF (|has| |t#1| (-565)) (PROGN (-6 (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-6 (-623 (-171 (-227)))) (-6 (-623 (-171 (-387))))) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1215)) (PROGN (-6 (-1215)) (-15 -3607 (|t#1| $)) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1610 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-314)) (-6 (-919)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-38 |#1|) . T) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-35) |has| |#1| (-1215)) ((-95) |has| |#1| (-1215)) ((-102) . T) ((-111 #0# #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-357)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-357)) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-622 (-871)) . T) ((-174) . T) ((-623 (-171 (-227))) |has| |#1| (-1034)) ((-623 (-171 (-387))) |has| |#1| (-1034)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-623 #1=(-1185 |#1|)) . T) ((-235 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-233 |#1|) . T) ((-238) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-237) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-248) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-291) |has| |#1| (-1215)) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-314) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-371) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-411) |has| |#1| (-357)) ((-376) -2817 (|has| |#1| (-376)) (|has| |#1| (-357))) ((-357) |has| |#1| (-357)) ((-378 |#1| #1#) . T) ((-418 |#1| #1#) . T) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-502) |has| |#1| (-1215)) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-655 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-657 #2=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-649 |#1|) . T) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-648 #2#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-726 |#1|) . T) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-733 |#1| #1#) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-919) -12 (|has| |#1| (-314)) (|has| |#1| (-919))) ((-930) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#1| (-1215))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-357)) ((-1215) |has| |#1| (-1215)) ((-1218) |has| |#1| (-1215)) ((-1230) . T) ((-1234) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) -((-4218 (((-427 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4218 ((-427 |#2|) |#2|))) (-314) (-1256 (-171 |#1|))) (T -168)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) -(-10 -7 (-15 -4218 ((-427 |#2|) |#2|))) -((-3525 (((-1147) (-1147) (-298)) 8)) (-3140 (((-653 (-700 (-287))) (-1171)) 81)) (-1917 (((-700 (-287)) (-1147)) 76))) -(((-169) (-13 (-1230) (-10 -7 (-15 -3525 ((-1147) (-1147) (-298))) (-15 -1917 ((-700 (-287)) (-1147))) (-15 -3140 ((-653 (-700 (-287))) (-1171)))))) (T -169)) -((-3525 (*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-298)) (-5 *1 (-169)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-700 (-287))) (-5 *1 (-169)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-700 (-287)))) (-5 *1 (-169))))) -(-13 (-1230) (-10 -7 (-15 -3525 ((-1147) (-1147) (-298))) (-15 -1917 ((-700 (-287)) (-1147))) (-15 -3140 ((-653 (-700 (-287))) (-1171))))) -((-1776 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 34)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2114 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-1635 ((|#1| $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-1215)))) (-2246 (($ $) NIL (|has| |#1| (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4285 (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-2427 (((-427 $) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4228 (($ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-314)))) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2342 (($ $) NIL (|has| |#1| (-1215)))) (-2225 (($ $) NIL (|has| |#1| (-1215)))) (-2388 (($ $) NIL (|has| |#1| (-1215)))) (-2266 (($ $) NIL (|has| |#1| (-1215)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-357)))) (-2784 (($ $ $) NIL (|has| |#1| (-314)))) (-1720 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ (-1185 |#1|)) NIL) (((-3 $ "failed") (-416 (-1185 |#1|))) NIL (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 13)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-314)))) (-3731 (($) NIL (|has| |#1| (-357)))) (-1708 (((-112) $) NIL (|has| |#1| (-357)))) (-2104 (($ $ (-780)) NIL (|has| |#1| (-357))) (($ $) NIL (|has| |#1| (-357)))) (-2696 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-1610 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#1| (-1215))))) (-2999 (($) NIL (|has| |#1| (-1215)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#1| (-896 (-387))))) (-2534 (((-931) $) NIL (|has| |#1| (-357))) (((-842 (-931)) $) NIL (|has| |#1| (-357)))) (-1959 (((-112) $) 36)) (-4325 (($ $ (-573)) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3421 ((|#1| $) 47)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-314)))) (-2297 (((-1185 |#1|) $) NIL (|has| |#1| (-371)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-3118 (($ $) NIL (|has| |#1| (-1215)))) (-2853 (((-1185 |#1|) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-314))) (($ $ $) NIL (|has| |#1| (-314)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-3816 (($) NIL (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-1507 (($) NIL)) (-4248 ((|#1| $) 15)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-314)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-314))) (($ $ $) NIL (|has| |#1| (-314)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4218 (((-427 $) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-314)))) (-2837 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 48 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-314)))) (-1608 (($ $) NIL (|has| |#1| (-1215)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) NIL (|has| |#1| (-314)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-314)))) (-3592 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) NIL (|has| |#1| (-357)))) (-3904 (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2984 (((-1185 |#1|)) NIL)) (-2401 (($ $) NIL (|has| |#1| (-1215)))) (-2274 (($ $) NIL (|has| |#1| (-1215)))) (-2510 (($) NIL (|has| |#1| (-357)))) (-2374 (($ $) NIL (|has| |#1| (-1215)))) (-2255 (($ $) NIL (|has| |#1| (-1215)))) (-2352 (($ $) NIL (|has| |#1| (-1215)))) (-2236 (($ $) NIL (|has| |#1| (-1215)))) (-2123 (((-1280 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL) (((-1185 |#1|) $) NIL) (($ (-1185 |#1|)) NIL) (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (((-171 (-387)) $) NIL (|has| |#1| (-1034))) (((-171 (-227)) $) NIL (|has| |#1| (-1034))) (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) 46)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-357))))) (-3561 (($ |#1| |#1|) 38)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) 37) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-4279 (($ $) NIL (|has| |#1| (-357))) (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-2517 (((-1185 |#1|) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2439 (($ $) NIL (|has| |#1| (-1215)))) (-2304 (($ $) NIL (|has| |#1| (-1215)))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2413 (($ $) NIL (|has| |#1| (-1215)))) (-2286 (($ $) NIL (|has| |#1| (-1215)))) (-2464 (($ $) NIL (|has| |#1| (-1215)))) (-2324 (($ $) NIL (|has| |#1| (-1215)))) (-3607 ((|#1| $) NIL (|has| |#1| (-1215)))) (-2520 (($ $) NIL (|has| |#1| (-1215)))) (-2333 (($ $) NIL (|has| |#1| (-1215)))) (-2452 (($ $) NIL (|has| |#1| (-1215)))) (-2314 (($ $) NIL (|has| |#1| (-1215)))) (-2426 (($ $) NIL (|has| |#1| (-1215)))) (-2296 (($ $) NIL (|has| |#1| (-1215)))) (-1660 (($ $) NIL (|has| |#1| (-1072)))) (-2132 (($) 28 T CONST)) (-2144 (($) 30 T CONST)) (-2808 (((-1171) $) 23 (|has| |#1| (-837))) (((-1171) $ (-112)) 25 (|has| |#1| (-837))) (((-1285) (-831) $) 26 (|has| |#1| (-837))) (((-1285) (-831) $ (-112)) 27 (|has| |#1| (-837)))) (-3609 (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 40)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-416 (-573))) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215)))) (($ $ $) NIL (|has| |#1| (-1215))) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) -((-1835 (((-902 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-902 |#1|) |#3|))) (-1112) (-13 (-623 (-902 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1835 (*1 *2 *3) (-12 (-4 *5 (-13 (-623 *2) (-174))) (-5 *2 (-902 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1112)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1835 ((-902 |#1|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-2302 (((-112) $) 9)) (-1875 (((-112) $ (-112)) 11)) (-3789 (($) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3166 (($ $) 14)) (-2942 (((-871) $) 18)) (-1355 (((-112) $) 8)) (-1380 (((-112) $ (-112)) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-173) (-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -1355 ((-112) $)) (-15 -2302 ((-112) $)) (-15 -1380 ((-112) $ (-112))) (-15 -1875 ((-112) $ (-112))) (-15 -3166 ($ $))))) (T -173)) -((-3789 (*1 *1) (-5 *1 (-173))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1380 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1875 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3166 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -1355 ((-112) $)) (-15 -2302 ((-112) $)) (-15 -1380 ((-112) $ (-112))) (-15 -1875 ((-112) $ (-112))) (-15 -3166 ($ $)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +((-2681 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1468 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2190 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3535 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2366 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1218)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1075)) (-4 *3 (-1218)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2222 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) +(-13 (-734 |t#1| (-1188 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3535) (-15 -1468 ($)) (-15 -2190 ($ $)) (-15 -3535 ($ |t#1| |t#1|)) (-15 -4233 (|t#1| $)) (-15 -4222 (|t#1| $)) (-15 -2681 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1037)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -2366 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1218)) (PROGN (-6 (-1218)) (-15 -4021 (|t#1| $)) (IF (|has| |t#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -3149 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-922)) (IF (|has| |t#1| (-315)) (-6 (-922)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1218)) ((-95) |has| |#1| (-1218)) ((-102) . T) ((-111 #0# #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1037)) ((-624 (-171 (-388))) |has| |#1| (-1037)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1188 |#1|)) . T) ((-235 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-238) -2832 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1218)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2832 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1218)) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-922) -12 (|has| |#1| (-315)) (|has| |#1| (-922))) ((-933) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1017) -12 (|has| |#1| (-1017)) (|has| |#1| (-1218))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-358)) ((-1218) |has| |#1| (-1218)) ((-1221) |has| |#1| (-1218)) ((-1233) . T) ((-1237) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) +((-4200 (((-428 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -4200 ((-428 |#2|) |#2|))) (-315) (-1259 (-171 |#1|))) (T -168)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) +(-10 -7 (-15 -4200 ((-428 |#2|) |#2|))) +((-3499 (((-1150) (-1150) (-299)) 8)) (-2783 (((-654 (-701 (-288))) (-1174)) 81)) (-3098 (((-701 (-288)) (-1150)) 76))) +(((-169) (-13 (-1233) (-10 -7 (-15 -3499 ((-1150) (-1150) (-299))) (-15 -3098 ((-701 (-288)) (-1150))) (-15 -2783 ((-654 (-701 (-288))) (-1174)))))) (T -169)) +((-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-299)) (-5 *1 (-169)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) +(-13 (-1233) (-10 -7 (-15 -3499 ((-1150) (-1150) (-299))) (-15 -3098 ((-701 (-288)) (-1150))) (-15 -2783 ((-654 (-701 (-288))) (-1174))))) +((-1787 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1787 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -1787 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 34)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-4319 (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-1731 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-4368 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) NIL)) (-1646 ((|#1| $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-1218)))) (-2260 (($ $) NIL (|has| |#1| (-1218)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-3313 (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2153 (((-428 $) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-4211 (($ $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-2357 (($ $) NIL (|has| |#1| (-1218)))) (-2238 (($ $) NIL (|has| |#1| (-1218)))) (-2403 (($ $) NIL (|has| |#1| (-1218)))) (-2281 (($ $) NIL (|has| |#1| (-1218)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-3875 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2800 (($ $ $) NIL (|has| |#1| (-315)))) (-1732 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ (-1188 |#1|)) NIL) (((-3 $ "failed") (-417 (-1188 |#1|))) NIL (|has| |#1| (-372)))) (-2978 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 13)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4002 (((-112) $) NIL (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-315)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-2776 (($) NIL (|has| |#1| (-358)))) (-1627 (((-112) $) NIL (|has| |#1| (-358)))) (-4278 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-2941 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-3149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1075)) (|has| |#1| (-1218))))) (-3003 (($) NIL (|has| |#1| (-1218)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3837 (((-934) $) NIL (|has| |#1| (-358))) (((-843 (-934)) $) NIL (|has| |#1| (-358)))) (-2276 (((-112) $) 36)) (-3649 (($ $ (-574)) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218))))) (-2681 ((|#1| $) 47)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-3525 (((-1188 |#1|) $) NIL (|has| |#1| (-372)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-3111 (($ $) NIL (|has| |#1| (-1218)))) (-2868 (((-1188 |#1|) $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-1468 (($) NIL)) (-4233 ((|#1| $) 15)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-315)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| |#1| (-358)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-922))))) (-4200 (((-428 $) $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-372))))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-315)))) (-2852 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1619 (($ $) NIL (|has| |#1| (-1218)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-3575 (((-781) $) NIL (|has| |#1| (-315)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-315)))) (-3902 ((|#1| (-1283 $)) NIL) ((|#1|) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3878 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3450 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2611 (((-1188 |#1|)) NIL)) (-2415 (($ $) NIL (|has| |#1| (-1218)))) (-2289 (($ $) NIL (|has| |#1| (-1218)))) (-3627 (($) NIL (|has| |#1| (-358)))) (-2388 (($ $) NIL (|has| |#1| (-1218)))) (-2271 (($ $) NIL (|has| |#1| (-1218)))) (-2367 (($ $) NIL (|has| |#1| (-1218)))) (-2249 (($ $) NIL (|has| |#1| (-1218)))) (-4421 (((-1283 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1846 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL) (((-1188 |#1|) $) NIL) (($ (-1188 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1037))) (((-171 (-227)) $) NIL (|has| |#1| (-1037))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2190 (($ $) 46)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-358))))) (-3535 (($ |#1| |#1|) 38)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-3270 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3688 (((-1188 |#1|) $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1218)))) (-2319 (($ $) NIL (|has| |#1| (-1218)))) (-3676 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-315)) (|has| |#1| (-922))) (|has| |#1| (-566))))) (-2428 (($ $) NIL (|has| |#1| (-1218)))) (-2301 (($ $) NIL (|has| |#1| (-1218)))) (-2479 (($ $) NIL (|has| |#1| (-1218)))) (-2339 (($ $) NIL (|has| |#1| (-1218)))) (-4021 ((|#1| $) NIL (|has| |#1| (-1218)))) (-2535 (($ $) NIL (|has| |#1| (-1218)))) (-2348 (($ $) NIL (|has| |#1| (-1218)))) (-2467 (($ $) NIL (|has| |#1| (-1218)))) (-2329 (($ $) NIL (|has| |#1| (-1218)))) (-2442 (($ $) NIL (|has| |#1| (-1218)))) (-2311 (($ $) NIL (|has| |#1| (-1218)))) (-2366 (($ $) NIL (|has| |#1| (-1075)))) (-2143 (($) 28 T CONST)) (-2155 (($) 30 T CONST)) (-1579 (((-1174) $) 23 (|has| |#1| (-838))) (((-1174) $ (-112)) 25 (|has| |#1| (-838))) (((-1288) (-832) $) 26 (|has| |#1| (-838))) (((-1288) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3583 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 40)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1218)))) (($ $ $) NIL (|has| |#1| (-1218))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) +((-1846 (((-903 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1846 ((-903 |#1|) |#3|))) (-1115) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-1846 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1115)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -1846 ((-903 |#1|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-2312 (((-112) $) 9)) (-3879 (((-112) $ (-112)) 11)) (-3763 (($) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3156 (($ $) 14)) (-2950 (((-872) $) 18)) (-1829 (((-112) $) 8)) (-1389 (((-112) $ (-112)) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-173) (-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -1829 ((-112) $)) (-15 -2312 ((-112) $)) (-15 -1389 ((-112) $ (-112))) (-15 -3879 ((-112) $ (-112))) (-15 -3156 ($ $))))) (T -173)) +((-3763 (*1 *1) (-5 *1 (-173))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1389 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3879 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3156 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -1829 ((-112) $)) (-15 -2312 ((-112) $)) (-15 -1389 ((-112) $ (-112))) (-15 -3879 ((-112) $ (-112))) (-15 -3156 ($ $)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1061) (-111 $ $) (-10 -7 (-6 (-4457 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-1981 (($ $) 6))) +(-13 (-1064) (-111 $ $) (-10 -7 (-6 (-4460 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2474 (($ $) 6))) (((-175) (-141)) (T -175)) -((-1981 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -1981 ($ $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#1| $) 81)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-3567 (($ $) 21)) (-3641 (($ |#1| (-1169 |#1|)) 50)) (-2232 (((-3 $ "failed") $) 123)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2399 (((-1169 |#1|) $) 88)) (-4420 (((-1169 |#1|) $) 85)) (-1495 (((-1169 |#1|) $) 86)) (-1959 (((-112) $) NIL)) (-2094 (((-1169 |#1|) $) 94)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2212 (($ $ (-573)) 97)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1701 (((-1169 |#1|) $) 95)) (-2469 (((-1169 (-416 |#1|)) $) 14)) (-1468 (($ (-416 |#1|)) 17) (($ |#1| (-1169 |#1|) (-1169 |#1|)) 40)) (-4101 (($ $) 99)) (-2942 (((-871) $) 139) (($ (-573)) 53) (($ |#1|) 54) (($ (-416 |#1|)) 38) (($ (-416 (-573))) NIL) (($ $) NIL)) (-1545 (((-780)) 69 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2060 (((-1169 (-416 |#1|)) $) 20)) (-2132 (($) 27 T CONST)) (-2144 (($) 30 T CONST)) (-2981 (((-112) $ $) 37)) (-3103 (($ $ $) 121)) (-3093 (($ $) 112) (($ $ $) 109)) (-3077 (($ $ $) 107)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-416 |#1|) $) 117) (($ $ (-416 |#1|)) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-416 |#1|)) (-371) (-10 -8 (-15 -1468 ($ (-416 |#1|))) (-15 -1468 ($ |#1| (-1169 |#1|) (-1169 |#1|))) (-15 -3641 ($ |#1| (-1169 |#1|))) (-15 -4420 ((-1169 |#1|) $)) (-15 -1495 ((-1169 |#1|) $)) (-15 -2399 ((-1169 |#1|) $)) (-15 -3770 (|#1| $)) (-15 -3567 ($ $)) (-15 -2060 ((-1169 (-416 |#1|)) $)) (-15 -2469 ((-1169 (-416 |#1|)) $)) (-15 -2094 ((-1169 |#1|) $)) (-15 -1701 ((-1169 |#1|) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) (-314)) (T -176)) -((-1468 (*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-314)) (-5 *1 (-176 *3)))) (-1468 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) (-3641 (*1 *1 *2 *3) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-3770 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) (-3567 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-4101 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314))))) -(-13 (-38 |#1|) (-38 (-416 |#1|)) (-371) (-10 -8 (-15 -1468 ($ (-416 |#1|))) (-15 -1468 ($ |#1| (-1169 |#1|) (-1169 |#1|))) (-15 -3641 ($ |#1| (-1169 |#1|))) (-15 -4420 ((-1169 |#1|) $)) (-15 -1495 ((-1169 |#1|) $)) (-15 -2399 ((-1169 |#1|) $)) (-15 -3770 (|#1| $)) (-15 -3567 ($ $)) (-15 -2060 ((-1169 (-416 |#1|)) $)) (-15 -2469 ((-1169 (-416 |#1|)) $)) (-15 -2094 ((-1169 |#1|) $)) (-15 -1701 ((-1169 |#1|) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) -((-1930 (($ (-109) $) 15)) (-4155 (((-700 (-109)) (-515) $) 14)) (-2942 (((-871) $) 18)) (-3916 (((-653 (-109)) $) 8))) -(((-177) (-13 (-622 (-871)) (-10 -8 (-15 -3916 ((-653 (-109)) $)) (-15 -1930 ($ (-109) $)) (-15 -4155 ((-700 (-109)) (-515) $))))) (T -177)) -((-3916 (*1 *2 *1) (-12 (-5 *2 (-653 (-109))) (-5 *1 (-177)))) (-1930 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-177))))) -(-13 (-622 (-871)) (-10 -8 (-15 -3916 ((-653 (-109)) $)) (-15 -1930 ($ (-109) $)) (-15 -4155 ((-700 (-109)) (-515) $)))) -((-2419 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 38)) (-4297 (((-953 |#1|) (-953 |#1|)) 22)) (-2842 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 34)) (-2024 (((-953 |#1|) (-953 |#1|)) 20)) (-1542 (((-953 |#1|) (-953 |#1|)) 28)) (-3231 (((-953 |#1|) (-953 |#1|)) 27)) (-1594 (((-953 |#1|) (-953 |#1|)) 26)) (-1346 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 35)) (-3576 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 33)) (-4027 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 32)) (-4353 (((-953 |#1|) (-953 |#1|)) 21)) (-2375 (((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|) 41)) (-3288 (((-953 |#1|) (-953 |#1|)) 8)) (-3219 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 37)) (-4210 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -3288 ((-953 |#1|) (-953 |#1|))) (-15 -2024 ((-953 |#1|) (-953 |#1|))) (-15 -4353 ((-953 |#1|) (-953 |#1|))) (-15 -4297 ((-953 |#1|) (-953 |#1|))) (-15 -1594 ((-953 |#1|) (-953 |#1|))) (-15 -3231 ((-953 |#1|) (-953 |#1|))) (-15 -1542 ((-953 |#1|) (-953 |#1|))) (-15 -4027 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3576 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2842 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -1346 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -4210 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3219 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2419 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2375 ((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|))) (-13 (-371) (-1215) (-1014))) (T -178)) -((-2375 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-2419 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-1346 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-2842 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-3576 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-4027 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-3231 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-4353 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3288 ((-953 |#1|) (-953 |#1|))) (-15 -2024 ((-953 |#1|) (-953 |#1|))) (-15 -4353 ((-953 |#1|) (-953 |#1|))) (-15 -4297 ((-953 |#1|) (-953 |#1|))) (-15 -1594 ((-953 |#1|) (-953 |#1|))) (-15 -3231 ((-953 |#1|) (-953 |#1|))) (-15 -1542 ((-953 |#1|) (-953 |#1|))) (-15 -4027 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3576 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2842 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -1346 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -4210 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3219 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2419 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2375 ((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|))) -((-2517 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2517 (|#2| |#3|))) (-174) (-1256 |#1|) (-733 |#1| |#2|)) (T -179)) -((-2517 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1256 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-733 *4 *2))))) -(-10 -7 (-15 -2517 (|#2| |#3|))) -((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 44 (|has| (-962 |#2|) (-896 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-962 |#2|) (-896 |#1|)) (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) |%noBranch|)) (-1112) (-13 (-896 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *3 (-167 *6)) (-4 (-962 *6) (-896 *5)) (-4 *6 (-13 (-896 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-962 |#2|) (-896 |#1|)) (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) |%noBranch|)) -((-2760 (((-653 |#1|) (-653 |#1|) |#1|) 41)) (-3424 (((-653 |#1|) |#1| (-653 |#1|)) 20)) (-3276 (((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|)) 36) ((|#1| (-653 |#1|) (-653 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -3424 ((-653 |#1|) |#1| (-653 |#1|))) (-15 -3276 (|#1| (-653 |#1|) (-653 |#1|))) (-15 -3276 ((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|))) (-15 -2760 ((-653 |#1|) (-653 |#1|) |#1|))) (-314)) (T -181)) -((-2760 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3)))) (-3276 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-314)) (-5 *1 (-181 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-181 *2)) (-4 *2 (-314)))) (-3424 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3424 ((-653 |#1|) |#1| (-653 |#1|))) (-15 -3276 (|#1| (-653 |#1|) (-653 |#1|))) (-15 -3276 ((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|))) (-15 -2760 ((-653 |#1|) (-653 |#1|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-182) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -182)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-182)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-182))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) -((-1706 (((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|) 66)) (-3516 ((|#1| |#1|) 58)) (-3010 (((-171 |#1|) |#2|) 93)) (-1749 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3217 ((|#2| |#2|) 91)) (-4105 (((-427 |#2|) |#2| |#1|) 118) (((-427 |#2|) |#2| |#1| (-112)) 88)) (-3421 ((|#1| |#2|) 117)) (-4244 ((|#2| |#2|) 130)) (-4218 (((-427 |#2|) |#2|) 153) (((-427 |#2|) |#2| |#1|) 33) (((-427 |#2|) |#2| |#1| (-112)) 152)) (-1551 (((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|) 151) (((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112)) 81)) (-1682 (((-653 (-171 |#1|)) |#2| |#1|) 42) (((-653 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -1682 ((-653 (-171 |#1|)) |#2|)) (-15 -1682 ((-653 (-171 |#1|)) |#2| |#1|)) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112))) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|)) (-15 -4218 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-427 |#2|) |#2| |#1|)) (-15 -4218 ((-427 |#2|) |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3421 (|#1| |#2|)) (-15 -4105 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4105 ((-427 |#2|) |#2| |#1|)) (-15 -3217 (|#2| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#2|)) (-15 -3010 ((-171 |#1|) |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -1706 ((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|))) (-13 (-371) (-857)) (-1256 (-171 |#1|))) (T -183)) -((-1706 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-2 (|:| |start| *3) (|:| -1687 (-427 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-3516 (*1 *2 *2) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-3010 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-371) (-857))) (-4 *3 (-1256 *2)))) (-1749 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-1749 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1256 (-171 *3))))) (-4105 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4105 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-3421 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1256 (-171 *3))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4218 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-371) (-857))) (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1256 (-171 *5))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) -(-10 -7 (-15 -1682 ((-653 (-171 |#1|)) |#2|)) (-15 -1682 ((-653 (-171 |#1|)) |#2| |#1|)) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112))) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|)) (-15 -4218 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-427 |#2|) |#2| |#1|)) (-15 -4218 ((-427 |#2|) |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3421 (|#1| |#2|)) (-15 -4105 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4105 ((-427 |#2|) |#2| |#1|)) (-15 -3217 (|#2| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#2|)) (-15 -3010 ((-171 |#1|) |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -1706 ((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|))) -((-1318 (((-3 |#2| "failed") |#2|) 16)) (-4083 (((-780) |#2|) 18)) (-4162 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1318 ((-3 |#2| "failed") |#2|)) (-15 -4083 ((-780) |#2|)) (-15 -4162 (|#2| |#2| |#2|))) (-1230) (-683 |#1|)) (T -184)) -((-4162 (*1 *2 *2 *2) (-12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-1230)) (-5 *2 (-780)) (-5 *1 (-184 *4 *3)) (-4 *3 (-683 *4)))) (-1318 (*1 *2 *2) (|partial| -12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3))))) -(-10 -7 (-15 -1318 ((-3 |#2| "failed") |#2|)) (-15 -4083 ((-780) |#2|)) (-15 -4162 (|#2| |#2| |#2|))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1963 ((|#1| $) 7)) (-2942 (((-871) $) 14)) (-3507 (((-112) $ $) NIL)) (-1563 (((-653 (-1194)) $) 10)) (-2981 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1112) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-653 (-1194)) $)))) (-187)) (T -185)) -((-1963 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1112) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-653 (-1194)) $)))) -((-1714 (((-653 (-874)) $) 16)) (-4281 (((-188) $) 8)) (-2966 (((-653 (-112)) $) 13)) (-4010 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -1714 ((-653 (-874)) |#1|)) (-15 -2966 ((-653 (-112)) |#1|)) (-15 -4281 ((-188) |#1|)) (-15 -4010 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -1714 ((-653 (-874)) |#1|)) (-15 -2966 ((-653 (-112)) |#1|)) (-15 -4281 ((-188) |#1|)) (-15 -4010 ((-55) |#1|))) -((-2848 (((-112) $ $) 7)) (-1714 (((-653 (-874)) $) 19)) (-2031 (((-515) $) 16)) (-3180 (((-1171) $) 10)) (-4281 (((-188) $) 21)) (-1667 (((-112) $ (-515)) 14)) (-3965 (((-1132) $) 11)) (-2966 (((-653 (-112)) $) 20)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4010 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) +((-2474 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -2474 ($ $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 ((|#1| $) 81)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-3656 (($ $) 21)) (-3178 (($ |#1| (-1172 |#1|)) 50)) (-2978 (((-3 $ "failed") $) 123)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1934 (((-1172 |#1|) $) 88)) (-2124 (((-1172 |#1|) $) 85)) (-1360 (((-1172 |#1|) $) 86)) (-2276 (((-112) $) NIL)) (-4177 (((-1172 |#1|) $) 94)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2844 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-4016 (($ $ (-574)) 97)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2799 (((-1172 |#1|) $) 95)) (-4437 (((-1172 (-417 |#1|)) $) 14)) (-4197 (($ (-417 |#1|)) 17) (($ |#1| (-1172 |#1|) (-1172 |#1|)) 40)) (-2073 (($ $) 99)) (-2950 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-3781 (((-781)) 69 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-1969 (((-1172 (-417 |#1|)) $) 20)) (-2143 (($) 27 T CONST)) (-2155 (($) 30 T CONST)) (-2985 (((-112) $ $) 37)) (-3102 (($ $ $) 121)) (-3089 (($ $) 112) (($ $ $) 109)) (-3073 (($ $ $) 107)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -4197 ($ (-417 |#1|))) (-15 -4197 ($ |#1| (-1172 |#1|) (-1172 |#1|))) (-15 -3178 ($ |#1| (-1172 |#1|))) (-15 -2124 ((-1172 |#1|) $)) (-15 -1360 ((-1172 |#1|) $)) (-15 -1934 ((-1172 |#1|) $)) (-15 -1882 (|#1| $)) (-15 -3656 ($ $)) (-15 -1969 ((-1172 (-417 |#1|)) $)) (-15 -4437 ((-1172 (-417 |#1|)) $)) (-15 -4177 ((-1172 |#1|) $)) (-15 -2799 ((-1172 |#1|) $)) (-15 -4016 ($ $ (-574))) (-15 -2073 ($ $)))) (-315)) (T -176)) +((-4197 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-4197 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1882 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-3656 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4437 (*1 *2 *1) (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2073 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) +(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -4197 ($ (-417 |#1|))) (-15 -4197 ($ |#1| (-1172 |#1|) (-1172 |#1|))) (-15 -3178 ($ |#1| (-1172 |#1|))) (-15 -2124 ((-1172 |#1|) $)) (-15 -1360 ((-1172 |#1|) $)) (-15 -1934 ((-1172 |#1|) $)) (-15 -1882 (|#1| $)) (-15 -3656 ($ $)) (-15 -1969 ((-1172 (-417 |#1|)) $)) (-15 -4437 ((-1172 (-417 |#1|)) $)) (-15 -4177 ((-1172 |#1|) $)) (-15 -2799 ((-1172 |#1|) $)) (-15 -4016 ($ $ (-574))) (-15 -2073 ($ $)))) +((-3242 (($ (-109) $) 15)) (-1381 (((-701 (-109)) (-516) $) 14)) (-2950 (((-872) $) 18)) (-3925 (((-654 (-109)) $) 8))) +(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -3925 ((-654 (-109)) $)) (-15 -3242 ($ (-109) $)) (-15 -1381 ((-701 (-109)) (-516) $))))) (T -177)) +((-3925 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-3242 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-1381 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))) +(-13 (-623 (-872)) (-10 -8 (-15 -3925 ((-654 (-109)) $)) (-15 -3242 ($ (-109) $)) (-15 -1381 ((-701 (-109)) (-516) $)))) +((-2105 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 38)) (-3410 (((-956 |#1|) (-956 |#1|)) 22)) (-3768 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 34)) (-1660 (((-956 |#1|) (-956 |#1|)) 20)) (-3746 (((-956 |#1|) (-956 |#1|)) 28)) (-4377 (((-956 |#1|) (-956 |#1|)) 27)) (-3011 (((-956 |#1|) (-956 |#1|)) 26)) (-1740 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 35)) (-3753 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 33)) (-2588 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 32)) (-2702 (((-956 |#1|) (-956 |#1|)) 21)) (-1733 (((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|) 41)) (-3747 (((-956 |#1|) (-956 |#1|)) 8)) (-4242 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 37)) (-3828 (((-1 (-956 |#1|) (-956 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3747 ((-956 |#1|) (-956 |#1|))) (-15 -1660 ((-956 |#1|) (-956 |#1|))) (-15 -2702 ((-956 |#1|) (-956 |#1|))) (-15 -3410 ((-956 |#1|) (-956 |#1|))) (-15 -3011 ((-956 |#1|) (-956 |#1|))) (-15 -4377 ((-956 |#1|) (-956 |#1|))) (-15 -3746 ((-956 |#1|) (-956 |#1|))) (-15 -2588 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3753 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3768 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -1740 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3828 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -4242 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -2105 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -1733 ((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|))) (-13 (-372) (-1218) (-1017))) (T -178)) +((-1733 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-2105 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-4242 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3828 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3768 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3753 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-2588 (*1 *2 *3) (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3410 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3747 ((-956 |#1|) (-956 |#1|))) (-15 -1660 ((-956 |#1|) (-956 |#1|))) (-15 -2702 ((-956 |#1|) (-956 |#1|))) (-15 -3410 ((-956 |#1|) (-956 |#1|))) (-15 -3011 ((-956 |#1|) (-956 |#1|))) (-15 -4377 ((-956 |#1|) (-956 |#1|))) (-15 -3746 ((-956 |#1|) (-956 |#1|))) (-15 -2588 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3753 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3768 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -1740 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -3828 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -4242 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -2105 ((-1 (-956 |#1|) (-956 |#1|)) |#1|)) (-15 -1733 ((-1 (-956 |#1|) (-956 |#1|)) |#1| |#1|))) +((-3688 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3688 (|#2| |#3|))) (-174) (-1259 |#1|) (-734 |#1| |#2|)) (T -179)) +((-3688 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1259 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2))))) +(-10 -7 (-15 -3688 (|#2| |#3|))) +((-1793 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-965 |#2|) (-897 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-965 |#2|) (-897 |#1|)) (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1115) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *3 (-167 *6)) (-4 (-965 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-965 |#2|) (-897 |#1|)) (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) +((-4244 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-2716 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-3630 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -2716 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -3630 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -3630 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -4244 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181)) +((-4244 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-3630 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-3630 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-2716 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -2716 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -3630 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -3630 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -4244 ((-654 |#1|) (-654 |#1|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-182) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -182)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-182)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-182))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) +((-2838 (((-2 (|:| |start| |#2|) (|:| -2679 (-428 |#2|))) |#2|) 66)) (-4362 ((|#1| |#1|) 58)) (-2879 (((-171 |#1|) |#2|) 93)) (-2008 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-4218 ((|#2| |#2|) 91)) (-2117 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-2681 ((|#1| |#2|) 117)) (-4135 ((|#2| |#2|) 130)) (-4200 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-3840 (((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112)) 81)) (-2618 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -2618 ((-654 (-171 |#1|)) |#2|)) (-15 -2618 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3840 ((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112))) (-15 -3840 ((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|)) (-15 -4200 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4200 ((-428 |#2|) |#2| |#1|)) (-15 -4200 ((-428 |#2|) |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -2681 (|#1| |#2|)) (-15 -2117 ((-428 |#2|) |#2| |#1| (-112))) (-15 -2117 ((-428 |#2|) |#2| |#1|)) (-15 -4218 (|#2| |#2|)) (-15 -2008 (|#1| |#2| |#1|)) (-15 -2008 (|#1| |#2|)) (-15 -2879 ((-171 |#1|) |#2|)) (-15 -4362 (|#1| |#1|)) (-15 -2838 ((-2 (|:| |start| |#2|) (|:| -2679 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1259 (-171 |#1|))) (T -183)) +((-2838 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -2679 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-4362 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-2879 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1259 *2)))) (-2008 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-2008 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1259 (-171 *3))))) (-2117 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2117 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2681 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1259 (-171 *2))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1259 (-171 *3))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-4200 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-4200 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-3840 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -2679 (-654 *3)) (|:| -2692 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-3840 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -2679 (-654 *3)) (|:| -2692 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1259 (-171 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) +(-10 -7 (-15 -2618 ((-654 (-171 |#1|)) |#2|)) (-15 -2618 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3840 ((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2| (-112))) (-15 -3840 ((-654 (-2 (|:| -2679 (-654 |#2|)) (|:| -2692 |#1|))) |#2| |#2|)) (-15 -4200 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4200 ((-428 |#2|) |#2| |#1|)) (-15 -4200 ((-428 |#2|) |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -2681 (|#1| |#2|)) (-15 -2117 ((-428 |#2|) |#2| |#1| (-112))) (-15 -2117 ((-428 |#2|) |#2| |#1|)) (-15 -4218 (|#2| |#2|)) (-15 -2008 (|#1| |#2| |#1|)) (-15 -2008 (|#1| |#2|)) (-15 -2879 ((-171 |#1|) |#2|)) (-15 -4362 (|#1| |#1|)) (-15 -2838 ((-2 (|:| |start| |#2|) (|:| -2679 (-428 |#2|))) |#2|))) +((-1522 (((-3 |#2| "failed") |#2|) 16)) (-1907 (((-781) |#2|) 18)) (-1436 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2|)) (-15 -1907 ((-781) |#2|)) (-15 -1436 (|#2| |#2| |#2|))) (-1233) (-684 |#1|)) (T -184)) +((-1436 (*1 *2 *2 *2) (-12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-1233)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-1522 (*1 *2 *2) (|partial| -12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) +(-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2|)) (-15 -1907 ((-781) |#2|)) (-15 -1436 (|#2| |#2| |#2|))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1974 ((|#1| $) 7)) (-2950 (((-872) $) 14)) (-4259 (((-112) $ $) NIL)) (-1574 (((-654 (-1197)) $) 10)) (-2985 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1115) (-10 -8 (-15 -1974 (|#1| $)) (-15 -1574 ((-654 (-1197)) $)))) (-187)) (T -185)) +((-1974 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1115) (-10 -8 (-15 -1974 (|#1| $)) (-15 -1574 ((-654 (-1197)) $)))) +((-1725 (((-654 (-875)) $) 16)) (-4269 (((-188) $) 8)) (-2431 (((-654 (-112)) $) 13)) (-2404 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -1725 ((-654 (-875)) |#1|)) (-15 -2431 ((-654 (-112)) |#1|)) (-15 -4269 ((-188) |#1|)) (-15 -2404 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -1725 ((-654 (-875)) |#1|)) (-15 -2431 ((-654 (-112)) |#1|)) (-15 -4269 ((-188) |#1|)) (-15 -2404 ((-55) |#1|))) +((-2863 (((-112) $ $) 7)) (-1725 (((-654 (-875)) $) 19)) (-2041 (((-516) $) 16)) (-1938 (((-1174) $) 10)) (-4269 (((-188) $) 21)) (-2454 (((-112) $ (-516)) 14)) (-3939 (((-1135) $) 11)) (-2431 (((-654 (-112)) $) 20)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2404 (((-55) $) 15)) (-2985 (((-112) $ $) 6))) (((-187) (-141)) (T -187)) -((-4281 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-112))))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-874)))))) -(-13 (-844 (-515)) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2966 ((-653 (-112)) $)) (-15 -1714 ((-653 (-874)) $)))) -(((-102) . T) ((-622 (-871)) . T) ((-844 (-515)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-8 (($) 7 T CONST)) (-2942 (((-871) $) 12)) (-9 (($) 6 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) -(((-188) (-13 (-1112) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705)))) (T -188)) +((-4269 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) +(-13 (-845 (-516)) (-10 -8 (-15 -4269 ((-188) $)) (-15 -2431 ((-654 (-112)) $)) (-15 -1725 ((-654 (-875)) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-8 (($) 7 T CONST)) (-2950 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 10))) +(((-188) (-13 (-1115) (-10 -8 (-15 -9 ($) -1716) (-15 -8 ($) -1716) (-15 -7 ($) -1716)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1112) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705))) -((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) 8)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) 10)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-3843 (((-700 $) (-515)) 17)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 12)) (-2981 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -3843 ((-700 $) (-515)))))) (T -189)) -((-3843 (*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -3843 ((-700 $) (-515))))) -((-2125 ((|#2| |#2|) 28)) (-2814 (((-112) |#2|) 19)) (-4238 (((-323 |#1|) |#2|) 12)) (-4248 (((-323 |#1|) |#2|) 14)) (-3173 ((|#2| |#2| (-1189)) 69) ((|#2| |#2|) 70)) (-3513 (((-171 (-323 |#1|)) |#2|) 10)) (-1733 ((|#2| |#2| (-1189)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -4238 ((-323 |#1|) |#2|)) (-15 -4248 ((-323 |#1|) |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3513 ((-171 (-323 |#1|)) |#2|))) (-13 (-565) (-1050 (-573))) (-13 (-27) (-1215) (-439 (-171 |#1|)))) (T -190)) -((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-171 (-323 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3))))))) -(-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -4238 ((-323 |#1|) |#2|)) (-15 -4248 ((-323 |#1|) |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3513 ((-171 (-323 |#1|)) |#2|))) -((-2952 (((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|))) 26)) (-2942 (((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -2952 ((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|)))) (-15 -2942 ((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))))) (-174)) (T -191)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) (-5 *2 (-1280 (-698 (-416 (-962 *4))))) (-5 *1 (-191 *4)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) (-5 *2 (-1280 (-698 (-962 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -2952 ((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|)))) (-15 -2942 ((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))))) -((-1549 (((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 93)) (-1810 (((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573))) 107)) (-4009 (((-1191 (-416 (-573))) (-931)) 54)) (-1590 (((-1191 (-416 (-573))) (-931)) 79)) (-2645 (((-416 (-573)) (-1191 (-416 (-573)))) 89)) (-2189 (((-1191 (-416 (-573))) (-931)) 37)) (-3111 (((-1191 (-416 (-573))) (-931)) 66)) (-2323 (((-1191 (-416 (-573))) (-931)) 61)) (-4060 (((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 87)) (-4101 (((-1191 (-416 (-573))) (-931)) 29)) (-2003 (((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 91)) (-3917 (((-1191 (-416 (-573))) (-931)) 35)) (-3309 (((-1191 (-416 (-573))) (-653 (-931))) 100))) -(((-192) (-10 -7 (-15 -4101 ((-1191 (-416 (-573))) (-931))) (-15 -4009 ((-1191 (-416 (-573))) (-931))) (-15 -2189 ((-1191 (-416 (-573))) (-931))) (-15 -3917 ((-1191 (-416 (-573))) (-931))) (-15 -2323 ((-1191 (-416 (-573))) (-931))) (-15 -3111 ((-1191 (-416 (-573))) (-931))) (-15 -1590 ((-1191 (-416 (-573))) (-931))) (-15 -2003 ((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -4060 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -2645 ((-416 (-573)) (-1191 (-416 (-573))))) (-15 -1549 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -3309 ((-1191 (-416 (-573))) (-653 (-931)))) (-15 -1810 ((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573)))))) (T -192)) -((-1810 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-192)))) (-4060 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2003 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-192)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(-10 -7 (-15 -4101 ((-1191 (-416 (-573))) (-931))) (-15 -4009 ((-1191 (-416 (-573))) (-931))) (-15 -2189 ((-1191 (-416 (-573))) (-931))) (-15 -3917 ((-1191 (-416 (-573))) (-931))) (-15 -2323 ((-1191 (-416 (-573))) (-931))) (-15 -3111 ((-1191 (-416 (-573))) (-931))) (-15 -1590 ((-1191 (-416 (-573))) (-931))) (-15 -2003 ((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -4060 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -2645 ((-416 (-573)) (-1191 (-416 (-573))))) (-15 -1549 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -3309 ((-1191 (-416 (-573))) (-653 (-931)))) (-15 -1810 ((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573))))) -((-2490 (((-427 (-1185 (-573))) (-573)) 38)) (-3504 (((-653 (-1185 (-573))) (-573)) 33)) (-3172 (((-1185 (-573)) (-573)) 28))) -(((-193) (-10 -7 (-15 -3504 ((-653 (-1185 (-573))) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -2490 ((-427 (-1185 (-573))) (-573))))) (T -193)) -((-2490 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-193)) (-5 *3 (-573)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-653 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) -(-10 -7 (-15 -3504 ((-653 (-1185 (-573))) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -2490 ((-427 (-1185 (-573))) (-573)))) -((-4234 (((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1958 (((-653 (-1171)) (-1169 (-227))) NIL)) (-1990 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2982 (((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227)))) NIL)) (-4245 (((-653 (-1171)) (-653 (-227))) NIL)) (-1665 (((-227) (-1106 (-852 (-227)))) 31)) (-4256 (((-227) (-1106 (-852 (-227)))) 32)) (-3826 (((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3202 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3730 (((-1171) (-227)) NIL)) (-3107 (((-1171) (-653 (-1171))) 27)) (-1904 (((-1047) (-1189) (-1189) (-1047)) 13))) -(((-194) (-10 -7 (-15 -1990 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3826 ((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -3107 ((-1171) (-653 (-1171)))) (-15 -1904 ((-1047) (-1189) (-1189) (-1047))))) (T -194)) -((-1904 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-194)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-194)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-194)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-194)))) (-2982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-194)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-194)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -1990 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3826 ((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -3107 ((-1171) (-653 (-1171)))) (-15 -1904 ((-1047) (-1189) (-1189) (-1047)))) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 61) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-195) (-796)) (T -195)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 66) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-196) (-796)) (T -196)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 81) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-197) (-796)) (T -197)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 63) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-198) (-796)) (T -198)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 75) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-199) (-796)) (T -199)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 93) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-200) (-796)) (T -200)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 90) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-201) (-796)) (T -201)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 77) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-202) (-796)) (T -202)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 76)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-203) (-796)) (T -203)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 77)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-204) (-796)) (T -204)) -NIL -(-796) -((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 105) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-205) (-796)) (T -205)) -NIL -(-796) -((-4331 (((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1750 (((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1685 (((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -4331 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1685 ((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1750 ((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-1750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-573)) (-5 *1 (-206)))) (-1685 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-206)))) (-4331 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -4331 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1685 ((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1750 ((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3653 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-1656 (((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2281 (((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227)))) 112)) (-3114 (((-387) (-698 (-323 (-227)))) 140)) (-2753 (((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189))) 136)) (-4226 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4159 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2645 (((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227)))) 125)) (-3872 (((-387) (-387) (-653 (-387))) 133) (((-387) (-387) (-387)) 128)) (-2485 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -3872 ((-387) (-387) (-387))) (-15 -3872 ((-387) (-387) (-653 (-387)))) (-15 -3114 ((-387) (-698 (-323 (-227))))) (-15 -2753 ((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189)))) (-15 -2645 ((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227))))) (-15 -1656 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3653 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4159 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4226 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-4226 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) (-5 *1 (-207)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) (-5 *1 (-207)))) (-2645 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-698 (-323 (-227)))) (-5 *3 (-653 (-1189))) (-5 *4 (-1280 (-323 (-227)))) (-5 *1 (-207)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) (-5 *2 (-698 (-323 (-227)))) (-5 *1 (-207)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3872 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-387))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3872 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-207))))) -(-10 -7 (-15 -3872 ((-387) (-387) (-387))) (-15 -3872 ((-387) (-387) (-653 (-387)))) (-15 -3114 ((-387) (-698 (-323 (-227))))) (-15 -2753 ((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189)))) (-15 -2645 ((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227))))) (-15 -1656 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3653 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4159 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4226 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2981 (((-112) $ $) NIL))) -(((-208) (-809)) (T -208)) -NIL -(-809) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2981 (((-112) $ $) NIL))) -(((-209) (-809)) (T -209)) -NIL -(-809) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2981 (((-112) $ $) NIL))) -(((-210) (-809)) (T -210)) -NIL -(-809) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2981 (((-112) $ $) NIL))) -(((-211) (-809)) (T -211)) -NIL -(-809) -((-1653 (((-653 (-1189)) (-1189) (-780)) 26)) (-4306 (((-323 (-227)) (-323 (-227))) 35)) (-2974 (((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 87)) (-1745 (((-112) (-227) (-227) (-653 (-323 (-227)))) 47))) -(((-212) (-10 -7 (-15 -1653 ((-653 (-1189)) (-1189) (-780))) (-15 -4306 ((-323 (-227)) (-323 (-227)))) (-15 -1745 ((-112) (-227) (-227) (-653 (-323 (-227))))) (-15 -2974 ((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))))) (T -212)) -((-2974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1745 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-653 (-323 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-212)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-212)) (-5 *3 (-1189))))) -(-10 -7 (-15 -1653 ((-653 (-1189)) (-1189) (-780))) (-15 -4306 ((-323 (-227)) (-323 (-227)))) (-15 -1745 ((-112) (-227) (-227) (-653 (-323 (-227))))) (-15 -2974 ((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))))) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 28)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 70)) (-2981 (((-112) $ $) NIL))) -(((-213) (-905)) (T -213)) -NIL -(-905) -((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 24)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) NIL)) (-2981 (((-112) $ $) NIL))) -(((-214) (-905)) (T -214)) -NIL -(-905) -((-2848 (((-112) $ $) NIL)) (-2394 ((|#2| $ (-780) |#2|) 11)) (-2384 ((|#2| $ (-780)) 10)) (-3789 (($) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -2384 (|#2| $ (-780))) (-15 -2394 (|#2| $ (-780) |#2|)))) (-931) (-1112)) (T -215)) -((-3789 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1112)))) (-2384 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *2 (-1112)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)))) (-2394 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)) (-4 *2 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -2384 (|#2| $ (-780))) (-15 -2394 (|#2| $ (-780) |#2|)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1974 (((-1285) $) 37) (((-1285) $ (-931) (-931)) 41)) (-2198 (($ $ (-1001)) 19) (((-250 (-1171)) $ (-1189)) 15)) (-1402 (((-1285) $) 35)) (-2942 (((-871) $) 32) (($ (-653 |#1|)) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $ $) 27)) (-3077 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1112) (-625 (-653 |#1|)) (-10 -8 (-15 -2198 ($ $ (-1001))) (-15 -2198 ((-250 (-1171)) $ (-1189))) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -1974 ((-1285) $ (-931) (-931))))) (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))) (T -216)) -((-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-1001)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-250 (-1171))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ *3)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-3093 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $))))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $))))))) (-1974 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $)))))))) -(-13 (-1112) (-625 (-653 |#1|)) (-10 -8 (-15 -2198 ($ $ (-1001))) (-15 -2198 ((-250 (-1171)) $ (-1189))) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -1974 ((-1285) $ (-931) (-931))))) -((-2733 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2733 (|#2| |#4| (-1 |#2| |#2|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -217)) -((-2733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-371)) (-4 *6 (-1256 (-416 *2))) (-4 *2 (-1256 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-350 *5 *2 *6))))) -(-10 -7 (-15 -2733 (|#2| |#4| (-1 |#2| |#2|)))) -((-2414 ((|#2| |#2| (-780) |#2|) 55)) (-1938 ((|#2| |#2| (-780) |#2|) 51)) (-2332 (((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|)))) 79)) (-2042 (((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|) 73)) (-3375 (((-112) |#2|) 71)) (-2513 (((-427 |#2|) |#2|) 91)) (-4218 (((-427 |#2|) |#2|) 90)) (-4240 ((|#2| |#2| (-780) |#2|) 49)) (-1367 (((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -4218 ((-427 |#2|) |#2|)) (-15 -2513 ((-427 |#2|) |#2|)) (-15 -1367 ((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112))) (-15 -2042 ((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|)) (-15 -2332 ((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))))) (-15 -4240 (|#2| |#2| (-780) |#2|)) (-15 -1938 (|#2| |#2| (-780) |#2|)) (-15 -2414 (|#2| |#2| (-780) |#2|)) (-15 -3375 ((-112) |#2|))) (-357) (-1256 |#1|)) (T -218)) -((-3375 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-2414 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-1938 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-4240 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *5)))) (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *2 (-653 *5)) (-5 *1 (-218 *4 *5)))) (-2042 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1256 *5)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -4218 ((-427 |#2|) |#2|)) (-15 -2513 ((-427 |#2|) |#2|)) (-15 -1367 ((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112))) (-15 -2042 ((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|)) (-15 -2332 ((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))))) (-15 -4240 (|#2| |#2| (-780) |#2|)) (-15 -1938 (|#2| |#2| (-780) |#2|)) (-15 -2414 (|#2| |#2| (-780) |#2|)) (-15 -3375 ((-112) |#2|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-2727 (($ (-416 (-573))) 9)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 10) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) -(((-219) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 10)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -2727 ($ (-416 (-573))))))) (T -219)) -((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219))))) -(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 10)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -2727 ($ (-416 (-573)))))) -((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 13)) (-3180 (((-1171) $) NIL)) (-2030 (((-492) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 15)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-220) (-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -3139 ((-1130) $)) (-15 -2043 ((-1147) $))))) (T -220)) -((-2030 (*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-220)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-220)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-220))))) -(-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -3139 ((-1130) $)) (-15 -2043 ((-1147) $)))) -((-1626 (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171)) 29) (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|))) 25)) (-3924 (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)))) (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171))) (-15 -3924 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -221)) -((-3924 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1189)) (-5 *6 (-112)) (-4 *7 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-1215) (-969) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-852 *3)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-852 *3))) (-5 *5 (-1171)) (-4 *3 (-13 (-1215) (-969) (-29 *6))) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-852 *3))) (-4 *3 (-13 (-1215) (-969) (-29 *5))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)))) (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171))) (-15 -3924 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)))) -((-1626 (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)) 49) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|))))) 46) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171)) 50) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (T -222)) -((-1626 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-852 (-416 (-962 *6))))) (-5 *5 (-1171)) (-5 *3 (-416 (-962 *6))) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-852 (-416 (-962 *5))))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1104 (-852 (-323 *6)))) (-5 *5 (-1171)) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1104 (-852 (-323 *5)))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)))) -((-2867 (((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|)) 26)) (-2127 (((-653 (-323 |#2|)) (-323 |#2|) (-931)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2867 ((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|))) (-15 -2127 ((-653 (-323 |#2|)) (-323 |#2|) (-931)))) (-1061) (-565)) (T -223)) -((-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *6 (-565)) (-5 *2 (-653 (-323 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-323 *6)) (-4 *5 (-1061)))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-2 (|:| -3881 (-1185 *4)) (|:| |deg| (-931)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-565))))) -(-10 -7 (-15 -2867 ((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|))) (-15 -2127 ((-653 (-323 |#2|)) (-323 |#2|) (-931)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3927 ((|#1| $) NIL)) (-2001 ((|#1| $) 30)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-3147 (($ $) NIL)) (-2176 (($ $) 39)) (-2948 ((|#1| |#1| $) NIL)) (-3072 ((|#1| $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-4134 (((-780) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) NIL)) (-1474 ((|#1| |#1| $) 35)) (-3728 ((|#1| |#1| $) 37)) (-3181 (($ |#1| $) NIL)) (-1839 (((-780) $) 33)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3897 ((|#1| $) NIL)) (-2471 ((|#1| $) 31)) (-3945 ((|#1| $) 29)) (-3815 ((|#1| $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3203 ((|#1| |#1| $) NIL)) (-3811 (((-112) $) 9)) (-3508 (($) NIL)) (-2548 ((|#1| $) NIL)) (-2310 (($) NIL) (($ (-653 |#1|)) 16)) (-4302 (((-780) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-4020 ((|#1| $) 13)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-2411 ((|#1| $) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-224 |#1|) (-13 (-260 |#1|) (-10 -8 (-15 -2310 ($ (-653 |#1|))))) (-1112)) (T -224)) -((-2310 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-224 *3))))) -(-13 (-260 |#1|) (-10 -8 (-15 -2310 ($ (-653 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1634 (($ (-323 |#1|)) 24)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1407 (((-112) $) NIL)) (-1695 (((-3 (-323 |#1|) "failed") $) NIL)) (-2205 (((-323 |#1|) $) NIL)) (-1391 (($ $) 32)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-1776 (($ (-1 (-323 |#1|) (-323 |#1|)) $) NIL)) (-1369 (((-323 |#1|) $) NIL)) (-1833 (($ $) 31)) (-3180 (((-1171) $) NIL)) (-3825 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) NIL)) (-3260 (($ $) 33)) (-2565 (((-573) $) NIL)) (-2942 (((-871) $) 65) (($ (-573)) NIL) (($ (-323 |#1|)) NIL)) (-4317 (((-323 |#1|) $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 26 T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) 29)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 25) (($ (-323 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-629 (-323 |#1|)) (-1050 (-323 |#1|)) (-10 -8 (-15 -1369 ((-323 |#1|) $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 ((-323 |#1|) $ $)) (-15 -2969 ($ (-780))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -1776 ($ (-1 (-323 |#1|) (-323 |#1|)) $)) (-15 -1634 ($ (-323 |#1|))) (-15 -3260 ($ $)))) (-13 (-1061) (-859)) (-653 (-1189))) (T -225)) -((-1369 (*1 *2 *1) (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189))))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189))))) (-4317 (*1 *2 *1 *1) (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-323 *3) (-323 *3))) (-4 *3 (-13 (-1061) (-859))) (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-323 *3)) (-4 *3 (-13 (-1061) (-859))) (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189)))))) -(-13 (-629 (-323 |#1|)) (-1050 (-323 |#1|)) (-10 -8 (-15 -1369 ((-323 |#1|) $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 ((-323 |#1|) $ $)) (-15 -2969 ($ (-780))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -1776 ($ (-1 (-323 |#1|) (-323 |#1|)) $)) (-15 -1634 ($ (-323 |#1|))) (-15 -3260 ($ $)))) -((-2052 (((-112) (-1171)) 26)) (-3197 (((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112)) 35)) (-3349 (((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)) 84) (((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -2052 ((-112) (-1171))) (-15 -3197 ((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-29 |#1|))) (T -226)) -((-3349 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1185 *6)) (-5 *4 (-852 *6)) (-4 *6 (-13 (-1215) (-29 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-226 *5 *6)))) (-3349 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-962 *6)) (-5 *4 (-1189)) (-5 *5 (-852 *7)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *7 (-13 (-1215) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3197 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-852 *4)) (-5 *3 (-621 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1215) (-29 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-226 *6 *4)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1215) (-29 *4)))))) -(-10 -7 (-15 -2052 ((-112) (-1171))) (-15 -3197 ((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 98)) (-3770 (((-573) $) 35)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-2363 (($ $) 87)) (-2246 (($ $) 75)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) 66)) (-2800 (((-112) $ $) NIL)) (-2342 (($ $) 85)) (-2225 (($ $) 73)) (-1983 (((-573) $) 128)) (-2388 (($ $) 90)) (-2266 (($ $) 77)) (-2579 (($) NIL T CONST)) (-2350 (($ $) NIL)) (-1695 (((-3 (-573) "failed") $) 127) (((-3 (-416 (-573)) "failed") $) 124)) (-2205 (((-573) $) 125) (((-416 (-573)) $) 122)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 103)) (-1624 (((-416 (-573)) $ (-780)) 117) (((-416 (-573)) $ (-780) (-780)) 116)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 29) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-4152 (((-112) $) NIL)) (-2999 (($) 46)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-2534 (((-573) $) 42)) (-1959 (((-112) $) 99)) (-4325 (($ $ (-573)) NIL)) (-3421 (($ $) NIL)) (-3339 (((-112) $) 97)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) 63) (($) 38 (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-3751 (($ $ $) 62) (($) 37 (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 27)) (-3388 (($ $) 33)) (-1731 (($ $) 67)) (-3118 (($ $) 72)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-2827 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-3965 (((-1132) $) 101)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL)) (-3733 (($ $) NIL)) (-2383 (($ (-573) (-573)) NIL) (($ (-573) (-573) (-931)) 110)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 28)) (-2945 (($) 45)) (-1608 (($ $) 71)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3904 (($ $) 104) (($ $ (-780)) NIL)) (-2985 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-2401 (($ $) 88)) (-2274 (($ $) 78)) (-2374 (($ $) 89)) (-2255 (($ $) 76)) (-2352 (($ $) 86)) (-2236 (($ $) 74)) (-1835 (((-387) $) 113) (((-227) $) 14) (((-902 (-387)) $) NIL) (((-545) $) 52)) (-2942 (((-871) $) 49) (($ (-573)) 70) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-573)) 70) (($ (-416 (-573))) NIL)) (-1545 (((-780)) NIL T CONST)) (-2437 (($ $) NIL)) (-2628 (((-931)) 36) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 25)) (-2439 (($ $) 93)) (-2304 (($ $) 81) (($ $ $) 120)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 91)) (-2286 (($ $) 79)) (-2464 (($ $) 96)) (-2324 (($ $) 84)) (-2520 (($ $) 94)) (-2333 (($ $) 82)) (-2452 (($ $) 95)) (-2314 (($ $) 83)) (-2426 (($ $) 92)) (-2296 (($ $) 80)) (-1660 (($ $) 119)) (-2132 (($) 23 T CONST)) (-2144 (($) 43 T CONST)) (-2808 (((-1171) $) 18) (((-1171) $ (-112)) 20) (((-1285) (-831) $) 21) (((-1285) (-831) $ (-112)) 22)) (-1818 (($ $) 107)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-1503 (($ $ $) 109)) (-3040 (((-112) $ $) 56)) (-3015 (((-112) $ $) 54)) (-2981 (((-112) $ $) 64)) (-3027 (((-112) $ $) 55)) (-3005 (((-112) $ $) 53)) (-3103 (($ $ $) 44) (($ $ (-573)) 65)) (-3093 (($ $) 57) (($ $ $) 59)) (-3077 (($ $ $) 58)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 68) (($ $ (-416 (-573))) 152) (($ $ $) 69)) (* (($ (-931) $) 34) (($ (-780) $) NIL) (($ (-573) $) 61) (($ $ $) 60) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-227) (-13 (-413) (-238) (-837) (-1215) (-623 (-545)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2945 ($)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -2304 ($ $ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-227)))) (-2945 (*1 *1) (-5 *1 (-227))) (-3388 (*1 *1 *1) (-5 *1 (-227))) (-1731 (*1 *1 *1) (-5 *1 (-227))) (-2304 (*1 *1 *1 *1) (-5 *1 (-227))) (-1818 (*1 *1 *1) (-5 *1 (-227))) (-1503 (*1 *1 *1 *1) (-5 *1 (-227))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) (-1624 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227))))) -(-13 (-413) (-238) (-837) (-1215) (-623 (-545)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2945 ($)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -2304 ($ $ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))))) -((-1562 (((-171 (-227)) (-780) (-171 (-227))) 11) (((-227) (-780) (-227)) 12)) (-3877 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1417 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3325 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-1424 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-4237 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3125 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2704 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3754 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1450 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-1818 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1503 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -1818 ((-227) (-227))) (-15 -1818 ((-171 (-227)) (-171 (-227)))) (-15 -1503 ((-227) (-227) (-227))) (-15 -1503 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3877 ((-227) (-227))) (-15 -3877 ((-171 (-227)) (-171 (-227)))) (-15 -3325 ((-227) (-227))) (-15 -3325 ((-171 (-227)) (-171 (-227)))) (-15 -1562 ((-227) (-780) (-227))) (-15 -1562 ((-171 (-227)) (-780) (-171 (-227)))) (-15 -3125 ((-227) (-227) (-227))) (-15 -3125 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1424 ((-227) (-227) (-227))) (-15 -1424 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2704 ((-227) (-227) (-227))) (-15 -2704 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4237 ((-227) (-227) (-227))) (-15 -4237 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1450 ((-171 (-227)) (-171 (-227)))) (-15 -1450 ((-227) (-227))) (-15 -3754 ((-227) (-227))) (-15 -3754 ((-171 (-227)) (-171 (-227)))) (-15 -1417 ((-227) (-227) (-227))) (-15 -1417 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-1417 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1417 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4237 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4237 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1424 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1424 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-780)) (-5 *1 (-228)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-780)) (-5 *1 (-228)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1503 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1503 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -1818 ((-227) (-227))) (-15 -1818 ((-171 (-227)) (-171 (-227)))) (-15 -1503 ((-227) (-227) (-227))) (-15 -1503 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3877 ((-227) (-227))) (-15 -3877 ((-171 (-227)) (-171 (-227)))) (-15 -3325 ((-227) (-227))) (-15 -3325 ((-171 (-227)) (-171 (-227)))) (-15 -1562 ((-227) (-780) (-227))) (-15 -1562 ((-171 (-227)) (-780) (-171 (-227)))) (-15 -3125 ((-227) (-227) (-227))) (-15 -3125 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1424 ((-227) (-227) (-227))) (-15 -1424 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2704 ((-227) (-227) (-227))) (-15 -2704 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4237 ((-227) (-227) (-227))) (-15 -4237 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1450 ((-171 (-227)) (-171 (-227)))) (-15 -1450 ((-227) (-227))) (-15 -3754 ((-227) (-227))) (-15 -3754 ((-171 (-227)) (-171 (-227)))) (-15 -1417 ((-227) (-227) (-227))) (-15 -1417 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) NIL)) (-3596 (($ $ $) NIL)) (-1724 (($ (-1280 |#1|)) NIL) (($ $) NIL)) (-2807 (($ |#1| |#1| |#1|) 33)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) NIL)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-1280 |#1|)) NIL)) (-2790 (($ $ (-573) (-1280 |#1|)) NIL)) (-3465 (($ |#1| |#1| |#1|) 32)) (-1681 (($ (-780) |#1|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) NIL (|has| |#1| (-314)))) (-3229 (((-1280 |#1|) $ (-573)) NIL)) (-3696 (($ |#1|) 31)) (-2764 (($ |#1|) 30)) (-2004 (($ |#1|) 29)) (-3583 (((-780) $) NIL (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) NIL (|has| |#1| (-565)))) (-4209 (((-653 (-1280 |#1|)) $) NIL (|has| |#1| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) NIL (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#1|))) 11)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-3949 (($) 12)) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) NIL (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-1280 |#1|) $ (-573)) NIL)) (-2942 (($ (-1280 |#1|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-1280 |#1|) $ (-1280 |#1|)) 15) (((-1280 |#1|) (-1280 |#1|) $) NIL) (((-953 |#1|) $ (-953 |#1|)) 21)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-229 |#1|) (-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 * ((-953 |#1|) $ (-953 |#1|))) (-15 -3949 ($)) (-15 -2004 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -3696 ($ |#1|)) (-15 -3465 ($ |#1| |#1| |#1|)) (-15 -2807 ($ |#1| |#1| |#1|)))) (-13 (-371) (-1215))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215))) (-5 *1 (-229 *3)))) (-3949 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2004 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2764 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-3696 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-3465 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2807 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) -(-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 * ((-953 |#1|) $ (-953 |#1|))) (-15 -3949 ($)) (-15 -2004 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -3696 ($ |#1|)) (-15 -3465 ($ |#1| |#1| |#1|)) (-15 -2807 ($ |#1| |#1| |#1|)))) -((-3557 (($ (-1 (-112) |#2|) $) 16)) (-2596 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2428 (($) NIL) (($ (-653 |#2|)) 11)) (-2981 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-231 |#2|) (-1112)) (T -230)) -NIL -(-10 -8 (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-231 |#1|) (-141) (-1112)) (T -231)) -NIL -(-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) 11) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) 19) (($ $) 16) (($ $ (-780)) NIL)) (-3609 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-780)) 14) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL))) -(((-232 |#1| |#2|) (-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1189))) (-15 -3609 (|#1| |#1| (-653 (-1189)))) (-15 -3609 (|#1| |#1| (-1189) (-780))) (-15 -3609 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1061)) (T -232)) -NIL -(-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1189))) (-15 -3609 (|#1| |#1| (-653 (-1189)))) (-15 -3609 (|#1| |#1| (-1189) (-780))) (-15 -3609 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-780)) 56) (($ $ (-653 (-1189)) (-653 (-780))) 49 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 48 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 47 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 46 (|has| |#1| (-910 (-1189)))) (($ $) 45 (|has| |#1| (-238))) (($ $ (-780)) 43 (|has| |#1| (-238)))) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-780)) 54) (($ $ (-653 (-1189)) (-653 (-780))) 53 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 52 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 51 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 50 (|has| |#1| (-910 (-1189)))) (($ $) 44 (|has| |#1| (-238))) (($ $ (-780)) 42 (|has| |#1| (-238)))) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-233 |#1|) (-141) (-1061)) (T -233)) -((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) (-4 *4 (-1061)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) (-4 *4 (-1061))))) -(-13 (-1061) (-10 -8 (-15 -3904 ($ $ (-1 |t#1| |t#1|))) (-15 -3904 ($ $ (-1 |t#1| |t#1|) (-780))) (-15 -3609 ($ $ (-1 |t#1| |t#1|))) (-15 -3609 ($ $ (-1 |t#1| |t#1|) (-780))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-238))) -((-3609 ((|#2| $) 9))) -(((-234 |#1| |#2|) (-10 -8 (-15 -3609 (|#2| |#1|))) (-235 |#2|) (-1230)) (T -234)) -NIL -(-10 -8 (-15 -3609 (|#2| |#1|))) -((-3904 ((|#1| $) 7)) (-3609 ((|#1| $) 6))) -(((-235 |#1|) (-141) (-1230)) (T -235)) -((-3904 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230))))) -(-13 (-1230) (-10 -8 (-15 -3904 (|t#1| $)) (-15 -3609 (|t#1| $)))) -(((-1230) . T)) -((-3904 (($ $) NIL) (($ $ (-780)) 9)) (-3609 (($ $) NIL) (($ $ (-780)) 11))) -(((-236 |#1|) (-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) -((-3904 (($ $) 7) (($ $ (-780)) 10)) (-3609 (($ $) 6) (($ $ (-780)) 9))) -(((-237) (-141)) (T -237)) -((-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) (-3609 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780))))) -(-13 (-235 $) (-10 -8 (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) -(((-235 $) . T) ((-1230) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-780)) 42) (($ $) 40)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 43) (($ $) 41)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(-13 (-1115) (-10 -8 (-15 -9 ($) -1716) (-15 -8 ($) -1716) (-15 -7 ($) -1716))) +((-2863 (((-112) $ $) NIL)) (-1725 (((-654 (-875)) $) NIL)) (-2041 (((-516) $) 8)) (-1938 (((-1174) $) NIL)) (-4269 (((-188) $) 10)) (-2454 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-1340 (((-701 $) (-516)) 17)) (-2431 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2404 (((-55) $) 12)) (-2985 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -1340 ((-701 $) (-516)))))) (T -189)) +((-1340 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -1340 ((-701 $) (-516))))) +((-1323 ((|#2| |#2|) 28)) (-1644 (((-112) |#2|) 19)) (-4222 (((-324 |#1|) |#2|) 12)) (-4233 (((-324 |#1|) |#2|) 14)) (-1870 ((|#2| |#2| (-1192)) 69) ((|#2| |#2|) 70)) (-4330 (((-171 (-324 |#1|)) |#2|) 10)) (-1864 ((|#2| |#2| (-1192)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -1870 (|#2| |#2| (-1192))) (-15 -1864 (|#2| |#2|)) (-15 -1864 (|#2| |#2| (-1192))) (-15 -4222 ((-324 |#1|) |#2|)) (-15 -4233 ((-324 |#1|) |#2|)) (-15 -1644 ((-112) |#2|)) (-15 -1323 (|#2| |#2|)) (-15 -4330 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1053 (-574))) (-13 (-27) (-1218) (-440 (-171 |#1|)))) (T -190)) +((-4330 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1323 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-4222 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) (-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3))))))) +(-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -1870 (|#2| |#2| (-1192))) (-15 -1864 (|#2| |#2|)) (-15 -1864 (|#2| |#2| (-1192))) (-15 -4222 ((-324 |#1|) |#2|)) (-15 -4233 ((-324 |#1|) |#2|)) (-15 -1644 ((-112) |#2|)) (-15 -1323 (|#2| |#2|)) (-15 -4330 ((-171 (-324 |#1|)) |#2|))) +((-3565 (((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|))) 26)) (-2950 (((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -3565 ((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|)))) (-15 -2950 ((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))))) (-174)) (T -191)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1283 (-699 (-417 (-965 *4))))) (-5 *1 (-191 *4)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1283 (-699 (-965 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -3565 ((-1283 (-699 (-965 |#1|))) (-1283 (-699 |#1|)))) (-15 -2950 ((-1283 (-699 (-417 (-965 |#1|)))) (-1283 (-699 |#1|))))) +((-3820 (((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 93)) (-1344 (((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-2392 (((-1194 (-417 (-574))) (-934)) 54)) (-2976 (((-1194 (-417 (-574))) (-934)) 79)) (-2660 (((-417 (-574)) (-1194 (-417 (-574)))) 89)) (-3810 (((-1194 (-417 (-574))) (-934)) 37)) (-2472 (((-1194 (-417 (-574))) (-934)) 66)) (-2490 (((-1194 (-417 (-574))) (-934)) 61)) (-2946 (((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 87)) (-2073 (((-1194 (-417 (-574))) (-934)) 29)) (-2685 (((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574)))) 91)) (-3935 (((-1194 (-417 (-574))) (-934)) 35)) (-3964 (((-1194 (-417 (-574))) (-654 (-934))) 100))) +(((-192) (-10 -7 (-15 -2073 ((-1194 (-417 (-574))) (-934))) (-15 -2392 ((-1194 (-417 (-574))) (-934))) (-15 -3810 ((-1194 (-417 (-574))) (-934))) (-15 -3935 ((-1194 (-417 (-574))) (-934))) (-15 -2490 ((-1194 (-417 (-574))) (-934))) (-15 -2472 ((-1194 (-417 (-574))) (-934))) (-15 -2976 ((-1194 (-417 (-574))) (-934))) (-15 -2685 ((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2946 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2660 ((-417 (-574)) (-1194 (-417 (-574))))) (-15 -3820 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -3964 ((-1194 (-417 (-574))) (-654 (-934)))) (-15 -1344 ((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192)) +((-1344 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2685 (*1 *2 *3 *3) (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(-10 -7 (-15 -2073 ((-1194 (-417 (-574))) (-934))) (-15 -2392 ((-1194 (-417 (-574))) (-934))) (-15 -3810 ((-1194 (-417 (-574))) (-934))) (-15 -3935 ((-1194 (-417 (-574))) (-934))) (-15 -2490 ((-1194 (-417 (-574))) (-934))) (-15 -2472 ((-1194 (-417 (-574))) (-934))) (-15 -2976 ((-1194 (-417 (-574))) (-934))) (-15 -2685 ((-417 (-574)) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2946 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -2660 ((-417 (-574)) (-1194 (-417 (-574))))) (-15 -3820 ((-1194 (-417 (-574))) (-1194 (-417 (-574))) (-1194 (-417 (-574))))) (-15 -3964 ((-1194 (-417 (-574))) (-654 (-934)))) (-15 -1344 ((-1194 (-417 (-574))) (-654 (-574)) (-654 (-574))))) +((-1530 (((-428 (-1188 (-574))) (-574)) 38)) (-4235 (((-654 (-1188 (-574))) (-574)) 33)) (-1859 (((-1188 (-574)) (-574)) 28))) +(((-193) (-10 -7 (-15 -4235 ((-654 (-1188 (-574))) (-574))) (-15 -1859 ((-1188 (-574)) (-574))) (-15 -1530 ((-428 (-1188 (-574))) (-574))))) (T -193)) +((-1530 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-654 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(-10 -7 (-15 -4235 ((-654 (-1188 (-574))) (-574))) (-15 -1859 ((-1188 (-574)) (-574))) (-15 -1530 ((-428 (-1188 (-574))) (-574)))) +((-4041 (((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2264 (((-654 (-1174)) (-1172 (-227))) NIL)) (-2566 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2586 (((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227)))) NIL)) (-4145 (((-654 (-1174)) (-654 (-227))) NIL)) (-2427 (((-227) (-1109 (-853 (-227)))) 31)) (-4227 (((-227) (-1109 (-853 (-227)))) 32)) (-4293 (((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2167 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-2766 (((-1174) (-227)) NIL)) (-2423 (((-1174) (-654 (-1174))) 27)) (-2960 (((-1050) (-1192) (-1192) (-1050)) 13))) +(((-194) (-10 -7 (-15 -2566 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2167 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -4293 ((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2586 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227)))) (-15 -2423 ((-1174) (-654 (-1174)))) (-15 -2960 ((-1050) (-1192) (-1192) (-1050))))) (T -194)) +((-2960 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-194)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-194)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-194)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-194)))) (-2586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -2566 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2167 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -4293 ((-388) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2586 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227)))) (-15 -2423 ((-1174) (-654 (-1174)))) (-15 -2960 ((-1050) (-1192) (-1192) (-1050)))) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 61) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-195) (-797)) (T -195)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 66) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-196) (-797)) (T -196)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 81) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-197) (-797)) (T -197)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 63) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-198) (-797)) (T -198)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 75) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-199) (-797)) (T -199)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 93) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-200) (-797)) (T -200)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 90) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-201) (-797)) (T -201)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 77) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-202) (-797)) (T -202)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 76)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-203) (-797)) (T -203)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 77)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-204) (-797)) (T -204)) +NIL +(-797) +((-2863 (((-112) $ $) NIL)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 105) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-205) (-797)) (T -205)) +NIL +(-797) +((-2465 (((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2019 (((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2657 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -2465 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2657 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2019 ((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-2019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-2657 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -2465 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2657 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2019 ((-574) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3289 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2327 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3412 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-2506 (((-388) (-699 (-324 (-227)))) 140)) (-2266 (((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192))) 136)) (-3971 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-1417 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2660 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227)))) 125)) (-1632 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-1485 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -1632 ((-388) (-388) (-388))) (-15 -1632 ((-388) (-388) (-654 (-388)))) (-15 -2506 ((-388) (-699 (-324 (-227))))) (-15 -2266 ((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192)))) (-15 -2660 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227))))) (-15 -3412 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -2327 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3289 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1417 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1485 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3971 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2660 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1192))) (-5 *4 (-1283 (-324 (-227)))) (-5 *1 (-207)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1632 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))) +(-10 -7 (-15 -1632 ((-388) (-388) (-388))) (-15 -1632 ((-388) (-388) (-654 (-388)))) (-15 -2506 ((-388) (-699 (-324 (-227))))) (-15 -2266 ((-699 (-324 (-227))) (-1283 (-324 (-227))) (-654 (-1192)))) (-15 -2660 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1192)) (-1283 (-324 (-227))))) (-15 -3412 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -2327 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3289 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1417 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1485 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3971 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-1625 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2985 (((-112) $ $) NIL))) +(((-208) (-810)) (T -208)) +NIL +(-810) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-1625 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2985 (((-112) $ $) NIL))) +(((-209) (-810)) (T -209)) +NIL +(-810) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-1625 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2985 (((-112) $ $) NIL))) +(((-210) (-810)) (T -210)) +NIL +(-810) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-1625 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2985 (((-112) $ $) NIL))) +(((-211) (-810)) (T -211)) +NIL +(-810) +((-1665 (((-654 (-1192)) (-1192) (-781)) 26)) (-3483 (((-324 (-227)) (-324 (-227))) 35)) (-2516 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 87)) (-1963 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47))) +(((-212) (-10 -7 (-15 -1665 ((-654 (-1192)) (-1192) (-781))) (-15 -3483 ((-324 (-227)) (-324 (-227)))) (-15 -1963 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -2516 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))))) (T -212)) +((-2516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1963 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-212)) (-5 *3 (-1192))))) +(-10 -7 (-15 -1665 ((-654 (-1192)) (-1192) (-781))) (-15 -3483 ((-324 (-227)) (-324 (-227)))) (-15 -1963 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -2516 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))))) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 28)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3504 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 70)) (-2985 (((-112) $ $) NIL))) +(((-213) (-908)) (T -213)) +NIL +(-908) +((-2863 (((-112) $ $) NIL)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 24)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3504 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) NIL)) (-2985 (((-112) $ $) NIL))) +(((-214) (-908)) (T -214)) +NIL +(-908) +((-2863 (((-112) $ $) NIL)) (-2411 ((|#2| $ (-781) |#2|) 11)) (-2399 ((|#2| $ (-781)) 10)) (-3763 (($) 8)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -2399 (|#2| $ (-781))) (-15 -2411 (|#2| $ (-781) |#2|)))) (-934) (-1115)) (T -215)) +((-3763 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1115)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1115)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)) (-4 *2 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -3763 ($)) (-15 -2399 (|#2| $ (-781))) (-15 -2411 (|#2| $ (-781) |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2394 (((-1288) $) 37) (((-1288) $ (-934) (-934)) 41)) (-2209 (($ $ (-1004)) 19) (((-251 (-1174)) $ (-1192)) 15)) (-1413 (((-1288) $) 35)) (-2950 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $ $) 27)) (-3073 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1115) (-626 (-654 |#1|)) (-10 -8 (-15 -2209 ($ $ (-1004))) (-15 -2209 ((-251 (-1174)) $ (-1192))) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $)) (-15 -2394 ((-1288) $ (-934) (-934))))) (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $))))) (T -216)) +((-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $))))))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-251 (-1174))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ *3)) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $))))))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $))))))) (-3089 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $))))))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -2394 (*2 $))))))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -2394 (*2 $))))))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) (-15 -2394 (*2 $)))))))) +(-13 (-1115) (-626 (-654 |#1|)) (-10 -8 (-15 -2209 ($ $ (-1004))) (-15 -2209 ((-251 (-1174)) $ (-1192))) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $)) (-15 -2394 ((-1288) $ (-934) (-934))))) +((-2046 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217)) +((-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1259 (-417 *2))) (-4 *2 (-1259 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6))))) +(-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|)))) +((-2049 ((|#2| |#2| (-781) |#2|) 55)) (-3330 ((|#2| |#2| (-781) |#2|) 51)) (-2587 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|)))) 79)) (-1799 (((-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|))) |#2|) 73)) (-3442 (((-112) |#2|) 71)) (-3657 (((-428 |#2|) |#2|) 91)) (-4200 (((-428 |#2|) |#2|) 90)) (-4090 ((|#2| |#2| (-781) |#2|) 49)) (-3258 (((-2 (|:| |cont| |#1|) (|:| -2679 (-654 (-2 (|:| |irr| |#2|) (|:| -3737 (-574)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -4200 ((-428 |#2|) |#2|)) (-15 -3657 ((-428 |#2|) |#2|)) (-15 -3258 ((-2 (|:| |cont| |#1|) (|:| -2679 (-654 (-2 (|:| |irr| |#2|) (|:| -3737 (-574)))))) |#2| (-112))) (-15 -1799 ((-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|))) |#2|)) (-15 -2587 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|))))) (-15 -4090 (|#2| |#2| (-781) |#2|)) (-15 -3330 (|#2| |#2| (-781) |#2|)) (-15 -2049 (|#2| |#2| (-781) |#2|)) (-15 -3442 ((-112) |#2|))) (-358) (-1259 |#1|)) (T -218)) +((-3442 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-2049 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-3330 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-4090 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1259 *4)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -4141 *5)))) (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-1799 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4141 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1259 *5)))) (-3657 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -4200 ((-428 |#2|) |#2|)) (-15 -3657 ((-428 |#2|) |#2|)) (-15 -3258 ((-2 (|:| |cont| |#1|) (|:| -2679 (-654 (-2 (|:| |irr| |#2|) (|:| -3737 (-574)))))) |#2| (-112))) (-15 -1799 ((-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|))) |#2|)) (-15 -2587 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -4141 |#2|))))) (-15 -4090 (|#2| |#2| (-781) |#2|)) (-15 -3330 (|#2| |#2| (-781) |#2|)) (-15 -2049 (|#2| |#2| (-781) |#2|)) (-15 -3442 ((-112) |#2|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-574) $) NIL (|has| (-574) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-574) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-574) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-3081 (((-112) $) NIL (|has| (-574) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-574) (-860)))) (-1787 (($ (-1 (-574) (-574)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2787 (((-574) $) NIL (|has| (-574) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1993 (($ (-417 (-574))) 9)) (-1846 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 10) $) 10)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-574) $) NIL (|has| (-574) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-574) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3102 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-219) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 10)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -1993 ($ (-417 (-574))))))) (T -219)) +((-2010 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) +(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 10)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -1993 ($ (-417 (-574)))))) +((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 13)) (-1938 (((-1174) $) NIL)) (-1708 (((-493) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 15)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-220) (-13 (-1098) (-10 -8 (-15 -1708 ((-493) $)) (-15 -3131 ((-1133) $)) (-15 -2053 ((-1150) $))))) (T -220)) +((-1708 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-220)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-220))))) +(-13 (-1098) (-10 -8 (-15 -1708 ((-493) $)) (-15 -3131 ((-1133) $)) (-15 -2053 ((-1150) $)))) +((-3302 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|))) 25)) (-4008 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3302 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)))) (-15 -3302 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174))) (-15 -4008 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -221)) +((-4008 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1192)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1218) (-972) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-853 *3))) (-5 *5 (-1174)) (-4 *3 (-13 (-1218) (-972) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 *3))) (-4 *3 (-13 (-1218) (-972) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -3302 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)))) (-15 -3302 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1107 (-853 |#2|)) (-1174))) (-15 -4008 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1192) (-853 |#2|) (-853 |#2|) (-112)))) +((-3302 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (T -222)) +((-3302 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-853 (-417 (-965 *6))))) (-5 *5 (-1174)) (-5 *3 (-417 (-965 *6))) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 (-417 (-965 *5))))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1107 (-853 (-324 *6)))) (-5 *5 (-1174)) (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1107 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-324 |#1|))) (-1174))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))))) (-15 -3302 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-965 |#1|)) (-1107 (-853 (-417 (-965 |#1|)))) (-1174)))) +((-2881 (((-2 (|:| -3634 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|)) 26)) (-2138 (((-654 (-324 |#2|)) (-324 |#2|) (-934)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -2881 ((-2 (|:| -3634 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|))) (-15 -2138 ((-654 (-324 |#2|)) (-324 |#2|) (-934)))) (-1064) (-566)) (T -223)) +((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1064)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-2 (|:| -3634 (-1188 *4)) (|:| |deg| (-934)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1188 *4)) (-4 *5 (-566))))) +(-10 -7 (-15 -2881 ((-2 (|:| -3634 (-1188 |#1|)) (|:| |deg| (-934))) (-1188 |#1|))) (-15 -2138 ((-654 (-324 |#2|)) (-324 |#2|) (-934)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4036 ((|#1| $) NIL)) (-2012 ((|#1| $) 30)) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-2858 (($ $) NIL)) (-3680 (($ $) 39)) (-3528 ((|#1| |#1| $) NIL)) (-3416 ((|#1| $) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-4108 (((-781) $) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) NIL)) (-4262 ((|#1| |#1| $) 35)) (-2744 ((|#1| |#1| $) 37)) (-1948 (($ |#1| $) NIL)) (-1849 (((-781) $) 33)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3772 ((|#1| $) NIL)) (-1345 ((|#1| $) 31)) (-3035 ((|#1| $) 29)) (-2277 ((|#1| $) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2182 ((|#1| |#1| $) NIL)) (-2234 (((-112) $) 9)) (-4272 (($) NIL)) (-3970 ((|#1| $) NIL)) (-2369 (($) NIL) (($ (-654 |#1|)) 16)) (-4292 (((-781) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2517 ((|#1| $) 13)) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) NIL)) (-2030 ((|#1| $) NIL)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2369 ($ (-654 |#1|))))) (-1115)) (T -224)) +((-2369 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -2369 ($ (-654 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3391 (($ (-324 |#1|)) 24)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3717 (((-112) $) NIL)) (-1706 (((-3 (-324 |#1|) "failed") $) NIL)) (-2216 (((-324 |#1|) $) NIL)) (-1401 (($ $) 32)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-1787 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1377 (((-324 |#1|) $) NIL)) (-1580 (($ $) 31)) (-1938 (((-1174) $) NIL)) (-4275 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($ (-781)) NIL)) (-1545 (($ $) 33)) (-4144 (((-574) $) NIL)) (-2950 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-3584 (((-324 |#1|) $ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 26 T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) 29)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1053 (-324 |#1|)) (-10 -8 (-15 -1377 ((-324 |#1|) $)) (-15 -1580 ($ $)) (-15 -1401 ($ $)) (-15 -3584 ((-324 |#1|) $ $)) (-15 -2974 ($ (-781))) (-15 -4275 ((-112) $)) (-15 -3717 ((-112) $)) (-15 -4144 ((-574) $)) (-15 -1787 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3391 ($ (-324 |#1|))) (-15 -1545 ($ $)))) (-13 (-1064) (-860)) (-654 (-1192))) (T -225)) +((-1377 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-1580 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192))))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192))))) (-3584 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1064) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1064) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) (-14 *3 (-654 (-1192)))))) +(-13 (-630 (-324 |#1|)) (-1053 (-324 |#1|)) (-10 -8 (-15 -1377 ((-324 |#1|) $)) (-15 -1580 ($ $)) (-15 -1401 ($ $)) (-15 -3584 ((-324 |#1|) $ $)) (-15 -2974 ($ (-781))) (-15 -4275 ((-112) $)) (-15 -3717 ((-112) $)) (-15 -4144 ((-574) $)) (-15 -1787 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -3391 ($ (-324 |#1|))) (-15 -1545 ($ $)))) +((-1889 (((-112) (-1174)) 26)) (-2109 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-3193 (((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -1889 ((-112) (-1174))) (-15 -2109 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3193 ((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3193 ((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-29 |#1|))) (T -226)) +((-3193 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1188 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1218) (-29 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-3193 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-965 *6)) (-5 *4 (-1192)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1218) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2109 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1218) (-29 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1218) (-29 *4)))))) +(-10 -7 (-15 -1889 ((-112) (-1174))) (-15 -2109 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3193 ((-3 (-112) "failed") (-965 |#1|) (-1192) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3193 ((-3 (-112) "failed") (-1188 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 98)) (-1882 (((-574) $) 35)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4430 (($ $) NIL)) (-2378 (($ $) 87)) (-2260 (($ $) 75)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) 66)) (-1526 (((-112) $ $) NIL)) (-2357 (($ $) 85)) (-2238 (($ $) 73)) (-2496 (((-574) $) 128)) (-2403 (($ $) 90)) (-2281 (($ $) 77)) (-3063 (($) NIL T CONST)) (-2760 (($ $) NIL)) (-1706 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2216 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) 103)) (-3282 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3760 (((-934)) 29) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-1348 (((-112) $) NIL)) (-3003 (($) 46)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3837 (((-574) $) 42)) (-2276 (((-112) $) 99)) (-3649 (($ $ (-574)) NIL)) (-2681 (($ $) NIL)) (-3081 (((-112) $) 97)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) 63) (($) 38 (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-2953 (($ $ $) 62) (($) 37 (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 27)) (-2302 (($ $) 33)) (-1742 (($ $) 67)) (-3111 (($ $) 72)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3653 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-3939 (((-1135) $) 101)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL)) (-2787 (($ $) NIL)) (-2398 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-934)) 110)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3843 (((-574) $) 28)) (-3498 (($) 45)) (-1619 (($ $) 71)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2829 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-3878 (($ $) 104) (($ $ (-781)) NIL)) (-2622 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-2415 (($ $) 88)) (-2289 (($ $) 78)) (-2388 (($ $) 89)) (-2271 (($ $) 76)) (-2367 (($ $) 86)) (-2249 (($ $) 74)) (-1846 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2950 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-3781 (((-781)) NIL T CONST)) (-2251 (($ $) NIL)) (-3530 (((-934)) 36) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-4259 (((-112) $ $) NIL)) (-2644 (((-934)) 25)) (-2455 (($ $) 93)) (-2319 (($ $) 81) (($ $ $) 120)) (-3676 (((-112) $ $) NIL)) (-2428 (($ $) 91)) (-2301 (($ $) 79)) (-2479 (($ $) 96)) (-2339 (($ $) 84)) (-2535 (($ $) 94)) (-2348 (($ $) 82)) (-2467 (($ $) 95)) (-2329 (($ $) 83)) (-2442 (($ $) 92)) (-2311 (($ $) 80)) (-2366 (($ $) 119)) (-2143 (($) 23 T CONST)) (-2155 (($) 43 T CONST)) (-1579 (((-1174) $) 18) (((-1174) $ (-112)) 20) (((-1288) (-832) $) 21) (((-1288) (-832) $ (-112)) 22)) (-1433 (($ $) 107)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-1437 (($ $ $) 109)) (-3040 (((-112) $ $) 56)) (-3017 (((-112) $ $) 54)) (-2985 (((-112) $ $) 64)) (-3029 (((-112) $ $) 55)) (-3008 (((-112) $ $) 53)) (-3102 (($ $ $) 44) (($ $ (-574)) 65)) (-3089 (($ $) 57) (($ $ $) 59)) (-3073 (($ $ $) 58)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-934) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-227) (-13 (-414) (-239) (-838) (-1218) (-624 (-546)) (-10 -8 (-15 -3102 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3498 ($)) (-15 -2302 ($ $)) (-15 -1742 ($ $)) (-15 -2319 ($ $ $)) (-15 -1433 ($ $)) (-15 -1437 ($ $ $)) (-15 -3282 ((-417 (-574)) $ (-781))) (-15 -3282 ((-417 (-574)) $ (-781) (-781)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-3498 (*1 *1) (-5 *1 (-227))) (-2302 (*1 *1 *1) (-5 *1 (-227))) (-1742 (*1 *1 *1) (-5 *1 (-227))) (-2319 (*1 *1 *1 *1) (-5 *1 (-227))) (-1433 (*1 *1 *1) (-5 *1 (-227))) (-1437 (*1 *1 *1 *1) (-5 *1 (-227))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))) +(-13 (-414) (-239) (-838) (-1218) (-624 (-546)) (-10 -8 (-15 -3102 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3498 ($)) (-15 -2302 ($ $)) (-15 -1742 ($ $)) (-15 -2319 ($ $ $)) (-15 -1433 ($ $)) (-15 -1437 ($ $ $)) (-15 -3282 ((-417 (-574)) $ (-781))) (-15 -3282 ((-417 (-574)) $ (-781) (-781))))) +((-3932 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-1672 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-4164 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-4127 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-4238 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-4072 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2625 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-1769 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1730 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1394 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-1433 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1437 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -1433 ((-227) (-227))) (-15 -1433 ((-171 (-227)) (-171 (-227)))) (-15 -1437 ((-227) (-227) (-227))) (-15 -1437 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1672 ((-227) (-227))) (-15 -1672 ((-171 (-227)) (-171 (-227)))) (-15 -4127 ((-227) (-227))) (-15 -4127 ((-171 (-227)) (-171 (-227)))) (-15 -3932 ((-227) (-781) (-227))) (-15 -3932 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -2625 ((-227) (-227) (-227))) (-15 -2625 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4238 ((-227) (-227) (-227))) (-15 -4238 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1769 ((-227) (-227) (-227))) (-15 -1769 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4072 ((-227) (-227) (-227))) (-15 -4072 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1394 ((-171 (-227)) (-171 (-227)))) (-15 -1394 ((-227) (-227))) (-15 -1730 ((-227) (-227))) (-15 -1730 ((-171 (-227)) (-171 (-227)))) (-15 -4164 ((-227) (-227) (-227))) (-15 -4164 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4072 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4072 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1769 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1769 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4238 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4238 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2625 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2625 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3932 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-3932 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -1433 ((-227) (-227))) (-15 -1433 ((-171 (-227)) (-171 (-227)))) (-15 -1437 ((-227) (-227) (-227))) (-15 -1437 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1672 ((-227) (-227))) (-15 -1672 ((-171 (-227)) (-171 (-227)))) (-15 -4127 ((-227) (-227))) (-15 -4127 ((-171 (-227)) (-171 (-227)))) (-15 -3932 ((-227) (-781) (-227))) (-15 -3932 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -2625 ((-227) (-227) (-227))) (-15 -2625 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4238 ((-227) (-227) (-227))) (-15 -4238 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1769 ((-227) (-227) (-227))) (-15 -1769 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4072 ((-227) (-227) (-227))) (-15 -4072 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1394 ((-171 (-227)) (-171 (-227)))) (-15 -1394 ((-227) (-227))) (-15 -1730 ((-227) (-227))) (-15 -1730 ((-171 (-227)) (-171 (-227)))) (-15 -4164 ((-227) (-227) (-227))) (-15 -4164 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781) (-781)) NIL)) (-3929 (($ $ $) NIL)) (-1772 (($ (-1283 |#1|)) NIL) (($ $) NIL)) (-2823 (($ |#1| |#1| |#1|) 33)) (-3385 (((-112) $) NIL)) (-1875 (($ $ (-574) (-574)) NIL)) (-2142 (($ $ (-574) (-574)) NIL)) (-3328 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-4084 (($ $) NIL)) (-3087 (((-112) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3269 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-3960 (($ $ (-574) (-1283 |#1|)) NIL)) (-1440 (($ $ (-574) (-1283 |#1|)) NIL)) (-1916 (($ |#1| |#1| |#1|) 32)) (-2607 (($ (-781) |#1|) NIL)) (-3063 (($) NIL T CONST)) (-1538 (($ $) NIL (|has| |#1| (-315)))) (-4358 (((-1283 |#1|) $ (-574)) NIL)) (-2421 (($ |#1|) 31)) (-4294 (($ |#1|) 30)) (-2698 (($ |#1|) 29)) (-3557 (((-781) $) NIL (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1874 (((-654 |#1|) $) NIL)) (-3352 (((-781) $) NIL (|has| |#1| (-566)))) (-3819 (((-654 (-1283 |#1|)) $) NIL (|has| |#1| (-566)))) (-2199 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2197 ((|#1| $) NIL (|has| |#1| (-6 (-4460 "*"))))) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#1|))) 11)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3160 (((-654 (-654 |#1|)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3861 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3077 (($) 12)) (-1546 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3381 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-3808 (((-112) $) NIL)) (-3798 ((|#1| $) NIL (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-3144 (((-1283 |#1|) $ (-574)) NIL)) (-2950 (($ (-1283 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1283 |#1|) $ (-1283 |#1|)) 15) (((-1283 |#1|) (-1283 |#1|) $) NIL) (((-956 |#1|) $ (-956 |#1|)) 21)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-229 |#1|) (-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 * ((-956 |#1|) $ (-956 |#1|))) (-15 -3077 ($)) (-15 -2698 ($ |#1|)) (-15 -4294 ($ |#1|)) (-15 -2421 ($ |#1|)) (-15 -1916 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1218))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218))) (-5 *1 (-229 *3)))) (-3077 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-2698 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-4294 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-2421 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-1916 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) (-2823 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) +(-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 * ((-956 |#1|) $ (-956 |#1|))) (-15 -3077 ($)) (-15 -2698 ($ |#1|)) (-15 -4294 ($ |#1|)) (-15 -2421 ($ |#1|)) (-15 -1916 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|)))) +((-1657 (($ (-1 (-112) |#2|) $) 16)) (-3245 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2163 (($) NIL) (($ (-654 |#2|)) 11)) (-2985 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -1657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -2163 (|#1| (-654 |#2|))) (-15 -2163 (|#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-231 |#2|) (-1115)) (T -230)) +NIL +(-10 -8 (-15 -1657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -2163 (|#1| (-654 |#2|))) (-15 -2163 (|#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-231 |#1|) (-141) (-1115)) (T -231)) +NIL +(-13 (-241 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) 19) (($ $) 16) (($ $ (-781)) NIL)) (-3583 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL))) +(((-232 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1192))) (-15 -3583 (|#1| |#1| (-654 (-1192)))) (-15 -3583 (|#1| |#1| (-1192) (-781))) (-15 -3583 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1064)) (T -232)) +NIL +(-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1192))) (-15 -3583 (|#1| |#1| (-654 (-1192)))) (-15 -3583 (|#1| |#1| (-1192) (-781))) (-15 -3583 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3583 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-781)) 56) (($ $ (-654 (-1192)) (-654 (-781))) 49 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 48 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 47 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 46 (|has| |#1| (-913 (-1192)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-781)) 43 (|has| |#1| (-239)))) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-781)) 54) (($ $ (-654 (-1192)) (-654 (-781))) 53 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 52 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 51 (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 50 (|has| |#1| (-913 (-1192)))) (($ $) 44 (|has| |#1| (-239))) (($ $ (-781)) 42 (|has| |#1| (-239)))) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-233 |#1|) (-141) (-1064)) (T -233)) +((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1064)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1064))))) +(-13 (-1064) (-10 -8 (-15 -3878 ($ $ (-1 |t#1| |t#1|))) (-15 -3878 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3583 ($ $ (-1 |t#1| |t#1|))) (-15 -3583 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-239))) +((-3583 ((|#2| $) 9))) +(((-234 |#1| |#2|) (-10 -8 (-15 -3583 (|#2| |#1|))) (-235 |#2|) (-1233)) (T -234)) +NIL +(-10 -8 (-15 -3583 (|#2| |#1|))) +((-3878 ((|#1| $) 7)) (-3583 ((|#1| $) 6))) +(((-235 |#1|) (-141) (-1233)) (T -235)) +((-3878 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -3878 (|t#1| $)) (-15 -3583 (|t#1| $)))) +(((-1233) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 36) (($ $) 34)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-3583 (($ $ (-781)) 37) (($ $) 35)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-236 |#1|) (-141) (-174)) (T -236)) +NIL +(-13 (-727 |t#1|) (-238)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-3878 (($ $) NIL) (($ $ (-781)) 9)) (-3583 (($ $) NIL) (($ $ (-781)) 11))) +(((-237 |#1|) (-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 -3583 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3583 (|#1| |#1|)) (-15 -3878 (|#1| |#1|))) +((-3878 (($ $) 7) (($ $ (-781)) 10)) (-3583 (($ $) 6) (($ $ (-781)) 9))) (((-238) (-141)) (T -238)) -NIL -(-13 (-1061) (-237)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-235 $) . T) ((-237) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) -((-2428 (($) 12) (($ (-653 |#2|)) NIL)) (-3166 (($ $) 14)) (-2955 (($ (-653 |#2|)) 10)) (-2942 (((-871) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3166 (|#1| |#1|))) (-240 |#2|) (-1112)) (T -239)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3166 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-240 |#1|) (-141) (-1112)) (T -240)) -((-2428 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1112)))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-240 *3)))) (-2596 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-240 *2)) (-4 *2 (-1112)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) (-4 *3 (-1112)))) (-3557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) (-4 *3 (-1112))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2428 ($)) (-15 -2428 ($ (-653 |t#1|))) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2596 ($ |t#1| $)) (-15 -2596 ($ (-1 (-112) |t#1|) $)) (-15 -3557 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2220 (((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573)))) 42))) -(((-241) (-10 -7 (-15 -2220 ((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573))))))) (T -241)) -((-2220 (*1 *2 *3) (-12 (-5 *3 (-301 (-962 (-573)))) (-5 *2 (-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -2220 ((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573)))))) -((-1486 (((-780)) 56)) (-2759 (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) 53) (((-698 |#3|) (-698 $)) 44) (((-698 |#3|) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2365 (((-135)) 62)) (-3904 (($ $ (-1 |#3| |#3|) (-780)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2942 (((-1280 |#3|) $) NIL) (($ |#3|) NIL) (((-871) $) NIL) (($ (-573)) 12) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 15)) (-3103 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|)) (-15 -1545 ((-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -1486 ((-780))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2365 ((-135))) (-15 -2942 ((-1280 |#3|) |#1|))) (-243 |#2| |#3|) (-780) (-1230)) (T -242)) -((-2365 (*1 *2) (-12 (-14 *4 (-780)) (-4 *5 (-1230)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1486 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1545 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|)) (-15 -1545 ((-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -1486 ((-780))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2365 ((-135))) (-15 -2942 ((-1280 |#3|) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#2| (-1112)))) (-1748 (((-112) $) 74 (|has| |#2| (-132)))) (-3690 (($ (-931)) 129 (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3280 (($ $ $) 125 (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) 8)) (-1486 (((-780)) 111 (|has| |#2| (-376)))) (-1983 (((-573) $) 123 (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) 53 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1695 (((-3 (-573) "failed") $) 69 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) 66 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1112)))) (-2205 (((-573) $) 68 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) 65 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) 64 (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) 110 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) 109 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 108 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 107 (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) 106 (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) 105 (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) 81 (|has| |#2| (-735)))) (-2819 (($) 114 (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 52)) (-4152 (((-112) $) 121 (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) 31 (|has| $ (-6 -4455)))) (-1959 (((-112) $) 83 (|has| |#2| (-735)))) (-3339 (((-112) $) 122 (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 120 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3214 (((-653 |#2|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 119 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-3589 (((-931) $) 113 (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-2575 (($ (-931)) 112 (|has| |#2| (-376)))) (-3965 (((-1132) $) 21 (|has| |#2| (-1112)))) (-2914 ((|#2| $) 43 (|has| (-573) (-859)))) (-3112 (($ $ |#2|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 27 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 26 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 24 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ (-573) |#2|) 51) ((|#2| $ (-573)) 50)) (-2658 ((|#2| $ $) 128 (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) 130)) (-2365 (((-135)) 127 (|has| |#2| (-371)))) (-3904 (($ $ (-780)) 100 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) 98 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) 97 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) 96 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) 95 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) 94 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) 87 (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4455))) (((-780) |#2| $) 29 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-1280 |#2|) $) 131) (($ (-573)) 70 (-2817 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) 67 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) 62 (|has| |#2| (-1112))) (((-871) $) 18 (|has| |#2| (-622 (-871))))) (-1545 (((-780)) 85 (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) 23 (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4455)))) (-1660 (($ $) 124 (|has| |#2| (-857)))) (-2132 (($) 73 (|has| |#2| (-132)) CONST)) (-2144 (($) 84 (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) 101 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) 99 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) 93 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) 92 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) 91 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) 90 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) 89 (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1061)))) (-3040 (((-112) $ $) 117 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3015 (((-112) $ $) 116 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1112)))) (-3027 (((-112) $ $) 118 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3005 (((-112) $ $) 115 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3103 (($ $ |#2|) 126 (|has| |#2| (-371)))) (-3093 (($ $ $) 104 (|has| |#2| (-1061))) (($ $) 103 (|has| |#2| (-1061)))) (-3077 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-780)) 82 (|has| |#2| (-735))) (($ $ (-931)) 79 (|has| |#2| (-735)))) (* (($ (-573) $) 102 (|has| |#2| (-1061))) (($ $ $) 80 (|has| |#2| (-735))) (($ $ |#2|) 78 (|has| |#2| (-735))) (($ |#2| $) 77 (|has| |#2| (-735))) (($ (-780) $) 75 (|has| |#2| (-132))) (($ (-931) $) 72 (|has| |#2| (-25)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-243 |#1| |#2|) (-141) (-780) (-1230)) (T -243)) -((-4260 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1230)) (-4 *1 (-243 *3 *4)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1061)) (-4 *4 (-1230)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735))))) -(-13 (-613 (-573) |t#2|) (-622 (-1280 |t#2|)) (-10 -8 (-6 -4455) (-15 -4260 ($ (-1280 |t#2|))) (IF (|has| |t#2| (-1112)) (-6 (-420 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1061)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-385 |t#2|)) (-15 -3690 ($ (-931))) (-15 -2658 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-735)) (PROGN (-6 (-735)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#2| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |t#2| (-802)) (-6 (-802)) |%noBranch|) (IF (|has| |t#2| (-371)) (-6 (-1287 |t#2|)) |%noBranch|))) -(((-21) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-23) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-625 #0=(-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112))) ((-625 (-573)) -2817 (|has| |#2| (-1061)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-625 |#2|) -2817 (|has| |#2| (-1112)) (|has| |#2| (-174))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-622 (-871))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-622 (-1280 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-233 |#2|) |has| |#2| (-1061)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-237) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-293 #1=(-573) |#2|) . T) ((-295 #1# |#2|) . T) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-376) |has| |#2| (-376)) ((-385 |#2|) |has| |#2| (-1061)) ((-420 |#2|) |has| |#2| (-1112)) ((-498 |#2|) . T) ((-613 #1# |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-655 (-573)) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-655 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-655 $) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-657 #2=(-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061))) ((-657 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-657 $) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-649 |#2|) -2817 (|has| |#2| (-371)) (|has| |#2| (-174))) ((-648 #2#) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061))) ((-648 |#2|) |has| |#2| (-1061)) ((-726 |#2|) -2817 (|has| |#2| (-371)) (|has| |#2| (-174))) ((-735) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-735)) (|has| |#2| (-174))) ((-800) |has| |#2| (-857)) ((-801) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-802) |has| |#2| (-802)) ((-803) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-804) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-857) |has| |#2| (-857)) ((-859) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-910 (-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061))) ((-1050 #0#) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112))) ((-1050 (-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) ((-1050 |#2|) |has| |#2| (-1112)) ((-1063 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-1063 $) |has| |#2| (-174)) ((-1068 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-1068 $) |has| |#2| (-174)) ((-1061) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-1070) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-1124) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-735)) (|has| |#2| (-174))) ((-1112) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1230) . T) ((-1287 |#2|) |has| |#2| (-371))) -((-3094 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2867 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-1776 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3094 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2867 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1776 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-780) (-1230) (-1230)) (T -244)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) (-4 *6 (-1230)) (-4 *2 (-1230)) (-5 *1 (-244 *5 *6 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-780)) (-4 *7 (-1230)) (-4 *5 (-1230)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -3094 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2867 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1776 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) 62 (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) 68 (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) 28 (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) 58 (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 56)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) 14 (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 19 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) 20)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) 17)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) 9) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) 12 (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) 36 (|has| |#2| (-132)) CONST)) (-2144 (($) 40 (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) 27 (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 66 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) 46 (|has| |#2| (-735))) (($ $ |#2|) 44 (|has| |#2| (-735))) (($ |#2| $) 45 (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-245 |#1| |#2|) (-243 |#1| |#2|) (-780) (-1230)) (T -245)) -NIL -(-243 |#1| |#2|) -((-3661 (((-573) (-653 (-1171))) 36) (((-573) (-1171)) 29)) (-1557 (((-1285) (-653 (-1171))) 40) (((-1285) (-1171)) 39)) (-4413 (((-1171)) 16)) (-3200 (((-1171) (-573) (-1171)) 23)) (-3358 (((-653 (-1171)) (-653 (-1171)) (-573) (-1171)) 37) (((-1171) (-1171) (-573) (-1171)) 35)) (-2619 (((-653 (-1171)) (-653 (-1171))) 15) (((-653 (-1171)) (-1171)) 11))) -(((-246) (-10 -7 (-15 -2619 ((-653 (-1171)) (-1171))) (-15 -2619 ((-653 (-1171)) (-653 (-1171)))) (-15 -4413 ((-1171))) (-15 -3200 ((-1171) (-573) (-1171))) (-15 -3358 ((-1171) (-1171) (-573) (-1171))) (-15 -3358 ((-653 (-1171)) (-653 (-1171)) (-573) (-1171))) (-15 -1557 ((-1285) (-1171))) (-15 -1557 ((-1285) (-653 (-1171)))) (-15 -3661 ((-573) (-1171))) (-15 -3661 ((-573) (-653 (-1171)))))) (T -246)) -((-3661 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-573)) (-5 *1 (-246)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-246)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1285)) (-5 *1 (-246)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-246)))) (-3358 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 (-1171))) (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *1 (-246)))) (-3358 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) (-4413 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-246)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)) (-5 *3 (-1171))))) -(-10 -7 (-15 -2619 ((-653 (-1171)) (-1171))) (-15 -2619 ((-653 (-1171)) (-653 (-1171)))) (-15 -4413 ((-1171))) (-15 -3200 ((-1171) (-573) (-1171))) (-15 -3358 ((-1171) (-1171) (-573) (-1171))) (-15 -3358 ((-653 (-1171)) (-653 (-1171)) (-573) (-1171))) (-15 -1557 ((-1285) (-1171))) (-15 -1557 ((-1285) (-653 (-1171)))) (-15 -3661 ((-573) (-1171))) (-15 -3661 ((-573) (-653 (-1171))))) -((** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 20)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-416 (-573)) $) 27) (($ $ (-416 (-573))) NIL))) -(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-248)) (T -247)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 47)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 51)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 48)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-416 (-573)) $) 50) (($ $ (-416 (-573))) 49))) -(((-248) (-141)) (T -248)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-573)))) (-1323 (*1 *1 *1) (-4 *1 (-248)))) -(-13 (-297) (-38 (-416 (-573))) (-10 -8 (-15 ** ($ $ (-573))) (-15 -1323 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-297) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-726 #0#) . T) ((-735) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-1969 (($ $) 58)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-3412 (($ $ $) 54 (|has| $ (-6 -4456)))) (-1541 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1521 (($ $) 57)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3978 (($ $) 56)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 60)) (-2030 (($ $) 59)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-3996 (($ $ $) 55 (|has| $ (-6 -4456)))) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-249 |#1|) (-141) (-1230)) (T -249)) -((-3359 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3978 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3412 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1541 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) -(-13 (-1022 |t#1|) (-10 -8 (-15 -3359 (|t#1| $)) (-15 -2030 ($ $)) (-15 -1969 ($ $)) (-15 -1521 ($ $)) (-15 -3978 ($ $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3996 ($ $ $)) (-15 -3412 ($ $ $)) (-15 -1541 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) 10 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) NIL (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $) NIL) (($ $ (-780)) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) 7 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) NIL) ((|#1| $ (-573) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-780) $ "count") 16)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3187 (($ (-653 |#1|)) 22)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (($ (-653 |#1|)) 17) (((-653 |#1|) $) 18) (((-871) $) 21 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 14 (|has| $ (-6 -4455))))) -(((-250 |#1|) (-13 (-675 |#1|) (-499 (-653 |#1|)) (-10 -8 (-15 -3187 ($ (-653 |#1|))) (-15 -2198 ($ $ "unique")) (-15 -2198 ($ $ "sort")) (-15 -2198 ((-780) $ "count")))) (-859)) (T -250)) -((-3187 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-250 *3)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-859)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-859)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-780)) (-5 *1 (-250 *4)) (-4 *4 (-859))))) -(-13 (-675 |#1|) (-499 (-653 |#1|)) (-10 -8 (-15 -3187 ($ (-653 |#1|))) (-15 -2198 ($ $ "unique")) (-15 -2198 ($ $ "sort")) (-15 -2198 ((-780) $ "count")))) -((-1564 (((-3 (-780) "failed") |#1| |#1| (-780)) 40))) -(((-251 |#1|) (-10 -7 (-15 -1564 ((-3 (-780) "failed") |#1| |#1| (-780)))) (-13 (-735) (-376) (-10 -7 (-15 ** (|#1| |#1| (-573)))))) (T -251)) -((-1564 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-780)) (-4 *3 (-13 (-735) (-376) (-10 -7 (-15 ** (*3 *3 (-573)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -1564 ((-3 (-780) "failed") |#1| |#1| (-780)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) NIL)) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-245 (-2862 |#1|) (-780)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-245 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-245 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-245 (-2862 |#1|) (-780)) (-245 (-2862 |#1|) (-780))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-245 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-245 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-252 |#1| |#2|) (-13 (-959 |#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061)) (T -252)) -((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-252 *3 *4)) (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) -(-13 (-959 |#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) -((-2848 (((-112) $ $) NIL)) (-1984 (((-1285) $) 17)) (-3647 (((-185 (-254)) $) 11)) (-2445 (($ (-185 (-254))) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1963 (((-254) $) 7)) (-2942 (((-871) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) -(((-253) (-13 (-1112) (-10 -8 (-15 -1963 ((-254) $)) (-15 -3647 ((-185 (-254)) $)) (-15 -2445 ($ (-185 (-254)))) (-15 -1984 ((-1285) $))))) (T -253)) -((-1963 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-253))))) -(-13 (-1112) (-10 -8 (-15 -1963 ((-254) $)) (-15 -3647 ((-185 (-254)) $)) (-15 -2445 ($ (-185 (-254)))) (-15 -1984 ((-1285) $)))) -((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-1539 (((-340) $) 7)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL) (((-189) $) 8)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-254) (-13 (-187) (-622 (-189)) (-10 -8 (-15 -1539 ((-340) $))))) (T -254)) -((-1539 (*1 *2 *1) (-12 (-5 *2 (-340)) (-5 *1 (-254))))) -(-13 (-187) (-622 (-189)) (-10 -8 (-15 -1539 ((-340) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 (((-1194) $ (-780)) 13)) (-2942 (((-871) $) 20)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16)) (-2862 (((-780) $) 9))) -(((-255) (-13 (-1112) (-293 (-780) (-1194)) (-10 -8 (-15 -2862 ((-780) $))))) (T -255)) -((-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-255))))) -(-13 (-1112) (-293 (-780) (-1194)) (-10 -8 (-15 -2862 ((-780) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3690 (($ (-931)) NIL (|has| |#4| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#4| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#4| (-376)))) (-1983 (((-573) $) NIL (|has| |#4| (-857)))) (-3142 ((|#4| $ (-573) |#4|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1112))) (((-3 (-573) "failed") $) NIL (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-2205 ((|#4| $) NIL (|has| |#4| (-1112))) (((-573) $) NIL (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-2759 (((-2 (|:| -1423 (-698 |#4|)) (|:| |vec| (-1280 |#4|))) (-698 $) (-1280 $)) NIL (|has| |#4| (-1061))) (((-698 |#4|) (-698 $)) NIL (|has| |#4| (-1061))) (((-698 |#4|) (-1280 $)) NIL (|has| |#4| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061))))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-2819 (($) NIL (|has| |#4| (-376)))) (-2457 ((|#4| $ (-573) |#4|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#4| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#4| (-857)))) (-1863 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-3339 (((-112) $) NIL (|has| |#4| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3214 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#4| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#4| (-376)))) (-3965 (((-1132) $) NIL)) (-2914 ((|#4| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#4|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-1535 (((-653 |#4|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#4| $ (-573) |#4|) NIL) ((|#4| $ (-573)) 12)) (-2658 ((|#4| $ $) NIL (|has| |#4| (-1061)))) (-4260 (($ (-1280 |#4|)) NIL)) (-2365 (((-135)) NIL (|has| |#4| (-371)))) (-3904 (($ $ (-1 |#4| |#4|) (-780)) NIL (|has| |#4| (-1061))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))))) (-3974 (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#4|) $) NIL) (((-871) $) NIL) (($ |#4|) NIL (|has| |#4| (-1112))) (($ (-573)) NIL (-2817 (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (|has| |#4| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-1545 (((-780)) NIL (|has| |#4| (-1061)) CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#4| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) CONST)) (-3609 (($ $ (-1 |#4| |#4|) (-780)) NIL (|has| |#4| (-1061))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3005 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3103 (($ $ |#4|) NIL (|has| |#4| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (* (($ |#2| $) 14) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-735))) (($ |#4| $) NIL (|has| |#4| (-735))) (($ $ $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-256 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-657 |#2|) (-657 |#3|)) (-931) (-1061) (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-657 |#2|)) (T -256)) -NIL -(-13 (-243 |#1| |#4|) (-657 |#2|) (-657 |#3|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3690 (($ (-931)) NIL (|has| |#3| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#3| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#3| (-376)))) (-1983 (((-573) $) NIL (|has| |#3| (-857)))) (-3142 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1112))) (((-3 (-573) "failed") $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-2205 ((|#3| $) NIL (|has| |#3| (-1112))) (((-573) $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-2759 (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-698 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-1280 $)) NIL (|has| |#3| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061))))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-2819 (($) NIL (|has| |#3| (-376)))) (-2457 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#3| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#3| (-857)))) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-3339 (((-112) $) NIL (|has| |#3| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#3| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#3| (-376)))) (-3965 (((-1132) $) NIL)) (-2914 ((|#3| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#3|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-1535 (((-653 |#3|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) |#3|) NIL) ((|#3| $ (-573)) 11)) (-2658 ((|#3| $ $) NIL (|has| |#3| (-1061)))) (-4260 (($ (-1280 |#3|)) NIL)) (-2365 (((-135)) NIL (|has| |#3| (-371)))) (-3904 (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))))) (-3974 (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455))) (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#3|) $) NIL) (((-871) $) NIL) (($ |#3|) NIL (|has| |#3| (-1112))) (($ (-573)) NIL (-2817 (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-1545 (((-780)) NIL (|has| |#3| (-1061)) CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#3| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) CONST)) (-3609 (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3005 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (* (($ |#2| $) 13) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-735))) (($ |#3| $) NIL (|has| |#3| (-735))) (($ $ $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-257 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-657 |#2|)) (-780) (-1061) (-657 |#2|)) (T -257)) -NIL -(-13 (-243 |#1| |#3|) (-657 |#2|)) -((-2438 (((-653 (-780)) $) 56) (((-653 (-780)) $ |#3|) 59)) (-3447 (((-780) $) 58) (((-780) $ |#3|) 61)) (-1730 (($ $) 76)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2534 (((-780) $ |#3|) 43) (((-780) $) 38)) (-3844 (((-1 $ (-780)) |#3|) 15) (((-1 $ (-780)) $) 88)) (-3705 ((|#4| $) 69)) (-2069 (((-112) $) 67)) (-2590 (($ $) 75)) (-2645 (($ $ (-653 (-301 $))) 111) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-653 |#4|) (-653 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-653 |#4|) (-653 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-653 |#3|) (-653 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-653 |#3|) (-653 |#2|)) 97)) (-3904 (($ $ |#4|) NIL) (($ $ (-653 |#4|)) NIL) (($ $ |#4| (-780)) NIL) (($ $ (-653 |#4|) (-653 (-780))) NIL) (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2813 (((-653 |#3|) $) 86)) (-2565 ((|#5| $) NIL) (((-780) $ |#4|) NIL) (((-653 (-780)) $ (-653 |#4|)) NIL) (((-780) $ |#3|) 49)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-416 (-573))) NIL) (($ $) NIL))) -(((-258 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#3| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#3| |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3705 (|#4| |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3447 ((-780) |#1| |#3|)) (-15 -2438 ((-653 (-780)) |#1| |#3|)) (-15 -3447 ((-780) |#1|)) (-15 -2438 ((-653 (-780)) |#1|)) (-15 -2565 ((-780) |#1| |#3|)) (-15 -2534 ((-780) |#1|)) (-15 -2534 ((-780) |#1| |#3|)) (-15 -2813 ((-653 |#3|) |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#3|)) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -2565 ((-653 (-780)) |#1| (-653 |#4|))) (-15 -2565 ((-780) |#1| |#4|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 (|#5| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#4| (-780))) (-15 -3904 (|#1| |#1| (-653 |#4|))) (-15 -3904 (|#1| |#1| |#4|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-259 |#2| |#3| |#4| |#5|) (-1061) (-859) (-272 |#3|) (-802)) (T -258)) -NIL -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#3| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#3| |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3705 (|#4| |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3447 ((-780) |#1| |#3|)) (-15 -2438 ((-653 (-780)) |#1| |#3|)) (-15 -3447 ((-780) |#1|)) (-15 -2438 ((-653 (-780)) |#1|)) (-15 -2565 ((-780) |#1| |#3|)) (-15 -2534 ((-780) |#1|)) (-15 -2534 ((-780) |#1| |#3|)) (-15 -2813 ((-653 |#3|) |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#3|)) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -2565 ((-653 (-780)) |#1| (-653 |#4|))) (-15 -2565 ((-780) |#1| |#4|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 (|#5| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#4| (-780))) (-15 -3904 (|#1| |#1| (-653 |#4|))) (-15 -3904 (|#1| |#1| |#4|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2438 (((-653 (-780)) $) 219) (((-653 (-780)) $ |#2|) 217)) (-3447 (((-780) $) 218) (((-780) $ |#2|) 216)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-1730 (($ $) 212)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141) ((|#2| $) 227)) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| |#4| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ |#2|) 222) (((-780) $) 221)) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#4|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-4036 ((|#4| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-1382 (($ (-1 |#4| |#4|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-3844 (((-1 $ (-780)) |#2|) 224) (((-1 $ (-780)) $) 211 (|has| |#1| (-238)))) (-1453 (((-3 |#3| "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-3705 ((|#3| $) 214)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-2069 (((-112) $) 215)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-2590 (($ $) 213)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 $)) 209 (|has| |#1| (-238))) (($ $ |#2| |#1|) 208 (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 |#1|)) 207 (|has| |#1| (-238)))) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43) (($ $ (-780)) 242 (|has| |#1| (-238))) (($ $) 240 (|has| |#1| (-238))) (($ $ (-1189)) 239 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 238 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 237 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 236 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-2813 (((-653 |#2|) $) 223)) (-2565 ((|#4| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131) (((-780) $ |#2|) 220)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#4|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39) (($ $ (-780)) 243 (|has| |#1| (-238))) (($ $) 241 (|has| |#1| (-238))) (($ $ (-1189)) 235 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 234 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 233 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 232 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-259 |#1| |#2| |#3| |#4|) (-141) (-1061) (-859) (-272 |t#2|) (-802)) (T -259)) -((-3844 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *4 *3 *5 *6)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 *4)))) (-2534 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2565 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) (-3447 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-802)) (-4 *2 (-272 *4)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-272 *3)) (-4 *5 (-802)))) (-1730 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-272 *3)) (-4 *5 (-802)))) (-3844 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *3 *4 *5 *6))))) -(-13 (-959 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1050 |t#2|) (-10 -8 (-15 -3844 ((-1 $ (-780)) |t#2|)) (-15 -2813 ((-653 |t#2|) $)) (-15 -2534 ((-780) $ |t#2|)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $ |t#2|)) (-15 -2438 ((-653 (-780)) $)) (-15 -3447 ((-780) $)) (-15 -2438 ((-653 (-780)) $ |t#2|)) (-15 -3447 ((-780) $ |t#2|)) (-15 -2069 ((-112) $)) (-15 -3705 (|t#3| $)) (-15 -2590 ($ $)) (-15 -1730 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-523 |t#2| |t#1|)) (-6 (-523 |t#2| $)) (-6 (-316 $)) (-15 -3844 ((-1 $ (-780)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#2|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#4|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#2| |#1|) |has| |#1| (-238)) ((-523 |#2| $) |has| |#1| (-238)) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-959 |#1| |#4| |#3|) . T) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#2|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-238)) ((-1234) |has| |#1| (-919))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3927 ((|#1| $) 55)) (-2001 ((|#1| $) 45)) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-3147 (($ $) 61)) (-2176 (($ $) 49)) (-2948 ((|#1| |#1| $) 47)) (-3072 ((|#1| $) 46)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-4134 (((-780) $) 62)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-1474 ((|#1| |#1| $) 53)) (-3728 ((|#1| |#1| $) 52)) (-3181 (($ |#1| $) 41)) (-1839 (((-780) $) 56)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3897 ((|#1| $) 63)) (-2471 ((|#1| $) 51)) (-3945 ((|#1| $) 50)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3203 ((|#1| |#1| $) 59)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2548 ((|#1| $) 60)) (-2310 (($) 58) (($ (-653 |#1|)) 57)) (-4302 (((-780) $) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-4020 ((|#1| $) 54)) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-2411 ((|#1| $) 64)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-260 |#1|) (-141) (-1230)) (T -260)) -((-2310 (*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-260 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-1474 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-3728 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2176 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(-13 (-1133 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -2310 ($)) (-15 -2310 ($ (-653 |t#1|))) (-15 -1839 ((-780) $)) (-15 -3927 (|t#1| $)) (-15 -4020 (|t#1| $)) (-15 -1474 (|t#1| |t#1| $)) (-15 -3728 (|t#1| |t#1| $)) (-15 -2471 (|t#1| $)) (-15 -3945 (|t#1| $)) (-15 -2176 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1007 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1133 |#1|) . T) ((-1230) . T)) -((-4179 (((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1845 (((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387))) 173) (((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 171) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 176) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 172) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 164) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 163) (((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387))) 145) (((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269))) 143) (((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387))) 144) (((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 141)) (-1799 (((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387))) 175) (((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 174) (((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 178) (((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 177) (((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 166) (((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 165) (((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387))) 151) (((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269))) 150) (((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387))) 149) (((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 148) (((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387))) 113) (((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 112) (((-1281) (-1 (-227) (-227)) (-1106 (-387))) 107) (((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269))) 105))) -(((-261) (-10 -7 (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -4179 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -261)) -((-4179 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261))))) -(-10 -7 (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -4179 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1799 (((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))) 101))) -(((-262 |#1| |#2|) (-10 -7 (-15 -1799 ((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))))) (-13 (-565) (-859) (-1050 (-573))) (-439 |#1|)) (T -262)) -((-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-1189)) (-5 *5 (-653 (-269))) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-859) (-1050 (-573)))) (-5 *2 (-1281)) (-5 *1 (-262 *6 *7))))) -(-10 -7 (-15 -1799 ((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))))) -((-1788 (((-573) (-573)) 71)) (-3230 (((-573) (-573)) 72)) (-1394 (((-227) (-227)) 73)) (-2167 (((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227))) 70)) (-3724 (((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112)) 68))) -(((-263) (-10 -7 (-15 -3724 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112))) (-15 -2167 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -1788 ((-573) (-573))) (-15 -3230 ((-573) (-573))) (-15 -1394 ((-227) (-227))))) (T -263)) -((-1394 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263)))) (-2167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) (-5 *2 (-1282)) (-5 *1 (-263)))) (-3724 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) (-5 *5 (-112)) (-5 *2 (-1282)) (-5 *1 (-263))))) -(-10 -7 (-15 -3724 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112))) (-15 -2167 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -1788 ((-573) (-573))) (-15 -3230 ((-573) (-573))) (-15 -1394 ((-227) (-227)))) -((-2942 (((-1104 (-387)) (-1104 (-323 |#1|))) 16))) -(((-264 |#1|) (-10 -7 (-15 -2942 ((-1104 (-387)) (-1104 (-323 |#1|))))) (-13 (-859) (-565) (-623 (-387)))) (T -264)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-1104 (-323 *4))) (-4 *4 (-13 (-859) (-565) (-623 (-387)))) (-5 *2 (-1104 (-387))) (-5 *1 (-264 *4))))) -(-10 -7 (-15 -2942 ((-1104 (-387)) (-1104 (-323 |#1|))))) -((-1845 (((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))) 75) (((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 74) (((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387))) 65) (((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 64) (((-1145 (-227)) (-889 |#1|) (-1104 (-387))) 56) (((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269))) 55)) (-1799 (((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387))) 78) (((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 77) (((-1282) |#1| (-1104 (-387)) (-1104 (-387))) 68) (((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 67) (((-1282) (-889 |#1|) (-1104 (-387))) 60) (((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269))) 59) (((-1281) (-887 |#1|) (-1104 (-387))) 47) (((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269))) 46) (((-1281) |#1| (-1104 (-387))) 38) (((-1281) |#1| (-1104 (-387)) (-653 (-269))) 36))) -(((-265 |#1|) (-10 -7 (-15 -1799 ((-1281) |#1| (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) |#1| (-1104 (-387)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))))) (-13 (-623 (-545)) (-1112))) (T -265)) -((-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *5)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *6)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *5)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112)))))) -(-10 -7 (-15 -1799 ((-1281) |#1| (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) |#1| (-1104 (-387)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))))) -((-1799 (((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269))) 23) (((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227))) 24) (((-1281) (-653 (-953 (-227))) (-653 (-269))) 16) (((-1281) (-653 (-953 (-227)))) 17) (((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269))) 20) (((-1281) (-653 (-227)) (-653 (-227))) 21))) -(((-266) (-10 -7 (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269)))) (-15 -1799 ((-1281) (-653 (-953 (-227))))) (-15 -1799 ((-1281) (-653 (-953 (-227))) (-653 (-269)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269)))))) (T -266)) -((-1799 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1282)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1281)) (-5 *1 (-266))))) -(-10 -7 (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269)))) (-15 -1799 ((-1281) (-653 (-953 (-227))))) (-15 -1799 ((-1281) (-653 (-953 (-227))) (-653 (-269)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269))))) -((-3798 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3938 (((-931) (-653 (-269)) (-931)) 52)) (-3489 (((-931) (-653 (-269)) (-931)) 51)) (-1996 (((-653 (-387)) (-653 (-269)) (-653 (-387))) 68)) (-1854 (((-387) (-653 (-269)) (-387)) 57)) (-3782 (((-931) (-653 (-269)) (-931)) 53)) (-4150 (((-112) (-653 (-269)) (-112)) 27)) (-3876 (((-1171) (-653 (-269)) (-1171)) 19)) (-2013 (((-1171) (-653 (-269)) (-1171)) 26)) (-3614 (((-1145 (-227)) (-653 (-269))) 46)) (-4119 (((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387)))) 40)) (-2100 (((-883) (-653 (-269)) (-883)) 32)) (-3340 (((-883) (-653 (-269)) (-883)) 33)) (-3667 (((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227)))) 63)) (-2269 (((-112) (-653 (-269)) (-112)) 14)) (-2359 (((-112) (-653 (-269)) (-112)) 13))) -(((-267) (-10 -7 (-15 -2359 ((-112) (-653 (-269)) (-112))) (-15 -2269 ((-112) (-653 (-269)) (-112))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ((-1171) (-653 (-269)) (-1171))) (-15 -2013 ((-1171) (-653 (-269)) (-1171))) (-15 -4150 ((-112) (-653 (-269)) (-112))) (-15 -2100 ((-883) (-653 (-269)) (-883))) (-15 -3340 ((-883) (-653 (-269)) (-883))) (-15 -4119 ((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387))))) (-15 -3489 ((-931) (-653 (-269)) (-931))) (-15 -3938 ((-931) (-653 (-269)) (-931))) (-15 -3614 ((-1145 (-227)) (-653 (-269)))) (-15 -3782 ((-931) (-653 (-269)) (-931))) (-15 -1854 ((-387) (-653 (-269)) (-387))) (-15 -3667 ((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227))))) (-15 -1996 ((-653 (-387)) (-653 (-269)) (-653 (-387)))))) (T -267)) -((-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-387))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3667 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-1854 (*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-267)))) (-3938 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3489 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-4119 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2013 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3876 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3798 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2269 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2359 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) -(-10 -7 (-15 -2359 ((-112) (-653 (-269)) (-112))) (-15 -2269 ((-112) (-653 (-269)) (-112))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ((-1171) (-653 (-269)) (-1171))) (-15 -2013 ((-1171) (-653 (-269)) (-1171))) (-15 -4150 ((-112) (-653 (-269)) (-112))) (-15 -2100 ((-883) (-653 (-269)) (-883))) (-15 -3340 ((-883) (-653 (-269)) (-883))) (-15 -4119 ((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387))))) (-15 -3489 ((-931) (-653 (-269)) (-931))) (-15 -3938 ((-931) (-653 (-269)) (-931))) (-15 -3614 ((-1145 (-227)) (-653 (-269)))) (-15 -3782 ((-931) (-653 (-269)) (-931))) (-15 -1854 ((-387) (-653 (-269)) (-387))) (-15 -3667 ((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227))))) (-15 -1996 ((-653 (-387)) (-653 (-269)) (-653 (-387))))) -((-1979 (((-3 |#1| "failed") (-653 (-269)) (-1189)) 17))) -(((-268 |#1|) (-10 -7 (-15 -1979 ((-3 |#1| "failed") (-653 (-269)) (-1189)))) (-1230)) (T -268)) -((-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *1 (-268 *2)) (-4 *2 (-1230))))) -(-10 -7 (-15 -1979 ((-3 |#1| "failed") (-653 (-269)) (-1189)))) -((-2848 (((-112) $ $) NIL)) (-3798 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3938 (($ (-931)) 81)) (-3489 (($ (-931)) 80)) (-1642 (($ (-653 (-387))) 87)) (-1854 (($ (-387)) 66)) (-3782 (($ (-931)) 82)) (-4150 (($ (-112)) 33)) (-3876 (($ (-1171)) 28)) (-2013 (($ (-1171)) 29)) (-3614 (($ (-1145 (-227))) 76)) (-4119 (($ (-653 (-1106 (-387)))) 72)) (-3821 (($ (-653 (-1106 (-387)))) 68) (($ (-653 (-1106 (-416 (-573))))) 71)) (-1344 (($ (-387)) 38) (($ (-883)) 42)) (-2555 (((-112) (-653 $) (-1189)) 100)) (-1979 (((-3 (-52) "failed") (-653 $) (-1189)) 102)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2053 (($ (-387)) 43) (($ (-883)) 44)) (-2123 (($ (-1 (-953 (-227)) (-953 (-227)))) 65)) (-3667 (($ (-1 (-953 (-227)) (-953 (-227)))) 83)) (-2705 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2942 (((-871) $) 93)) (-3335 (($ (-112)) 34) (($ (-653 (-1106 (-387)))) 60)) (-3507 (((-112) $ $) NIL)) (-2359 (($ (-112)) 35)) (-2981 (((-112) $ $) 97))) -(((-269) (-13 (-1112) (-10 -8 (-15 -2359 ($ (-112))) (-15 -3335 ($ (-112))) (-15 -3798 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ($ (-1171))) (-15 -2013 ($ (-1171))) (-15 -4150 ($ (-112))) (-15 -3335 ($ (-653 (-1106 (-387))))) (-15 -2123 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1344 ($ (-387))) (-15 -1344 ($ (-883))) (-15 -2053 ($ (-387))) (-15 -2053 ($ (-883))) (-15 -2705 ($ (-1 (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1854 ($ (-387))) (-15 -3821 ($ (-653 (-1106 (-387))))) (-15 -3821 ($ (-653 (-1106 (-416 (-573)))))) (-15 -4119 ($ (-653 (-1106 (-387))))) (-15 -3614 ($ (-1145 (-227)))) (-15 -3489 ($ (-931))) (-15 -3938 ($ (-931))) (-15 -3782 ($ (-931))) (-15 -3667 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1642 ($ (-653 (-387)))) (-15 -1979 ((-3 (-52) "failed") (-653 $) (-1189))) (-15 -2555 ((-112) (-653 $) (-1189)))))) (T -269)) -((-2359 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-269)))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) (-2053 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-2053 (*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-416 (-573))))) (-5 *1 (-269)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-269)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-269)))) (-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-52)) (-5 *1 (-269)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-112)) (-5 *1 (-269))))) -(-13 (-1112) (-10 -8 (-15 -2359 ($ (-112))) (-15 -3335 ($ (-112))) (-15 -3798 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ($ (-1171))) (-15 -2013 ($ (-1171))) (-15 -4150 ($ (-112))) (-15 -3335 ($ (-653 (-1106 (-387))))) (-15 -2123 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1344 ($ (-387))) (-15 -1344 ($ (-883))) (-15 -2053 ($ (-387))) (-15 -2053 ($ (-883))) (-15 -2705 ($ (-1 (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1854 ($ (-387))) (-15 -3821 ($ (-653 (-1106 (-387))))) (-15 -3821 ($ (-653 (-1106 (-416 (-573)))))) (-15 -4119 ($ (-653 (-1106 (-387))))) (-15 -3614 ($ (-1145 (-227)))) (-15 -3489 ($ (-931))) (-15 -3938 ($ (-931))) (-15 -3782 ($ (-931))) (-15 -3667 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1642 ($ (-653 (-387)))) (-15 -1979 ((-3 (-52) "failed") (-653 $) (-1189))) (-15 -2555 ((-112) (-653 $) (-1189))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ |#2|) NIL)) (-3447 (((-780) $) NIL) (((-780) $ |#2|) NIL)) (-4354 (((-653 |#3|) $) NIL)) (-4193 (((-1185 $) $ |#3|) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#3|)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1137 |#1| |#2|) "failed") $) 23)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1137 |#1| |#2|) $) NIL)) (-2277 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#3|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 |#3|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))))) (-2534 (((-780) $ |#2|) NIL) (((-780) $) 10)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) |#3|) NIL) (($ (-1185 $) |#3|) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) NIL)) (-4036 (((-540 |#3|) $) NIL) (((-780) $ |#3|) NIL) (((-653 (-780)) $ (-653 |#3|)) NIL)) (-1382 (($ (-1 (-540 |#3|) (-540 |#3|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) |#2|) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 |#3| "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-653 |#3|) (-653 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-653 |#3|) (-653 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#3|) NIL) (($ $ (-653 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 |#2|) $) NIL)) (-2565 (((-540 |#3|) $) NIL) (((-780) $ |#3|) NIL) (((-653 (-780)) $ (-653 |#3|)) NIL) (((-780) $ |#2|) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ |#3|) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1137 |#1| |#2|)) 32) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ |#3|) NIL) (($ $ (-653 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-270 |#1| |#2| |#3|) (-13 (-259 |#1| |#2| |#3| (-540 |#3|)) (-1050 (-1137 |#1| |#2|))) (-1061) (-859) (-272 |#2|)) (T -270)) -NIL -(-13 (-259 |#1| |#2| |#3| (-540 |#3|)) (-1050 (-1137 |#1| |#2|))) -((-3447 (((-780) $) 37)) (-1695 (((-3 |#2| "failed") $) 22)) (-2205 ((|#2| $) 33)) (-3904 (($ $ (-780)) 18) (($ $) 14)) (-2942 (((-871) $) 32) (($ |#2|) 11)) (-2981 (((-112) $ $) 26)) (-3005 (((-112) $ $) 36))) -(((-271 |#1| |#2|) (-10 -8 (-15 -3447 ((-780) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-272 |#2|) (-859)) (T -271)) -NIL -(-10 -8 (-15 -3447 ((-780) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-3447 (((-780) $) 22)) (-1487 ((|#1| $) 23)) (-1695 (((-3 |#1| "failed") $) 27)) (-2205 ((|#1| $) 28)) (-2534 (((-780) $) 24)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3844 (($ |#1| (-780)) 25)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-780)) 31) (($ $) 29)) (-2942 (((-871) $) 12) (($ |#1|) 26)) (-3507 (((-112) $ $) 9)) (-3609 (($ $ (-780)) 32) (($ $) 30)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) -(((-272 |#1|) (-141) (-859)) (T -272)) -((-2942 (*1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780))))) -(-13 (-859) (-237) (-1050 |t#1|) (-10 -8 (-15 -3844 ($ |t#1| (-780))) (-15 -2534 ((-780) $)) (-15 -1487 (|t#1| $)) (-15 -3447 ((-780) $)) (-15 -2942 ($ |t#1|)))) -(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-235 $) . T) ((-237) . T) ((-859) . T) ((-1050 |#1|) . T) ((-1112) . T) ((-1230) . T)) -((-4354 (((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 53)) (-1653 (((-653 (-1189)) (-323 (-227)) (-780)) 94)) (-4037 (((-3 (-323 (-227)) "failed") (-323 (-227))) 63)) (-2089 (((-323 (-227)) (-323 (-227))) 79)) (-4224 (((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 38)) (-4095 (((-112) (-653 (-323 (-227)))) 104)) (-1718 (((-112) (-323 (-227))) 36)) (-2467 (((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) 132)) (-2240 (((-653 (-323 (-227))) (-653 (-323 (-227)))) 108)) (-2107 (((-653 (-323 (-227))) (-653 (-323 (-227)))) 106)) (-1529 (((-698 (-227)) (-653 (-323 (-227))) (-780)) 120)) (-2498 (((-112) (-323 (-227))) 31) (((-112) (-653 (-323 (-227)))) 105)) (-1457 (((-653 (-227)) (-653 (-852 (-227))) (-227)) 15)) (-3672 (((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 126)) (-1606 (((-1047) (-1189) (-1047)) 46))) -(((-273) (-10 -7 (-15 -1457 ((-653 (-227)) (-653 (-852 (-227))) (-227))) (-15 -4224 ((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4037 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -2089 ((-323 (-227)) (-323 (-227)))) (-15 -4095 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-323 (-227)))) (-15 -1529 ((-698 (-227)) (-653 (-323 (-227))) (-780))) (-15 -2107 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -2240 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -1718 ((-112) (-323 (-227)))) (-15 -4354 ((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -1653 ((-653 (-1189)) (-323 (-227)) (-780))) (-15 -1606 ((-1047) (-1189) (-1047))) (-15 -3672 ((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2467 ((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))))) (T -273)) -((-2467 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *2 (-653 (-1171))) (-5 *1 (-273)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-387)) (-5 *1 (-273)))) (-1606 (*1 *2 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-273)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) (-5 *1 (-273)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-273)))) (-4037 (*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-273)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *1 (-273)))) (-1457 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-852 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 *4)) (-5 *1 (-273))))) -(-10 -7 (-15 -1457 ((-653 (-227)) (-653 (-852 (-227))) (-227))) (-15 -4224 ((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4037 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -2089 ((-323 (-227)) (-323 (-227)))) (-15 -4095 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-323 (-227)))) (-15 -1529 ((-698 (-227)) (-653 (-323 (-227))) (-780))) (-15 -2107 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -2240 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -1718 ((-112) (-323 (-227)))) (-15 -4354 ((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -1653 ((-653 (-1189)) (-323 (-227)) (-780))) (-15 -1606 ((-1047) (-1189) (-1047))) (-15 -3672 ((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2467 ((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))))) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 56)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 32) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-274) (-848)) (T -274)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 72) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 63)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 41) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-275) (-848)) (T -275)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 90) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 85)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 52) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 65)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-276) (-848)) (T -276)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 73)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 45) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-277) (-848)) (T -277)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 65)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 31) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-278) (-848)) (T -278)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 90)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 33) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-279) (-848)) (T -279)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 87)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 32) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-280) (-848)) (T -280)) -NIL -(-848) -((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3222 (((-653 (-573)) $) 29)) (-2565 (((-780) $) 27)) (-2942 (((-871) $) 33) (($ (-653 (-573))) 23)) (-3507 (((-112) $ $) NIL)) (-2156 (($ (-780)) 30)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 17))) -(((-281) (-13 (-859) (-10 -8 (-15 -2942 ($ (-653 (-573)))) (-15 -2565 ((-780) $)) (-15 -3222 ((-653 (-573)) $)) (-15 -2156 ($ (-780)))))) (T -281)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-281)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-281))))) -(-13 (-859) (-10 -8 (-15 -2942 ($ (-653 (-573)))) (-15 -2565 ((-780) $)) (-15 -3222 ((-653 (-573)) $)) (-15 -2156 ($ (-780))))) -((-2363 ((|#2| |#2|) 77)) (-2246 ((|#2| |#2|) 65)) (-3649 (((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2342 ((|#2| |#2|) 75)) (-2225 ((|#2| |#2|) 63)) (-2388 ((|#2| |#2|) 79)) (-2266 ((|#2| |#2|) 67)) (-2999 ((|#2|) 46)) (-4173 (((-115) (-115)) 100)) (-3118 ((|#2| |#2|) 61)) (-1834 (((-112) |#2|) 147)) (-3046 ((|#2| |#2|) 195)) (-2537 ((|#2| |#2|) 171)) (-1820 ((|#2|) 59)) (-3648 ((|#2|) 58)) (-2047 ((|#2| |#2|) 191)) (-1678 ((|#2| |#2|) 167)) (-1913 ((|#2| |#2|) 199)) (-1363 ((|#2| |#2|) 175)) (-3575 ((|#2| |#2|) 163)) (-1522 ((|#2| |#2|) 165)) (-2701 ((|#2| |#2|) 201)) (-1771 ((|#2| |#2|) 177)) (-1493 ((|#2| |#2|) 197)) (-4384 ((|#2| |#2|) 173)) (-3050 ((|#2| |#2|) 193)) (-2931 ((|#2| |#2|) 169)) (-4205 ((|#2| |#2|) 207)) (-4166 ((|#2| |#2|) 183)) (-3286 ((|#2| |#2|) 203)) (-3413 ((|#2| |#2|) 179)) (-3081 ((|#2| |#2|) 211)) (-2006 ((|#2| |#2|) 187)) (-3066 ((|#2| |#2|) 213)) (-2536 ((|#2| |#2|) 189)) (-1894 ((|#2| |#2|) 209)) (-2330 ((|#2| |#2|) 185)) (-2290 ((|#2| |#2|) 205)) (-1532 ((|#2| |#2|) 181)) (-1608 ((|#2| |#2|) 62)) (-2401 ((|#2| |#2|) 80)) (-2274 ((|#2| |#2|) 68)) (-2374 ((|#2| |#2|) 78)) (-2255 ((|#2| |#2|) 66)) (-2352 ((|#2| |#2|) 76)) (-2236 ((|#2| |#2|) 64)) (-3109 (((-112) (-115)) 98)) (-2439 ((|#2| |#2|) 83)) (-2304 ((|#2| |#2|) 71)) (-2413 ((|#2| |#2|) 81)) (-2286 ((|#2| |#2|) 69)) (-2464 ((|#2| |#2|) 85)) (-2324 ((|#2| |#2|) 73)) (-2520 ((|#2| |#2|) 86)) (-2333 ((|#2| |#2|) 74)) (-2452 ((|#2| |#2|) 84)) (-2314 ((|#2| |#2|) 72)) (-2426 ((|#2| |#2|) 82)) (-2296 ((|#2| |#2|) 70))) -(((-282 |#1| |#2|) (-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3648 (|#2|)) (-15 -1820 (|#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -1894 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3649 ((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1834 ((-112) |#2|))) (-565) (-13 (-439 |#1|) (-1014))) (T -282)) -((-1834 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *3)) (-4 *3 (-13 (-439 *4) (-1014))))) (-3649 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-653 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-439 *4) (-1014))) (-4 *4 (-565)) (-5 *1 (-282 *4 *2)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1894 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1913 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3050 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2047 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4384 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2537 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2931 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3575 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1820 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-3648 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-282 *3 *4)) (-4 *4 (-13 (-439 *3) (-1014))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014))))) (-2999 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014)))))) -(-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3648 (|#2|)) (-15 -1820 (|#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -1894 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3649 ((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1834 ((-112) |#2|))) -((-4318 (((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189)) 151)) (-2781 ((|#2| (-416 (-573)) |#2|) 49)) (-4274 ((|#2| |#2| (-621 |#2|)) 144)) (-1721 (((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189)) 143)) (-2592 ((|#2| |#2| (-1189)) 20) ((|#2| |#2|) 23)) (-2852 ((|#2| |#2| (-1189)) 157) ((|#2| |#2|) 155))) -(((-283 |#1| |#2|) (-10 -7 (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| (-1189))) (-15 -1721 ((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189))) (-15 -2592 (|#2| |#2|)) (-15 -2592 (|#2| |#2| (-1189))) (-15 -4318 ((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189))) (-15 -4274 (|#2| |#2| (-621 |#2|))) (-15 -2781 (|#2| (-416 (-573)) |#2|))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -283)) -((-2781 (*1 *2 *3 *2) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)))) (-4318 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-1189)) (-4 *2 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *5 *2)))) (-2592 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-653 (-621 *3))) (|:| |vals| (-653 *3)))) (-5 *1 (-283 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-2852 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) -(-10 -7 (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| (-1189))) (-15 -1721 ((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189))) (-15 -2592 (|#2| |#2|)) (-15 -2592 (|#2| |#2| (-1189))) (-15 -4318 ((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189))) (-15 -4274 (|#2| |#2| (-621 |#2|))) (-15 -2781 (|#2| (-416 (-573)) |#2|))) -((-4196 (((-3 |#3| "failed") |#3|) 120)) (-2363 ((|#3| |#3|) 142)) (-3206 (((-3 |#3| "failed") |#3|) 89)) (-2246 ((|#3| |#3|) 132)) (-3266 (((-3 |#3| "failed") |#3|) 65)) (-2342 ((|#3| |#3|) 140)) (-3134 (((-3 |#3| "failed") |#3|) 53)) (-2225 ((|#3| |#3|) 130)) (-2481 (((-3 |#3| "failed") |#3|) 122)) (-2388 ((|#3| |#3|) 144)) (-4182 (((-3 |#3| "failed") |#3|) 91)) (-2266 ((|#3| |#3|) 134)) (-4341 (((-3 |#3| "failed") |#3| (-780)) 41)) (-2511 (((-3 |#3| "failed") |#3|) 81)) (-3118 ((|#3| |#3|) 129)) (-4430 (((-3 |#3| "failed") |#3|) 51)) (-1608 ((|#3| |#3|) 128)) (-3026 (((-3 |#3| "failed") |#3|) 123)) (-2401 ((|#3| |#3|) 145)) (-3868 (((-3 |#3| "failed") |#3|) 92)) (-2274 ((|#3| |#3|) 135)) (-3171 (((-3 |#3| "failed") |#3|) 121)) (-2374 ((|#3| |#3|) 143)) (-4367 (((-3 |#3| "failed") |#3|) 90)) (-2255 ((|#3| |#3|) 133)) (-3526 (((-3 |#3| "failed") |#3|) 67)) (-2352 ((|#3| |#3|) 141)) (-1782 (((-3 |#3| "failed") |#3|) 55)) (-2236 ((|#3| |#3|) 131)) (-2416 (((-3 |#3| "failed") |#3|) 73)) (-2439 ((|#3| |#3|) 148)) (-3835 (((-3 |#3| "failed") |#3|) 114)) (-2304 ((|#3| |#3|) 152)) (-3196 (((-3 |#3| "failed") |#3|) 69)) (-2413 ((|#3| |#3|) 146)) (-2599 (((-3 |#3| "failed") |#3|) 57)) (-2286 ((|#3| |#3|) 136)) (-3994 (((-3 |#3| "failed") |#3|) 77)) (-2464 ((|#3| |#3|) 150)) (-3297 (((-3 |#3| "failed") |#3|) 61)) (-2324 ((|#3| |#3|) 138)) (-2775 (((-3 |#3| "failed") |#3|) 79)) (-2520 ((|#3| |#3|) 151)) (-3581 (((-3 |#3| "failed") |#3|) 63)) (-2333 ((|#3| |#3|) 139)) (-3162 (((-3 |#3| "failed") |#3|) 75)) (-2452 ((|#3| |#3|) 149)) (-1702 (((-3 |#3| "failed") |#3|) 117)) (-2314 ((|#3| |#3|) 153)) (-4132 (((-3 |#3| "failed") |#3|) 71)) (-2426 ((|#3| |#3|) 147)) (-4189 (((-3 |#3| "failed") |#3|) 59)) (-2296 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-416 (-573))) 47 (|has| |#1| (-371))))) -(((-284 |#1| |#2| |#3|) (-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) (-38 (-416 (-573))) (-1271 |#1|) (-1242 |#1| |#2|)) (T -284)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) (-4 *5 (-1271 *4)) (-5 *1 (-284 *4 *5 *2)) (-4 *2 (-1242 *4 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4))))) -(-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) -((-4196 (((-3 |#3| "failed") |#3|) 70)) (-2363 ((|#3| |#3|) 137)) (-3206 (((-3 |#3| "failed") |#3|) 54)) (-2246 ((|#3| |#3|) 125)) (-3266 (((-3 |#3| "failed") |#3|) 66)) (-2342 ((|#3| |#3|) 135)) (-3134 (((-3 |#3| "failed") |#3|) 50)) (-2225 ((|#3| |#3|) 123)) (-2481 (((-3 |#3| "failed") |#3|) 74)) (-2388 ((|#3| |#3|) 139)) (-4182 (((-3 |#3| "failed") |#3|) 58)) (-2266 ((|#3| |#3|) 127)) (-4341 (((-3 |#3| "failed") |#3| (-780)) 38)) (-2511 (((-3 |#3| "failed") |#3|) 48)) (-3118 ((|#3| |#3|) 111)) (-4430 (((-3 |#3| "failed") |#3|) 46)) (-1608 ((|#3| |#3|) 122)) (-3026 (((-3 |#3| "failed") |#3|) 76)) (-2401 ((|#3| |#3|) 140)) (-3868 (((-3 |#3| "failed") |#3|) 60)) (-2274 ((|#3| |#3|) 128)) (-3171 (((-3 |#3| "failed") |#3|) 72)) (-2374 ((|#3| |#3|) 138)) (-4367 (((-3 |#3| "failed") |#3|) 56)) (-2255 ((|#3| |#3|) 126)) (-3526 (((-3 |#3| "failed") |#3|) 68)) (-2352 ((|#3| |#3|) 136)) (-1782 (((-3 |#3| "failed") |#3|) 52)) (-2236 ((|#3| |#3|) 124)) (-2416 (((-3 |#3| "failed") |#3|) 78)) (-2439 ((|#3| |#3|) 143)) (-3835 (((-3 |#3| "failed") |#3|) 62)) (-2304 ((|#3| |#3|) 131)) (-3196 (((-3 |#3| "failed") |#3|) 112)) (-2413 ((|#3| |#3|) 141)) (-2599 (((-3 |#3| "failed") |#3|) 100)) (-2286 ((|#3| |#3|) 129)) (-3994 (((-3 |#3| "failed") |#3|) 116)) (-2464 ((|#3| |#3|) 145)) (-3297 (((-3 |#3| "failed") |#3|) 107)) (-2324 ((|#3| |#3|) 133)) (-2775 (((-3 |#3| "failed") |#3|) 117)) (-2520 ((|#3| |#3|) 146)) (-3581 (((-3 |#3| "failed") |#3|) 109)) (-2333 ((|#3| |#3|) 134)) (-3162 (((-3 |#3| "failed") |#3|) 80)) (-2452 ((|#3| |#3|) 144)) (-1702 (((-3 |#3| "failed") |#3|) 64)) (-2314 ((|#3| |#3|) 132)) (-4132 (((-3 |#3| "failed") |#3|) 113)) (-2426 ((|#3| |#3|) 142)) (-4189 (((-3 |#3| "failed") |#3|) 103)) (-2296 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-416 (-573))) 44 (|has| |#1| (-371))))) -(((-285 |#1| |#2| |#3| |#4|) (-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) (-38 (-416 (-573))) (-1240 |#1|) (-1263 |#1| |#2|) (-995 |#2|)) (T -285)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) (-4 *5 (-1240 *4)) (-5 *1 (-285 *4 *5 *2 *6)) (-4 *2 (-1263 *4 *5)) (-4 *6 (-995 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4))))) -(-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) -((-3991 (((-112) $) 20)) (-2361 (((-1194) $) 7)) (-3484 (((-3 (-515) "failed") $) 14)) (-4419 (((-3 (-653 $) "failed") $) NIL)) (-3577 (((-3 (-515) "failed") $) 21)) (-3267 (((-3 (-1116) "failed") $) 18)) (-4044 (((-112) $) 16)) (-2942 (((-871) $) NIL)) (-3935 (((-112) $) 9))) -(((-286) (-13 (-622 (-871)) (-10 -8 (-15 -2361 ((-1194) $)) (-15 -4044 ((-112) $)) (-15 -3267 ((-3 (-1116) "failed") $)) (-15 -3991 ((-112) $)) (-15 -3577 ((-3 (-515) "failed") $)) (-15 -3935 ((-112) $)) (-15 -3484 ((-3 (-515) "failed") $)) (-15 -4419 ((-3 (-653 $) "failed") $))))) (T -286)) -((-2361 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-286)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3267 (*1 *2 *1) (|partial| -12 (-5 *2 (-1116)) (-5 *1 (-286)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3484 (*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) (-4419 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-286))) (-5 *1 (-286))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2361 ((-1194) $)) (-15 -4044 ((-112) $)) (-15 -3267 ((-3 (-1116) "failed") $)) (-15 -3991 ((-112) $)) (-15 -3577 ((-3 (-515) "failed") $)) (-15 -3935 ((-112) $)) (-15 -3484 ((-3 (-515) "failed") $)) (-15 -4419 ((-3 (-653 $) "failed") $)))) -((-4309 (((-606) $) 10)) (-1999 (((-594) $) 8)) (-1621 (((-298) $) 12)) (-3944 (($ (-594) (-606) (-298)) NIL)) (-2942 (((-871) $) 19))) -(((-287) (-13 (-622 (-871)) (-10 -8 (-15 -3944 ($ (-594) (-606) (-298))) (-15 -1999 ((-594) $)) (-15 -4309 ((-606) $)) (-15 -1621 ((-298) $))))) (T -287)) -((-3944 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-594)) (-5 *3 (-606)) (-5 *4 (-298)) (-5 *1 (-287)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-594)) (-5 *1 (-287)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-606)) (-5 *1 (-287)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-298)) (-5 *1 (-287))))) -(-13 (-622 (-871)) (-10 -8 (-15 -3944 ($ (-594) (-606) (-298))) (-15 -1999 ((-594) $)) (-15 -4309 ((-606) $)) (-15 -1621 ((-298) $)))) -((-2164 (($ (-1 (-112) |#2|) $) 24)) (-2685 (($ $) 38)) (-2596 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3334 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4241 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1593 (($ |#2| $ (-573)) 20) (($ $ $ (-573)) 22)) (-2836 (($ $ (-573)) 11) (($ $ (-1247 (-573))) 14)) (-3996 (($ $ |#2|) 32) (($ $ $) NIL)) (-4156 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-653 $)) NIL))) -(((-288 |#1| |#2|) (-10 -8 (-15 -4241 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2685 (|#1| |#1|))) (-289 |#2|) (-1230)) (T -288)) -NIL -(-10 -8 (-15 -4241 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2685 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 88)) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 86 (|has| |#1| (-1112)))) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1112)))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-4241 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3181 (($ |#1| $ (-573)) 91) (($ $ $ (-573)) 90)) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-3220 (($ $ (-573)) 94) (($ $ (-1247 (-573))) 93)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-3996 (($ $ |#1|) 96) (($ $ $) 95)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-289 |#1|) (-141) (-1230)) (T -289)) -((-3996 (*1 *1 *1 *2) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3181 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3181 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-4241 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-2596 (*1 *1 *2 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-1599 (*1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-859))))) -(-13 (-660 |t#1|) (-10 -8 (-6 -4456) (-15 -3996 ($ $ |t#1|)) (-15 -3996 ($ $ $)) (-15 -3220 ($ $ (-573))) (-15 -3220 ($ $ (-1247 (-573)))) (-15 -2596 ($ (-1 (-112) |t#1|) $)) (-15 -3181 ($ |t#1| $ (-573))) (-15 -3181 ($ $ $ (-573))) (-15 -4241 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3557 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -2596 ($ |t#1| $)) (-15 -1599 ($ $))) |%noBranch|) (IF (|has| |t#1| (-859)) (-15 -4241 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-3878 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781))))) +(-13 (-235 $) (-10 -8 (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) +(((-235 $) . T) ((-1233) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 42) (($ $) 40)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-781)) 43) (($ $) 41)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-239) (-141)) (T -239)) +NIL +(-13 (-1064) (-238)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) +((-2163 (($) 12) (($ (-654 |#2|)) NIL)) (-3156 (($ $) 14)) (-2962 (($ (-654 |#2|)) 10)) (-2950 (((-872) $) 21))) +(((-240 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2163 (|#1| (-654 |#2|))) (-15 -2163 (|#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3156 (|#1| |#1|))) (-241 |#2|) (-1115)) (T -240)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2163 (|#1| (-654 |#2|))) (-15 -2163 (|#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3156 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-241 |#1|) (-141) (-1115)) (T -241)) +((-2163 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1115)))) (-2163 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-241 *3)))) (-3245 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-241 *2)) (-4 *2 (-1115)))) (-3245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) (-4 *3 (-1115)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) (-4 *3 (-1115))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2163 ($)) (-15 -2163 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4458)) (PROGN (-15 -3245 ($ |t#1| $)) (-15 -3245 ($ (-1 (-112) |t#1|) $)) (-15 -1657 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-4074 (((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574)))) 42))) +(((-242) (-10 -7 (-15 -4074 ((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574))))))) (T -242)) +((-4074 (*1 *2 *3) (-12 (-5 *3 (-302 (-965 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781)))))) (-5 *1 (-242))))) +(-10 -7 (-15 -4074 ((-2 (|:| |varOrder| (-654 (-1192))) (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) (|:| |hom| (-654 (-1283 (-781))))) (-302 (-965 (-574)))))) +((-1497 (((-781)) 56)) (-4232 (((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2900 (((-135)) 62)) (-3878 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2950 (((-1283 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-3781 (((-781)) 15)) (-3102 (($ $ |#3|) 59))) +(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|)) (-15 -3781 ((-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -4232 ((-699 |#3|) (-1283 |#1|))) (-15 -4232 ((-699 |#3|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -1497 ((-781))) (-15 -3102 (|#1| |#1| |#3|)) (-15 -2900 ((-135))) (-15 -2950 ((-1283 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1233)) (T -243)) +((-2900 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1233)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1497 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3781 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) +(-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|)) (-15 -3781 ((-781))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -4232 ((-699 |#3|) (-1283 |#1|))) (-15 -4232 ((-699 |#3|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -1497 ((-781))) (-15 -3102 (|#1| |#1| |#3|)) (-15 -2900 ((-135))) (-15 -2950 ((-1283 |#3|) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#2| (-1115)))) (-1997 (((-112) $) 74 (|has| |#2| (-132)))) (-2365 (($ (-934)) 129 (|has| |#2| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-3672 (($ $ $) 125 (|has| |#2| (-803)))) (-2599 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-1750 (((-112) $ (-781)) 8)) (-1497 (((-781)) 111 (|has| |#2| (-377)))) (-2496 (((-574) $) 123 (|has| |#2| (-858)))) (-3134 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-1706 (((-3 (-574) "failed") $) 69 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) 66 (-2097 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1115)))) (-2216 (((-574) $) 68 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) 65 (-2097 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) 64 (|has| |#2| (-1115)))) (-4232 (((-699 (-574)) (-1283 $)) 110 (-2097 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) 109 (-2097 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 108 (-2097 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 107 (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) 106 (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) 105 (|has| |#2| (-1064)))) (-2978 (((-3 $ "failed") $) 81 (|has| |#2| (-736)))) (-2834 (($) 114 (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 52)) (-1348 (((-112) $) 121 (|has| |#2| (-858)))) (-1874 (((-654 |#2|) $) 31 (|has| $ (-6 -4458)))) (-2276 (((-112) $) 83 (|has| |#2| (-736)))) (-3081 (((-112) $) 122 (|has| |#2| (-858)))) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 120 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-4187 (((-654 |#2|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 119 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2464 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2|) $) 36)) (-3880 (((-934) $) 113 (|has| |#2| (-377)))) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#2| (-1115)))) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-2590 (($ (-934)) 112 (|has| |#2| (-377)))) (-3939 (((-1135) $) 21 (|has| |#2| (-1115)))) (-2924 ((|#2| $) 43 (|has| (-574) (-860)))) (-2485 (($ $ |#2|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-2546 ((|#2| $ $) 128 (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) 130)) (-2900 (((-135)) 127 (|has| |#2| (-372)))) (-3878 (($ $ (-781)) 100 (-2097 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) 98 (-2097 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) 97 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) 96 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) 95 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) 94 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) 87 (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4458))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-1283 |#2|) $) 131) (($ (-574)) 70 (-2832 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) 67 (-2097 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) 62 (|has| |#2| (-1115))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-3781 (((-781)) 85 (|has| |#2| (-1064)) CONST)) (-4259 (((-112) $ $) 23 (|has| |#2| (-1115)))) (-2235 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4458)))) (-2366 (($ $) 124 (|has| |#2| (-858)))) (-2143 (($) 73 (|has| |#2| (-132)) CONST)) (-2155 (($) 84 (|has| |#2| (-736)) CONST)) (-3583 (($ $ (-781)) 101 (-2097 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) 99 (-2097 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) 93 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) 92 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) 91 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) 90 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) 89 (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1064)))) (-3040 (((-112) $ $) 117 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3017 (((-112) $ $) 116 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2985 (((-112) $ $) 20 (|has| |#2| (-1115)))) (-3029 (((-112) $ $) 118 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3008 (((-112) $ $) 115 (-2832 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3102 (($ $ |#2|) 126 (|has| |#2| (-372)))) (-3089 (($ $ $) 104 (|has| |#2| (-1064))) (($ $) 103 (|has| |#2| (-1064)))) (-3073 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-781)) 82 (|has| |#2| (-736))) (($ $ (-934)) 79 (|has| |#2| (-736)))) (* (($ (-574) $) 102 (|has| |#2| (-1064))) (($ $ $) 80 (|has| |#2| (-736))) (($ $ |#2|) 78 (|has| |#2| (-736))) (($ |#2| $) 77 (|has| |#2| (-736))) (($ (-781) $) 75 (|has| |#2| (-132))) (($ (-934) $) 72 (|has| |#2| (-25)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-244 |#1| |#2|) (-141) (-781) (-1233)) (T -244)) +((-4246 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1233)) (-4 *1 (-244 *3 *4)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1064)) (-4 *4 (-1233)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-736))))) +(-13 (-614 (-574) |t#2|) (-623 (-1283 |t#2|)) (-10 -8 (-6 -4458) (-15 -4246 ($ (-1283 |t#2|))) (IF (|has| |t#2| (-1115)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1064)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -2365 ($ (-934))) (-15 -2546 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-736)) (PROGN (-6 (-736)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#2| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1290 |t#2|)) |%noBranch|))) +(((-21) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-23) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115))) ((-626 (-574)) -2832 (|has| |#2| (-1064)) (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-626 |#2|) -2832 (|has| |#2| (-1115)) (|has| |#2| (-174))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-623 (-1283 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-233 |#2|) |has| |#2| (-1064)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1064))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1064)) ((-421 |#2|) |has| |#2| (-1115)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-656 (-574)) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064))) ((-658 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-650 |#2|) -2832 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064))) ((-649 |#2|) |has| |#2| (-1064)) ((-727 |#2|) -2832 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-801) |has| |#2| (-858)) ((-802) -2832 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-803) |has| |#2| (-803)) ((-804) -2832 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-805) -2832 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-858) |has| |#2| (-858)) ((-860) -2832 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-913 (-1192)) -12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064))) ((-1053 #0#) -12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115))) ((-1053 (-574)) -12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) ((-1053 |#2|) |has| |#2| (-1115)) ((-1066 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1066 $) |has| |#2| (-174)) ((-1071 |#2|) -2832 (|has| |#2| (-1064)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1071 $) |has| |#2| (-174)) ((-1064) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1073) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1127) -2832 (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-1115) -2832 (|has| |#2| (-1115)) (|has| |#2| (-1064)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1233) . T) ((-1290 |#2|) |has| |#2| (-372))) +((-2316 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2881 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1787 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) +(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -2316 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2881 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1787 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1233) (-1233)) (T -245)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1233)) (-4 *2 (-1233)) (-5 *1 (-245 *5 *6 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1233)) (-4 *5 (-1233)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) +(-10 -7 (-15 -2316 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2881 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1787 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) +((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-1997 (((-112) $) NIL (|has| |#2| (-132)))) (-2365 (($ (-934)) 62 (|has| |#2| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) 68 (|has| |#2| (-803)))) (-2599 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#2| (-377)))) (-2496 (((-574) $) NIL (|has| |#2| (-858)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) 28 (|has| |#2| (-1115)))) (-4232 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-2978 (((-3 $ "failed") $) 58 (|has| |#2| (-736)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 56)) (-1348 (((-112) $) NIL (|has| |#2| (-858)))) (-1874 (((-654 |#2|) $) 14 (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (|has| |#2| (-736)))) (-3081 (((-112) $) NIL (|has| |#2| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 19 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-4187 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2464 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#2| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#2| (-1115)))) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-2546 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) 17)) (-2900 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) 9) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) 12 (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3781 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-4259 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2235 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#2| (-858)))) (-2143 (($) 36 (|has| |#2| (-132)) CONST)) (-2155 (($) 40 (|has| |#2| (-736)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2985 (((-112) $ $) 27 (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3008 (((-112) $ $) 66 (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3073 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-934)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) 46 (|has| |#2| (-736))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1233)) (T -246)) +NIL +(-244 |#1| |#2|) +((-3364 (((-574) (-654 (-1174))) 36) (((-574) (-1174)) 29)) (-1568 (((-1288) (-654 (-1174))) 40) (((-1288) (-1174)) 39)) (-2048 (((-1174)) 16)) (-2144 (((-1174) (-574) (-1174)) 23)) (-3332 (((-654 (-1174)) (-654 (-1174)) (-574) (-1174)) 37) (((-1174) (-1174) (-574) (-1174)) 35)) (-2635 (((-654 (-1174)) (-654 (-1174))) 15) (((-654 (-1174)) (-1174)) 11))) +(((-247) (-10 -7 (-15 -2635 ((-654 (-1174)) (-1174))) (-15 -2635 ((-654 (-1174)) (-654 (-1174)))) (-15 -2048 ((-1174))) (-15 -2144 ((-1174) (-574) (-1174))) (-15 -3332 ((-1174) (-1174) (-574) (-1174))) (-15 -3332 ((-654 (-1174)) (-654 (-1174)) (-574) (-1174))) (-15 -1568 ((-1288) (-1174))) (-15 -1568 ((-1288) (-654 (-1174)))) (-15 -3364 ((-574) (-1174))) (-15 -3364 ((-574) (-654 (-1174)))))) (T -247)) +((-3364 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-574)) (-5 *1 (-247)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1288)) (-5 *1 (-247)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1174))) (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) (-2144 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) (-2048 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-247)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)) (-5 *3 (-1174))))) +(-10 -7 (-15 -2635 ((-654 (-1174)) (-1174))) (-15 -2635 ((-654 (-1174)) (-654 (-1174)))) (-15 -2048 ((-1174))) (-15 -2144 ((-1174) (-574) (-1174))) (-15 -3332 ((-1174) (-1174) (-574) (-1174))) (-15 -3332 ((-654 (-1174)) (-654 (-1174)) (-574) (-1174))) (-15 -1568 ((-1288) (-1174))) (-15 -1568 ((-1288) (-654 (-1174)))) (-15 -3364 ((-574) (-1174))) (-15 -3364 ((-574) (-654 (-1174))))) +((** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL))) +(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-249)) (T -248)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 47)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49))) +(((-249) (-141)) (T -249)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1327 (*1 *1 *1) (-4 *1 (-249)))) +(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1327 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-1980 (($ $) 58)) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-2571 (($ $ $) 54 (|has| $ (-6 -4459)))) (-3736 (($ $ $) 53 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-1532 (($ $) 57)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3952 (($ $) 56)) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 60)) (-1708 (($ $) 59)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48)) (-1418 (((-574) $ $) 45)) (-3325 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-3539 (($ $ $) 55 (|has| $ (-6 -4459)))) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-250 |#1|) (-141) (-1233)) (T -250)) +((-3333 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-1708 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-3952 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-3539 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-2571 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) (-3736 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -3333 (|t#1| $)) (-15 -1708 ($ $)) (-15 -1980 ($ $)) (-15 -1532 ($ $)) (-15 -3952 ($ $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3539 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -3736 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2212 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-4031 (($ $ $) NIL (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) NIL)) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $) NIL) (($ $ (-781)) NIL)) (-3054 (($ $) NIL (|has| |#1| (-1115)))) (-2818 (($ $) 7 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-2841 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4099 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4333 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1948 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2949 (((-112) $) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-1418 (((-574) $ $) NIL)) (-4253 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3175 (($ (-654 |#1|)) 22)) (-3325 (((-112) $) NIL)) (-2592 (($ $) NIL)) (-4423 (($ $) NIL (|has| $ (-6 -4459)))) (-1798 (((-781) $) NIL)) (-1523 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-3539 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 14 (|has| $ (-6 -4458))))) +(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3175 ($ (-654 |#1|))) (-15 -2209 ($ $ "unique")) (-15 -2209 ($ $ "sort")) (-15 -2209 ((-781) $ "count")))) (-860)) (T -251)) +((-3175 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))) +(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3175 ($ (-654 |#1|))) (-15 -2209 ($ $ "unique")) (-15 -2209 ($ $ "sort")) (-15 -2209 ((-781) $ "count")))) +((-3943 (((-3 (-781) "failed") |#1| |#1| (-781)) 40))) +(((-252 |#1|) (-10 -7 (-15 -3943 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252)) +((-3943 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3))))) +(-10 -7 (-15 -3943 ((-3 (-781) "failed") |#1| |#1| (-781)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4319 (($ $) NIL (|has| |#2| (-566)))) (-1731 (((-112) $) NIL (|has| |#2| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL (|has| |#2| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3372 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2956 (($ $ (-654 (-574))) NIL)) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#2| (-922)))) (-2680 (($ $ |#2| (-246 (-2876 |#1|) (-781)) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#2| (-246 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-874 |#1|)) NIL)) (-2682 (((-246 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3577 (($ (-1 (-246 (-2876 |#1|) (-781)) (-246 (-2876 |#1|) (-781))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1407 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3843 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-3902 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4144 (((-246 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-246 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-962 |#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064)) (T -253)) +((-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) +(-13 (-962 |#2| (-246 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) +((-2863 (((-112) $ $) NIL)) (-1995 (((-1288) $) 17)) (-3244 (((-185 (-255)) $) 11)) (-4213 (($ (-185 (-255))) 12)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1974 (((-255) $) 7)) (-2950 (((-872) $) 9)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15))) +(((-254) (-13 (-1115) (-10 -8 (-15 -1974 ((-255) $)) (-15 -3244 ((-185 (-255)) $)) (-15 -4213 ($ (-185 (-255)))) (-15 -1995 ((-1288) $))))) (T -254)) +((-1974 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-4213 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-254))))) +(-13 (-1115) (-10 -8 (-15 -1974 ((-255) $)) (-15 -3244 ((-185 (-255)) $)) (-15 -4213 ($ (-185 (-255)))) (-15 -1995 ((-1288) $)))) +((-2863 (((-112) $ $) NIL)) (-1725 (((-654 (-875)) $) NIL)) (-2041 (((-516) $) NIL)) (-1938 (((-1174) $) NIL)) (-4269 (((-188) $) NIL)) (-2454 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-3713 (((-341) $) 7)) (-2431 (((-654 (-112)) $) NIL)) (-2950 (((-872) $) NIL) (((-189) $) 8)) (-4259 (((-112) $ $) NIL)) (-2404 (((-55) $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -3713 ((-341) $))))) (T -255)) +((-3713 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) +(-13 (-187) (-623 (-189)) (-10 -8 (-15 -3713 ((-341) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2209 (((-1197) $ (-781)) 13)) (-2950 (((-872) $) 20)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 16)) (-2876 (((-781) $) 9))) +(((-256) (-13 (-1115) (-294 (-781) (-1197)) (-10 -8 (-15 -2876 ((-781) $))))) (T -256)) +((-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))) +(-13 (-1115) (-294 (-781) (-1197)) (-10 -8 (-15 -2876 ((-781) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2365 (($ (-934)) NIL (|has| |#4| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) NIL (|has| |#4| (-803)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#4| (-377)))) (-2496 (((-574) $) NIL (|has| |#4| (-858)))) (-3134 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1115))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-2216 ((|#4| $) NIL (|has| |#4| (-1115))) (((-574) $) NIL (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-4232 (((-2 (|:| -4226 (-699 |#4|)) (|:| |vec| (-1283 |#4|))) (-699 $) (-1283 $)) NIL (|has| |#4| (-1064))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1064))) (((-699 |#4|) (-1283 $)) NIL (|has| |#4| (-1064))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1064))))) (-2978 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))))) (-2834 (($) NIL (|has| |#4| (-377)))) (-2473 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#4| $ (-574)) NIL)) (-1348 (((-112) $) NIL (|has| |#4| (-858)))) (-1874 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))))) (-3081 (((-112) $) NIL (|has| |#4| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-4187 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2464 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#4| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#4| (-377)))) (-3939 (((-1135) $) NIL)) (-2924 ((|#4| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#4|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3670 (((-654 |#4|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-2546 ((|#4| $ $) NIL (|has| |#4| (-1064)))) (-4246 (($ (-1283 |#4|)) NIL)) (-2900 (((-135)) NIL (|has| |#4| (-372)))) (-3878 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1064))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))))) (-3948 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#4|) $) NIL) (((-872) $) NIL) (($ |#4|) NIL (|has| |#4| (-1115))) (($ (-574)) NIL (-2832 (-12 (|has| |#4| (-1053 (-574))) (|has| |#4| (-1115))) (|has| |#4| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1053 (-417 (-574)))) (|has| |#4| (-1115))))) (-3781 (((-781)) NIL (|has| |#4| (-1064)) CONST)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#4| (-858)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) CONST)) (-3583 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1064))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3008 (((-112) $ $) NIL (-2832 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3102 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064))))) (($ $ (-934)) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (-2832 (-12 (|has| |#4| (-239)) (|has| |#4| (-1064))) (|has| |#4| (-736)) (-12 (|has| |#4| (-913 (-1192))) (|has| |#4| (-1064)))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-934) (-1064) (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257)) +NIL +(-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2365 (($ (-934)) NIL (|has| |#3| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) NIL (|has| |#3| (-803)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#3| (-377)))) (-2496 (((-574) $) NIL (|has| |#3| (-858)))) (-3134 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1115))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-2216 ((|#3| $) NIL (|has| |#3| (-1115))) (((-574) $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-4232 (((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-1283 $)) NIL (|has| |#3| (-1064))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064))))) (-2978 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))))) (-2834 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#3| $ (-574)) NIL)) (-1348 (((-112) $) NIL (|has| |#3| (-858)))) (-1874 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))))) (-3081 (((-112) $) NIL (|has| |#3| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-4187 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2464 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#3| |#3|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#3| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#3| (-377)))) (-3939 (((-1135) $) NIL)) (-2924 ((|#3| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#3|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3670 (((-654 |#3|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-2546 ((|#3| $ $) NIL (|has| |#3| (-1064)))) (-4246 (($ (-1283 |#3|)) NIL)) (-2900 (((-135)) NIL (|has| |#3| (-372)))) (-3878 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))))) (-3948 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#3|) $) NIL) (((-872) $) NIL) (($ |#3|) NIL (|has| |#3| (-1115))) (($ (-574)) NIL (-2832 (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115))))) (-3781 (((-781)) NIL (|has| |#3| (-1064)) CONST)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#3| (-858)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) CONST)) (-3583 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3008 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3102 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064))))) (($ $ (-934)) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (-2832 (-12 (|has| |#3| (-239)) (|has| |#3| (-1064))) (|has| |#3| (-736)) (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1064) (-658 |#2|)) (T -258)) +NIL +(-13 (-244 |#1| |#3|) (-658 |#2|)) +((-2261 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-1724 (((-781) $) 58) (((-781) $ |#3|) 61)) (-1841 (($ $) 76)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3837 (((-781) $ |#3|) 43) (((-781) $) 38)) (-1352 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3679 ((|#4| $) 69)) (-2056 (((-112) $) 67)) (-2605 (($ $) 75)) (-2660 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3878 (($ $ |#4|) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1635 (((-654 |#3|) $) 86)) (-4144 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#3| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#3| |#1|)) (-15 -1352 ((-1 |#1| (-781)) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3679 (|#4| |#1|)) (-15 -2056 ((-112) |#1|)) (-15 -1724 ((-781) |#1| |#3|)) (-15 -2261 ((-654 (-781)) |#1| |#3|)) (-15 -1724 ((-781) |#1|)) (-15 -2261 ((-654 (-781)) |#1|)) (-15 -4144 ((-781) |#1| |#3|)) (-15 -3837 ((-781) |#1|)) (-15 -3837 ((-781) |#1| |#3|)) (-15 -1635 ((-654 |#3|) |#1|)) (-15 -1352 ((-1 |#1| (-781)) |#3|)) (-15 -2950 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -4144 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -4144 ((-781) |#1| |#4|)) (-15 -2950 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4144 (|#5| |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#4| (-781))) (-15 -3878 (|#1| |#1| (-654 |#4|))) (-15 -3878 (|#1| |#1| |#4|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1064) (-860) (-273 |#3|) (-803)) (T -259)) +NIL +(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#3| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#3| |#1|)) (-15 -1352 ((-1 |#1| (-781)) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3679 (|#4| |#1|)) (-15 -2056 ((-112) |#1|)) (-15 -1724 ((-781) |#1| |#3|)) (-15 -2261 ((-654 (-781)) |#1| |#3|)) (-15 -1724 ((-781) |#1|)) (-15 -2261 ((-654 (-781)) |#1|)) (-15 -4144 ((-781) |#1| |#3|)) (-15 -3837 ((-781) |#1|)) (-15 -3837 ((-781) |#1| |#3|)) (-15 -1635 ((-654 |#3|) |#1|)) (-15 -1352 ((-1 |#1| (-781)) |#3|)) (-15 -2950 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -4144 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -4144 ((-781) |#1| |#4|)) (-15 -2950 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4144 (|#5| |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#4| (-781))) (-15 -3878 (|#1| |#1| (-654 |#4|))) (-15 -3878 (|#1| |#1| |#4|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2261 (((-654 (-781)) $) 219) (((-654 (-781)) $ |#2|) 217)) (-1724 (((-781) $) 218) (((-781) $ |#2|) 216)) (-4349 (((-654 |#3|) $) 112)) (-4172 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-4319 (($ $) 90 (|has| |#1| (-566)))) (-1731 (((-112) $) 92 (|has| |#1| (-566)))) (-4347 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3313 (($ $) 100 (|has| |#1| (-462)))) (-2153 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-1841 (($ $) 212)) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141) ((|#2| $) 227)) (-3372 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1401 (($ $) 158)) (-4232 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-2978 (((-3 $ "failed") $) 37)) (-1420 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-2941 (((-112) $) 98 (|has| |#1| (-922)))) (-2680 (($ $ |#1| |#4| $) 176)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ |#2|) 222) (((-781) $) 221)) (-2276 (((-112) $) 35)) (-1901 (((-781) $) 173)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-3700 (((-654 $) $) 128)) (-3513 (((-112) $) 156)) (-4327 (($ |#1| |#4|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#3|) 122)) (-2682 ((|#4| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3577 (($ (-1 |#4| |#4|) $) 175)) (-1787 (($ (-1 |#1| |#1|) $) 155)) (-1352 (((-1 $ (-781)) |#2|) 224) (((-1 $ (-781)) $) 211 (|has| |#1| (-239)))) (-1407 (((-3 |#3| "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-3679 ((|#3| $) 214)) (-2844 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-1938 (((-1174) $) 10)) (-2056 (((-112) $) 215)) (-1898 (((-3 (-654 $) "failed") $) 116)) (-3145 (((-3 (-654 $) "failed") $) 117)) (-3019 (((-3 (-2 (|:| |var| |#3|) (|:| -3843 (-781))) "failed") $) 115)) (-2605 (($ $) 213)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 209 (|has| |#1| (-239))) (($ $ |#2| |#1|) 208 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 207 (|has| |#1| (-239)))) (-3902 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43) (($ $ (-781)) 242 (|has| |#1| (-239))) (($ $) 240 (|has| |#1| (-239))) (($ $ (-1192)) 239 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 238 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 237 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 236 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-1635 (((-654 |#2|) $) 223)) (-4144 ((|#4| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131) (((-781) $ |#2|) 220)) (-1846 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2097 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) 172)) (-3584 ((|#1| $ |#4|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3270 (((-3 $ "failed") $) 81 (-2832 (-2097 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 32 T CONST)) (-3702 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39) (($ $ (-781)) 243 (|has| |#1| (-239))) (($ $) 241 (|has| |#1| (-239))) (($ $ (-1192)) 235 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 234 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 233 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 232 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-260 |#1| |#2| |#3| |#4|) (-141) (-1064) (-860) (-273 |t#2|) (-803)) (T -260)) +((-1352 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-3837 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4144 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-2261 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1724 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2605 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-1841 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-1352 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-962 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1053 |t#2|) (-10 -8 (-15 -1352 ((-1 $ (-781)) |t#2|)) (-15 -1635 ((-654 |t#2|) $)) (-15 -3837 ((-781) $ |t#2|)) (-15 -3837 ((-781) $)) (-15 -4144 ((-781) $ |t#2|)) (-15 -2261 ((-654 (-781)) $)) (-15 -1724 ((-781) $)) (-15 -2261 ((-654 (-781)) $ |t#2|)) (-15 -1724 ((-781) $ |t#2|)) (-15 -2056 ((-112) $)) (-15 -3679 (|t#3| $)) (-15 -2605 ($ $)) (-15 -1841 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -1352 ((-1 $ (-781)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-962 |#1| |#4| |#3|) . T) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#2|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-239)) ((-1237) |has| |#1| (-922))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-4036 ((|#1| $) 55)) (-2012 ((|#1| $) 45)) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-2858 (($ $) 61)) (-3680 (($ $) 49)) (-3528 ((|#1| |#1| $) 47)) (-3416 ((|#1| $) 46)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-4108 (((-781) $) 62)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-4262 ((|#1| |#1| $) 53)) (-2744 ((|#1| |#1| $) 52)) (-1948 (($ |#1| $) 41)) (-1849 (((-781) $) 56)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3772 ((|#1| $) 63)) (-1345 ((|#1| $) 51)) (-3035 ((|#1| $) 50)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2182 ((|#1| |#1| $) 59)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3970 ((|#1| $) 60)) (-2369 (($) 58) (($ (-654 |#1|)) 57)) (-4292 (((-781) $) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2517 ((|#1| $) 54)) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2030 ((|#1| $) 64)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-261 |#1|) (-141) (-1233)) (T -261)) +((-2369 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-261 *3)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-4262 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-2744 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(-13 (-1136 |t#1|) (-1010 |t#1|) (-10 -8 (-15 -2369 ($)) (-15 -2369 ($ (-654 |t#1|))) (-15 -1849 ((-781) $)) (-15 -4036 (|t#1| $)) (-15 -2517 (|t#1| $)) (-15 -4262 (|t#1| |t#1| $)) (-15 -2744 (|t#1| |t#1| $)) (-15 -1345 (|t#1| $)) (-15 -3035 (|t#1| $)) (-15 -3680 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1010 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1136 |#1|) . T) ((-1233) . T)) +((-1596 (((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1856 (((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388))) 173) (((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 171) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 176) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 172) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 164) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 163) (((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388))) 145) (((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270))) 143) (((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388))) 144) (((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 141)) (-1810 (((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388))) 175) (((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 174) (((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 178) (((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 177) (((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388))) 166) (((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270))) 165) (((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388))) 151) (((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270))) 150) (((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388))) 149) (((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 148) (((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388))) 113) (((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270))) 112) (((-1284) (-1 (-227) (-227)) (-1109 (-388))) 107) (((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270))) 105))) +(((-262) (-10 -7 (-15 -1810 ((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-1 (-227) (-227)) (-1109 (-388)))) (-15 -1810 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1810 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1810 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1596 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-1596 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *2 (-1284)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262))))) +(-10 -7 (-15 -1810 ((-1284) (-1 (-227) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-1 (-227) (-227)) (-1109 (-388)))) (-15 -1810 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-888 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1810 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-890 (-1 (-227) (-227))) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227)) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-388)) (-1109 (-388)))) (-15 -1810 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1856 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1109 (-388)) (-1109 (-388)))) (-15 -1596 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1810 (((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))) 101))) +(((-263 |#1| |#2|) (-10 -7 (-15 -1810 ((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))))) (-13 (-566) (-860) (-1053 (-574))) (-440 |#1|)) (T -263)) +((-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1192)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1053 (-574)))) (-5 *2 (-1284)) (-5 *1 (-263 *6 *7))))) +(-10 -7 (-15 -1810 ((-1284) (-302 |#2|) (-1192) (-1192) (-654 (-270))))) +((-4270 (((-574) (-574)) 71)) (-4367 (((-574) (-574)) 72)) (-3264 (((-227) (-227)) 73)) (-3604 (((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227))) 70)) (-2700 (((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -2700 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112))) (-15 -3604 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -4270 ((-574) (-574))) (-15 -4367 ((-574) (-574))) (-15 -3264 ((-227) (-227))))) (T -264)) +((-3264 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-4367 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-3604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) (-5 *2 (-1285)) (-5 *1 (-264)))) (-2700 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) (-5 *5 (-112)) (-5 *2 (-1285)) (-5 *1 (-264))))) +(-10 -7 (-15 -2700 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)) (-112))) (-15 -3604 ((-1285) (-1 (-171 (-227)) (-171 (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -4270 ((-574) (-574))) (-15 -4367 ((-574) (-574))) (-15 -3264 ((-227) (-227)))) +((-2950 (((-1107 (-388)) (-1107 (-324 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -2950 ((-1107 (-388)) (-1107 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-1107 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1107 (-388))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -2950 ((-1107 (-388)) (-1107 (-324 |#1|))))) +((-1856 (((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))) 75) (((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 74) (((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388))) 65) (((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 64) (((-1148 (-227)) (-890 |#1|) (-1107 (-388))) 56) (((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270))) 55)) (-1810 (((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388))) 78) (((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 77) (((-1285) |#1| (-1107 (-388)) (-1107 (-388))) 68) (((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 67) (((-1285) (-890 |#1|) (-1107 (-388))) 60) (((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270))) 59) (((-1284) (-888 |#1|) (-1107 (-388))) 47) (((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270))) 46) (((-1284) |#1| (-1107 (-388))) 38) (((-1284) |#1| (-1107 (-388)) (-654 (-270))) 36))) +(((-266 |#1|) (-10 -7 (-15 -1810 ((-1284) |#1| (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) |#1| (-1107 (-388)))) (-15 -1810 ((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-888 |#1|) (-1107 (-388)))) (-15 -1810 ((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-890 |#1|) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)))) (-15 -1810 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1810 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))))) (-13 (-624 (-546)) (-1115))) (T -266)) +((-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *5)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *5)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1107 (-388))) (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115)))))) +(-10 -7 (-15 -1810 ((-1284) |#1| (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) |#1| (-1107 (-388)))) (-15 -1810 ((-1284) (-888 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1284) (-888 |#1|) (-1107 (-388)))) (-15 -1810 ((-1285) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-890 |#1|) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-890 |#1|) (-1107 (-388)))) (-15 -1810 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) |#1| (-1107 (-388)) (-1107 (-388)))) (-15 -1810 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1810 ((-1285) (-893 |#1|) (-1107 (-388)) (-1107 (-388)))) (-15 -1856 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1856 ((-1148 (-227)) (-893 |#1|) (-1107 (-388)) (-1107 (-388))))) +((-1810 (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1284) (-654 (-956 (-227))) (-654 (-270))) 16) (((-1284) (-654 (-956 (-227)))) 17) (((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1284) (-654 (-227)) (-654 (-227))) 21))) +(((-267) (-10 -7 (-15 -1810 ((-1284) (-654 (-227)) (-654 (-227)))) (-15 -1810 ((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1810 ((-1284) (-654 (-956 (-227))))) (-15 -1810 ((-1284) (-654 (-956 (-227))) (-654 (-270)))) (-15 -1810 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1810 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267)) +((-1810 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284)) (-5 *1 (-267))))) +(-10 -7 (-15 -1810 ((-1284) (-654 (-227)) (-654 (-227)))) (-15 -1810 ((-1284) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1810 ((-1284) (-654 (-956 (-227))))) (-15 -1810 ((-1284) (-654 (-956 (-227))) (-654 (-270)))) (-15 -1810 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1810 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))))) +((-2136 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-4149 (((-934) (-654 (-270)) (-934)) 52)) (-2176 (((-934) (-654 (-270)) (-934)) 51)) (-2007 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-3686 (((-388) (-654 (-270)) (-388)) 57)) (-1994 (((-934) (-654 (-270)) (-934)) 53)) (-1317 (((-112) (-654 (-270)) (-112)) 27)) (-3850 (((-1174) (-654 (-270)) (-1174)) 19)) (-2773 (((-1174) (-654 (-270)) (-1174)) 26)) (-4079 (((-1148 (-227)) (-654 (-270))) 46)) (-2274 (((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388)))) 40)) (-4229 (((-884) (-654 (-270)) (-884)) 32)) (-3092 (((-884) (-654 (-270)) (-884)) 33)) (-3429 (((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227)))) 63)) (-3293 (((-112) (-654 (-270)) (-112)) 14)) (-2853 (((-112) (-654 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -2853 ((-112) (-654 (-270)) (-112))) (-15 -3293 ((-112) (-654 (-270)) (-112))) (-15 -2136 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ((-1174) (-654 (-270)) (-1174))) (-15 -2773 ((-1174) (-654 (-270)) (-1174))) (-15 -1317 ((-112) (-654 (-270)) (-112))) (-15 -4229 ((-884) (-654 (-270)) (-884))) (-15 -3092 ((-884) (-654 (-270)) (-884))) (-15 -2274 ((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388))))) (-15 -2176 ((-934) (-654 (-270)) (-934))) (-15 -4149 ((-934) (-654 (-270)) (-934))) (-15 -4079 ((-1148 (-227)) (-654 (-270)))) (-15 -1994 ((-934) (-654 (-270)) (-934))) (-15 -3686 ((-388) (-654 (-270)) (-388))) (-15 -3429 ((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227))))) (-15 -2007 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268)) +((-2007 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3429 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3686 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-268)))) (-4149 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2176 (*1 *2 *3 *2) (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2274 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3092 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4229 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1317 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2773 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2136 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3293 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2853 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -2853 ((-112) (-654 (-270)) (-112))) (-15 -3293 ((-112) (-654 (-270)) (-112))) (-15 -2136 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ((-1174) (-654 (-270)) (-1174))) (-15 -2773 ((-1174) (-654 (-270)) (-1174))) (-15 -1317 ((-112) (-654 (-270)) (-112))) (-15 -4229 ((-884) (-654 (-270)) (-884))) (-15 -3092 ((-884) (-654 (-270)) (-884))) (-15 -2274 ((-654 (-1109 (-388))) (-654 (-270)) (-654 (-1109 (-388))))) (-15 -2176 ((-934) (-654 (-270)) (-934))) (-15 -4149 ((-934) (-654 (-270)) (-934))) (-15 -4079 ((-1148 (-227)) (-654 (-270)))) (-15 -1994 ((-934) (-654 (-270)) (-934))) (-15 -3686 ((-388) (-654 (-270)) (-388))) (-15 -3429 ((-1 (-956 (-227)) (-956 (-227))) (-654 (-270)) (-1 (-956 (-227)) (-956 (-227))))) (-15 -2007 ((-654 (-388)) (-654 (-270)) (-654 (-388))))) +((-1990 (((-3 |#1| "failed") (-654 (-270)) (-1192)) 17))) +(((-269 |#1|) (-10 -7 (-15 -1990 ((-3 |#1| "failed") (-654 (-270)) (-1192)))) (-1233)) (T -269)) +((-1990 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *1 (-269 *2)) (-4 *2 (-1233))))) +(-10 -7 (-15 -1990 ((-3 |#1| "failed") (-654 (-270)) (-1192)))) +((-2863 (((-112) $ $) NIL)) (-2136 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-4149 (($ (-934)) 81)) (-2176 (($ (-934)) 80)) (-3462 (($ (-654 (-388))) 87)) (-3686 (($ (-388)) 66)) (-1994 (($ (-934)) 82)) (-1317 (($ (-112)) 33)) (-3850 (($ (-1174)) 28)) (-2773 (($ (-1174)) 29)) (-4079 (($ (-1148 (-227))) 76)) (-2274 (($ (-654 (-1109 (-388)))) 72)) (-4231 (($ (-654 (-1109 (-388)))) 68) (($ (-654 (-1109 (-417 (-574))))) 71)) (-1721 (($ (-388)) 38) (($ (-884)) 42)) (-4039 (((-112) (-654 $) (-1192)) 100)) (-1990 (((-3 (-52) "failed") (-654 $) (-1192)) 102)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1899 (($ (-388)) 43) (($ (-884)) 44)) (-4421 (($ (-1 (-956 (-227)) (-956 (-227)))) 65)) (-3429 (($ (-1 (-956 (-227)) (-956 (-227)))) 83)) (-1778 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2950 (((-872) $) 93)) (-3033 (($ (-112)) 34) (($ (-654 (-1109 (-388)))) 60)) (-4259 (((-112) $ $) NIL)) (-2853 (($ (-112)) 35)) (-2985 (((-112) $ $) 97))) +(((-270) (-13 (-1115) (-10 -8 (-15 -2853 ($ (-112))) (-15 -3033 ($ (-112))) (-15 -2136 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ($ (-1174))) (-15 -2773 ($ (-1174))) (-15 -1317 ($ (-112))) (-15 -3033 ($ (-654 (-1109 (-388))))) (-15 -4421 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -1721 ($ (-388))) (-15 -1721 ($ (-884))) (-15 -1899 ($ (-388))) (-15 -1899 ($ (-884))) (-15 -1778 ($ (-1 (-227) (-227)))) (-15 -1778 ($ (-1 (-227) (-227) (-227)))) (-15 -1778 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3686 ($ (-388))) (-15 -4231 ($ (-654 (-1109 (-388))))) (-15 -4231 ($ (-654 (-1109 (-417 (-574)))))) (-15 -2274 ($ (-654 (-1109 (-388))))) (-15 -4079 ($ (-1148 (-227)))) (-15 -2176 ($ (-934))) (-15 -4149 ($ (-934))) (-15 -1994 ($ (-934))) (-15 -3429 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -3462 ($ (-654 (-388)))) (-15 -1990 ((-3 (-52) "failed") (-654 $) (-1192))) (-15 -4039 ((-112) (-654 $) (-1192)))))) (T -270)) +((-2853 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2136 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3850 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-4421 (*1 *1 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-1778 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1778 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1778 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-417 (-574))))) (-5 *1 (-270)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) (-4079 (*1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-270)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-4149 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270)))) (-3429 (*1 *1 *2) (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) (-3462 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1990 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-52)) (-5 *1 (-270)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1115) (-10 -8 (-15 -2853 ($ (-112))) (-15 -3033 ($ (-112))) (-15 -2136 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3850 ($ (-1174))) (-15 -2773 ($ (-1174))) (-15 -1317 ($ (-112))) (-15 -3033 ($ (-654 (-1109 (-388))))) (-15 -4421 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -1721 ($ (-388))) (-15 -1721 ($ (-884))) (-15 -1899 ($ (-388))) (-15 -1899 ($ (-884))) (-15 -1778 ($ (-1 (-227) (-227)))) (-15 -1778 ($ (-1 (-227) (-227) (-227)))) (-15 -1778 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3686 ($ (-388))) (-15 -4231 ($ (-654 (-1109 (-388))))) (-15 -4231 ($ (-654 (-1109 (-417 (-574)))))) (-15 -2274 ($ (-654 (-1109 (-388))))) (-15 -4079 ($ (-1148 (-227)))) (-15 -2176 ($ (-934))) (-15 -4149 ($ (-934))) (-15 -1994 ($ (-934))) (-15 -3429 ($ (-1 (-956 (-227)) (-956 (-227))))) (-15 -3462 ($ (-654 (-388)))) (-15 -1990 ((-3 (-52) "failed") (-654 $) (-1192))) (-15 -4039 ((-112) (-654 $) (-1192))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2261 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-1724 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4349 (((-654 |#3|) $) NIL)) (-4172 (((-1188 $) $ |#3|) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1841 (($ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1140 |#1| |#2|) "failed") $) 23)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1140 |#1| |#2|) $) NIL)) (-3372 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-541 |#3|) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-3837 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) |#3|) NIL) (($ (-1188 $) |#3|) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#3|) NIL)) (-2682 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-3577 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1352 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1407 (((-3 |#3| "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 ((|#3| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-2056 (((-112) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| |#3|) (|:| -3843 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-3902 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1635 (((-654 |#2|) $) NIL)) (-4144 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1140 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1053 (-1140 |#1| |#2|))) (-1064) (-860) (-273 |#2|)) (T -271)) +NIL +(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1053 (-1140 |#1| |#2|))) +((-1724 (((-781) $) 37)) (-1706 (((-3 |#2| "failed") $) 22)) (-2216 ((|#2| $) 33)) (-3878 (($ $ (-781)) 18) (($ $) 14)) (-2950 (((-872) $) 32) (($ |#2|) 11)) (-2985 (((-112) $ $) 26)) (-3008 (((-112) $ $) 36))) +(((-272 |#1| |#2|) (-10 -8 (-15 -1724 ((-781) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272)) +NIL +(-10 -8 (-15 -1724 ((-781) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1724 (((-781) $) 22)) (-1498 ((|#1| $) 23)) (-1706 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-3837 (((-781) $) 24)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1352 (($ |#1| (-781)) 25)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ (-781)) 31) (($ $) 29)) (-2950 (((-872) $) 12) (($ |#1|) 26)) (-4259 (((-112) $ $) 9)) (-3583 (($ $ (-781)) 32) (($ $) 30)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19))) +(((-273 |#1|) (-141) (-860)) (T -273)) +((-2950 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-1352 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) +(-13 (-860) (-238) (-1053 |t#1|) (-10 -8 (-15 -1352 ($ |t#1| (-781))) (-15 -3837 ((-781) $)) (-15 -1498 (|t#1| $)) (-15 -1724 ((-781) $)) (-15 -2950 ($ |t#1|)))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-860) . T) ((-1053 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-4349 (((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 53)) (-1665 (((-654 (-1192)) (-324 (-227)) (-781)) 94)) (-2694 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-2231 (((-324 (-227)) (-324 (-227))) 79)) (-3953 (((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-2011 (((-112) (-654 (-324 (-227)))) 104)) (-1711 (((-112) (-324 (-227))) 36)) (-4415 (((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 132)) (-3034 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-4313 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-3612 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-1595 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-4100 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-3467 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 126)) (-3116 (((-1050) (-1192) (-1050)) 46))) +(((-274) (-10 -7 (-15 -4100 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3953 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2694 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2231 ((-324 (-227)) (-324 (-227)))) (-15 -2011 ((-112) (-654 (-324 (-227))))) (-15 -1595 ((-112) (-654 (-324 (-227))))) (-15 -1595 ((-112) (-324 (-227)))) (-15 -3612 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4313 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3034 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -1711 ((-112) (-324 (-227)))) (-15 -4349 ((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1665 ((-654 (-1192)) (-324 (-227)) (-781))) (-15 -3116 ((-1050) (-1192) (-1050))) (-15 -3467 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -4415 ((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))))) (T -274)) +((-4415 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *2 (-654 (-1174))) (-5 *1 (-274)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-3116 (*1 *2 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-274)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-2694 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274))))) +(-10 -7 (-15 -4100 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3953 ((-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2694 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2231 ((-324 (-227)) (-324 (-227)))) (-15 -2011 ((-112) (-654 (-324 (-227))))) (-15 -1595 ((-112) (-654 (-324 (-227))))) (-15 -1595 ((-112) (-324 (-227)))) (-15 -3612 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4313 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3034 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -1711 ((-112) (-324 (-227)))) (-15 -4349 ((-654 (-1192)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -1665 ((-654 (-1192)) (-324 (-227)) (-781))) (-15 -3116 ((-1050) (-1192) (-1050))) (-15 -3467 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -4415 ((-654 (-1174)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))))) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-275) (-849)) (T -275)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 72) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 43)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-276) (-849)) (T -276)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 90) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 65)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-277) (-849)) (T -277)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-278) (-849)) (T -278)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-279) (-849)) (T -279)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-280) (-849)) (T -280)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-281) (-849)) (T -281)) +NIL +(-849) +((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4277 (((-654 (-574)) $) 29)) (-4144 (((-781) $) 27)) (-2950 (((-872) $) 33) (($ (-654 (-574))) 23)) (-4259 (((-112) $ $) NIL)) (-1585 (($ (-781)) 30)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 17))) +(((-282) (-13 (-860) (-10 -8 (-15 -2950 ($ (-654 (-574)))) (-15 -4144 ((-781) $)) (-15 -4277 ((-654 (-574)) $)) (-15 -1585 ($ (-781)))))) (T -282)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) +(-13 (-860) (-10 -8 (-15 -2950 ($ (-654 (-574)))) (-15 -4144 ((-781) $)) (-15 -4277 ((-654 (-574)) $)) (-15 -1585 ($ (-781))))) +((-2378 ((|#2| |#2|) 77)) (-2260 ((|#2| |#2|) 65)) (-3268 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2357 ((|#2| |#2|) 75)) (-2238 ((|#2| |#2|) 63)) (-2403 ((|#2| |#2|) 79)) (-2281 ((|#2| |#2|) 67)) (-3003 ((|#2|) 46)) (-4151 (((-115) (-115)) 100)) (-3111 ((|#2| |#2|) 61)) (-1593 (((-112) |#2|) 147)) (-3132 ((|#2| |#2|) 195)) (-3867 ((|#2| |#2|) 171)) (-1452 ((|#2|) 59)) (-3255 ((|#2|) 58)) (-1845 ((|#2| |#2|) 191)) (-2572 ((|#2| |#2|) 167)) (-3049 ((|#2| |#2|) 199)) (-2168 ((|#2| |#2|) 175)) (-3743 ((|#2| |#2|) 163)) (-3544 ((|#2| |#2|) 165)) (-1738 ((|#2| |#2|) 201)) (-4130 ((|#2| |#2|) 177)) (-1336 ((|#2| |#2|) 197)) (-3031 ((|#2| |#2|) 173)) (-3176 ((|#2| |#2|) 193)) (-3373 ((|#2| |#2|) 169)) (-3778 ((|#2| |#2|) 207)) (-1467 ((|#2| |#2|) 183)) (-3727 ((|#2| |#2|) 203)) (-2583 ((|#2| |#2|) 179)) (-3500 ((|#2| |#2|) 211)) (-2720 ((|#2| |#2|) 187)) (-3354 ((|#2| |#2|) 213)) (-3856 ((|#2| |#2|) 189)) (-4059 ((|#2| |#2|) 209)) (-2560 ((|#2| |#2|) 185)) (-3474 ((|#2| |#2|) 205)) (-3640 ((|#2| |#2|) 181)) (-1619 ((|#2| |#2|) 62)) (-2415 ((|#2| |#2|) 80)) (-2289 ((|#2| |#2|) 68)) (-2388 ((|#2| |#2|) 78)) (-2271 ((|#2| |#2|) 66)) (-2367 ((|#2| |#2|) 76)) (-2249 ((|#2| |#2|) 64)) (-2448 (((-112) (-115)) 98)) (-2455 ((|#2| |#2|) 83)) (-2319 ((|#2| |#2|) 71)) (-2428 ((|#2| |#2|) 81)) (-2301 ((|#2| |#2|) 69)) (-2479 ((|#2| |#2|) 85)) (-2339 ((|#2| |#2|) 73)) (-2535 ((|#2| |#2|) 86)) (-2348 ((|#2| |#2|) 74)) (-2467 ((|#2| |#2|) 84)) (-2329 ((|#2| |#2|) 72)) (-2442 ((|#2| |#2|) 82)) (-2311 ((|#2| |#2|) 70))) +(((-283 |#1| |#2|) (-10 -7 (-15 -1619 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2271 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3003 (|#2|)) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -3255 (|#2|)) (-15 -1452 (|#2|)) (-15 -3544 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -2572 (|#2| |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -3867 (|#2| |#2|)) (-15 -3031 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3268 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1593 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1017))) (T -283)) +((-1593 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1017))))) (-3268 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1017))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3132 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3856 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2560 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3031 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2572 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3544 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1452 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-3255 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1017))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017))))) (-3003 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017)))))) +(-10 -7 (-15 -1619 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2271 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3003 (|#2|)) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -3255 (|#2|)) (-15 -1452 (|#2|)) (-15 -3544 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -2572 (|#2| |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -3867 (|#2| |#2|)) (-15 -3031 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3268 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1593 ((-112) |#2|))) +((-3592 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192)) 151)) (-1353 ((|#2| (-417 (-574)) |#2|) 49)) (-3223 ((|#2| |#2| (-622 |#2|)) 144)) (-1741 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192)) 143)) (-3201 ((|#2| |#2| (-1192)) 20) ((|#2| |#2|) 23)) (-3863 ((|#2| |#2| (-1192)) 157) ((|#2| |#2|) 155))) +(((-284 |#1| |#2|) (-10 -7 (-15 -3863 (|#2| |#2|)) (-15 -3863 (|#2| |#2| (-1192))) (-15 -1741 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192))) (-15 -3201 (|#2| |#2|)) (-15 -3201 (|#2| |#2| (-1192))) (-15 -3592 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192))) (-15 -3223 (|#2| |#2| (-622 |#2|))) (-15 -1353 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -284)) +((-1353 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-3592 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1192)) (-4 *2 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-3201 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-3863 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) +(-10 -7 (-15 -3863 (|#2| |#2|)) (-15 -3863 (|#2| |#2| (-1192))) (-15 -1741 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1192))) (-15 -3201 (|#2| |#2|)) (-15 -3201 (|#2| |#2| (-1192))) (-15 -3592 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1192))) (-15 -3223 (|#2| |#2| (-622 |#2|))) (-15 -1353 (|#2| (-417 (-574)) |#2|))) +((-3678 (((-3 |#3| "failed") |#3|) 120)) (-2378 ((|#3| |#3|) 142)) (-2211 (((-3 |#3| "failed") |#3|) 89)) (-2260 ((|#3| |#3|) 132)) (-1611 (((-3 |#3| "failed") |#3|) 65)) (-2357 ((|#3| |#3|) 140)) (-2733 (((-3 |#3| "failed") |#3|) 53)) (-2238 ((|#3| |#3|) 130)) (-1454 (((-3 |#3| "failed") |#3|) 122)) (-2403 ((|#3| |#3|) 144)) (-1631 (((-3 |#3| "failed") |#3|) 91)) (-2281 ((|#3| |#3|) 134)) (-2570 (((-3 |#3| "failed") |#3| (-781)) 41)) (-3637 (((-3 |#3| "failed") |#3|) 81)) (-3111 ((|#3| |#3|) 129)) (-2214 (((-3 |#3| "failed") |#3|) 51)) (-1619 ((|#3| |#3|) 128)) (-2927 (((-3 |#3| "failed") |#3|) 123)) (-2415 ((|#3| |#3|) 145)) (-1590 (((-3 |#3| "failed") |#3|) 92)) (-2289 ((|#3| |#3|) 135)) (-1847 (((-3 |#3| "failed") |#3|) 121)) (-2388 ((|#3| |#3|) 143)) (-2837 (((-3 |#3| "failed") |#3|) 90)) (-2271 ((|#3| |#3|) 133)) (-1332 (((-3 |#3| "failed") |#3|) 67)) (-2367 ((|#3| |#3|) 141)) (-4212 (((-3 |#3| "failed") |#3|) 55)) (-2249 ((|#3| |#3|) 131)) (-2072 (((-3 |#3| "failed") |#3|) 73)) (-2455 ((|#3| |#3|) 148)) (-4380 (((-3 |#3| "failed") |#3|) 114)) (-2319 ((|#3| |#3|) 152)) (-2098 (((-3 |#3| "failed") |#3|) 69)) (-2428 ((|#3| |#3|) 146)) (-3280 (((-3 |#3| "failed") |#3|) 57)) (-2301 ((|#3| |#3|) 136)) (-3519 (((-3 |#3| "failed") |#3|) 77)) (-2479 ((|#3| |#3|) 150)) (-3842 (((-3 |#3| "failed") |#3|) 61)) (-2339 ((|#3| |#3|) 138)) (-4400 (((-3 |#3| "failed") |#3|) 79)) (-2535 ((|#3| |#3|) 151)) (-3807 (((-3 |#3| "failed") |#3|) 63)) (-2348 ((|#3| |#3|) 139)) (-1757 (((-3 |#3| "failed") |#3|) 75)) (-2467 ((|#3| |#3|) 149)) (-2812 (((-3 |#3| "failed") |#3|) 117)) (-2329 ((|#3| |#3|) 153)) (-4286 (((-3 |#3| "failed") |#3|) 71)) (-2442 ((|#3| |#3|) 147)) (-1695 (((-3 |#3| "failed") |#3|) 59)) (-2311 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372))))) +(((-285 |#1| |#2| |#3|) (-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3111 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2271 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) (-38 (-417 (-574))) (-1274 |#1|) (-1245 |#1| |#2|)) (T -285)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1274 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1245 *4 *5)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4))))) +(-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3111 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2271 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) +((-3678 (((-3 |#3| "failed") |#3|) 70)) (-2378 ((|#3| |#3|) 137)) (-2211 (((-3 |#3| "failed") |#3|) 54)) (-2260 ((|#3| |#3|) 125)) (-1611 (((-3 |#3| "failed") |#3|) 66)) (-2357 ((|#3| |#3|) 135)) (-2733 (((-3 |#3| "failed") |#3|) 50)) (-2238 ((|#3| |#3|) 123)) (-1454 (((-3 |#3| "failed") |#3|) 74)) (-2403 ((|#3| |#3|) 139)) (-1631 (((-3 |#3| "failed") |#3|) 58)) (-2281 ((|#3| |#3|) 127)) (-2570 (((-3 |#3| "failed") |#3| (-781)) 38)) (-3637 (((-3 |#3| "failed") |#3|) 48)) (-3111 ((|#3| |#3|) 111)) (-2214 (((-3 |#3| "failed") |#3|) 46)) (-1619 ((|#3| |#3|) 122)) (-2927 (((-3 |#3| "failed") |#3|) 76)) (-2415 ((|#3| |#3|) 140)) (-1590 (((-3 |#3| "failed") |#3|) 60)) (-2289 ((|#3| |#3|) 128)) (-1847 (((-3 |#3| "failed") |#3|) 72)) (-2388 ((|#3| |#3|) 138)) (-2837 (((-3 |#3| "failed") |#3|) 56)) (-2271 ((|#3| |#3|) 126)) (-1332 (((-3 |#3| "failed") |#3|) 68)) (-2367 ((|#3| |#3|) 136)) (-4212 (((-3 |#3| "failed") |#3|) 52)) (-2249 ((|#3| |#3|) 124)) (-2072 (((-3 |#3| "failed") |#3|) 78)) (-2455 ((|#3| |#3|) 143)) (-4380 (((-3 |#3| "failed") |#3|) 62)) (-2319 ((|#3| |#3|) 131)) (-2098 (((-3 |#3| "failed") |#3|) 112)) (-2428 ((|#3| |#3|) 141)) (-3280 (((-3 |#3| "failed") |#3|) 100)) (-2301 ((|#3| |#3|) 129)) (-3519 (((-3 |#3| "failed") |#3|) 116)) (-2479 ((|#3| |#3|) 145)) (-3842 (((-3 |#3| "failed") |#3|) 107)) (-2339 ((|#3| |#3|) 133)) (-4400 (((-3 |#3| "failed") |#3|) 117)) (-2535 ((|#3| |#3|) 146)) (-3807 (((-3 |#3| "failed") |#3|) 109)) (-2348 ((|#3| |#3|) 134)) (-1757 (((-3 |#3| "failed") |#3|) 80)) (-2467 ((|#3| |#3|) 144)) (-2812 (((-3 |#3| "failed") |#3|) 64)) (-2329 ((|#3| |#3|) 132)) (-4286 (((-3 |#3| "failed") |#3|) 113)) (-2442 ((|#3| |#3|) 142)) (-1695 (((-3 |#3| "failed") |#3|) 103)) (-2311 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372))))) +(((-286 |#1| |#2| |#3| |#4|) (-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3111 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2271 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) (-38 (-417 (-574))) (-1243 |#1|) (-1266 |#1| |#2|) (-998 |#2|)) (T -286)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1243 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1266 *4 *5)) (-4 *6 (-998 *5)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4))))) +(-13 (-998 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3111 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2271 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2311 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2378 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2455 (|#3| |#3|)) (-15 -2467 (|#3| |#3|)) (-15 -2479 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)))) +((-3486 (((-112) $) 20)) (-2376 (((-1197) $) 7)) (-2116 (((-3 (-516) "failed") $) 14)) (-2113 (((-3 (-654 $) "failed") $) NIL)) (-3765 (((-3 (-516) "failed") $) 21)) (-1621 (((-3 (-1119) "failed") $) 18)) (-2772 (((-112) $) 16)) (-2950 (((-872) $) NIL)) (-4113 (((-112) $) 9))) +(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2376 ((-1197) $)) (-15 -2772 ((-112) $)) (-15 -1621 ((-3 (-1119) "failed") $)) (-15 -3486 ((-112) $)) (-15 -3765 ((-3 (-516) "failed") $)) (-15 -4113 ((-112) $)) (-15 -2116 ((-3 (-516) "failed") $)) (-15 -2113 ((-3 (-654 $) "failed") $))))) (T -287)) +((-2376 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-287)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-1621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-287)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-3765 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2116 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-2113 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2376 ((-1197) $)) (-15 -2772 ((-112) $)) (-15 -1621 ((-3 (-1119) "failed") $)) (-15 -3486 ((-112) $)) (-15 -3765 ((-3 (-516) "failed") $)) (-15 -4113 ((-112) $)) (-15 -2116 ((-3 (-516) "failed") $)) (-15 -2113 ((-3 (-654 $) "failed") $)))) +((-4300 (((-607) $) 10)) (-2652 (((-595) $) 8)) (-3247 (((-299) $) 12)) (-3025 (($ (-595) (-607) (-299)) NIL)) (-2950 (((-872) $) 19))) +(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -3025 ($ (-595) (-607) (-299))) (-15 -2652 ((-595) $)) (-15 -4300 ((-607) $)) (-15 -3247 ((-299) $))))) (T -288)) +((-3025 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) +(-13 (-623 (-872)) (-10 -8 (-15 -3025 ($ (-595) (-607) (-299))) (-15 -2652 ((-595) $)) (-15 -4300 ((-607) $)) (-15 -3247 ((-299) $)))) +((-2175 (($ (-1 (-112) |#2|) $) 24)) (-2818 (($ $) 38)) (-3245 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3310 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4099 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1604 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2854 (($ $ (-574)) 11) (($ $ (-1250 (-574))) 14)) (-3539 (($ $ |#2|) 32) (($ $ $) NIL)) (-4131 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL))) +(((-289 |#1| |#2|) (-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -4099 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2818 (|#1| |#1|))) (-290 |#2|) (-1233)) (T -289)) +NIL +(-10 -8 (-15 -4099 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -4099 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -3310 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3310 (|#1| |#2| |#1|)) (-15 -2818 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) 88)) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3054 (($ $) 86 (|has| |#1| (-1115)))) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1115)))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-4099 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1948 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-4253 (($ $ (-574)) 94) (($ $ (-1250 (-574))) 93)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-3539 (($ $ |#1|) 96) (($ $ $) 95)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-290 |#1|) (-141) (-1233)) (T -290)) +((-3539 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-3539 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-4253 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-4253 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-3245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-1948 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1233)))) (-1948 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-4099 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) (-3245 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-860))))) +(-13 (-661 |t#1|) (-10 -8 (-6 -4459) (-15 -3539 ($ $ |t#1|)) (-15 -3539 ($ $ $)) (-15 -4253 ($ $ (-574))) (-15 -4253 ($ $ (-1250 (-574)))) (-15 -3245 ($ (-1 (-112) |t#1|) $)) (-15 -1948 ($ |t#1| $ (-574))) (-15 -1948 ($ $ $ (-574))) (-15 -4099 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1657 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -3245 ($ |t#1| $)) (-15 -3054 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -4099 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) ((** (($ $ $) 10))) -(((-290 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-291)) (T -290)) +(((-291 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-292)) (T -291)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3118 (($ $) 6)) (-1608 (($ $) 7)) (** (($ $ $) 8))) -(((-291) (-141)) (T -291)) -((** (*1 *1 *1 *1) (-4 *1 (-291))) (-1608 (*1 *1 *1) (-4 *1 (-291))) (-3118 (*1 *1 *1) (-4 *1 (-291)))) -(-13 (-10 -8 (-15 -3118 ($ $)) (-15 -1608 ($ $)) (-15 ** ($ $ $)))) -((-4266 (((-653 (-1169 |#1|)) (-1169 |#1|) |#1|) 35)) (-2441 ((|#2| |#2| |#1|) 39)) (-1672 ((|#2| |#2| |#1|) 41)) (-3593 ((|#2| |#2| |#1|) 40))) -(((-292 |#1| |#2|) (-10 -7 (-15 -2441 (|#2| |#2| |#1|)) (-15 -3593 (|#2| |#2| |#1|)) (-15 -1672 (|#2| |#2| |#1|)) (-15 -4266 ((-653 (-1169 |#1|)) (-1169 |#1|) |#1|))) (-371) (-1271 |#1|)) (T -292)) -((-4266 (*1 *2 *3 *4) (-12 (-4 *4 (-371)) (-5 *2 (-653 (-1169 *4))) (-5 *1 (-292 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-1271 *4)))) (-1672 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3)))) (-3593 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3)))) (-2441 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) -(-10 -7 (-15 -2441 (|#2| |#2| |#1|)) (-15 -3593 (|#2| |#2| |#1|)) (-15 -1672 (|#2| |#2| |#1|)) (-15 -4266 ((-653 (-1169 |#1|)) (-1169 |#1|) |#1|))) -((-2198 ((|#2| $ |#1|) 6))) -(((-293 |#1| |#2|) (-141) (-1230) (-1230)) (T -293)) -((-2198 (*1 *2 *1 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1230)) (-4 *2 (-1230))))) -(-13 (-1230) (-10 -8 (-15 -2198 (|t#2| $ |t#1|)))) -(((-1230) . T)) -((-2457 ((|#3| $ |#2| |#3|) 12)) (-2384 ((|#3| $ |#2|) 10))) -(((-294 |#1| |#2| |#3|) (-10 -8 (-15 -2457 (|#3| |#1| |#2| |#3|)) (-15 -2384 (|#3| |#1| |#2|))) (-295 |#2| |#3|) (-1112) (-1230)) (T -294)) -NIL -(-10 -8 (-15 -2457 (|#3| |#1| |#2| |#3|)) (-15 -2384 (|#3| |#1| |#2|))) -((-3142 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4456)))) (-2457 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 11)) (-2198 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-295 |#1| |#2|) (-141) (-1112) (-1230)) (T -295)) -((-2198 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-2384 (*1 *2 *1 *3) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-2457 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230))))) -(-13 (-293 |t#1| |t#2|) (-10 -8 (-15 -2198 (|t#2| $ |t#1| |t#2|)) (-15 -2384 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3142 (|t#2| $ |t#1| |t#2|)) (-15 -2457 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-293 |#1| |#2|) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 37)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 44)) (-2456 (($ $) 41)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) 35)) (-2867 (($ |#2| |#3|) 18)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 ((|#3| $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 19)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2569 (((-3 $ "failed") $ $) NIL)) (-2163 (((-780) $) 36)) (-2198 ((|#2| $ |#2|) 46)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 23)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 31 T CONST)) (-2144 (($) 39 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 40))) -(((-296 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-314) (-293 |#2| |#2|) (-10 -8 (-15 -3621 (|#3| $)) (-15 -2942 (|#2| $)) (-15 -2867 ($ |#2| |#3|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) (-174) (-1256 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -296)) -((-2232 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-296 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1256 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-296 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2867 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-296 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1256 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1323 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-314) (-293 |#2| |#2|) (-10 -8 (-15 -3621 (|#3| $)) (-15 -2942 (|#2| $)) (-15 -2867 ($ |#2| |#3|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-297) (-141)) (T -297)) -NIL -(-13 (-1061) (-111 $ $) (-10 -7 (-6 -4448))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2242 (((-653 (-1097)) $) 10)) (-1746 (($ (-515) (-515) (-1116) $) 19)) (-3428 (($ (-515) (-653 (-975)) $) 23)) (-2584 (($) 25)) (-3422 (((-700 (-1116)) (-515) (-515) $) 18)) (-2137 (((-653 (-975)) (-515) $) 22)) (-3508 (($) 7)) (-1823 (($) 24)) (-2942 (((-871) $) 29)) (-2396 (($) 26))) -(((-298) (-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2242 ((-653 (-1097)) $)) (-15 -3422 ((-700 (-1116)) (-515) (-515) $)) (-15 -1746 ($ (-515) (-515) (-1116) $)) (-15 -2137 ((-653 (-975)) (-515) $)) (-15 -3428 ($ (-515) (-653 (-975)) $)) (-15 -1823 ($)) (-15 -2584 ($)) (-15 -2396 ($))))) (T -298)) -((-3508 (*1 *1) (-5 *1 (-298))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-653 (-1097))) (-5 *1 (-298)))) (-3422 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-1116))) (-5 *1 (-298)))) (-1746 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-298)))) (-2137 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-653 (-975))) (-5 *1 (-298)))) (-3428 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-298)))) (-1823 (*1 *1) (-5 *1 (-298))) (-2584 (*1 *1) (-5 *1 (-298))) (-2396 (*1 *1) (-5 *1 (-298)))) -(-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2242 ((-653 (-1097)) $)) (-15 -3422 ((-700 (-1116)) (-515) (-515) $)) (-15 -1746 ($ (-515) (-515) (-1116) $)) (-15 -2137 ((-653 (-975)) (-515) $)) (-15 -3428 ($ (-515) (-653 (-975)) $)) (-15 -1823 ($)) (-15 -2584 ($)) (-15 -2396 ($)))) -((-4056 (((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))) 102)) (-4045 (((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|)))) 97) (((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780)) 41)) (-3386 (((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))) 99)) (-3670 (((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|)))) 75)) (-3867 (((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|)))) 74)) (-2517 (((-962 |#1|) (-698 (-416 (-962 |#1|)))) 55) (((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189)) 56))) -(((-299 |#1|) (-10 -7 (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189))) (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))))) (-15 -3867 ((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|))))) (-15 -3670 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|))))) (-15 -4056 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|))))) (-15 -3386 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))))) (-461)) (T -299)) -((-3386 (*1 *2 *3) (-12 (-4 *4 (-461)) (-5 *2 (-653 (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 *4)))))))) (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4)))))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-461)) (-5 *2 (-653 (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 *4)))))))) (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4)))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 *4)))) (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5)))))) (-4045 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-416 (-962 *6)) (-1178 (-1189) (-962 *6)))) (-5 *5 (-780)) (-4 *6 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *6))))) (-5 *1 (-299 *6)) (-5 *4 (-698 (-416 (-962 *6)))))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5)))))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-4 *4 (-461)) (-5 *2 (-653 (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4))))) (-5 *1 (-299 *4)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-5 *2 (-962 *4)) (-5 *1 (-299 *4)) (-4 *4 (-461)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-962 *5)))) (-5 *4 (-1189)) (-5 *2 (-962 *5)) (-5 *1 (-299 *5)) (-4 *5 (-461))))) -(-10 -7 (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189))) (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))))) (-15 -3867 ((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|))))) (-15 -3670 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|))))) (-15 -4056 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|))))) (-15 -3386 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))))) -((-1776 (((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)) 14))) -(((-300 |#1| |#2|) (-10 -7 (-15 -1776 ((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)))) (-1230) (-1230)) (T -300)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-301 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-301 *6)) (-5 *1 (-300 *5 *6))))) -(-10 -7 (-15 -1776 ((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-3444 (($ $) 12)) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2544 (($ $ $) 95 (|has| |#1| (-309)))) (-2579 (($) NIL (-2817 (|has| |#1| (-21)) (|has| |#1| (-735))) CONST)) (-4414 (($ $) 51 (|has| |#1| (-21)))) (-3250 (((-3 $ "failed") $) 62 (|has| |#1| (-735)))) (-1808 ((|#1| $) 11)) (-2232 (((-3 $ "failed") $) 60 (|has| |#1| (-735)))) (-1959 (((-112) $) NIL (|has| |#1| (-735)))) (-1776 (($ (-1 |#1| |#1|) $) 14)) (-1795 ((|#1| $) 10)) (-2915 (($ $) 50 (|has| |#1| (-21)))) (-3369 (((-3 $ "failed") $) 61 (|has| |#1| (-735)))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1323 (($ $) 64 (-2817 (|has| |#1| (-371)) (|has| |#1| (-482))))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2736 (((-653 $) $) 85 (|has| |#1| (-565)))) (-2645 (($ $ $) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 $)) 28 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-1189) |#1|) 17 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 21 (|has| |#1| (-523 (-1189) |#1|)))) (-2691 (($ |#1| |#1|) 9)) (-2365 (((-135)) 90 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 87 (|has| |#1| (-910 (-1189))))) (-3204 (($ $ $) NIL (|has| |#1| (-482)))) (-4380 (($ $ $) NIL (|has| |#1| (-482)))) (-2942 (($ (-573)) NIL (|has| |#1| (-1061))) (((-112) $) 37 (|has| |#1| (-1112))) (((-871) $) 36 (|has| |#1| (-1112)))) (-1545 (((-780)) 67 (|has| |#1| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2132 (($) 47 (|has| |#1| (-21)) CONST)) (-2144 (($) 57 (|has| |#1| (-735)) CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189))))) (-2981 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 92 (-2817 (|has| |#1| (-371)) (|has| |#1| (-482))))) (-3093 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3077 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-573)) NIL (|has| |#1| (-482))) (($ $ (-780)) NIL (|has| |#1| (-735))) (($ $ (-931)) NIL (|has| |#1| (-1124)))) (* (($ $ |#1|) 55 (|has| |#1| (-1124))) (($ |#1| $) 54 (|has| |#1| (-1124))) (($ $ $) 53 (|has| |#1| (-1124))) (($ (-573) $) 70 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-25))))) -(((-301 |#1|) (-13 (-1230) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2691 ($ |#1| |#1|)) (-15 -3444 ($ $)) (-15 -1795 (|#1| $)) (-15 -1808 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1189) |#1|)) (-6 (-523 (-1189) |#1|)) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-6 (-622 (-112))) (IF (|has| |#1| (-316 |#1|)) (PROGN (-15 -2645 ($ $ $)) (-15 -2645 ($ $ (-653 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3077 ($ |#1| $)) (-15 -3077 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2915 ($ $)) (-15 -4414 ($ $)) (-15 -3093 ($ |#1| $)) (-15 -3093 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1124)) (PROGN (-6 (-1124)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-735)) (PROGN (-6 (-735)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-6 (-482)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|) (IF (|has| |#1| (-565)) (-15 -2736 ((-653 $) $)) |%noBranch|) (IF (|has| |#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-1287 |#1|)) (-15 -3103 ($ $ $)) (-15 -1323 ($ $))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -2544 ($ $ $)) |%noBranch|))) (-1230)) (T -301)) -((-2981 (*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-2691 (*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-3444 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1795 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1808 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *2 (-316 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)) (-5 *1 (-301 *2)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *3))) (-4 *3 (-316 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) (-3077 (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-4414 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3093 (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3093 (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3369 (*1 *1 *1) (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230)))) (-3250 (*1 *1 *1) (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-653 (-301 *3))) (-5 *1 (-301 *3)) (-4 *3 (-565)) (-4 *3 (-1230)))) (-2544 (*1 *1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-309)) (-4 *2 (-1230)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) (-3103 (*1 *1 *1 *1) (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) (-1323 (*1 *1 *1) (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230)))))) -(-13 (-1230) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2691 ($ |#1| |#1|)) (-15 -3444 ($ $)) (-15 -1795 (|#1| $)) (-15 -1808 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1189) |#1|)) (-6 (-523 (-1189) |#1|)) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-6 (-622 (-112))) (IF (|has| |#1| (-316 |#1|)) (PROGN (-15 -2645 ($ $ $)) (-15 -2645 ($ $ (-653 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3077 ($ |#1| $)) (-15 -3077 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2915 ($ $)) (-15 -4414 ($ $)) (-15 -3093 ($ |#1| $)) (-15 -3093 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1124)) (PROGN (-6 (-1124)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-735)) (PROGN (-6 (-735)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-6 (-482)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|) (IF (|has| |#1| (-565)) (-15 -2736 ((-653 $) $)) |%noBranch|) (IF (|has| |#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-1287 |#1|)) (-15 -3103 ($ $ $)) (-15 -1323 ($ $))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -2544 ($ $ $)) |%noBranch|))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-302 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112)) (T -302)) -NIL -(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) -((-2675 (((-319) (-1171) (-653 (-1171))) 17) (((-319) (-1171) (-1171)) 16) (((-319) (-653 (-1171))) 15) (((-319) (-1171)) 14))) -(((-303) (-10 -7 (-15 -2675 ((-319) (-1171))) (-15 -2675 ((-319) (-653 (-1171)))) (-15 -2675 ((-319) (-1171) (-1171))) (-15 -2675 ((-319) (-1171) (-653 (-1171)))))) (T -303)) -((-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1171))) (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303))))) -(-10 -7 (-15 -2675 ((-319) (-1171))) (-15 -2675 ((-319) (-653 (-1171)))) (-15 -2675 ((-319) (-1171) (-1171))) (-15 -2675 ((-319) (-1171) (-653 (-1171))))) -((-1776 ((|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)) 18))) -(((-304 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)))) (-309) (-1230)) (T -304)) -((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1171)) (-5 *5 (-621 *6)) (-4 *6 (-309)) (-4 *2 (-1230)) (-5 *1 (-304 *6 *2))))) -(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)))) -((-1776 ((|#2| (-1 |#2| |#1|) (-621 |#1|)) 17))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-621 |#1|)))) (-309) (-309)) (T -305)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-621 *5)) (-4 *5 (-309)) (-4 *2 (-309)) (-5 *1 (-305 *5 *2))))) -(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-621 |#1|)))) -((-3036 (((-112) (-227)) 12))) -(((-306 |#1| |#2|) (-10 -7 (-15 -3036 ((-112) (-227)))) (-227) (-227)) (T -306)) -((-3036 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-306 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3036 ((-112) (-227)))) -((-3148 (((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227)))) 118)) (-4234 (((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227)))) 135) (((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227)))) 72)) (-1958 (((-653 (-1171)) (-1169 (-227))) NIL)) (-2982 (((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227)))) 69)) (-2385 (((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227)))) 59)) (-4245 (((-653 (-1171)) (-653 (-227))) NIL)) (-1665 (((-227) (-1106 (-852 (-227)))) 29)) (-4256 (((-227) (-1106 (-852 (-227)))) 30)) (-3855 (((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3730 (((-1171) (-227)) NIL))) -(((-307) (-10 -7 (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3855 ((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -3148 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -2385 ((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))))) (T -307)) -((-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-307)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-2982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-307)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307))))) -(-10 -7 (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3855 ((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -3148 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -2385 ((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227))))) -((-4090 (((-653 (-621 $)) $) 27)) (-2544 (($ $ (-301 $)) 78) (($ $ (-653 (-301 $))) 139) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) 127)) (-2205 (((-621 $) $) 126)) (-2449 (($ $) 17) (($ (-653 $)) 54)) (-2515 (((-653 (-115)) $) 35)) (-4173 (((-115) (-115)) 88)) (-2250 (((-112) $) 150)) (-1776 (($ (-1 $ $) (-621 $)) 86)) (-2944 (((-3 (-621 $) "failed") $) 94)) (-1774 (($ (-115) $) 59) (($ (-115) (-653 $)) 110)) (-1667 (((-112) $ (-115)) 132) (((-112) $ (-1189)) 131)) (-1839 (((-780) $) 44)) (-3805 (((-112) $ $) 57) (((-112) $ (-1189)) 49)) (-2270 (((-112) $) 148)) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) 137) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 81) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) 67) (($ $ (-1189) (-1 $ $)) 72) (($ $ (-653 (-115)) (-653 (-1 $ $))) 80) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 82) (($ $ (-115) (-1 $ (-653 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2198 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-653 $)) 123)) (-3727 (($ $) 51) (($ $ $) 135)) (-2029 (($ $) 15) (($ (-653 $)) 53)) (-3109 (((-112) (-115)) 21))) -(((-308 |#1|) (-10 -8 (-15 -2250 ((-112) |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3805 ((-112) |#1| (-1189))) (-15 -3805 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-621 |#1|))) (-15 -1774 (|#1| (-115) (-653 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -1667 ((-112) |#1| (-1189))) (-15 -1667 ((-112) |#1| (-115))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2515 ((-653 (-115)) |#1|)) (-15 -4090 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1839 ((-780) |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -2449 (|#1| (-653 |#1|))) (-15 -2449 (|#1| |#1|)) (-15 -2029 (|#1| (-653 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|))) (-309)) (T -308)) -((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-308 *3)) (-4 *3 (-309)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-308 *4)) (-4 *4 (-309))))) -(-10 -8 (-15 -2250 ((-112) |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3805 ((-112) |#1| (-1189))) (-15 -3805 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-621 |#1|))) (-15 -1774 (|#1| (-115) (-653 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -1667 ((-112) |#1| (-1189))) (-15 -1667 ((-112) |#1| (-115))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2515 ((-653 (-115)) |#1|)) (-15 -4090 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1839 ((-780) |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -2449 (|#1| (-653 |#1|))) (-15 -2449 (|#1| |#1|)) (-15 -2029 (|#1| (-653 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|))) -((-2848 (((-112) $ $) 7)) (-4090 (((-653 (-621 $)) $) 39)) (-2544 (($ $ (-301 $)) 51) (($ $ (-653 (-301 $))) 50) (($ $ (-653 (-621 $)) (-653 $)) 49)) (-1695 (((-3 (-621 $) "failed") $) 64)) (-2205 (((-621 $) $) 65)) (-2449 (($ $) 46) (($ (-653 $)) 45)) (-2515 (((-653 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-2250 (((-112) $) 17 (|has| $ (-1050 (-573))))) (-2597 (((-1185 $) (-621 $)) 20 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 31)) (-2944 (((-3 (-621 $) "failed") $) 41)) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-653 $)) 32)) (-1667 (((-112) $ (-115)) 35) (((-112) $ (-1189)) 34)) (-1839 (((-780) $) 42)) (-3965 (((-1132) $) 11)) (-3805 (((-112) $ $) 30) (((-112) $ (-1189)) 29)) (-2270 (((-112) $) 18 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) 62) (($ $ (-653 (-621 $)) (-653 $)) 61) (($ $ (-653 (-301 $))) 60) (($ $ (-301 $)) 59) (($ $ $ $) 58) (($ $ (-653 $) (-653 $)) 57) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 28) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 27) (($ $ (-1189) (-1 $ (-653 $))) 26) (($ $ (-1189) (-1 $ $)) 25) (($ $ (-653 (-115)) (-653 (-1 $ $))) 24) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 23) (($ $ (-115) (-1 $ (-653 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2198 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-653 $)) 52)) (-3727 (($ $) 44) (($ $ $) 43)) (-2984 (($ $) 19 (|has| $ (-1061)))) (-2942 (((-871) $) 12) (($ (-621 $)) 63)) (-2029 (($ $) 48) (($ (-653 $)) 47)) (-3109 (((-112) (-115)) 36)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-309) (-141)) (T -309)) -((-2198 (*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-301 *1)) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *1))) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-621 *1))) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-2029 (*1 *1 *1) (-4 *1 (-309))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) (-2449 (*1 *1 *1) (-4 *1 (-309))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) (-3727 (*1 *1 *1) (-4 *1 (-309))) (-3727 (*1 *1 *1 *1) (-4 *1 (-309))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-780)))) (-2944 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-309)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-653 (-115))))) (-4173 (*1 *2 *2) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-3109 (*1 *2 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) (-1774 (*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-621 *1)) (-4 *1 (-309)))) (-3805 (*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112)))) (-3805 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061)) (-4 *1 (-309)) (-5 *2 (-1185 *1)))) (-2984 (*1 *1 *1) (-12 (-4 *1 (-1061)) (-4 *1 (-309)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112))))) -(-13 (-1112) (-1050 (-621 $)) (-523 (-621 $) $) (-316 $) (-10 -8 (-15 -2198 ($ (-115) $)) (-15 -2198 ($ (-115) $ $)) (-15 -2198 ($ (-115) $ $ $)) (-15 -2198 ($ (-115) $ $ $ $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -2544 ($ $ (-301 $))) (-15 -2544 ($ $ (-653 (-301 $)))) (-15 -2544 ($ $ (-653 (-621 $)) (-653 $))) (-15 -2029 ($ $)) (-15 -2029 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -3727 ($ $)) (-15 -3727 ($ $ $)) (-15 -1839 ((-780) $)) (-15 -2944 ((-3 (-621 $) "failed") $)) (-15 -4163 ((-653 (-621 $)) $)) (-15 -4090 ((-653 (-621 $)) $)) (-15 -2515 ((-653 (-115)) $)) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (-15 -1774 ($ (-115) $)) (-15 -1774 ($ (-115) (-653 $))) (-15 -1776 ($ (-1 $ $) (-621 $))) (-15 -3805 ((-112) $ $)) (-15 -3805 ((-112) $ (-1189))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-1189) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-1189) (-1 $ $))) (-15 -2645 ($ $ (-653 (-115)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-115)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-115) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1061)) (PROGN (-15 -2597 ((-1185 $) (-621 $))) (-15 -2984 ($ $))) |%noBranch|) (IF (|has| $ (-1050 (-573))) (PROGN (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-625 #0=(-621 $)) . T) ((-622 (-871)) . T) ((-316 $) . T) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-1050 #0#) . T) ((-1112) . T)) -((-2936 (((-653 |#1|) (-653 |#1|)) 10))) -(((-310 |#1|) (-10 -7 (-15 -2936 ((-653 |#1|) (-653 |#1|)))) (-857)) (T -310)) -((-2936 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-857)) (-5 *1 (-310 *3))))) -(-10 -7 (-15 -2936 ((-653 |#1|) (-653 |#1|)))) -((-1776 (((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)) 17))) -(((-311 |#1| |#2|) (-10 -7 (-15 -1776 ((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)))) (-1061) (-1061)) (T -311)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-698 *6)) (-5 *1 (-311 *5 *6))))) -(-10 -7 (-15 -1776 ((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)))) -((-1350 (((-1280 (-323 (-387))) (-1280 (-323 (-227)))) 110)) (-4233 (((-1106 (-852 (-227))) (-1106 (-852 (-387)))) 43)) (-1958 (((-653 (-1171)) (-1169 (-227))) 92)) (-2071 (((-323 (-387)) (-962 (-227))) 53)) (-4246 (((-227) (-962 (-227))) 49)) (-2345 (((-1171) (-387)) 195)) (-1727 (((-852 (-227)) (-852 (-387))) 37)) (-2362 (((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227)))) 165)) (-1552 (((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) 207) (((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) 205)) (-1423 (((-698 (-227)) (-653 (-227)) (-780)) 19)) (-3699 (((-1280 (-708)) (-653 (-227))) 99)) (-4245 (((-653 (-1171)) (-653 (-227))) 79)) (-1779 (((-3 (-323 (-227)) "failed") (-323 (-227))) 128)) (-3036 (((-112) (-227) (-1106 (-852 (-227)))) 117)) (-2491 (((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) 224)) (-1665 (((-227) (-1106 (-852 (-227)))) 112)) (-4256 (((-227) (-1106 (-852 (-227)))) 113)) (-3986 (((-227) (-416 (-573))) 31)) (-2257 (((-1171) (-387)) 77)) (-4031 (((-227) (-387)) 22)) (-3672 (((-387) (-1280 (-323 (-227)))) 177)) (-2762 (((-323 (-227)) (-323 (-387))) 28)) (-1349 (((-416 (-573)) (-323 (-227))) 56)) (-4428 (((-323 (-416 (-573))) (-323 (-227))) 73)) (-3562 (((-323 (-387)) (-323 (-227))) 103)) (-3970 (((-227) (-323 (-227))) 57)) (-3008 (((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) 68)) (-2725 (((-1106 (-852 (-227))) (-1106 (-852 (-227)))) 65)) (-3730 (((-1171) (-227)) 76)) (-2602 (((-708) (-227)) 95)) (-4023 (((-416 (-573)) (-227)) 58)) (-1604 (((-323 (-387)) (-227)) 52)) (-1835 (((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387))))) 46)) (-4156 (((-1047) (-653 (-1047))) 191) (((-1047) (-1047) (-1047)) 185)) (-4144 (((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-312) (-10 -7 (-15 -4031 ((-227) (-387))) (-15 -2762 ((-323 (-227)) (-323 (-387)))) (-15 -1727 ((-852 (-227)) (-852 (-387)))) (-15 -4233 ((-1106 (-852 (-227))) (-1106 (-852 (-387))))) (-15 -1835 ((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387)))))) (-15 -4023 ((-416 (-573)) (-227))) (-15 -1349 ((-416 (-573)) (-323 (-227)))) (-15 -3970 ((-227) (-323 (-227)))) (-15 -1779 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -3672 ((-387) (-1280 (-323 (-227))))) (-15 -2362 ((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227))))) (-15 -4428 ((-323 (-416 (-573))) (-323 (-227)))) (-15 -2725 ((-1106 (-852 (-227))) (-1106 (-852 (-227))))) (-15 -3008 ((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-15 -2602 ((-708) (-227))) (-15 -3699 ((-1280 (-708)) (-653 (-227)))) (-15 -3562 ((-323 (-387)) (-323 (-227)))) (-15 -1350 ((-1280 (-323 (-387))) (-1280 (-323 (-227))))) (-15 -3036 ((-112) (-227) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -2257 ((-1171) (-387))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -4156 ((-1047) (-1047) (-1047))) (-15 -4156 ((-1047) (-653 (-1047)))) (-15 -2345 ((-1171) (-387))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))))) (-15 -4144 ((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2491 ((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))) (-15 -2071 ((-323 (-387)) (-962 (-227)))) (-15 -4246 ((-227) (-962 (-227)))) (-15 -1604 ((-323 (-387)) (-227))) (-15 -3986 ((-227) (-416 (-573)))) (-15 -1423 ((-698 (-227)) (-653 (-227)) (-780))))) (T -312)) -((-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) (-5 *1 (-312)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-416 (-573))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-312)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-653 (-1047))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1047)) (-5 *1 (-312)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1106 (-852 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-312)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-1280 (-323 (-387)))) (-5 *1 (-312)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1280 (-708))) (-5 *1 (-312)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-708)) (-5 *1 (-312)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *2 (-653 (-227))) (-5 *1 (-312)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312)))) (-4428 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-416 (-573)))) (-5 *1 (-312)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573)))) (-5 *1 (-312)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-312)))) (-1779 (*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-312)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-416 (-573))) (-5 *1 (-312)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-416 (-573))) (-5 *1 (-312)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-653 (-1106 (-852 (-387))))) (-5 *2 (-653 (-1106 (-852 (-227))))) (-5 *1 (-312)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-387)))) (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-852 (-387))) (-5 *2 (-852 (-227))) (-5 *1 (-312)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-323 (-387))) (-5 *2 (-323 (-227))) (-5 *1 (-312)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-312))))) -(-10 -7 (-15 -4031 ((-227) (-387))) (-15 -2762 ((-323 (-227)) (-323 (-387)))) (-15 -1727 ((-852 (-227)) (-852 (-387)))) (-15 -4233 ((-1106 (-852 (-227))) (-1106 (-852 (-387))))) (-15 -1835 ((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387)))))) (-15 -4023 ((-416 (-573)) (-227))) (-15 -1349 ((-416 (-573)) (-323 (-227)))) (-15 -3970 ((-227) (-323 (-227)))) (-15 -1779 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -3672 ((-387) (-1280 (-323 (-227))))) (-15 -2362 ((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227))))) (-15 -4428 ((-323 (-416 (-573))) (-323 (-227)))) (-15 -2725 ((-1106 (-852 (-227))) (-1106 (-852 (-227))))) (-15 -3008 ((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-15 -2602 ((-708) (-227))) (-15 -3699 ((-1280 (-708)) (-653 (-227)))) (-15 -3562 ((-323 (-387)) (-323 (-227)))) (-15 -1350 ((-1280 (-323 (-387))) (-1280 (-323 (-227))))) (-15 -3036 ((-112) (-227) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -2257 ((-1171) (-387))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -4156 ((-1047) (-1047) (-1047))) (-15 -4156 ((-1047) (-653 (-1047)))) (-15 -2345 ((-1171) (-387))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))))) (-15 -4144 ((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2491 ((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))) (-15 -2071 ((-323 (-387)) (-962 (-227)))) (-15 -4246 ((-227) (-962 (-227)))) (-15 -1604 ((-323 (-387)) (-227))) (-15 -3986 ((-227) (-416 (-573)))) (-15 -1423 ((-698 (-227)) (-653 (-227)) (-780)))) -((-2800 (((-112) $ $) 14)) (-2784 (($ $ $) 18)) (-2796 (($ $ $) 17)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 50)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 65)) (-2872 (($ $ $) 25) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2837 (((-3 $ "failed") $ $) 21)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 53))) -(((-313 |#1|) (-10 -8 (-15 -4113 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -4019 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2800 ((-112) |#1| |#1|)) (-15 -3014 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -2713 ((-2 (|:| -1857 (-653 |#1|)) (|:| -2969 |#1|)) (-653 |#1|))) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-314)) (T -313)) -NIL -(-10 -8 (-15 -4113 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -4019 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2800 ((-112) |#1| |#1|)) (-15 -3014 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -2713 ((-2 (|:| -1857 (-653 |#1|)) (|:| -2969 |#1|)) (-653 |#1|))) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-314) (-141)) (T -314)) -((-2800 (*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-780)))) (-1405 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-314)))) (-2796 (*1 *1 *1 *1) (-4 *1 (-314))) (-2784 (*1 *1 *1 *1) (-4 *1 (-314))) (-4019 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-314)))) (-4019 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-314)))) (-4113 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-314))))) -(-13 (-930) (-10 -8 (-15 -2800 ((-112) $ $)) (-15 -2163 ((-780) $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -4019 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -4019 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4113 ((-3 (-653 $) "failed") (-653 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2645 (($ $ (-653 |#2|) (-653 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-301 |#2|)) 11) (($ $ (-653 (-301 |#2|))) NIL))) -(((-315 |#1| |#2|) (-10 -8 (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|)))) (-316 |#2|) (-1112)) (T -315)) -NIL -(-10 -8 (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|)))) -((-2645 (($ $ (-653 |#1|) (-653 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-301 |#1|)) 11) (($ $ (-653 (-301 |#1|))) 10))) -(((-316 |#1|) (-141) (-1112)) (T -316)) -((-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-301 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *3))) (-4 *1 (-316 *3)) (-4 *3 (-1112))))) -(-13 (-523 |t#1| |t#1|) (-10 -8 (-15 -2645 ($ $ (-301 |t#1|))) (-15 -2645 ($ $ (-653 (-301 |t#1|)))))) -(((-523 |#1| |#1|) . T)) -((-2645 ((|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))) 26))) -(((-317 |#1|) (-10 -7 (-15 -2645 (|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))))) (-38 (-416 (-573)))) (T -317)) -((-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-573))) (-5 *4 (-1191 (-416 (-573)))) (-5 *1 (-317 *2)) (-4 *2 (-38 (-416 (-573))))))) -(-10 -7 (-15 -2645 (|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))))) -((-2848 (((-112) $ $) NIL)) (-4320 (((-573) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-318) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -4320 ((-573) $))))) (T -318)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-318)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-318))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -4320 ((-573) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-319) (-1112)) (T -319)) -NIL -(-1112) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 60)) (-3770 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1266 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-1265 |#2| |#3| |#4|) "failed") $) 26)) (-2205 (((-1266 |#1| |#2| |#3| |#4|) $) NIL) (((-1189) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-573) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-1265 |#2| |#3| |#4|) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-1266 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1280 (-1266 |#1| |#2| |#3| |#4|)))) (-698 $) (-1280 $)) NIL) (((-698 (-1266 |#1| |#2| |#3| |#4|)) (-698 $)) NIL) (((-698 (-1266 |#1| |#2| |#3| |#4|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-1266 |#1| |#2| |#3| |#4|) $) 22)) (-1470 (((-3 $ "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3751 (($ $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-1776 (($ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) $) NIL)) (-2440 (((-3 (-852 |#2|) "failed") $) 80)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-314)))) (-3733 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-1266 |#1| |#2| |#3| |#4|)) (-653 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-301 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-653 (-301 (-1266 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-653 (-1189)) (-653 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-523 (-1189) (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-1189) (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-523 (-1189) (-1266 |#1| |#2| |#3| |#4|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-293 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) (-780)) NIL) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-1266 |#1| |#2| |#3| |#4|) $) 19)) (-1835 (((-902 (-573)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-545)))) (((-387) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1034))) (((-227) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1266 |#1| |#2| |#3| |#4|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-1266 |#1| |#2| |#3| |#4|)) 30) (($ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (($ (-1265 |#2| |#3| |#4|)) 37)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1266 |#1| |#2| |#3| |#4|) (-919))) (|has| (-1266 |#1| |#2| |#3| |#4|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) (-780)) NIL) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3103 (($ $ $) 35) (($ (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) 32)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-1266 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1266 |#1| |#2| |#3| |#4|)) NIL))) -(((-320 |#1| |#2| |#3| |#4|) (-13 (-1004 (-1266 |#1| |#2| |#3| |#4|)) (-1050 (-1265 |#2| |#3| |#4|)) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -2942 ($ (-1265 |#2| |#3| |#4|))))) (-13 (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -320)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4) (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *1 (-320 *3 *4 *5 *6)))) (-2440 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-852 *4)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4)))) -(-13 (-1004 (-1266 |#1| |#2| |#3| |#4|)) (-1050 (-1265 |#2| |#3| |#4|)) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -2942 ($ (-1265 |#2| |#3| |#4|))))) -((-1776 (((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)) 13))) -(((-321 |#1| |#2|) (-10 -7 (-15 -1776 ((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)))) (-1112) (-1112)) (T -321)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-323 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-323 *6)) (-5 *1 (-321 *5 *6))))) -(-10 -7 (-15 -1776 ((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)))) -((-4401 (((-52) |#2| (-301 |#2|) (-780)) 40) (((-52) |#2| (-301 |#2|)) 32) (((-52) |#2| (-780)) 35) (((-52) |#2|) 33) (((-52) (-1189)) 26)) (-3622 (((-52) |#2| (-301 |#2|) (-416 (-573))) 59) (((-52) |#2| (-301 |#2|)) 56) (((-52) |#2| (-416 (-573))) 58) (((-52) |#2|) 57) (((-52) (-1189)) 55)) (-4423 (((-52) |#2| (-301 |#2|) (-416 (-573))) 54) (((-52) |#2| (-301 |#2|)) 51) (((-52) |#2| (-416 (-573))) 53) (((-52) |#2|) 52) (((-52) (-1189)) 50)) (-4412 (((-52) |#2| (-301 |#2|) (-573)) 47) (((-52) |#2| (-301 |#2|)) 44) (((-52) |#2| (-573)) 46) (((-52) |#2|) 45) (((-52) (-1189)) 43))) -(((-322 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1189))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-780))) (-15 -4401 ((-52) |#2| (-301 |#2|))) (-15 -4401 ((-52) |#2| (-301 |#2|) (-780))) (-15 -4412 ((-52) (-1189))) (-15 -4412 ((-52) |#2|)) (-15 -4412 ((-52) |#2| (-573))) (-15 -4412 ((-52) |#2| (-301 |#2|))) (-15 -4412 ((-52) |#2| (-301 |#2|) (-573))) (-15 -4423 ((-52) (-1189))) (-15 -4423 ((-52) |#2|)) (-15 -4423 ((-52) |#2| (-416 (-573)))) (-15 -4423 ((-52) |#2| (-301 |#2|))) (-15 -4423 ((-52) |#2| (-301 |#2|) (-416 (-573)))) (-15 -3622 ((-52) (-1189))) (-15 -3622 ((-52) |#2|)) (-15 -3622 ((-52) |#2| (-416 (-573)))) (-15 -3622 ((-52) |#2| (-301 |#2|))) (-15 -3622 ((-52) |#2| (-301 |#2|) (-416 (-573))))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -322)) -((-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4423 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4423 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 *5) (-648 *5))) (-5 *5 (-573)) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *5 (-13 (-461) (-1050 *4) (-648 *4))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4412 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4412 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-780)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4)))))) -(-10 -7 (-15 -4401 ((-52) (-1189))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-780))) (-15 -4401 ((-52) |#2| (-301 |#2|))) (-15 -4401 ((-52) |#2| (-301 |#2|) (-780))) (-15 -4412 ((-52) (-1189))) (-15 -4412 ((-52) |#2|)) (-15 -4412 ((-52) |#2| (-573))) (-15 -4412 ((-52) |#2| (-301 |#2|))) (-15 -4412 ((-52) |#2| (-301 |#2|) (-573))) (-15 -4423 ((-52) (-1189))) (-15 -4423 ((-52) |#2|)) (-15 -4423 ((-52) |#2| (-416 (-573)))) (-15 -4423 ((-52) |#2| (-301 |#2|))) (-15 -4423 ((-52) |#2| (-301 |#2|) (-416 (-573)))) (-15 -3622 ((-52) (-1189))) (-15 -3622 ((-52) |#2|)) (-15 -3622 ((-52) |#2| (-416 (-573)))) (-15 -3622 ((-52) |#2| (-301 |#2|))) (-15 -3622 ((-52) |#2| (-301 |#2|) (-416 (-573))))) -((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) $ (-1189)) NIL (|has| |#1| (-565))) (((-653 $) $) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $)) NIL (|has| |#1| (-565))) (((-653 $) (-962 $)) NIL (|has| |#1| (-565)))) (-4118 (($ $ (-1189)) NIL (|has| |#1| (-565))) (($ $) NIL (|has| |#1| (-565))) (($ (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (($ (-1185 $)) NIL (|has| |#1| (-565))) (($ (-962 $)) NIL (|has| |#1| (-565)))) (-1748 (((-112) $) 27 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-4354 (((-653 (-1189)) $) 368)) (-4193 (((-416 (-1185 $)) $ (-621 $)) NIL (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-4090 (((-653 (-621 $)) $) NIL)) (-2363 (($ $) 171 (|has| |#1| (-565)))) (-2246 (($ $) 147 (|has| |#1| (-565)))) (-4080 (($ $ (-1104 $)) 232 (|has| |#1| (-565))) (($ $ (-1189)) 228 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) 386) (($ $ (-653 (-621 $)) (-653 $)) 430)) (-1600 (((-427 (-1185 $)) (-1185 $)) 308 (-12 (|has| |#1| (-461)) (|has| |#1| (-565))))) (-4285 (($ $) NIL (|has| |#1| (-565)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-565)))) (-4228 (($ $) NIL (|has| |#1| (-565)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2342 (($ $) 167 (|has| |#1| (-565)))) (-2225 (($ $) 143 (|has| |#1| (-565)))) (-2703 (($ $ (-573)) 73 (|has| |#1| (-565)))) (-2388 (($ $) 175 (|has| |#1| (-565)))) (-2266 (($ $) 151 (|has| |#1| (-565)))) (-2579 (($) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) (|has| |#1| (-1124))) CONST)) (-3682 (((-653 $) $ (-1189)) NIL (|has| |#1| (-565))) (((-653 $) $) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $)) NIL (|has| |#1| (-565))) (((-653 $) (-962 $)) NIL (|has| |#1| (-565)))) (-1732 (($ $ (-1189)) NIL (|has| |#1| (-565))) (($ $) NIL (|has| |#1| (-565))) (($ (-1185 $) (-1189)) 134 (|has| |#1| (-565))) (($ (-1185 $)) NIL (|has| |#1| (-565))) (($ (-962 $)) NIL (|has| |#1| (-565)))) (-1695 (((-3 (-621 $) "failed") $) 18) (((-3 (-1189) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-962 |#1|)) "failed") $) NIL (|has| |#1| (-565))) (((-3 (-962 |#1|) "failed") $) NIL (|has| |#1| (-1061))) (((-3 (-416 (-573)) "failed") $) 46 (-2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-621 $) $) 12) (((-1189) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-962 |#1|)) $) NIL (|has| |#1| (-565))) (((-962 |#1|) $) NIL (|has| |#1| (-1061))) (((-416 (-573)) $) 319 (-2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) NIL (|has| |#1| (-565)))) (-2759 (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 125 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 115 (|has| |#1| (-1061))) (((-698 |#1|) (-1280 $)) NIL (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (-2867 (($ $) 96 (|has| |#1| (-565)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-2796 (($ $ $) NIL (|has| |#1| (-565)))) (-3044 (($ $ (-1104 $)) 236 (|has| |#1| (-565))) (($ $ (-1189)) 234 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-565)))) (-2696 (((-112) $) NIL (|has| |#1| (-565)))) (-1562 (($ $ $) 202 (|has| |#1| (-565)))) (-2999 (($) 137 (|has| |#1| (-565)))) (-2637 (($ $ $) 222 (|has| |#1| (-565)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 392 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 399 (|has| |#1| (-896 (-387))))) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) 276)) (-1959 (((-112) $) 25 (|has| |#1| (-1124)))) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-3041 (($ $) 72 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 91 (|has| |#1| (-1061)))) (-1817 (((-112) $) 62 (|has| |#1| (-565)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-565)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-565)))) (-2597 (((-1185 $) (-621 $)) 277 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 426)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-3118 (($ $) 141 (|has| |#1| (-565)))) (-4078 (($ $) 247 (|has| |#1| (-565)))) (-2829 (($ (-653 $)) NIL (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) 49)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) 431)) (-4082 (((-3 (-653 $) "failed") $) NIL (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) NIL (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 436 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) NIL (|has| |#1| (-1124))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) NIL (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) NIL (|has| |#1| (-1061)))) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) 51)) (-1323 (($ $) NIL (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3376 (($ $ (-1189)) 251 (|has| |#1| (-565))) (($ $ (-1104 $)) 253 (|has| |#1| (-565)))) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 43)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 301 (|has| |#1| (-565)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-3262 (($ $ (-1189)) 226 (|has| |#1| (-565))) (($ $) 224 (|has| |#1| (-565)))) (-4264 (($ $) 218 (|has| |#1| (-565)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 306 (-12 (|has| |#1| (-461)) (|has| |#1| (-565))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-565))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-565)))) (-1608 (($ $) 139 (|has| |#1| (-565)))) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) 425) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) 379) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-623 (-545)))) (($ $) NIL (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 366 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-115)) (-653 $) (-1189)) 365 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ $)) NIL (|has| |#1| (-1061)))) (-2163 (((-780) $) NIL (|has| |#1| (-565)))) (-4068 (($ $) 239 (|has| |#1| (-565)))) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-3727 (($ $) NIL) (($ $ $) NIL)) (-2213 (($ $) 249 (|has| |#1| (-565)))) (-3325 (($ $) 200 (|has| |#1| (-565)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-1061))) (($ $ (-1189)) NIL (|has| |#1| (-1061)))) (-2662 (($ $) 74 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 93 (|has| |#1| (-565)))) (-2984 (($ $) 317 (|has| $ (-1061)))) (-2401 (($ $) 177 (|has| |#1| (-565)))) (-2274 (($ $) 153 (|has| |#1| (-565)))) (-2374 (($ $) 173 (|has| |#1| (-565)))) (-2255 (($ $) 149 (|has| |#1| (-565)))) (-2352 (($ $) 169 (|has| |#1| (-565)))) (-2236 (($ $) 145 (|has| |#1| (-565)))) (-1835 (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (($ (-427 $)) NIL (|has| |#1| (-565))) (((-545) $) 363 (|has| |#1| (-623 (-545))))) (-3204 (($ $ $) NIL (|has| |#1| (-482)))) (-4380 (($ $ $) NIL (|has| |#1| (-482)))) (-2942 (((-871) $) 424) (($ (-621 $)) 415) (($ (-1189)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-565))) (($ (-48)) 312 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (($ (-1137 |#1| (-621 $))) 95 (|has| |#1| (-1061))) (($ (-416 |#1|)) NIL (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) NIL (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) NIL (|has| |#1| (-565))) (($ (-416 (-962 |#1|))) NIL (|has| |#1| (-565))) (($ (-962 |#1|)) NIL (|has| |#1| (-1061))) (($ (-573)) 34 (-2817 (|has| |#1| (-1050 (-573))) (|has| |#1| (-1061)))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-565)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL (|has| |#1| (-1061)) CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-1677 (($ $ $) 220 (|has| |#1| (-565)))) (-1424 (($ $ $) 206 (|has| |#1| (-565)))) (-4237 (($ $ $) 210 (|has| |#1| (-565)))) (-3125 (($ $ $) 204 (|has| |#1| (-565)))) (-2704 (($ $ $) 208 (|has| |#1| (-565)))) (-3109 (((-112) (-115)) 10)) (-3507 (((-112) $ $) 86)) (-2439 (($ $) 183 (|has| |#1| (-565)))) (-2304 (($ $) 159 (|has| |#1| (-565)))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 179 (|has| |#1| (-565)))) (-2286 (($ $) 155 (|has| |#1| (-565)))) (-2464 (($ $) 187 (|has| |#1| (-565)))) (-2324 (($ $) 163 (|has| |#1| (-565)))) (-2497 (($ (-1189) $) NIL) (($ (-1189) $ $) NIL) (($ (-1189) $ $ $) NIL) (($ (-1189) $ $ $ $) NIL) (($ (-1189) (-653 $)) NIL)) (-3754 (($ $) 214 (|has| |#1| (-565)))) (-1450 (($ $) 212 (|has| |#1| (-565)))) (-2520 (($ $) 189 (|has| |#1| (-565)))) (-2333 (($ $) 165 (|has| |#1| (-565)))) (-2452 (($ $) 185 (|has| |#1| (-565)))) (-2314 (($ $) 161 (|has| |#1| (-565)))) (-2426 (($ $) 181 (|has| |#1| (-565)))) (-2296 (($ $) 157 (|has| |#1| (-565)))) (-1660 (($ $) 192 (|has| |#1| (-565)))) (-2132 (($) 21 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) CONST)) (-2228 (($ $) 243 (|has| |#1| (-565)))) (-2144 (($) 23 (|has| |#1| (-1124)) CONST)) (-1818 (($ $) 194 (|has| |#1| (-565))) (($ $ $) 196 (|has| |#1| (-565)))) (-4076 (($ $) 241 (|has| |#1| (-565)))) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-1061))) (($ $ (-1189)) NIL (|has| |#1| (-1061)))) (-2050 (($ $) 245 (|has| |#1| (-565)))) (-1503 (($ $ $) 198 (|has| |#1| (-565)))) (-2981 (((-112) $ $) 88)) (-3103 (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 106 (|has| |#1| (-565))) (($ $ $) 42 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3093 (($ $ $) 40 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ $) 29 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-3077 (($ $ $) 38 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (** (($ $ $) 64 (|has| |#1| (-565))) (($ $ (-416 (-573))) 314 (|has| |#1| (-565))) (($ $ (-573)) 80 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565)))) (($ $ (-780)) 75 (|has| |#1| (-1124))) (($ $ (-931)) 84 (|has| |#1| (-1124)))) (* (($ (-416 (-573)) $) NIL (|has| |#1| (-565))) (($ $ (-416 (-573))) NIL (|has| |#1| (-565))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1061))) (($ $ $) 36 (|has| |#1| (-1124))) (($ (-573) $) 32 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ (-780) $) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ (-931) $) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))))) -(((-323 |#1|) (-13 (-439 |#1|) (-10 -8 (IF (|has| |#1| (-565)) (PROGN (-6 (-29 |#1|)) (-6 (-1215)) (-6 (-161)) (-6 (-638)) (-6 (-1151)) (-15 -2867 ($ $)) (-15 -1817 ((-112) $)) (-15 -2703 ($ $ (-573))) (IF (|has| |#1| (-461)) (PROGN (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -1600 ((-427 (-1185 $)) (-1185 $)))) |%noBranch|) (IF (|has| |#1| (-1050 (-573))) (-6 (-1050 (-48))) |%noBranch|)) |%noBranch|))) (-1112)) (T -323)) -((-2867 (*1 *1 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-565)) (-4 *2 (-1112)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-1655 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112))))) -(-13 (-439 |#1|) (-10 -8 (IF (|has| |#1| (-565)) (PROGN (-6 (-29 |#1|)) (-6 (-1215)) (-6 (-161)) (-6 (-638)) (-6 (-1151)) (-15 -2867 ($ $)) (-15 -1817 ((-112) $)) (-15 -2703 ($ $ (-573))) (IF (|has| |#1| (-461)) (PROGN (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -1600 ((-427 (-1185 $)) (-1185 $)))) |%noBranch|) (IF (|has| |#1| (-1050 (-573))) (-6 (-1050 (-48))) |%noBranch|)) |%noBranch|))) -((-2562 (((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)) 89) (((-52) |#2| (-115) (-301 |#2|) (-301 |#2|)) 85) (((-52) |#2| (-115) (-301 |#2|) |#2|) 87) (((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|) 88) (((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|))) 81) (((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|)) 83) (((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|)) 84) (((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|))) 82) (((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|)) 90) (((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|)) 86))) -(((-324 |#1| |#2|) (-10 -7 (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)))) (-13 (-565) (-623 (-545))) (-439 |#1|)) (T -324)) -((-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-5 *6 (-653 *3)) (-4 *3 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *3)))) (-2562 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-2562 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-301 *5)) (-5 *4 (-115)) (-4 *5 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *5)))) (-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-115))) (-5 *6 (-653 (-301 *8))) (-4 *8 (-439 *7)) (-5 *5 (-301 *8)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *8)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 (-301 *8))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *8)) (-5 *6 (-653 *8)) (-4 *8 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *8)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-653 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-301 *6)) (-5 *4 (-115)) (-4 *6 (-439 *5)) (-4 *5 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)))) -((-3460 (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171)) 67) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573)) 68) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171)) 64) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573)) 65)) (-2221 (((-1 (-227) (-227)) (-227)) 66))) -(((-325) (-10 -7 (-15 -2221 ((-1 (-227) (-227)) (-227))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171))))) (T -325)) -((-3460 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *8 (-1171)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *7 (-1171)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-2221 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-325)) (-5 *3 (-227))))) -(-10 -7 (-15 -2221 ((-1 (-227) (-227)) (-227))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 26)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 20)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 36)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) 16)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) NIL) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2157 (((-416 (-573)) $) 17)) (-3502 (($ (-1265 |#1| |#2| |#3|)) 11)) (-3907 (((-1265 |#1| |#2| |#3|) $) 12)) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 10)) (-2942 (((-871) $) 42) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 34)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 28)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 37)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-326 |#1| |#2| |#3|) (-13 (-1261 |#1|) (-801) (-10 -8 (-15 -3502 ($ (-1265 |#1| |#2| |#3|))) (-15 -3907 ((-1265 |#1| |#2| |#3|) $)) (-15 -2157 ((-416 (-573)) $)))) (-371) (-1189) |#1|) (T -326)) -((-3502 (*1 *1 *2) (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-326 *3 *4 *5)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1265 *3 *4 *5)) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3)))) -(-13 (-1261 |#1|) (-801) (-10 -8 (-15 -3502 ($ (-1265 |#1| |#2| |#3|))) (-15 -3907 ((-1265 |#1| |#2| |#3|) $)) (-15 -2157 ((-416 (-573)) $)))) -((-4325 (((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780)) 35)) (-3118 (((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)) 40))) -(((-327 |#1|) (-10 -7 (-15 -4325 ((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780))) (-15 -3118 ((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)))) (-565)) (T -327)) -((-3118 (*1 *2 *3) (-12 (-5 *3 (-427 *4)) (-4 *4 (-565)) (-5 *2 (-653 (-2 (|:| -1857 (-780)) (|:| |logand| *4)))) (-5 *1 (-327 *4)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-427 *5)) (-4 *5 (-565)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *5) (|:| |radicand| (-653 *5)))) (-5 *1 (-327 *5)) (-5 *4 (-780))))) -(-10 -7 (-15 -4325 ((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780))) (-15 -3118 ((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)))) -((-4354 (((-653 |#2|) (-1185 |#4|)) 44)) (-2208 ((|#3| (-573)) 47)) (-2611 (((-1185 |#4|) (-1185 |#3|)) 30)) (-3002 (((-1185 |#4|) (-1185 |#4|) (-573)) 66)) (-2651 (((-1185 |#3|) (-1185 |#4|)) 21)) (-2565 (((-653 (-780)) (-1185 |#4|) (-653 |#2|)) 41)) (-3947 (((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|)) 35))) -(((-328 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|))) (-15 -2565 ((-653 (-780)) (-1185 |#4|) (-653 |#2|))) (-15 -4354 ((-653 |#2|) (-1185 |#4|))) (-15 -2651 ((-1185 |#3|) (-1185 |#4|))) (-15 -2611 ((-1185 |#4|) (-1185 |#3|))) (-15 -3002 ((-1185 |#4|) (-1185 |#4|) (-573))) (-15 -2208 (|#3| (-573)))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|)) (T -328)) -((-2208 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1061)) (-5 *1 (-328 *4 *5 *2 *6)) (-4 *6 (-959 *2 *4 *5)))) (-3002 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *7)) (-5 *3 (-573)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *1 (-328 *4 *5 *6 *7)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-1185 *6)) (-4 *6 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-1185 *7)) (-5 *1 (-328 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-328 *4 *5 *6 *7)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-653 *5)) (-5 *1 (-328 *4 *5 *6 *7)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *8)) (-5 *4 (-653 *6)) (-4 *6 (-859)) (-4 *8 (-959 *7 *5 *6)) (-4 *5 (-802)) (-4 *7 (-1061)) (-5 *2 (-653 (-780))) (-5 *1 (-328 *5 *6 *7 *8)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 *8)) (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-5 *2 (-1185 *8)) (-5 *1 (-328 *6 *7 *8 *9))))) -(-10 -7 (-15 -3947 ((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|))) (-15 -2565 ((-653 (-780)) (-1185 |#4|) (-653 |#2|))) (-15 -4354 ((-653 |#2|) (-1185 |#4|))) (-15 -2651 ((-1185 |#3|) (-1185 |#4|))) (-15 -2611 ((-1185 |#4|) (-1185 |#3|))) (-15 -3002 ((-1185 |#4|) (-1185 |#4|) (-573))) (-15 -2208 (|#3| (-573)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 19)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $) 21)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3892 (((-573) $ (-573)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3480 (($ (-1 (-573) (-573)) $) 11)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) NIL (|has| (-573) (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-4317 (((-573) |#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 29 (|has| |#1| (-859)))) (-3093 (($ $) 12) (($ $ $) 28)) (-3077 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL) (($ (-573) |#1|) 27))) -(((-329 |#1|) (-13 (-21) (-726 (-573)) (-330 |#1| (-573)) (-10 -7 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|))) (-1112)) (T -329)) -NIL -(-13 (-21) (-726 (-573)) (-330 |#1| (-573)) (-10 -7 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 28)) (-2983 (((-3 $ "failed") $ $) 20)) (-1486 (((-780) $) 29)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 33)) (-2205 ((|#1| $) 34)) (-2841 ((|#1| $ (-573)) 26)) (-3892 ((|#2| $ (-573)) 27)) (-1911 (($ (-1 |#1| |#1|) $) 23)) (-3480 (($ (-1 |#2| |#2|) $) 24)) (-3180 (((-1171) $) 10)) (-3477 (($ $ $) 22 (|has| |#2| (-801)))) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ |#1|) 32)) (-4317 ((|#2| |#1| $) 25)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ |#2| |#1|) 30))) -(((-330 |#1| |#2|) (-141) (-1112) (-132)) (T -330)) -((-3077 (*1 *1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) (-5 *2 (-780)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-330 *4 *2)) (-4 *4 (-1112)) (-4 *2 (-132)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-330 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1112)))) (-4317 (*1 *2 *3 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) (-3480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)))) (-3477 (*1 *1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)) (-4 *3 (-801))))) -(-13 (-132) (-1050 |t#1|) (-10 -8 (-15 -3077 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1486 ((-780) $)) (-15 -1662 ((-653 (-2 (|:| |gen| |t#1|) (|:| -1608 |t#2|))) $)) (-15 -3892 (|t#2| $ (-573))) (-15 -2841 (|t#1| $ (-573))) (-15 -4317 (|t#2| |t#1| $)) (-15 -3480 ($ (-1 |t#2| |t#2|) $)) (-15 -1911 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-801)) (-15 -3477 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-1050 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3892 (((-780) $ (-573)) NIL)) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3480 (($ (-1 (-780) (-780)) $) NIL)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) NIL (|has| (-780) (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-4317 (((-780) |#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-780) |#1|) NIL))) -(((-331 |#1|) (-330 |#1| (-780)) (-1112)) (T -331)) -NIL -(-330 |#1| (-780)) -((-3246 (($ $) 72)) (-2343 (($ $ |#2| |#3| $) 14)) (-1382 (($ (-1 |#3| |#3|) $) 51)) (-1337 (((-112) $) 42)) (-1348 ((|#2| $) 44)) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3257 ((|#2| $) 68)) (-1920 (((-653 |#2|) $) 56)) (-1538 (($ $ $ (-780)) 37)) (-3103 (($ $ |#2|) 60))) -(((-332 |#1| |#2| |#3|) (-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1538 (|#1| |#1| |#1| (-780))) (-15 -2343 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1382 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) (-333 |#2| |#3|) (-1061) (-801)) (T -332)) -NIL -(-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1538 (|#1| |#1| |#1| (-780))) (-15 -2343 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1382 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 100 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 98 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 95)) (-2205 (((-573) $) 99 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 97 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 96)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 84 (|has| |#1| (-461)))) (-2343 (($ $ |#1| |#2| $) 88)) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 91)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73)) (-4036 ((|#2| $) 90)) (-1382 (($ (-1 |#2| |#2|) $) 89)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 94)) (-1348 ((|#1| $) 93)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-3257 ((|#1| $) 85 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59) (($ (-416 (-573))) 69 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 92)) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 87 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-333 |#1| |#2|) (-141) (-1061) (-801)) (T -333)) -((-1337 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-112)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-653 *3)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1382 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-2343 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-1538 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *3 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-565)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-461))))) -(-13 (-47 |t#1| |t#2|) (-420 |t#1|) (-10 -8 (-15 -1337 ((-112) $)) (-15 -1348 (|t#1| $)) (-15 -1920 ((-653 |t#1|) $)) (-15 -3772 ((-780) $)) (-15 -4036 (|t#2| $)) (-15 -1382 ($ (-1 |t#2| |t#2|) $)) (-15 -2343 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1538 ($ $ $ (-780))) |%noBranch|) (IF (|has| |t#1| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -3257 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-420 |#1|) . T) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-1534 (((-112) (-112)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-2380 (($ $ (-573)) NIL)) (-2612 (((-780) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3588 (($ (-653 |#1|)) NIL)) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-334 |#1|) (-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) (-1230)) (T -334)) -((-3588 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-334 *3)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-1230))))) -(-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) -((-3511 (((-112) $) 47)) (-3115 (((-780)) 23)) (-1635 ((|#2| $) 51) (($ $ (-931)) 121)) (-1486 (((-780)) 122)) (-2854 (($ (-1280 |#2|)) 20)) (-3514 (((-112) $) 134)) (-3421 ((|#2| $) 53) (($ $ (-931)) 118)) (-2297 (((-1185 |#2|) $) NIL) (((-1185 $) $ (-931)) 109)) (-2991 (((-1185 |#2|) $) 95)) (-2700 (((-1185 |#2|) $) 91) (((-3 (-1185 |#2|) "failed") $ $) 88)) (-2840 (($ $ (-1185 |#2|)) 58)) (-3216 (((-842 (-931))) 30) (((-931)) 48)) (-2365 (((-135)) 27)) (-2565 (((-842 (-931)) $) 32) (((-931) $) 137)) (-4232 (($) 128)) (-2123 (((-1280 |#2|) $) NIL) (((-698 |#2|) (-1280 $)) 42)) (-4279 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4333 (((-112) $) 45))) -(((-335 |#1| |#2|) (-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-780))) (-15 -4279 (|#1| |#1|)) (-15 -2700 ((-3 (-1185 |#2|) "failed") |#1| |#1|)) (-15 -2700 ((-1185 |#2|) |#1|)) (-15 -2991 ((-1185 |#2|) |#1|)) (-15 -2840 (|#1| |#1| (-1185 |#2|))) (-15 -3514 ((-112) |#1|)) (-15 -4232 (|#1|)) (-15 -1635 (|#1| |#1| (-931))) (-15 -3421 (|#1| |#1| (-931))) (-15 -2297 ((-1185 |#1|) |#1| (-931))) (-15 -1635 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2565 ((-931) |#1|)) (-15 -3216 ((-931))) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -3115 ((-780))) (-15 -3216 ((-842 (-931)))) (-15 -2565 ((-842 (-931)) |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|)) (-15 -2365 ((-135)))) (-336 |#2|) (-371)) (T -335)) -((-2365 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-135)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3216 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-842 (-931))) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3115 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3216 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-931)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-1486 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4))))) -(-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-780))) (-15 -4279 (|#1| |#1|)) (-15 -2700 ((-3 (-1185 |#2|) "failed") |#1| |#1|)) (-15 -2700 ((-1185 |#2|) |#1|)) (-15 -2991 ((-1185 |#2|) |#1|)) (-15 -2840 (|#1| |#1| (-1185 |#2|))) (-15 -3514 ((-112) |#1|)) (-15 -4232 (|#1|)) (-15 -1635 (|#1| |#1| (-931))) (-15 -3421 (|#1| |#1| (-931))) (-15 -2297 ((-1185 |#1|) |#1| (-931))) (-15 -1635 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2565 ((-931) |#1|)) (-15 -3216 ((-931))) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -3115 ((-780))) (-15 -3216 ((-842 (-931)))) (-15 -2565 ((-842 (-931)) |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|)) (-15 -2365 ((-135)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-3511 (((-112) $) 104)) (-3115 (((-780)) 100)) (-1635 ((|#1| $) 151) (($ $ (-931)) 148 (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 133 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-1486 (((-780)) 123 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2205 ((|#1| $) 112)) (-2854 (($ (-1280 |#1|)) 157)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-376)))) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 120 (|has| |#1| (-376)))) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-3731 (($) 135 (|has| |#1| (-376)))) (-1708 (((-112) $) 136 (|has| |#1| (-376)))) (-2104 (($ $ (-780)) 97 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) 96 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) 79)) (-2534 (((-931) $) 138 (|has| |#1| (-376))) (((-842 (-931)) $) 94 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 35)) (-4081 (($) 146 (|has| |#1| (-376)))) (-3514 (((-112) $) 145 (|has| |#1| (-376)))) (-3421 ((|#1| $) 152) (($ $ (-931)) 149 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) 124 (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2297 (((-1185 |#1|) $) 156) (((-1185 $) $ (-931)) 150 (|has| |#1| (-376)))) (-3589 (((-931) $) 121 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) 142 (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) 141 (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) 140 (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) 143 (|has| |#1| (-376)))) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 125 (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 122 (|has| |#1| (-376)))) (-2772 (((-112) $) 103)) (-3965 (((-1132) $) 11)) (-2969 (($) 144 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 132 (|has| |#1| (-376)))) (-4218 (((-427 $) $) 82)) (-3216 (((-842 (-931))) 101) (((-931)) 154)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-780) $) 137 (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) 95 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) 109)) (-3904 (($ $ (-780)) 128 (|has| |#1| (-376))) (($ $) 126 (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) 102) (((-931) $) 153)) (-2984 (((-1185 |#1|)) 155)) (-2510 (($) 134 (|has| |#1| (-376)))) (-4232 (($) 147 (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 159) (((-698 |#1|) (-1280 $)) 158)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 131 (|has| |#1| (-376)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 110)) (-4279 (($ $) 130 (|has| |#1| (-376))) (((-3 $ "failed") $) 93 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 161) (((-1280 $) (-931)) 160)) (-2516 (((-112) $ $) 45)) (-4333 (((-112) $) 105)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-1629 (($ $) 99 (|has| |#1| (-376))) (($ $ (-780)) 98 (|has| |#1| (-376)))) (-3609 (($ $ (-780)) 129 (|has| |#1| (-376))) (($ $) 127 (|has| |#1| (-376)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-336 |#1|) (-141) (-371)) (T -336)) -((-3914 (*1 *2) (-12 (-4 *3 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *3)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *4)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-336 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-4 *1 (-336 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) (-2984 (*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) (-3216 (*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-4 *4 (-376)) (-4 *4 (-371)) (-5 *2 (-1185 *1)) (-4 *1 (-336 *4)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) (-4232 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-4081 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-112)))) (-2969 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *1 (-336 *3)) (-4 *3 (-371)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3)))) (-2700 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3))))) -(-13 (-1299 |t#1|) (-1050 |t#1|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -3914 ((-1280 $) (-931))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -2297 ((-1185 |t#1|) $)) (-15 -2984 ((-1185 |t#1|))) (-15 -3216 ((-931))) (-15 -2565 ((-931) $)) (-15 -3421 (|t#1| $)) (-15 -1635 (|t#1| $)) (IF (|has| |t#1| (-376)) (PROGN (-6 (-357)) (-15 -2297 ((-1185 $) $ (-931))) (-15 -3421 ($ $ (-931))) (-15 -1635 ($ $ (-931))) (-15 -4232 ($)) (-15 -4081 ($)) (-15 -3514 ((-112) $)) (-15 -2969 ($)) (-15 -2840 ($ $ (-1185 |t#1|))) (-15 -2991 ((-1185 |t#1|) $)) (-15 -2700 ((-1185 |t#1|) $)) (-15 -2700 ((-3 (-1185 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-235 $) |has| |#1| (-376)) ((-238) |has| |#1| (-376)) ((-237) |has| |#1| (-376)) ((-248) . T) ((-297) . T) ((-314) . T) ((-1299 |#1|) . T) ((-371) . T) ((-411) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-376) |has| |#1| (-376)) ((-357) |has| |#1| (-376)) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-376)) ((-1230) |has| |#1| (-376)) ((-1234) . T) ((-1287 |#1|) . T)) -((-2848 (((-112) $ $) NIL)) (-3702 (($ (-1188) $) 100)) (-4253 (($) 89)) (-2061 (((-1132) (-1132)) 9)) (-1611 (($) 90)) (-3587 (($) 104) (($ (-323 (-708))) 112) (($ (-323 (-710))) 108) (($ (-323 (-703))) 116) (($ (-323 (-387))) 123) (($ (-323 (-573))) 119) (($ (-323 (-171 (-387)))) 127)) (-3956 (($ (-1188) $) 101)) (-1657 (($ (-653 (-871))) 91)) (-1739 (((-1285) $) 87)) (-1458 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4225 (($ (-1132)) 58)) (-3193 (((-1116) $) 30)) (-3427 (($ (-1104 (-962 (-573))) $) 97) (($ (-1104 (-962 (-573))) (-962 (-573)) $) 98)) (-2012 (($ (-1132)) 99)) (-3282 (($ (-1188) $) 129) (($ (-1188) $ $) 130)) (-3859 (($ (-1189) (-653 (-1189))) 88)) (-2040 (($ (-1171)) 94) (($ (-653 (-1171))) 92)) (-2942 (((-871) $) 132)) (-2049 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $) 50)) (-3087 (($ (-1171)) 202)) (-3095 (($ (-653 $)) 128)) (-3507 (((-112) $ $) NIL)) (-2435 (($ (-1189) (-1171)) 135) (($ (-1189) (-323 (-710))) 175) (($ (-1189) (-323 (-708))) 176) (($ (-1189) (-323 (-703))) 177) (($ (-1189) (-698 (-710))) 138) (($ (-1189) (-698 (-708))) 141) (($ (-1189) (-698 (-703))) 144) (($ (-1189) (-1280 (-710))) 147) (($ (-1189) (-1280 (-708))) 150) (($ (-1189) (-1280 (-703))) 153) (($ (-1189) (-698 (-323 (-710)))) 156) (($ (-1189) (-698 (-323 (-708)))) 159) (($ (-1189) (-698 (-323 (-703)))) 162) (($ (-1189) (-1280 (-323 (-710)))) 165) (($ (-1189) (-1280 (-323 (-708)))) 168) (($ (-1189) (-1280 (-323 (-703)))) 171) (($ (-1189) (-653 (-962 (-573))) (-323 (-710))) 172) (($ (-1189) (-653 (-962 (-573))) (-323 (-708))) 173) (($ (-1189) (-653 (-962 (-573))) (-323 (-703))) 174) (($ (-1189) (-323 (-573))) 199) (($ (-1189) (-323 (-387))) 200) (($ (-1189) (-323 (-171 (-387)))) 201) (($ (-1189) (-698 (-323 (-573)))) 180) (($ (-1189) (-698 (-323 (-387)))) 183) (($ (-1189) (-698 (-323 (-171 (-387))))) 186) (($ (-1189) (-1280 (-323 (-573)))) 189) (($ (-1189) (-1280 (-323 (-387)))) 192) (($ (-1189) (-1280 (-323 (-171 (-387))))) 195) (($ (-1189) (-653 (-962 (-573))) (-323 (-573))) 196) (($ (-1189) (-653 (-962 (-573))) (-323 (-387))) 197) (($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387)))) 198)) (-2981 (((-112) $ $) NIL))) -(((-337) (-13 (-1112) (-10 -8 (-15 -3427 ($ (-1104 (-962 (-573))) $)) (-15 -3427 ($ (-1104 (-962 (-573))) (-962 (-573)) $)) (-15 -3702 ($ (-1188) $)) (-15 -3956 ($ (-1188) $)) (-15 -4225 ($ (-1132))) (-15 -2012 ($ (-1132))) (-15 -2040 ($ (-1171))) (-15 -2040 ($ (-653 (-1171)))) (-15 -3087 ($ (-1171))) (-15 -3587 ($)) (-15 -3587 ($ (-323 (-708)))) (-15 -3587 ($ (-323 (-710)))) (-15 -3587 ($ (-323 (-703)))) (-15 -3587 ($ (-323 (-387)))) (-15 -3587 ($ (-323 (-573)))) (-15 -3587 ($ (-323 (-171 (-387))))) (-15 -3282 ($ (-1188) $)) (-15 -3282 ($ (-1188) $ $)) (-15 -2435 ($ (-1189) (-1171))) (-15 -2435 ($ (-1189) (-323 (-710)))) (-15 -2435 ($ (-1189) (-323 (-708)))) (-15 -2435 ($ (-1189) (-323 (-703)))) (-15 -2435 ($ (-1189) (-698 (-710)))) (-15 -2435 ($ (-1189) (-698 (-708)))) (-15 -2435 ($ (-1189) (-698 (-703)))) (-15 -2435 ($ (-1189) (-1280 (-710)))) (-15 -2435 ($ (-1189) (-1280 (-708)))) (-15 -2435 ($ (-1189) (-1280 (-703)))) (-15 -2435 ($ (-1189) (-698 (-323 (-710))))) (-15 -2435 ($ (-1189) (-698 (-323 (-708))))) (-15 -2435 ($ (-1189) (-698 (-323 (-703))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-710))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-708))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-703))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-710)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-708)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-703)))) (-15 -2435 ($ (-1189) (-323 (-573)))) (-15 -2435 ($ (-1189) (-323 (-387)))) (-15 -2435 ($ (-1189) (-323 (-171 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-573))))) (-15 -2435 ($ (-1189) (-698 (-323 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-573))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-387))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-573)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-387)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387))))) (-15 -3095 ($ (-653 $))) (-15 -4253 ($)) (-15 -1611 ($)) (-15 -1657 ($ (-653 (-871)))) (-15 -3859 ($ (-1189) (-653 (-1189)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2049 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $)) (-15 -1739 ((-1285) $)) (-15 -3193 ((-1116) $)) (-15 -2061 ((-1132) (-1132)))))) (T -337)) -((-3427 (*1 *1 *2 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *1 (-337)))) (-3427 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *3 (-962 (-573))) (-5 *1 (-337)))) (-3702 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-337)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337)))) (-3587 (*1 *1) (-5 *1 (-337))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-3282 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-3282 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-710)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-708)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-703)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-710)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-708)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-703)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-573))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-387))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-573)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-171 (-387))))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-573)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-171 (-387))))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-573))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-387))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-337)))) (-4253 (*1 *1) (-5 *1 (-337))) (-1611 (*1 *1) (-5 *1 (-337))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-337)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-337)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-337)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| (-337)) (|:| |elseClause| (-337)))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 (-337))) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 (-337)))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 (-337)))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871))))) (-5 *1 (-337)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-337)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-337)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) -(-13 (-1112) (-10 -8 (-15 -3427 ($ (-1104 (-962 (-573))) $)) (-15 -3427 ($ (-1104 (-962 (-573))) (-962 (-573)) $)) (-15 -3702 ($ (-1188) $)) (-15 -3956 ($ (-1188) $)) (-15 -4225 ($ (-1132))) (-15 -2012 ($ (-1132))) (-15 -2040 ($ (-1171))) (-15 -2040 ($ (-653 (-1171)))) (-15 -3087 ($ (-1171))) (-15 -3587 ($)) (-15 -3587 ($ (-323 (-708)))) (-15 -3587 ($ (-323 (-710)))) (-15 -3587 ($ (-323 (-703)))) (-15 -3587 ($ (-323 (-387)))) (-15 -3587 ($ (-323 (-573)))) (-15 -3587 ($ (-323 (-171 (-387))))) (-15 -3282 ($ (-1188) $)) (-15 -3282 ($ (-1188) $ $)) (-15 -2435 ($ (-1189) (-1171))) (-15 -2435 ($ (-1189) (-323 (-710)))) (-15 -2435 ($ (-1189) (-323 (-708)))) (-15 -2435 ($ (-1189) (-323 (-703)))) (-15 -2435 ($ (-1189) (-698 (-710)))) (-15 -2435 ($ (-1189) (-698 (-708)))) (-15 -2435 ($ (-1189) (-698 (-703)))) (-15 -2435 ($ (-1189) (-1280 (-710)))) (-15 -2435 ($ (-1189) (-1280 (-708)))) (-15 -2435 ($ (-1189) (-1280 (-703)))) (-15 -2435 ($ (-1189) (-698 (-323 (-710))))) (-15 -2435 ($ (-1189) (-698 (-323 (-708))))) (-15 -2435 ($ (-1189) (-698 (-323 (-703))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-710))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-708))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-703))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-710)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-708)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-703)))) (-15 -2435 ($ (-1189) (-323 (-573)))) (-15 -2435 ($ (-1189) (-323 (-387)))) (-15 -2435 ($ (-1189) (-323 (-171 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-573))))) (-15 -2435 ($ (-1189) (-698 (-323 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-573))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-387))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-573)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-387)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387))))) (-15 -3095 ($ (-653 $))) (-15 -4253 ($)) (-15 -1611 ($)) (-15 -1657 ($ (-653 (-871)))) (-15 -3859 ($ (-1189) (-653 (-1189)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2049 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $)) (-15 -1739 ((-1285) $)) (-15 -3193 ((-1116) $)) (-15 -2061 ((-1132) (-1132))))) -((-2848 (((-112) $ $) NIL)) (-3448 (((-112) $) 13)) (-2225 (($ |#1|) 10)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2236 (($ |#1|) 12)) (-2942 (((-871) $) 19)) (-3507 (((-112) $ $) NIL)) (-3607 ((|#1| $) 14)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 21))) -(((-338 |#1|) (-13 (-859) (-10 -8 (-15 -2225 ($ |#1|)) (-15 -2236 ($ |#1|)) (-15 -3448 ((-112) $)) (-15 -3607 (|#1| $)))) (-859)) (T -338)) -((-2225 (*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) (-2236 (*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-859)))) (-3607 (*1 *2 *1) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859))))) -(-13 (-859) (-10 -8 (-15 -2225 ($ |#1|)) (-15 -2236 ($ |#1|)) (-15 -3448 ((-112) $)) (-15 -3607 (|#1| $)))) -((-3199 (((-337) (-1189) (-962 (-573))) 23)) (-1786 (((-337) (-1189) (-962 (-573))) 27)) (-1918 (((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573)))) 26) (((-337) (-1189) (-962 (-573)) (-962 (-573))) 24)) (-2652 (((-337) (-1189) (-962 (-573))) 31))) -(((-339) (-10 -7 (-15 -3199 ((-337) (-1189) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-962 (-573)) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573))))) (-15 -1786 ((-337) (-1189) (-962 (-573)))) (-15 -2652 ((-337) (-1189) (-962 (-573)))))) (T -339)) -((-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1104 (-962 (-573)))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339))))) -(-10 -7 (-15 -3199 ((-337) (-1189) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-962 (-573)) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573))))) (-15 -1786 ((-337) (-1189) (-962 (-573)))) (-15 -2652 ((-337) (-1189) (-962 (-573))))) -((-2848 (((-112) $ $) NIL)) (-3079 (((-515) $) 20)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1471 (((-968 (-780)) $) 18)) (-3748 (((-255) $) 7)) (-2942 (((-871) $) 26)) (-4289 (((-968 (-185 (-140))) $) 16)) (-3507 (((-112) $ $) NIL)) (-2077 (((-653 (-882 (-1194) (-780))) $) 12)) (-2981 (((-112) $ $) 22))) -(((-340) (-13 (-1112) (-10 -8 (-15 -3748 ((-255) $)) (-15 -2077 ((-653 (-882 (-1194) (-780))) $)) (-15 -1471 ((-968 (-780)) $)) (-15 -4289 ((-968 (-185 (-140))) $)) (-15 -3079 ((-515) $))))) (T -340)) -((-3748 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-340)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-1194) (-780)))) (-5 *1 (-340)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-968 (-780))) (-5 *1 (-340)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-968 (-185 (-140)))) (-5 *1 (-340)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-340))))) -(-13 (-1112) (-10 -8 (-15 -3748 ((-255) $)) (-15 -2077 ((-653 (-882 (-1194) (-780))) $)) (-15 -1471 ((-968 (-780)) $)) (-15 -4289 ((-968 (-185 (-140))) $)) (-15 -3079 ((-515) $)))) -((-1776 (((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)) 33))) -(((-341 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-371) (-1256 |#5|) (-1256 (-416 |#6|)) (-350 |#5| |#6| |#7|)) (T -341)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-344 *5 *6 *7 *8)) (-4 *5 (-371)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *9 (-371)) (-4 *10 (-1256 *9)) (-4 *11 (-1256 (-416 *10))) (-5 *2 (-344 *9 *10 *11 *12)) (-5 *1 (-341 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-350 *9 *10 *11))))) -(-10 -7 (-15 -1776 ((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)))) -((-1598 (((-112) $) 14))) -(((-342 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1598 ((-112) |#1|))) (-343 |#2| |#3| |#4| |#5|) (-371) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -342)) -NIL -(-10 -8 (-15 -1598 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2867 (($ $) 29)) (-1598 (((-112) $) 28)) (-3180 (((-1171) $) 10)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 35)) (-3965 (((-1132) $) 11)) (-2969 (((-3 |#4| "failed") $) 27)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-573)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24))) -(((-343 |#1| |#2| |#3| |#4|) (-141) (-371) (-1256 |t#1|) (-1256 (-416 |t#2|)) (-350 |t#1| |t#2| |t#3|)) (T -343)) -((-1339 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-422 *4 (-416 *4) *5 *6)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-422 *4 (-416 *4) *5 *6)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-4 *3 (-371)) (-4 *1 (-343 *3 *4 *5 *6)))) (-2203 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *3 *4 *5 *2)) (-4 *2 (-350 *3 *4 *5)))) (-2203 (*1 *1 *2 *2) (-12 (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) (-4 *1 (-343 *2 *3 *4 *5)) (-4 *5 (-350 *2 *3 *4)))) (-2203 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-573)) (-4 *2 (-371)) (-4 *4 (-1256 *2)) (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *2 *4 *5 *6)) (-4 *6 (-350 *2 *4 *5)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-2 (|:| -2802 (-422 *4 (-416 *4) *5 *6)) (|:| |principalPart| *6))))) (-2867 (*1 *1 *1) (-12 (-4 *1 (-343 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) (-4 *5 (-350 *2 *3 *4)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-112)))) (-2969 (*1 *2 *1) (|partial| -12 (-4 *1 (-343 *3 *4 *5 *2)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *2 (-350 *3 *4 *5)))) (-2203 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-371)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-4 *1 (-343 *4 *3 *5 *2)) (-4 *2 (-350 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1339 ((-422 |t#2| (-416 |t#2|) |t#3| |t#4|) $)) (-15 -2203 ($ (-422 |t#2| (-416 |t#2|) |t#3| |t#4|))) (-15 -2203 ($ |t#4|)) (-15 -2203 ($ |t#1| |t#1|)) (-15 -2203 ($ |t#1| |t#1| (-573))) (-15 -2478 ((-2 (|:| -2802 (-422 |t#2| (-416 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2867 ($ $)) (-15 -1598 ((-112) $)) (-15 -2969 ((-3 |t#4| "failed") $)) (-15 -2203 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ $) 33)) (-1598 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-1836 (((-1280 |#4|) $) 134)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 31)) (-3965 (((-1132) $) NIL)) (-2969 (((-3 |#4| "failed") $) 36)) (-1365 (((-1280 |#4|) $) 126)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-573)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 14 T CONST)) (-2981 (((-112) $ $) 20)) (-3093 (($ $) 27) (($ $ $) NIL)) (-3077 (($ $ $) 25)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 23))) -(((-344 |#1| |#2| |#3| |#4|) (-13 (-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1365 ((-1280 |#4|) $)) (-15 -1836 ((-1280 |#4|) $)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -344)) -((-1365 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *6 (-350 *3 *4 *5)))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *6 (-350 *3 *4 *5))))) -(-13 (-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1365 ((-1280 |#4|) $)) (-15 -1836 ((-1280 |#4|) $)))) -((-2645 (($ $ (-1189) |#2|) NIL) (($ $ (-653 (-1189)) (-653 |#2|)) 20) (($ $ (-653 (-301 |#2|))) 15) (($ $ (-301 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-653 |#2|) (-653 |#2|)) NIL)) (-2198 (($ $ |#2|) 11))) -(((-345 |#1| |#2|) (-10 -8 (-15 -2198 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1189) |#2|))) (-346 |#2|) (-1112)) (T -345)) -NIL -(-10 -8 (-15 -2198 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1189) |#2|))) -((-1776 (($ (-1 |#1| |#1|) $) 6)) (-2645 (($ $ (-1189) |#1|) 17 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 16 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-301 |#1|))) 15 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 14 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-316 |#1|))) (($ $ (-653 |#1|) (-653 |#1|)) 12 (|has| |#1| (-316 |#1|)))) (-2198 (($ $ |#1|) 11 (|has| |#1| (-293 |#1| |#1|))))) -(((-346 |#1|) (-141) (-1112)) (T -346)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1112))))) -(-13 (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-293 |t#1| |t#1|)) (-6 (-293 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-316 |t#1|)) (-6 (-316 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523 (-1189) |t#1|)) (-6 (-523 (-1189) |t#1|)) |%noBranch|))) -(((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-1230) |has| |#1| (-293 |#1| |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) NIL)) (-1333 (((-112)) 96) (((-112) (-112)) 97)) (-4090 (((-653 (-621 $)) $) NIL)) (-2363 (($ $) NIL)) (-2246 (($ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4228 (($ $) NIL)) (-2342 (($ $) NIL)) (-2225 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-323 |#3|)) 76) (((-3 $ "failed") (-1189)) 103) (((-3 $ "failed") (-323 (-573))) 64 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-416 (-962 (-573)))) 70 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-962 (-573))) 65 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-323 (-387))) 94 (|has| |#3| (-1050 (-387)))) (((-3 $ "failed") (-416 (-962 (-387)))) 88 (|has| |#3| (-1050 (-387)))) (((-3 $ "failed") (-962 (-387))) 83 (|has| |#3| (-1050 (-387))))) (-2205 (((-621 $) $) NIL) ((|#3| $) NIL) (($ (-323 |#3|)) 77) (($ (-1189)) 104) (($ (-323 (-573))) 66 (|has| |#3| (-1050 (-573)))) (($ (-416 (-962 (-573)))) 71 (|has| |#3| (-1050 (-573)))) (($ (-962 (-573))) 67 (|has| |#3| (-1050 (-573)))) (($ (-323 (-387))) 95 (|has| |#3| (-1050 (-387)))) (($ (-416 (-962 (-387)))) 89 (|has| |#3| (-1050 (-387)))) (($ (-962 (-387))) 85 (|has| |#3| (-1050 (-387))))) (-2232 (((-3 $ "failed") $) NIL)) (-2999 (($) 101)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2597 (((-1185 $) (-621 $)) NIL (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-1731 (($ $) 99)) (-3118 (($ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) 98) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-1608 (($ $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-2352 (($ $) NIL)) (-2236 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ |#3|) NIL) (($ (-573)) NIL) (((-323 |#3|) $) 102)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) NIL)) (-3507 (((-112) $ $) NIL)) (-2304 (($ $) NIL)) (-2286 (($ $) NIL)) (-2296 (($ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) 100 T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) -(((-347 |#1| |#2| |#3|) (-13 (-309) (-38 |#3|) (-1050 |#3|) (-910 (-1189)) (-10 -8 (-15 -2205 ($ (-323 |#3|))) (-15 -1695 ((-3 $ "failed") (-323 |#3|))) (-15 -2205 ($ (-1189))) (-15 -1695 ((-3 $ "failed") (-1189))) (-15 -2942 ((-323 |#3|) $)) (IF (|has| |#3| (-1050 (-573))) (PROGN (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573))))) |%noBranch|) (IF (|has| |#3| (-1050 (-387))) (PROGN (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387))))) |%noBranch|) (-15 -1660 ($ $)) (-15 -4228 ($ $)) (-15 -1608 ($ $)) (-15 -3118 ($ $)) (-15 -1731 ($ $)) (-15 -2225 ($ $)) (-15 -2236 ($ $)) (-15 -2246 ($ $)) (-15 -2286 ($ $)) (-15 -2296 ($ $)) (-15 -2304 ($ $)) (-15 -2342 ($ $)) (-15 -2352 ($ $)) (-15 -2363 ($ $)) (-15 -2999 ($)) (-15 -4354 ((-653 (-1189)) $)) (-15 -1333 ((-112))) (-15 -1333 ((-112) (-112))))) (-653 (-1189)) (-653 (-1189)) (-396)) (T -347)) -((-2205 (*1 *1 *2) (-12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-323 *5)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-1608 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2225 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2999 (*1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-347 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-396)))) (-1333 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396))))) -(-13 (-309) (-38 |#3|) (-1050 |#3|) (-910 (-1189)) (-10 -8 (-15 -2205 ($ (-323 |#3|))) (-15 -1695 ((-3 $ "failed") (-323 |#3|))) (-15 -2205 ($ (-1189))) (-15 -1695 ((-3 $ "failed") (-1189))) (-15 -2942 ((-323 |#3|) $)) (IF (|has| |#3| (-1050 (-573))) (PROGN (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573))))) |%noBranch|) (IF (|has| |#3| (-1050 (-387))) (PROGN (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387))))) |%noBranch|) (-15 -1660 ($ $)) (-15 -4228 ($ $)) (-15 -1608 ($ $)) (-15 -3118 ($ $)) (-15 -1731 ($ $)) (-15 -2225 ($ $)) (-15 -2236 ($ $)) (-15 -2246 ($ $)) (-15 -2286 ($ $)) (-15 -2296 ($ $)) (-15 -2304 ($ $)) (-15 -2342 ($ $)) (-15 -2352 ($ $)) (-15 -2363 ($ $)) (-15 -2999 ($)) (-15 -4354 ((-653 (-1189)) $)) (-15 -1333 ((-112))) (-15 -1333 ((-112) (-112))))) -((-1776 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-348 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|))) (-1234) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-1234) (-1256 |#5|) (-1256 (-416 |#6|)) (-350 |#5| |#6| |#7|)) (T -348)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1234)) (-4 *8 (-1234)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *9 (-1256 *8)) (-4 *2 (-350 *8 *9 *10)) (-5 *1 (-348 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-350 *5 *6 *7)) (-4 *10 (-1256 (-416 *9)))))) -(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|))) -((-1943 (((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) $) 39)) (-2854 (($ (-1280 (-416 |#3|)) (-1280 $)) NIL) (($ (-1280 (-416 |#3|))) NIL) (($ (-1280 |#3|) |#3|) 173)) (-1869 (((-1280 $) (-1280 $)) 156)) (-2989 (((-653 (-653 |#2|))) 126)) (-3302 (((-112) |#2| |#2|) 76)) (-3246 (($ $) 148)) (-2033 (((-780)) 172)) (-4109 (((-1280 $) (-1280 $)) 218)) (-2201 (((-653 (-962 |#2|)) (-1189)) 115)) (-3432 (((-112) $) 169)) (-2588 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2338 (((-3 |#3| "failed")) 52)) (-2717 (((-780)) 184)) (-2198 ((|#2| $ |#2| |#2|) 140)) (-4027 (((-3 |#3| "failed")) 71)) (-3904 (($ $ (-1 (-416 |#3|) (-416 |#3|)) (-780)) NIL) (($ $ (-1 (-416 |#3|) (-416 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2499 (((-1280 $) (-1280 $)) 162)) (-2581 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3331 (((-112)) 34))) -(((-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2989 ((-653 (-653 |#2|)))) (-15 -2201 ((-653 (-962 |#2|)) (-1189))) (-15 -2581 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2338 ((-3 |#3| "failed"))) (-15 -4027 ((-3 |#3| "failed"))) (-15 -2198 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2588 ((-112) |#1| |#3|)) (-15 -2588 ((-112) |#1| |#2|)) (-15 -2854 (|#1| (-1280 |#3|) |#3|)) (-15 -1943 ((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1869 ((-1280 |#1|) (-1280 |#1|))) (-15 -4109 ((-1280 |#1|) (-1280 |#1|))) (-15 -2499 ((-1280 |#1|) (-1280 |#1|))) (-15 -2588 ((-112) |#1|)) (-15 -3432 ((-112) |#1|)) (-15 -3302 ((-112) |#2| |#2|)) (-15 -3331 ((-112))) (-15 -2717 ((-780))) (-15 -2033 ((-780))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)) (-780))) (-15 -2854 (|#1| (-1280 (-416 |#3|)))) (-15 -2854 (|#1| (-1280 (-416 |#3|)) (-1280 |#1|)))) (-350 |#2| |#3| |#4|) (-1234) (-1256 |#2|) (-1256 (-416 |#3|))) (T -349)) -((-2033 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-2717 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-3331 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *3 (-1234)) (-4 *5 (-1256 *3)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-112)) (-5 *1 (-349 *4 *3 *5 *6)) (-4 *4 (-350 *3 *5 *6)))) (-4027 (*1 *2) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) (-4 *3 (-350 *4 *2 *5)))) (-2338 (*1 *2) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) (-4 *3 (-350 *4 *2 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-653 (-962 *5))) (-5 *1 (-349 *4 *5 *6 *7)) (-4 *4 (-350 *5 *6 *7)))) (-2989 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-653 (-653 *4))) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6))))) -(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2989 ((-653 (-653 |#2|)))) (-15 -2201 ((-653 (-962 |#2|)) (-1189))) (-15 -2581 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2338 ((-3 |#3| "failed"))) (-15 -4027 ((-3 |#3| "failed"))) (-15 -2198 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2588 ((-112) |#1| |#3|)) (-15 -2588 ((-112) |#1| |#2|)) (-15 -2854 (|#1| (-1280 |#3|) |#3|)) (-15 -1943 ((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1869 ((-1280 |#1|) (-1280 |#1|))) (-15 -4109 ((-1280 |#1|) (-1280 |#1|))) (-15 -2499 ((-1280 |#1|) (-1280 |#1|))) (-15 -2588 ((-112) |#1|)) (-15 -3432 ((-112) |#1|)) (-15 -3302 ((-112) |#2| |#2|)) (-15 -3331 ((-112))) (-15 -2717 ((-780))) (-15 -2033 ((-780))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)) (-780))) (-15 -2854 (|#1| (-1280 (-416 |#3|)))) (-15 -2854 (|#1| (-1280 (-416 |#3|)) (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 207)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (|has| (-416 |#2|) (-371)))) (-2456 (($ $) 104 (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) 106 (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) 53) (((-698 (-416 |#2|))) 68)) (-1635 (((-416 |#2|) $) 59)) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 123 (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) 124 (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) 114 (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) 97 (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) 224)) (-3454 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) 176)) (-2205 (((-573) $) 180 (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) 177)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) 55) (($ (-1280 (-416 |#2|))) 71) (($ (-1280 |#2|) |#2|) 206)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) 118 (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) 60) (((-698 (-416 |#2|)) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) 172) (((-698 (-416 |#2|)) (-698 $)) 171) (((-698 (-416 |#2|)) (-1280 $)) 170)) (-1869 (((-1280 $) (-1280 $)) 212)) (-2867 (($ |#3|) 167) (((-3 $ "failed") (-416 |#3|)) 164 (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-2989 (((-653 (-653 |#1|))) 193 (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) 228)) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) 221)) (-1819 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2796 (($ $ $) 117 (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| (-416 |#2|) (-371)))) (-3246 (($ $) 199)) (-3731 (($) 158 (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) 159 (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) 150 (|has| (-416 |#2|) (-357))) (($ $) 149 (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) 125 (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) 161 (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) 147 (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) 35)) (-2033 (((-780)) 231)) (-4109 (((-1280 $) (-1280 $)) 213)) (-3421 (((-416 |#2|) $) 58)) (-2201 (((-653 (-962 |#1|)) (-1189)) 194 (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) 151 (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) 51 (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) 99 (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) 165)) (-2829 (($ (-653 $)) 110 (|has| (-416 |#2|) (-371))) (($ $ $) 109 (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) 10)) (-3644 (((-698 (-416 |#2|))) 208)) (-3456 (((-698 (-416 |#2|))) 210)) (-1323 (($ $) 126 (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 204)) (-4192 (((-698 (-416 |#2|))) 209)) (-3707 (((-698 (-416 |#2|))) 211)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 205)) (-3051 (((-1280 $)) 217)) (-3529 (((-1280 $)) 218)) (-3432 (((-112) $) 216)) (-2588 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3816 (($) 152 (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) 196)) (-3965 (((-1132) $) 11)) (-2717 (((-780)) 230)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) 108 (|has| (-416 |#2|) (-371))) (($ $ $) 107 (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) 122 (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) 102 (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) 115 (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) 198)) (-4027 (((-3 |#2| "failed")) 197)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) 54) (((-416 |#2|)) 67)) (-1637 (((-780) $) 160 (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) 148 (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) 132 (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) 131 (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-653 (-1189)) (-653 (-780))) 139 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189) (-780)) 140 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-653 (-1189))) 141 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189)) 142 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $) 143 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) 145 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) 163 (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 168)) (-2510 (($) 157 (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) 57) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) 56) (((-1280 (-416 |#2|)) $) 73) (((-698 (-416 |#2|)) (-1280 $)) 72)) (-1835 (((-1280 (-416 |#2|)) $) 70) (($ (-1280 (-416 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) 214)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 |#2|)) 44) (($ (-416 (-573))) 96 (-2817 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-1050 (-416 (-573)))))) (($ $) 101 (|has| (-416 |#2|) (-371)))) (-4279 (($ $) 153 (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) 50 (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) 52)) (-1545 (((-780)) 32 T CONST)) (-2919 (((-112)) 227)) (-3289 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2516 (((-112) $ $) 105 (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-3331 (((-112)) 229)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) 134 (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) 133 (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) 135 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189) (-780)) 136 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-653 (-1189))) 137 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189)) 138 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $) 144 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) 146 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| (-416 |#2|) (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 127 (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 |#2|)) 46) (($ (-416 |#2|) $) 45) (($ (-416 (-573)) $) 129 (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) 128 (|has| (-416 |#2|) (-371))))) -(((-350 |#1| |#2| |#3|) (-141) (-1234) (-1256 |t#1|) (-1256 (-416 |t#2|))) (T -350)) -((-2033 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) (-2717 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) (-3331 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2919 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3289 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3289 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-2222 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-1710 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-3529 (*1 *2) (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) (-3051 (*1 *2) (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-3707 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-3456 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-4192 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-3644 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4))))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4))))) (-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-2 (|:| |num| (-698 *5)) (|:| |den| *5))))) (-2588 (*1 *2 *1 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2588 (*1 *2 *1 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))))) (-2198 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))))) (-4027 (*1 *2) (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3)))) (-2338 (*1 *2) (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3)))) (-2581 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1234)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-350 *4 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *4 (-371)) (-5 *2 (-653 (-962 *4))))) (-2989 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *3 (-376)) (-5 *2 (-653 (-653 *3)))))) -(-13 (-733 (-416 |t#2|) |t#3|) (-10 -8 (-15 -2033 ((-780))) (-15 -2717 ((-780))) (-15 -3331 ((-112))) (-15 -3302 ((-112) |t#1| |t#1|)) (-15 -2919 ((-112))) (-15 -3289 ((-112) |t#1|)) (-15 -3289 ((-112) |t#2|)) (-15 -2222 ((-112))) (-15 -3454 ((-112) |t#1|)) (-15 -3454 ((-112) |t#2|)) (-15 -1710 ((-112))) (-15 -1819 ((-112) |t#1|)) (-15 -1819 ((-112) |t#2|)) (-15 -3529 ((-1280 $))) (-15 -3051 ((-1280 $))) (-15 -3432 ((-112) $)) (-15 -2588 ((-112) $)) (-15 -2499 ((-1280 $) (-1280 $))) (-15 -4109 ((-1280 $) (-1280 $))) (-15 -1869 ((-1280 $) (-1280 $))) (-15 -3707 ((-698 (-416 |t#2|)))) (-15 -3456 ((-698 (-416 |t#2|)))) (-15 -4192 ((-698 (-416 |t#2|)))) (-15 -3644 ((-698 (-416 |t#2|)))) (-15 -1943 ((-2 (|:| |num| (-1280 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2854 ($ (-1280 |t#2|) |t#2|)) (-15 -3150 ((-2 (|:| |num| (-1280 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1465 ($ (-1280 |t#2|) |t#2|)) (-15 -2522 ((-2 (|:| |num| (-698 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2588 ((-112) $ |t#1|)) (-15 -2588 ((-112) $ |t#2|)) (-15 -3904 ($ $ (-1 |t#2| |t#2|))) (-15 -3246 ($ $)) (-15 -2198 (|t#1| $ |t#1| |t#1|)) (-15 -4027 ((-3 |t#2| "failed"))) (-15 -2338 ((-3 |t#2| "failed"))) (-15 -2581 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-371)) (-15 -2201 ((-653 (-962 |t#1|)) (-1189))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2989 ((-653 (-653 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-38 #1=(-416 |#2|)) . T) ((-38 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-102) . T) ((-111 #0# #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-146))) ((-148) |has| (-416 |#2|) (-148)) ((-625 #0#) -2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-625 #1#) . T) ((-625 (-573)) . T) ((-625 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-622 (-871)) . T) ((-174) . T) ((-623 |#3|) . T) ((-235 $) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-233 #1#) |has| (-416 |#2|) (-371)) ((-238) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-237) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-248) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-297) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-314) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-371) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-411) |has| (-416 |#2|) (-357)) ((-376) -2817 (|has| (-416 |#2|) (-376)) (|has| (-416 |#2|) (-357))) ((-357) |has| (-416 |#2|) (-357)) ((-378 #1# |#3|) . T) ((-418 #1# |#3|) . T) ((-385 #1#) . T) ((-420 #1#) . T) ((-461) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-565) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-655 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-655 #1#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-657 #1#) . T) ((-657 #2=(-573)) |has| (-416 |#2|) (-648 (-573))) ((-657 $) . T) ((-649 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-649 #1#) . T) ((-649 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-648 #1#) . T) ((-648 #2#) |has| (-416 |#2|) (-648 (-573))) ((-726 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-726 #1#) . T) ((-726 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-733 #1# |#3|) . T) ((-735) . T) ((-910 (-1189)) -12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) ((-930) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1050 (-416 (-573))) |has| (-416 |#2|) (-1050 (-416 (-573)))) ((-1050 #1#) . T) ((-1050 (-573)) |has| (-416 |#2|) (-1050 (-573))) ((-1063 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1063 #1#) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1068 #1#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| (-416 |#2|) (-357)) ((-1230) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-1234) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) -(((-351 |#1| |#2|) (-13 (-336 (-920 |#1|)) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-931) (-931)) (T -351)) -((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-351 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931))))) -(-13 (-336 (-920 |#1|)) (-10 -7 (-15 -2057 ((-968 (-1132)))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 58)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 56 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 142)) (-2205 ((|#1| $) 113)) (-2854 (($ (-1280 |#1|)) 130)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 124 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 160 (|has| |#1| (-376)))) (-1708 (((-112) $) 66 (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) 60 (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 62)) (-4081 (($) 162 (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 117) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 171 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 178)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 96 (|has| |#1| (-376)))) (-2772 (((-112) $) 147)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) 57)) (-2969 (($) 158 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 119 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) 90) (((-931)) 91)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) 161 (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) 154 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) 122)) (-2510 (($) 159 (|has| |#1| (-376)))) (-4232 (($) 167 (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 77) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 174) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 100)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 155 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 144) (((-1280 $) (-931)) 98)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 67 T CONST)) (-2144 (($) 103 T CONST)) (-1629 (($ $) 107 (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 65)) (-3103 (($ $ $) 176) (($ $ |#1|) 177)) (-3093 (($ $) 157) (($ $ $) NIL)) (-3077 (($ $ $) 86)) (** (($ $ (-931)) 180) (($ $ (-780)) 181) (($ $ (-573)) 179)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 102) (($ $ $) 101) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-352 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-357) (-1185 |#1|)) (T -352)) -((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-352 *3 *4)) (-4 *3 (-357)) (-14 *4 (-1185 *3))))) -(-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-357) (-931)) (T -353)) -((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-353 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) -(-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) -((-2816 (((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 61)) (-1636 (((-968 (-1132)) (-1185 |#1|)) 112)) (-3538 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|)) 103)) (-1910 (((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 113)) (-2051 (((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931)) 13)) (-2474 (((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)) 18))) -(((-354 |#1|) (-10 -7 (-15 -1636 ((-968 (-1132)) (-1185 |#1|))) (-15 -3538 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|))) (-15 -1910 ((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2816 ((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2051 ((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931))) (-15 -2474 ((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)))) (-357)) (T -354)) -((-2474 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-3 (-1185 *4) (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132))))))) (-5 *1 (-354 *4)) (-4 *4 (-357)))) (-2051 (*1 *2 *3) (|partial| -12 (-5 *3 (-931)) (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-5 *1 (-354 *4)) (-4 *4 (-357)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-780)) (-5 *1 (-354 *4)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-698 *4)) (-5 *1 (-354 *4)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-5 *1 (-354 *4)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-968 (-1132))) (-5 *1 (-354 *4))))) -(-10 -7 (-15 -1636 ((-968 (-1132)) (-1185 |#1|))) (-15 -3538 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|))) (-15 -1910 ((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2816 ((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2051 ((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931))) (-15 -2474 ((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)))) -((-2942 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-355 |#1| |#2| |#3|) (-10 -7 (-15 -2942 (|#3| |#1|)) (-15 -2942 (|#1| |#3|))) (-336 |#2|) (-357) (-336 |#2|)) (T -355)) -((-2942 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *2 *4 *3)) (-4 *3 (-336 *4)))) (-2942 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *3 *4 *2)) (-4 *3 (-336 *4))))) -(-10 -7 (-15 -2942 (|#3| |#1|)) (-15 -2942 (|#1| |#3|))) -((-1708 (((-112) $) 60)) (-2534 (((-842 (-931)) $) 23) (((-931) $) 64)) (-1470 (((-3 $ "failed") $) 18)) (-3816 (($) 9)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 114)) (-1637 (((-3 (-780) "failed") $ $) 92) (((-780) $) 79)) (-3904 (($ $) 8) (($ $ (-780)) NIL)) (-2510 (($) 53)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 38)) (-4279 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-356 |#1|) (-10 -8 (-15 -2534 ((-931) |#1|)) (-15 -1637 ((-780) |#1|)) (-15 -1708 ((-112) |#1|)) (-15 -2510 (|#1|)) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -4279 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1637 ((-3 (-780) "failed") |#1| |#1|)) (-15 -2534 ((-842 (-931)) |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) (-357)) (T -356)) -NIL -(-10 -8 (-15 -2534 ((-931) |#1|)) (-15 -1637 ((-780) |#1|)) (-15 -1708 ((-112) |#1|)) (-15 -2510 (|#1|)) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -4279 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1637 ((-3 (-780) "failed") |#1| |#1|)) (-15 -2534 ((-842 (-931)) |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2604 (((-1202 (-931) (-780)) (-573)) 102)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-1486 (((-780)) 112)) (-2579 (($) 18 T CONST)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 115)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-3731 (($) 100)) (-1708 (((-112) $) 99)) (-2104 (($ $) 87) (($ $ (-780)) 86)) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 89) (((-931) $) 97)) (-1959 (((-112) $) 35)) (-1470 (((-3 $ "failed") $) 111)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3589 (((-931) $) 114)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 110 T CONST)) (-2575 (($ (-931)) 113)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 103)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 88) (((-780) $) 98)) (-3904 (($ $) 109) (($ $ (-780)) 107)) (-2510 (($) 101)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 104)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-4279 (((-3 $ "failed") $) 90) (($ $) 105)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $) 108) (($ $ (-780)) 106)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) -(((-357) (-141)) (T -357)) -((-4279 (*1 *1 *1) (-4 *1 (-357))) (-1443 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-357)) (-5 *2 (-1280 *1)))) (-4199 (*1 *2) (-12 (-4 *1 (-357)) (-5 *2 (-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))))) (-2604 (*1 *2 *3) (-12 (-4 *1 (-357)) (-5 *3 (-573)) (-5 *2 (-1202 (-931) (-780))))) (-2510 (*1 *1) (-4 *1 (-357))) (-3731 (*1 *1) (-4 *1 (-357))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-112)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-780)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-931)))) (-2209 (*1 *2) (-12 (-4 *1 (-357)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-411) (-376) (-1164) (-238) (-10 -8 (-15 -4279 ($ $)) (-15 -1443 ((-3 (-1280 $) "failed") (-698 $))) (-15 -4199 ((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573)))))) (-15 -2604 ((-1202 (-931) (-780)) (-573))) (-15 -2510 ($)) (-15 -3731 ($)) (-15 -1708 ((-112) $)) (-15 -1637 ((-780) $)) (-15 -2534 ((-931) $)) (-15 -2209 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-235 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-411) . T) ((-376) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) . T) ((-1230) . T) ((-1234) . T)) -((-3574 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|) 55)) (-3529 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))) 53))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|))) (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $)))) (-1256 |#1|) (-418 |#1| |#2|)) (T -358)) -((-3574 (*1 *2 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) -(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132)))))) NIL)) (-4046 (((-698 (-920 |#1|))) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) -(((-359 |#1| |#2|) (-13 (-336 (-920 |#1|)) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 (-920 |#1|)))) (-15 -2816 ((-780))))) (-931) (-931)) (T -359)) -((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 (-920 *3)) (|:| -2575 (-1132)))))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 (-920 *3))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931))))) -(-13 (-336 (-920 |#1|)) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 (-920 |#1|)))) (-15 -2816 ((-780))))) -((-2848 (((-112) $ $) 73)) (-1748 (((-112) $) 88)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) 106) (($ $ (-931)) 104 (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 170 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) 103)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 187 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 127)) (-2205 ((|#1| $) 105)) (-2854 (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 182 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 171 (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) 113 (|has| |#1| (-376)))) (-3514 (((-112) $) 200 (|has| |#1| (-376)))) (-3421 ((|#1| $) 108) (($ $ (-931)) 107 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 214) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 148 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) 87 (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) 84 (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) 96 (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) 83 (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 218)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 150 (|has| |#1| (-376)))) (-2772 (((-112) $) 123)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 97)) (-4046 (((-698 |#1|)) 101)) (-2969 (($) 110 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 173 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) 174)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) 75)) (-2984 (((-1185 |#1|)) 175)) (-2510 (($) 147 (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 121) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 140) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 70)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 180 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 197) (((-1280 $) (-931)) 116)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 186 T CONST)) (-2144 (($) 161 T CONST)) (-1629 (($ $) 122 (|has| |#1| (-376))) (($ $ (-780)) 114 (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 208)) (-3103 (($ $ $) 119) (($ $ |#1|) 120)) (-3093 (($ $) 202) (($ $ $) 206)) (-3077 (($ $ $) 204)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 153)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 211) (($ $ $) 164) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-360 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) (-357) (-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (T -360)) -((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) *2)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))))))) -(-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) NIL)) (-4046 (((-698 |#1|)) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-361 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) (-357) (-931)) (T -361)) -((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931)))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) -(-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-336 (-920 |#1|)) (-931) (-931)) (T -362)) -NIL -(-336 (-920 |#1|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 129 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 155 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 103)) (-2205 ((|#1| $) 100)) (-2854 (($ (-1280 |#1|)) 95)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 92 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 51 (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) 130 (|has| |#1| (-376)))) (-3514 (((-112) $) 84 (|has| |#1| (-376)))) (-3421 ((|#1| $) 47) (($ $ (-931)) 52 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 75) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 107 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 105 (|has| |#1| (-376)))) (-2772 (((-112) $) 157)) (-3965 (((-1132) $) NIL)) (-2969 (($) 44 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 124 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) 154)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) 67)) (-2984 (((-1185 |#1|)) 98)) (-2510 (($) 135 (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 63) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 153) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 97)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 159 T CONST)) (-3507 (((-112) $ $) 161)) (-3914 (((-1280 $)) 119) (((-1280 $) (-931)) 58)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 121 T CONST)) (-2144 (($) 40 T CONST)) (-1629 (($ $) 78 (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 117)) (-3103 (($ $ $) 109) (($ $ |#1|) 110)) (-3093 (($ $) 90) (($ $ $) 115)) (-3077 (($ $ $) 113)) (** (($ $ (-931)) NIL) (($ $ (-780)) 53) (($ $ (-573)) 138)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 88) (($ $ $) 65) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-363 |#1| |#2|) (-336 |#1|) (-357) (-1185 |#1|)) (T -363)) -NIL -(-336 |#1|) -((-4267 ((|#1| (-1185 |#2|)) 59))) -(((-364 |#1| |#2|) (-10 -7 (-15 -4267 (|#1| (-1185 |#2|)))) (-13 (-411) (-10 -7 (-15 -2942 (|#1| |#2|)) (-15 -3589 ((-931) |#1|)) (-15 -3914 ((-1280 |#1|) (-931))) (-15 -1629 (|#1| |#1|)))) (-357)) (T -364)) -((-4267 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-4 *2 (-13 (-411) (-10 -7 (-15 -2942 (*2 *4)) (-15 -3589 ((-931) *2)) (-15 -3914 ((-1280 *2) (-931))) (-15 -1629 (*2 *2))))) (-5 *1 (-364 *2 *4))))) -(-10 -7 (-15 -4267 (|#1| (-1185 |#2|)))) -((-3433 (((-968 (-1185 |#1|)) (-1185 |#1|)) 49)) (-2819 (((-1185 |#1|) (-931) (-931)) 154) (((-1185 |#1|) (-931)) 150)) (-1708 (((-112) (-1185 |#1|)) 107)) (-1361 (((-931) (-931)) 85)) (-4283 (((-931) (-931)) 92)) (-2262 (((-931) (-931)) 83)) (-3514 (((-112) (-1185 |#1|)) 111)) (-2321 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 135)) (-3307 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 140)) (-3126 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 139)) (-3532 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 138)) (-1622 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 131)) (-2545 (((-1185 |#1|) (-1185 |#1|)) 71)) (-1477 (((-1185 |#1|) (-931)) 145)) (-3215 (((-1185 |#1|) (-931)) 148)) (-3656 (((-1185 |#1|) (-931)) 147)) (-3410 (((-1185 |#1|) (-931)) 146)) (-3356 (((-1185 |#1|) (-931)) 143))) -(((-365 |#1|) (-10 -7 (-15 -1708 ((-112) (-1185 |#1|))) (-15 -3514 ((-112) (-1185 |#1|))) (-15 -2262 ((-931) (-931))) (-15 -1361 ((-931) (-931))) (-15 -4283 ((-931) (-931))) (-15 -3356 ((-1185 |#1|) (-931))) (-15 -1477 ((-1185 |#1|) (-931))) (-15 -3410 ((-1185 |#1|) (-931))) (-15 -3656 ((-1185 |#1|) (-931))) (-15 -3215 ((-1185 |#1|) (-931))) (-15 -1622 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2321 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3532 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3126 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3307 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2819 ((-1185 |#1|) (-931))) (-15 -2819 ((-1185 |#1|) (-931) (-931))) (-15 -2545 ((-1185 |#1|) (-1185 |#1|))) (-15 -3433 ((-968 (-1185 |#1|)) (-1185 |#1|)))) (-357)) (T -365)) -((-3433 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-968 (-1185 *4))) (-5 *1 (-365 *4)) (-5 *3 (-1185 *4)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-2819 (*1 *2 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3307 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3126 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3532 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-2321 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-1622 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-365 *4)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-365 *4))))) -(-10 -7 (-15 -1708 ((-112) (-1185 |#1|))) (-15 -3514 ((-112) (-1185 |#1|))) (-15 -2262 ((-931) (-931))) (-15 -1361 ((-931) (-931))) (-15 -4283 ((-931) (-931))) (-15 -3356 ((-1185 |#1|) (-931))) (-15 -1477 ((-1185 |#1|) (-931))) (-15 -3410 ((-1185 |#1|) (-931))) (-15 -3656 ((-1185 |#1|) (-931))) (-15 -3215 ((-1185 |#1|) (-931))) (-15 -1622 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2321 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3532 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3126 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3307 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2819 ((-1185 |#1|) (-931))) (-15 -2819 ((-1185 |#1|) (-931) (-931))) (-15 -2545 ((-1185 |#1|) (-1185 |#1|))) (-15 -3433 ((-968 (-1185 |#1|)) (-1185 |#1|)))) -((-3711 (((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|) 38))) -(((-366 |#1| |#2| |#3|) (-10 -7 (-15 -3711 ((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|))) (-357) (-1256 |#1|) (-1256 |#2|)) (T -366)) -((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *1 (-366 *4 *5 *3))))) -(-10 -7 (-15 -3711 ((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-367 |#1| |#2|) (-336 |#1|) (-357) (-931)) (T -367)) -NIL -(-336 |#1|) -((-3483 (((-112) (-653 (-962 |#1|))) 41)) (-3207 (((-653 (-962 |#1|)) (-653 (-962 |#1|))) 53)) (-1890 (((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|))) 48))) -(((-368 |#1| |#2|) (-10 -7 (-15 -3483 ((-112) (-653 (-962 |#1|)))) (-15 -1890 ((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|)))) (-15 -3207 ((-653 (-962 |#1|)) (-653 (-962 |#1|))))) (-461) (-653 (-1189))) (T -368)) -((-3207 (*1 *2 *2) (-12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) (-1890 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-112)) (-5 *1 (-368 *4 *5)) (-14 *5 (-653 (-1189)))))) -(-10 -7 (-15 -3483 ((-112) (-653 (-962 |#1|)))) (-15 -1890 ((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|)))) (-15 -3207 ((-653 (-962 |#1|)) (-653 (-962 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) 17)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-573) $ (-573)) NIL)) (-1911 (($ (-1 |#1| |#1|) $) 34)) (-3584 (($ (-1 (-573) (-573)) $) 26)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 28)) (-3965 (((-1132) $) NIL)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $) 30)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 40) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ |#1| (-573)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-369 |#1|) (-13 (-482) (-1050 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-573))) (-15 -1486 ((-780) $)) (-15 -3884 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3584 ($ (-1 (-573) (-573)) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $)))) (-1112)) (T -369)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-3884 (*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-573) (-573))) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-369 *3)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-573))))) (-5 *1 (-369 *3)) (-4 *3 (-1112))))) -(-13 (-482) (-1050 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-573))) (-15 -1486 ((-780) $)) (-15 -3884 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3584 ($ (-1 (-573) (-573)) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $)))) -((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 13)) (-2456 (($ $) 14)) (-2427 (((-427 $) $) 34)) (-2696 (((-112) $) 30)) (-1323 (($ $) 19)) (-2872 (($ $ $) 25) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) 35)) (-2837 (((-3 $ "failed") $ $) 24)) (-2163 (((-780) $) 28)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 39)) (-2516 (((-112) $ $) 16)) (-3103 (($ $ $) 37))) -(((-370 |#1|) (-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-371)) (T -370)) -NIL -(-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) -(((-371) (-141)) (T -371)) -((-3103 (*1 *1 *1 *1) (-4 *1 (-371)))) -(-13 (-314) (-1234) (-248) (-10 -8 (-15 -3103 ($ $ $)) (-6 -4453) (-6 -4447))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-2848 (((-112) $ $) 7)) (-4288 ((|#2| $ |#2|) 14)) (-2169 (($ $ (-1171)) 19)) (-4188 ((|#2| $) 15)) (-1674 (($ |#1|) 21) (($ |#1| (-1171)) 20)) (-2031 ((|#1| $) 17)) (-3180 (((-1171) $) 10)) (-4175 (((-1171) $) 16)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-1981 (($ $) 18)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-372 |#1| |#2|) (-141) (-1112) (-1112)) (T -372)) -((-1674 (*1 *1 *2) (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-1674 (*1 *1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *1 (-372 *2 *4)) (-4 *2 (-1112)) (-4 *4 (-1112)))) (-2169 (*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-1171)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-4288 (*1 *2 *1 *2) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -1674 ($ |t#1|)) (-15 -1674 ($ |t#1| (-1171))) (-15 -2169 ($ $ (-1171))) (-15 -1981 ($ $)) (-15 -2031 (|t#1| $)) (-15 -4175 ((-1171) $)) (-15 -4188 (|t#2| $)) (-15 -4288 (|t#2| $ |t#2|)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-4288 ((|#1| $ |#1|) 31)) (-2169 (($ $ (-1171)) 23)) (-1737 (((-3 |#1| "failed") $) 30)) (-4188 ((|#1| $) 28)) (-1674 (($ (-397)) 22) (($ (-397) (-1171)) 21)) (-2031 (((-397) $) 25)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) 26)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20)) (-1981 (($ $) 24)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19))) -(((-373 |#1|) (-13 (-372 (-397) |#1|) (-10 -8 (-15 -1737 ((-3 |#1| "failed") $)))) (-1112)) (T -373)) -((-1737 (*1 *2 *1) (|partial| -12 (-5 *1 (-373 *2)) (-4 *2 (-1112))))) -(-13 (-372 (-397) |#1|) (-10 -8 (-15 -1737 ((-3 |#1| "failed") $)))) -((-3119 (((-1280 (-698 |#2|)) (-1280 $)) 67)) (-1454 (((-698 |#2|) (-1280 $)) 139)) (-1390 ((|#2| $) 36)) (-3612 (((-698 |#2|) $ (-1280 $)) 142)) (-1546 (((-3 $ "failed") $) 89)) (-3729 ((|#2| $) 39)) (-3397 (((-1185 |#2|) $) 98)) (-4053 ((|#2| (-1280 $)) 122)) (-2650 (((-1185 |#2|) $) 32)) (-2492 (((-112)) 116)) (-2854 (($ (-1280 |#2|) (-1280 $)) 132)) (-2232 (((-3 $ "failed") $) 93)) (-4275 (((-112)) 111)) (-1922 (((-112)) 106)) (-1565 (((-112)) 58)) (-2582 (((-698 |#2|) (-1280 $)) 137)) (-3619 ((|#2| $) 35)) (-1729 (((-698 |#2|) $ (-1280 $)) 141)) (-2780 (((-3 $ "failed") $) 87)) (-3420 ((|#2| $) 38)) (-2000 (((-1185 |#2|) $) 97)) (-1912 ((|#2| (-1280 $)) 120)) (-3242 (((-1185 |#2|) $) 30)) (-3455 (((-112)) 115)) (-2509 (((-112)) 108)) (-3313 (((-112)) 56)) (-4293 (((-112)) 103)) (-3209 (((-112)) 117)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) 128)) (-2774 (((-112)) 113)) (-2649 (((-653 (-1280 |#2|))) 102)) (-2661 (((-112)) 114)) (-1469 (((-112)) 112)) (-4243 (((-112)) 51)) (-2744 (((-112)) 118))) -(((-374 |#1| |#2|) (-10 -8 (-15 -3397 ((-1185 |#2|) |#1|)) (-15 -2000 ((-1185 |#2|) |#1|)) (-15 -2649 ((-653 (-1280 |#2|)))) (-15 -1546 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-112))) (-15 -2509 ((-112))) (-15 -4275 ((-112))) (-15 -3313 ((-112))) (-15 -1565 ((-112))) (-15 -4293 ((-112))) (-15 -2744 ((-112))) (-15 -3209 ((-112))) (-15 -2492 ((-112))) (-15 -3455 ((-112))) (-15 -4243 ((-112))) (-15 -2661 ((-112))) (-15 -1469 ((-112))) (-15 -2774 ((-112))) (-15 -2650 ((-1185 |#2|) |#1|)) (-15 -3242 ((-1185 |#2|) |#1|)) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3729 (|#2| |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3619 (|#2| |#1|)) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|)))) (-375 |#2|) (-174)) (T -374)) -((-2774 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1469 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2661 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4243 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3455 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2492 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3209 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2744 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4293 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1565 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3313 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4275 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2509 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2649 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-653 (-1280 *4))) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4))))) -(-10 -8 (-15 -3397 ((-1185 |#2|) |#1|)) (-15 -2000 ((-1185 |#2|) |#1|)) (-15 -2649 ((-653 (-1280 |#2|)))) (-15 -1546 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-112))) (-15 -2509 ((-112))) (-15 -4275 ((-112))) (-15 -3313 ((-112))) (-15 -1565 ((-112))) (-15 -4293 ((-112))) (-15 -2744 ((-112))) (-15 -3209 ((-112))) (-15 -2492 ((-112))) (-15 -3455 ((-112))) (-15 -4243 ((-112))) (-15 -2661 ((-112))) (-15 -1469 ((-112))) (-15 -2774 ((-112))) (-15 -2650 ((-1185 |#2|) |#1|)) (-15 -3242 ((-1185 |#2|) |#1|)) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3729 (|#2| |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3619 (|#2| |#1|)) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1642 (((-3 $ "failed")) 42 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) 83)) (-1888 (((-1280 $)) 86)) (-2579 (($) 18 T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 45 (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) 43 (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) 70)) (-1390 ((|#1| $) 79)) (-3612 (((-698 |#1|) $ (-1280 $)) 81)) (-1546 (((-3 $ "failed") $) 50 (|has| |#1| (-565)))) (-3681 (($ $ (-931)) 31)) (-3729 ((|#1| $) 77)) (-3397 (((-1185 |#1|) $) 47 (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) 72)) (-2650 (((-1185 |#1|) $) 68)) (-2492 (((-112)) 62)) (-2854 (($ (-1280 |#1|) (-1280 $)) 74)) (-2232 (((-3 $ "failed") $) 52 (|has| |#1| (-565)))) (-3583 (((-931)) 85)) (-3720 (((-112)) 59)) (-3009 (($ $ (-931)) 38)) (-4275 (((-112)) 55)) (-1922 (((-112)) 53)) (-1565 (((-112)) 57)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 46 (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) 44 (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) 71)) (-3619 ((|#1| $) 80)) (-1729 (((-698 |#1|) $ (-1280 $)) 82)) (-2780 (((-3 $ "failed") $) 51 (|has| |#1| (-565)))) (-2022 (($ $ (-931)) 32)) (-3420 ((|#1| $) 78)) (-2000 (((-1185 |#1|) $) 48 (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) 73)) (-3242 (((-1185 |#1|) $) 69)) (-3455 (((-112)) 63)) (-3180 (((-1171) $) 10)) (-2509 (((-112)) 54)) (-3313 (((-112)) 56)) (-4293 (((-112)) 58)) (-3965 (((-1132) $) 11)) (-3209 (((-112)) 61)) (-2123 (((-1280 |#1|) $ (-1280 $)) 76) (((-698 |#1|) (-1280 $) (-1280 $)) 75)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) 84)) (-4380 (($ $ $) 28)) (-2774 (((-112)) 67)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2649 (((-653 (-1280 |#1|))) 49 (|has| |#1| (-565)))) (-3531 (($ $ $ $) 29)) (-2661 (((-112)) 65)) (-4366 (($ $ $) 27)) (-1469 (((-112)) 66)) (-4243 (((-112)) 64)) (-2744 (((-112)) 60)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-375 |#1|) (-141) (-174)) (T -375)) -((-1888 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-375 *3)))) (-3583 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-931)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))))) (-1729 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-1280 *4)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) (-4 *1 (-375 *4)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3)))) (-2774 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1469 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2661 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4243 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3455 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2492 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3209 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2744 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3720 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4293 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1565 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3313 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4275 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2509 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1922 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2232 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-2780 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-1546 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-2649 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-653 (-1280 *3))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-1185 *3)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-1185 *3)))) (-1447 (*1 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) (-4 *1 (-375 *3)))) (-2811 (*1 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) (-4 *1 (-375 *3)))) (-3675 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) (-3360 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) (-1642 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) -(-13 (-753 |t#1|) (-10 -8 (-15 -1888 ((-1280 $))) (-15 -3583 ((-931))) (-15 -1664 ((-653 (-962 |t#1|)) (-1280 $))) (-15 -3119 ((-1280 (-698 |t#1|)) (-1280 $))) (-15 -1729 ((-698 |t#1|) $ (-1280 $))) (-15 -3612 ((-698 |t#1|) $ (-1280 $))) (-15 -3619 (|t#1| $)) (-15 -1390 (|t#1| $)) (-15 -3420 (|t#1| $)) (-15 -3729 (|t#1| $)) (-15 -2123 ((-1280 |t#1|) $ (-1280 $))) (-15 -2123 ((-698 |t#1|) (-1280 $) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|) (-1280 $))) (-15 -1912 (|t#1| (-1280 $))) (-15 -4053 (|t#1| (-1280 $))) (-15 -2582 ((-698 |t#1|) (-1280 $))) (-15 -1454 ((-698 |t#1|) (-1280 $))) (-15 -3242 ((-1185 |t#1|) $)) (-15 -2650 ((-1185 |t#1|) $)) (-15 -2774 ((-112))) (-15 -1469 ((-112))) (-15 -2661 ((-112))) (-15 -4243 ((-112))) (-15 -3455 ((-112))) (-15 -2492 ((-112))) (-15 -3209 ((-112))) (-15 -2744 ((-112))) (-15 -3720 ((-112))) (-15 -4293 ((-112))) (-15 -1565 ((-112))) (-15 -3313 ((-112))) (-15 -4275 ((-112))) (-15 -2509 ((-112))) (-15 -1922 ((-112))) (IF (|has| |t#1| (-565)) (PROGN (-15 -2232 ((-3 $ "failed") $)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1546 ((-3 $ "failed") $)) (-15 -2649 ((-653 (-1280 |t#1|)))) (-15 -2000 ((-1185 |t#1|) $)) (-15 -3397 ((-1185 |t#1|) $)) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -3675 ((-3 $ "failed"))) (-15 -3360 ((-3 $ "failed"))) (-15 -1642 ((-3 $ "failed"))) (-6 -4452)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-753 |#1|) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1486 (((-780)) 17)) (-2819 (($) 14)) (-3589 (((-931) $) 15)) (-3180 (((-1171) $) 10)) (-2575 (($ (-931)) 16)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-376) (-141)) (T -376)) -((-1486 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-780)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-376)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-931)))) (-2819 (*1 *1) (-4 *1 (-376)))) -(-13 (-1112) (-10 -8 (-15 -1486 ((-780))) (-15 -2575 ($ (-931))) (-15 -3589 ((-931) $)) (-15 -2819 ($)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2114 (((-698 |#2|) (-1280 $)) 45)) (-2854 (($ (-1280 |#2|) (-1280 $)) 39)) (-1720 (((-698 |#2|) $ (-1280 $)) 47)) (-3592 ((|#2| (-1280 $)) 13)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) 27))) -(((-377 |#1| |#2| |#3|) (-10 -8 (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) (-378 |#2| |#3|) (-174) (-1256 |#2|)) (T -377)) -NIL -(-10 -8 (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2114 (((-698 |#1|) (-1280 $)) 53)) (-1635 ((|#1| $) 59)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55)) (-1720 (((-698 |#1|) $ (-1280 $)) 60)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3592 ((|#1| (-1280 $)) 54)) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-4279 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-378 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -378)) -((-3583 (*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-931)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *4)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4 *5)) (-4 *5 (-1256 *4)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *2 *4)) (-4 *4 (-1256 *2)) (-4 *2 (-174)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *3 (-371)) (-4 *2 (-1256 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3583 ((-931))) (-15 -1720 ((-698 |t#1|) $ (-1280 $))) (-15 -1635 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -2123 ((-1280 |t#1|) $ (-1280 $))) (-15 -2123 ((-698 |t#1|) (-1280 $) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|) (-1280 $))) (-15 -3592 (|t#1| (-1280 $))) (-15 -2114 ((-698 |t#1|) (-1280 $))) (-15 -2517 (|t#2| $)) (IF (|has| |t#1| (-371)) (-15 -2297 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3094 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2867 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-379 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1230) (-381 |#1|) (-1230) (-381 |#3|)) (T -379)) -((-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-4 *2 (-381 *5)) (-5 *1 (-379 *6 *4 *5 *2)) (-4 *4 (-381 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-379 *5 *4 *2 *6)) (-4 *4 (-381 *5)) (-4 *6 (-381 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *2 (-381 *6)) (-5 *1 (-379 *5 *4 *6 *2)) (-4 *4 (-381 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1473 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2748 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2770 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4422 (($ $) 25)) (-1440 (((-573) (-1 (-112) |#2|) $) NIL) (((-573) |#2| $) 11) (((-573) |#2| $ (-573)) NIL)) (-1480 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-380 |#1| |#2|) (-10 -8 (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4422 (|#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-381 |#2|) (-1230)) (T -380)) -NIL -(-10 -8 (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4422 (|#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-381 |#1|) (-141) (-1230)) (T -381)) -((-1480 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-4422 (*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)))) (-2770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-1473 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1440 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1) (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) (-2770 (*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-859)) (-5 *2 (-112)))) (-3919 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-2176 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)))) (-2748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-2748 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859))))) -(-13 (-660 |t#1|) (-10 -8 (-6 -4455) (-15 -1480 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4422 ($ $)) (-15 -2770 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1473 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1440 ((-573) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -1440 ((-573) |t#1| $)) (-15 -1440 ((-573) |t#1| $ (-573)))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-6 (-859)) (-15 -1480 ($ $ $)) (-15 -2770 ($ $)) (-15 -1473 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3919 ($ $ $ (-573))) (-15 -2176 ($ $)) (-15 -2748 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-15 -2748 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 37)) (-4398 (($ $ (-780)) 38)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1680 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 41)) (-4386 (($ $) 39)) (-1435 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 42)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2645 (($ $ |#1| $) 36) (($ $ (-653 |#1|) (-653 $)) 35)) (-2565 (((-780) $) 43)) (-2955 (($ $ $) 34)) (-2942 (((-871) $) 12) (($ |#1|) 46) (((-1295 |#1| |#2|) $) 45) (((-1304 |#1| |#2|) $) 44)) (-1857 ((|#2| (-1304 |#1| |#2|) $) 47)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2670 (($ (-681 |#1|)) 40)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 33 (|has| |#2| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-382 |#1| |#2|) (-141) (-859) (-174)) (T -382)) -((-1857 (*1 *2 *3 *1) (-12 (-5 *3 (-1304 *4 *2)) (-4 *1 (-382 *4 *2)) (-4 *4 (-859)) (-4 *2 (-174)))) (-2942 (*1 *1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-1295 *3 *4)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-1304 *3 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-780)))) (-1435 (*1 *2 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1680 (*1 *2 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-4 *1 (-382 *3 *4)) (-4 *4 (-174)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-653 *3)))) (-2645 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-859)) (-4 *5 (-174))))) -(-13 (-643 |t#2|) (-10 -8 (-15 -1857 (|t#2| (-1304 |t#1| |t#2|) $)) (-15 -2942 ($ |t#1|)) (-15 -2942 ((-1295 |t#1| |t#2|) $)) (-15 -2942 ((-1304 |t#1| |t#2|) $)) (-15 -2565 ((-780) $)) (-15 -1435 ((-1304 |t#1| |t#2|) (-1304 |t#1| |t#2|) $)) (-15 -1680 ((-1304 |t#1| |t#2|) (-1304 |t#1| |t#2|) $)) (-15 -2670 ($ (-681 |t#1|))) (-15 -4386 ($ $)) (-15 -4398 ($ $ (-780))) (-15 -1653 ((-653 |t#1|) $)) (-15 -2645 ($ $ |t#1| $)) (-15 -2645 ($ $ (-653 |t#1|) (-653 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-657 |#2|) . T) ((-643 |#2|) . T) ((-649 |#2|) . T) ((-726 |#2|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1112) . T)) -((-2820 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3771 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2325 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-383 |#1| |#2|) (-10 -7 (-15 -3771 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2325 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1230) (-13 (-381 |#1|) (-10 -7 (-6 -4456)))) (T -383)) -((-2820 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))))) (-2325 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))))) (-3771 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) -(-10 -7 (-15 -3771 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2325 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2759 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 22) (((-698 (-573)) (-698 $)) 14) (((-698 (-573)) (-1280 $)) NIL))) -(((-384 |#1| |#2|) (-10 -8 (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|)))) (-385 |#2|) (-1061)) (T -384)) -NIL -(-10 -8 (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2759 (((-698 |#1|) (-1280 $)) 31) (((-698 |#1|) (-698 $)) 30) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 29) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 39 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 38 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-1280 $)) 37 (|has| |#1| (-648 (-573))))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) -(((-385 |#1|) (-141) (-1061)) (T -385)) -NIL -(-13 (-648 |t#1|) (-10 -7 (IF (|has| |t#1| (-648 (-573))) (-6 (-648 (-573))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 #0=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-648 #0#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-1112) . T)) -((-3931 (((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|) 51) (((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|) 50) (((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|) 47) (((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|) 41)) (-1436 (((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|) 30) (((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|) 18))) -(((-386 |#1|) (-10 -7 (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -1436 ((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -1436 ((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|))) (-13 (-371) (-857))) (T -386)) -((-1436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-171 *5)))) (-5 *1 (-386 *5)) (-4 *5 (-13 (-371) (-857))))) (-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 (-171 (-573)))))) (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 (-171 (-573))))))) (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857)))))) -(-10 -7 (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -1436 ((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -1436 ((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 35)) (-3770 (((-573) $) 62)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) 136)) (-2363 (($ $) 98)) (-2246 (($ $) 90)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) 47)) (-2800 (((-112) $ $) NIL)) (-2342 (($ $) 96)) (-2225 (($ $) 85)) (-1983 (((-573) $) 78)) (-3958 (($ $ (-573)) 73)) (-2388 (($ $) NIL)) (-2266 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-2350 (($ $) 138)) (-1695 (((-3 (-573) "failed") $) 231) (((-3 (-416 (-573)) "failed") $) 227)) (-2205 (((-573) $) 229) (((-416 (-573)) $) 225)) (-2784 (($ $ $) NIL)) (-2655 (((-573) $ $) 125)) (-2232 (((-3 $ "failed") $) 141)) (-1624 (((-416 (-573)) $ (-780)) 232) (((-416 (-573)) $ (-780) (-780)) 224)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 121) (((-931) (-931)) 122 (|has| $ (-6 -4446)))) (-4152 (((-112) $) 130)) (-2999 (($) 41)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-1715 (((-1285) (-780)) 191)) (-3542 (((-1285)) 196) (((-1285) (-780)) 197)) (-1770 (((-1285)) 198) (((-1285) (-780)) 199)) (-1336 (((-1285)) 194) (((-1285) (-780)) 195)) (-2534 (((-573) $) 68)) (-1959 (((-112) $) 40)) (-4325 (($ $ (-573)) NIL)) (-2852 (($ $) 51)) (-3421 (($ $) NIL)) (-3339 (((-112) $) 37)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-3751 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 17)) (-3388 (($) 106) (($ $) 113)) (-1731 (($) 112) (($ $) 114)) (-3118 (($ $) 101)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 143)) (-2827 (((-931) (-573)) 46 (|has| $ (-6 -4446)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) 60)) (-3733 (($ $) 135)) (-2383 (($ (-573) (-573)) 131) (($ (-573) (-573) (-931)) 132)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 19)) (-2945 (($) 115)) (-1608 (($ $) 95)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-931)) 123) (((-931) (-931)) 124 (|has| $ (-6 -4446)))) (-3904 (($ $) 142) (($ $ (-780)) NIL)) (-2985 (((-931) (-573)) 50 (|has| $ (-6 -4446)))) (-2401 (($ $) NIL)) (-2274 (($ $) NIL)) (-2374 (($ $) NIL)) (-2255 (($ $) NIL)) (-2352 (($ $) 97)) (-2236 (($ $) 89)) (-1835 (((-387) $) 216) (((-227) $) 218) (((-902 (-387)) $) NIL) (((-1171) $) 202) (((-545) $) 214) (($ (-227)) 223)) (-2942 (((-871) $) 206) (($ (-573)) 228) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-573)) 228) (($ (-416 (-573))) NIL) (((-227) $) 219)) (-1545 (((-780)) NIL T CONST)) (-2437 (($ $) 137)) (-2628 (((-931)) 61) (((-931) (-931)) 80 (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 126)) (-2439 (($ $) 104)) (-2304 (($ $) 49) (($ $ $) 59)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 102)) (-2286 (($ $) 39)) (-2464 (($ $) NIL)) (-2324 (($ $) NIL)) (-2520 (($ $) NIL)) (-2333 (($ $) NIL)) (-2452 (($ $) NIL)) (-2314 (($ $) NIL)) (-2426 (($ $) 103)) (-2296 (($ $) 52)) (-1660 (($ $) 58)) (-2132 (($) 36 T CONST)) (-2144 (($) 43 T CONST)) (-2808 (((-1171) $) 27) (((-1171) $ (-112)) 29) (((-1285) (-831) $) 30) (((-1285) (-831) $ (-112)) 31)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) 203)) (-3015 (((-112) $ $) 45)) (-2981 (((-112) $ $) 56)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 57)) (-3103 (($ $ $) 48) (($ $ (-573)) 42)) (-3093 (($ $) 38) (($ $ $) 53)) (-3077 (($ $ $) 72)) (** (($ $ (-931)) 83) (($ $ (-780)) NIL) (($ $ (-573)) 107) (($ $ (-416 (-573))) 154) (($ $ $) 145)) (* (($ (-931) $) 79) (($ (-780) $) NIL) (($ (-573) $) 84) (($ $ $) 71) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-387) (-13 (-413) (-238) (-623 (-1171)) (-837) (-622 (-227)) (-1215) (-623 (-545)) (-627 (-227)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2852 ($ $)) (-15 -2655 ((-573) $ $)) (-15 -3958 ($ $ (-573))) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))) (-15 -3388 ($)) (-15 -1731 ($)) (-15 -2945 ($)) (-15 -2304 ($ $ $)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -1770 ((-1285))) (-15 -1770 ((-1285) (-780))) (-15 -1336 ((-1285))) (-15 -1336 ((-1285) (-780))) (-15 -3542 ((-1285))) (-15 -3542 ((-1285) (-780))) (-15 -1715 ((-1285) (-780))) (-6 -4446) (-6 -4438)))) (T -387)) -((** (*1 *1 *1 *1) (-5 *1 (-387))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-2852 (*1 *1 *1) (-5 *1 (-387))) (-2655 (*1 *2 *1 *1) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) (-1624 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) (-3388 (*1 *1) (-5 *1 (-387))) (-1731 (*1 *1) (-5 *1 (-387))) (-2945 (*1 *1) (-5 *1 (-387))) (-2304 (*1 *1 *1 *1) (-5 *1 (-387))) (-3388 (*1 *1 *1) (-5 *1 (-387))) (-1731 (*1 *1 *1) (-5 *1 (-387))) (-1770 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-1336 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-3542 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387))))) -(-13 (-413) (-238) (-623 (-1171)) (-837) (-622 (-227)) (-1215) (-623 (-545)) (-627 (-227)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2852 ($ $)) (-15 -2655 ((-573) $ $)) (-15 -3958 ($ $ (-573))) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))) (-15 -3388 ($)) (-15 -1731 ($)) (-15 -2945 ($)) (-15 -2304 ($ $ $)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -1770 ((-1285))) (-15 -1770 ((-1285) (-780))) (-15 -1336 ((-1285))) (-15 -1336 ((-1285) (-780))) (-15 -3542 ((-1285))) (-15 -3542 ((-1285) (-780))) (-15 -1715 ((-1285) (-780))) (-6 -4446) (-6 -4438))) -((-1994 (((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|) 46) (((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|) 45) (((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|) 42) (((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|) 36)) (-2946 (((-653 |#1|) (-416 (-962 (-573))) |#1|) 20) (((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|) 30))) -(((-388 |#1|) (-10 -7 (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|)) (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|)) (-15 -2946 ((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|)) (-15 -2946 ((-653 |#1|) (-416 (-962 (-573))) |#1|))) (-13 (-857) (-371))) (T -388)) -((-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 *5))) (-5 *1 (-388 *5)) (-4 *5 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 (-573))))) (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 (-573)))))) (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371)))))) -(-10 -7 (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|)) (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|)) (-15 -2946 ((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|)) (-15 -2946 ((-653 |#1|) (-416 (-962 (-573))) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 30)) (-2205 ((|#2| $) 32)) (-1391 (($ $) NIL)) (-3772 (((-780) $) 11)) (-2518 (((-653 $) $) 23)) (-3676 (((-112) $) NIL)) (-3831 (($ |#2| |#1|) 21)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1358 ((|#2| $) 18)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 51) (($ |#2|) 31)) (-1920 (((-653 |#1|) $) 20)) (-4317 ((|#1| $ |#2|) 55)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 33 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-389 |#1| |#2|) (-13 (-390 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1061) (-859)) (T -389)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-389 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859))))) -(-13 (-390 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 49)) (-2205 ((|#2| $) 50)) (-1391 (($ $) 35)) (-3772 (((-780) $) 39)) (-2518 (((-653 $) $) 40)) (-3676 (((-112) $) 43)) (-3831 (($ |#2| |#1|) 44)) (-1776 (($ (-1 |#1| |#1|) $) 45)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1358 ((|#2| $) 38)) (-1369 ((|#1| $) 37)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ |#2|) 48)) (-1920 (((-653 |#1|) $) 41)) (-4317 ((|#1| $ |#2|) 46)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-390 |#1| |#2|) (-141) (-1061) (-1112)) (T -390)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)))) (-3831 (*1 *1 *2 *3) (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-390 *3 *4)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-780)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112))))) -(-13 (-111 |t#1| |t#1|) (-1050 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4317 (|t#1| $ |t#2|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -3831 ($ |t#2| |t#1|)) (-15 -3676 ((-112) $)) (-15 -3256 ((-653 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1920 ((-653 |t#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (-15 -1358 (|t#2| $)) (-15 -1369 (|t#1| $)) (-15 -3228 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1391 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-726 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-1050 |#2|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-698 (-708))) 14) (($ (-653 (-337))) 13) (($ (-337)) 12) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 11))) -(((-391) (-141)) (T -391)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-708))) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-391))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-698 (-708)))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))))) -(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) -((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 21) (((-3 $ "failed") (-698 (-323 (-573)))) 19) (((-3 $ "failed") (-698 (-962 (-387)))) 17) (((-3 $ "failed") (-698 (-962 (-573)))) 15) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 13) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 11)) (-2205 (($ (-698 (-323 (-387)))) 22) (($ (-698 (-323 (-573)))) 20) (($ (-698 (-962 (-387)))) 18) (($ (-698 (-962 (-573)))) 16) (($ (-698 (-416 (-962 (-387))))) 14) (($ (-698 (-416 (-962 (-573))))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) +((-3111 (($ $) 6)) (-1619 (($ $) 7)) (** (($ $ $) 8))) +(((-292) (-141)) (T -292)) +((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1619 (*1 *1 *1) (-4 *1 (-292))) (-3111 (*1 *1 *1) (-4 *1 (-292)))) +(-13 (-10 -8 (-15 -3111 ($ $)) (-15 -1619 ($ $)) (-15 ** ($ $ $)))) +((-3137 (((-654 (-1172 |#1|)) (-1172 |#1|) |#1|) 35)) (-2458 ((|#2| |#2| |#1|) 39)) (-2512 ((|#2| |#2| |#1|) 41)) (-3567 ((|#2| |#2| |#1|) 40))) +(((-293 |#1| |#2|) (-10 -7 (-15 -2458 (|#2| |#2| |#1|)) (-15 -3567 (|#2| |#2| |#1|)) (-15 -2512 (|#2| |#2| |#1|)) (-15 -3137 ((-654 (-1172 |#1|)) (-1172 |#1|) |#1|))) (-372) (-1274 |#1|)) (T -293)) +((-3137 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1172 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1172 *4)) (-4 *5 (-1274 *4)))) (-2512 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3)))) (-3567 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3)))) (-2458 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -2458 (|#2| |#2| |#1|)) (-15 -3567 (|#2| |#2| |#1|)) (-15 -2512 (|#2| |#2| |#1|)) (-15 -3137 ((-654 (-1172 |#1|)) (-1172 |#1|) |#1|))) +((-2209 ((|#2| $ |#1|) 6))) +(((-294 |#1| |#2|) (-141) (-1233) (-1233)) (T -294)) +((-2209 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1233)) (-4 *2 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -2209 (|t#2| $ |t#1|)))) +(((-1233) . T)) +((-2473 ((|#3| $ |#2| |#3|) 12)) (-2399 ((|#3| $ |#2|) 10))) +(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2399 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1115) (-1233)) (T -295)) +NIL +(-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2399 (|#3| |#1| |#2|))) +((-3134 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 11)) (-2209 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-296 |#1| |#2|) (-141) (-1115) (-1233)) (T -296)) +((-2209 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-2399 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-2473 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233))))) +(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2209 (|t#2| $ |t#1| |t#2|)) (-15 -2399 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3134 (|t#2| $ |t#1| |t#2|)) (-15 -2473 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-294 |#1| |#2|) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 37)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 44)) (-4319 (($ $) 41)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) 35)) (-2881 (($ |#2| |#3|) 18)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4154 ((|#3| $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 19)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2982 (((-3 $ "failed") $ $) NIL)) (-3575 (((-781) $) 36)) (-2209 ((|#2| $ |#2|) 46)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 23)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 31 T CONST)) (-2155 (($) 39 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40))) +(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -4154 (|#3| $)) (-15 -2950 (|#2| $)) (-15 -2881 ($ |#2| |#3|)) (-15 -2982 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) (-174) (-1259 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297)) +((-2978 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4154 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1259 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2881 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1259 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2982 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1327 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -4154 (|#3| $)) (-15 -2950 (|#2| $)) (-15 -2881 ($ |#2| |#3|)) (-15 -2982 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-298) (-141)) (T -298)) +NIL +(-13 (-1064) (-111 $ $) (-10 -7 (-6 -4451))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-3055 (((-654 (-1100)) $) 10)) (-1975 (($ (-516) (-516) (-1119) $) 19)) (-2759 (($ (-516) (-654 (-978)) $) 23)) (-3123 (($) 25)) (-2690 (((-701 (-1119)) (-516) (-516) $) 18)) (-1438 (((-654 (-978)) (-516) $) 22)) (-4272 (($) 7)) (-1834 (($) 24)) (-2950 (((-872) $) 29)) (-1905 (($) 26))) +(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3055 ((-654 (-1100)) $)) (-15 -2690 ((-701 (-1119)) (-516) (-516) $)) (-15 -1975 ($ (-516) (-516) (-1119) $)) (-15 -1438 ((-654 (-978)) (-516) $)) (-15 -2759 ($ (-516) (-654 (-978)) $)) (-15 -1834 ($)) (-15 -3123 ($)) (-15 -1905 ($))))) (T -299)) +((-4272 (*1 *1) (-5 *1 (-299))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-654 (-1100))) (-5 *1 (-299)))) (-2690 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1119))) (-5 *1 (-299)))) (-1975 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-299)))) (-1438 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-978))) (-5 *1 (-299)))) (-2759 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-299)))) (-1834 (*1 *1) (-5 *1 (-299))) (-3123 (*1 *1) (-5 *1 (-299))) (-1905 (*1 *1) (-5 *1 (-299)))) +(-13 (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3055 ((-654 (-1100)) $)) (-15 -2690 ((-701 (-1119)) (-516) (-516) $)) (-15 -1975 ($ (-516) (-516) (-1119) $)) (-15 -1438 ((-654 (-978)) (-516) $)) (-15 -2759 ($ (-516) (-654 (-978)) $)) (-15 -1834 ($)) (-15 -3123 ($)) (-15 -1905 ($)))) +((-2901 (((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))) 102)) (-2781 (((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|)))) 97) (((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781)) 41)) (-3545 (((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))) 99)) (-3448 (((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|)))) 75)) (-1575 (((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|)))) 74)) (-3688 (((-965 |#1|) (-699 (-417 (-965 |#1|)))) 55) (((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192)) 56))) +(((-300 |#1|) (-10 -7 (-15 -3688 ((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192))) (-15 -3688 ((-965 |#1|) (-699 (-417 (-965 |#1|))))) (-15 -1575 ((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|))))) (-15 -3448 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))))) (-15 -2781 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781))) (-15 -2781 ((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|))))) (-15 -2901 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|))))) (-15 -3545 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))))) (-462)) (T -300)) +((-3545 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4)))))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4)))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5)))))) (-2781 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-965 *6)) (-1181 (-1192) (-965 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-965 *6)))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5)))))) (-1575 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4))))) (-5 *1 (-300 *4)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-5 *2 (-965 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-965 *5)))) (-5 *4 (-1192)) (-5 *2 (-965 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))) +(-10 -7 (-15 -3688 ((-965 |#1|) (-699 (-417 (-965 |#1|))) (-1192))) (-15 -3688 ((-965 |#1|) (-699 (-417 (-965 |#1|))))) (-15 -1575 ((-654 (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (-699 (-417 (-965 |#1|))))) (-15 -3448 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))))) (-15 -2781 ((-654 (-699 (-417 (-965 |#1|)))) (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|))) (-699 (-417 (-965 |#1|))) (-781) (-781))) (-15 -2781 ((-654 (-699 (-417 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|)))))) (-699 (-417 (-965 |#1|))))) (-15 -2901 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|))))) (-15 -3545 ((-654 (-2 (|:| |eigval| (-3 (-417 (-965 |#1|)) (-1181 (-1192) (-965 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-965 |#1|))))))) (-699 (-417 (-965 |#1|)))))) +((-1787 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14))) +(((-301 |#1| |#2|) (-10 -7 (-15 -1787 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1233) (-1233)) (T -301)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))) +(-10 -7 (-15 -1787 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1997 (((-112) $) NIL (|has| |#1| (-21)))) (-1693 (($ $) 12)) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2558 (($ $ $) 95 (|has| |#1| (-310)))) (-3063 (($) NIL (-2832 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-2059 (($ $) 51 (|has| |#1| (-21)))) (-1439 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1818 ((|#1| $) 11)) (-2978 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-2276 (((-112) $) NIL (|has| |#1| (-736)))) (-1787 (($ (-1 |#1| |#1|) $) 14)) (-1806 ((|#1| $) 10)) (-3225 (($ $) 50 (|has| |#1| (-21)))) (-3382 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1327 (($ $) 64 (-2832 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2078 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2660 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-1192) |#1|) 17 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1192) |#1|)))) (-2705 (($ |#1| |#1|) 9)) (-2900 (((-135)) 90 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) 87 (|has| |#1| (-913 (-1192))))) (-2190 (($ $ $) NIL (|has| |#1| (-483)))) (-2987 (($ $ $) NIL (|has| |#1| (-483)))) (-2950 (($ (-574)) NIL (|has| |#1| (-1064))) (((-112) $) 37 (|has| |#1| (-1115))) (((-872) $) 36 (|has| |#1| (-1115)))) (-3781 (((-781)) 67 (|has| |#1| (-1064)) CONST)) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2143 (($) 47 (|has| |#1| (-21)) CONST)) (-2155 (($) 57 (|has| |#1| (-736)) CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192))))) (-2985 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1115)))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2832 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3089 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3073 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-934)) NIL (|has| |#1| (-1127)))) (* (($ $ |#1|) 55 (|has| |#1| (-1127))) (($ |#1| $) 54 (|has| |#1| (-1127))) (($ $ $) 53 (|has| |#1| (-1127))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-25))))) +(((-302 |#1|) (-13 (-1233) (-10 -8 (-15 -2985 ($ |#1| |#1|)) (-15 -2705 ($ |#1| |#1|)) (-15 -1693 ($ $)) (-15 -1806 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1192) |#1|)) (-6 (-524 (-1192) |#1|)) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3073 ($ |#1| $)) (-15 -3073 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3225 ($ $)) (-15 -2059 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1127)) (PROGN (-6 (-1127)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -3382 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -3382 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -2078 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1290 |#1|)) (-15 -3102 ($ $ $)) (-15 -1327 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2558 ($ $ $)) |%noBranch|))) (-1233)) (T -302)) +((-2985 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-2705 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1806 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1818 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)) (-5 *1 (-302 *2)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) (-3073 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) (-3225 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-2059 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3089 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) (-3382 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233)))) (-1439 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1233)))) (-2558 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1233)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) (-3102 (*1 *1 *1 *1) (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) (-1327 (*1 *1 *1) (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233)))))) +(-13 (-1233) (-10 -8 (-15 -2985 ($ |#1| |#1|)) (-15 -2705 ($ |#1| |#1|)) (-15 -1693 ($ $)) (-15 -1806 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1192) |#1|)) (-6 (-524 (-1192) |#1|)) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3073 ($ |#1| $)) (-15 -3073 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3225 ($ $)) (-15 -2059 ($ $)) (-15 -3089 ($ |#1| $)) (-15 -3089 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1127)) (PROGN (-6 (-1127)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -3382 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -3382 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -2078 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1290 |#1|)) (-15 -3102 ($ $ $)) (-15 -1327 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2558 ($ $ $)) |%noBranch|))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) NIL)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-303 |#1| |#2|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115)) (T -303)) +NIL +(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) +((-2692 (((-320) (-1174) (-654 (-1174))) 17) (((-320) (-1174) (-1174)) 16) (((-320) (-654 (-1174))) 15) (((-320) (-1174)) 14))) +(((-304) (-10 -7 (-15 -2692 ((-320) (-1174))) (-15 -2692 ((-320) (-654 (-1174)))) (-15 -2692 ((-320) (-1174) (-1174))) (-15 -2692 ((-320) (-1174) (-654 (-1174)))))) (T -304)) +((-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1174))) (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304))))) +(-10 -7 (-15 -2692 ((-320) (-1174))) (-15 -2692 ((-320) (-654 (-1174)))) (-15 -2692 ((-320) (-1174) (-1174))) (-15 -2692 ((-320) (-1174) (-654 (-1174))))) +((-1787 ((|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)) 18))) +(((-305 |#1| |#2|) (-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)))) (-310) (-1233)) (T -305)) +((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1174)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1233)) (-5 *1 (-305 *6 *2))))) +(-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-1174) (-622 |#1|)))) +((-1787 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))) +(-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) +((-3027 (((-112) (-227)) 12))) +(((-307 |#1| |#2|) (-10 -7 (-15 -3027 ((-112) (-227)))) (-227) (-227)) (T -307)) +((-3027 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3027 ((-112) (-227)))) +((-2869 (((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227)))) 118)) (-4041 (((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227)))) 135) (((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227)))) 72)) (-2264 (((-654 (-1174)) (-1172 (-227))) NIL)) (-2586 (((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227)))) 69)) (-1821 (((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227)))) 59)) (-4145 (((-654 (-1174)) (-654 (-227))) NIL)) (-2427 (((-227) (-1109 (-853 (-227)))) 29)) (-4227 (((-227) (-1109 (-853 (-227)))) 30)) (-1472 (((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-2766 (((-1174) (-227)) NIL))) +(((-308) (-10 -7 (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -1472 ((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2586 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -2869 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1821 ((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227)))))) (T -308)) +((-2264 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-308)))) (-1821 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-2869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) (-2586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))) +(-10 -7 (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -1472 ((-112) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2586 ((-654 (-227)) (-324 (-227)) (-1192) (-1109 (-853 (-227))))) (-15 -2869 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-324 (-227)) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -4041 ((-1172 (-227)) (-1283 (-324 (-227))) (-654 (-1192)) (-1109 (-853 (-227))))) (-15 -1821 ((-654 (-227)) (-965 (-417 (-574))) (-1192) (-1109 (-853 (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227))))) +((-4067 (((-654 (-622 $)) $) 27)) (-2558 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1706 (((-3 (-622 $) "failed") $) 127)) (-2216 (((-622 $) $) 126)) (-4248 (($ $) 17) (($ (-654 $)) 54)) (-3667 (((-654 (-115)) $) 35)) (-4151 (((-115) (-115)) 88)) (-3127 (((-112) $) 150)) (-1787 (($ (-1 $ $) (-622 $)) 86)) (-3487 (((-3 (-622 $) "failed") $) 94)) (-1784 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-2454 (((-112) $ (-115)) 132) (((-112) $ (-1192)) 131)) (-1849 (((-781) $) 44)) (-2192 (((-112) $ $) 57) (((-112) $ (-1192)) 49)) (-3304 (((-112) $) 148)) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) 67) (($ $ (-1192) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2209 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-2734 (($ $) 51) (($ $ $) 135)) (-2081 (($ $) 15) (($ (-654 $)) 53)) (-2448 (((-112) (-115)) 21))) +(((-309 |#1|) (-10 -8 (-15 -3127 ((-112) |#1|)) (-15 -3304 ((-112) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -2192 ((-112) |#1| (-1192))) (-15 -2192 ((-112) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1784 (|#1| (-115) (-654 |#1|))) (-15 -1784 (|#1| (-115) |#1|)) (-15 -2454 ((-112) |#1| (-1192))) (-15 -2454 ((-112) |#1| (-115))) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -3667 ((-654 (-115)) |#1|)) (-15 -4067 ((-654 (-622 |#1|)) |#1|)) (-15 -3487 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1849 ((-781) |#1|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4248 (|#1| (-654 |#1|))) (-15 -4248 (|#1| |#1|)) (-15 -2081 (|#1| (-654 |#1|))) (-15 -2081 (|#1| |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2209 (|#1| (-115) (-654 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1706 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|))) (-310)) (T -309)) +((-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) +(-10 -8 (-15 -3127 ((-112) |#1|)) (-15 -3304 ((-112) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -2192 ((-112) |#1| (-1192))) (-15 -2192 ((-112) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1784 (|#1| (-115) (-654 |#1|))) (-15 -1784 (|#1| (-115) |#1|)) (-15 -2454 ((-112) |#1| (-1192))) (-15 -2454 ((-112) |#1| (-115))) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -3667 ((-654 (-115)) |#1|)) (-15 -4067 ((-654 (-622 |#1|)) |#1|)) (-15 -3487 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1849 ((-781) |#1|)) (-15 -2734 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4248 (|#1| (-654 |#1|))) (-15 -4248 (|#1| |#1|)) (-15 -2081 (|#1| (-654 |#1|))) (-15 -2081 (|#1| |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2209 (|#1| (-115) (-654 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1706 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|))) +((-2863 (((-112) $ $) 7)) (-4067 (((-654 (-622 $)) $) 39)) (-2558 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1706 (((-3 (-622 $) "failed") $) 64)) (-2216 (((-622 $) $) 65)) (-4248 (($ $) 46) (($ (-654 $)) 45)) (-3667 (((-654 (-115)) $) 38)) (-4151 (((-115) (-115)) 37)) (-3127 (((-112) $) 17 (|has| $ (-1053 (-574))))) (-3256 (((-1188 $) (-622 $)) 20 (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) 31)) (-3487 (((-3 (-622 $) "failed") $) 41)) (-1938 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 40)) (-1784 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-2454 (((-112) $ (-115)) 35) (((-112) $ (-1192)) 34)) (-1849 (((-781) $) 42)) (-3939 (((-1135) $) 11)) (-2192 (((-112) $ $) 30) (((-112) $ (-1192)) 29)) (-3304 (((-112) $) 18 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1192) (-1 $ (-654 $))) 26) (($ $ (-1192) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2209 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2734 (($ $) 44) (($ $ $) 43)) (-2611 (($ $) 19 (|has| $ (-1064)))) (-2950 (((-872) $) 12) (($ (-622 $)) 63)) (-2081 (($ $) 48) (($ (-654 $)) 47)) (-2448 (((-112) (-115)) 36)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-310) (-141)) (T -310)) +((-2209 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2081 (*1 *1 *1) (-4 *1 (-310))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-4248 (*1 *1 *1) (-4 *1 (-310))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-2734 (*1 *1 *1) (-4 *1 (-310))) (-2734 (*1 *1 *1 *1) (-4 *1 (-310))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-3487 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4151 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2448 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2454 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2454 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) (-1784 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-2192 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-2192 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1064)) (-4 *1 (-310)) (-5 *2 (-1188 *1)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-1064)) (-4 *1 (-310)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))) +(-13 (-1115) (-1053 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2209 ($ (-115) $)) (-15 -2209 ($ (-115) $ $)) (-15 -2209 ($ (-115) $ $ $)) (-15 -2209 ($ (-115) $ $ $ $)) (-15 -2209 ($ (-115) (-654 $))) (-15 -2558 ($ $ (-302 $))) (-15 -2558 ($ $ (-654 (-302 $)))) (-15 -2558 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2081 ($ $)) (-15 -2081 ($ (-654 $))) (-15 -4248 ($ $)) (-15 -4248 ($ (-654 $))) (-15 -2734 ($ $)) (-15 -2734 ($ $ $)) (-15 -1849 ((-781) $)) (-15 -3487 ((-3 (-622 $) "failed") $)) (-15 -4138 ((-654 (-622 $)) $)) (-15 -4067 ((-654 (-622 $)) $)) (-15 -3667 ((-654 (-115)) $)) (-15 -4151 ((-115) (-115))) (-15 -2448 ((-112) (-115))) (-15 -2454 ((-112) $ (-115))) (-15 -2454 ((-112) $ (-1192))) (-15 -1784 ($ (-115) $)) (-15 -1784 ($ (-115) (-654 $))) (-15 -1787 ($ (-1 $ $) (-622 $))) (-15 -2192 ((-112) $ $)) (-15 -2192 ((-112) $ (-1192))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-1192) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-1192) (-1 $ $))) (-15 -2660 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1064)) (PROGN (-15 -3256 ((-1188 $) (-622 $))) (-15 -2611 ($ $))) |%noBranch|) (IF (|has| $ (-1053 (-574))) (PROGN (-15 -3304 ((-112) $)) (-15 -3127 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1053 #0#) . T) ((-1115) . T)) +((-3424 (((-654 |#1|) (-654 |#1|)) 10))) +(((-311 |#1|) (-10 -7 (-15 -3424 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311)) +((-3424 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) +(-10 -7 (-15 -3424 ((-654 |#1|) (-654 |#1|)))) +((-1787 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17))) +(((-312 |#1| |#2|) (-10 -7 (-15 -1787 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1064) (-1064)) (T -312)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))) +(-10 -7 (-15 -1787 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) +((-1770 (((-1283 (-324 (-388))) (-1283 (-324 (-227)))) 110)) (-4032 (((-1109 (-853 (-227))) (-1109 (-853 (-388)))) 43)) (-2264 (((-654 (-1174)) (-1172 (-227))) 92)) (-2075 (((-324 (-388)) (-965 (-227))) 53)) (-4156 (((-227) (-965 (-227))) 49)) (-2703 (((-1174) (-388)) 195)) (-1807 (((-853 (-227)) (-853 (-388))) 37)) (-2877 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227)))) 165)) (-3849 (((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) 207) (((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) 205)) (-4226 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-2461 (((-1283 (-709)) (-654 (-227))) 99)) (-4145 (((-654 (-1174)) (-654 (-227))) 79)) (-1791 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-3027 (((-112) (-227) (-1109 (-853 (-227)))) 117)) (-1541 (((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-2427 (((-227) (-1109 (-853 (-227)))) 112)) (-4227 (((-227) (-1109 (-853 (-227)))) 113)) (-3434 (((-227) (-417 (-574))) 31)) (-3182 (((-1174) (-388)) 77)) (-2630 (((-227) (-388)) 22)) (-3467 (((-388) (-1283 (-324 (-227)))) 177)) (-4266 (((-324 (-227)) (-324 (-388))) 28)) (-1760 (((-417 (-574)) (-324 (-227))) 56)) (-2194 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-3609 (((-324 (-388)) (-324 (-227))) 103)) (-3285 (((-227) (-324 (-227))) 57)) (-2855 (((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) 68)) (-1971 (((-1109 (-853 (-227))) (-1109 (-853 (-227)))) 65)) (-2766 (((-1174) (-227)) 76)) (-3311 (((-709) (-227)) 95)) (-2552 (((-417 (-574)) (-227)) 58)) (-3105 (((-324 (-388)) (-227)) 52)) (-1846 (((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388))))) 46)) (-4131 (((-1050) (-654 (-1050))) 191) (((-1050) (-1050) (-1050)) 185)) (-4394 (((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-313) (-10 -7 (-15 -2630 ((-227) (-388))) (-15 -4266 ((-324 (-227)) (-324 (-388)))) (-15 -1807 ((-853 (-227)) (-853 (-388)))) (-15 -4032 ((-1109 (-853 (-227))) (-1109 (-853 (-388))))) (-15 -1846 ((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388)))))) (-15 -2552 ((-417 (-574)) (-227))) (-15 -1760 ((-417 (-574)) (-324 (-227)))) (-15 -3285 ((-227) (-324 (-227)))) (-15 -1791 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3467 ((-388) (-1283 (-324 (-227))))) (-15 -2877 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227))))) (-15 -2194 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1971 ((-1109 (-853 (-227))) (-1109 (-853 (-227))))) (-15 -2855 ((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-15 -3311 ((-709) (-227))) (-15 -2461 ((-1283 (-709)) (-654 (-227)))) (-15 -3609 ((-324 (-388)) (-324 (-227)))) (-15 -1770 ((-1283 (-324 (-388))) (-1283 (-324 (-227))))) (-15 -3027 ((-112) (-227) (-1109 (-853 (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -3182 ((-1174) (-388))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227)))) (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -4131 ((-1050) (-1050) (-1050))) (-15 -4131 ((-1050) (-654 (-1050)))) (-15 -2703 ((-1174) (-388))) (-15 -3849 ((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))))) (-15 -3849 ((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))))) (-15 -4394 ((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1541 ((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2075 ((-324 (-388)) (-965 (-227)))) (-15 -4156 ((-227) (-965 (-227)))) (-15 -3105 ((-324 (-388)) (-227))) (-15 -3434 ((-227) (-417 (-574)))) (-15 -4226 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313)) +((-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-654 (-1050))) (-5 *2 (-1050)) (-5 *1 (-313)))) (-4131 (*1 *2 *2 *2) (-12 (-5 *2 (-1050)) (-5 *1 (-313)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-313)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-1283 (-324 (-388)))) (-5 *1 (-313)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283 (-709))) (-5 *1 (-313)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-1971 (*1 *2 *2) (-12 (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1791 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-654 (-1109 (-853 (-388))))) (-5 *2 (-654 (-1109 (-853 (-227))))) (-5 *1 (-313)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1109 (-853 (-388)))) (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) +(-10 -7 (-15 -2630 ((-227) (-388))) (-15 -4266 ((-324 (-227)) (-324 (-388)))) (-15 -1807 ((-853 (-227)) (-853 (-388)))) (-15 -4032 ((-1109 (-853 (-227))) (-1109 (-853 (-388))))) (-15 -1846 ((-654 (-1109 (-853 (-227)))) (-654 (-1109 (-853 (-388)))))) (-15 -2552 ((-417 (-574)) (-227))) (-15 -1760 ((-417 (-574)) (-324 (-227)))) (-15 -3285 ((-227) (-324 (-227)))) (-15 -1791 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3467 ((-388) (-1283 (-324 (-227))))) (-15 -2877 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1283 (-324 (-227))))) (-15 -2194 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1971 ((-1109 (-853 (-227))) (-1109 (-853 (-227))))) (-15 -2855 ((-654 (-227)) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-15 -3311 ((-709) (-227))) (-15 -2461 ((-1283 (-709)) (-654 (-227)))) (-15 -3609 ((-324 (-388)) (-324 (-227)))) (-15 -1770 ((-1283 (-324 (-388))) (-1283 (-324 (-227))))) (-15 -3027 ((-112) (-227) (-1109 (-853 (-227))))) (-15 -2766 ((-1174) (-227))) (-15 -3182 ((-1174) (-388))) (-15 -4145 ((-654 (-1174)) (-654 (-227)))) (-15 -2264 ((-654 (-1174)) (-1172 (-227)))) (-15 -2427 ((-227) (-1109 (-853 (-227))))) (-15 -4227 ((-227) (-1109 (-853 (-227))))) (-15 -4131 ((-1050) (-1050) (-1050))) (-15 -4131 ((-1050) (-654 (-1050)))) (-15 -2703 ((-1174) (-388))) (-15 -3849 ((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))))) (-15 -3849 ((-1050) (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))))) (-15 -4394 ((-1050) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1541 ((-1050) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2075 ((-324 (-388)) (-965 (-227)))) (-15 -4156 ((-227) (-965 (-227)))) (-15 -3105 ((-324 (-388)) (-227))) (-15 -3434 ((-227) (-417 (-574)))) (-15 -4226 ((-699 (-227)) (-654 (-227)) (-781)))) +((-1526 (((-112) $ $) 14)) (-2800 (($ $ $) 18)) (-2811 (($ $ $) 17)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 50)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2886 (($ $ $) 25) (($ (-654 $)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2852 (((-3 $ "failed") $ $) 21)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 53))) +(((-314 |#1|) (-10 -8 (-15 -2207 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2504 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -1526 ((-112) |#1| |#1|)) (-15 -2912 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1850 ((-2 (|:| -1868 (-654 |#1|)) (|:| -2974 |#1|)) (-654 |#1|))) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314)) +NIL +(-10 -8 (-15 -2207 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2504 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -1526 ((-112) |#1| |#1|)) (-15 -2912 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1850 ((-2 (|:| -1868 (-654 |#1|)) (|:| -2974 |#1|)) (-654 |#1|))) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2276 (((-112) $) 35)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-315) (-141)) (T -315)) +((-1526 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-2696 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-315)))) (-2811 (*1 *1 *1 *1) (-4 *1 (-315))) (-2800 (*1 *1 *1 *1) (-4 *1 (-315))) (-2504 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) (-4 *1 (-315)))) (-2504 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-2207 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) +(-13 (-933) (-10 -8 (-15 -1526 ((-112) $ $)) (-15 -3575 ((-781) $)) (-15 -2696 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2504 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $)) (-15 -2504 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2207 ((-3 (-654 $) "failed") (-654 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2660 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL))) +(((-316 |#1| |#2|) (-10 -8 (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1115)) (T -316)) +NIL +(-10 -8 (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) +((-2660 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10))) +(((-317 |#1|) (-141) (-1115)) (T -317)) +((-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1115))))) +(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2660 ($ $ (-302 |t#1|))) (-15 -2660 ($ $ (-654 (-302 |t#1|)))))) +(((-524 |#1| |#1|) . T)) +((-2660 ((|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))) 26))) +(((-318 |#1|) (-10 -7 (-15 -2660 (|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318)) +((-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1194 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))) +(-10 -7 (-15 -2660 (|#1| (-1 |#1| (-574)) (-1194 (-417 (-574)))))) +((-2863 (((-112) $ $) NIL)) (-4312 (((-574) $) 12)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-319) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -4312 ((-574) $))))) (T -319)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-319)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -4312 ((-574) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) +(((-320) (-1115)) (T -320)) +NIL +(-1115) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 60)) (-1882 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-1269 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-1268 |#2| |#3| |#4|) "failed") $) 26)) (-2216 (((-1269 |#1| |#2| |#3| |#4|) $) NIL) (((-1192) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-574) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-574)))) (((-1268 |#2| |#3| |#4|) $) NIL)) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-1269 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1283 (-1269 |#1| |#2| |#3| |#4|)))) (-699 $) (-1283 $)) NIL) (((-699 (-1269 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1269 |#1| |#2| |#3| |#4|)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-1269 |#1| |#2| |#3| |#4|) $) 22)) (-4217 (((-3 $ "failed") $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1167)))) (-3081 (((-112) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-2953 (($ $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-1787 (($ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) $) NIL)) (-2273 (((-3 (-853 |#2|) "failed") $) 80)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-315)))) (-2787 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-1269 |#1| |#2| |#3| |#4|)) (-654 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1269 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-317 (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1192)) (-654 (-1269 |#1| |#2| |#3| |#4|))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-524 (-1192) (-1269 |#1| |#2| |#3| |#4|)))) (($ $ (-1192) (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-524 (-1192) (-1269 |#1| |#2| |#3| |#4|))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-1269 |#1| |#2| |#3| |#4|)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-294 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-1269 |#1| |#2| |#3| |#4|) $) 19)) (-1846 (((-903 (-574)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1037))) (((-227) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3| |#4|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1269 |#1| |#2| |#3| |#4|)) 30) (($ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-1053 (-1192)))) (($ (-1268 |#2| |#3| |#4|)) 37)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3| |#4|) (-922))) (|has| (-1269 |#1| |#2| |#3| |#4|) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-1269 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1192)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-913 (-1192)))) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-1269 |#1| |#2| |#3| |#4|) (-860)))) (-3102 (($ $ $) 35) (($ (-1269 |#1| |#2| |#3| |#4|) (-1269 |#1| |#2| |#3| |#4|)) 32)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1269 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1269 |#1| |#2| |#3| |#4|)) NIL))) +(((-321 |#1| |#2| |#3| |#4|) (-13 (-1007 (-1269 |#1| |#2| |#3| |#4|)) (-1053 (-1268 |#2| |#3| |#4|)) (-10 -8 (-15 -2273 ((-3 (-853 |#2|) "failed") $)) (-15 -2950 ($ (-1268 |#2| |#3| |#4|))))) (-13 (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -321)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4) (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-2273 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4)))) +(-13 (-1007 (-1269 |#1| |#2| |#3| |#4|)) (-1053 (-1268 |#2| |#3| |#4|)) (-10 -8 (-15 -2273 ((-3 (-853 |#2|) "failed") $)) (-15 -2950 ($ (-1268 |#2| |#3| |#4|))))) +((-1787 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13))) +(((-322 |#1| |#2|) (-10 -7 (-15 -1787 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1115) (-1115)) (T -322)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))) +(-10 -7 (-15 -1787 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) +((-4401 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1192)) 26)) (-3596 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1192)) 55)) (-4425 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1192)) 50)) (-4413 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1192)) 43))) +(((-323 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1192))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-781))) (-15 -4401 ((-52) |#2| (-302 |#2|))) (-15 -4401 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1192))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4425 ((-52) (-1192))) (-15 -4425 ((-52) |#2|)) (-15 -4425 ((-52) |#2| (-417 (-574)))) (-15 -4425 ((-52) |#2| (-302 |#2|))) (-15 -4425 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3596 ((-52) (-1192))) (-15 -3596 ((-52) |#2|)) (-15 -3596 ((-52) |#2| (-417 (-574)))) (-15 -3596 ((-52) |#2| (-302 |#2|))) (-15 -3596 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -323)) +((-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-3596 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4425 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4425 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4425 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1053 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4)))))) +(-10 -7 (-15 -4401 ((-52) (-1192))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-781))) (-15 -4401 ((-52) |#2| (-302 |#2|))) (-15 -4401 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1192))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4425 ((-52) (-1192))) (-15 -4425 ((-52) |#2|)) (-15 -4425 ((-52) |#2| (-417 (-574)))) (-15 -4425 ((-52) |#2| (-302 |#2|))) (-15 -4425 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3596 ((-52) (-1192))) (-15 -3596 ((-52) |#2|)) (-15 -3596 ((-52) |#2| (-417 (-574)))) (-15 -3596 ((-52) |#2| (-302 |#2|))) (-15 -3596 ((-52) |#2| (-302 |#2|) (-417 (-574))))) +((-2863 (((-112) $ $) NIL)) (-2869 (((-654 $) $ (-1192)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $)) NIL (|has| |#1| (-566))) (((-654 $) (-965 $)) NIL (|has| |#1| (-566)))) (-2263 (($ $ (-1192)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (($ (-1188 $)) NIL (|has| |#1| (-566))) (($ (-965 $)) NIL (|has| |#1| (-566)))) (-1997 (((-112) $) 27 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-4349 (((-654 (-1192)) $) 368)) (-4172 (((-417 (-1188 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4067 (((-654 (-622 $)) $) NIL)) (-2378 (($ $) 171 (|has| |#1| (-566)))) (-2260 (($ $) 147 (|has| |#1| (-566)))) (-1878 (($ $ (-1107 $)) 232 (|has| |#1| (-566))) (($ $ (-1192)) 228 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) NIL (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-3065 (((-428 (-1188 $)) (-1188 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-3313 (($ $) NIL (|has| |#1| (-566)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4211 (($ $) NIL (|has| |#1| (-566)))) (-1526 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2357 (($ $) 167 (|has| |#1| (-566)))) (-2238 (($ $) 143 (|has| |#1| (-566)))) (-1758 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2403 (($ $) 175 (|has| |#1| (-566)))) (-2281 (($ $) 151 (|has| |#1| (-566)))) (-3063 (($) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) (|has| |#1| (-1127))) CONST)) (-3569 (((-654 $) $ (-1192)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $) (-1192)) NIL (|has| |#1| (-566))) (((-654 $) (-1188 $)) NIL (|has| |#1| (-566))) (((-654 $) (-965 $)) NIL (|has| |#1| (-566)))) (-1853 (($ $ (-1192)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1188 $) (-1192)) 134 (|has| |#1| (-566))) (($ (-1188 $)) NIL (|has| |#1| (-566))) (($ (-965 $)) NIL (|has| |#1| (-566)))) (-1706 (((-3 (-622 $) "failed") $) 18) (((-3 (-1192) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-965 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-965 |#1|) "failed") $) NIL (|has| |#1| (-1064))) (((-3 (-417 (-574)) "failed") $) 46 (-2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-622 $) $) 12) (((-1192) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-965 |#1|)) $) NIL (|has| |#1| (-566))) (((-965 |#1|) $) NIL (|has| |#1| (-1064))) (((-417 (-574)) $) 319 (-2832 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2800 (($ $ $) NIL (|has| |#1| (-566)))) (-4232 (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 125 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1064))) (((-699 |#1|) (-1283 $)) NIL (|has| |#1| (-1064))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (-2881 (($ $) 96 (|has| |#1| (-566)))) (-2978 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-2811 (($ $ $) NIL (|has| |#1| (-566)))) (-3112 (($ $ (-1107 $)) 236 (|has| |#1| (-566))) (($ $ (-1192)) 234 (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-2941 (((-112) $) NIL (|has| |#1| (-566)))) (-3932 (($ $ $) 202 (|has| |#1| (-566)))) (-3003 (($) 137 (|has| |#1| (-566)))) (-2325 (($ $ $) 222 (|has| |#1| (-566)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-4248 (($ $) NIL) (($ (-654 $)) NIL)) (-3667 (((-654 (-115)) $) NIL)) (-4151 (((-115) (-115)) 276)) (-2276 (((-112) $) 25 (|has| |#1| (-1127)))) (-3127 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-3071 (($ $) 72 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 91 (|has| |#1| (-1064)))) (-1423 (((-112) $) 62 (|has| |#1| (-566)))) (-3649 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-3256 (((-1188 $) (-622 $)) 277 (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) 426)) (-3487 (((-3 (-622 $) "failed") $) NIL)) (-3111 (($ $) 141 (|has| |#1| (-566)))) (-4052 (($ $) 247 (|has| |#1| (-566)))) (-2844 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-1938 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) 49)) (-1784 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-1898 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1127)))) (-3469 (((-3 (-2 (|:| |val| $) (|:| -3843 (-574))) "failed") $) NIL (|has| |#1| (-1064)))) (-3145 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-2160 (((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3019 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $) NIL (|has| |#1| (-1127))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-1192)) NIL (|has| |#1| (-1064)))) (-2454 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) 51)) (-1327 (($ $) NIL (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3452 (($ $ (-1192)) 251 (|has| |#1| (-566))) (($ $ (-1107 $)) 253 (|has| |#1| (-566)))) (-1849 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 43)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 301 (|has| |#1| (-566)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2192 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-1563 (($ $ (-1192)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-3125 (($ $) 218 (|has| |#1| (-566)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-566)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1619 (($ $) 139 (|has| |#1| (-566)))) (-3304 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1192)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ $)) NIL (|has| |#1| (-1064)))) (-3575 (((-781) $) NIL (|has| |#1| (-566)))) (-4044 (($ $) 239 (|has| |#1| (-566)))) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-2734 (($ $) NIL) (($ $ $) NIL)) (-2225 (($ $) 249 (|has| |#1| (-566)))) (-4127 (($ $) 200 (|has| |#1| (-566)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-1064))) (($ $ (-1192)) NIL (|has| |#1| (-1064)))) (-2593 (($ $) 74 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-2611 (($ $) 317 (|has| $ (-1064)))) (-2415 (($ $) 177 (|has| |#1| (-566)))) (-2289 (($ $) 153 (|has| |#1| (-566)))) (-2388 (($ $) 173 (|has| |#1| (-566)))) (-2271 (($ $) 149 (|has| |#1| (-566)))) (-2367 (($ $) 169 (|has| |#1| (-566)))) (-2249 (($ $) 145 (|has| |#1| (-566)))) (-1846 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-2190 (($ $ $) NIL (|has| |#1| (-483)))) (-2987 (($ $ $) NIL (|has| |#1| (-483)))) (-2950 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1192)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) (($ (-1140 |#1| (-622 $))) 95 (|has| |#1| (-1064))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-965 |#1|))) NIL (|has| |#1| (-566))) (($ (-965 |#1|)) NIL (|has| |#1| (-1064))) (($ (-574)) 34 (-2832 (|has| |#1| (-1053 (-574))) (|has| |#1| (-1064)))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-566)) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL (|has| |#1| (-1064)) CONST)) (-2081 (($ $) NIL) (($ (-654 $)) NIL)) (-2561 (($ $ $) 220 (|has| |#1| (-566)))) (-4238 (($ $ $) 206 (|has| |#1| (-566)))) (-4072 (($ $ $) 210 (|has| |#1| (-566)))) (-2625 (($ $ $) 204 (|has| |#1| (-566)))) (-1769 (($ $ $) 208 (|has| |#1| (-566)))) (-2448 (((-112) (-115)) 10)) (-4259 (((-112) $ $) 86)) (-2455 (($ $) 183 (|has| |#1| (-566)))) (-2319 (($ $) 159 (|has| |#1| (-566)))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) 179 (|has| |#1| (-566)))) (-2301 (($ $) 155 (|has| |#1| (-566)))) (-2479 (($ $) 187 (|has| |#1| (-566)))) (-2339 (($ $) 163 (|has| |#1| (-566)))) (-2513 (($ (-1192) $) NIL) (($ (-1192) $ $) NIL) (($ (-1192) $ $ $) NIL) (($ (-1192) $ $ $ $) NIL) (($ (-1192) (-654 $)) NIL)) (-1730 (($ $) 214 (|has| |#1| (-566)))) (-1394 (($ $) 212 (|has| |#1| (-566)))) (-2535 (($ $) 189 (|has| |#1| (-566)))) (-2348 (($ $) 165 (|has| |#1| (-566)))) (-2467 (($ $) 185 (|has| |#1| (-566)))) (-2329 (($ $) 161 (|has| |#1| (-566)))) (-2442 (($ $) 181 (|has| |#1| (-566)))) (-2311 (($ $) 157 (|has| |#1| (-566)))) (-2366 (($ $) 192 (|has| |#1| (-566)))) (-2143 (($) 21 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) CONST)) (-4126 (($ $) 243 (|has| |#1| (-566)))) (-2155 (($) 23 (|has| |#1| (-1127)) CONST)) (-1433 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-1844 (($ $) 241 (|has| |#1| (-566)))) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-1064))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-1064))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-1064))) (($ $ (-1192)) NIL (|has| |#1| (-1064)))) (-1869 (($ $) 245 (|has| |#1| (-566)))) (-1437 (($ $ $) 198 (|has| |#1| (-566)))) (-2985 (((-112) $ $) 88)) (-3102 (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3089 (($ $ $) 40 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ $) 29 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (-3073 (($ $ $) 38 (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1127))) (($ $ (-934)) 84 (|has| |#1| (-1127)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1064))) (($ $ $) 36 (|has| |#1| (-1127))) (($ (-574) $) 32 (-2832 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ (-781) $) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))) (($ (-934) $) NIL (-2832 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))))))) +(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1218)) (-6 (-161)) (-6 (-639)) (-6 (-1154)) (-15 -2881 ($ $)) (-15 -1423 ((-112) $)) (-15 -1758 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -2318 ((-428 (-1188 $)) (-1188 $))) (-15 -3065 ((-428 (-1188 $)) (-1188 $)))) |%noBranch|) (IF (|has| |#1| (-1053 (-574))) (-6 (-1053 (-48))) |%noBranch|)) |%noBranch|))) (-1115)) (T -324)) +((-2881 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1115)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-2318 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) (-3065 (*1 *2 *3) (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115))))) +(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1218)) (-6 (-161)) (-6 (-639)) (-6 (-1154)) (-15 -2881 ($ $)) (-15 -1423 ((-112) $)) (-15 -1758 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -2318 ((-428 (-1188 $)) (-1188 $))) (-15 -3065 ((-428 (-1188 $)) (-1188 $)))) |%noBranch|) (IF (|has| |#1| (-1053 (-574))) (-6 (-1053 (-48))) |%noBranch|)) |%noBranch|))) +((-4109 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86))) +(((-325 |#1| |#2|) (-10 -7 (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4109 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325)) +((-4109 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-4109 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4109 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4109 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-4109 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4109 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4109 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-4109 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4109 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-4109 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6))))) +(-10 -7 (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4109 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -4109 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -4109 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -4109 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) +((-1865 (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174)) 67) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574)) 68) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174)) 64) (((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-4083 (((-1 (-227) (-227)) (-227)) 66))) +(((-326) (-10 -7 (-15 -4083 ((-1 (-227) (-227)) (-227))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174))))) (T -326)) +((-1865 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1174)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1865 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1865 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *7 (-1174)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-1865 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) (-4083 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) +(-10 -7 (-15 -4083 ((-1 (-227) (-227)) (-227))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-1 (-227) (-227)) (-574) (-1174))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574))) (-15 -1865 ((-1228 (-939)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-227) (-574) (-1174)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 26)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 36)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) NIL) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1598 (((-417 (-574)) $) 17)) (-4214 (($ (-1268 |#1| |#2| |#3|)) 11)) (-3843 (((-1268 |#1| |#2| |#3|) $) 12)) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4144 (((-417 (-574)) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 10)) (-2950 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) 34)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) NIL)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 28)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 37)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-327 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-802) (-10 -8 (-15 -4214 ($ (-1268 |#1| |#2| |#3|))) (-15 -3843 ((-1268 |#1| |#2| |#3|) $)) (-15 -1598 ((-417 (-574)) $)))) (-372) (-1192) |#1|) (T -327)) +((-4214 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) (-14 *5 *3)))) +(-13 (-1264 |#1|) (-802) (-10 -8 (-15 -4214 ($ (-1268 |#1| |#2| |#3|))) (-15 -3843 ((-1268 |#1| |#2| |#3|) $)) (-15 -1598 ((-417 (-574)) $)))) +((-3649 (((-2 (|:| -3843 (-781)) (|:| -1868 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3111 (((-654 (-2 (|:| -1868 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40))) +(((-328 |#1|) (-10 -7 (-15 -3649 ((-2 (|:| -3843 (-781)) (|:| -1868 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3111 ((-654 (-2 (|:| -1868 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328)) +((-3111 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1868 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781))))) +(-10 -7 (-15 -3649 ((-2 (|:| -3843 (-781)) (|:| -1868 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3111 ((-654 (-2 (|:| -1868 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) +((-4349 (((-654 |#2|) (-1188 |#4|)) 44)) (-3972 ((|#3| (-574)) 47)) (-3398 (((-1188 |#4|) (-1188 |#3|)) 30)) (-2792 (((-1188 |#4|) (-1188 |#4|) (-574)) 66)) (-2463 (((-1188 |#3|) (-1188 |#4|)) 21)) (-4144 (((-654 (-781)) (-1188 |#4|) (-654 |#2|)) 41)) (-3057 (((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|)) 35))) +(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -4144 ((-654 (-781)) (-1188 |#4|) (-654 |#2|))) (-15 -4349 ((-654 |#2|) (-1188 |#4|))) (-15 -2463 ((-1188 |#3|) (-1188 |#4|))) (-15 -3398 ((-1188 |#4|) (-1188 |#3|))) (-15 -2792 ((-1188 |#4|) (-1188 |#4|) (-574))) (-15 -3972 (|#3| (-574)))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|)) (T -329)) +((-3972 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1064)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-962 *2 *4 *5)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *7)) (-5 *3 (-574)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1188 *6)) (-4 *6 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1188 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-962 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1064)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-3057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1188 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) +(-10 -7 (-15 -3057 ((-1188 |#3|) (-1188 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -4144 ((-654 (-781)) (-1188 |#4|) (-654 |#2|))) (-15 -4349 ((-654 |#2|) (-1188 |#4|))) (-15 -2463 ((-1188 |#3|) (-1188 |#4|))) (-15 -3398 ((-1188 |#4|) (-1188 |#3|))) (-15 -2792 ((-1188 |#4|) (-1188 |#4|) (-574))) (-15 -3972 (|#3| (-574)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 19)) (-2389 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-574)))) $) 21)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781) $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3757 ((|#1| $ (-574)) NIL)) (-3729 (((-574) $ (-574)) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-3028 (($ (-1 |#1| |#1|) $) NIL)) (-2071 (($ (-1 (-574) (-574)) $) 11)) (-1938 (((-1174) $) NIL)) (-2038 (($ $ $) NIL (|has| (-574) (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-3584 (((-574) |#1| $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3089 (($ $) 12) (($ $ $) 28)) (-3073 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27))) +(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1115)) (T -330)) +NIL +(-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2389 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 28)) (-2599 (((-3 $ "failed") $ $) 20)) (-1497 (((-781) $) 29)) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-3757 ((|#1| $ (-574)) 26)) (-3729 ((|#2| $ (-574)) 27)) (-3028 (($ (-1 |#1| |#1|) $) 23)) (-2071 (($ (-1 |#2| |#2|) $) 24)) (-1938 (((-1174) $) 10)) (-2038 (($ $ $) 22 (|has| |#2| (-802)))) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ |#1|) 32)) (-3584 ((|#2| |#1| $) 25)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30))) +(((-331 |#1| |#2|) (-141) (-1115) (-132)) (T -331)) +((-3073 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) (-5 *2 (-781)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))))) (-3729 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1115)) (-4 *2 (-132)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1115)))) (-3584 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) (-2071 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)))) (-2038 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)) (-4 *3 (-802))))) +(-13 (-132) (-1053 |t#1|) (-10 -8 (-15 -3073 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1497 ((-781) $)) (-15 -2389 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1619 |t#2|))) $)) (-15 -3729 (|t#2| $ (-574))) (-15 -3757 (|t#1| $ (-574))) (-15 -3584 (|t#2| |t#1| $)) (-15 -2071 ($ (-1 |t#2| |t#2|) $)) (-15 -3028 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -2038 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1053 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2389 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-781)))) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781) $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3757 ((|#1| $ (-574)) NIL)) (-3729 (((-781) $ (-574)) NIL)) (-3028 (($ (-1 |#1| |#1|) $) NIL)) (-2071 (($ (-1 (-781) (-781)) $) NIL)) (-1938 (((-1174) $) NIL)) (-2038 (($ $ $) NIL (|has| (-781) (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-3584 (((-781) |#1| $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3073 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL))) +(((-332 |#1|) (-331 |#1| (-781)) (-1115)) (T -332)) +NIL +(-331 |#1| (-781)) +((-1420 (($ $) 72)) (-2680 (($ $ |#2| |#3| $) 14)) (-3577 (($ (-1 |#3| |#3|) $) 51)) (-1342 (((-112) $) 42)) (-1354 ((|#2| $) 44)) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1514 ((|#2| $) 68)) (-3133 (((-654 |#2|) $) 56)) (-3702 (($ $ $ (-781)) 37)) (-3102 (($ $ |#2|) 60))) +(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -1420 (|#1| |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3702 (|#1| |#1| |#1| (-781))) (-15 -2680 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3577 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3133 ((-654 |#2|) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3102 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1064) (-802)) (T -333)) +NIL +(-10 -8 (-15 -1420 (|#1| |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3702 (|#1| |#1| |#1| (-781))) (-15 -2680 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3577 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3133 ((-654 |#2|) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3102 (|#1| |#1| |#2|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2216 (((-574) $) 99 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 96)) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-1420 (($ $) 84 (|has| |#1| (-462)))) (-2680 (($ $ |#1| |#2| $) 88)) (-2276 (((-112) $) 35)) (-1901 (((-781) $) 91)) (-3513 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73)) (-2682 ((|#2| $) 90)) (-3577 (($ (-1 |#2| |#2|) $) 89)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 94)) (-1354 ((|#1| $) 93)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-4144 ((|#2| $) 76)) (-1514 ((|#1| $) 85 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3133 (((-654 |#1|) $) 92)) (-3584 ((|#1| $ |#2|) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3702 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-334 |#1| |#2|) (-141) (-1064) (-802)) (T -334)) +((-1342 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-781)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3577 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-2680 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) (-3702 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-566)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-1420 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *2 (-462))))) +(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1342 ((-112) $)) (-15 -1354 (|t#1| $)) (-15 -3133 ((-654 |t#1|) $)) (-15 -1901 ((-781) $)) (-15 -2682 (|t#2| $)) (-15 -3577 ($ (-1 |t#2| |t#2|) $)) (-15 -2680 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3702 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1514 (|t#1| $)) (-15 -1420 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3658 (((-112) (-112)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) NIL)) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-3054 (($ $) NIL (|has| |#1| (-1115)))) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1782 (($ $ (-574)) NIL)) (-3408 (((-781) $) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4099 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1948 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3868 (($ (-654 |#1|)) NIL)) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4253 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-3539 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3868 ($ (-654 |#1|))) (-15 -3408 ((-781) $)) (-15 -1782 ($ $ (-574))) (-15 -3658 ((-112) (-112))))) (-1233)) (T -335)) +((-3868 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-335 *3)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) (-1782 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1233))))) +(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3868 ($ (-654 |#1|))) (-15 -3408 ((-781) $)) (-15 -1782 ($ $ (-574))) (-15 -3658 ((-112) (-112))))) +((-4308 (((-112) $) 47)) (-2519 (((-781)) 23)) (-1646 ((|#2| $) 51) (($ $ (-934)) 121)) (-1497 (((-781)) 122)) (-3875 (($ (-1283 |#2|)) 20)) (-4340 (((-112) $) 134)) (-2681 ((|#2| $) 53) (($ $ (-934)) 118)) (-3525 (((-1188 |#2|) $) NIL) (((-1188 $) $ (-934)) 109)) (-2695 (((-1188 |#2|) $) 95)) (-1729 (((-1188 |#2|) $) 91) (((-3 (-1188 |#2|) "failed") $ $) 88)) (-3749 (($ $ (-1188 |#2|)) 58)) (-4210 (((-843 (-934))) 30) (((-934)) 48)) (-2900 (((-135)) 27)) (-4144 (((-843 (-934)) $) 32) (((-934) $) 137)) (-4022 (($) 128)) (-4421 (((-1283 |#2|) $) NIL) (((-699 |#2|) (-1283 $)) 42)) (-3270 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2488 (((-112) $) 45))) +(((-336 |#1| |#2|) (-10 -8 (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -1497 ((-781))) (-15 -3270 (|#1| |#1|)) (-15 -1729 ((-3 (-1188 |#2|) "failed") |#1| |#1|)) (-15 -1729 ((-1188 |#2|) |#1|)) (-15 -2695 ((-1188 |#2|) |#1|)) (-15 -3749 (|#1| |#1| (-1188 |#2|))) (-15 -4340 ((-112) |#1|)) (-15 -4022 (|#1|)) (-15 -1646 (|#1| |#1| (-934))) (-15 -2681 (|#1| |#1| (-934))) (-15 -3525 ((-1188 |#1|) |#1| (-934))) (-15 -1646 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -4144 ((-934) |#1|)) (-15 -4210 ((-934))) (-15 -3525 ((-1188 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -2519 ((-781))) (-15 -4210 ((-843 (-934)))) (-15 -4144 ((-843 (-934)) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -2488 ((-112) |#1|)) (-15 -2900 ((-135)))) (-337 |#2|) (-372)) (T -336)) +((-2900 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4210 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-934))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2519 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4210 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-934)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1497 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) +(-10 -8 (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -1497 ((-781))) (-15 -3270 (|#1| |#1|)) (-15 -1729 ((-3 (-1188 |#2|) "failed") |#1| |#1|)) (-15 -1729 ((-1188 |#2|) |#1|)) (-15 -2695 ((-1188 |#2|) |#1|)) (-15 -3749 (|#1| |#1| (-1188 |#2|))) (-15 -4340 ((-112) |#1|)) (-15 -4022 (|#1|)) (-15 -1646 (|#1| |#1| (-934))) (-15 -2681 (|#1| |#1| (-934))) (-15 -3525 ((-1188 |#1|) |#1| (-934))) (-15 -1646 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -4144 ((-934) |#1|)) (-15 -4210 ((-934))) (-15 -3525 ((-1188 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -2519 ((-781))) (-15 -4210 ((-843 (-934)))) (-15 -4144 ((-843 (-934)) |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -2488 ((-112) |#1|)) (-15 -2900 ((-135)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4308 (((-112) $) 104)) (-2519 (((-781)) 100)) (-1646 ((|#1| $) 151) (($ $ (-934)) 148 (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-1526 (((-112) $ $) 65)) (-1497 (((-781)) 123 (|has| |#1| (-377)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-3875 (($ (-1283 |#1|)) 157)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2834 (($) 120 (|has| |#1| (-377)))) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2776 (($) 135 (|has| |#1| (-377)))) (-1627 (((-112) $) 136 (|has| |#1| (-377)))) (-4278 (($ $ (-781)) 97 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) 79)) (-3837 (((-934) $) 138 (|has| |#1| (-377))) (((-843 (-934)) $) 94 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) 35)) (-1888 (($) 146 (|has| |#1| (-377)))) (-4340 (((-112) $) 145 (|has| |#1| (-377)))) (-2681 ((|#1| $) 152) (($ $ (-934)) 149 (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3525 (((-1188 |#1|) $) 156) (((-1188 $) $ (-934)) 150 (|has| |#1| (-377)))) (-3880 (((-934) $) 121 (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) 142 (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) 143 (|has| |#1| (-377)))) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 125 (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 122 (|has| |#1| (-377)))) (-4370 (((-112) $) 103)) (-3939 (((-1135) $) 11)) (-2974 (($) 144 (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 132 (|has| |#1| (-377)))) (-4200 (((-428 $) $) 82)) (-4210 (((-843 (-934))) 101) (((-934)) 154)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-3411 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) 109)) (-3878 (($ $ (-781)) 128 (|has| |#1| (-377))) (($ $) 126 (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) 102) (((-934) $) 153)) (-2611 (((-1188 |#1|)) 155)) (-3627 (($) 134 (|has| |#1| (-377)))) (-4022 (($) 147 (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) 159) (((-699 |#1|) (-1283 $)) 158)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3270 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 161) (((-1283 $) (-934)) 160)) (-3676 (((-112) $ $) 45)) (-2488 (((-112) $) 105)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3337 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3583 (($ $ (-781)) 129 (|has| |#1| (-377))) (($ $) 127 (|has| |#1| (-377)))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-337 |#1|) (-141) (-372)) (T -337)) +((-3907 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *3)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *4)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1283 *3)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) (-2611 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) (-4210 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-3525 (*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1188 *1)) (-4 *1 (-337 *4)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1646 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-4022 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-1888 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2974 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3749 (*1 *1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3)))) (-1729 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1188 *3))))) +(-13 (-1302 |t#1|) (-1053 |t#1|) (-10 -8 (-15 -3907 ((-1283 $))) (-15 -3907 ((-1283 $) (-934))) (-15 -4421 ((-1283 |t#1|) $)) (-15 -4421 ((-699 |t#1|) (-1283 $))) (-15 -3875 ($ (-1283 |t#1|))) (-15 -3525 ((-1188 |t#1|) $)) (-15 -2611 ((-1188 |t#1|))) (-15 -4210 ((-934))) (-15 -4144 ((-934) $)) (-15 -2681 (|t#1| $)) (-15 -1646 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -3525 ((-1188 $) $ (-934))) (-15 -2681 ($ $ (-934))) (-15 -1646 ($ $ (-934))) (-15 -4022 ($)) (-15 -1888 ($)) (-15 -4340 ((-112) $)) (-15 -2974 ($)) (-15 -3749 ($ $ (-1188 |t#1|))) (-15 -2695 ((-1188 |t#1|) $)) (-15 -1729 ((-1188 |t#1|) $)) (-15 -1729 ((-3 (-1188 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-238) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1302 |#1|) . T) ((-372) . T) ((-412) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-377)) ((-1233) |has| |#1| (-377)) ((-1237) . T) ((-1290 |#1|) . T)) +((-2863 (((-112) $ $) NIL)) (-2494 (($ (-1191) $) 100)) (-4239 (($) 89)) (-1981 (((-1135) (-1135)) 9)) (-1622 (($) 90)) (-3857 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-3163 (($ (-1191) $) 101)) (-2338 (($ (-654 (-872))) 91)) (-1924 (((-1288) $) 87)) (-1469 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3962 (($ (-1135)) 58)) (-2065 (((-1119) $) 30)) (-2749 (($ (-1107 (-965 (-574))) $) 97) (($ (-1107 (-965 (-574))) (-965 (-574)) $) 98)) (-2023 (($ (-1135)) 99)) (-3265 (($ (-1191) $) 129) (($ (-1191) $ $) 130)) (-3833 (($ (-1192) (-654 (-1192))) 88)) (-2050 (($ (-1174)) 94) (($ (-654 (-1174))) 92)) (-2950 (((-872) $) 132)) (-2060 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2234 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -4231 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2053 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-2275 (($ (-1174)) 202)) (-2323 (($ (-654 $)) 128)) (-4259 (((-112) $ $) NIL)) (-2240 (($ (-1192) (-1174)) 135) (($ (-1192) (-324 (-711))) 175) (($ (-1192) (-324 (-709))) 176) (($ (-1192) (-324 (-704))) 177) (($ (-1192) (-699 (-711))) 138) (($ (-1192) (-699 (-709))) 141) (($ (-1192) (-699 (-704))) 144) (($ (-1192) (-1283 (-711))) 147) (($ (-1192) (-1283 (-709))) 150) (($ (-1192) (-1283 (-704))) 153) (($ (-1192) (-699 (-324 (-711)))) 156) (($ (-1192) (-699 (-324 (-709)))) 159) (($ (-1192) (-699 (-324 (-704)))) 162) (($ (-1192) (-1283 (-324 (-711)))) 165) (($ (-1192) (-1283 (-324 (-709)))) 168) (($ (-1192) (-1283 (-324 (-704)))) 171) (($ (-1192) (-654 (-965 (-574))) (-324 (-711))) 172) (($ (-1192) (-654 (-965 (-574))) (-324 (-709))) 173) (($ (-1192) (-654 (-965 (-574))) (-324 (-704))) 174) (($ (-1192) (-324 (-574))) 199) (($ (-1192) (-324 (-388))) 200) (($ (-1192) (-324 (-171 (-388)))) 201) (($ (-1192) (-699 (-324 (-574)))) 180) (($ (-1192) (-699 (-324 (-388)))) 183) (($ (-1192) (-699 (-324 (-171 (-388))))) 186) (($ (-1192) (-1283 (-324 (-574)))) 189) (($ (-1192) (-1283 (-324 (-388)))) 192) (($ (-1192) (-1283 (-324 (-171 (-388))))) 195) (($ (-1192) (-654 (-965 (-574))) (-324 (-574))) 196) (($ (-1192) (-654 (-965 (-574))) (-324 (-388))) 197) (($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388)))) 198)) (-2985 (((-112) $ $) NIL))) +(((-338) (-13 (-1115) (-10 -8 (-15 -2749 ($ (-1107 (-965 (-574))) $)) (-15 -2749 ($ (-1107 (-965 (-574))) (-965 (-574)) $)) (-15 -2494 ($ (-1191) $)) (-15 -3163 ($ (-1191) $)) (-15 -3962 ($ (-1135))) (-15 -2023 ($ (-1135))) (-15 -2050 ($ (-1174))) (-15 -2050 ($ (-654 (-1174)))) (-15 -2275 ($ (-1174))) (-15 -3857 ($)) (-15 -3857 ($ (-324 (-709)))) (-15 -3857 ($ (-324 (-711)))) (-15 -3857 ($ (-324 (-704)))) (-15 -3857 ($ (-324 (-388)))) (-15 -3857 ($ (-324 (-574)))) (-15 -3857 ($ (-324 (-171 (-388))))) (-15 -3265 ($ (-1191) $)) (-15 -3265 ($ (-1191) $ $)) (-15 -2240 ($ (-1192) (-1174))) (-15 -2240 ($ (-1192) (-324 (-711)))) (-15 -2240 ($ (-1192) (-324 (-709)))) (-15 -2240 ($ (-1192) (-324 (-704)))) (-15 -2240 ($ (-1192) (-699 (-711)))) (-15 -2240 ($ (-1192) (-699 (-709)))) (-15 -2240 ($ (-1192) (-699 (-704)))) (-15 -2240 ($ (-1192) (-1283 (-711)))) (-15 -2240 ($ (-1192) (-1283 (-709)))) (-15 -2240 ($ (-1192) (-1283 (-704)))) (-15 -2240 ($ (-1192) (-699 (-324 (-711))))) (-15 -2240 ($ (-1192) (-699 (-324 (-709))))) (-15 -2240 ($ (-1192) (-699 (-324 (-704))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-711))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-709))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-704))))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-711)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-709)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-704)))) (-15 -2240 ($ (-1192) (-324 (-574)))) (-15 -2240 ($ (-1192) (-324 (-388)))) (-15 -2240 ($ (-1192) (-324 (-171 (-388))))) (-15 -2240 ($ (-1192) (-699 (-324 (-574))))) (-15 -2240 ($ (-1192) (-699 (-324 (-388))))) (-15 -2240 ($ (-1192) (-699 (-324 (-171 (-388)))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-574))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-388))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-171 (-388)))))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-574)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-388)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388))))) (-15 -2323 ($ (-654 $))) (-15 -4239 ($)) (-15 -1622 ($)) (-15 -2338 ($ (-654 (-872)))) (-15 -3833 ($ (-1192) (-654 (-1192)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2060 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2234 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -4231 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2053 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -1924 ((-1288) $)) (-15 -2065 ((-1119) $)) (-15 -1981 ((-1135) (-1135)))))) (T -338)) +((-2749 (*1 *1 *2 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *1 (-338)))) (-2749 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *3 (-965 (-574))) (-5 *1 (-338)))) (-2494 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-3163 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-338)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338)))) (-3857 (*1 *1) (-5 *1 (-338))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3265 (*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-3265 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-711))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-709))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-704))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-711)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-709)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-704)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-574)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-388)))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-2240 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4239 (*1 *1) (-5 *1 (-338))) (-1622 (*1 *1) (-5 *1 (-338))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3833 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-338)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -2234 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -4231 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2053 (-338)))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2053 (-338)))) (|:| |commonBranch| (-2 (|:| -2041 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-338)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-338)))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) +(-13 (-1115) (-10 -8 (-15 -2749 ($ (-1107 (-965 (-574))) $)) (-15 -2749 ($ (-1107 (-965 (-574))) (-965 (-574)) $)) (-15 -2494 ($ (-1191) $)) (-15 -3163 ($ (-1191) $)) (-15 -3962 ($ (-1135))) (-15 -2023 ($ (-1135))) (-15 -2050 ($ (-1174))) (-15 -2050 ($ (-654 (-1174)))) (-15 -2275 ($ (-1174))) (-15 -3857 ($)) (-15 -3857 ($ (-324 (-709)))) (-15 -3857 ($ (-324 (-711)))) (-15 -3857 ($ (-324 (-704)))) (-15 -3857 ($ (-324 (-388)))) (-15 -3857 ($ (-324 (-574)))) (-15 -3857 ($ (-324 (-171 (-388))))) (-15 -3265 ($ (-1191) $)) (-15 -3265 ($ (-1191) $ $)) (-15 -2240 ($ (-1192) (-1174))) (-15 -2240 ($ (-1192) (-324 (-711)))) (-15 -2240 ($ (-1192) (-324 (-709)))) (-15 -2240 ($ (-1192) (-324 (-704)))) (-15 -2240 ($ (-1192) (-699 (-711)))) (-15 -2240 ($ (-1192) (-699 (-709)))) (-15 -2240 ($ (-1192) (-699 (-704)))) (-15 -2240 ($ (-1192) (-1283 (-711)))) (-15 -2240 ($ (-1192) (-1283 (-709)))) (-15 -2240 ($ (-1192) (-1283 (-704)))) (-15 -2240 ($ (-1192) (-699 (-324 (-711))))) (-15 -2240 ($ (-1192) (-699 (-324 (-709))))) (-15 -2240 ($ (-1192) (-699 (-324 (-704))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-711))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-709))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-704))))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-711)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-709)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-704)))) (-15 -2240 ($ (-1192) (-324 (-574)))) (-15 -2240 ($ (-1192) (-324 (-388)))) (-15 -2240 ($ (-1192) (-324 (-171 (-388))))) (-15 -2240 ($ (-1192) (-699 (-324 (-574))))) (-15 -2240 ($ (-1192) (-699 (-324 (-388))))) (-15 -2240 ($ (-1192) (-699 (-324 (-171 (-388)))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-574))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-388))))) (-15 -2240 ($ (-1192) (-1283 (-324 (-171 (-388)))))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-574)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-388)))) (-15 -2240 ($ (-1192) (-654 (-965 (-574))) (-324 (-171 (-388))))) (-15 -2323 ($ (-654 $))) (-15 -4239 ($)) (-15 -1622 ($)) (-15 -2338 ($ (-654 (-872)))) (-15 -3833 ($ (-1192) (-654 (-1192)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2060 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1192)) (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1191)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2234 (-112)) (|:| -3078 (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| (-2 (|:| -4231 (-1107 (-965 (-574)))) (|:| |span| (-965 (-574))) (|:| -2053 $))) (|:| |labelBranch| (-1135)) (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1192)) (|:| |contents| (-654 (-1192))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -1924 ((-1288) $)) (-15 -2065 ((-1119) $)) (-15 -1981 ((-1135) (-1135))))) +((-2863 (((-112) $ $) NIL)) (-1734 (((-112) $) 13)) (-2238 (($ |#1|) 10)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2249 (($ |#1|) 12)) (-2950 (((-872) $) 19)) (-4259 (((-112) $ $) NIL)) (-4021 ((|#1| $) 14)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 21))) +(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2238 ($ |#1|)) (-15 -2249 ($ |#1|)) (-15 -1734 ((-112) $)) (-15 -4021 (|#1| $)))) (-860)) (T -339)) +((-2238 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2249 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-4021 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))) +(-13 (-860) (-10 -8 (-15 -2238 ($ |#1|)) (-15 -2249 ($ |#1|)) (-15 -1734 ((-112) $)) (-15 -4021 (|#1| $)))) +((-2133 (((-338) (-1192) (-965 (-574))) 23)) (-4257 (((-338) (-1192) (-965 (-574))) 27)) (-3110 (((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574)))) 26) (((-338) (-1192) (-965 (-574)) (-965 (-574))) 24)) (-2475 (((-338) (-1192) (-965 (-574))) 31))) +(((-340) (-10 -7 (-15 -2133 ((-338) (-1192) (-965 (-574)))) (-15 -3110 ((-338) (-1192) (-965 (-574)) (-965 (-574)))) (-15 -3110 ((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574))))) (-15 -4257 ((-338) (-1192) (-965 (-574)))) (-15 -2475 ((-338) (-1192) (-965 (-574)))))) (T -340)) +((-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-3110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-1107 (-965 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-3110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) (-5 *1 (-340))))) +(-10 -7 (-15 -2133 ((-338) (-1192) (-965 (-574)))) (-15 -3110 ((-338) (-1192) (-965 (-574)) (-965 (-574)))) (-15 -3110 ((-338) (-1192) (-1107 (-965 (-574))) (-1107 (-965 (-574))))) (-15 -4257 ((-338) (-1192) (-965 (-574)))) (-15 -2475 ((-338) (-1192) (-965 (-574))))) +((-2863 (((-112) $ $) NIL)) (-3478 (((-516) $) 20)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4228 (((-971 (-781)) $) 18)) (-2916 (((-256) $) 7)) (-2950 (((-872) $) 26)) (-4279 (((-971 (-185 (-140))) $) 16)) (-4259 (((-112) $ $) NIL)) (-2110 (((-654 (-883 (-1197) (-781))) $) 12)) (-2985 (((-112) $ $) 22))) +(((-341) (-13 (-1115) (-10 -8 (-15 -2916 ((-256) $)) (-15 -2110 ((-654 (-883 (-1197) (-781))) $)) (-15 -4228 ((-971 (-781)) $)) (-15 -4279 ((-971 (-185 (-140))) $)) (-15 -3478 ((-516) $))))) (T -341)) +((-2916 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1197) (-781)))) (-5 *1 (-341)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-971 (-781))) (-5 *1 (-341)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-971 (-185 (-140)))) (-5 *1 (-341)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) +(-13 (-1115) (-10 -8 (-15 -2916 ((-256) $)) (-15 -2110 ((-654 (-883 (-1197) (-781))) $)) (-15 -4228 ((-971 (-781)) $)) (-15 -4279 ((-971 (-185 (-140))) $)) (-15 -3478 ((-516) $)))) +((-1787 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33))) +(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1259 |#5|) (-1259 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1259 *9)) (-4 *11 (-1259 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11))))) +(-10 -7 (-15 -1787 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) +((-3044 (((-112) $) 14))) +(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3044 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343)) +NIL +(-10 -8 (-15 -3044 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2881 (($ $) 29)) (-3044 (((-112) $) 28)) (-1938 (((-1174) $) 10)) (-1674 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3939 (((-1135) $) 11)) (-2974 (((-3 |#4| "failed") $) 27)) (-3933 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1425 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) +(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1259 |t#1|) (-1259 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344)) +((-1674 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-3933 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-3933 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-3933 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1259 *2)) (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2817 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2881 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2974 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-3933 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1674 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -3933 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -3933 ($ |t#4|)) (-15 -3933 ($ |t#1| |t#1|)) (-15 -3933 ($ |t#1| |t#1| (-574))) (-15 -1425 ((-2 (|:| -2817 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2881 ($ $)) (-15 -3044 ((-112) $)) (-15 -2974 ((-3 |t#4| "failed") $)) (-15 -3933 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2881 (($ $) 33)) (-3044 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-3529 (((-1283 |#4|) $) 134)) (-1674 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3939 (((-1135) $) NIL)) (-2974 (((-3 |#4| "failed") $) 36)) (-3884 (((-1283 |#4|) $) 126)) (-3933 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1425 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2950 (((-872) $) 17)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 14 T CONST)) (-2985 (((-112) $ $) 20)) (-3089 (($ $) 27) (($ $ $) NIL)) (-3073 (($ $ $) 25)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23))) +(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3884 ((-1283 |#4|) $)) (-15 -3529 ((-1283 |#4|) $)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345)) +((-3884 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5))))) +(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3884 ((-1283 |#4|) $)) (-15 -3529 ((-1283 |#4|) $)))) +((-2660 (($ $ (-1192) |#2|) NIL) (($ $ (-654 (-1192)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2209 (($ $ |#2|) 11))) +(((-346 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1192) |#2|))) (-347 |#2|) (-1115)) (T -346)) +NIL +(-10 -8 (-15 -2209 (|#1| |#1| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1192) |#2|))) +((-1787 (($ (-1 |#1| |#1|) $) 6)) (-2660 (($ $ (-1192) |#1|) 17 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2209 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|))))) +(((-347 |#1|) (-141) (-1115)) (T -347)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1115))))) +(-13 (-10 -8 (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1192) |t#1|)) (-6 (-524 (-1192) |t#1|)) |%noBranch|))) +(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1233) |has| |#1| (-294 |#1| |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) NIL)) (-1636 (((-112)) 96) (((-112) (-112)) 97)) (-4067 (((-654 (-622 $)) $) NIL)) (-2378 (($ $) NIL)) (-2260 (($ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4211 (($ $) NIL)) (-2357 (($ $) NIL)) (-2238 (($ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1192)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-417 (-965 (-574)))) 70 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-965 (-574))) 65 (|has| |#3| (-1053 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1053 (-388)))) (((-3 $ "failed") (-417 (-965 (-388)))) 88 (|has| |#3| (-1053 (-388)))) (((-3 $ "failed") (-965 (-388))) 83 (|has| |#3| (-1053 (-388))))) (-2216 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1192)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1053 (-574)))) (($ (-417 (-965 (-574)))) 71 (|has| |#3| (-1053 (-574)))) (($ (-965 (-574))) 67 (|has| |#3| (-1053 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1053 (-388)))) (($ (-417 (-965 (-388)))) 89 (|has| |#3| (-1053 (-388)))) (($ (-965 (-388))) 85 (|has| |#3| (-1053 (-388))))) (-2978 (((-3 $ "failed") $) NIL)) (-3003 (($) 101)) (-4248 (($ $) NIL) (($ (-654 $)) NIL)) (-3667 (((-654 (-115)) $) NIL)) (-4151 (((-115) (-115)) NIL)) (-2276 (((-112) $) NIL)) (-3127 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-3256 (((-1188 $) (-622 $)) NIL (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) NIL)) (-3487 (((-3 (-622 $) "failed") $) NIL)) (-1742 (($ $) 99)) (-3111 (($ $) NIL)) (-1938 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1784 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-2454 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1849 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-2192 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-1619 (($ $) NIL)) (-3304 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2734 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL)) (-2611 (($ $) NIL (|has| $ (-1064)))) (-2367 (($ $) NIL)) (-2249 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-3781 (((-781)) NIL T CONST)) (-2081 (($ $) NIL) (($ (-654 $)) NIL)) (-2448 (((-112) (-115)) NIL)) (-4259 (((-112) $ $) NIL)) (-2319 (($ $) NIL)) (-2301 (($ $) NIL)) (-2311 (($ $) NIL)) (-2366 (($ $) NIL)) (-2143 (($) 100 T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) +(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1053 |#3|) (-913 (-1192)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1706 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1192))) (-15 -1706 ((-3 $ "failed") (-1192))) (-15 -2950 ((-324 |#3|) $)) (IF (|has| |#3| (-1053 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1706 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-574))))) (-15 -2216 ($ (-965 (-574)))) (-15 -1706 ((-3 $ "failed") (-965 (-574))))) |%noBranch|) (IF (|has| |#3| (-1053 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1706 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-965 (-388)))) (-15 -1706 ((-3 $ "failed") (-965 (-388))))) |%noBranch|) (-15 -2366 ($ $)) (-15 -4211 ($ $)) (-15 -1619 ($ $)) (-15 -3111 ($ $)) (-15 -1742 ($ $)) (-15 -2238 ($ $)) (-15 -2249 ($ $)) (-15 -2260 ($ $)) (-15 -2301 ($ $)) (-15 -2311 ($ $)) (-15 -2319 ($ $)) (-15 -2357 ($ $)) (-15 -2367 ($ $)) (-15 -2378 ($ $)) (-15 -3003 ($)) (-15 -4349 ((-654 (-1192)) $)) (-15 -1636 ((-112))) (-15 -1636 ((-112) (-112))))) (-654 (-1192)) (-654 (-1192)) (-397)) (T -348)) +((-2216 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2238 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2301 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-3003 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-1636 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397))))) +(-13 (-310) (-38 |#3|) (-1053 |#3|) (-913 (-1192)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1706 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1192))) (-15 -1706 ((-3 $ "failed") (-1192))) (-15 -2950 ((-324 |#3|) $)) (IF (|has| |#3| (-1053 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1706 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-574))))) (-15 -2216 ($ (-965 (-574)))) (-15 -1706 ((-3 $ "failed") (-965 (-574))))) |%noBranch|) (IF (|has| |#3| (-1053 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1706 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-965 (-388)))) (-15 -1706 ((-3 $ "failed") (-965 (-388))))) |%noBranch|) (-15 -2366 ($ $)) (-15 -4211 ($ $)) (-15 -1619 ($ $)) (-15 -3111 ($ $)) (-15 -1742 ($ $)) (-15 -2238 ($ $)) (-15 -2249 ($ $)) (-15 -2260 ($ $)) (-15 -2301 ($ $)) (-15 -2311 ($ $)) (-15 -2319 ($ $)) (-15 -2357 ($ $)) (-15 -2367 ($ $)) (-15 -2378 ($ $)) (-15 -3003 ($)) (-15 -4349 ((-654 (-1192)) $)) (-15 -1636 ((-112))) (-15 -1636 ((-112) (-112))))) +((-1787 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|))) (-1237) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1237) (-1259 |#5|) (-1259 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1237)) (-4 *8 (-1237)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *9 (-1259 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1259 (-417 *9)))))) +(-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|))) +((-3386 (((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) $) 39)) (-3875 (($ (-1283 (-417 |#3|)) (-1283 $)) NIL) (($ (-1283 (-417 |#3|))) NIL) (($ (-1283 |#3|) |#3|) 173)) (-3816 (((-1283 $) (-1283 $)) 156)) (-2672 (((-654 (-654 |#2|))) 126)) (-3896 (((-112) |#2| |#2|) 76)) (-1420 (($ $) 148)) (-1717 (((-781)) 172)) (-2165 (((-1283 $) (-1283 $)) 218)) (-3914 (((-654 (-965 |#2|)) (-1192)) 115)) (-2801 (((-112) $) 169)) (-3167 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2632 (((-3 |#3| "failed")) 52)) (-1892 (((-781)) 184)) (-2209 ((|#2| $ |#2| |#2|) 140)) (-2588 (((-3 |#3| "failed")) 71)) (-3878 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-1605 (((-1283 $) (-1283 $)) 162)) (-3085 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2999 (((-112)) 34))) +(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2672 ((-654 (-654 |#2|)))) (-15 -3914 ((-654 (-965 |#2|)) (-1192))) (-15 -3085 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2632 ((-3 |#3| "failed"))) (-15 -2588 ((-3 |#3| "failed"))) (-15 -2209 (|#2| |#1| |#2| |#2|)) (-15 -1420 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3167 ((-112) |#1| |#3|)) (-15 -3167 ((-112) |#1| |#2|)) (-15 -3875 (|#1| (-1283 |#3|) |#3|)) (-15 -3386 ((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3816 ((-1283 |#1|) (-1283 |#1|))) (-15 -2165 ((-1283 |#1|) (-1283 |#1|))) (-15 -1605 ((-1283 |#1|) (-1283 |#1|))) (-15 -3167 ((-112) |#1|)) (-15 -2801 ((-112) |#1|)) (-15 -3896 ((-112) |#2| |#2|)) (-15 -2999 ((-112))) (-15 -1892 ((-781))) (-15 -1717 ((-781))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3875 (|#1| (-1283 (-417 |#3|)))) (-15 -3875 (|#1| (-1283 (-417 |#3|)) (-1283 |#1|)))) (-351 |#2| |#3| |#4|) (-1237) (-1259 |#2|) (-1259 (-417 |#3|))) (T -350)) +((-1717 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-1892 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2999 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3896 (*1 *2 *3 *3) (-12 (-4 *3 (-1237)) (-4 *5 (-1259 *3)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-2588 (*1 *2) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-2632 (*1 *2) (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-654 (-965 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-2672 (*1 *2) (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))) +(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2672 ((-654 (-654 |#2|)))) (-15 -3914 ((-654 (-965 |#2|)) (-1192))) (-15 -3085 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2632 ((-3 |#3| "failed"))) (-15 -2588 ((-3 |#3| "failed"))) (-15 -2209 (|#2| |#1| |#2| |#2|)) (-15 -1420 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3167 ((-112) |#1| |#3|)) (-15 -3167 ((-112) |#1| |#2|)) (-15 -3875 (|#1| (-1283 |#3|) |#3|)) (-15 -3386 ((-2 (|:| |num| (-1283 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3816 ((-1283 |#1|) (-1283 |#1|))) (-15 -2165 ((-1283 |#1|) (-1283 |#1|))) (-15 -1605 ((-1283 |#1|) (-1283 |#1|))) (-15 -3167 ((-112) |#1|)) (-15 -2801 ((-112) |#1|)) (-15 -3896 ((-112) |#2| |#2|)) (-15 -2999 ((-112))) (-15 -1892 ((-781))) (-15 -1717 ((-781))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3878 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3875 (|#1| (-1283 (-417 |#3|)))) (-15 -3875 (|#1| (-1283 (-417 |#3|)) (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3386 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 207)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (|has| (-417 |#2|) (-372)))) (-4319 (($ $) 104 (|has| (-417 |#2|) (-372)))) (-1731 (((-112) $) 106 (|has| (-417 |#2|) (-372)))) (-4368 (((-699 (-417 |#2|)) (-1283 $)) 53) (((-699 (-417 |#2|))) 68)) (-1646 (((-417 |#2|) $) 59)) (-3334 (((-1205 (-934) (-781)) (-574)) 156 (|has| (-417 |#2|) (-358)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 123 (|has| (-417 |#2|) (-372)))) (-2153 (((-428 $) $) 124 (|has| (-417 |#2|) (-372)))) (-1526 (((-112) $ $) 114 (|has| (-417 |#2|) (-372)))) (-1497 (((-781)) 97 (|has| (-417 |#2|) (-377)))) (-4092 (((-112)) 224)) (-1795 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 181 (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 176)) (-2216 (((-574) $) 180 (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) 177)) (-3875 (($ (-1283 (-417 |#2|)) (-1283 $)) 55) (($ (-1283 (-417 |#2|))) 71) (($ (-1283 |#2|) |#2|) 206)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-1732 (((-699 (-417 |#2|)) $ (-1283 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-4232 (((-699 (-574)) (-1283 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) 172) (((-699 (-417 |#2|)) (-699 $)) 171) (((-699 (-417 |#2|)) (-1283 $)) 170)) (-3816 (((-1283 $) (-1283 $)) 212)) (-2881 (($ |#3|) 167) (((-3 $ "failed") (-417 |#3|)) 164 (|has| (-417 |#2|) (-372)))) (-2978 (((-3 $ "failed") $) 37)) (-2672 (((-654 (-654 |#1|))) 193 (|has| |#1| (-377)))) (-3896 (((-112) |#1| |#1|) 228)) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| (-417 |#2|) (-377)))) (-1645 (((-112)) 221)) (-1442 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2811 (($ $ $) 117 (|has| (-417 |#2|) (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 112 (|has| (-417 |#2|) (-372)))) (-1420 (($ $) 199)) (-2776 (($) 158 (|has| (-417 |#2|) (-358)))) (-1627 (((-112) $) 159 (|has| (-417 |#2|) (-358)))) (-4278 (($ $ (-781)) 150 (|has| (-417 |#2|) (-358))) (($ $) 149 (|has| (-417 |#2|) (-358)))) (-2941 (((-112) $) 125 (|has| (-417 |#2|) (-372)))) (-3837 (((-934) $) 161 (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) 147 (|has| (-417 |#2|) (-358)))) (-2276 (((-112) $) 35)) (-1717 (((-781)) 231)) (-2165 (((-1283 $) (-1283 $)) 213)) (-2681 (((-417 |#2|) $) 58)) (-3914 (((-654 (-965 |#1|)) (-1192)) 194 (|has| |#1| (-372)))) (-4217 (((-3 $ "failed") $) 151 (|has| (-417 |#2|) (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| (-417 |#2|) (-372)))) (-3525 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-3880 (((-934) $) 99 (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) 165)) (-2844 (($ (-654 $)) 110 (|has| (-417 |#2|) (-372))) (($ $ $) 109 (|has| (-417 |#2|) (-372)))) (-1938 (((-1174) $) 10)) (-3211 (((-699 (-417 |#2|))) 208)) (-1822 (((-699 (-417 |#2|))) 210)) (-1327 (($ $) 126 (|has| (-417 |#2|) (-372)))) (-4167 (($ (-1283 |#2|) |#2|) 204)) (-1726 (((-699 (-417 |#2|))) 209)) (-2545 (((-699 (-417 |#2|))) 211)) (-3723 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-1651 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 205)) (-3187 (((-1283 $)) 217)) (-1369 (((-1283 $)) 218)) (-2801 (((-112) $) 216)) (-3167 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3791 (($) 152 (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| (-417 |#2|) (-377)))) (-2632 (((-3 |#2| "failed")) 196)) (-3939 (((-1135) $) 11)) (-1892 (((-781)) 230)) (-2974 (($) 169)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 111 (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) 108 (|has| (-417 |#2|) (-372))) (($ $ $) 107 (|has| (-417 |#2|) (-372)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 155 (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) 122 (|has| (-417 |#2|) (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 119 (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) 102 (|has| (-417 |#2|) (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| (-417 |#2|) (-372)))) (-3575 (((-781) $) 115 (|has| (-417 |#2|) (-372)))) (-2209 ((|#1| $ |#1| |#1|) 198)) (-2588 (((-3 |#2| "failed")) 197)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 116 (|has| (-417 |#2|) (-372)))) (-3902 (((-417 |#2|) (-1283 $)) 54) (((-417 |#2|)) 67)) (-3411 (((-781) $) 160 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 148 (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 131 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-654 (-1192)) (-654 (-781))) 139 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192) (-781)) 140 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1192))) 141 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192)) 142 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $) 143 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2097 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 145 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2097 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3450 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) 163 (|has| (-417 |#2|) (-372)))) (-2611 ((|#3|) 168)) (-3627 (($) 157 (|has| (-417 |#2|) (-358)))) (-4421 (((-1283 (-417 |#2|)) $ (-1283 $)) 57) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) 56) (((-1283 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1283 $)) 72)) (-1846 (((-1283 (-417 |#2|)) $) 70) (($ (-1283 (-417 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 154 (|has| (-417 |#2|) (-358)))) (-1605 (((-1283 $) (-1283 $)) 214)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 96 (-2832 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1053 (-417 (-574)))))) (($ $) 101 (|has| (-417 |#2|) (-372)))) (-3270 (($ $) 153 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-3688 ((|#3| $) 52)) (-3781 (((-781)) 32 T CONST)) (-3274 (((-112)) 227)) (-3756 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 74)) (-3676 (((-112) $ $) 105 (|has| (-417 |#2|) (-372)))) (-3085 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-2999 (((-112)) 229)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 133 (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) 135 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192) (-781)) 136 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1192))) 137 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $ (-1192)) 138 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) (-2097 (|has| (-417 |#2|) (-913 (-1192))) (|has| (-417 |#2|) (-372))))) (($ $) 144 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2097 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 146 (-2832 (-2097 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2097 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 130 (|has| (-417 |#2|) (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 129 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 128 (|has| (-417 |#2|) (-372))))) +(((-351 |#1| |#2| |#3|) (-141) (-1237) (-1259 |t#1|) (-1259 (-417 |t#2|))) (T -351)) +((-1717 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) (-1892 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) (-2999 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3896 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3274 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-4092 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-1795 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-1795 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-1645 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-1442 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-1442 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-1369 (*1 *2) (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3187 (*1 *2) (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-2545 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1822 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1726 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3211 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4))))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4))))) (-4167 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-3167 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) (-3167 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) (-1420 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))))) (-2209 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))))) (-2588 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3)))) (-2632 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1237)) (-4 *6 (-1259 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-965 *4))))) (-2672 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) +(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -1717 ((-781))) (-15 -1892 ((-781))) (-15 -2999 ((-112))) (-15 -3896 ((-112) |t#1| |t#1|)) (-15 -3274 ((-112))) (-15 -3756 ((-112) |t#1|)) (-15 -3756 ((-112) |t#2|)) (-15 -4092 ((-112))) (-15 -1795 ((-112) |t#1|)) (-15 -1795 ((-112) |t#2|)) (-15 -1645 ((-112))) (-15 -1442 ((-112) |t#1|)) (-15 -1442 ((-112) |t#2|)) (-15 -1369 ((-1283 $))) (-15 -3187 ((-1283 $))) (-15 -2801 ((-112) $)) (-15 -3167 ((-112) $)) (-15 -1605 ((-1283 $) (-1283 $))) (-15 -2165 ((-1283 $) (-1283 $))) (-15 -3816 ((-1283 $) (-1283 $))) (-15 -2545 ((-699 (-417 |t#2|)))) (-15 -1822 ((-699 (-417 |t#2|)))) (-15 -1726 ((-699 (-417 |t#2|)))) (-15 -3211 ((-699 (-417 |t#2|)))) (-15 -3386 ((-2 (|:| |num| (-1283 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3875 ($ (-1283 |t#2|) |t#2|)) (-15 -1651 ((-2 (|:| |num| (-1283 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4167 ($ (-1283 |t#2|) |t#2|)) (-15 -3723 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3167 ((-112) $ |t#1|)) (-15 -3167 ((-112) $ |t#2|)) (-15 -3878 ($ $ (-1 |t#2| |t#2|))) (-15 -1420 ($ $)) (-15 -2209 (|t#1| $ |t#1| |t#1|)) (-15 -2588 ((-3 |t#2| "failed"))) (-15 -2632 ((-3 |t#2| "failed"))) (-15 -3085 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -3914 ((-654 (-965 |t#1|)) (-1192))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -2672 ((-654 (-654 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-238) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2832 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-913 (-1192)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192)))) ((-933) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1053 (-417 (-574))) |has| (-417 |#2|) (-1053 (-417 (-574)))) ((-1053 #1#) . T) ((-1053 (-574)) |has| (-417 |#2|) (-1053 (-574))) ((-1066 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1066 #1#) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1071 #1#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| (-417 |#2|) (-358)) ((-1233) -2832 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1237) -2832 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-3875 (($ (-1283 (-923 |#1|))) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| (-923 |#1|) (-377)))) (-1627 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-923 |#1|) (-377)))) (-4340 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-2681 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3880 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-2695 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-1729 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-3749 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-1937 (((-971 (-1135))) NIL)) (-2974 (($) NIL (|has| (-923 |#1|) (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 (-923 |#1|))) NIL)) (-3627 (($) NIL (|has| (-923 |#1|) (-377)))) (-4022 (($) NIL (|has| (-923 |#1|) (-377)))) (-4421 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3270 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) +(((-352 |#1| |#2|) (-13 (-337 (-923 |#1|)) (-10 -7 (-15 -1937 ((-971 (-1135)))))) (-934) (-934)) (T -352)) +((-1937 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-352 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934))))) +(-13 (-337 (-923 |#1|)) (-10 -7 (-15 -1937 ((-971 (-1135)))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 58)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 142)) (-2216 ((|#1| $) 113)) (-3875 (($ (-1283 |#1|)) 130)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) 124 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) 160 (|has| |#1| (-377)))) (-1627 (((-112) $) 66 (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) 60 (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) 62)) (-1888 (($) 162 (|has| |#1| (-377)))) (-4340 (((-112) $) NIL (|has| |#1| (-377)))) (-2681 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) 117) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) 171 (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 178)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 96 (|has| |#1| (-377)))) (-4370 (((-112) $) 147)) (-3939 (((-1135) $) NIL)) (-1937 (((-971 (-1135))) 57)) (-2974 (($) 158 (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 119 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) 90) (((-934)) 91)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 |#1|)) 122)) (-3627 (($) 159 (|has| |#1| (-377)))) (-4022 (($) 167 (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) 77) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) 155 T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 144) (((-1283 $) (-934)) 98)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) 67 T CONST)) (-2155 (($) 103 T CONST)) (-3337 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 65)) (-3102 (($ $ $) 176) (($ $ |#1|) 177)) (-3089 (($ $) 157) (($ $ $) NIL)) (-3073 (($ $ $) 86)) (** (($ $ (-934)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -1937 ((-971 (-1135)))))) (-358) (-1188 |#1|)) (T -353)) +((-1937 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1188 *3))))) +(-13 (-337 |#1|) (-10 -7 (-15 -1937 ((-971 (-1135)))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3875 (($ (-1283 |#1|)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| |#1| (-377)))) (-1627 (((-112) $) NIL (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-377)))) (-4340 (((-112) $) NIL (|has| |#1| (-377)))) (-2681 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-1937 (((-971 (-1135))) NIL)) (-2974 (($) NIL (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 |#1|)) NIL)) (-3627 (($) NIL (|has| |#1| (-377)))) (-4022 (($) NIL (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -1937 ((-971 (-1135)))))) (-358) (-934)) (T -354)) +((-1937 (*1 *2) (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) +(-13 (-337 |#1|) (-10 -7 (-15 -1937 ((-971 (-1135)))))) +((-1654 (((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 61)) (-3401 (((-971 (-1135)) (-1188 |#1|)) 112)) (-1465 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|)) 103)) (-3014 (((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 113)) (-1880 (((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934)) 13)) (-1379 (((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)) 18))) +(((-355 |#1|) (-10 -7 (-15 -3401 ((-971 (-1135)) (-1188 |#1|))) (-15 -1465 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|))) (-15 -3014 ((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -1654 ((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -1880 ((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934))) (-15 -1379 ((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)))) (-358)) (T -355)) +((-1379 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-3 (-1188 *4) (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-1880 (*1 *2 *3) (|partial| -12 (-5 *3 (-934)) (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-5 *1 (-355 *4)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-971 (-1135))) (-5 *1 (-355 *4))))) +(-10 -7 (-15 -3401 ((-971 (-1135)) (-1188 |#1|))) (-15 -1465 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) (-1188 |#1|))) (-15 -3014 ((-699 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -1654 ((-781) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -1880 ((-3 (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) "failed") (-934))) (-15 -1379 ((-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) (-934)))) +((-2950 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2950 (|#3| |#1|)) (-15 -2950 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356)) +((-2950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4))))) +(-10 -7 (-15 -2950 (|#3| |#1|)) (-15 -2950 (|#1| |#3|))) +((-1627 (((-112) $) 60)) (-3837 (((-843 (-934)) $) 23) (((-934) $) 64)) (-4217 (((-3 $ "failed") $) 18)) (-3791 (($) 9)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 114)) (-3411 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3878 (($ $) 8) (($ $ (-781)) NIL)) (-3627 (($) 53)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 38)) (-3270 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-357 |#1|) (-10 -8 (-15 -3837 ((-934) |#1|)) (-15 -3411 ((-781) |#1|)) (-15 -1627 ((-112) |#1|)) (-15 -3627 (|#1|)) (-15 -1318 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -3270 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3837 ((-843 (-934)) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) (-358)) (T -357)) +NIL +(-10 -8 (-15 -3837 ((-934) |#1|)) (-15 -3411 ((-781) |#1|)) (-15 -1627 ((-112) |#1|)) (-15 -3627 (|#1|)) (-15 -1318 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -3270 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3837 ((-843 (-934)) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-3334 (((-1205 (-934) (-781)) (-574)) 102)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-1526 (((-112) $ $) 65)) (-1497 (((-781)) 112)) (-3063 (($) 18 T CONST)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2834 (($) 115)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2776 (($) 100)) (-1627 (((-112) $) 99)) (-4278 (($ $) 87) (($ $ (-781)) 86)) (-2941 (((-112) $) 79)) (-3837 (((-843 (-934)) $) 89) (((-934) $) 97)) (-2276 (((-112) $) 35)) (-4217 (((-3 $ "failed") $) 111)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3880 (((-934) $) 114)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 110 T CONST)) (-2590 (($ (-934)) 113)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 103)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-3411 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3878 (($ $) 109) (($ $ (-781)) 107)) (-3627 (($) 101)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 104)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3270 (((-3 $ "failed") $) 90) (($ $) 105)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $) 108) (($ $ (-781)) 106)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-358) (-141)) (T -358)) +((-3270 (*1 *1 *1) (-4 *1 (-358))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1283 *1)))) (-3712 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))))) (-3334 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1205 (-934) (-781))))) (-3627 (*1 *1) (-4 *1 (-358))) (-2776 (*1 *1) (-4 *1 (-358))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-934)))) (-3983 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-412) (-377) (-1167) (-239) (-10 -8 (-15 -3270 ($ $)) (-15 -1318 ((-3 (-1283 $) "failed") (-699 $))) (-15 -3712 ((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574)))))) (-15 -3334 ((-1205 (-934) (-781)) (-574))) (-15 -3627 ($)) (-15 -2776 ($)) (-15 -1627 ((-112) $)) (-15 -3411 ((-781) $)) (-15 -3837 ((-934) $)) (-15 -3983 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) . T) ((-1233) . T) ((-1237) . T)) +((-3734 (((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-1369 (((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53))) +(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $)))) (-1259 |#1|) (-419 |#1| |#2|)) (T -359)) +((-3734 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1369 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1654 (((-781)) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-3875 (($ (-1283 (-923 |#1|))) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| (-923 |#1|) (-377)))) (-1627 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-923 |#1|) (-377)))) (-4340 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-2681 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3880 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-2695 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-1729 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-3749 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2326 (((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135)))))) NIL)) (-2793 (((-699 (-923 |#1|))) NIL)) (-2974 (($) NIL (|has| (-923 |#1|) (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 (-923 |#1|))) NIL)) (-3627 (($) NIL (|has| (-923 |#1|) (-377)))) (-4022 (($) NIL (|has| (-923 |#1|) (-377)))) (-4421 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3270 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) +(((-360 |#1| |#2|) (-13 (-337 (-923 |#1|)) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 (-923 |#1|)))) (-15 -1654 ((-781))))) (-934) (-934)) (T -360)) +((-2326 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 (-923 *3)) (|:| -2590 (-1135)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-2793 (*1 *2) (-12 (-5 *2 (-699 (-923 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-1654 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934))))) +(-13 (-337 (-923 |#1|)) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 (-923 |#1|)) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 (-923 |#1|)))) (-15 -1654 ((-781))))) +((-2863 (((-112) $ $) 73)) (-1997 (((-112) $) 88)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) 106) (($ $ (-934)) 104 (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1654 (((-781)) 103)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) 187 (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 127)) (-2216 ((|#1| $) 105)) (-3875 (($ (-1283 |#1|)) 71)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) 182 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) 171 (|has| |#1| (-377)))) (-1627 (((-112) $) NIL (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) 113 (|has| |#1| (-377)))) (-4340 (((-112) $) 200 (|has| |#1| (-377)))) (-2681 ((|#1| $) 108) (($ $ (-934)) 107 (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) 214) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) 148 (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) 87 (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) 83 (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 218)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 150 (|has| |#1| (-377)))) (-4370 (((-112) $) 123)) (-3939 (((-1135) $) NIL)) (-2326 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) 97)) (-2793 (((-699 |#1|)) 101)) (-2974 (($) 110 (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 173 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) 174)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) 75)) (-2611 (((-1188 |#1|)) 175)) (-3627 (($) 147 (|has| |#1| (-377)))) (-4022 (($) NIL (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) 121) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) 180 T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 197) (((-1283 $) (-934)) 116)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) 186 T CONST)) (-2155 (($) 161 T CONST)) (-3337 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 208)) (-3102 (($ $ $) 119) (($ $ |#1|) 120)) (-3089 (($ $) 202) (($ $ $) 206)) (-3073 (($ $ $) 204)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 |#1|))) (-15 -1654 ((-781))))) (-358) (-3 (-1188 |#1|) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (T -361)) +((-2326 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) *2)))) (-2793 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) (-1654 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))))))) +(-13 (-337 |#1|) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 |#1|))) (-15 -1654 ((-781))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1654 (((-781)) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3875 (($ (-1283 |#1|)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| |#1| (-377)))) (-1627 (((-112) $) NIL (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-377)))) (-4340 (((-112) $) NIL (|has| |#1| (-377)))) (-2681 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2326 (((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135)))))) NIL)) (-2793 (((-699 |#1|)) NIL)) (-2974 (($) NIL (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 |#1|)) NIL)) (-3627 (($) NIL (|has| |#1| (-377)))) (-4022 (($) NIL (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 |#1|))) (-15 -1654 ((-781))))) (-358) (-934)) (T -362)) +((-2326 (*1 *2) (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934)))) (-2793 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934)))) (-1654 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) +(-13 (-337 |#1|) (-10 -7 (-15 -2326 ((-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))))) (-15 -2793 ((-699 |#1|))) (-15 -1654 ((-781))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-923 |#1|) (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| (-923 |#1|) (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-923 |#1|) "failed") $) NIL)) (-2216 (((-923 |#1|) $) NIL)) (-3875 (($ (-1283 (-923 |#1|))) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-923 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-923 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| (-923 |#1|) (-377)))) (-1627 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| (-923 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-923 |#1|) (-377)))) (-4340 (((-112) $) NIL (|has| (-923 |#1|) (-377)))) (-2681 (((-923 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-923 |#1|) (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 (-923 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-3880 (((-934) $) NIL (|has| (-923 |#1|) (-377)))) (-2695 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377)))) (-1729 (((-1188 (-923 |#1|)) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-1188 (-923 |#1|)) "failed") $ $) NIL (|has| (-923 |#1|) (-377)))) (-3749 (($ $ (-1188 (-923 |#1|))) NIL (|has| (-923 |#1|) (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-923 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-923 |#1|) (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL (|has| (-923 |#1|) (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-923 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| (-923 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 (-923 |#1|))) NIL)) (-3627 (($) NIL (|has| (-923 |#1|) (-377)))) (-4022 (($) NIL (|has| (-923 |#1|) (-377)))) (-4421 (((-1283 (-923 |#1|)) $) NIL) (((-699 (-923 |#1|)) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-923 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-923 |#1|)) NIL)) (-3270 (($ $) NIL (|has| (-923 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-923 |#1|) (-146)) (|has| (-923 |#1|) (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| (-923 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-923 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-923 |#1|) (-377))) (($ $) NIL (|has| (-923 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ (-923 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-923 |#1|)) NIL) (($ (-923 |#1|) $) NIL))) +(((-363 |#1| |#2|) (-337 (-923 |#1|)) (-934) (-934)) (T -363)) +NIL +(-337 (-923 |#1|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) 155 (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 103)) (-2216 ((|#1| $) 100)) (-3875 (($ (-1283 |#1|)) 95)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) 92 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) 51 (|has| |#1| (-377)))) (-1627 (((-112) $) NIL (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) 130 (|has| |#1| (-377)))) (-4340 (((-112) $) 84 (|has| |#1| (-377)))) (-2681 ((|#1| $) 47) (($ $ (-934)) 52 (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) 75) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) 107 (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) 105 (|has| |#1| (-377)))) (-4370 (((-112) $) 157)) (-3939 (((-1135) $) NIL)) (-2974 (($) 44 (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 124 (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) 154)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) 67)) (-2611 (((-1188 |#1|)) 98)) (-3627 (($) 135 (|has| |#1| (-377)))) (-4022 (($) NIL (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) 63) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) 159 T CONST)) (-4259 (((-112) $ $) 161)) (-3907 (((-1283 $)) 119) (((-1283 $) (-934)) 58)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) 121 T CONST)) (-2155 (($) 40 T CONST)) (-3337 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) 117)) (-3102 (($ $ $) 109) (($ $ |#1|) 110)) (-3089 (($ $) 90) (($ $ $) 115)) (-3073 (($ $ $) 113)) (** (($ $ (-934)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1188 |#1|)) (T -364)) +NIL +(-337 |#1|) +((-3147 ((|#1| (-1188 |#2|)) 59))) +(((-365 |#1| |#2|) (-10 -7 (-15 -3147 (|#1| (-1188 |#2|)))) (-13 (-412) (-10 -7 (-15 -2950 (|#1| |#2|)) (-15 -3880 ((-934) |#1|)) (-15 -3907 ((-1283 |#1|) (-934))) (-15 -3337 (|#1| |#1|)))) (-358)) (T -365)) +((-3147 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2950 (*2 *4)) (-15 -3880 ((-934) *2)) (-15 -3907 ((-1283 *2) (-934))) (-15 -3337 (*2 *2))))) (-5 *1 (-365 *2 *4))))) +(-10 -7 (-15 -3147 (|#1| (-1188 |#2|)))) +((-2813 (((-971 (-1188 |#1|)) (-1188 |#1|)) 49)) (-2834 (((-1188 |#1|) (-934) (-934)) 154) (((-1188 |#1|) (-934)) 150)) (-1627 (((-112) (-1188 |#1|)) 107)) (-1941 (((-934) (-934)) 85)) (-3291 (((-934) (-934)) 92)) (-3238 (((-934) (-934)) 83)) (-4340 (((-112) (-1188 |#1|)) 111)) (-2468 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 135)) (-3944 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 140)) (-2640 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 139)) (-1404 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 138)) (-3259 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 131)) (-3940 (((-1188 |#1|) (-1188 |#1|)) 71)) (-4301 (((-1188 |#1|) (-934)) 145)) (-4198 (((-1188 |#1|) (-934)) 148)) (-3322 (((-1188 |#1|) (-934)) 147)) (-2550 (((-1188 |#1|) (-934)) 146)) (-3272 (((-1188 |#1|) (-934)) 143))) +(((-366 |#1|) (-10 -7 (-15 -1627 ((-112) (-1188 |#1|))) (-15 -4340 ((-112) (-1188 |#1|))) (-15 -3238 ((-934) (-934))) (-15 -1941 ((-934) (-934))) (-15 -3291 ((-934) (-934))) (-15 -3272 ((-1188 |#1|) (-934))) (-15 -4301 ((-1188 |#1|) (-934))) (-15 -2550 ((-1188 |#1|) (-934))) (-15 -3322 ((-1188 |#1|) (-934))) (-15 -4198 ((-1188 |#1|) (-934))) (-15 -3259 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2468 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1404 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2640 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -3944 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2834 ((-1188 |#1|) (-934))) (-15 -2834 ((-1188 |#1|) (-934) (-934))) (-15 -3940 ((-1188 |#1|) (-1188 |#1|))) (-15 -2813 ((-971 (-1188 |#1|)) (-1188 |#1|)))) (-358)) (T -366)) +((-2813 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-971 (-1188 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1188 *4)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3944 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2640 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1404 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2468 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3259 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4))))) +(-10 -7 (-15 -1627 ((-112) (-1188 |#1|))) (-15 -4340 ((-112) (-1188 |#1|))) (-15 -3238 ((-934) (-934))) (-15 -1941 ((-934) (-934))) (-15 -3291 ((-934) (-934))) (-15 -3272 ((-1188 |#1|) (-934))) (-15 -4301 ((-1188 |#1|) (-934))) (-15 -2550 ((-1188 |#1|) (-934))) (-15 -3322 ((-1188 |#1|) (-934))) (-15 -4198 ((-1188 |#1|) (-934))) (-15 -3259 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2468 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1404 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2640 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -3944 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -2834 ((-1188 |#1|) (-934))) (-15 -2834 ((-1188 |#1|) (-934) (-934))) (-15 -3940 ((-1188 |#1|) (-1188 |#1|))) (-15 -2813 ((-971 (-1188 |#1|)) (-1188 |#1|)))) +((-2580 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38))) +(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -2580 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1259 |#1|) (-1259 |#2|)) (T -367)) +((-2580 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))) +(-10 -7 (-15 -2580 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3875 (($ (-1283 |#1|)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| |#1| (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| |#1| (-377)))) (-1627 (((-112) $) NIL (|has| |#1| (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| |#1| (-377))) (((-843 (-934)) $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| |#1| (-377)))) (-4340 (((-112) $) NIL (|has| |#1| (-377)))) (-2681 ((|#1| $) NIL) (($ $ (-934)) NIL (|has| |#1| (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 |#1|) $) NIL) (((-1188 $) $ (-934)) NIL (|has| |#1| (-377)))) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-2695 (((-1188 |#1|) $) NIL (|has| |#1| (-377)))) (-1729 (((-1188 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1188 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3749 (($ $ (-1188 |#1|)) NIL (|has| |#1| (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL (|has| |#1| (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| |#1| (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 |#1|)) NIL)) (-3627 (($) NIL (|has| |#1| (-377)))) (-4022 (($) NIL (|has| |#1| (-377)))) (-4421 (((-1283 |#1|) $) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3270 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-368 |#1| |#2|) (-337 |#1|) (-358) (-934)) (T -368)) +NIL +(-337 |#1|) +((-2106 (((-112) (-654 (-965 |#1|))) 41)) (-2220 (((-654 (-965 |#1|)) (-654 (-965 |#1|))) 53)) (-4019 (((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|))) 48))) +(((-369 |#1| |#2|) (-10 -7 (-15 -2106 ((-112) (-654 (-965 |#1|)))) (-15 -4019 ((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|)))) (-15 -2220 ((-654 (-965 |#1|)) (-654 (-965 |#1|))))) (-462) (-654 (-1192))) (T -369)) +((-2220 (*1 *2 *2) (-12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) (-4019 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1192)))))) +(-10 -7 (-15 -2106 ((-112) (-654 (-965 |#1|)))) (-15 -4019 ((-3 (-654 (-965 |#1|)) "failed") (-654 (-965 |#1|)))) (-15 -2220 ((-654 (-965 |#1|)) (-654 (-965 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781) $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) 17)) (-3757 ((|#1| $ (-574)) NIL)) (-3661 (((-574) $ (-574)) NIL)) (-3028 (($ (-1 |#1| |#1|) $) 34)) (-3826 (($ (-1 (-574) (-574)) $) 26)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 28)) (-3939 (((-1135) $) NIL)) (-2679 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-574)))) $) 30)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) 40) (($ |#1|) NIL)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 11 T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-370 |#1|) (-13 (-483) (-1053 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1497 ((-781) $)) (-15 -3661 ((-574) $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -3826 ($ (-1 (-574) (-574)) $)) (-15 -3028 ($ (-1 |#1| |#1|) $)) (-15 -2679 ((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-574)))) $)))) (-1115)) (T -370)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-3661 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-370 *3)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1115))))) +(-13 (-483) (-1053 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1497 ((-781) $)) (-15 -3661 ((-574) $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -3826 ($ (-1 (-574) (-574)) $)) (-15 -3028 ($ (-1 |#1| |#1|) $)) (-15 -2679 ((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-574)))) $)))) +((-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 13)) (-4319 (($ $) 14)) (-2153 (((-428 $) $) 34)) (-2941 (((-112) $) 30)) (-1327 (($ $) 19)) (-2886 (($ $ $) 25) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) 35)) (-2852 (((-3 $ "failed") $ $) 24)) (-3575 (((-781) $) 28)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 39)) (-3676 (((-112) $ $) 16)) (-3102 (($ $ $) 37))) +(((-371 |#1|) (-10 -8 (-15 -3102 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -2941 ((-112) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3575 ((-781) |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -3676 ((-112) |#1| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371)) +NIL +(-10 -8 (-15 -3102 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -2941 ((-112) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3575 ((-781) |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|)) (-15 -3676 ((-112) |#1| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-2276 (((-112) $) 35)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-372) (-141)) (T -372)) +((-3102 (*1 *1 *1 *1) (-4 *1 (-372)))) +(-13 (-315) (-1237) (-249) (-10 -8 (-15 -3102 ($ $ $)) (-6 -4456) (-6 -4450))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-2863 (((-112) $ $) 7)) (-3347 ((|#2| $ |#2|) 14)) (-3613 (($ $ (-1174)) 19)) (-1685 ((|#2| $) 15)) (-1686 (($ |#1|) 21) (($ |#1| (-1174)) 20)) (-2041 ((|#1| $) 17)) (-1938 (((-1174) $) 10)) (-1552 (((-1174) $) 16)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-2474 (($ $) 18)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-373 |#1| |#2|) (-141) (-1115) (-1115)) (T -373)) +((-1686 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-1686 (*1 *1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1115)) (-4 *4 (-1115)))) (-3613 (*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-2474 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-1174)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-3347 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -1686 ($ |t#1|)) (-15 -1686 ($ |t#1| (-1174))) (-15 -3613 ($ $ (-1174))) (-15 -2474 ($ $)) (-15 -2041 (|t#1| $)) (-15 -1552 ((-1174) $)) (-15 -1685 (|t#2| $)) (-15 -3347 (|t#2| $ |t#2|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-3347 ((|#1| $ |#1|) 31)) (-3613 (($ $ (-1174)) 23)) (-1904 (((-3 |#1| "failed") $) 30)) (-1685 ((|#1| $) 28)) (-1686 (($ (-398)) 22) (($ (-398) (-1174)) 21)) (-2041 (((-398) $) 25)) (-1938 (((-1174) $) NIL)) (-1552 (((-1174) $) 26)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20)) (-2474 (($ $) 24)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 19))) +(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -1904 ((-3 |#1| "failed") $)))) (-1115)) (T -374)) +((-1904 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1115))))) +(-13 (-373 (-398) |#1|) (-10 -8 (-15 -1904 ((-3 |#1| "failed") $)))) +((-2555 (((-1283 (-699 |#2|)) (-1283 $)) 67)) (-4073 (((-699 |#2|) (-1283 $)) 139)) (-3197 ((|#2| $) 36)) (-4060 (((-699 |#2|) $ (-1283 $)) 142)) (-3790 (((-3 $ "failed") $) 89)) (-2755 ((|#2| $) 39)) (-2390 (((-1188 |#2|) $) 98)) (-2866 ((|#2| (-1283 $)) 122)) (-2447 (((-1188 |#2|) $) 32)) (-1550 (((-112)) 116)) (-3875 (($ (-1283 |#2|) (-1283 $)) 132)) (-2978 (((-3 $ "failed") $) 93)) (-3236 (((-112)) 111)) (-3154 (((-112)) 106)) (-3954 (((-112)) 58)) (-3100 (((-699 |#2|) (-1283 $)) 137)) (-4132 ((|#2| $) 35)) (-1830 (((-699 |#2|) $ (-1283 $)) 141)) (-1341 (((-3 $ "failed") $) 87)) (-2670 ((|#2| $) 38)) (-2664 (((-1188 |#2|) $) 97)) (-3038 ((|#2| (-1283 $)) 120)) (-1373 (((-1188 |#2|) $) 30)) (-1808 (((-112)) 115)) (-3618 (((-112)) 108)) (-4004 (((-112)) 56)) (-3380 (((-112)) 103)) (-4147 (((-112)) 117)) (-4421 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) 128)) (-4390 (((-112)) 113)) (-2433 (((-654 (-1283 |#2|))) 102)) (-2579 (((-112)) 114)) (-4208 (((-112)) 112)) (-4124 (((-112)) 51)) (-2170 (((-112)) 118))) +(((-375 |#1| |#2|) (-10 -8 (-15 -2390 ((-1188 |#2|) |#1|)) (-15 -2664 ((-1188 |#2|) |#1|)) (-15 -2433 ((-654 (-1283 |#2|)))) (-15 -3790 ((-3 |#1| "failed") |#1|)) (-15 -1341 ((-3 |#1| "failed") |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 -3154 ((-112))) (-15 -3618 ((-112))) (-15 -3236 ((-112))) (-15 -4004 ((-112))) (-15 -3954 ((-112))) (-15 -3380 ((-112))) (-15 -2170 ((-112))) (-15 -4147 ((-112))) (-15 -1550 ((-112))) (-15 -1808 ((-112))) (-15 -4124 ((-112))) (-15 -2579 ((-112))) (-15 -4208 ((-112))) (-15 -4390 ((-112))) (-15 -2447 ((-1188 |#2|) |#1|)) (-15 -1373 ((-1188 |#2|) |#1|)) (-15 -4073 ((-699 |#2|) (-1283 |#1|))) (-15 -3100 ((-699 |#2|) (-1283 |#1|))) (-15 -2866 (|#2| (-1283 |#1|))) (-15 -3038 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -2755 (|#2| |#1|)) (-15 -2670 (|#2| |#1|)) (-15 -3197 (|#2| |#1|)) (-15 -4132 (|#2| |#1|)) (-15 -4060 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -1830 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2555 ((-1283 (-699 |#2|)) (-1283 |#1|)))) (-376 |#2|) (-174)) (T -375)) +((-4390 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4208 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2579 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4124 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1550 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4147 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2170 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3380 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3954 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4004 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3236 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3618 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3154 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2433 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1283 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4))))) +(-10 -8 (-15 -2390 ((-1188 |#2|) |#1|)) (-15 -2664 ((-1188 |#2|) |#1|)) (-15 -2433 ((-654 (-1283 |#2|)))) (-15 -3790 ((-3 |#1| "failed") |#1|)) (-15 -1341 ((-3 |#1| "failed") |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 -3154 ((-112))) (-15 -3618 ((-112))) (-15 -3236 ((-112))) (-15 -4004 ((-112))) (-15 -3954 ((-112))) (-15 -3380 ((-112))) (-15 -2170 ((-112))) (-15 -4147 ((-112))) (-15 -1550 ((-112))) (-15 -1808 ((-112))) (-15 -4124 ((-112))) (-15 -2579 ((-112))) (-15 -4208 ((-112))) (-15 -4390 ((-112))) (-15 -2447 ((-1188 |#2|) |#1|)) (-15 -1373 ((-1188 |#2|) |#1|)) (-15 -4073 ((-699 |#2|) (-1283 |#1|))) (-15 -3100 ((-699 |#2|) (-1283 |#1|))) (-15 -2866 (|#2| (-1283 |#1|))) (-15 -3038 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -2755 (|#2| |#1|)) (-15 -2670 (|#2| |#1|)) (-15 -3197 (|#2| |#1|)) (-15 -4132 (|#2| |#1|)) (-15 -4060 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -1830 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2555 ((-1283 (-699 |#2|)) (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3462 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) 20)) (-2555 (((-1283 (-699 |#1|)) (-1283 $)) 83)) (-4000 (((-1283 $)) 86)) (-3063 (($) 18 T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-3294 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-4073 (((-699 |#1|) (-1283 $)) 70)) (-3197 ((|#1| $) 79)) (-4060 (((-699 |#1|) $ (-1283 $)) 81)) (-3790 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-3558 (($ $ (-934)) 31)) (-2755 ((|#1| $) 77)) (-2390 (((-1188 |#1|) $) 47 (|has| |#1| (-566)))) (-2866 ((|#1| (-1283 $)) 72)) (-2447 (((-1188 |#1|) $) 68)) (-1550 (((-112)) 62)) (-3875 (($ (-1283 |#1|) (-1283 $)) 74)) (-2978 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3557 (((-934)) 85)) (-2676 (((-112)) 59)) (-2867 (($ $ (-934)) 38)) (-3236 (((-112)) 55)) (-3154 (((-112)) 53)) (-3954 (((-112)) 57)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3502 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-3100 (((-699 |#1|) (-1283 $)) 71)) (-4132 ((|#1| $) 80)) (-1830 (((-699 |#1|) $ (-1283 $)) 82)) (-1341 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-2883 (($ $ (-934)) 32)) (-2670 ((|#1| $) 78)) (-2664 (((-1188 |#1|) $) 48 (|has| |#1| (-566)))) (-3038 ((|#1| (-1283 $)) 73)) (-1373 (((-1188 |#1|) $) 69)) (-1808 (((-112)) 63)) (-1938 (((-1174) $) 10)) (-3618 (((-112)) 54)) (-4004 (((-112)) 56)) (-3380 (((-112)) 58)) (-3939 (((-1135) $) 11)) (-4147 (((-112)) 61)) (-4421 (((-1283 |#1|) $ (-1283 $)) 76) (((-699 |#1|) (-1283 $) (-1283 $)) 75)) (-2414 (((-654 (-965 |#1|)) (-1283 $)) 84)) (-2987 (($ $ $) 28)) (-4390 (((-112)) 67)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2433 (((-654 (-1283 |#1|))) 49 (|has| |#1| (-566)))) (-1391 (($ $ $ $) 29)) (-2579 (((-112)) 65)) (-2824 (($ $ $) 27)) (-4208 (((-112)) 66)) (-4124 (((-112)) 64)) (-2170 (((-112)) 60)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-376 |#1|) (-141) (-174)) (T -376)) +((-4000 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-376 *3)))) (-3557 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-934)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))))) (-1830 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4060 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-4421 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1283 *4)))) (-4421 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3)))) (-4390 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4208 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2579 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4124 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1808 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1550 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4147 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2170 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2676 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3380 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3954 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4004 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3236 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3618 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3154 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2978 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-1341 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3790 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2433 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1283 *3))))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1188 *3)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1188 *3)))) (-1359 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3907 (-654 *1)))) (-4 *1 (-376 *3)))) (-1609 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3907 (-654 *1)))) (-4 *1 (-376 *3)))) (-3502 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-3294 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-3462 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(-13 (-754 |t#1|) (-10 -8 (-15 -4000 ((-1283 $))) (-15 -3557 ((-934))) (-15 -2414 ((-654 (-965 |t#1|)) (-1283 $))) (-15 -2555 ((-1283 (-699 |t#1|)) (-1283 $))) (-15 -1830 ((-699 |t#1|) $ (-1283 $))) (-15 -4060 ((-699 |t#1|) $ (-1283 $))) (-15 -4132 (|t#1| $)) (-15 -3197 (|t#1| $)) (-15 -2670 (|t#1| $)) (-15 -2755 (|t#1| $)) (-15 -4421 ((-1283 |t#1|) $ (-1283 $))) (-15 -4421 ((-699 |t#1|) (-1283 $) (-1283 $))) (-15 -3875 ($ (-1283 |t#1|) (-1283 $))) (-15 -3038 (|t#1| (-1283 $))) (-15 -2866 (|t#1| (-1283 $))) (-15 -3100 ((-699 |t#1|) (-1283 $))) (-15 -4073 ((-699 |t#1|) (-1283 $))) (-15 -1373 ((-1188 |t#1|) $)) (-15 -2447 ((-1188 |t#1|) $)) (-15 -4390 ((-112))) (-15 -4208 ((-112))) (-15 -2579 ((-112))) (-15 -4124 ((-112))) (-15 -1808 ((-112))) (-15 -1550 ((-112))) (-15 -4147 ((-112))) (-15 -2170 ((-112))) (-15 -2676 ((-112))) (-15 -3380 ((-112))) (-15 -3954 ((-112))) (-15 -4004 ((-112))) (-15 -3236 ((-112))) (-15 -3618 ((-112))) (-15 -3154 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -2978 ((-3 $ "failed") $)) (-15 -1341 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $)) (-15 -2433 ((-654 (-1283 |t#1|)))) (-15 -2664 ((-1188 |t#1|) $)) (-15 -2390 ((-1188 |t#1|) $)) (-15 -1359 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -1609 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -3502 ((-3 $ "failed"))) (-15 -3294 ((-3 $ "failed"))) (-15 -3462 ((-3 $ "failed"))) (-6 -4455)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1497 (((-781)) 17)) (-2834 (($) 14)) (-3880 (((-934) $) 15)) (-1938 (((-1174) $) 10)) (-2590 (($ (-934)) 16)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-377) (-141)) (T -377)) +((-1497 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-377)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-934)))) (-2834 (*1 *1) (-4 *1 (-377)))) +(-13 (-1115) (-10 -8 (-15 -1497 ((-781))) (-15 -2590 ($ (-934))) (-15 -3880 ((-934) $)) (-15 -2834 ($)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-4368 (((-699 |#2|) (-1283 $)) 45)) (-3875 (($ (-1283 |#2|) (-1283 $)) 39)) (-1732 (((-699 |#2|) $ (-1283 $)) 47)) (-3902 ((|#2| (-1283 $)) 13)) (-4421 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) 27))) +(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -4368 ((-699 |#2|) (-1283 |#1|))) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1732 ((-699 |#2|) |#1| (-1283 |#1|)))) (-379 |#2| |#3|) (-174) (-1259 |#2|)) (T -378)) +NIL +(-10 -8 (-15 -4368 ((-699 |#2|) (-1283 |#1|))) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1732 ((-699 |#2|) |#1| (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4368 (((-699 |#1|) (-1283 $)) 53)) (-1646 ((|#1| $) 59)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3875 (($ (-1283 |#1|) (-1283 $)) 55)) (-1732 (((-699 |#1|) $ (-1283 $)) 60)) (-2978 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-2276 (((-112) $) 35)) (-2681 ((|#1| $) 58)) (-3525 ((|#2| $) 51 (|has| |#1| (-372)))) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3902 ((|#1| (-1283 $)) 54)) (-4421 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3270 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3688 ((|#2| $) 52)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-379 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -379)) +((-3557 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-934)))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-4421 (*1 *2 *1 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *4)))) (-4421 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1259 *4)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1259 *2)) (-4 *2 (-174)))) (-4368 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1259 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3557 ((-934))) (-15 -1732 ((-699 |t#1|) $ (-1283 $))) (-15 -1646 (|t#1| $)) (-15 -2681 (|t#1| $)) (-15 -4421 ((-1283 |t#1|) $ (-1283 $))) (-15 -4421 ((-699 |t#1|) (-1283 $) (-1283 $))) (-15 -3875 ($ (-1283 |t#1|) (-1283 $))) (-15 -3902 (|t#1| (-1283 $))) (-15 -4368 ((-699 |t#1|) (-1283 $))) (-15 -3688 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -3525 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2316 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2881 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1787 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2316 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1233) (-382 |#1|) (-1233) (-382 |#3|)) (T -380)) +((-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2316 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4251 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2212 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2785 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4424 (($ $) 25)) (-1451 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-4333 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-381 |#1| |#2|) (-10 -8 (-15 -2212 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4251 ((-112) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2785 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1233)) (T -381)) +NIL +(-10 -8 (-15 -2212 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4251 ((-112) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -4333 (|#1| |#1| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2785 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-382 |#1|) (-141) (-1233)) (T -382)) +((-4333 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)))) (-2785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-4251 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-1451 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) (-2785 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-860)) (-5 *2 (-112)))) (-3957 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-3680 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)))) (-2212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) (-2212 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860))))) +(-13 (-661 |t#1|) (-10 -8 (-6 -4458) (-15 -4333 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4424 ($ $)) (-15 -2785 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4251 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1451 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -1451 ((-574) |t#1| $)) (-15 -1451 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -4333 ($ $ $)) (-15 -2785 ($ $)) (-15 -4251 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3957 ($ $ $ (-574))) (-15 -3680 ($ $)) (-15 -2212 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -2212 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1665 (((-654 |#1|) $) 37)) (-1923 (($ $ (-781)) 38)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2596 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 41)) (-1792 (($ $) 39)) (-4365 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 42)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2660 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-4144 (((-781) $) 43)) (-2962 (($ $ $) 34)) (-2950 (((-872) $) 12) (($ |#1|) 46) (((-1298 |#1| |#2|) $) 45) (((-1307 |#1| |#2|) $) 44)) (-1868 ((|#2| (-1307 |#1| |#2|) $) 47)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2677 (($ (-682 |#1|)) 40)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-383 |#1| |#2|) (-141) (-860) (-174)) (T -383)) +((-1868 (*1 *2 *3 *1) (-12 (-5 *3 (-1307 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2950 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1298 *3 *4)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1307 *3 *4)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-4365 (*1 *2 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2596 (*1 *2 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2660 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174))))) +(-13 (-644 |t#2|) (-10 -8 (-15 -1868 (|t#2| (-1307 |t#1| |t#2|) $)) (-15 -2950 ($ |t#1|)) (-15 -2950 ((-1298 |t#1| |t#2|) $)) (-15 -2950 ((-1307 |t#1| |t#2|) $)) (-15 -4144 ((-781) $)) (-15 -4365 ((-1307 |t#1| |t#2|) (-1307 |t#1| |t#2|) $)) (-15 -2596 ((-1307 |t#1| |t#2|) (-1307 |t#1| |t#2|) $)) (-15 -2677 ($ (-682 |t#1|))) (-15 -1792 ($ $)) (-15 -1923 ($ $ (-781))) (-15 -1665 ((-654 |t#1|) $)) (-15 -2660 ($ $ |t#1| $)) (-15 -2660 ($ $ (-654 |t#1|) (-654 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1115) . T)) +((-1673 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1893 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2502 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-384 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2502 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1673 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1233) (-13 (-382 |#1|) (-10 -7 (-6 -4459)))) (T -384)) +((-1673 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-2502 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-1893 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) +(-10 -7 (-15 -1893 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2502 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1673 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-4232 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1283 $)) NIL))) +(((-385 |#1| |#2|) (-10 -8 (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-699 |#2|) (-1283 |#1|)))) (-386 |#2|) (-1064)) (T -385)) +NIL +(-10 -8 (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-699 |#2|) (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-4232 (((-699 |#1|) (-1283 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 29) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1283 $)) 37 (|has| |#1| (-649 (-574))))) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-386 |#1|) (-141) (-1064)) (T -386)) +NIL +(-13 (-649 |t#1|) (-10 -7 (IF (|has| |t#1| (-649 (-574))) (-6 (-649 (-574))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1115) . T)) +((-4076 (((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|) 41)) (-4374 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|) 18))) +(((-387 |#1|) (-10 -7 (-15 -4076 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4076 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|)) (-15 -4076 ((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4076 ((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4374 ((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4374 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|))) (-13 (-372) (-858))) (T -387)) +((-4374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 (-171 (-574)))))) (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -4076 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4076 ((-654 (-654 (-302 (-965 (-171 |#1|))))) (-654 (-302 (-417 (-965 (-171 (-574)))))) |#1|)) (-15 -4076 ((-654 (-302 (-965 (-171 |#1|)))) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4076 ((-654 (-302 (-965 (-171 |#1|)))) (-302 (-417 (-965 (-171 (-574))))) |#1|)) (-15 -4374 ((-654 (-171 |#1|)) (-417 (-965 (-171 (-574)))) |#1|)) (-15 -4374 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-965 (-171 (-574))))) (-654 (-1192)) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 35)) (-1882 (((-574) $) 62)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4430 (($ $) 136)) (-2378 (($ $) 98)) (-2260 (($ $) 90)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) 47)) (-1526 (((-112) $ $) NIL)) (-2357 (($ $) 96)) (-2238 (($ $) 85)) (-2496 (((-574) $) 78)) (-3931 (($ $ (-574)) 73)) (-2403 (($ $) NIL)) (-2281 (($ $) NIL)) (-3063 (($) NIL T CONST)) (-2760 (($ $) 138)) (-1706 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2216 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2800 (($ $ $) NIL)) (-2507 (((-574) $ $) 125)) (-2978 (((-3 $ "failed") $) 141)) (-3282 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3760 (((-934)) 121) (((-934) (-934)) 122 (|has| $ (-6 -4449)))) (-1348 (((-112) $) 130)) (-3003 (($) 41)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-1682 (((-1288) (-781)) 191)) (-1506 (((-1288)) 196) (((-1288) (-781)) 197)) (-4118 (((-1288)) 198) (((-1288) (-781)) 199)) (-1662 (((-1288)) 194) (((-1288) (-781)) 195)) (-3837 (((-574) $) 68)) (-2276 (((-112) $) 40)) (-3649 (($ $ (-574)) NIL)) (-3863 (($ $) 51)) (-2681 (($ $) NIL)) (-3081 (((-112) $) 37)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL) (($) NIL (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-2953 (($ $ $) NIL) (($) NIL (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 17)) (-2302 (($) 106) (($ $) 113)) (-1742 (($) 112) (($ $) 114)) (-3111 (($ $) 101)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 143)) (-3653 (((-934) (-574)) 46 (|has| $ (-6 -4449)))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) 60)) (-2787 (($ $) 135)) (-2398 (($ (-574) (-574)) 131) (($ (-574) (-574) (-934)) 132)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3843 (((-574) $) 19)) (-3498 (($) 115)) (-1619 (($ $) 95)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2829 (((-934)) 123) (((-934) (-934)) 124 (|has| $ (-6 -4449)))) (-3878 (($ $) 142) (($ $ (-781)) NIL)) (-2622 (((-934) (-574)) 50 (|has| $ (-6 -4449)))) (-2415 (($ $) NIL)) (-2289 (($ $) NIL)) (-2388 (($ $) NIL)) (-2271 (($ $) NIL)) (-2367 (($ $) 97)) (-2249 (($ $) 89)) (-1846 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1174) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2950 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-3781 (((-781)) NIL T CONST)) (-2251 (($ $) 137)) (-3530 (((-934)) 61) (((-934) (-934)) 80 (|has| $ (-6 -4449)))) (-4259 (((-112) $ $) NIL)) (-2644 (((-934)) 126)) (-2455 (($ $) 104)) (-2319 (($ $) 49) (($ $ $) 59)) (-3676 (((-112) $ $) NIL)) (-2428 (($ $) 102)) (-2301 (($ $) 39)) (-2479 (($ $) NIL)) (-2339 (($ $) NIL)) (-2535 (($ $) NIL)) (-2348 (($ $) NIL)) (-2467 (($ $) NIL)) (-2329 (($ $) NIL)) (-2442 (($ $) 103)) (-2311 (($ $) 52)) (-2366 (($ $) 58)) (-2143 (($) 36 T CONST)) (-2155 (($) 43 T CONST)) (-1579 (((-1174) $) 27) (((-1174) $ (-112)) 29) (((-1288) (-832) $) 30) (((-1288) (-832) $ (-112)) 31)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3040 (((-112) $ $) 203)) (-3017 (((-112) $ $) 45)) (-2985 (((-112) $ $) 56)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 57)) (-3102 (($ $ $) 48) (($ $ (-574)) 42)) (-3089 (($ $) 38) (($ $ $) 53)) (-3073 (($ $ $) 72)) (** (($ $ (-934)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-934) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-388) (-13 (-414) (-239) (-624 (-1174)) (-838) (-623 (-227)) (-1218) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3102 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3863 ($ $)) (-15 -2507 ((-574) $ $)) (-15 -3931 ($ $ (-574))) (-15 -3282 ((-417 (-574)) $ (-781))) (-15 -3282 ((-417 (-574)) $ (-781) (-781))) (-15 -2302 ($)) (-15 -1742 ($)) (-15 -3498 ($)) (-15 -2319 ($ $ $)) (-15 -2302 ($ $)) (-15 -1742 ($ $)) (-15 -4118 ((-1288))) (-15 -4118 ((-1288) (-781))) (-15 -1662 ((-1288))) (-15 -1662 ((-1288) (-781))) (-15 -1506 ((-1288))) (-15 -1506 ((-1288) (-781))) (-15 -1682 ((-1288) (-781))) (-6 -4449) (-6 -4441)))) (T -388)) +((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3863 (*1 *1 *1) (-5 *1 (-388))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2302 (*1 *1) (-5 *1 (-388))) (-1742 (*1 *1) (-5 *1 (-388))) (-3498 (*1 *1) (-5 *1 (-388))) (-2319 (*1 *1 *1 *1) (-5 *1 (-388))) (-2302 (*1 *1 *1) (-5 *1 (-388))) (-1742 (*1 *1 *1) (-5 *1 (-388))) (-4118 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-1662 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-1506 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388))))) +(-13 (-414) (-239) (-624 (-1174)) (-838) (-623 (-227)) (-1218) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3102 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3863 ($ $)) (-15 -2507 ((-574) $ $)) (-15 -3931 ($ $ (-574))) (-15 -3282 ((-417 (-574)) $ (-781))) (-15 -3282 ((-417 (-574)) $ (-781) (-781))) (-15 -2302 ($)) (-15 -1742 ($)) (-15 -3498 ($)) (-15 -2319 ($ $ $)) (-15 -2302 ($ $)) (-15 -1742 ($ $)) (-15 -4118 ((-1288))) (-15 -4118 ((-1288) (-781))) (-15 -1662 ((-1288))) (-15 -1662 ((-1288) (-781))) (-15 -1506 ((-1288))) (-15 -1506 ((-1288) (-781))) (-15 -1682 ((-1288) (-781))) (-6 -4449) (-6 -4441))) +((-2613 (((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|) 46) (((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|) 45) (((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|) 36)) (-3508 (((-654 |#1|) (-417 (-965 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|) 30))) +(((-389 |#1|) (-10 -7 (-15 -2613 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|)) (-15 -2613 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|)) (-15 -2613 ((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|)) (-15 -2613 ((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|)) (-15 -3508 ((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|)) (-15 -3508 ((-654 |#1|) (-417 (-965 (-574))) |#1|))) (-13 (-858) (-372))) (T -389)) +((-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 (-574))))) (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 (-574)))))) (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))) +(-10 -7 (-15 -2613 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-417 (-965 (-574)))) |#1|)) (-15 -2613 ((-654 (-654 (-302 (-965 |#1|)))) (-654 (-302 (-417 (-965 (-574))))) |#1|)) (-15 -2613 ((-654 (-302 (-965 |#1|))) (-417 (-965 (-574))) |#1|)) (-15 -2613 ((-654 (-302 (-965 |#1|))) (-302 (-417 (-965 (-574)))) |#1|)) (-15 -3508 ((-654 (-654 |#1|)) (-654 (-417 (-965 (-574)))) (-654 (-1192)) |#1|)) (-15 -3508 ((-654 |#1|) (-417 (-965 (-574))) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 30)) (-2216 ((|#2| $) 32)) (-1401 (($ $) NIL)) (-1901 (((-781) $) 11)) (-3700 (((-654 $) $) 23)) (-3513 (((-112) $) NIL)) (-3805 (($ |#2| |#1|) 21)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4345 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1365 ((|#2| $) 18)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 51) (($ |#2|) 31)) (-3133 (((-654 |#1|) $) 20)) (-3584 ((|#1| $ |#2|) 55)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 33 T CONST)) (-1502 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1064) (-860)) (T -390)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860))))) +(-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 49)) (-2216 ((|#2| $) 50)) (-1401 (($ $) 35)) (-1901 (((-781) $) 39)) (-3700 (((-654 $) $) 40)) (-3513 (((-112) $) 43)) (-3805 (($ |#2| |#1|) 44)) (-1787 (($ (-1 |#1| |#1|) $) 45)) (-4345 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1365 ((|#2| $) 38)) (-1377 ((|#1| $) 37)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ |#2|) 48)) (-3133 (((-654 |#1|) $) 41)) (-3584 ((|#1| $ |#2|) 46)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-1502 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-391 |#1| |#2|) (-141) (-1064) (-1115)) (T -391)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)))) (-3805 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-112)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *3)))) (-3700 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-781)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115))))) +(-13 (-111 |t#1| |t#1|) (-1053 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3584 (|t#1| $ |t#2|)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -3805 ($ |t#2| |t#1|)) (-15 -3513 ((-112) $)) (-15 -1502 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3133 ((-654 |t#1|) $)) (-15 -3700 ((-654 $) $)) (-15 -1901 ((-781) $)) (-15 -1365 (|t#2| $)) (-15 -1377 (|t#1| $)) (-15 -4345 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1401 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1053 |#2|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 11))) (((-392) (-141)) (T -392)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-392)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-392)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-698 (-323 (-387))))) (-15 -1695 ((-3 $ "failed") (-698 (-323 (-387))))) (-15 -2205 ($ (-698 (-323 (-573))))) (-15 -1695 ((-3 $ "failed") (-698 (-323 (-573))))) (-15 -2205 ($ (-698 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-698 (-962 (-387))))) (-15 -2205 ($ (-698 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-698 (-962 (-573))))) (-15 -2205 ($ (-698 (-416 (-962 (-387)))))) (-15 -1695 ((-3 $ "failed") (-698 (-416 (-962 (-387)))))) (-15 -2205 ($ (-698 (-416 (-962 (-573)))))) (-15 -1695 ((-3 $ "failed") (-698 (-416 (-962 (-573)))))))) -(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 33)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-393 |#1| |#2|) (-13 (-111 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|))) (-1061) (-859)) (T -393)) -NIL -(-13 (-111 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-1486 (((-780) $) 34)) (-2579 (($) 19 T CONST)) (-1680 (((-3 $ "failed") $ $) 37)) (-1695 (((-3 |#1| "failed") $) 45)) (-2205 ((|#1| $) 46)) (-2232 (((-3 $ "failed") $) 16)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1959 (((-112) $) 18)) (-2841 ((|#1| $ (-573)) 31)) (-3884 (((-780) $ (-573)) 32)) (-3659 (($ $ $) 28 (|has| |#1| (-859)))) (-3751 (($ $ $) 27 (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) 29)) (-3584 (($ (-1 (-780) (-780)) $) 30)) (-1435 (((-3 $ "failed") $ $) 38)) (-3180 (((-1171) $) 10)) (-3254 (($ $ $) 39)) (-1513 (($ $ $) 40)) (-3965 (((-1132) $) 11)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) 33)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2942 (((-871) $) 12) (($ |#1|) 44)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) 25 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 24 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 26 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 23 (|has| |#1| (-859)))) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ |#1| (-780)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-394 |#1|) (-141) (-1112)) (T -394)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-3254 (*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1435 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1680 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1405 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1112)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-780))))))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *4)) (-4 *4 (-1112)) (-5 *2 (-780)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-780) (-780))) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3)) (-4 *3 (-1112))))) -(-13 (-735) (-1050 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-780))) (-15 -1513 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -1435 ((-3 $ "failed") $ $)) (-15 -1680 ((-3 $ "failed") $ $)) (-15 -1405 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3708 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1486 ((-780) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |t#1|) (|:| -1608 (-780)))) $)) (-15 -3884 ((-780) $ (-573))) (-15 -2841 (|t#1| $ (-573))) (-15 -3584 ($ (-1 (-780) (-780)) $)) (-15 -1911 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|))) -(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-1050 |#1|) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) 74)) (-2579 (($) NIL T CONST)) (-1680 (((-3 $ "failed") $ $) 77)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1959 (((-112) $) 17)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-780) $ (-573)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) 40)) (-3584 (($ (-1 (-780) (-780)) $) 37)) (-1435 (((-3 $ "failed") $ $) 60)) (-3180 (((-1171) $) NIL)) (-3254 (($ $ $) 28)) (-1513 (($ $ $) 26)) (-3965 (((-1132) $) NIL)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) 34)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2942 (((-871) $) 24) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 11 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 84 (|has| |#1| (-859)))) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ |#1| (-780)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-395 |#1|) (-394 |#1|) (-1112)) (T -395)) -NIL -(-394 |#1|) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 53)) (-2205 (((-573) $) 54)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3659 (($ $ $) 60)) (-3751 (($ $ $) 59)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 57)) (-3015 (((-112) $ $) 56)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 58)) (-3005 (((-112) $ $) 55)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-396) (-141)) (T -396)) -NIL -(-13 (-565) (-859) (-1050 (-573))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-859) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1775 (((-112) $) 25)) (-2949 (((-112) $) 22)) (-3789 (($ (-1171) (-1171) (-1171)) 26)) (-2031 (((-1171) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3712 (($ (-1171) (-1171) (-1171)) 14)) (-3551 (((-1171) $) 17)) (-3458 (((-112) $) 18)) (-2566 (((-1171) $) 15)) (-2942 (((-871) $) 12) (($ (-1171)) 13) (((-1171) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) -(((-397) (-398)) (T -397)) -NIL -(-398) -((-2848 (((-112) $ $) 7)) (-1775 (((-112) $) 17)) (-2949 (((-112) $) 18)) (-3789 (($ (-1171) (-1171) (-1171)) 16)) (-2031 (((-1171) $) 21)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3712 (($ (-1171) (-1171) (-1171)) 23)) (-3551 (((-1171) $) 20)) (-3458 (((-112) $) 19)) (-2566 (((-1171) $) 22)) (-2942 (((-871) $) 12) (($ (-1171)) 25) (((-1171) $) 24)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-398) (-141)) (T -398)) -((-3712 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-3789 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398))))) -(-13 (-1112) (-499 (-1171)) (-10 -8 (-15 -3712 ($ (-1171) (-1171) (-1171))) (-15 -2566 ((-1171) $)) (-15 -2031 ((-1171) $)) (-15 -3551 ((-1171) $)) (-15 -3458 ((-112) $)) (-15 -2949 ((-112) $)) (-15 -1775 ((-112) $)) (-15 -3789 ($ (-1171) (-1171) (-1171))))) -(((-102) . T) ((-625 #0=(-1171)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2165 (((-871) $) 63)) (-2579 (($) NIL T CONST)) (-3681 (($ $ (-931)) NIL)) (-3009 (($ $ (-931)) NIL)) (-2022 (($ $ (-931)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) 38)) (-2365 (((-780)) 18)) (-3401 (((-871) $) 65)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3531 (($ $ $ $) NIL)) (-4366 (($ $ $) NIL)) (-2132 (($) 24 T CONST)) (-2981 (((-112) $ $) 41)) (-3093 (($ $) 48) (($ $ $) 50)) (-3077 (($ $ $) 51)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-399 |#1| |#2| |#3|) (-13 (-753 |#3|) (-10 -8 (-15 -2365 ((-780))) (-15 -3401 ((-871) $)) (-15 -2165 ((-871) $)) (-15 -2969 ($ (-780))))) (-780) (-780) (-174)) (T -399)) -((-2365 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-753 |#3|) (-10 -8 (-15 -2365 ((-780))) (-15 -3401 ((-871) $)) (-15 -2165 ((-871) $)) (-15 -2969 ($ (-780))))) -((-4345 (((-1171)) 12)) (-3073 (((-1159 (-1171))) 30)) (-3747 (((-1285) (-1171)) 27) (((-1285) (-397)) 26)) (-3757 (((-1285)) 28)) (-2347 (((-1159 (-1171))) 29))) -(((-400) (-10 -7 (-15 -2347 ((-1159 (-1171)))) (-15 -3073 ((-1159 (-1171)))) (-15 -3757 ((-1285))) (-15 -3747 ((-1285) (-397))) (-15 -3747 ((-1285) (-1171))) (-15 -4345 ((-1171))))) (T -400)) -((-4345 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-400)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-400)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-400)))) (-3757 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-400)))) (-3073 (*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400)))) (-2347 (*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) -(-10 -7 (-15 -2347 ((-1159 (-1171)))) (-15 -3073 ((-1159 (-1171)))) (-15 -3757 ((-1285))) (-15 -3747 ((-1285) (-397))) (-15 -3747 ((-1285) (-1171))) (-15 -4345 ((-1171)))) -((-2534 (((-780) (-344 |#1| |#2| |#3| |#4|)) 16))) -(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|)))) (-13 (-376) (-371)) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -401)) -((-2534 (*1 *2 *3) (-12 (-5 *3 (-344 *4 *5 *6 *7)) (-4 *4 (-13 (-376) (-371))) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *7 (-350 *4 *5 *6)) (-5 *2 (-780)) (-5 *1 (-401 *4 *5 *6 *7))))) -(-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|)))) -((-2942 (((-403) |#1|) 11))) -(((-402 |#1|) (-10 -7 (-15 -2942 ((-403) |#1|))) (-1112)) (T -402)) -((-2942 (*1 *2 *3) (-12 (-5 *2 (-403)) (-5 *1 (-402 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2942 ((-403) |#1|))) -((-2848 (((-112) $ $) NIL)) (-3845 (((-653 (-1171)) $ (-653 (-1171))) 42)) (-2564 (((-653 (-1171)) $ (-653 (-1171))) 43)) (-3880 (((-653 (-1171)) $ (-653 (-1171))) 44)) (-3887 (((-653 (-1171)) $) 39)) (-3789 (($) 30)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3379 (((-653 (-1171)) $) 40)) (-2907 (((-653 (-1171)) $) 41)) (-1402 (((-1285) $ (-573)) 37) (((-1285) $) 38)) (-1835 (($ (-871) (-573)) 35)) (-2942 (((-871) $) 49) (($ (-871)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-403) (-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3379 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -2564 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171))))))) (T -403)) -((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-403)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-403)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-403)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3789 (*1 *1) (-5 *1 (-403))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3880 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-2564 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) -(-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3379 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -2564 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171)))))) -((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8))) -(((-404) (-141)) (T -404)) -((-3767 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-1285))))) -(-13 (-1230) (-622 (-871)) (-10 -8 (-15 -3767 ((-1285) $)))) -(((-622 (-871)) . T) ((-1230) . T)) -((-1695 (((-3 $ "failed") (-323 (-387))) 21) (((-3 $ "failed") (-323 (-573))) 19) (((-3 $ "failed") (-962 (-387))) 17) (((-3 $ "failed") (-962 (-573))) 15) (((-3 $ "failed") (-416 (-962 (-387)))) 13) (((-3 $ "failed") (-416 (-962 (-573)))) 11)) (-2205 (($ (-323 (-387))) 22) (($ (-323 (-573))) 20) (($ (-962 (-387))) 18) (($ (-962 (-573))) 16) (($ (-416 (-962 (-387)))) 14) (($ (-416 (-962 (-573)))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-4 *1 (-392))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-699 (-709)))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) +((-1706 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-965 (-388)))) 17) (((-3 $ "failed") (-699 (-965 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-965 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-965 (-574))))) 11)) (-2216 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-965 (-388)))) 18) (($ (-699 (-965 (-574)))) 16) (($ (-699 (-417 (-965 (-388))))) 14) (($ (-699 (-417 (-965 (-574))))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 23))) +(((-393) (-141)) (T -393)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))) (-15 -2216 ($ (-699 (-324 (-388))))) (-15 -1706 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2216 ($ (-699 (-324 (-574))))) (-15 -1706 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2216 ($ (-699 (-965 (-388))))) (-15 -1706 ((-3 $ "failed") (-699 (-965 (-388))))) (-15 -2216 ($ (-699 (-965 (-574))))) (-15 -1706 ((-3 $ "failed") (-699 (-965 (-574))))) (-15 -2216 ($ (-699 (-417 (-965 (-388)))))) (-15 -1706 ((-3 $ "failed") (-699 (-417 (-965 (-388)))))) (-15 -2216 ($ (-699 (-417 (-965 (-574)))))) (-15 -1706 ((-3 $ "failed") (-699 (-417 (-965 (-574)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4344 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 33)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1064) (-860)) (T -394)) +NIL +(-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-1497 (((-781) $) 34)) (-3063 (($) 19 T CONST)) (-2596 (((-3 $ "failed") $ $) 37)) (-1706 (((-3 |#1| "failed") $) 45)) (-2216 ((|#1| $) 46)) (-2978 (((-3 $ "failed") $) 16)) (-2557 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2276 (((-112) $) 18)) (-3757 ((|#1| $ (-574)) 31)) (-3661 (((-781) $ (-574)) 32)) (-3632 (($ $ $) 28 (|has| |#1| (-860)))) (-2953 (($ $ $) 27 (|has| |#1| (-860)))) (-3028 (($ (-1 |#1| |#1|) $) 29)) (-3826 (($ (-1 (-781) (-781)) $) 30)) (-4365 (((-3 $ "failed") $ $) 38)) (-1938 (((-1174) $) 10)) (-1480 (($ $ $) 39)) (-1533 (($ $ $) 40)) (-3939 (((-1135) $) 11)) (-2679 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-781)))) $) 33)) (-2696 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2950 (((-872) $) 12) (($ |#1|) 44)) (-4259 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-3040 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-395 |#1|) (-141) (-1115)) (T -395)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-1533 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-4365 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-2596 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-2696 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1115)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-2557 (*1 *2 *1 *1) (-12 (-4 *3 (-1115)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 (-781))))))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1115)) (-5 *2 (-781)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1115))))) +(-13 (-736) (-1053 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -1533 ($ $ $)) (-15 -1480 ($ $ $)) (-15 -4365 ((-3 $ "failed") $ $)) (-15 -2596 ((-3 $ "failed") $ $)) (-15 -2696 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2557 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1497 ((-781) $)) (-15 -2679 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1619 (-781)))) $)) (-15 -3661 ((-781) $ (-574))) (-15 -3757 (|t#1| $ (-574))) (-15 -3826 ($ (-1 (-781) (-781)) $)) (-15 -3028 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1053 |#1|) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781) $) 74)) (-3063 (($) NIL T CONST)) (-2596 (((-3 $ "failed") $ $) 77)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2557 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2276 (((-112) $) 17)) (-3757 ((|#1| $ (-574)) NIL)) (-3661 (((-781) $ (-574)) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-3028 (($ (-1 |#1| |#1|) $) 40)) (-3826 (($ (-1 (-781) (-781)) $) 37)) (-4365 (((-3 $ "failed") $ $) 60)) (-1938 (((-1174) $) NIL)) (-1480 (($ $ $) 28)) (-1533 (($ $ $) 26)) (-3939 (((-1135) $) NIL)) (-2679 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-781)))) $) 34)) (-2696 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2950 (((-872) $) 24) (($ |#1|) NIL)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 11 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-396 |#1|) (-395 |#1|) (-1115)) (T -396)) +NIL +(-395 |#1|) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 53)) (-2216 (((-574) $) 54)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-3632 (($ $ $) 60)) (-2953 (($ $ $) 59)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 57)) (-3017 (((-112) $ $) 56)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 58)) (-3008 (((-112) $ $) 55)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-397) (-141)) (T -397)) +NIL +(-13 (-566) (-860) (-1053 (-574))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-4162 (((-112) $) 25)) (-3538 (((-112) $) 22)) (-3763 (($ (-1174) (-1174) (-1174)) 26)) (-2041 (((-1174) $) 16)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3687 (($ (-1174) (-1174) (-1174)) 14)) (-1594 (((-1174) $) 17)) (-1842 (((-112) $) 18)) (-2581 (((-1174) $) 15)) (-2950 (((-872) $) 12) (($ (-1174)) 13) (((-1174) $) 9)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 7))) +(((-398) (-399)) (T -398)) +NIL +(-399) +((-2863 (((-112) $ $) 7)) (-4162 (((-112) $) 17)) (-3538 (((-112) $) 18)) (-3763 (($ (-1174) (-1174) (-1174)) 16)) (-2041 (((-1174) $) 21)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3687 (($ (-1174) (-1174) (-1174)) 23)) (-1594 (((-1174) $) 20)) (-1842 (((-112) $) 19)) (-2581 (((-1174) $) 22)) (-2950 (((-872) $) 12) (($ (-1174)) 25) (((-1174) $) 24)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-399) (-141)) (T -399)) +((-3687 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3763 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399))))) +(-13 (-1115) (-500 (-1174)) (-10 -8 (-15 -3687 ($ (-1174) (-1174) (-1174))) (-15 -2581 ((-1174) $)) (-15 -2041 ((-1174) $)) (-15 -1594 ((-1174) $)) (-15 -1842 ((-112) $)) (-15 -3538 ((-112) $)) (-15 -4162 ((-112) $)) (-15 -3763 ($ (-1174) (-1174) (-1174))))) +(((-102) . T) ((-626 #0=(-1174)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3586 (((-872) $) 63)) (-3063 (($) NIL T CONST)) (-3558 (($ $ (-934)) NIL)) (-2867 (($ $ (-934)) NIL)) (-2883 (($ $ (-934)) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($ (-781)) 38)) (-2900 (((-781)) 18)) (-2443 (((-872) $) 65)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-1391 (($ $ $ $) NIL)) (-2824 (($ $ $) NIL)) (-2143 (($) 24 T CONST)) (-2985 (((-112) $ $) 41)) (-3089 (($ $) 48) (($ $ $) 50)) (-3073 (($ $ $) 51)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -2900 ((-781))) (-15 -2443 ((-872) $)) (-15 -3586 ((-872) $)) (-15 -2974 ($ (-781))))) (-781) (-781) (-174)) (T -400)) +((-2900 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-754 |#3|) (-10 -8 (-15 -2900 ((-781))) (-15 -2443 ((-872) $)) (-15 -3586 ((-872) $)) (-15 -2974 ($ (-781))))) +((-2606 (((-1174)) 12)) (-3426 (((-1162 (-1174))) 30)) (-3721 (((-1288) (-1174)) 27) (((-1288) (-398)) 26)) (-3731 (((-1288)) 28)) (-2728 (((-1162 (-1174))) 29))) +(((-401) (-10 -7 (-15 -2728 ((-1162 (-1174)))) (-15 -3426 ((-1162 (-1174)))) (-15 -3731 ((-1288))) (-15 -3721 ((-1288) (-398))) (-15 -3721 ((-1288) (-1174))) (-15 -2606 ((-1174))))) (T -401)) +((-2606 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-401)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-401)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-401)))) (-3731 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-401)))) (-3426 (*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401)))) (-2728 (*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) +(-10 -7 (-15 -2728 ((-1162 (-1174)))) (-15 -3426 ((-1162 (-1174)))) (-15 -3731 ((-1288))) (-15 -3721 ((-1288) (-398))) (-15 -3721 ((-1288) (-1174))) (-15 -2606 ((-1174)))) +((-3837 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16))) +(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3837 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402)) +((-3837 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) +(-10 -7 (-15 -3837 ((-781) (-345 |#1| |#2| |#3| |#4|)))) +((-2950 (((-404) |#1|) 11))) +(((-403 |#1|) (-10 -7 (-15 -2950 ((-404) |#1|))) (-1115)) (T -403)) +((-2950 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1115))))) +(-10 -7 (-15 -2950 ((-404) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1364 (((-654 (-1174)) $ (-654 (-1174))) 42)) (-4133 (((-654 (-1174)) $ (-654 (-1174))) 43)) (-1700 (((-654 (-1174)) $ (-654 (-1174))) 44)) (-3695 (((-654 (-1174)) $) 39)) (-3763 (($) 30)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3353 (((-654 (-1174)) $) 40)) (-3174 (((-654 (-1174)) $) 41)) (-1413 (((-1288) $ (-574)) 37) (((-1288) $) 38)) (-1846 (($ (-872) (-574)) 35)) (-2950 (((-872) $) 49) (($ (-872)) 32)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-404) (-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1846 ($ (-872) (-574))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3174 ((-654 (-1174)) $)) (-15 -3353 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -3695 ((-654 (-1174)) $)) (-15 -1700 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -4133 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1364 ((-654 (-1174)) $ (-654 (-1174))))))) (T -404)) +((-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-404)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-404)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-3763 (*1 *1) (-5 *1 (-404))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-1700 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-4133 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) (-1364 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) +(-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1846 ($ (-872) (-574))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3174 ((-654 (-1174)) $)) (-15 -3353 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -3695 ((-654 (-1174)) $)) (-15 -1700 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -4133 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1364 ((-654 (-1174)) $ (-654 (-1174)))))) +((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8))) (((-405) (-141)) (T -405)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-405)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-405)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))))) -(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) -((-3404 (((-653 (-1171)) (-653 (-1171))) 9)) (-3767 (((-1285) (-397)) 26)) (-1640 (((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189))) 59) (((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189)) 34) (((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189))) 33))) -(((-406) (-10 -7 (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)))) (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189))) (-15 -1640 ((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189)))) (-15 -3767 ((-1285) (-397))) (-15 -3404 ((-653 (-1171)) (-653 (-1171)))))) (T -406)) -((-3404 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-406)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *5 (-1192)) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406))))) -(-10 -7 (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)))) (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189))) (-15 -1640 ((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189)))) (-15 -3767 ((-1285) (-397))) (-15 -3404 ((-653 (-1171)) (-653 (-1171))))) -((-3767 (((-1285) $) 35)) (-2942 (((-871) $) 97) (($ (-337)) 99) (($ (-653 (-337))) 98) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 96) (($ (-323 (-710))) 52) (($ (-323 (-708))) 72) (($ (-323 (-703))) 85) (($ (-301 (-323 (-710)))) 67) (($ (-301 (-323 (-708)))) 80) (($ (-301 (-323 (-703)))) 93) (($ (-323 (-573))) 104) (($ (-323 (-387))) 117) (($ (-323 (-171 (-387)))) 130) (($ (-301 (-323 (-573)))) 112) (($ (-301 (-323 (-387)))) 125) (($ (-301 (-323 (-171 (-387))))) 138))) -(((-407 |#1| |#2| |#3| |#4|) (-13 (-404) (-10 -8 (-15 -2942 ($ (-337))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2942 ($ (-323 (-710)))) (-15 -2942 ($ (-323 (-708)))) (-15 -2942 ($ (-323 (-703)))) (-15 -2942 ($ (-301 (-323 (-710))))) (-15 -2942 ($ (-301 (-323 (-708))))) (-15 -2942 ($ (-301 (-323 (-703))))) (-15 -2942 ($ (-323 (-573)))) (-15 -2942 ($ (-323 (-387)))) (-15 -2942 ($ (-323 (-171 (-387))))) (-15 -2942 ($ (-301 (-323 (-573))))) (-15 -2942 ($ (-301 (-323 (-387))))) (-15 -2942 ($ (-301 (-323 (-171 (-387)))))))) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-1193)) (T -407)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-710)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-708)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-703)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-573)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-171 (-387))))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-337))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2942 ($ (-323 (-710)))) (-15 -2942 ($ (-323 (-708)))) (-15 -2942 ($ (-323 (-703)))) (-15 -2942 ($ (-301 (-323 (-710))))) (-15 -2942 ($ (-301 (-323 (-708))))) (-15 -2942 ($ (-301 (-323 (-703))))) (-15 -2942 ($ (-323 (-573)))) (-15 -2942 ($ (-323 (-387)))) (-15 -2942 ($ (-323 (-171 (-387))))) (-15 -2942 ($ (-301 (-323 (-573))))) (-15 -2942 ($ (-301 (-323 (-387))))) (-15 -2942 ($ (-301 (-323 (-171 (-387)))))))) -((-2848 (((-112) $ $) NIL)) (-2868 ((|#2| $) 38)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2090 (($ (-416 |#2|)) 93)) (-3954 (((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $) 39)) (-3904 (($ $) 34) (($ $ (-780)) 36)) (-1835 (((-416 |#2|) $) 49)) (-2955 (($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|)))) 33)) (-2942 (((-871) $) 131)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $) 35) (($ $ (-780)) 37)) (-2981 (((-112) $ $) NIL)) (-3077 (($ |#2| $) 41))) -(((-408 |#1| |#2|) (-13 (-1112) (-623 (-416 |#2|)) (-10 -8 (-15 -3077 ($ |#2| $)) (-15 -2090 ($ (-416 |#2|))) (-15 -2868 (|#2| $)) (-15 -3954 ((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))))) (-15 -3904 ($ $)) (-15 -3609 ($ $)) (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) (-13 (-371) (-148)) (-1256 |#1|)) (T -408)) -((-3077 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *2)) (-4 *2 (-1256 *3)))) (-2090 (*1 *1 *2) (-12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-371) (-148))))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-13 (-371) (-148))) (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) (-3904 (*1 *1 *1) (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) (-4 *3 (-1256 *2)))) (-3609 (*1 *1 *1) (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) (-4 *3 (-1256 *2)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3))))) -(-13 (-1112) (-623 (-416 |#2|)) (-10 -8 (-15 -3077 ($ |#2| $)) (-15 -2090 ($ (-416 |#2|))) (-15 -2868 (|#2| $)) (-15 -3954 ((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))))) (-15 -3904 ($ $)) (-15 -3609 ($ $)) (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) -((-2848 (((-112) $ $) 9 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 16 (|has| |#1| (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 15 (|has| |#1| (-896 (-573))))) (-3180 (((-1171) $) 13 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-3965 (((-1132) $) 12 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-2942 (((-871) $) 11 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-3507 (((-112) $ $) 14 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-2981 (((-112) $ $) 10 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387))))))) -(((-409 |#1|) (-141) (-1230)) (T -409)) -NIL -(-13 (-1230) (-10 -7 (IF (|has| |t#1| (-896 (-573))) (-6 (-896 (-573))) |%noBranch|) (IF (|has| |t#1| (-896 (-387))) (-6 (-896 (-387))) |%noBranch|))) -(((-102) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-622 (-871)) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-1112) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-1230) . T)) -((-2104 (($ $) 10) (($ $ (-780)) 12))) -(((-410 |#1|) (-10 -8 (-15 -2104 (|#1| |#1| (-780))) (-15 -2104 (|#1| |#1|))) (-411)) (T -410)) -NIL -(-10 -8 (-15 -2104 (|#1| |#1| (-780))) (-15 -2104 (|#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2104 (($ $) 87) (($ $ (-780)) 86)) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 89)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 88)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-4279 (((-3 $ "failed") $) 90)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) -(((-411) (-141)) (T -411)) -((-2534 (*1 *2 *1) (-12 (-4 *1 (-411)) (-5 *2 (-842 (-931))))) (-1637 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-411)) (-5 *2 (-780)))) (-2104 (*1 *1 *1) (-4 *1 (-411))) (-2104 (*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-780))))) -(-13 (-371) (-146) (-10 -8 (-15 -2534 ((-842 (-931)) $)) (-15 -1637 ((-3 (-780) "failed") $ $)) (-15 -2104 ($ $)) (-15 -2104 ($ $ (-780))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-2383 (($ (-573) (-573)) 11) (($ (-573) (-573) (-931)) NIL)) (-3006 (((-931)) 19) (((-931) (-931)) NIL))) -(((-412 |#1|) (-10 -8 (-15 -3006 ((-931) (-931))) (-15 -3006 ((-931))) (-15 -2383 (|#1| (-573) (-573) (-931))) (-15 -2383 (|#1| (-573) (-573)))) (-413)) (T -412)) -((-3006 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413))))) -(-10 -8 (-15 -3006 ((-931) (-931))) (-15 -3006 ((-931))) (-15 -2383 (|#1| (-573) (-573) (-931))) (-15 -2383 (|#1| (-573) (-573)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 (((-573) $) 97)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1442 (($ $) 95)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 105)) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 122)) (-2579 (($) 18 T CONST)) (-2350 (($ $) 94)) (-1695 (((-3 (-573) "failed") $) 110) (((-3 (-416 (-573)) "failed") $) 107)) (-2205 (((-573) $) 111) (((-416 (-573)) $) 108)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-3785 (((-931)) 138) (((-931) (-931)) 135 (|has| $ (-6 -4446)))) (-4152 (((-112) $) 120)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 101)) (-2534 (((-573) $) 144)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 104)) (-3421 (($ $) 100)) (-3339 (((-112) $) 121)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 119) (($) 132 (-12 (-2075 (|has| $ (-6 -4446))) (-2075 (|has| $ (-6 -4438)))))) (-3751 (($ $ $) 118) (($) 131 (-12 (-2075 (|has| $ (-6 -4446))) (-2075 (|has| $ (-6 -4438)))))) (-4299 (((-573) $) 141)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-2827 (((-931) (-573)) 134 (|has| $ (-6 -4446)))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 96)) (-3733 (($ $) 98)) (-2383 (($ (-573) (-573)) 146) (($ (-573) (-573) (-931)) 145)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-3907 (((-573) $) 142)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3006 (((-931)) 139) (((-931) (-931)) 136 (|has| $ (-6 -4446)))) (-2985 (((-931) (-573)) 133 (|has| $ (-6 -4446)))) (-1835 (((-387) $) 113) (((-227) $) 112) (((-902 (-387)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-573)) 109) (($ (-416 (-573))) 106)) (-1545 (((-780)) 32 T CONST)) (-2437 (($ $) 99)) (-2628 (((-931)) 140) (((-931) (-931)) 137 (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) 9)) (-2629 (((-931)) 143)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 123)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3015 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) -(((-413) (-141)) (T -413)) -((-2383 (*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-413)))) (-2383 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-4 *1 (-413)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-2629 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-2628 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3006 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3785 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) (-5 *2 (-931)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) (-5 *2 (-931)))) (-3659 (*1 *1) (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) (-2075 (|has| *1 (-6 -4438))))) (-3751 (*1 *1) (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) (-2075 (|has| *1 (-6 -4438)))))) -(-13 (-1072) (-10 -8 (-6 -3550) (-15 -2383 ($ (-573) (-573))) (-15 -2383 ($ (-573) (-573) (-931))) (-15 -2534 ((-573) $)) (-15 -2629 ((-931))) (-15 -3907 ((-573) $)) (-15 -4299 ((-573) $)) (-15 -2628 ((-931))) (-15 -3006 ((-931))) (-15 -3785 ((-931))) (IF (|has| $ (-6 -4446)) (PROGN (-15 -2628 ((-931) (-931))) (-15 -3006 ((-931) (-931))) (-15 -3785 ((-931) (-931))) (-15 -2827 ((-931) (-573))) (-15 -2985 ((-931) (-573)))) |%noBranch|) (IF (|has| $ (-6 -4438)) |%noBranch| (IF (|has| $ (-6 -4446)) |%noBranch| (PROGN (-15 -3659 ($)) (-15 -3751 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-902 (-387))) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-896 (-387)) . T) ((-930) . T) ((-1014) . T) ((-1034) . T) ((-1072) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-1776 (((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)) 20))) -(((-414 |#1| |#2|) (-10 -7 (-15 -1776 ((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)))) (-565) (-565)) (T -414)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-427 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-5 *2 (-427 *6)) (-5 *1 (-414 *5 *6))))) -(-10 -7 (-15 -1776 ((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)))) -((-1776 (((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)) 13))) -(((-415 |#1| |#2|) (-10 -7 (-15 -1776 ((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)))) (-565) (-565)) (T -415)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-416 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-5 *2 (-416 *6)) (-5 *1 (-415 *5 *6))))) -(-10 -7 (-15 -1776 ((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 13)) (-3770 ((|#1| $) 21 (|has| |#1| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#1| (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 17) (((-3 (-1189) "failed") $) NIL (|has| |#1| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 72 (|has| |#1| (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 15) (((-1189) $) NIL (|has| |#1| (-1050 (-1189)))) (((-416 (-573)) $) 69 (|has| |#1| (-1050 (-573)))) (((-573) $) NIL (|has| |#1| (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 51)) (-2819 (($) NIL (|has| |#1| (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| |#1| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#1| (-896 (-387))))) (-1959 (((-112) $) 57)) (-3041 (($ $) NIL)) (-2965 ((|#1| $) 73)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-3339 (((-112) $) NIL (|has| |#1| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 100)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| |#1| (-314)))) (-3733 ((|#1| $) 28 (|has| |#1| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 145 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 138 (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) NIL)) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2662 (($ $) NIL)) (-2975 ((|#1| $) 75)) (-1835 (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (((-545) $) NIL (|has| |#1| (-623 (-545)))) (((-387) $) NIL (|has| |#1| (-1034))) (((-227) $) NIL (|has| |#1| (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 10) (($ (-1189)) NIL (|has| |#1| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) 102 (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 103 T CONST)) (-2437 ((|#1| $) 26 (|has| |#1| (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-829)))) (-2132 (($) 22 T CONST)) (-2144 (($) 8 T CONST)) (-2808 (((-1171) $) 44 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1171) $ (-112)) 45 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1285) (-831) $) 46 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1285) (-831) $ (-112)) 47 (-12 (|has| |#1| (-554)) (|has| |#1| (-837))))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) 66)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 24 (|has| |#1| (-859)))) (-3103 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3093 (($ $) 25) (($ $ $) 56)) (-3077 (($ $ $) 54)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 132)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 61) (($ $ $) 58) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-416 |#1|) (-13 (-1004 |#1|) (-10 -7 (IF (|has| |#1| (-554)) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (IF (|has| |#1| (-461)) (IF (|has| |#1| (-6 -4453)) (-6 -4442) |%noBranch|) |%noBranch|) |%noBranch|))) (-565)) (T -416)) -NIL -(-13 (-1004 |#1|) (-10 -7 (IF (|has| |#1| (-554)) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (IF (|has| |#1| (-461)) (IF (|has| |#1| (-6 -4453)) (-6 -4442) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2114 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 18)) (-2854 (($ (-1280 |#2|) (-1280 $)) NIL) (($ (-1280 |#2|)) 24)) (-1720 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 40)) (-2297 ((|#3| $) 69)) (-3592 ((|#2| (-1280 $)) NIL) ((|#2|) 20)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 22) (((-698 |#2|) (-1280 $)) 38)) (-1835 (((-1280 |#2|) $) 11) (($ (-1280 |#2|)) 13)) (-2517 ((|#3| $) 55))) -(((-417 |#1| |#2| |#3|) (-10 -8 (-15 -1720 ((-698 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -2114 ((-698 |#2|))) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 (|#3| |#1|)) (-15 -2517 (|#3| |#1|)) (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) (-418 |#2| |#3|) (-174) (-1256 |#2|)) (T -417)) -((-2114 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)) (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-418 *4 *5)))) (-3592 (*1 *2) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-174)) (-5 *1 (-417 *3 *2 *4)) (-4 *3 (-418 *2 *4))))) -(-10 -8 (-15 -1720 ((-698 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -2114 ((-698 |#2|))) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 (|#3| |#1|)) (-15 -2517 (|#3| |#1|)) (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-4279 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-418 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -418)) -((-3914 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *1)) (-4 *1 (-418 *3 *4)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-418 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) (-4 *4 (-1256 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) (-4 *4 (-1256 *3)))) (-2114 (*1 *2) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-698 *3)))) (-3592 (*1 *2) (-12 (-4 *1 (-418 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-698 *3))))) -(-13 (-378 |t#1| |t#2|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -1835 ((-1280 |t#1|) $)) (-15 -1835 ($ (-1280 |t#1|))) (-15 -2114 ((-698 |t#1|))) (-15 -3592 (|t#1|)) (-15 -1720 ((-698 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-378 |#1| |#2|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) 27) (((-3 (-573) "failed") $) 19)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) 24) (((-573) $) 14)) (-2942 (($ |#2|) NIL) (($ (-416 (-573))) 22) (($ (-573)) 11))) -(((-419 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|))) (-420 |#2|) (-1230)) (T -419)) -NIL -(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|))) -((-1695 (((-3 |#1| "failed") $) 9) (((-3 (-416 (-573)) "failed") $) 16 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 13 (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 8) (((-416 (-573)) $) 17 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 14 (|has| |#1| (-1050 (-573))))) (-2942 (($ |#1|) 6) (($ (-416 (-573))) 15 (|has| |#1| (-1050 (-416 (-573))))) (($ (-573)) 12 (|has| |#1| (-1050 (-573)))))) -(((-420 |#1|) (-141) (-1230)) (T -420)) -NIL -(-13 (-1050 |t#1|) (-10 -7 (IF (|has| |t#1| (-1050 (-573))) (-6 (-1050 (-573))) |%noBranch|) (IF (|has| |t#1| (-1050 (-416 (-573)))) (-6 (-1050 (-416 (-573)))) |%noBranch|))) -(((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 #1=(-573)) |has| |#1| (-1050 (-573))) ((-625 |#1|) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 #1#) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T)) -((-1776 (((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)) 35))) -(((-421 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)))) (-314) (-1004 |#1|) (-1256 |#2|) (-13 (-418 |#2| |#3|) (-1050 |#2|)) (-314) (-1004 |#5|) (-1256 |#6|) (-13 (-418 |#6| |#7|) (-1050 |#6|))) (T -421)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-422 *5 *6 *7 *8)) (-4 *5 (-314)) (-4 *6 (-1004 *5)) (-4 *7 (-1256 *6)) (-4 *8 (-13 (-418 *6 *7) (-1050 *6))) (-4 *9 (-314)) (-4 *10 (-1004 *9)) (-4 *11 (-1256 *10)) (-5 *2 (-422 *9 *10 *11 *12)) (-5 *1 (-421 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-418 *10 *11) (-1050 *10)))))) -(-10 -7 (-15 -1776 ((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)))) -((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-2665 ((|#4| (-780) (-1280 |#4|)) 55)) (-1959 (((-112) $) NIL)) (-2965 (((-1280 |#4|) $) 15)) (-3421 ((|#2| $) 53)) (-3213 (($ $) 157)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 103)) (-1339 (($ (-1280 |#4|)) 102)) (-3965 (((-1132) $) NIL)) (-2975 ((|#1| $) 16)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 148)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 |#4|) $) 141)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) 39)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 134)) (* (($ $ $) 130))) -(((-422 |#1| |#2| |#3| |#4|) (-13 (-482) (-10 -8 (-15 -1339 ($ (-1280 |#4|))) (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -2965 ((-1280 |#4|) $)) (-15 -2975 (|#1| $)) (-15 -3213 ($ $)) (-15 -2665 (|#4| (-780) (-1280 |#4|))))) (-314) (-1004 |#1|) (-1256 |#2|) (-13 (-418 |#2| |#3|) (-1050 |#2|))) (T -422)) -((-1339 (*1 *1 *2) (-12 (-5 *2 (-1280 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3914 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) (-3421 (*1 *2 *1) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *3 (-314)) (-4 *5 (-13 (-418 *2 *4) (-1050 *2))))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-4 *2 (-314)) (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) (-3213 (*1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1280 *2)) (-4 *5 (-314)) (-4 *6 (-1004 *5)) (-4 *2 (-13 (-418 *6 *7) (-1050 *6))) (-5 *1 (-422 *5 *6 *7 *2)) (-4 *7 (-1256 *6))))) -(-13 (-482) (-10 -8 (-15 -1339 ($ (-1280 |#4|))) (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -2965 ((-1280 |#4|) $)) (-15 -2975 (|#1| $)) (-15 -3213 ($ $)) (-15 -2665 (|#4| (-780) (-1280 |#4|))))) -((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3421 ((|#2| $) 71)) (-3985 (($ (-1280 |#4|)) 27) (($ (-422 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1050 |#2|)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 37)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 |#4|) $) 28)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ $ $) 82))) -(((-423 |#1| |#2| |#3| |#4| |#5|) (-13 (-735) (-10 -8 (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -3985 ($ (-1280 |#4|))) (IF (|has| |#4| (-1050 |#2|)) (-15 -3985 ($ (-422 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-314) (-1004 |#1|) (-1256 |#2|) (-418 |#2| |#3|) (-1280 |#4|)) (T -423)) -((-3914 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)) (-4 *6 (-418 *4 *5)) (-14 *7 *2))) (-3421 (*1 *2 *1) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-423 *3 *2 *4 *5 *6)) (-4 *3 (-314)) (-4 *5 (-418 *2 *4)) (-14 *6 (-1280 *5)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-1280 *6)) (-4 *6 (-418 *4 *5)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-423 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-422 *3 *4 *5 *6)) (-4 *6 (-1050 *4)) (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *6 (-418 *4 *5)) (-14 *7 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7))))) -(-13 (-735) (-10 -8 (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -3985 ($ (-1280 |#4|))) (IF (|has| |#4| (-1050 |#2|)) (-15 -3985 ($ (-422 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-426 |#2|) (-174) (-426 |#4|) (-174)) (T -424)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-426 *6)) (-5 *1 (-424 *4 *5 *2 *6)) (-4 *4 (-426 *5))))) -(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) -((-1642 (((-3 $ "failed")) 98)) (-3119 (((-1280 (-698 |#2|)) (-1280 $)) NIL) (((-1280 (-698 |#2|))) 103)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 96)) (-3360 (((-3 $ "failed")) 95)) (-1454 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 114)) (-3612 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 122)) (-2743 (((-1185 (-962 |#2|))) 63)) (-4053 ((|#2| (-1280 $)) NIL) ((|#2|) 118)) (-2854 (($ (-1280 |#2|) (-1280 $)) NIL) (($ (-1280 |#2|)) 124)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 94)) (-3675 (((-3 $ "failed")) 86)) (-2582 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 112)) (-1729 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 120)) (-3753 (((-1185 (-962 |#2|))) 62)) (-1912 ((|#2| (-1280 $)) NIL) ((|#2|) 116)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 123) (((-698 |#2|) (-1280 $)) 132)) (-1835 (((-1280 |#2|) $) 108) (($ (-1280 |#2|)) 110)) (-1664 (((-653 (-962 |#2|)) (-1280 $)) NIL) (((-653 (-962 |#2|))) 106)) (-2900 (($ (-698 |#2|) $) 102))) -(((-425 |#1| |#2|) (-10 -8 (-15 -2900 (|#1| (-698 |#2|) |#1|)) (-15 -2743 ((-1185 (-962 |#2|)))) (-15 -3753 ((-1185 (-962 |#2|)))) (-15 -3612 ((-698 |#2|) |#1|)) (-15 -1729 ((-698 |#2|) |#1|)) (-15 -1454 ((-698 |#2|))) (-15 -2582 ((-698 |#2|))) (-15 -4053 (|#2|)) (-15 -1912 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -1664 ((-653 (-962 |#2|)))) (-15 -3119 ((-1280 (-698 |#2|)))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -1642 ((-3 |#1| "failed"))) (-15 -3360 ((-3 |#1| "failed"))) (-15 -3675 ((-3 |#1| "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1447 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|))) (-15 -1664 ((-653 (-962 |#2|)) (-1280 |#1|)))) (-426 |#2|) (-174)) (T -425)) -((-3119 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1664 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1912 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) (-4053 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) (-2582 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1454 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-3753 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-2743 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))) -(-10 -8 (-15 -2900 (|#1| (-698 |#2|) |#1|)) (-15 -2743 ((-1185 (-962 |#2|)))) (-15 -3753 ((-1185 (-962 |#2|)))) (-15 -3612 ((-698 |#2|) |#1|)) (-15 -1729 ((-698 |#2|) |#1|)) (-15 -1454 ((-698 |#2|))) (-15 -2582 ((-698 |#2|))) (-15 -4053 (|#2|)) (-15 -1912 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -1664 ((-653 (-962 |#2|)))) (-15 -3119 ((-1280 (-698 |#2|)))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -1642 ((-3 |#1| "failed"))) (-15 -3360 ((-3 |#1| "failed"))) (-15 -3675 ((-3 |#1| "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1447 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|))) (-15 -1664 ((-653 (-962 |#2|)) (-1280 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1642 (((-3 $ "failed")) 42 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) 83) (((-1280 (-698 |#1|))) 106)) (-1888 (((-1280 $)) 86)) (-2579 (($) 18 T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 45 (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) 43 (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) 70) (((-698 |#1|)) 98)) (-1390 ((|#1| $) 79)) (-3612 (((-698 |#1|) $ (-1280 $)) 81) (((-698 |#1|) $) 96)) (-1546 (((-3 $ "failed") $) 50 (|has| |#1| (-565)))) (-2743 (((-1185 (-962 |#1|))) 94 (|has| |#1| (-371)))) (-3681 (($ $ (-931)) 31)) (-3729 ((|#1| $) 77)) (-3397 (((-1185 |#1|) $) 47 (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) 72) ((|#1|) 100)) (-2650 (((-1185 |#1|) $) 68)) (-2492 (((-112)) 62)) (-2854 (($ (-1280 |#1|) (-1280 $)) 74) (($ (-1280 |#1|)) 104)) (-2232 (((-3 $ "failed") $) 52 (|has| |#1| (-565)))) (-3583 (((-931)) 85)) (-3720 (((-112)) 59)) (-3009 (($ $ (-931)) 38)) (-4275 (((-112)) 55)) (-1922 (((-112)) 53)) (-1565 (((-112)) 57)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 46 (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) 44 (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) 71) (((-698 |#1|)) 99)) (-3619 ((|#1| $) 80)) (-1729 (((-698 |#1|) $ (-1280 $)) 82) (((-698 |#1|) $) 97)) (-2780 (((-3 $ "failed") $) 51 (|has| |#1| (-565)))) (-3753 (((-1185 (-962 |#1|))) 95 (|has| |#1| (-371)))) (-2022 (($ $ (-931)) 32)) (-3420 ((|#1| $) 78)) (-2000 (((-1185 |#1|) $) 48 (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) 73) ((|#1|) 101)) (-3242 (((-1185 |#1|) $) 69)) (-3455 (((-112)) 63)) (-3180 (((-1171) $) 10)) (-2509 (((-112)) 54)) (-3313 (((-112)) 56)) (-4293 (((-112)) 58)) (-3965 (((-1132) $) 11)) (-3209 (((-112)) 61)) (-2198 ((|#1| $ (-573)) 110)) (-2123 (((-1280 |#1|) $ (-1280 $)) 76) (((-698 |#1|) (-1280 $) (-1280 $)) 75) (((-1280 |#1|) $) 108) (((-698 |#1|) (-1280 $)) 107)) (-1835 (((-1280 |#1|) $) 103) (($ (-1280 |#1|)) 102)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) 84) (((-653 (-962 |#1|))) 105)) (-4380 (($ $ $) 28)) (-2774 (((-112)) 67)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 109)) (-2649 (((-653 (-1280 |#1|))) 49 (|has| |#1| (-565)))) (-3531 (($ $ $ $) 29)) (-2661 (((-112)) 65)) (-2900 (($ (-698 |#1|) $) 93)) (-4366 (($ $ $) 27)) (-1469 (((-112)) 66)) (-4243 (((-112)) 64)) (-2744 (((-112)) 60)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-426 |#1|) (-141) (-174)) (T -426)) -((-3914 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-426 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-426 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3119 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 (-698 *3))))) (-1664 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-653 (-962 *3))))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) (-1912 (*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174)))) (-4053 (*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174)))) (-2582 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-1454 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-3753 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) (-5 *2 (-1185 (-962 *3))))) (-2743 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) (-5 *2 (-1185 (-962 *3))))) (-2900 (*1 *1 *2 *1) (-12 (-5 *2 (-698 *3)) (-4 *1 (-426 *3)) (-4 *3 (-174))))) -(-13 (-375 |t#1|) (-293 (-573) |t#1|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -3119 ((-1280 (-698 |t#1|)))) (-15 -1664 ((-653 (-962 |t#1|)))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -1835 ((-1280 |t#1|) $)) (-15 -1835 ($ (-1280 |t#1|))) (-15 -1912 (|t#1|)) (-15 -4053 (|t#1|)) (-15 -2582 ((-698 |t#1|))) (-15 -1454 ((-698 |t#1|))) (-15 -1729 ((-698 |t#1|) $)) (-15 -3612 ((-698 |t#1|) $)) (IF (|has| |t#1| (-371)) (PROGN (-15 -3753 ((-1185 (-962 |t#1|)))) (-15 -2743 ((-1185 (-962 |t#1|))))) |%noBranch|) (-15 -2900 ($ (-698 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-293 (-573) |#1|) . T) ((-375 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-753 |#1|) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 60)) (-2881 (($ $) 78)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 192)) (-2456 (($ $) NIL)) (-1345 (((-112) $) 48)) (-1642 ((|#1| $) 16)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-1234)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-1234)))) (-2217 (($ |#1| (-573)) 42)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 149)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 74)) (-2232 (((-3 $ "failed") $) 165)) (-3810 (((-3 (-416 (-573)) "failed") $) 85 (|has| |#1| (-554)))) (-2551 (((-112) $) 81 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 92 (|has| |#1| (-554)))) (-1393 (($ |#1| (-573)) 44)) (-2696 (((-112) $) 212 (|has| |#1| (-1234)))) (-1959 (((-112) $) 62)) (-4147 (((-780) $) 51)) (-3037 (((-3 "nil" "sqfr" "irred" "prime") $ (-573)) 176)) (-2841 ((|#1| $ (-573)) 175)) (-2746 (((-573) $ (-573)) 174)) (-3603 (($ |#1| (-573)) 41)) (-1776 (($ (-1 |#1| |#1|) $) 184)) (-3933 (($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573))))) 79)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4139 (($ |#1| (-573)) 43)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) 193 (|has| |#1| (-461)))) (-2886 (($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1687 (((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $) 73)) (-3572 (((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $) 12)) (-4218 (((-427 $) $) NIL (|has| |#1| (-1234)))) (-2837 (((-3 $ "failed") $ $) 177)) (-3907 (((-573) $) 168)) (-2127 ((|#1| $) 75)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 101 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 107 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) $) NIL (|has| |#1| (-523 (-1189) $))) (($ $ (-653 (-1189)) (-653 $)) 108 (|has| |#1| (-523 (-1189) $))) (($ $ (-653 (-301 $))) 104 (|has| |#1| (-316 $))) (($ $ (-301 $)) NIL (|has| |#1| (-316 $))) (($ $ $ $) NIL (|has| |#1| (-316 $))) (($ $ (-653 $) (-653 $)) NIL (|has| |#1| (-316 $)))) (-2198 (($ $ |#1|) 93 (|has| |#1| (-293 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-293 $ $)))) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1835 (((-545) $) 39 (|has| |#1| (-623 (-545)))) (((-387) $) 114 (|has| |#1| (-1034))) (((-227) $) 120 (|has| |#1| (-1034)))) (-2942 (((-871) $) 147) (($ (-573)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573)))))) (-1545 (((-780)) 67 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 53 T CONST)) (-2144 (($) 52 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 160)) (-3093 (($ $) 162) (($ $ $) NIL)) (-3077 (($ $ $) 181)) (** (($ $ (-931)) NIL) (($ $ (-780)) 126)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-427 |#1|) (-13 (-565) (-233 |#1|) (-38 |#1|) (-346 |#1|) (-420 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -3907 ((-573) $)) (-15 -3933 ($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))))) (-15 -3572 ((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $)) (-15 -3603 ($ |#1| (-573))) (-15 -1687 ((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $)) (-15 -4139 ($ |#1| (-573))) (-15 -2746 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3037 ((-3 "nil" "sqfr" "irred" "prime") $ (-573))) (-15 -4147 ((-780) $)) (-15 -1393 ($ |#1| (-573))) (-15 -2217 ($ |#1| (-573))) (-15 -2886 ($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1642 (|#1| $)) (-15 -2881 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-461)) (-6 (-461)) |%noBranch|) (IF (|has| |#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |#1| (-1234)) (-6 (-1234)) |%noBranch|) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-293 $ $)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |#1| (-316 $)) (-6 (-316 $)) |%noBranch|) (IF (|has| |#1| (-523 (-1189) $)) (-6 (-523 (-1189) $)) |%noBranch|))) (-565)) (T -427)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-565)) (-5 *1 (-427 *3)))) (-2127 (*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-3933 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-573))))) (-4 *2 (-565)) (-5 *1 (-427 *2)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-573))))) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -3907 (-573))))) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2746 (*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-427 *4)) (-4 *4 (-565)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2217 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2886 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-1642 (*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2881 (*1 *1 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565))))) -(-13 (-565) (-233 |#1|) (-38 |#1|) (-346 |#1|) (-420 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -3907 ((-573) $)) (-15 -3933 ($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))))) (-15 -3572 ((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $)) (-15 -3603 ($ |#1| (-573))) (-15 -1687 ((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $)) (-15 -4139 ($ |#1| (-573))) (-15 -2746 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3037 ((-3 "nil" "sqfr" "irred" "prime") $ (-573))) (-15 -4147 ((-780) $)) (-15 -1393 ($ |#1| (-573))) (-15 -2217 ($ |#1| (-573))) (-15 -2886 ($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1642 (|#1| $)) (-15 -2881 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-461)) (-6 (-461)) |%noBranch|) (IF (|has| |#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |#1| (-1234)) (-6 (-1234)) |%noBranch|) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-293 $ $)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |#1| (-316 $)) (-6 (-316 $)) |%noBranch|) (IF (|has| |#1| (-523 (-1189) $)) (-6 (-523 (-1189) $)) |%noBranch|))) -((-4143 (((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|)) 28)) (-2271 (((-427 |#1|) (-427 |#1|) (-427 |#1|)) 17))) -(((-428 |#1|) (-10 -7 (-15 -4143 ((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|))) (-15 -2271 ((-427 |#1|) (-427 |#1|) (-427 |#1|)))) (-565)) (T -428)) -((-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-427 *3)) (-4 *3 (-565)) (-5 *1 (-428 *3)))) (-4143 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-427 *4) *4)) (-4 *4 (-565)) (-5 *2 (-427 *4)) (-5 *1 (-428 *4))))) -(-10 -7 (-15 -4143 ((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|))) (-15 -2271 ((-427 |#1|) (-427 |#1|) (-427 |#1|)))) -((-1421 ((|#2| |#2|) 183)) (-2109 (((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112)) 60))) -(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 ((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112))) (-15 -1421 (|#2| |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -429)) -((-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-429 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1215) (-439 *3))) (-14 *4 (-1189)) (-14 *5 *2))) (-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |%expansion| (-320 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-429 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-14 *6 (-1189)) (-14 *7 *3)))) -(-10 -7 (-15 -2109 ((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112))) (-15 -1421 (|#2| |#2|))) -((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1061) (-439 |#1|) (-1061) (-439 |#3|)) (T -430)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-439 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-439 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) -((-1421 ((|#2| |#2|) 106)) (-2541 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171)) 52)) (-2014 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171)) 170))) -(((-431 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2541 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -2014 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -1421 (|#2| |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|) (-10 -8 (-15 -2942 ($ |#3|)))) (-857) (-13 (-1258 |#2| |#3|) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $)))) (-995 |#4|) (-1189)) (T -431)) -((-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *2 (-13 (-27) (-1215) (-439 *3) (-10 -8 (-15 -2942 ($ *4))))) (-4 *4 (-857)) (-4 *5 (-13 (-1258 *2 *4) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *1 (-431 *3 *2 *4 *5 *6 *7)) (-4 *6 (-995 *5)) (-14 *7 (-1189)))) (-2014 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) (-4 *7 (-857)) (-4 *8 (-13 (-1258 *3 *7) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) (-14 *10 (-1189)))) (-2541 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) (-4 *7 (-857)) (-4 *8 (-13 (-1258 *3 *7) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) (-14 *10 (-1189))))) -(-10 -7 (-15 -2541 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -2014 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -1421 (|#2| |#2|))) -((-3094 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2867 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1112) (-434 |#1|) (-1112) (-434 |#3|)) (T -432)) -((-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-4 *2 (-434 *5)) (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-434 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-434 *5)) (-4 *6 (-434 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-434 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-434 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4393 (($) 51)) (-4357 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2180 (($ $ $) 46)) (-3319 (((-112) $ $) 35)) (-1486 (((-780)) 55)) (-1506 (($ (-653 |#2|)) 23) (($) NIL)) (-2819 (($) 66)) (-2897 (((-112) $ $) 15)) (-3659 ((|#2| $) 77)) (-3751 ((|#2| $) 75)) (-3589 (((-931) $) 70)) (-3716 (($ $ $) 42)) (-2575 (($ (-931)) 60)) (-3631 (($ $ |#2|) NIL) (($ $ $) 45)) (-3974 (((-780) (-1 (-112) |#2|) $) NIL) (((-780) |#2| $) 31)) (-2955 (($ (-653 |#2|)) 27)) (-3255 (($ $) 53)) (-2942 (((-871) $) 40)) (-3553 (((-780) $) 24)) (-4280 (($ (-653 |#2|)) 22) (($) NIL)) (-2981 (((-112) $ $) 19))) -(((-433 |#1| |#2|) (-10 -8 (-15 -1486 ((-780))) (-15 -2575 (|#1| (-931))) (-15 -3589 ((-931) |#1|)) (-15 -2819 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4393 (|#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3553 ((-780) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -4280 (|#1|)) (-15 -4280 (|#1| (-653 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-653 |#2|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3319 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|))) (-434 |#2|) (-1112)) (T -433)) -((-1486 (*1 *2) (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-433 *3 *4)) (-4 *3 (-434 *4))))) -(-10 -8 (-15 -1486 ((-780))) (-15 -2575 (|#1| (-931))) (-15 -3589 ((-931) |#1|)) (-15 -2819 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4393 (|#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3553 ((-780) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -4280 (|#1|)) (-15 -4280 (|#1| (-653 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-653 |#2|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3319 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|))) -((-2848 (((-112) $ $) 19)) (-4393 (($) 68 (|has| |#1| (-376)))) (-4357 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2180 (($ $ $) 79)) (-3319 (((-112) $ $) 80)) (-3450 (((-112) $ (-780)) 8)) (-1486 (((-780)) 62 (|has| |#1| (-376)))) (-1506 (($ (-653 |#1|)) 75) (($) 74)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-2819 (($) 65 (|has| |#1| (-376)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 71)) (-2078 (((-112) $ (-780)) 9)) (-3659 ((|#1| $) 66 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 67 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-3589 (((-931) $) 64 (|has| |#1| (-376)))) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 76)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-2575 (($ (-931)) 63 (|has| |#1| (-376)))) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3631 (($ $ |#1|) 78) (($ $ $) 77)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-3255 (($ $) 69 (|has| |#1| (-376)))) (-2942 (((-871) $) 18)) (-3553 (((-780) $) 70)) (-4280 (($ (-653 |#1|)) 73) (($) 72)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-434 |#1|) (-141) (-1112)) (T -434)) -((-3553 (*1 *2 *1) (-12 (-4 *1 (-434 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-3255 (*1 *1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-376)))) (-4393 (*1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-376)) (-4 *2 (-1112)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859))))) -(-13 (-231 |t#1|) (-1110 |t#1|) (-10 -8 (-6 -4455) (-15 -3553 ((-780) $)) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-15 -3255 ($ $)) (-15 -4393 ($))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -3751 (|t#1| $)) (-15 -3659 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-376) |has| |#1| (-376)) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) -((-2398 (((-595 |#2|) |#2| (-1189)) 36)) (-3390 (((-595 |#2|) |#2| (-1189)) 21)) (-1567 ((|#2| |#2| (-1189)) 26))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3390 ((-595 |#2|) |#2| (-1189))) (-15 -2398 ((-595 |#2|) |#2| (-1189))) (-15 -1567 (|#2| |#2| (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-29 |#1|))) (T -435)) -((-1567 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-435 *4 *2)) (-4 *2 (-13 (-1215) (-29 *4))))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) (-4 *3 (-13 (-1215) (-29 *5))))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) (-4 *3 (-13 (-1215) (-29 *5)))))) -(-10 -7 (-15 -3390 ((-595 |#2|) |#2| (-1189))) (-15 -2398 ((-595 |#2|) |#2| (-1189))) (-15 -1567 (|#2| |#2| (-1189)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-4229 (($ |#2| |#1|) 37)) (-3968 (($ |#2| |#1|) 35)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-338 |#2|)) 25)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2144 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 36)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-436 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4442)) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1|)) (-15 -2942 ($ (-338 |#2|))) (-15 -4229 ($ |#2| |#1|)) (-15 -3968 ($ |#2| |#1|)))) (-13 (-174) (-38 (-416 (-573)))) (-13 (-859) (-21))) (T -436)) -((-2942 (*1 *1 *2) (-12 (-5 *1 (-436 *2 *3)) (-4 *2 (-13 (-174) (-38 (-416 (-573))))) (-4 *3 (-13 (-859) (-21))))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-338 *4)) (-4 *4 (-13 (-859) (-21))) (-5 *1 (-436 *3 *4)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))))) (-4229 (*1 *1 *2 *3) (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) (-4 *2 (-13 (-859) (-21))))) (-3968 (*1 *1 *2 *3) (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) (-4 *2 (-13 (-859) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4442)) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1|)) (-15 -2942 ($ (-338 |#2|))) (-15 -4229 ($ |#2| |#1|)) (-15 -3968 ($ |#2| |#1|)))) -((-1626 (((-3 |#2| (-653 |#2|)) |#2| (-1189)) 115))) -(((-437 |#1| |#2|) (-10 -7 (-15 -1626 ((-3 |#2| (-653 |#2|)) |#2| (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -437)) -((-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 *3 (-653 *3))) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1215) (-969) (-29 *5)))))) -(-10 -7 (-15 -1626 ((-3 |#2| (-653 |#2|)) |#2| (-1189)))) -((-4354 (((-653 (-1189)) $) 81)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 313)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) 277)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-1189) "failed") $) 84) (((-3 (-573) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-416 (-962 |#2|)) "failed") $) 363) (((-3 (-962 |#2|) "failed") $) 275) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-1189) $) 28) (((-573) $) NIL) ((|#2| $) 271) (((-416 (-962 |#2|)) $) 345) (((-962 |#2|) $) 272) (((-416 (-573)) $) NIL)) (-4173 (((-115) (-115)) 47)) (-3041 (($ $) 99)) (-2944 (((-3 (-621 $) "failed") $) 268)) (-4163 (((-653 (-621 $)) $) 269)) (-4082 (((-3 (-653 $) "failed") $) 287)) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 294)) (-2586 (((-3 (-653 $) "failed") $) 285)) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 304)) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 291) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 257)) (-1337 (((-112) $) 17)) (-1348 ((|#2| $) 19)) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) 276) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 109) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1189)) 62) (($ $ (-653 (-1189))) 280) (($ $) 281) (($ $ (-115) $ (-1189)) 65) (($ $ (-653 (-115)) (-653 $) (-1189)) 72) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 120) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 282) (($ $ (-1189) (-780) (-1 $ (-653 $))) 105) (($ $ (-1189) (-780) (-1 $ $)) 104)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) 119)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) 278)) (-2662 (($ $) 324)) (-1835 (((-902 (-573)) $) 297) (((-902 (-387)) $) 301) (($ (-427 $)) 359) (((-545) $) NIL)) (-2942 (((-871) $) 279) (($ (-621 $)) 93) (($ (-1189)) 24) (($ |#2|) NIL) (($ (-1137 |#2| (-621 $))) NIL) (($ (-416 |#2|)) 329) (($ (-962 (-416 |#2|))) 368) (($ (-416 (-962 (-416 |#2|)))) 341) (($ (-416 (-962 |#2|))) 335) (($ $) NIL) (($ (-962 |#2|)) 216) (($ (-573)) NIL) (($ (-416 (-573))) 373)) (-1545 (((-780)) 88)) (-3109 (((-112) (-115)) 42)) (-2497 (($ (-1189) $) 31) (($ (-1189) $ $) 32) (($ (-1189) $ $ $) 33) (($ (-1189) $ $ $ $) 34) (($ (-1189) (-653 $)) 39)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) -(((-438 |#1| |#2|) (-10 -8 (-15 * (|#1| (-931) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2942 (|#1| (-573))) (-15 -1545 ((-780))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-962 |#2|))) (-15 -1695 ((-3 (-962 |#2|) "failed") |#1|)) (-15 -2205 ((-962 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-962 |#2|)))) (-15 -1695 ((-3 (-416 (-962 |#2|)) "failed") |#1|)) (-15 -2205 ((-416 (-962 |#2|)) |#1|)) (-15 -4193 ((-416 (-1185 |#1|)) |#1| (-621 |#1|))) (-15 -2942 (|#1| (-416 (-962 (-416 |#2|))))) (-15 -2942 (|#1| (-962 (-416 |#2|)))) (-15 -2942 (|#1| (-416 |#2|))) (-15 -2662 (|#1| |#1|)) (-15 -1835 (|#1| (-427 |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| |#1|)))) (-15 -1951 ((-3 (-2 (|:| |val| |#1|) (|:| -3907 (-573))) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-1189))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-115))) (-15 -3041 (|#1| |#1|)) (-15 -2942 (|#1| (-1137 |#2| (-621 |#1|)))) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 |#1|))) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 |#1|) (-1189))) (-15 -2645 (|#1| |#1| (-115) |#1| (-1189))) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1189)))) (-15 -2645 (|#1| |#1| (-1189))) (-15 -2497 (|#1| (-1189) (-653 |#1|))) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1|)) (-15 -4354 ((-653 (-1189)) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4163 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -2942 (|#1| (-621 |#1|))) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|)) (-15 -2942 ((-871) |#1|))) (-439 |#2|) (-1112)) (T -438)) -((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1112)) (-5 *1 (-438 *3 *4)) (-4 *3 (-439 *4)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-438 *4 *5)) (-4 *4 (-439 *5)))) (-1545 (*1 *2) (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-438 *3 *4)) (-4 *3 (-439 *4))))) -(-10 -8 (-15 * (|#1| (-931) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2942 (|#1| (-573))) (-15 -1545 ((-780))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-962 |#2|))) (-15 -1695 ((-3 (-962 |#2|) "failed") |#1|)) (-15 -2205 ((-962 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-962 |#2|)))) (-15 -1695 ((-3 (-416 (-962 |#2|)) "failed") |#1|)) (-15 -2205 ((-416 (-962 |#2|)) |#1|)) (-15 -4193 ((-416 (-1185 |#1|)) |#1| (-621 |#1|))) (-15 -2942 (|#1| (-416 (-962 (-416 |#2|))))) (-15 -2942 (|#1| (-962 (-416 |#2|)))) (-15 -2942 (|#1| (-416 |#2|))) (-15 -2662 (|#1| |#1|)) (-15 -1835 (|#1| (-427 |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| |#1|)))) (-15 -1951 ((-3 (-2 (|:| |val| |#1|) (|:| -3907 (-573))) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-1189))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-115))) (-15 -3041 (|#1| |#1|)) (-15 -2942 (|#1| (-1137 |#2| (-621 |#1|)))) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 |#1|))) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 |#1|) (-1189))) (-15 -2645 (|#1| |#1| (-115) |#1| (-1189))) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1189)))) (-15 -2645 (|#1| |#1| (-1189))) (-15 -2497 (|#1| (-1189) (-653 |#1|))) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1|)) (-15 -4354 ((-653 (-1189)) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4163 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -2942 (|#1| (-621 |#1|))) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|)) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 116 (|has| |#1| (-25)))) (-4354 (((-653 (-1189)) $) 205)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 173 (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 145 (|has| |#1| (-565)))) (-2456 (($ $) 146 (|has| |#1| (-565)))) (-1345 (((-112) $) 148 (|has| |#1| (-565)))) (-4090 (((-653 (-621 $)) $) 39)) (-2983 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2544 (($ $ (-301 $)) 51) (($ $ (-653 (-301 $))) 50) (($ $ (-653 (-621 $)) (-653 $)) 49)) (-4285 (($ $) 165 (|has| |#1| (-565)))) (-2427 (((-427 $) $) 166 (|has| |#1| (-565)))) (-2800 (((-112) $ $) 156 (|has| |#1| (-565)))) (-2579 (($) 104 (-2817 (|has| |#1| (-1124)) (|has| |#1| (-25))) CONST)) (-1695 (((-3 (-621 $) "failed") $) 64) (((-3 (-1189) "failed") $) 218) (((-3 (-573) "failed") $) 212 (|has| |#1| (-1050 (-573)))) (((-3 |#1| "failed") $) 209) (((-3 (-416 (-962 |#1|)) "failed") $) 171 (|has| |#1| (-565))) (((-3 (-962 |#1|) "failed") $) 123 (|has| |#1| (-1061))) (((-3 (-416 (-573)) "failed") $) 98 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-621 $) $) 65) (((-1189) $) 219) (((-573) $) 211 (|has| |#1| (-1050 (-573)))) ((|#1| $) 210) (((-416 (-962 |#1|)) $) 172 (|has| |#1| (-565))) (((-962 |#1|) $) 124 (|has| |#1| (-1061))) (((-416 (-573)) $) 99 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) 160 (|has| |#1| (-565)))) (-2759 (((-698 (-573)) (-1280 $)) 140 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-698 $)) 139 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 138 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 137 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 136 (|has| |#1| (-1061))) (((-698 |#1|) (-1280 $)) 135 (|has| |#1| (-1061)))) (-2232 (((-3 $ "failed") $) 106 (|has| |#1| (-1124)))) (-2796 (($ $ $) 159 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 154 (|has| |#1| (-565)))) (-2696 (((-112) $) 167 (|has| |#1| (-565)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 214 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 213 (|has| |#1| (-896 (-387))))) (-2449 (($ $) 46) (($ (-653 $)) 45)) (-2515 (((-653 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-1959 (((-112) $) 105 (|has| |#1| (-1124)))) (-2250 (((-112) $) 17 (|has| $ (-1050 (-573))))) (-3041 (($ $) 188 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 189 (|has| |#1| (-1061)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 163 (|has| |#1| (-565)))) (-2597 (((-1185 $) (-621 $)) 20 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 31)) (-2944 (((-3 (-621 $) "failed") $) 41)) (-2829 (($ (-653 $)) 152 (|has| |#1| (-565))) (($ $ $) 151 (|has| |#1| (-565)))) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-653 $)) 32)) (-4082 (((-3 (-653 $) "failed") $) 194 (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 185 (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 192 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 191 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 193 (|has| |#1| (-1124))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 187 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 186 (|has| |#1| (-1061)))) (-1667 (((-112) $ (-115)) 35) (((-112) $ (-1189)) 34)) (-1323 (($ $) 108 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-1839 (((-780) $) 42)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 207)) (-1348 ((|#1| $) 206)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 153 (|has| |#1| (-565)))) (-2872 (($ (-653 $)) 150 (|has| |#1| (-565))) (($ $ $) 149 (|has| |#1| (-565)))) (-3805 (((-112) $ $) 30) (((-112) $ (-1189)) 29)) (-4218 (((-427 $) $) 164 (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-565))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 161 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ $) 144 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 155 (|has| |#1| (-565)))) (-2270 (((-112) $) 18 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) 62) (($ $ (-653 (-621 $)) (-653 $)) 61) (($ $ (-653 (-301 $))) 60) (($ $ (-301 $)) 59) (($ $ $ $) 58) (($ $ (-653 $) (-653 $)) 57) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 28) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 27) (($ $ (-1189) (-1 $ (-653 $))) 26) (($ $ (-1189) (-1 $ $)) 25) (($ $ (-653 (-115)) (-653 (-1 $ $))) 24) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 23) (($ $ (-115) (-1 $ (-653 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1189)) 199 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) 198 (|has| |#1| (-623 (-545)))) (($ $) 197 (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 196 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-115)) (-653 $) (-1189)) 195 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 184 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 183 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) 182 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ $)) 181 (|has| |#1| (-1061)))) (-2163 (((-780) $) 157 (|has| |#1| (-565)))) (-2198 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-653 $)) 52)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 158 (|has| |#1| (-565)))) (-3727 (($ $) 44) (($ $ $) 43)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 129 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 128 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 127 (|has| |#1| (-1061))) (($ $ (-1189)) 126 (|has| |#1| (-1061)))) (-2662 (($ $) 178 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 179 (|has| |#1| (-565)))) (-2984 (($ $) 19 (|has| $ (-1061)))) (-1835 (((-902 (-573)) $) 216 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 215 (|has| |#1| (-623 (-902 (-387))))) (($ (-427 $)) 180 (|has| |#1| (-565))) (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-3204 (($ $ $) 111 (|has| |#1| (-482)))) (-4380 (($ $ $) 112 (|has| |#1| (-482)))) (-2942 (((-871) $) 12) (($ (-621 $)) 63) (($ (-1189)) 217) (($ |#1|) 208) (($ (-1137 |#1| (-621 $))) 190 (|has| |#1| (-1061))) (($ (-416 |#1|)) 176 (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) 175 (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) 174 (|has| |#1| (-565))) (($ (-416 (-962 |#1|))) 170 (|has| |#1| (-565))) (($ $) 143 (|has| |#1| (-565))) (($ (-962 |#1|)) 122 (|has| |#1| (-1061))) (($ (-416 (-573))) 97 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573)))))) (($ (-573)) 96 (-2817 (|has| |#1| (-1061)) (|has| |#1| (-1050 (-573)))))) (-4279 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-1545 (((-780)) 125 (|has| |#1| (-1061)) CONST)) (-2029 (($ $) 48) (($ (-653 $)) 47)) (-3109 (((-112) (-115)) 36)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 147 (|has| |#1| (-565)))) (-2497 (($ (-1189) $) 204) (($ (-1189) $ $) 203) (($ (-1189) $ $ $) 202) (($ (-1189) $ $ $ $) 201) (($ (-1189) (-653 $)) 200)) (-2132 (($) 115 (|has| |#1| (-25)) CONST)) (-2144 (($) 103 (|has| |#1| (-1124)) CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 133 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 132 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 131 (|has| |#1| (-1061))) (($ $ (-1189)) 130 (|has| |#1| (-1061)))) (-2981 (((-112) $ $) 6)) (-3103 (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 177 (|has| |#1| (-565))) (($ $ $) 109 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3093 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3077 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-573)) 110 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565)))) (($ $ (-780)) 107 (|has| |#1| (-1124))) (($ $ (-931)) 102 (|has| |#1| (-1124)))) (* (($ (-416 (-573)) $) 169 (|has| |#1| (-565))) (($ $ (-416 (-573))) 168 (|has| |#1| (-565))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1061))) (($ (-573) $) 119 (|has| |#1| (-21))) (($ (-780) $) 117 (|has| |#1| (-25))) (($ (-931) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1124))))) -(((-439 |#1|) (-141) (-1112)) (T -439)) -((-1337 (*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-1189))))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-653 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-623 (-545))))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-623 (-545))))) (-2645 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-623 (-545))))) (-2645 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1189)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) (-4 *4 (-623 (-545))))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 *1)) (-5 *4 (-1189)) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-623 (-545))))) (-4082 (*1 *2 *1) (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-439 *3)))) (-2573 (*1 *2 *1) (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) (-2586 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-439 *3)))) (-4425 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| -1857 (-573)) (|:| |var| (-621 *1)))) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-1061)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) (-4 *1 (-439 *3)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-1061)))) (-2573 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *4)))) (-2573 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *4)))) (-1951 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |val| *1) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) (-5 *4 (-653 (-1 *1 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) (-5 *4 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 (-653 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 *1)) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-427 *1)) (-4 *1 (-439 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) (-4 *1 (-439 *3)))) (-2662 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-565)))) (-3103 (*1 *1 *2 *2) (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 *3))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-416 *3)))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) (-4 *4 (-565)) (-5 *2 (-416 (-1185 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-1124))))) -(-13 (-309) (-1050 (-1189)) (-894 |t#1|) (-409 |t#1|) (-420 |t#1|) (-10 -8 (-15 -1337 ((-112) $)) (-15 -1348 (|t#1| $)) (-15 -4354 ((-653 (-1189)) $)) (-15 -2497 ($ (-1189) $)) (-15 -2497 ($ (-1189) $ $)) (-15 -2497 ($ (-1189) $ $ $)) (-15 -2497 ($ (-1189) $ $ $ $)) (-15 -2497 ($ (-1189) (-653 $))) (IF (|has| |t#1| (-623 (-545))) (PROGN (-6 (-623 (-545))) (-15 -2645 ($ $ (-1189))) (-15 -2645 ($ $ (-653 (-1189)))) (-15 -2645 ($ $)) (-15 -2645 ($ $ (-115) $ (-1189))) (-15 -2645 ($ $ (-653 (-115)) (-653 $) (-1189)))) |%noBranch|) (IF (|has| |t#1| (-1124)) (PROGN (-6 (-735)) (-15 ** ($ $ (-780))) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-482)) (-6 (-482)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-1050 (-962 |t#1|))) (-6 (-910 (-1189))) (-6 (-385 |t#1|)) (-15 -2942 ($ (-1137 |t#1| (-621 $)))) (-15 -2965 ((-1137 |t#1| (-621 $)) $)) (-15 -3041 ($ $)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189))) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $)) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-1189) (-780) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-1189) (-780) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-6 (-371)) (-6 (-1050 (-416 (-962 |t#1|)))) (-15 -1835 ($ (-427 $))) (-15 -2975 ((-1137 |t#1| (-621 $)) $)) (-15 -2662 ($ $)) (-15 -3103 ($ (-1137 |t#1| (-621 $)) (-1137 |t#1| (-621 $)))) (-15 -2942 ($ (-416 |t#1|))) (-15 -2942 ($ (-962 (-416 |t#1|)))) (-15 -2942 ($ (-416 (-962 (-416 |t#1|))))) (-15 -4193 ((-416 (-1185 $)) $ (-621 $))) (IF (|has| |t#1| (-1050 (-573))) (-6 (-1050 (-416 (-573)))) |%noBranch|)) |%noBranch|))) -(((-21) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-416 (-573))) |has| |#1| (-565)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-565)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-565)) ((-132) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-565))) ((-625 #1=(-416 (-962 |#1|))) |has| |#1| (-565)) ((-625 (-573)) -2817 (|has| |#1| (-1061)) (|has| |#1| (-1050 (-573))) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-625 #2=(-621 $)) . T) ((-625 #3=(-962 |#1|)) |has| |#1| (-1061)) ((-625 #4=(-1189)) . T) ((-625 |#1|) . T) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) |has| |#1| (-565)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-248) |has| |#1| (-565)) ((-297) |has| |#1| (-565)) ((-314) |has| |#1| (-565)) ((-316 $) . T) ((-309) . T) ((-371) |has| |#1| (-565)) ((-385 |#1|) |has| |#1| (-1061)) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-461) |has| |#1| (-565)) ((-482) |has| |#1| (-482)) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-565)) ((-655 (-573)) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-655 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-655 $) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-657 #0#) |has| |#1| (-565)) ((-657 #5=(-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-657 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-657 $) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-649 #0#) |has| |#1| (-565)) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-648 #5#) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-648 |#1|) |has| |#1| (-1061)) ((-726 #0#) |has| |#1| (-565)) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) -2817 (|has| |#1| (-1124)) (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-482)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-910 (-1189)) |has| |#1| (-1061)) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-930) |has| |#1| (-565)) ((-1050 (-416 (-573))) -2817 (|has| |#1| (-1050 (-416 (-573)))) (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) ((-1050 #1#) |has| |#1| (-565)) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 #3#) |has| |#1| (-1061)) ((-1050 #4#) . T) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-565)) ((-1063 |#1|) |has| |#1| (-174)) ((-1063 $) |has| |#1| (-565)) ((-1068 #0#) |has| |#1| (-565)) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) |has| |#1| (-565)) ((-1061) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1070) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1124) -2817 (|has| |#1| (-1124)) (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-482)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1112) . T) ((-1230) . T) ((-1234) |has| |#1| (-565))) -((-1562 ((|#2| |#2| |#2|) 31)) (-4173 (((-115) (-115)) 43)) (-1566 ((|#2| |#2|) 63)) (-4137 ((|#2| |#2|) 66)) (-3325 ((|#2| |#2|) 30)) (-1424 ((|#2| |#2| |#2|) 33)) (-4237 ((|#2| |#2| |#2|) 35)) (-3125 ((|#2| |#2| |#2|) 32)) (-2704 ((|#2| |#2| |#2|) 34)) (-3109 (((-112) (-115)) 41)) (-3754 ((|#2| |#2|) 37)) (-1450 ((|#2| |#2|) 36)) (-1660 ((|#2| |#2|) 25)) (-1818 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1503 ((|#2| |#2| |#2|) 29))) -(((-440 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1660 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -1562 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -4237 (|#2| |#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1566 (|#2| |#2|))) (-565) (-439 |#1|)) (T -440)) -((-1566 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4237 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-2704 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1424 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3125 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1562 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1503 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1818 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-440 *3 *4)) (-4 *4 (-439 *3)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5)) (-4 *5 (-439 *4))))) -(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1660 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -1562 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -4237 (|#2| |#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1566 (|#2| |#2|))) -((-3731 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|)) 65))) -(((-441 |#1| |#2|) (-10 -7 (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|))) (IF (|has| |#2| (-27)) (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-565) (-148)) (-439 |#1|)) (T -441)) -((-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1185 *3)) (|:| |pol2| (-1185 *3)) (|:| |prim| (-1185 *3)))) (-5 *1 (-441 *4 *3)) (-4 *3 (-27)) (-4 *3 (-439 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-653 (-1185 *5))) (|:| |prim| (-1185 *5)))) (-5 *1 (-441 *4 *5))))) -(-10 -7 (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|))) (IF (|has| |#2| (-27)) (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1528 (((-1285)) 18)) (-1932 (((-1185 (-416 (-573))) |#2| (-621 |#2|)) 40) (((-416 (-573)) |#2|) 24))) -(((-442 |#1| |#2|) (-10 -7 (-15 -1932 ((-416 (-573)) |#2|)) (-15 -1932 ((-1185 (-416 (-573))) |#2| (-621 |#2|))) (-15 -1528 ((-1285)))) (-13 (-565) (-1050 (-573))) (-439 |#1|)) (T -442)) -((-1528 (*1 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1285)) (-5 *1 (-442 *3 *4)) (-4 *4 (-439 *3)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-439 *5)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-442 *5 *3)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-442 *4 *3)) (-4 *3 (-439 *4))))) -(-10 -7 (-15 -1932 ((-416 (-573)) |#2|)) (-15 -1932 ((-1185 (-416 (-573))) |#2| (-621 |#2|))) (-15 -1528 ((-1285)))) -((-2814 (((-112) $) 32)) (-4388 (((-112) $) 34)) (-3159 (((-112) $) 35)) (-2453 (((-112) $) 38)) (-2406 (((-112) $) 33)) (-2615 (((-112) $) 37)) (-2942 (((-871) $) 20) (($ (-1171)) 31) (($ (-1189)) 26) (((-1189) $) 24) (((-1116) $) 23)) (-4114 (((-112) $) 36)) (-2981 (((-112) $ $) 17))) -(((-443) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1171))) (-15 -2942 ($ (-1189))) (-15 -2942 ((-1189) $)) (-15 -2942 ((-1116) $)) (-15 -2814 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2615 ((-112) $)) (-15 -2453 ((-112) $)) (-15 -4114 ((-112) $)) (-15 -4388 ((-112) $)) (-15 -2981 ((-112) $ $))))) (T -443)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-443)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-443)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-4388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1171))) (-15 -2942 ($ (-1189))) (-15 -2942 ((-1189) $)) (-15 -2942 ((-1116) $)) (-15 -2814 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2615 ((-112) $)) (-15 -2453 ((-112) $)) (-15 -4114 ((-112) $)) (-15 -4388 ((-112) $)) (-15 -2981 ((-112) $ $)))) -((-3604 (((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|) 72)) (-2642 (((-427 |#3|) |#3|) 34)) (-3939 (((-3 (-427 (-1185 (-48))) "failed") |#3|) 46 (|has| |#2| (-1050 (-48))))) (-2503 (((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|) 37))) -(((-444 |#1| |#2| |#3|) (-10 -7 (-15 -2642 ((-427 |#3|) |#3|)) (-15 -3604 ((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|)) (-15 -2503 ((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|)) (IF (|has| |#2| (-1050 (-48))) (-15 -3939 ((-3 (-427 (-1185 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-565) (-1050 (-573))) (-439 |#1|) (-1256 |#2|)) (T -444)) -((-3939 (*1 *2 *3) (|partial| -12 (-4 *5 (-1050 (-48))) (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 (-1185 (-48)))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112)))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-3604 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 (-1185 (-416 (-573))))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-2642 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 *3)) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) -(-10 -7 (-15 -2642 ((-427 |#3|) |#3|)) (-15 -3604 ((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|)) (-15 -2503 ((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|)) (IF (|has| |#2| (-1050 (-48))) (-15 -3939 ((-3 (-427 (-1185 (-48))) "failed") |#3|)) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-4288 (((-1171) $ (-1171)) NIL)) (-2169 (($ $ (-1171)) NIL)) (-4188 (((-1171) $) NIL)) (-1341 (((-397) (-397) (-397)) 17) (((-397) (-397)) 15)) (-1674 (($ (-397)) NIL) (($ (-397) (-1171)) NIL)) (-2031 (((-397) $) NIL)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1939 (((-1285) (-1171)) 9)) (-2312 (((-1285) (-1171)) 10)) (-3548 (((-1285)) 11)) (-2942 (((-871) $) NIL)) (-1981 (($ $) 39)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-445) (-13 (-372 (-397) (-1171)) (-10 -7 (-15 -1341 ((-397) (-397) (-397))) (-15 -1341 ((-397) (-397))) (-15 -1939 ((-1285) (-1171))) (-15 -2312 ((-1285) (-1171))) (-15 -3548 ((-1285)))))) (T -445)) -((-1341 (*1 *2 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445)))) (-3548 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-445))))) -(-13 (-372 (-397) (-1171)) (-10 -7 (-15 -1341 ((-397) (-397) (-397))) (-15 -1341 ((-397) (-397))) (-15 -1939 ((-1285) (-1171))) (-15 -2312 ((-1285) (-1171))) (-15 -3548 ((-1285))))) -((-2848 (((-112) $ $) NIL)) (-2539 (((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $) 11)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3599 (($) 35)) (-3697 (($) 41)) (-3657 (($) 37)) (-4215 (($) 39)) (-2617 (($) 36)) (-1574 (($) 38)) (-4329 (($) 40)) (-1548 (((-112) $) 8)) (-4321 (((-653 (-962 (-573))) $) 19)) (-2955 (($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112)) 29) (($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112)) 30)) (-2942 (((-871) $) 24) (($ (-443)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-446) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-443))) (-15 -2539 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -4321 ((-653 (-962 (-573))) $)) (-15 -1548 ((-112) $)) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112))) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112))) (-15 -3599 ($)) (-15 -2617 ($)) (-15 -3657 ($)) (-15 -3697 ($)) (-15 -1574 ($)) (-15 -4215 ($)) (-15 -4329 ($))))) (T -446)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-443)) (-5 *1 (-446)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-446)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-653 (-962 (-573)))) (-5 *1 (-446)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *3 (-653 (-1189))) (-5 *4 (-112)) (-5 *1 (-446)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-112)) (-5 *1 (-446)))) (-3599 (*1 *1) (-5 *1 (-446))) (-2617 (*1 *1) (-5 *1 (-446))) (-3657 (*1 *1) (-5 *1 (-446))) (-3697 (*1 *1) (-5 *1 (-446))) (-1574 (*1 *1) (-5 *1 (-446))) (-4215 (*1 *1) (-5 *1 (-446))) (-4329 (*1 *1) (-5 *1 (-446)))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-443))) (-15 -2539 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -4321 ((-653 (-962 (-573))) $)) (-15 -1548 ((-112) $)) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112))) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112))) (-15 -3599 ($)) (-15 -2617 ($)) (-15 -3657 ($)) (-15 -3697 ($)) (-15 -1574 ($)) (-15 -4215 ($)) (-15 -4329 ($)))) -((-2848 (((-112) $ $) NIL)) (-2031 (((-1189) $) 8)) (-3180 (((-1171) $) 17)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) -(((-447 |#1|) (-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) (-1189)) (T -447)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-447 *3)) (-14 *3 *2)))) -(-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) -((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 7)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-448) (-13 (-1112) (-10 -8 (-15 -3139 ((-1130) $))))) (T -448)) -((-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-448))))) -(-13 (-1112) (-10 -8 (-15 -3139 ((-1130) $)))) -((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-1280 (-708))) 14) (($ (-653 (-337))) 13) (($ (-337)) 12) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 11))) -(((-449) (-141)) (T -449)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-708))) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-449))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-1280 (-708)))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))))) -(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) -((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 21) (((-3 $ "failed") (-1280 (-323 (-573)))) 19) (((-3 $ "failed") (-1280 (-962 (-387)))) 17) (((-3 $ "failed") (-1280 (-962 (-573)))) 15) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 13) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 11)) (-2205 (($ (-1280 (-323 (-387)))) 22) (($ (-1280 (-323 (-573)))) 20) (($ (-1280 (-962 (-387)))) 18) (($ (-1280 (-962 (-573)))) 16) (($ (-1280 (-416 (-962 (-387))))) 14) (($ (-1280 (-416 (-962 (-573))))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) +((-3741 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1288))))) +(-13 (-1233) (-623 (-872)) (-10 -8 (-15 -3741 ((-1288) $)))) +(((-623 (-872)) . T) ((-1233) . T)) +((-1706 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-965 (-388))) 17) (((-3 $ "failed") (-965 (-574))) 15) (((-3 $ "failed") (-417 (-965 (-388)))) 13) (((-3 $ "failed") (-417 (-965 (-574)))) 11)) (-2216 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-965 (-388))) 18) (($ (-965 (-574))) 16) (($ (-417 (-965 (-388)))) 14) (($ (-417 (-965 (-574)))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 23))) +(((-406) (-141)) (T -406)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))) (-15 -2216 ($ (-324 (-388)))) (-15 -1706 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-324 (-574)))) (-15 -1706 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-965 (-388)))) (-15 -1706 ((-3 $ "failed") (-965 (-388)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1706 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-417 (-965 (-388))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-388))))) (-15 -2216 ($ (-417 (-965 (-574))))) (-15 -1706 ((-3 $ "failed") (-417 (-965 (-574))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) +((-2480 (((-654 (-1174)) (-654 (-1174))) 9)) (-3741 (((-1288) (-398)) 26)) (-3441 (((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192))) 59) (((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192)) 34) (((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192))) 33))) +(((-407) (-10 -7 (-15 -3441 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)))) (-15 -3441 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192))) (-15 -3441 ((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192)))) (-15 -3741 ((-1288) (-398))) (-15 -2480 ((-654 (-1174)) (-654 (-1174)))))) (T -407)) +((-2480 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-407)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-407)))) (-3441 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *5 (-1195)) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407)))) (-3441 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407)))) (-3441 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) (-5 *1 (-407))))) +(-10 -7 (-15 -3441 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)))) (-15 -3441 ((-1119) (-1192) (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192)))) (-654 (-654 (-3 (|:| |array| (-654 (-1192))) (|:| |scalar| (-1192))))) (-654 (-1192)) (-1192))) (-15 -3441 ((-1119) (-1192) (-654 (-1192)) (-1195) (-654 (-1192)))) (-15 -3741 ((-1288) (-398))) (-15 -2480 ((-654 (-1174)) (-654 (-1174))))) +((-3741 (((-1288) $) 35)) (-2950 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138))) +(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2950 ($ (-338))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))) (-15 -2950 ($ (-324 (-711)))) (-15 -2950 ($ (-324 (-709)))) (-15 -2950 ($ (-324 (-704)))) (-15 -2950 ($ (-302 (-324 (-711))))) (-15 -2950 ($ (-302 (-324 (-709))))) (-15 -2950 ($ (-302 (-324 (-704))))) (-15 -2950 ($ (-324 (-574)))) (-15 -2950 ($ (-324 (-388)))) (-15 -2950 ($ (-324 (-171 (-388))))) (-15 -2950 ($ (-302 (-324 (-574))))) (-15 -2950 ($ (-302 (-324 (-388))))) (-15 -2950 ($ (-302 (-324 (-171 (-388)))))))) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-1196)) (T -408)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-14 *5 (-654 (-1192))) (-14 *6 (-1196))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-338))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))) (-15 -2950 ($ (-324 (-711)))) (-15 -2950 ($ (-324 (-709)))) (-15 -2950 ($ (-324 (-704)))) (-15 -2950 ($ (-302 (-324 (-711))))) (-15 -2950 ($ (-302 (-324 (-709))))) (-15 -2950 ($ (-302 (-324 (-704))))) (-15 -2950 ($ (-324 (-574)))) (-15 -2950 ($ (-324 (-388)))) (-15 -2950 ($ (-324 (-171 (-388))))) (-15 -2950 ($ (-302 (-324 (-574))))) (-15 -2950 ($ (-302 (-324 (-388))))) (-15 -2950 ($ (-302 (-324 (-171 (-388)))))))) +((-2863 (((-112) $ $) NIL)) (-3987 ((|#2| $) 38)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4148 (($ (-417 |#2|)) 93)) (-3141 (((-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $) 39)) (-3878 (($ $) 34) (($ $ (-781)) 36)) (-1846 (((-417 |#2|) $) 49)) (-2962 (($ (-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|)))) 33)) (-2950 (((-872) $) 131)) (-4259 (((-112) $ $) NIL)) (-3583 (($ $) 35) (($ $ (-781)) 37)) (-2985 (((-112) $ $) NIL)) (-3073 (($ |#2| $) 41))) +(((-409 |#1| |#2|) (-13 (-1115) (-624 (-417 |#2|)) (-10 -8 (-15 -3073 ($ |#2| $)) (-15 -4148 ($ (-417 |#2|))) (-15 -3987 (|#2| $)) (-15 -3141 ((-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3878 ($ $)) (-15 -3583 ($ $)) (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) (-13 (-372) (-148)) (-1259 |#1|)) (T -409)) +((-3073 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1259 *3)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3987 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -3843 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3843 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3878 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1259 *2)))) (-3583 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1259 *2)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3))))) +(-13 (-1115) (-624 (-417 |#2|)) (-10 -8 (-15 -3073 ($ |#2| $)) (-15 -4148 ($ (-417 |#2|))) (-15 -3987 (|#2| $)) (-15 -3141 ((-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3843 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3878 ($ $)) (-15 -3583 ($ $)) (-15 -3878 ($ $ (-781))) (-15 -3583 ($ $ (-781))))) +((-2863 (((-112) $ $) 9 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-1938 (((-1174) $) 13 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3939 (((-1135) $) 12 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2950 (((-872) $) 11 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-4259 (((-112) $ $) 14 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2985 (((-112) $ $) 10 (-2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388))))))) +(((-410 |#1|) (-141) (-1233)) (T -410)) +NIL +(-13 (-1233) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|))) +(((-102) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1115) -2832 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1233) . T)) +((-4278 (($ $) 10) (($ $ (-781)) 12))) +(((-411 |#1|) (-10 -8 (-15 -4278 (|#1| |#1| (-781))) (-15 -4278 (|#1| |#1|))) (-412)) (T -411)) +NIL +(-10 -8 (-15 -4278 (|#1| |#1| (-781))) (-15 -4278 (|#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-4278 (($ $) 87) (($ $ (-781)) 86)) (-2941 (((-112) $) 79)) (-3837 (((-843 (-934)) $) 89)) (-2276 (((-112) $) 35)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-3411 (((-3 (-781) "failed") $ $) 88)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3270 (((-3 $ "failed") $) 90)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-412) (-141)) (T -412)) +((-3837 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-934))))) (-3411 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-4278 (*1 *1 *1) (-4 *1 (-412))) (-4278 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))) +(-13 (-372) (-146) (-10 -8 (-15 -3837 ((-843 (-934)) $)) (-15 -3411 ((-3 (-781) "failed") $ $)) (-15 -4278 ($ $)) (-15 -4278 ($ $ (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-2398 (($ (-574) (-574)) 11) (($ (-574) (-574) (-934)) NIL)) (-2829 (((-934)) 19) (((-934) (-934)) NIL))) +(((-413 |#1|) (-10 -8 (-15 -2829 ((-934) (-934))) (-15 -2829 ((-934))) (-15 -2398 (|#1| (-574) (-574) (-934))) (-15 -2398 (|#1| (-574) (-574)))) (-414)) (T -413)) +((-2829 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414))))) +(-10 -8 (-15 -2829 ((-934) (-934))) (-15 -2829 ((-934))) (-15 -2398 (|#1| (-574) (-574) (-934))) (-15 -2398 (|#1| (-574) (-574)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1882 (((-574) $) 97)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4430 (($ $) 95)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-4211 (($ $) 105)) (-1526 (((-112) $ $) 65)) (-2496 (((-574) $) 122)) (-3063 (($) 18 T CONST)) (-2760 (($ $) 94)) (-1706 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-3760 (((-934)) 138) (((-934) (-934)) 135 (|has| $ (-6 -4449)))) (-1348 (((-112) $) 120)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3837 (((-574) $) 144)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 104)) (-2681 (($ $) 100)) (-3081 (((-112) $) 121)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 119) (($) 132 (-12 (-2086 (|has| $ (-6 -4449))) (-2086 (|has| $ (-6 -4441)))))) (-2953 (($ $ $) 118) (($) 131 (-12 (-2086 (|has| $ (-6 -4449))) (-2086 (|has| $ (-6 -4441)))))) (-4290 (((-574) $) 141)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3653 (((-934) (-574)) 134 (|has| $ (-6 -4449)))) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2010 (($ $) 96)) (-2787 (($ $) 98)) (-2398 (($ (-574) (-574)) 146) (($ (-574) (-574) (-934)) 145)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3843 (((-574) $) 142)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2829 (((-934)) 139) (((-934) (-934)) 136 (|has| $ (-6 -4449)))) (-2622 (((-934) (-574)) 133 (|has| $ (-6 -4449)))) (-1846 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-3781 (((-781)) 32 T CONST)) (-2251 (($ $) 99)) (-3530 (((-934)) 140) (((-934) (-934)) 137 (|has| $ (-6 -4449)))) (-4259 (((-112) $ $) 9)) (-2644 (((-934)) 143)) (-3676 (((-112) $ $) 45)) (-2366 (($ $) 123)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3017 (((-112) $ $) 115)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 117)) (-3008 (((-112) $ $) 114)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-414) (-141)) (T -414)) +((-2398 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2398 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-4 *1 (-414)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2644 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-3530 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-2829 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-3760 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) (-5 *2 (-934)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) (-5 *2 (-934)))) (-3632 (*1 *1) (-12 (-4 *1 (-414)) (-2086 (|has| *1 (-6 -4449))) (-2086 (|has| *1 (-6 -4441))))) (-2953 (*1 *1) (-12 (-4 *1 (-414)) (-2086 (|has| *1 (-6 -4449))) (-2086 (|has| *1 (-6 -4441)))))) +(-13 (-1075) (-10 -8 (-6 -3524) (-15 -2398 ($ (-574) (-574))) (-15 -2398 ($ (-574) (-574) (-934))) (-15 -3837 ((-574) $)) (-15 -2644 ((-934))) (-15 -3843 ((-574) $)) (-15 -4290 ((-574) $)) (-15 -3530 ((-934))) (-15 -2829 ((-934))) (-15 -3760 ((-934))) (IF (|has| $ (-6 -4449)) (PROGN (-15 -3530 ((-934) (-934))) (-15 -2829 ((-934) (-934))) (-15 -3760 ((-934) (-934))) (-15 -3653 ((-934) (-574))) (-15 -2622 ((-934) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4441)) |%noBranch| (IF (|has| $ (-6 -4449)) |%noBranch| (PROGN (-15 -3632 ($)) (-15 -2953 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-933) . T) ((-1017) . T) ((-1037) . T) ((-1075) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-1787 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20))) +(((-415 |#1| |#2|) (-10 -7 (-15 -1787 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))) +(-10 -7 (-15 -1787 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) +((-1787 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13))) +(((-416 |#1| |#2|) (-10 -7 (-15 -1787 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))) +(-10 -7 (-15 -1787 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 13)) (-1882 ((|#1| $) 21 (|has| |#1| (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| |#1| (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 17) (((-3 (-1192) "failed") $) NIL (|has| |#1| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 15) (((-1192) $) NIL (|has| |#1| (-1053 (-1192)))) (((-417 (-574)) $) 69 (|has| |#1| (-1053 (-574)))) (((-574) $) NIL (|has| |#1| (-1053 (-574))))) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) 51)) (-2834 (($) NIL (|has| |#1| (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| |#1| (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-2276 (((-112) $) 57)) (-3071 (($ $) NIL)) (-2970 ((|#1| $) 73)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-3081 (((-112) $) NIL (|has| |#1| (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 100)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| |#1| (-315)))) (-2787 ((|#1| $) 28 (|has| |#1| (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 145 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 138 (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-3575 (((-781) $) NIL)) (-2209 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2593 (($ $) NIL)) (-2981 ((|#1| $) 75)) (-1846 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1037))) (((-227) $) NIL (|has| |#1| (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1192)) NIL (|has| |#1| (-1053 (-1192))))) (-3270 (((-3 $ "failed") $) 102 (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 103 T CONST)) (-2251 ((|#1| $) 26 (|has| |#1| (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-830)))) (-2143 (($) 22 T CONST)) (-2155 (($) 8 T CONST)) (-1579 (((-1174) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1174) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1288) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1288) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) 66)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3102 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3089 (($ $) 25) (($ $ $) 56)) (-3073 (($ $ $) 54)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-417 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4456)) (-6 -4445) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417)) +NIL +(-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4456)) (-6 -4445) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4368 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 18)) (-3875 (($ (-1283 |#2|) (-1283 $)) NIL) (($ (-1283 |#2|)) 24)) (-1732 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 40)) (-3525 ((|#3| $) 69)) (-3902 ((|#2| (-1283 $)) NIL) ((|#2|) 20)) (-4421 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 22) (((-699 |#2|) (-1283 $)) 38)) (-1846 (((-1283 |#2|) $) 11) (($ (-1283 |#2|)) 13)) (-3688 ((|#3| $) 55))) +(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -1732 ((-699 |#2|) |#1|)) (-15 -3902 (|#2|)) (-15 -4368 ((-699 |#2|))) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3525 (|#3| |#1|)) (-15 -3688 (|#3| |#1|)) (-15 -4368 ((-699 |#2|) (-1283 |#1|))) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1732 ((-699 |#2|) |#1| (-1283 |#1|)))) (-419 |#2| |#3|) (-174) (-1259 |#2|)) (T -418)) +((-4368 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-3902 (*1 *2) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4))))) +(-10 -8 (-15 -1732 ((-699 |#2|) |#1|)) (-15 -3902 (|#2|)) (-15 -4368 ((-699 |#2|))) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3525 (|#3| |#1|)) (-15 -3688 (|#3| |#1|)) (-15 -4368 ((-699 |#2|) (-1283 |#1|))) (-15 -3902 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -1732 ((-699 |#2|) |#1| (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4368 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3875 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-1732 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-2978 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-2276 (((-112) $) 35)) (-2681 ((|#1| $) 58)) (-3525 ((|#2| $) 51 (|has| |#1| (-372)))) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3902 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-4421 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1846 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3270 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3688 ((|#2| $) 52)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 74)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-419 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -419)) +((-3907 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *1)) (-4 *1 (-419 *3 *4)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *3)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1259 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *3)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1259 *3)))) (-4368 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-699 *3)))) (-3902 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-699 *3))))) +(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -3907 ((-1283 $))) (-15 -4421 ((-1283 |t#1|) $)) (-15 -4421 ((-699 |t#1|) (-1283 $))) (-15 -3875 ($ (-1283 |t#1|))) (-15 -1846 ((-1283 |t#1|) $)) (-15 -1846 ($ (-1283 |t#1|))) (-15 -4368 ((-699 |t#1|))) (-15 -3902 (|t#1|)) (-15 -1732 ((-699 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2950 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11))) +(((-420 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|))) (-421 |#2|) (-1233)) (T -420)) +NIL +(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|))) +((-1706 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1053 (-574))))) (-2950 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1053 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1053 (-574)))))) +(((-421 |#1|) (-141) (-1233)) (T -421)) +NIL +(-13 (-1053 |t#1|) (-10 -7 (IF (|has| |t#1| (-1053 (-574))) (-6 (-1053 (-574))) |%noBranch|) (IF (|has| |t#1| (-1053 (-417 (-574)))) (-6 (-1053 (-417 (-574)))) |%noBranch|))) +(((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1053 (-574))) ((-626 |#1|) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 #1#) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T)) +((-1787 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35))) +(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1007 |#1|) (-1259 |#2|) (-13 (-419 |#2| |#3|) (-1053 |#2|)) (-315) (-1007 |#5|) (-1259 |#6|) (-13 (-419 |#6| |#7|) (-1053 |#6|))) (T -422)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1007 *5)) (-4 *7 (-1259 *6)) (-4 *8 (-13 (-419 *6 *7) (-1053 *6))) (-4 *9 (-315)) (-4 *10 (-1007 *9)) (-4 *11 (-1259 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1053 *10)))))) +(-10 -7 (-15 -1787 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) +((-2863 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2626 ((|#4| (-781) (-1283 |#4|)) 55)) (-2276 (((-112) $) NIL)) (-2970 (((-1283 |#4|) $) 15)) (-2681 ((|#2| $) 53)) (-4178 (($ $) 157)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 103)) (-1674 (($ (-1283 |#4|)) 102)) (-3939 (((-1135) $) NIL)) (-2981 ((|#1| $) 16)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) 148)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 |#4|) $) 141)) (-2155 (($) 11 T CONST)) (-2985 (((-112) $ $) 39)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130))) +(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -1674 ($ (-1283 |#4|))) (-15 -3907 ((-1283 |#4|) $)) (-15 -2681 (|#2| $)) (-15 -2970 ((-1283 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -4178 ($ $)) (-15 -2626 (|#4| (-781) (-1283 |#4|))))) (-315) (-1007 |#1|) (-1259 |#2|) (-13 (-419 |#2| |#3|) (-1053 |#2|))) (T -423)) +((-1674 (*1 *1 *2) (-12 (-5 *2 (-1283 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-3907 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) (-2681 (*1 *2 *1) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1053 *2))))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) (-4178 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1283 *2)) (-4 *5 (-315)) (-4 *6 (-1007 *5)) (-4 *2 (-13 (-419 *6 *7) (-1053 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1259 *6))))) +(-13 (-483) (-10 -8 (-15 -1674 ($ (-1283 |#4|))) (-15 -3907 ((-1283 |#4|) $)) (-15 -2681 (|#2| $)) (-15 -2970 ((-1283 |#4|) $)) (-15 -2981 (|#1| $)) (-15 -4178 ($ $)) (-15 -2626 (|#4| (-781) (-1283 |#4|))))) +((-2863 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-2681 ((|#2| $) 71)) (-3425 (($ (-1283 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1053 |#2|)))) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 37)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 |#4|) $) 28)) (-2155 (($) 25 T CONST)) (-2985 (((-112) $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82))) +(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -3907 ((-1283 |#4|) $)) (-15 -2681 (|#2| $)) (-15 -3425 ($ (-1283 |#4|))) (IF (|has| |#4| (-1053 |#2|)) (-15 -3425 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1007 |#1|) (-1259 |#2|) (-419 |#2| |#3|) (-1283 |#4|)) (T -424)) +((-3907 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-2681 (*1 *2 *1) (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1283 *5)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-1283 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1053 *4)) (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))) +(-13 (-736) (-10 -8 (-15 -3907 ((-1283 |#4|) $)) (-15 -2681 (|#2| $)) (-15 -3425 ($ (-1283 |#4|))) (IF (|has| |#4| (-1053 |#2|)) (-15 -3425 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))) +(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) +((-3462 (((-3 $ "failed")) 98)) (-2555 (((-1283 (-699 |#2|)) (-1283 $)) NIL) (((-1283 (-699 |#2|))) 103)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 96)) (-3294 (((-3 $ "failed")) 95)) (-4073 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 114)) (-4060 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 122)) (-2158 (((-1188 (-965 |#2|))) 63)) (-2866 ((|#2| (-1283 $)) NIL) ((|#2|) 118)) (-3875 (($ (-1283 |#2|) (-1283 $)) NIL) (($ (-1283 |#2|)) 124)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 94)) (-3502 (((-3 $ "failed")) 86)) (-3100 (((-699 |#2|) (-1283 $)) NIL) (((-699 |#2|)) 112)) (-1830 (((-699 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) $) 120)) (-1719 (((-1188 (-965 |#2|))) 62)) (-3038 ((|#2| (-1283 $)) NIL) ((|#2|) 116)) (-4421 (((-1283 |#2|) $ (-1283 $)) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $) 123) (((-699 |#2|) (-1283 $)) 132)) (-1846 (((-1283 |#2|) $) 108) (($ (-1283 |#2|)) 110)) (-2414 (((-654 (-965 |#2|)) (-1283 $)) NIL) (((-654 (-965 |#2|))) 106)) (-2911 (($ (-699 |#2|) $) 102))) +(((-426 |#1| |#2|) (-10 -8 (-15 -2911 (|#1| (-699 |#2|) |#1|)) (-15 -2158 ((-1188 (-965 |#2|)))) (-15 -1719 ((-1188 (-965 |#2|)))) (-15 -4060 ((-699 |#2|) |#1|)) (-15 -1830 ((-699 |#2|) |#1|)) (-15 -4073 ((-699 |#2|))) (-15 -3100 ((-699 |#2|))) (-15 -2866 (|#2|)) (-15 -3038 (|#2|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -2414 ((-654 (-965 |#2|)))) (-15 -2555 ((-1283 (-699 |#2|)))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3462 ((-3 |#1| "failed"))) (-15 -3294 ((-3 |#1| "failed"))) (-15 -3502 ((-3 |#1| "failed"))) (-15 -1609 ((-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed"))) (-15 -1359 ((-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed"))) (-15 -4073 ((-699 |#2|) (-1283 |#1|))) (-15 -3100 ((-699 |#2|) (-1283 |#1|))) (-15 -2866 (|#2| (-1283 |#1|))) (-15 -3038 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -4060 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -1830 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2555 ((-1283 (-699 |#2|)) (-1283 |#1|))) (-15 -2414 ((-654 (-965 |#2|)) (-1283 |#1|)))) (-427 |#2|) (-174)) (T -426)) +((-2555 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2414 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3038 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-2866 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-3100 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-4073 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2158 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) +(-10 -8 (-15 -2911 (|#1| (-699 |#2|) |#1|)) (-15 -2158 ((-1188 (-965 |#2|)))) (-15 -1719 ((-1188 (-965 |#2|)))) (-15 -4060 ((-699 |#2|) |#1|)) (-15 -1830 ((-699 |#2|) |#1|)) (-15 -4073 ((-699 |#2|))) (-15 -3100 ((-699 |#2|))) (-15 -2866 (|#2|)) (-15 -3038 (|#2|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3875 (|#1| (-1283 |#2|))) (-15 -2414 ((-654 (-965 |#2|)))) (-15 -2555 ((-1283 (-699 |#2|)))) (-15 -4421 ((-699 |#2|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1|)) (-15 -3462 ((-3 |#1| "failed"))) (-15 -3294 ((-3 |#1| "failed"))) (-15 -3502 ((-3 |#1| "failed"))) (-15 -1609 ((-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed"))) (-15 -1359 ((-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed"))) (-15 -4073 ((-699 |#2|) (-1283 |#1|))) (-15 -3100 ((-699 |#2|) (-1283 |#1|))) (-15 -2866 (|#2| (-1283 |#1|))) (-15 -3038 (|#2| (-1283 |#1|))) (-15 -3875 (|#1| (-1283 |#2|) (-1283 |#1|))) (-15 -4421 ((-699 |#2|) (-1283 |#1|) (-1283 |#1|))) (-15 -4421 ((-1283 |#2|) |#1| (-1283 |#1|))) (-15 -4060 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -1830 ((-699 |#2|) |#1| (-1283 |#1|))) (-15 -2555 ((-1283 (-699 |#2|)) (-1283 |#1|))) (-15 -2414 ((-654 (-965 |#2|)) (-1283 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3462 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) 20)) (-2555 (((-1283 (-699 |#1|)) (-1283 $)) 83) (((-1283 (-699 |#1|))) 106)) (-4000 (((-1283 $)) 86)) (-3063 (($) 18 T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-3294 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-4073 (((-699 |#1|) (-1283 $)) 70) (((-699 |#1|)) 98)) (-3197 ((|#1| $) 79)) (-4060 (((-699 |#1|) $ (-1283 $)) 81) (((-699 |#1|) $) 96)) (-3790 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-2158 (((-1188 (-965 |#1|))) 94 (|has| |#1| (-372)))) (-3558 (($ $ (-934)) 31)) (-2755 ((|#1| $) 77)) (-2390 (((-1188 |#1|) $) 47 (|has| |#1| (-566)))) (-2866 ((|#1| (-1283 $)) 72) ((|#1|) 100)) (-2447 (((-1188 |#1|) $) 68)) (-1550 (((-112)) 62)) (-3875 (($ (-1283 |#1|) (-1283 $)) 74) (($ (-1283 |#1|)) 104)) (-2978 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3557 (((-934)) 85)) (-2676 (((-112)) 59)) (-2867 (($ $ (-934)) 38)) (-3236 (((-112)) 55)) (-3154 (((-112)) 53)) (-3954 (((-112)) 57)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3502 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-3100 (((-699 |#1|) (-1283 $)) 71) (((-699 |#1|)) 99)) (-4132 ((|#1| $) 80)) (-1830 (((-699 |#1|) $ (-1283 $)) 82) (((-699 |#1|) $) 97)) (-1341 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-1719 (((-1188 (-965 |#1|))) 95 (|has| |#1| (-372)))) (-2883 (($ $ (-934)) 32)) (-2670 ((|#1| $) 78)) (-2664 (((-1188 |#1|) $) 48 (|has| |#1| (-566)))) (-3038 ((|#1| (-1283 $)) 73) ((|#1|) 101)) (-1373 (((-1188 |#1|) $) 69)) (-1808 (((-112)) 63)) (-1938 (((-1174) $) 10)) (-3618 (((-112)) 54)) (-4004 (((-112)) 56)) (-3380 (((-112)) 58)) (-3939 (((-1135) $) 11)) (-4147 (((-112)) 61)) (-2209 ((|#1| $ (-574)) 110)) (-4421 (((-1283 |#1|) $ (-1283 $)) 76) (((-699 |#1|) (-1283 $) (-1283 $)) 75) (((-1283 |#1|) $) 108) (((-699 |#1|) (-1283 $)) 107)) (-1846 (((-1283 |#1|) $) 103) (($ (-1283 |#1|)) 102)) (-2414 (((-654 (-965 |#1|)) (-1283 $)) 84) (((-654 (-965 |#1|))) 105)) (-2987 (($ $ $) 28)) (-4390 (((-112)) 67)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 109)) (-2433 (((-654 (-1283 |#1|))) 49 (|has| |#1| (-566)))) (-1391 (($ $ $ $) 29)) (-2579 (((-112)) 65)) (-2911 (($ (-699 |#1|) $) 93)) (-2824 (($ $ $) 27)) (-4208 (((-112)) 66)) (-4124 (((-112)) 64)) (-2170 (((-112)) 60)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-427 |#1|) (-141) (-174)) (T -427)) +((-3907 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-427 *3)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2555 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 (-699 *3))))) (-2414 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-965 *3))))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-3038 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-2866 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-3100 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-4073 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-1719 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1188 (-965 *3))))) (-2158 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1188 (-965 *3))))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))) +(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -3907 ((-1283 $))) (-15 -4421 ((-1283 |t#1|) $)) (-15 -4421 ((-699 |t#1|) (-1283 $))) (-15 -2555 ((-1283 (-699 |t#1|)))) (-15 -2414 ((-654 (-965 |t#1|)))) (-15 -3875 ($ (-1283 |t#1|))) (-15 -1846 ((-1283 |t#1|) $)) (-15 -1846 ($ (-1283 |t#1|))) (-15 -3038 (|t#1|)) (-15 -2866 (|t#1|)) (-15 -3100 ((-699 |t#1|))) (-15 -4073 ((-699 |t#1|))) (-15 -1830 ((-699 |t#1|) $)) (-15 -4060 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -1719 ((-1188 (-965 |t#1|)))) (-15 -2158 ((-1188 (-965 |t#1|))))) |%noBranch|) (-15 -2911 ($ (-699 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 60)) (-4093 (($ $) 78)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 192)) (-4319 (($ $) NIL)) (-1731 (((-112) $) 48)) (-3462 ((|#1| $) 16)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-1237)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-1237)))) (-4042 (($ |#1| (-574)) 42)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 74)) (-2978 (((-3 $ "failed") $) 165)) (-2222 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-4002 (((-112) $) 81 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-3252 (($ |#1| (-574)) 44)) (-2941 (((-112) $) 212 (|has| |#1| (-1237)))) (-2276 (((-112) $) 62)) (-4406 (((-781) $) 51)) (-3039 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-3757 ((|#1| $ (-574)) 175)) (-2193 (((-574) $ (-574)) 174)) (-3980 (($ |#1| (-574)) 41)) (-1787 (($ (-1 |#1| |#1|) $) 184)) (-4095 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-4354 (($ |#1| (-574)) 43)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-4139 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2679 (((-654 (-2 (|:| -4200 |#1|) (|:| -3843 (-574)))) $) 73)) (-3710 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4200 (((-428 $) $) NIL (|has| |#1| (-1237)))) (-2852 (((-3 $ "failed") $ $) 177)) (-3843 (((-574) $) 168)) (-2138 ((|#1| $) 75)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) $) NIL (|has| |#1| (-524 (-1192) $))) (($ $ (-654 (-1192)) (-654 $)) 108 (|has| |#1| (-524 (-1192) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2209 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1846 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1037))) (((-227) $) 120 (|has| |#1| (-1037)))) (-2950 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574)))))) (-3781 (((-781)) 67 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 53 T CONST)) (-2155 (($) 52 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) 160)) (-3089 (($ $) 162) (($ $ $) NIL)) (-3073 (($ $ $) 181)) (** (($ $ (-934)) NIL) (($ $ (-781)) 126)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2138 (|#1| $)) (-15 -3843 ((-574) $)) (-15 -4095 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3710 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3980 ($ |#1| (-574))) (-15 -2679 ((-654 (-2 (|:| -4200 |#1|) (|:| -3843 (-574)))) $)) (-15 -4354 ($ |#1| (-574))) (-15 -2193 ((-574) $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -3039 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -4406 ((-781) $)) (-15 -3252 ($ |#1| (-574))) (-15 -4042 ($ |#1| (-574))) (-15 -4139 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3462 (|#1| $)) (-15 -4093 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |#1| (-1237)) (-6 (-1237)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1192) $)) (-6 (-524 (-1192) $)) |%noBranch|))) (-566)) (T -428)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2138 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-4095 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3980 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -3843 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-4354 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2193 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3039 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-4406 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3252 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4139 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3462 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4093 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-2222 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))) +(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2138 (|#1| $)) (-15 -3843 ((-574) $)) (-15 -4095 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -3710 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3980 ($ |#1| (-574))) (-15 -2679 ((-654 (-2 (|:| -4200 |#1|) (|:| -3843 (-574)))) $)) (-15 -4354 ($ |#1| (-574))) (-15 -2193 ((-574) $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -3039 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -4406 ((-781) $)) (-15 -3252 ($ |#1| (-574))) (-15 -4042 ($ |#1| (-574))) (-15 -4139 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3462 (|#1| $)) (-15 -4093 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |#1| (-1237)) (-6 (-1237)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1192) $)) (-6 (-524 (-1192) $)) |%noBranch|))) +((-4385 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3315 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17))) +(((-429 |#1|) (-10 -7 (-15 -4385 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3315 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429)) +((-3315 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-4385 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4))))) +(-10 -7 (-15 -4385 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3315 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) +((-4206 ((|#2| |#2|) 183)) (-4323 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112)) 60))) +(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4323 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112))) (-15 -4206 (|#2| |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -430)) +((-4206 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1218) (-440 *3))) (-14 *4 (-1192)) (-14 *5 *2))) (-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-14 *6 (-1192)) (-14 *7 *3)))) +(-10 -7 (-15 -4323 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112))) (-15 -4206 (|#2| |#2|))) +((-1787 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) (-1064) (-440 |#1|) (-1064) (-440 |#3|)) (T -431)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) +((-4206 ((|#2| |#2|) 106)) (-3910 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174)) 52)) (-2784 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174)) 170))) +(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3910 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -2784 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -4206 (|#2| |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|) (-10 -8 (-15 -2950 ($ |#3|)))) (-858) (-13 (-1261 |#2| |#3|) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $)))) (-998 |#4|) (-1192)) (T -432)) +((-4206 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1218) (-440 *3) (-10 -8 (-15 -2950 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1261 *2 *4) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-998 *5)) (-14 *7 (-1192)))) (-2784 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1261 *3 *7) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) (-14 *10 (-1192)))) (-3910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1261 *3 *7) (-372) (-1218) (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) (-14 *10 (-1192))))) +(-10 -7 (-15 -3910 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -2784 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174))))) |#2| (-112) (-1174))) (-15 -4206 (|#2| |#2|))) +((-2316 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2881 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1787 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2316 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1115) (-435 |#1|) (-1115) (-435 |#3|)) (T -433)) +((-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1115)) (-4 *5 (-1115)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1115)) (-4 *2 (-1115)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2881 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2316 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1873 (($) 51)) (-4353 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3728 (($ $ $) 46)) (-4065 (((-112) $ $) 35)) (-1497 (((-781)) 55)) (-1517 (($ (-654 |#2|)) 23) (($) NIL)) (-2834 (($) 66)) (-3069 (((-112) $ $) 15)) (-3632 ((|#2| $) 77)) (-2953 ((|#2| $) 75)) (-3880 (((-934) $) 70)) (-2627 (($ $ $) 42)) (-2590 (($ (-934)) 60)) (-3062 (($ $ |#2|) NIL) (($ $ $) 45)) (-3948 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2962 (($ (-654 |#2|)) 27)) (-1488 (($ $) 53)) (-2950 (((-872) $) 40)) (-1617 (((-781) $) 24)) (-4268 (($ (-654 |#2|)) 22) (($) NIL)) (-2985 (((-112) $ $) 19))) +(((-434 |#1| |#2|) (-10 -8 (-15 -1497 ((-781))) (-15 -2590 (|#1| (-934))) (-15 -3880 ((-934) |#1|)) (-15 -2834 (|#1|)) (-15 -3632 (|#2| |#1|)) (-15 -2953 (|#2| |#1|)) (-15 -1873 (|#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1617 ((-781) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3069 ((-112) |#1| |#1|)) (-15 -4268 (|#1|)) (-15 -4268 (|#1| (-654 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-654 |#2|))) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#2|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -4065 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1115)) (T -434)) +((-1497 (*1 *2) (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) +(-10 -8 (-15 -1497 ((-781))) (-15 -2590 (|#1| (-934))) (-15 -3880 ((-934) |#1|)) (-15 -2834 (|#1|)) (-15 -3632 (|#2| |#1|)) (-15 -2953 (|#2| |#1|)) (-15 -1873 (|#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1617 ((-781) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -3069 ((-112) |#1| |#1|)) (-15 -4268 (|#1|)) (-15 -4268 (|#1| (-654 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-654 |#2|))) (-15 -2627 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#2|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -4065 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -3948 ((-781) |#2| |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|))) +((-2863 (((-112) $ $) 19)) (-1873 (($) 68 (|has| |#1| (-377)))) (-4353 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3728 (($ $ $) 79)) (-4065 (((-112) $ $) 80)) (-1750 (((-112) $ (-781)) 8)) (-1497 (((-781)) 62 (|has| |#1| (-377)))) (-1517 (($ (-654 |#1|)) 75) (($) 74)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-2834 (($) 65 (|has| |#1| (-377)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) 71)) (-2121 (((-112) $ (-781)) 9)) (-3632 ((|#1| $) 66 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2953 ((|#1| $) 67 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-3880 (((-934) $) 64 (|has| |#1| (-377)))) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22)) (-2627 (($ $ $) 76)) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-2590 (($ (-934)) 63 (|has| |#1| (-377)))) (-3939 (((-1135) $) 21)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3062 (($ $ |#1|) 78) (($ $ $) 77)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-1488 (($ $) 69 (|has| |#1| (-377)))) (-2950 (((-872) $) 18)) (-1617 (((-781) $) 70)) (-4268 (($ (-654 |#1|)) 73) (($) 72)) (-4259 (((-112) $ $) 23)) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-435 |#1|) (-141) (-1115)) (T -435)) +((-1617 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-1488 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-377)))) (-1873 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1115)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860))))) +(-13 (-231 |t#1|) (-1113 |t#1|) (-10 -8 (-6 -4458) (-15 -1617 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -1488 ($ $)) (-15 -1873 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2953 (|t#1| $)) (-15 -3632 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-1925 (((-596 |#2|) |#2| (-1192)) 36)) (-2317 (((-596 |#2|) |#2| (-1192)) 21)) (-3973 ((|#2| |#2| (-1192)) 26))) +(((-436 |#1| |#2|) (-10 -7 (-15 -2317 ((-596 |#2|) |#2| (-1192))) (-15 -1925 ((-596 |#2|) |#2| (-1192))) (-15 -3973 (|#2| |#2| (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-29 |#1|))) (T -436)) +((-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1218) (-29 *4))))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1218) (-29 *5))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1218) (-29 *5)))))) +(-10 -7 (-15 -2317 ((-596 |#2|) |#2| (-1192))) (-15 -1925 ((-596 |#2|) |#2| (-1192))) (-15 -3973 (|#2| |#2| (-1192)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-3993 (($ |#2| |#1|) 37)) (-3262 (($ |#2| |#1|) 35)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2155 (($) 16 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 36)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4445)) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (-15 -2950 ($ |#1|)) (-15 -2950 ($ (-339 |#2|))) (-15 -3993 ($ |#2| |#1|)) (-15 -3262 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437)) +((-2950 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-3993 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-3262 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4445)) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (-15 -2950 ($ |#1|)) (-15 -2950 ($ (-339 |#2|))) (-15 -3993 ($ |#2| |#1|)) (-15 -3262 ($ |#2| |#1|)))) +((-3302 (((-3 |#2| (-654 |#2|)) |#2| (-1192)) 115))) +(((-438 |#1| |#2|) (-10 -7 (-15 -3302 ((-3 |#2| (-654 |#2|)) |#2| (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -438)) +((-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1218) (-972) (-29 *5)))))) +(-10 -7 (-15 -3302 ((-3 |#2| (-654 |#2|)) |#2| (-1192)))) +((-4349 (((-654 (-1192)) $) 81)) (-4172 (((-417 (-1188 $)) $ (-622 $)) 313)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1706 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1192) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-965 |#2|)) "failed") $) 363) (((-3 (-965 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-1192) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-965 |#2|)) $) 345) (((-965 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4151 (((-115) (-115)) 47)) (-3071 (($ $) 99)) (-3487 (((-3 (-622 $) "failed") $) 268)) (-4138 (((-654 (-622 $)) $) 269)) (-1898 (((-3 (-654 $) "failed") $) 287)) (-3469 (((-3 (-2 (|:| |val| $) (|:| -3843 (-574))) "failed") $) 294)) (-3145 (((-3 (-654 $) "failed") $) 285)) (-2160 (((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-3019 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-1192)) 257)) (-1342 (((-112) $) 17)) (-1354 ((|#2| $) 19)) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1192)) 62) (($ $ (-654 (-1192))) 280) (($ $) 281) (($ $ (-115) $ (-1192)) 65) (($ $ (-654 (-115)) (-654 $) (-1192)) 72) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1192) (-781) (-1 $ (-654 $))) 105) (($ $ (-1192) (-781) (-1 $ $)) 104)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) 278)) (-2593 (($ $) 324)) (-1846 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2950 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1192)) 24) (($ |#2|) NIL) (($ (-1140 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-965 (-417 |#2|))) 368) (($ (-417 (-965 (-417 |#2|)))) 341) (($ (-417 (-965 |#2|))) 335) (($ $) NIL) (($ (-965 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-3781 (((-781)) 88)) (-2448 (((-112) (-115)) 42)) (-2513 (($ (-1192) $) 31) (($ (-1192) $ $) 32) (($ (-1192) $ $ $) 33) (($ (-1192) $ $ $ $) 34) (($ (-1192) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) +(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-934) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 (|#1| (-574))) (-15 -3781 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2950 (|#1| (-965 |#2|))) (-15 -1706 ((-3 (-965 |#2|) "failed") |#1|)) (-15 -2216 ((-965 |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-965 |#2|)))) (-15 -1706 ((-3 (-417 (-965 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-965 |#2|)) |#1|)) (-15 -4172 ((-417 (-1188 |#1|)) |#1| (-622 |#1|))) (-15 -2950 (|#1| (-417 (-965 (-417 |#2|))))) (-15 -2950 (|#1| (-965 (-417 |#2|)))) (-15 -2950 (|#1| (-417 |#2|))) (-15 -2593 (|#1| |#1|)) (-15 -1846 (|#1| (-428 |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3469 ((-3 (-2 (|:| |val| |#1|) (|:| -3843 (-574))) "failed") |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1| (-1192))) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1| (-115))) (-15 -3071 (|#1| |#1|)) (-15 -2950 (|#1| (-1140 |#2| (-622 |#1|)))) (-15 -2160 ((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3145 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1|)) (-15 -1898 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1192))) (-15 -2660 (|#1| |#1| (-115) |#1| (-1192))) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1192)))) (-15 -2660 (|#1| |#1| (-1192))) (-15 -2513 (|#1| (-1192) (-654 |#1|))) (-15 -2513 (|#1| (-1192) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1|)) (-15 -4349 ((-654 (-1192)) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -4138 ((-654 (-622 |#1|)) |#1|)) (-15 -3487 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2209 (|#1| (-115) (-654 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2950 (|#1| (-622 |#1|))) (-15 -1706 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2950 ((-872) |#1|))) (-440 |#2|) (-1115)) (T -439)) +((-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1115)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-3781 (*1 *2) (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4))))) +(-10 -8 (-15 * (|#1| (-934) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 (|#1| (-574))) (-15 -3781 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2950 (|#1| (-965 |#2|))) (-15 -1706 ((-3 (-965 |#2|) "failed") |#1|)) (-15 -2216 ((-965 |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2950 (|#1| (-417 (-965 |#2|)))) (-15 -1706 ((-3 (-417 (-965 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-965 |#2|)) |#1|)) (-15 -4172 ((-417 (-1188 |#1|)) |#1| (-622 |#1|))) (-15 -2950 (|#1| (-417 (-965 (-417 |#2|))))) (-15 -2950 (|#1| (-965 (-417 |#2|)))) (-15 -2950 (|#1| (-417 |#2|))) (-15 -2593 (|#1| |#1|)) (-15 -1846 (|#1| (-428 |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3469 ((-3 (-2 (|:| |val| |#1|) (|:| -3843 (-574))) "failed") |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1| (-1192))) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1| (-115))) (-15 -3071 (|#1| |#1|)) (-15 -2950 (|#1| (-1140 |#2| (-622 |#1|)))) (-15 -2160 ((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -3145 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3843 (-574))) "failed") |#1|)) (-15 -1898 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1192))) (-15 -2660 (|#1| |#1| (-115) |#1| (-1192))) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1192)))) (-15 -2660 (|#1| |#1| (-1192))) (-15 -2513 (|#1| (-1192) (-654 |#1|))) (-15 -2513 (|#1| (-1192) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1| |#1|)) (-15 -2513 (|#1| (-1192) |#1|)) (-15 -4349 ((-654 (-1192)) |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -1342 ((-112) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| |#1|))) (-15 -2660 (|#1| |#1| (-1192) (-1 |#1| (-654 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2660 (|#1| |#1| (-654 (-1192)) (-654 (-1 |#1| |#1|)))) (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -4138 ((-654 (-622 |#1|)) |#1|)) (-15 -3487 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2558 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2558 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2558 (|#1| |#1| (-302 |#1|))) (-15 -2209 (|#1| (-115) (-654 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2660 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2950 (|#1| (-622 |#1|))) (-15 -1706 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 116 (|has| |#1| (-25)))) (-4349 (((-654 (-1192)) $) 205)) (-4172 (((-417 (-1188 $)) $ (-622 $)) 173 (|has| |#1| (-566)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 145 (|has| |#1| (-566)))) (-4319 (($ $) 146 (|has| |#1| (-566)))) (-1731 (((-112) $) 148 (|has| |#1| (-566)))) (-4067 (((-654 (-622 $)) $) 39)) (-2599 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2558 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-3313 (($ $) 165 (|has| |#1| (-566)))) (-2153 (((-428 $) $) 166 (|has| |#1| (-566)))) (-1526 (((-112) $ $) 156 (|has| |#1| (-566)))) (-3063 (($) 104 (-2832 (|has| |#1| (-1127)) (|has| |#1| (-25))) CONST)) (-1706 (((-3 (-622 $) "failed") $) 64) (((-3 (-1192) "failed") $) 218) (((-3 (-574) "failed") $) 212 (|has| |#1| (-1053 (-574)))) (((-3 |#1| "failed") $) 209) (((-3 (-417 (-965 |#1|)) "failed") $) 171 (|has| |#1| (-566))) (((-3 (-965 |#1|) "failed") $) 123 (|has| |#1| (-1064))) (((-3 (-417 (-574)) "failed") $) 98 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 (((-622 $) $) 65) (((-1192) $) 219) (((-574) $) 211 (|has| |#1| (-1053 (-574)))) ((|#1| $) 210) (((-417 (-965 |#1|)) $) 172 (|has| |#1| (-566))) (((-965 |#1|) $) 124 (|has| |#1| (-1064))) (((-417 (-574)) $) 99 (-2832 (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574))))))) (-2800 (($ $ $) 160 (|has| |#1| (-566)))) (-4232 (((-699 (-574)) (-1283 $)) 140 (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-699 (-574)) (-699 $)) 139 (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 138 (-2097 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 137 (|has| |#1| (-1064))) (((-699 |#1|) (-699 $)) 136 (|has| |#1| (-1064))) (((-699 |#1|) (-1283 $)) 135 (|has| |#1| (-1064)))) (-2978 (((-3 $ "failed") $) 106 (|has| |#1| (-1127)))) (-2811 (($ $ $) 159 (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 154 (|has| |#1| (-566)))) (-2941 (((-112) $) 167 (|has| |#1| (-566)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 214 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 213 (|has| |#1| (-897 (-388))))) (-4248 (($ $) 46) (($ (-654 $)) 45)) (-3667 (((-654 (-115)) $) 38)) (-4151 (((-115) (-115)) 37)) (-2276 (((-112) $) 105 (|has| |#1| (-1127)))) (-3127 (((-112) $) 17 (|has| $ (-1053 (-574))))) (-3071 (($ $) 188 (|has| |#1| (-1064)))) (-2970 (((-1140 |#1| (-622 $)) $) 189 (|has| |#1| (-1064)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 163 (|has| |#1| (-566)))) (-3256 (((-1188 $) (-622 $)) 20 (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) 31)) (-3487 (((-3 (-622 $) "failed") $) 41)) (-2844 (($ (-654 $)) 152 (|has| |#1| (-566))) (($ $ $) 151 (|has| |#1| (-566)))) (-1938 (((-1174) $) 10)) (-4138 (((-654 (-622 $)) $) 40)) (-1784 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-1898 (((-3 (-654 $) "failed") $) 194 (|has| |#1| (-1127)))) (-3469 (((-3 (-2 (|:| |val| $) (|:| -3843 (-574))) "failed") $) 185 (|has| |#1| (-1064)))) (-3145 (((-3 (-654 $) "failed") $) 192 (|has| |#1| (-25)))) (-2160 (((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 $))) "failed") $) 191 (|has| |#1| (-25)))) (-3019 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $) 193 (|has| |#1| (-1127))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-115)) 187 (|has| |#1| (-1064))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-1192)) 186 (|has| |#1| (-1064)))) (-2454 (((-112) $ (-115)) 35) (((-112) $ (-1192)) 34)) (-1327 (($ $) 108 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1849 (((-781) $) 42)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 207)) (-1354 ((|#1| $) 206)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 153 (|has| |#1| (-566)))) (-2886 (($ (-654 $)) 150 (|has| |#1| (-566))) (($ $ $) 149 (|has| |#1| (-566)))) (-2192 (((-112) $ $) 30) (((-112) $ (-1192)) 29)) (-4200 (((-428 $) $) 164 (|has| |#1| (-566)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 161 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ $) 144 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 155 (|has| |#1| (-566)))) (-3304 (((-112) $) 18 (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1192)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1192) (-1 $ (-654 $))) 26) (($ $ (-1192) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1192)) 199 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192))) 198 (|has| |#1| (-624 (-546)))) (($ $) 197 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1192)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1192)) 195 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $))) 184 (|has| |#1| (-1064))) (($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 183 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ (-654 $))) 182 (|has| |#1| (-1064))) (($ $ (-1192) (-781) (-1 $ $)) 181 (|has| |#1| (-1064)))) (-3575 (((-781) $) 157 (|has| |#1| (-566)))) (-2209 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 158 (|has| |#1| (-566)))) (-2734 (($ $) 44) (($ $ $) 43)) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 129 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 128 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 127 (|has| |#1| (-1064))) (($ $ (-1192)) 126 (|has| |#1| (-1064)))) (-2593 (($ $) 178 (|has| |#1| (-566)))) (-2981 (((-1140 |#1| (-622 $)) $) 179 (|has| |#1| (-566)))) (-2611 (($ $) 19 (|has| $ (-1064)))) (-1846 (((-903 (-574)) $) 216 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 215 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 180 (|has| |#1| (-566))) (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2190 (($ $ $) 111 (|has| |#1| (-483)))) (-2987 (($ $ $) 112 (|has| |#1| (-483)))) (-2950 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1192)) 217) (($ |#1|) 208) (($ (-1140 |#1| (-622 $))) 190 (|has| |#1| (-1064))) (($ (-417 |#1|)) 176 (|has| |#1| (-566))) (($ (-965 (-417 |#1|))) 175 (|has| |#1| (-566))) (($ (-417 (-965 (-417 |#1|)))) 174 (|has| |#1| (-566))) (($ (-417 (-965 |#1|))) 170 (|has| |#1| (-566))) (($ $) 143 (|has| |#1| (-566))) (($ (-965 |#1|)) 122 (|has| |#1| (-1064))) (($ (-417 (-574))) 97 (-2832 (|has| |#1| (-566)) (-12 (|has| |#1| (-1053 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1053 (-417 (-574)))))) (($ (-574)) 96 (-2832 (|has| |#1| (-1064)) (|has| |#1| (-1053 (-574)))))) (-3270 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-3781 (((-781)) 125 (|has| |#1| (-1064)) CONST)) (-2081 (($ $) 48) (($ (-654 $)) 47)) (-2448 (((-112) (-115)) 36)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 147 (|has| |#1| (-566)))) (-2513 (($ (-1192) $) 204) (($ (-1192) $ $) 203) (($ (-1192) $ $ $) 202) (($ (-1192) $ $ $ $) 201) (($ (-1192) (-654 $)) 200)) (-2143 (($) 115 (|has| |#1| (-25)) CONST)) (-2155 (($) 103 (|has| |#1| (-1127)) CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 133 (|has| |#1| (-1064))) (($ $ (-1192) (-781)) 132 (|has| |#1| (-1064))) (($ $ (-654 (-1192))) 131 (|has| |#1| (-1064))) (($ $ (-1192)) 130 (|has| |#1| (-1064)))) (-2985 (((-112) $ $) 6)) (-3102 (($ (-1140 |#1| (-622 $)) (-1140 |#1| (-622 $))) 177 (|has| |#1| (-566))) (($ $ $) 109 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3089 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3073 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-574)) 110 (-2832 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 107 (|has| |#1| (-1127))) (($ $ (-934)) 102 (|has| |#1| (-1127)))) (* (($ (-417 (-574)) $) 169 (|has| |#1| (-566))) (($ $ (-417 (-574))) 168 (|has| |#1| (-566))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1064))) (($ (-574) $) 119 (|has| |#1| (-21))) (($ (-781) $) 117 (|has| |#1| (-25))) (($ (-934) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1127))))) +(((-440 |#1|) (-141) (-1115)) (T -440)) +((-1342 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-1192))))) (-2513 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2513 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2513 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2513 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) (-2513 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-624 (-546))))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-624 (-546))))) (-2660 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-624 (-546))))) (-2660 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1192)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) (-4 *4 (-624 (-546))))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1192)) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-624 (-546))))) (-1898 (*1 *2 *1) (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-3019 (*1 *2 *1) (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) (-4 *1 (-440 *3)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-2160 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| -1868 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-1064)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-3071 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-1064)))) (-3019 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) (-4 *1 (-440 *4)))) (-3019 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-1064)) (-4 *4 (-1115)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) (-4 *1 (-440 *4)))) (-3469 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |val| *1) (|:| -3843 (-574)))) (-4 *1 (-440 *3)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-2660 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1115)))) (-2981 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-566)))) (-3102 (*1 *1 *2 *2) (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1115)) (-4 *1 (-440 *3)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) (-4 *4 (-566)) (-5 *2 (-417 (-1188 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-4 *3 (-1127))))) +(-13 (-310) (-1053 (-1192)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1342 ((-112) $)) (-15 -1354 (|t#1| $)) (-15 -4349 ((-654 (-1192)) $)) (-15 -2513 ($ (-1192) $)) (-15 -2513 ($ (-1192) $ $)) (-15 -2513 ($ (-1192) $ $ $)) (-15 -2513 ($ (-1192) $ $ $ $)) (-15 -2513 ($ (-1192) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2660 ($ $ (-1192))) (-15 -2660 ($ $ (-654 (-1192)))) (-15 -2660 ($ $)) (-15 -2660 ($ $ (-115) $ (-1192))) (-15 -2660 ($ $ (-654 (-115)) (-654 $) (-1192)))) |%noBranch|) (IF (|has| |t#1| (-1127)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -1898 ((-3 (-654 $) "failed") $)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3145 ((-3 (-654 $) "failed") $)) (-15 -2160 ((-3 (-2 (|:| -1868 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1064)) (PROGN (-6 (-1064)) (-6 (-1053 (-965 |t#1|))) (-6 (-913 (-1192))) (-6 (-386 |t#1|)) (-15 -2950 ($ (-1140 |t#1| (-622 $)))) (-15 -2970 ((-1140 |t#1| (-622 $)) $)) (-15 -3071 ($ $)) (-15 -3019 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-115))) (-15 -3019 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3843 (-574))) "failed") $ (-1192))) (-15 -3469 ((-3 (-2 (|:| |val| $) (|:| -3843 (-574))) "failed") $)) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2660 ($ $ (-654 (-1192)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2660 ($ $ (-1192) (-781) (-1 $ (-654 $)))) (-15 -2660 ($ $ (-1192) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1053 (-417 (-965 |t#1|)))) (-15 -1846 ($ (-428 $))) (-15 -2981 ((-1140 |t#1| (-622 $)) $)) (-15 -2593 ($ $)) (-15 -3102 ($ (-1140 |t#1| (-622 $)) (-1140 |t#1| (-622 $)))) (-15 -2950 ($ (-417 |t#1|))) (-15 -2950 ($ (-965 (-417 |t#1|)))) (-15 -2950 ($ (-417 (-965 (-417 |t#1|))))) (-15 -4172 ((-417 (-1188 $)) $ (-622 $))) (IF (|has| |t#1| (-1053 (-574))) (-6 (-1053 (-417 (-574)))) |%noBranch|)) |%noBranch|))) +(((-21) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-965 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2832 (|has| |#1| (-1064)) (|has| |#1| (-1053 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-965 |#1|)) |has| |#1| (-1064)) ((-626 #4=(-1192)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1064)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-656 $) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-658 |#1|) -2832 (|has| |#1| (-1064)) (|has| |#1| (-174))) ((-658 $) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1064))) ((-649 |#1|) |has| |#1| (-1064)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2832 (|has| |#1| (-1127)) (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-913 (-1192)) |has| |#1| (-1064)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-933) |has| |#1| (-566)) ((-1053 (-417 (-574))) -2832 (|has| |#1| (-1053 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1053 (-574))))) ((-1053 #1#) |has| |#1| (-566)) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 #3#) |has| |#1| (-1064)) ((-1053 #4#) . T) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-566)) ((-1066 |#1|) |has| |#1| (-174)) ((-1066 $) |has| |#1| (-566)) ((-1071 #0#) |has| |#1| (-566)) ((-1071 |#1|) |has| |#1| (-174)) ((-1071 $) |has| |#1| (-566)) ((-1064) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1073) -2832 (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1127) -2832 (|has| |#1| (-1127)) (|has| |#1| (-1064)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1115) . T) ((-1233) . T) ((-1237) |has| |#1| (-566))) +((-3932 ((|#2| |#2| |#2|) 31)) (-4151 (((-115) (-115)) 43)) (-3963 ((|#2| |#2|) 63)) (-4331 ((|#2| |#2|) 66)) (-4127 ((|#2| |#2|) 30)) (-4238 ((|#2| |#2| |#2|) 33)) (-4072 ((|#2| |#2| |#2|) 35)) (-2625 ((|#2| |#2| |#2|) 32)) (-1769 ((|#2| |#2| |#2|) 34)) (-2448 (((-112) (-115)) 41)) (-1730 ((|#2| |#2|) 37)) (-1394 ((|#2| |#2|) 36)) (-2366 ((|#2| |#2|) 25)) (-1433 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1437 ((|#2| |#2| |#2|) 29))) +(((-441 |#1| |#2|) (-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -2366 (|#2| |#2|)) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -3932 (|#2| |#2| |#2|)) (-15 -2625 (|#2| |#2| |#2|)) (-15 -4238 (|#2| |#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -4072 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -4331 (|#2| |#2|)) (-15 -3963 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441)) +((-3963 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4331 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1394 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4072 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1769 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4238 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2625 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3932 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1437 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1433 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))) +(-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -2366 (|#2| |#2|)) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| |#2|)) (-15 -1437 (|#2| |#2| |#2|)) (-15 -4127 (|#2| |#2|)) (-15 -3932 (|#2| |#2| |#2|)) (-15 -2625 (|#2| |#2| |#2|)) (-15 -4238 (|#2| |#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -4072 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -4331 (|#2| |#2|)) (-15 -3963 (|#2| |#2|))) +((-2776 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|)) 65))) +(((-442 |#1| |#2|) (-10 -7 (-15 -2776 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -2776 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442)) +((-2776 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1188 *3)) (|:| |pol2| (-1188 *3)) (|:| |prim| (-1188 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1188 *5))) (|:| |prim| (-1188 *5)))) (-5 *1 (-442 *4 *5))))) +(-10 -7 (-15 -2776 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1188 |#2|))) (|:| |prim| (-1188 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -2776 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1188 |#2|)) (|:| |pol2| (-1188 |#2|)) (|:| |prim| (-1188 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3603 (((-1288)) 18)) (-3266 (((-1188 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24))) +(((-443 |#1| |#2|) (-10 -7 (-15 -3266 ((-417 (-574)) |#2|)) (-15 -3266 ((-1188 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3603 ((-1288)))) (-13 (-566) (-1053 (-574))) (-440 |#1|)) (T -443)) +((-3603 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1288)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))) +(-10 -7 (-15 -3266 ((-417 (-574)) |#2|)) (-15 -3266 ((-1188 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3603 ((-1288)))) +((-1644 (((-112) $) 32)) (-1812 (((-112) $) 34)) (-1728 (((-112) $) 35)) (-4284 (((-112) $) 38)) (-1987 (((-112) $) 33)) (-3428 (((-112) $) 37)) (-2950 (((-872) $) 20) (($ (-1174)) 31) (($ (-1192)) 26) (((-1192) $) 24) (((-1119) $) 23)) (-2219 (((-112) $) 36)) (-2985 (((-112) $ $) 17))) +(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1174))) (-15 -2950 ($ (-1192))) (-15 -2950 ((-1192) $)) (-15 -2950 ((-1119) $)) (-15 -1644 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -1728 ((-112) $)) (-15 -3428 ((-112) $)) (-15 -4284 ((-112) $)) (-15 -2219 ((-112) $)) (-15 -1812 ((-112) $)) (-15 -2985 ((-112) $ $))))) (T -444)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-444)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-444)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1174))) (-15 -2950 ($ (-1192))) (-15 -2950 ((-1192) $)) (-15 -2950 ((-1119) $)) (-15 -1644 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -1728 ((-112) $)) (-15 -3428 ((-112) $)) (-15 -4284 ((-112) $)) (-15 -2219 ((-112) $)) (-15 -1812 ((-112) $)) (-15 -2985 ((-112) $ $)))) +((-3991 (((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|) 72)) (-2374 (((-428 |#3|) |#3|) 34)) (-4160 (((-3 (-428 (-1188 (-48))) "failed") |#3|) 46 (|has| |#2| (-1053 (-48))))) (-1648 (((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3573 (-112))) |#3|) 37))) +(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -2374 ((-428 |#3|) |#3|)) (-15 -3991 ((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|)) (-15 -1648 ((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3573 (-112))) |#3|)) (IF (|has| |#2| (-1053 (-48))) (-15 -4160 ((-3 (-428 (-1188 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1053 (-574))) (-440 |#1|) (-1259 |#2|)) (T -445)) +((-4160 (*1 *2 *3) (|partial| -12 (-4 *5 (-1053 (-48))) (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1188 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3573 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-3991 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1188 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-2374 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) +(-10 -7 (-15 -2374 ((-428 |#3|) |#3|)) (-15 -3991 ((-3 (-428 (-1188 (-417 (-574)))) "failed") |#3|)) (-15 -1648 ((-3 (|:| |overq| (-1188 (-417 (-574)))) (|:| |overan| (-1188 (-48))) (|:| -3573 (-112))) |#3|)) (IF (|has| |#2| (-1053 (-48))) (-15 -4160 ((-3 (-428 (-1188 (-48))) "failed") |#3|)) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-3347 (((-1174) $ (-1174)) NIL)) (-3613 (($ $ (-1174)) NIL)) (-1685 (((-1174) $) NIL)) (-1689 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1686 (($ (-398)) NIL) (($ (-398) (-1174)) NIL)) (-2041 (((-398) $) NIL)) (-1938 (((-1174) $) NIL)) (-1552 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3343 (((-1288) (-1174)) 9)) (-2391 (((-1288) (-1174)) 10)) (-1569 (((-1288)) 11)) (-2950 (((-872) $) NIL)) (-2474 (($ $) 39)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-446) (-13 (-373 (-398) (-1174)) (-10 -7 (-15 -1689 ((-398) (-398) (-398))) (-15 -1689 ((-398) (-398))) (-15 -3343 ((-1288) (-1174))) (-15 -2391 ((-1288) (-1174))) (-15 -1569 ((-1288)))))) (T -446)) +((-1689 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446)))) (-1569 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-446))))) +(-13 (-373 (-398) (-1174)) (-10 -7 (-15 -1689 ((-398) (-398) (-398))) (-15 -1689 ((-398) (-398))) (-15 -3343 ((-1288) (-1174))) (-15 -2391 ((-1288) (-1174))) (-15 -1569 ((-1288))))) +((-2863 (((-112) $ $) NIL)) (-3891 (((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $) 11)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3950 (($) 35)) (-2437 (($) 41)) (-3335 (($) 37)) (-3869 (($) 39)) (-3438 (($) 36)) (-4033 (($) 38)) (-2434 (($) 40)) (-3811 (((-112) $) 8)) (-3611 (((-654 (-965 (-574))) $) 19)) (-2962 (($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112)) 30)) (-2950 (((-872) $) 24) (($ (-444)) 32)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-447) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-444))) (-15 -3891 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -3611 ((-654 (-965 (-574))) $)) (-15 -3811 ((-112) $)) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112))) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112))) (-15 -3950 ($)) (-15 -3438 ($)) (-15 -3335 ($)) (-15 -2437 ($)) (-15 -4033 ($)) (-15 -3869 ($)) (-15 -2434 ($))))) (T -447)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-447)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-654 (-965 (-574)))) (-5 *1 (-447)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *3 (-654 (-1192))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-3950 (*1 *1) (-5 *1 (-447))) (-3438 (*1 *1) (-5 *1 (-447))) (-3335 (*1 *1) (-5 *1 (-447))) (-2437 (*1 *1) (-5 *1 (-447))) (-4033 (*1 *1) (-5 *1 (-447))) (-3869 (*1 *1) (-5 *1 (-447))) (-2434 (*1 *1) (-5 *1 (-447)))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-444))) (-15 -3891 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -3611 ((-654 (-965 (-574))) $)) (-15 -3811 ((-112) $)) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-1192)) (-112))) (-15 -2962 ($ (-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-654 (-965 (-574))) (-112))) (-15 -3950 ($)) (-15 -3438 ($)) (-15 -3335 ($)) (-15 -2437 ($)) (-15 -4033 ($)) (-15 -3869 ($)) (-15 -2434 ($)))) +((-2863 (((-112) $ $) NIL)) (-2041 (((-1192) $) 8)) (-1938 (((-1174) $) 17)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 14))) +(((-448 |#1|) (-13 (-1115) (-10 -8 (-15 -2041 ((-1192) $)))) (-1192)) (T -448)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-448 *3)) (-14 *3 *2)))) +(-13 (-1115) (-10 -8 (-15 -2041 ((-1192) $)))) +((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 7)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 13)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) +(((-449) (-13 (-1115) (-10 -8 (-15 -3131 ((-1133) $))))) (T -449)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-449))))) +(-13 (-1115) (-10 -8 (-15 -3131 ((-1133) $)))) +((-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-1283 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 11))) (((-450) (-141)) (T -450)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-450)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-450)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450))))) -(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-1280 (-323 (-387))))) (-15 -1695 ((-3 $ "failed") (-1280 (-323 (-387))))) (-15 -2205 ($ (-1280 (-323 (-573))))) (-15 -1695 ((-3 $ "failed") (-1280 (-323 (-573))))) (-15 -2205 ($ (-1280 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-1280 (-962 (-387))))) (-15 -2205 ($ (-1280 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-1280 (-962 (-573))))) (-15 -2205 ($ (-1280 (-416 (-962 (-387)))))) (-15 -1695 ((-3 $ "failed") (-1280 (-416 (-962 (-387)))))) (-15 -2205 ($ (-1280 (-416 (-962 (-573)))))) (-15 -1695 ((-3 $ "failed") (-1280 (-416 (-962 (-573)))))))) -(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) -((-4402 (((-112)) 18)) (-2768 (((-112) (-112)) 19)) (-1767 (((-112)) 14)) (-3759 (((-112) (-112)) 15)) (-3533 (((-112)) 16)) (-1320 (((-112) (-112)) 17)) (-1484 (((-931) (-931)) 22) (((-931)) 21)) (-4147 (((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573))))) 52)) (-4258 (((-931) (-931)) 24) (((-931)) 23)) (-1789 (((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|) 94)) (-3933 (((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573))))))) 174)) (-2096 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)) 207)) (-2513 (((-427 |#1|) |#1| (-780) (-780)) 222) (((-427 |#1|) |#1| (-653 (-780)) (-780)) 219) (((-427 |#1|) |#1| (-653 (-780))) 221) (((-427 |#1|) |#1| (-780)) 220) (((-427 |#1|) |#1|) 218)) (-1797 (((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112)) 224) (((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780)) 225) (((-3 |#1| "failed") (-931) |#1| (-653 (-780))) 227) (((-3 |#1| "failed") (-931) |#1| (-780)) 226) (((-3 |#1| "failed") (-931) |#1|) 228)) (-4218 (((-427 |#1|) |#1| (-780) (-780)) 217) (((-427 |#1|) |#1| (-653 (-780)) (-780)) 213) (((-427 |#1|) |#1| (-653 (-780))) 215) (((-427 |#1|) |#1| (-780)) 214) (((-427 |#1|) |#1|) 212)) (-1472 (((-112) |#1|) 44)) (-3261 (((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573))))) 99)) (-3143 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)) 211))) -(((-451 |#1|) (-10 -7 (-15 -3933 ((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))))) (-15 -3261 ((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -4258 ((-931))) (-15 -4258 ((-931) (-931))) (-15 -1484 ((-931))) (-15 -1484 ((-931) (-931))) (-15 -4147 ((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -1789 ((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|)) (-15 -4402 ((-112))) (-15 -2768 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -3759 ((-112) (-112))) (-15 -1472 ((-112) |#1|)) (-15 -3533 ((-112))) (-15 -1320 ((-112) (-112))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1| (-780))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -4218 ((-427 |#1|) |#1| (-780) (-780))) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1| (-780))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -2513 ((-427 |#1|) |#1| (-780) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1|)) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112))) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112))) (-15 -3143 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)))) (-1256 (-573))) (T -451)) -((-3143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1114 (-780))) (-5 *6 (-780)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *6 (-112)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-780)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-931)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-2513 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3533 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1789 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4383 (-573)) (|:| -1687 (-653 *3)))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) (-4 *4 (-1256 (-573))) (-5 *2 (-780)) (-5 *1 (-451 *4)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1484 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4258 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) (-4 *4 (-1256 (-573))) (-5 *2 (-746 (-780))) (-5 *1 (-451 *4)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *4) (|:| -3287 (-573))))))) (-4 *4 (-1256 (-573))) (-5 *2 (-427 *4)) (-5 *1 (-451 *4))))) -(-10 -7 (-15 -3933 ((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))))) (-15 -3261 ((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -4258 ((-931))) (-15 -4258 ((-931) (-931))) (-15 -1484 ((-931))) (-15 -1484 ((-931) (-931))) (-15 -4147 ((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -1789 ((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|)) (-15 -4402 ((-112))) (-15 -2768 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -3759 ((-112) (-112))) (-15 -1472 ((-112) |#1|)) (-15 -3533 ((-112))) (-15 -1320 ((-112) (-112))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1| (-780))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -4218 ((-427 |#1|) |#1| (-780) (-780))) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1| (-780))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -2513 ((-427 |#1|) |#1| (-780) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1|)) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112))) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112))) (-15 -3143 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)))) -((-1618 (((-573) |#2|) 52) (((-573) |#2| (-780)) 51)) (-4429 (((-573) |#2|) 64)) (-3097 ((|#3| |#2|) 26)) (-3421 ((|#3| |#2| (-931)) 15)) (-4134 ((|#3| |#2|) 16)) (-1326 ((|#3| |#2|) 9)) (-1839 ((|#3| |#2|) 10)) (-3283 ((|#3| |#2| (-931)) 71) ((|#3| |#2|) 34)) (-3035 (((-573) |#2|) 66))) -(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -3035 ((-573) |#2|)) (-15 -3283 (|#3| |#2|)) (-15 -3283 (|#3| |#2| (-931))) (-15 -4429 ((-573) |#2|)) (-15 -1618 ((-573) |#2| (-780))) (-15 -1618 ((-573) |#2|)) (-15 -3421 (|#3| |#2| (-931))) (-15 -3097 (|#3| |#2|)) (-15 -1326 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4134 (|#3| |#2|))) (-1061) (-1256 |#1|) (-13 (-413) (-1050 |#1|) (-371) (-1215) (-291))) (T -452)) -((-4134 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) (-1618 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))))) (-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *5 *3 *6)) (-4 *3 (-1256 *5)) (-4 *6 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))))) (-4429 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3035 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) -(-10 -7 (-15 -3035 ((-573) |#2|)) (-15 -3283 (|#3| |#2|)) (-15 -3283 (|#3| |#2| (-931))) (-15 -4429 ((-573) |#2|)) (-15 -1618 ((-573) |#2| (-780))) (-15 -1618 ((-573) |#2|)) (-15 -3421 (|#3| |#2| (-931))) (-15 -3097 (|#3| |#2|)) (-15 -1326 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4134 (|#3| |#2|))) -((-2929 ((|#2| (-1280 |#1|)) 42)) (-1773 ((|#2| |#2| |#1|) 58)) (-2397 ((|#2| |#2| |#1|) 49)) (-4422 ((|#2| |#2|) 44)) (-2093 (((-112) |#2|) 32)) (-1404 (((-653 |#2|) (-931) (-427 |#2|)) 21)) (-1797 ((|#2| (-931) (-427 |#2|)) 25)) (-3261 (((-746 (-780)) (-427 |#2|)) 29))) -(((-453 |#1| |#2|) (-10 -7 (-15 -2093 ((-112) |#2|)) (-15 -2929 (|#2| (-1280 |#1|))) (-15 -4422 (|#2| |#2|)) (-15 -2397 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -3261 ((-746 (-780)) (-427 |#2|))) (-15 -1797 (|#2| (-931) (-427 |#2|))) (-15 -1404 ((-653 |#2|) (-931) (-427 |#2|)))) (-1061) (-1256 |#1|)) (T -453)) -((-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-427 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-1061)) (-5 *2 (-653 *6)) (-5 *1 (-453 *5 *6)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-427 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-453 *5 *2)) (-4 *5 (-1061)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-427 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1061)) (-5 *2 (-746 (-780))) (-5 *1 (-453 *4 *5)))) (-1773 (*1 *2 *2 *3) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-2397 (*1 *2 *2 *3) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-4422 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-1061)) (-4 *2 (-1256 *4)) (-5 *1 (-453 *4 *2)))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -2093 ((-112) |#2|)) (-15 -2929 (|#2| (-1280 |#1|))) (-15 -4422 (|#2| |#2|)) (-15 -2397 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -3261 ((-746 (-780)) (-427 |#2|))) (-15 -1797 (|#2| (-931) (-427 |#2|))) (-15 -1404 ((-653 |#2|) (-931) (-427 |#2|)))) -((-3436 (((-780)) 59)) (-2289 (((-780)) 29 (|has| |#1| (-413))) (((-780) (-780)) 28 (|has| |#1| (-413)))) (-2618 (((-573) |#1|) 25 (|has| |#1| (-413)))) (-3371 (((-573) |#1|) 27 (|has| |#1| (-413)))) (-1413 (((-780)) 58) (((-780) (-780)) 57)) (-2260 ((|#1| (-780) (-573)) 37)) (-3023 (((-1285)) 61))) -(((-454 |#1|) (-10 -7 (-15 -2260 (|#1| (-780) (-573))) (-15 -1413 ((-780) (-780))) (-15 -1413 ((-780))) (-15 -3436 ((-780))) (-15 -3023 ((-1285))) (IF (|has| |#1| (-413)) (PROGN (-15 -3371 ((-573) |#1|)) (-15 -2618 ((-573) |#1|)) (-15 -2289 ((-780) (-780))) (-15 -2289 ((-780)))) |%noBranch|)) (-1061)) (T -454)) -((-2289 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-2618 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-3023 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-3436 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-1413 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-573)) (-5 *1 (-454 *2)) (-4 *2 (-1061))))) -(-10 -7 (-15 -2260 (|#1| (-780) (-573))) (-15 -1413 ((-780) (-780))) (-15 -1413 ((-780))) (-15 -3436 ((-780))) (-15 -3023 ((-1285))) (IF (|has| |#1| (-413)) (PROGN (-15 -3371 ((-573) |#1|)) (-15 -2618 ((-573) |#1|)) (-15 -2289 ((-780) (-780))) (-15 -2289 ((-780)))) |%noBranch|)) -((-3462 (((-653 (-573)) (-573)) 76)) (-2696 (((-112) (-171 (-573))) 82)) (-4218 (((-427 (-171 (-573))) (-171 (-573))) 75))) -(((-455) (-10 -7 (-15 -4218 ((-427 (-171 (-573))) (-171 (-573)))) (-15 -3462 ((-653 (-573)) (-573))) (-15 -2696 ((-112) (-171 (-573)))))) (T -455)) -((-2696 (*1 *2 *3) (-12 (-5 *3 (-171 (-573))) (-5 *2 (-112)) (-5 *1 (-455)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-455)) (-5 *3 (-573)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 (-171 (-573)))) (-5 *1 (-455)) (-5 *3 (-171 (-573)))))) -(-10 -7 (-15 -4218 ((-427 (-171 (-573))) (-171 (-573)))) (-15 -3462 ((-653 (-573)) (-573))) (-15 -2696 ((-112) (-171 (-573))))) -((-3847 ((|#4| |#4| (-653 |#4|)) 82)) (-4099 (((-653 |#4|) (-653 |#4|) (-1171) (-1171)) 22) (((-653 |#4|) (-653 |#4|) (-1171)) 21) (((-653 |#4|) (-653 |#4|)) 13))) -(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3847 (|#4| |#4| (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171) (-1171)))) (-314) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -456)) -((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *7)))) (-4099 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *7)))) (-4099 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-456 *3 *4 *5 *6)))) (-3847 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *2))))) -(-10 -7 (-15 -3847 (|#4| |#4| (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171) (-1171)))) -((-1558 (((-653 (-653 |#4|)) (-653 |#4|) (-112)) 89) (((-653 (-653 |#4|)) (-653 |#4|)) 88) (((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112)) 82) (((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|)) 83)) (-3383 (((-653 (-653 |#4|)) (-653 |#4|) (-112)) 55) (((-653 (-653 |#4|)) (-653 |#4|)) 77))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-112)))) (-13 (-314) (-148)) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -457)) -((-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1558 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-1558 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-3383 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(-10 -7 (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-112)))) -((-2977 (((-780) |#4|) 12)) (-3936 (((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)))) 39)) (-1815 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3324 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2021 ((|#4| |#4| (-653 |#4|)) 54)) (-1476 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|)) 96)) (-2553 (((-1285) |#4|) 59)) (-1398 (((-1285) (-653 |#4|)) 69)) (-4369 (((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573)) 66)) (-3663 (((-1285) (-573)) 110)) (-3385 (((-653 |#4|) (-653 |#4|)) 104)) (-3972 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780)) 31)) (-1518 (((-573) |#4|) 109)) (-4311 ((|#4| |#4|) 37)) (-1459 (((-653 |#4|) (-653 |#4|) (-573) (-573)) 74)) (-2147 (((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573)) 123)) (-4024 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3352 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1934 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4355 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3838 (((-112) |#2| |#2|) 75)) (-2371 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2202 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3003 ((|#4| |#4| (-653 |#4|)) 97))) -(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3003 (|#4| |#4| (-653 |#4|))) (-15 -2021 (|#4| |#4| (-653 |#4|))) (-15 -1459 ((-653 |#4|) (-653 |#4|) (-573) (-573))) (-15 -3352 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3838 ((-112) |#2| |#2|)) (-15 -2202 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2371 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1934 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1476 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|))) (-15 -4311 (|#4| |#4|)) (-15 -3936 ((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))))) (-15 -3324 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1815 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3385 ((-653 |#4|) (-653 |#4|))) (-15 -1518 ((-573) |#4|)) (-15 -2553 ((-1285) |#4|)) (-15 -4369 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573))) (-15 -2147 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573))) (-15 -1398 ((-1285) (-653 |#4|))) (-15 -3663 ((-1285) (-573))) (-15 -4024 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3972 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780))) (-15 -2977 ((-780) |#4|))) (-461) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -458)) -((-2977 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-780)) (|:| -3881 *4))) (-5 *5 (-780)) (-4 *4 (-959 *6 *7 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-458 *6 *7 *8 *4)))) (-4024 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)))) (-2147 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *4)))) (-4369 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *4)))) (-2553 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-573)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-802)) (-4 *2 (-959 *4 *5 *6)) (-5 *1 (-458 *4 *5 *6 *2)) (-4 *4 (-461)) (-4 *6 (-859)))) (-3936 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 *3)))) (-5 *4 (-780)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *3)))) (-4311 (*1 *2 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-458 *5 *6 *7 *3)))) (-1934 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-802)) (-4 *6 (-959 *4 *3 *5)) (-4 *4 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *4 *3 *5 *6)))) (-4355 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2371 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-802)) (-4 *3 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *3)))) (-2202 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1459 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *7)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2)))) (-3003 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) -(-10 -7 (-15 -3003 (|#4| |#4| (-653 |#4|))) (-15 -2021 (|#4| |#4| (-653 |#4|))) (-15 -1459 ((-653 |#4|) (-653 |#4|) (-573) (-573))) (-15 -3352 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3838 ((-112) |#2| |#2|)) (-15 -2202 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2371 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1934 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1476 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|))) (-15 -4311 (|#4| |#4|)) (-15 -3936 ((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))))) (-15 -3324 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1815 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3385 ((-653 |#4|) (-653 |#4|))) (-15 -1518 ((-573) |#4|)) (-15 -2553 ((-1285) |#4|)) (-15 -4369 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573))) (-15 -2147 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573))) (-15 -1398 ((-1285) (-653 |#4|))) (-15 -3663 ((-1285) (-573))) (-15 -4024 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3972 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780))) (-15 -2977 ((-780) |#4|))) -((-3636 ((|#4| |#4| (-653 |#4|)) 20 (|has| |#1| (-371)))) (-3207 (((-653 |#4|) (-653 |#4|) (-1171) (-1171)) 46) (((-653 |#4|) (-653 |#4|) (-1171)) 45) (((-653 |#4|) (-653 |#4|)) 34))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3207 ((-653 |#4|) (-653 |#4|))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171) (-1171))) (IF (|has| |#1| (-371)) (-15 -3636 (|#4| |#4| (-653 |#4|))) |%noBranch|)) (-461) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -459)) -((-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-371)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *2)))) (-3207 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6))))) -(-10 -7 (-15 -3207 ((-653 |#4|) (-653 |#4|))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171) (-1171))) (IF (|has| |#1| (-371)) (-15 -3636 (|#4| |#4| (-653 |#4|))) |%noBranch|)) -((-2829 (($ $ $) 14) (($ (-653 $)) 21)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 46)) (-2872 (($ $ $) NIL) (($ (-653 $)) 22))) -(((-460 |#1|) (-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2829 (|#1| (-653 |#1|))) (-15 -2829 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|))) (-461)) (T -460)) -NIL -(-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2829 (|#1| (-653 |#1|))) (-15 -2829 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-461) (-141)) (T -461)) -((-2872 (*1 *1 *1 *1) (-4 *1 (-461))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) (-2829 (*1 *1 *1 *1) (-4 *1 (-461))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-461))))) -(-13 (-565) (-10 -8 (-15 -2872 ($ $ $)) (-15 -2872 ($ (-653 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ (-653 $))) (-15 -2888 ((-1185 $) (-1185 $) (-1185 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 (-416 (-962 |#1|)))) (-1280 $)) NIL) (((-1280 (-698 (-416 (-962 |#1|))))) NIL)) (-1888 (((-1280 $)) NIL)) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL)) (-3360 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-1454 (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL) (((-698 (-416 (-962 |#1|)))) NIL)) (-1390 (((-416 (-962 |#1|)) $) NIL)) (-3612 (((-698 (-416 (-962 |#1|))) $ (-1280 $)) NIL) (((-698 (-416 (-962 |#1|))) $) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2743 (((-1185 (-962 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-371))) (((-1185 (-416 (-962 |#1|)))) 90 (|has| |#1| (-565)))) (-3681 (($ $ (-931)) NIL)) (-3729 (((-416 (-962 |#1|)) $) NIL)) (-3397 (((-1185 (-416 (-962 |#1|))) $) 88 (|has| (-416 (-962 |#1|)) (-565)))) (-4053 (((-416 (-962 |#1|)) (-1280 $)) NIL) (((-416 (-962 |#1|))) NIL)) (-2650 (((-1185 (-416 (-962 |#1|))) $) NIL)) (-2492 (((-112)) NIL)) (-2854 (($ (-1280 (-416 (-962 |#1|))) (-1280 $)) 114) (($ (-1280 (-416 (-962 |#1|)))) NIL)) (-2232 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3583 (((-931)) NIL)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) NIL)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL)) (-3675 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2582 (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL) (((-698 (-416 (-962 |#1|)))) NIL)) (-3619 (((-416 (-962 |#1|)) $) NIL)) (-1729 (((-698 (-416 (-962 |#1|))) $ (-1280 $)) NIL) (((-698 (-416 (-962 |#1|))) $) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3753 (((-1185 (-962 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-371))) (((-1185 (-416 (-962 |#1|)))) 89 (|has| |#1| (-565)))) (-2022 (($ $ (-931)) NIL)) (-3420 (((-416 (-962 |#1|)) $) NIL)) (-2000 (((-1185 (-416 (-962 |#1|))) $) 85 (|has| (-416 (-962 |#1|)) (-565)))) (-1912 (((-416 (-962 |#1|)) (-1280 $)) NIL) (((-416 (-962 |#1|))) NIL)) (-3242 (((-1185 (-416 (-962 |#1|))) $) NIL)) (-3455 (((-112)) NIL)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-4293 (((-112)) NIL)) (-3965 (((-1132) $) NIL)) (-3047 (((-416 (-962 |#1|)) $ $) 76 (|has| |#1| (-565)))) (-4406 (((-416 (-962 |#1|)) $) 100 (|has| |#1| (-565)))) (-3635 (((-416 (-962 |#1|)) $) 104 (|has| |#1| (-565)))) (-3846 (((-1185 (-416 (-962 |#1|))) $) 94 (|has| |#1| (-565)))) (-4026 (((-416 (-962 |#1|))) 77 (|has| |#1| (-565)))) (-4365 (((-416 (-962 |#1|)) $ $) 69 (|has| |#1| (-565)))) (-2379 (((-416 (-962 |#1|)) $) 99 (|has| |#1| (-565)))) (-1759 (((-416 (-962 |#1|)) $) 103 (|has| |#1| (-565)))) (-2791 (((-1185 (-416 (-962 |#1|))) $) 93 (|has| |#1| (-565)))) (-3210 (((-416 (-962 |#1|))) 73 (|has| |#1| (-565)))) (-2728 (($) 110) (($ (-1189)) 118) (($ (-1280 (-1189))) 117) (($ (-1280 $)) 105) (($ (-1189) (-1280 $)) 116) (($ (-1280 (-1189)) (-1280 $)) 115)) (-3209 (((-112)) NIL)) (-2198 (((-416 (-962 |#1|)) $ (-573)) NIL)) (-2123 (((-1280 (-416 (-962 |#1|))) $ (-1280 $)) 107) (((-698 (-416 (-962 |#1|))) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 (-962 |#1|))) $) 43) (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL)) (-1835 (((-1280 (-416 (-962 |#1|))) $) NIL) (($ (-1280 (-416 (-962 |#1|)))) 40)) (-1664 (((-653 (-962 (-416 (-962 |#1|)))) (-1280 $)) NIL) (((-653 (-962 (-416 (-962 |#1|))))) NIL) (((-653 (-962 |#1|)) (-1280 $)) 108 (|has| |#1| (-565))) (((-653 (-962 |#1|))) 109 (|has| |#1| (-565)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL)) (-2942 (((-871) $) NIL) (($ (-1280 (-416 (-962 |#1|)))) NIL)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 65)) (-2649 (((-653 (-1280 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL)) (-2900 (($ (-698 (-416 (-962 |#1|))) $) NIL)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL)) (-4243 (((-112)) NIL)) (-2744 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) 106)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 61) (($ $ (-416 (-962 |#1|))) NIL) (($ (-416 (-962 |#1|)) $) NIL) (($ (-1154 |#2| (-416 (-962 |#1|))) $) NIL))) -(((-462 |#1| |#2| |#3| |#4|) (-13 (-426 (-416 (-962 |#1|))) (-657 (-1154 |#2| (-416 (-962 |#1|)))) (-10 -8 (-15 -2942 ($ (-1280 (-416 (-962 |#1|))))) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2728 ($)) (-15 -2728 ($ (-1189))) (-15 -2728 ($ (-1280 (-1189)))) (-15 -2728 ($ (-1280 $))) (-15 -2728 ($ (-1189) (-1280 $))) (-15 -2728 ($ (-1280 (-1189)) (-1280 $))) (IF (|has| |#1| (-565)) (PROGN (-15 -3753 ((-1185 (-416 (-962 |#1|))))) (-15 -2791 ((-1185 (-416 (-962 |#1|))) $)) (-15 -2379 ((-416 (-962 |#1|)) $)) (-15 -1759 ((-416 (-962 |#1|)) $)) (-15 -2743 ((-1185 (-416 (-962 |#1|))))) (-15 -3846 ((-1185 (-416 (-962 |#1|))) $)) (-15 -4406 ((-416 (-962 |#1|)) $)) (-15 -3635 ((-416 (-962 |#1|)) $)) (-15 -4365 ((-416 (-962 |#1|)) $ $)) (-15 -3210 ((-416 (-962 |#1|)))) (-15 -3047 ((-416 (-962 |#1|)) $ $)) (-15 -4026 ((-416 (-962 |#1|)))) (-15 -1664 ((-653 (-962 |#1|)) (-1280 $))) (-15 -1664 ((-653 (-962 |#1|))))) |%noBranch|))) (-174) (-931) (-653 (-1189)) (-1280 (-698 |#1|))) (T -462)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 *3)))) (-4 *3 (-174)) (-14 *6 (-1280 (-698 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) (-1447 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-462 *3 *4 *5 *6)) (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2811 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-462 *3 *4 *5 *6)) (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1) (-12 (-5 *1 (-462 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-931)) (-14 *4 (-653 (-1189))) (-14 *5 (-1280 (-698 *2))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 *2)) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1280 (-1189))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1280 (-462 *3 *4 *5 *6))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 *2)) (-14 *7 (-1280 (-698 *4))))) (-2728 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 (-1189))) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) (-3753 (*1 *2) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2743 (*1 *2) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4406 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4365 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3210 (*1 *2) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3047 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4026 (*1 *2) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *2 (-653 (-962 *4))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) (-1664 (*1 *2) (-12 (-5 *2 (-653 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(-13 (-426 (-416 (-962 |#1|))) (-657 (-1154 |#2| (-416 (-962 |#1|)))) (-10 -8 (-15 -2942 ($ (-1280 (-416 (-962 |#1|))))) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2728 ($)) (-15 -2728 ($ (-1189))) (-15 -2728 ($ (-1280 (-1189)))) (-15 -2728 ($ (-1280 $))) (-15 -2728 ($ (-1189) (-1280 $))) (-15 -2728 ($ (-1280 (-1189)) (-1280 $))) (IF (|has| |#1| (-565)) (PROGN (-15 -3753 ((-1185 (-416 (-962 |#1|))))) (-15 -2791 ((-1185 (-416 (-962 |#1|))) $)) (-15 -2379 ((-416 (-962 |#1|)) $)) (-15 -1759 ((-416 (-962 |#1|)) $)) (-15 -2743 ((-1185 (-416 (-962 |#1|))))) (-15 -3846 ((-1185 (-416 (-962 |#1|))) $)) (-15 -4406 ((-416 (-962 |#1|)) $)) (-15 -3635 ((-416 (-962 |#1|)) $)) (-15 -4365 ((-416 (-962 |#1|)) $ $)) (-15 -3210 ((-416 (-962 |#1|)))) (-15 -3047 ((-416 (-962 |#1|)) $ $)) (-15 -4026 ((-416 (-962 |#1|)))) (-15 -1664 ((-653 (-962 |#1|)) (-1280 $))) (-15 -1664 ((-653 (-962 |#1|))))) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 18)) (-4354 (((-653 (-873 |#1|)) $) 87)) (-4193 (((-1185 $) $ (-873 |#1|)) 52) (((-1185 |#2|) $) 138)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) 27) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 50) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) 48) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) 93)) (-1391 (($ $) 80)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| |#3| $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 65)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) 143) (($ (-1185 $) (-873 |#1|)) 58)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) 68)) (-4334 (($ |#2| |#3|) 35) (($ $ (-873 |#1|) (-780)) 37) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 ((|#3| $) NIL) (((-780) $ (-873 |#1|)) 56) (((-653 (-780)) $ (-653 (-873 |#1|))) 63)) (-1382 (($ (-1 |#3| |#3|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) 45)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) 47)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 46)) (-1348 ((|#2| $) 136)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) 149 (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) 100) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) 106) (($ $ (-873 |#1|) $) 98) (($ $ (-653 (-873 |#1|)) (-653 $)) 124)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) 59) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 ((|#3| $) 79) (((-780) $ (-873 |#1|)) 42) (((-653 (-780)) $ (-653 (-873 |#1|))) 62)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) 145 (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) 174) (($ (-573)) NIL) (($ |#2|) 99) (($ (-873 |#1|)) 39) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ |#3|) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) 22 T CONST)) (-2144 (($) 31 T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) 76 (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 131)) (** (($ $ (-931)) NIL) (($ $ (-780)) 129)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 36) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-463 |#1| |#2| |#3|) (-13 (-959 |#2| |#3| (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061) (-243 (-2862 |#1|) (-780))) (T -463)) -((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-14 *3 (-653 (-1189))) (-5 *1 (-463 *3 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-243 (-2862 *3) (-780)))))) -(-13 (-959 |#2| |#3| (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) -((-2237 (((-112) |#1| (-653 |#2|)) 91)) (-4149 (((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|)) 100)) (-2322 (((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|))) 102)) (-4115 ((|#2| |#2| |#1|) 35)) (-2082 (((-780) |#2| (-653 |#2|)) 26))) -(((-464 |#1| |#2|) (-10 -7 (-15 -4115 (|#2| |#2| |#1|)) (-15 -2082 ((-780) |#2| (-653 |#2|))) (-15 -4149 ((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|))) (-15 -2322 ((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|)))) (-15 -2237 ((-112) |#1| (-653 |#2|)))) (-314) (-1256 |#1|)) (T -464)) -((-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *5)) (-4 *5 (-1256 *3)) (-4 *3 (-314)) (-5 *2 (-112)) (-5 *1 (-464 *3 *5)))) (-2322 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1280 (-653 *3))) (-4 *4 (-314)) (-5 *2 (-653 *3)) (-5 *1 (-464 *4 *3)) (-4 *3 (-1256 *4)))) (-4149 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-314)) (-4 *6 (-1256 *4)) (-5 *2 (-1280 (-653 *6))) (-5 *1 (-464 *4 *6)) (-5 *5 (-653 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-314)) (-5 *2 (-780)) (-5 *1 (-464 *5 *3)))) (-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1256 *3))))) -(-10 -7 (-15 -4115 (|#2| |#2| |#1|)) (-15 -2082 ((-780) |#2| (-653 |#2|))) (-15 -4149 ((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|))) (-15 -2322 ((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|)))) (-15 -2237 ((-112) |#1| (-653 |#2|)))) -((-4218 (((-427 |#5|) |#5|) 24))) -(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4218 ((-427 |#5|) |#5|))) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-802) (-565) (-565) (-959 |#4| |#2| |#1|)) (T -465)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *5 (-802)) (-4 *7 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-465 *4 *5 *6 *7 *3)) (-4 *6 (-565)) (-4 *3 (-959 *7 *5 *4))))) -(-10 -7 (-15 -4218 ((-427 |#5|) |#5|))) -((-1673 ((|#3|) 38)) (-2888 (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 34))) -(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1673 (|#3|))) (-802) (-859) (-919) (-959 |#3| |#1| |#2|)) (T -466)) -((-1673 (*1 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) (-5 *1 (-466 *3 *4 *2 *5)) (-4 *5 (-959 *2 *3 *4)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-919)) (-5 *1 (-466 *3 *4 *5 *6))))) -(-10 -7 (-15 -2888 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1673 (|#3|))) -((-4218 (((-427 (-1185 |#1|)) (-1185 |#1|)) 43))) -(((-467 |#1|) (-10 -7 (-15 -4218 ((-427 (-1185 |#1|)) (-1185 |#1|)))) (-314)) (T -467)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-427 (-1185 *4))) (-5 *1 (-467 *4)) (-5 *3 (-1185 *4))))) -(-10 -7 (-15 -4218 ((-427 (-1185 |#1|)) (-1185 |#1|)))) -((-4401 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780))) 44) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780))) 43) (((-52) |#2| (-1189) (-301 |#2|)) 36) (((-52) (-1 |#2| (-573)) (-301 |#2|)) 29)) (-3622 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 88) (((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 87) (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573))) 86) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573))) 85) (((-52) |#2| (-1189) (-301 |#2|)) 80) (((-52) (-1 |#2| (-573)) (-301 |#2|)) 79)) (-4423 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 74) (((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 72)) (-4412 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573))) 51) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573))) 50))) -(((-468 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780)))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780)))) (-15 -4412 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -4412 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -4423 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -4423 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -468)) -((-3622 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *8 *3)))) (-3622 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) (-4 *8 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *8)))) (-3622 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) (-4 *6 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *5 *6)))) (-4423 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *8 *3)))) (-4423 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) (-4 *8 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *8)))) (-4412 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-4401 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-780))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-780))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) (-4 *6 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *5 *6))))) -(-10 -7 (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780)))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780)))) (-15 -4412 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -4412 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -4423 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -4423 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))))) -((-4115 ((|#2| |#2| |#1|) 15)) (-2688 (((-653 |#2|) |#2| (-653 |#2|) |#1| (-931)) 82)) (-1569 (((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931)) 72))) -(((-469 |#1| |#2|) (-10 -7 (-15 -1569 ((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931))) (-15 -2688 ((-653 |#2|) |#2| (-653 |#2|) |#1| (-931))) (-15 -4115 (|#2| |#2| |#1|))) (-314) (-1256 |#1|)) (T -469)) -((-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1256 *3)))) (-2688 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-653 *3)) (-5 *5 (-931)) (-4 *3 (-1256 *4)) (-4 *4 (-314)) (-5 *1 (-469 *4 *3)))) (-1569 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-931)) (-4 *5 (-314)) (-4 *3 (-1256 *5)) (-5 *2 (-2 (|:| |plist| (-653 *3)) (|:| |modulo| *5))) (-5 *1 (-469 *5 *3)) (-5 *4 (-653 *3))))) -(-10 -7 (-15 -1569 ((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931))) (-15 -2688 ((-653 |#2|) |#2| (-653 |#2|) |#1| (-931))) (-15 -4115 (|#2| |#2| |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 28)) (-3690 (($ |#3|) 25)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) 32)) (-2890 (($ |#2| |#4| $) 33)) (-4334 (($ |#2| (-722 |#3| |#4| |#5|)) 24)) (-1358 (((-722 |#3| |#4| |#5|) $) 15)) (-3822 ((|#3| $) 19)) (-2349 ((|#4| $) 17)) (-1369 ((|#2| $) 29)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-2149 (($ |#2| |#3| |#4|) 26)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 36 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 34)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-470 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-726 |#6|) (-726 |#2|) (-10 -8 (-15 -1369 (|#2| $)) (-15 -1358 ((-722 |#3| |#4| |#5|) $)) (-15 -2349 (|#4| $)) (-15 -3822 (|#3| $)) (-15 -1391 ($ $)) (-15 -4334 ($ |#2| (-722 |#3| |#4| |#5|))) (-15 -3690 ($ |#3|)) (-15 -2149 ($ |#2| |#3| |#4|)) (-15 -2890 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-653 (-1189)) (-174) (-859) (-243 (-2862 |#1|) (-780)) (-1 (-112) (-2 (|:| -2575 |#3|) (|:| -3907 |#4|)) (-2 (|:| -2575 |#3|) (|:| -3907 |#4|))) (-959 |#2| |#4| (-873 |#1|))) (T -470)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-5 *1 (-470 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) (-4 *2 (-959 *4 *6 (-873 *3))))) (-1369 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) (-2 (|:| -2575 *4) (|:| -3907 *5)))) (-4 *2 (-174)) (-5 *1 (-470 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-959 *2 *5 (-873 *3))))) (-1358 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-5 *2 (-722 *5 *6 *7)) (-5 *1 (-470 *3 *4 *5 *6 *7 *8)) (-4 *5 (-859)) (-4 *8 (-959 *4 *6 (-873 *3))))) (-2349 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *2)) (-2 (|:| -2575 *5) (|:| -3907 *2)))) (-4 *2 (-243 (-2862 *3) (-780))) (-5 *1 (-470 *3 *4 *5 *2 *6 *7)) (-4 *5 (-859)) (-4 *7 (-959 *4 *2 (-873 *3))))) (-3822 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) (-2 (|:| -2575 *2) (|:| -3907 *5)))) (-4 *2 (-859)) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *7 (-959 *4 *5 (-873 *3))))) (-1391 (*1 *1 *1) (-12 (-14 *2 (-653 (-1189))) (-4 *3 (-174)) (-4 *5 (-243 (-2862 *2) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) (-2 (|:| -2575 *4) (|:| -3907 *5)))) (-5 *1 (-470 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-959 *3 *5 (-873 *2))))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-722 *5 *6 *7)) (-4 *5 (-859)) (-4 *6 (-243 (-2862 *4) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-14 *4 (-653 (-1189))) (-4 *2 (-174)) (-5 *1 (-470 *4 *2 *5 *6 *7 *8)) (-4 *8 (-959 *2 *6 (-873 *4))))) (-3690 (*1 *1 *2) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) (-2 (|:| -2575 *2) (|:| -3907 *5)))) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) (-4 *7 (-959 *4 *5 (-873 *3))))) (-2149 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-653 (-1189))) (-4 *2 (-174)) (-4 *4 (-243 (-2862 *5) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *4)) (-2 (|:| -2575 *3) (|:| -3907 *4)))) (-5 *1 (-470 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) (-4 *7 (-959 *2 *4 (-873 *5))))) (-2890 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-653 (-1189))) (-4 *2 (-174)) (-4 *3 (-243 (-2862 *4) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *3)) (-2 (|:| -2575 *5) (|:| -3907 *3)))) (-5 *1 (-470 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) (-4 *7 (-959 *2 *3 (-873 *4)))))) -(-13 (-726 |#6|) (-726 |#2|) (-10 -8 (-15 -1369 (|#2| $)) (-15 -1358 ((-722 |#3| |#4| |#5|) $)) (-15 -2349 (|#4| $)) (-15 -3822 (|#3| $)) (-15 -1391 ($ $)) (-15 -4334 ($ |#2| (-722 |#3| |#4| |#5|))) (-15 -3690 ($ |#3|)) (-15 -2149 ($ |#2| |#3| |#4|)) (-15 -2890 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3500 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-471 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3500 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|) (-13 (-1050 (-416 (-573))) (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -471)) -((-3500 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-802)) (-4 *6 (-565)) (-4 *7 (-959 *6 *5 *3)) (-5 *1 (-471 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1050 (-416 (-573))) (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) -(-10 -7 (-15 -3500 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-4354 (((-653 |#3|) $) 41)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 49)) (-2205 (($ (-653 |#4|)) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-3338 ((|#3| $) 47)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 14 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 21)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 39)) (-3508 (($) 17)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 16)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545)))) (($ (-653 |#4|)) 51)) (-2955 (($ (-653 |#4|)) 13)) (-4409 (($ $ |#3|) NIL)) (-3496 (($ $ |#3|) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 38) (((-653 |#4|) $) 50)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 30)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-472 |#1| |#2| |#3| |#4|) (-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-653 |#4|))) (-6 -4455) (-6 -4456))) (-1061) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -472)) -((-1835 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-472 *3 *4 *5 *6))))) -(-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-653 |#4|))) (-6 -4455) (-6 -4456))) -((-2132 (($) 11)) (-2144 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-473 |#1| |#2| |#3|) (-10 -8 (-15 -2144 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2132 (|#1|))) (-474 |#2| |#3|) (-174) (-23)) (T -473)) -NIL -(-10 -8 (-15 -2144 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2132 (|#1|))) -((-2848 (((-112) $ $) 7)) (-1695 (((-3 |#1| "failed") $) 27)) (-2205 ((|#1| $) 28)) (-3044 (($ $ $) 24)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 ((|#2| $) 20)) (-2942 (((-871) $) 12) (($ |#1|) 26)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 16) (($ $ $) 14)) (-3077 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-474 |#1| |#2|) (-141) (-174) (-23)) (T -474)) -((-2144 (*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-479 |t#1| |t#2|) (-1050 |t#1|) (-10 -8 (-15 (-2144) ($) -1705) (-15 -3044 ($ $ $)))) -(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-479 |#1| |#2|) . T) ((-1050 |#1|) . T) ((-1112) . T)) -((-3988 (((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931)) 26)) (-3061 (((-1280 (-1280 (-573))) (-931)) 21))) -(((-475) (-10 -7 (-15 -3988 ((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931))) (-15 -3061 ((-1280 (-1280 (-573))) (-931))))) (T -475)) -((-3061 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 (-573)))) (-5 *1 (-475)))) (-3988 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 (-1280 (-573)))) (-5 *3 (-931)) (-5 *1 (-475))))) -(-10 -7 (-15 -3988 ((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931))) (-15 -3061 ((-1280 (-1280 (-573))) (-931)))) -((-1627 (((-573) (-573)) 32) (((-573)) 24)) (-2070 (((-573) (-573)) 28) (((-573)) 20)) (-2026 (((-573) (-573)) 30) (((-573)) 22)) (-3571 (((-112) (-112)) 14) (((-112)) 12)) (-1316 (((-112) (-112)) 13) (((-112)) 11)) (-2359 (((-112) (-112)) 26) (((-112)) 17))) -(((-476) (-10 -7 (-15 -1316 ((-112))) (-15 -3571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -3571 ((-112) (-112))) (-15 -2359 ((-112))) (-15 -2026 ((-573))) (-15 -2070 ((-573))) (-15 -1627 ((-573))) (-15 -2359 ((-112) (-112))) (-15 -2026 ((-573) (-573))) (-15 -2070 ((-573) (-573))) (-15 -1627 ((-573) (-573))))) (T -476)) -((-1627 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2026 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1627 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2070 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2026 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2359 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-3571 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1316 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) -(-10 -7 (-15 -1316 ((-112))) (-15 -3571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -3571 ((-112) (-112))) (-15 -2359 ((-112))) (-15 -2026 ((-573))) (-15 -2070 ((-573))) (-15 -1627 ((-573))) (-15 -2359 ((-112) (-112))) (-15 -2026 ((-573) (-573))) (-15 -2070 ((-573) (-573))) (-15 -1627 ((-573) (-573)))) -((-2848 (((-112) $ $) NIL)) (-1996 (((-653 (-387)) $) 34) (((-653 (-387)) $ (-653 (-387))) 146)) (-4119 (((-653 (-1106 (-387))) $) 16) (((-653 (-1106 (-387))) $ (-653 (-1106 (-387)))) 142)) (-1330 (((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883))) 58)) (-4431 (((-653 (-653 (-953 (-227)))) $) 137)) (-3590 (((-1285) $ (-953 (-227)) (-883)) 163)) (-1954 (($ $) 136) (($ (-653 (-653 (-953 (-227))))) 149) (($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931))) 148) (($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269))) 150)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 110)) (-3965 (((-1132) $) NIL)) (-1949 (($) 147)) (-2556 (((-653 (-227)) (-653 (-653 (-953 (-227))))) 89)) (-1478 (((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931)) 155) (((-1285) $ (-953 (-227))) 157) (((-1285) $ (-953 (-227)) (-883) (-883) (-931)) 156)) (-2942 (((-871) $) 169) (($ (-653 (-653 (-953 (-227))))) 164)) (-3507 (((-112) $ $) NIL)) (-3794 (((-1285) $ (-953 (-227))) 162)) (-2981 (((-112) $ $) NIL))) -(((-477) (-13 (-1112) (-10 -8 (-15 -1949 ($)) (-15 -1954 ($ $)) (-15 -1954 ($ (-653 (-653 (-953 (-227)))))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269)))) (-15 -4431 ((-653 (-653 (-953 (-227)))) $)) (-15 -3692 ((-573) $)) (-15 -4119 ((-653 (-1106 (-387))) $)) (-15 -4119 ((-653 (-1106 (-387))) $ (-653 (-1106 (-387))))) (-15 -1996 ((-653 (-387)) $)) (-15 -1996 ((-653 (-387)) $ (-653 (-387)))) (-15 -1478 ((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931))) (-15 -1478 ((-1285) $ (-953 (-227)))) (-15 -1478 ((-1285) $ (-953 (-227)) (-883) (-883) (-931))) (-15 -3794 ((-1285) $ (-953 (-227)))) (-15 -3590 ((-1285) $ (-953 (-227)) (-883))) (-15 -2942 ($ (-653 (-653 (-953 (-227)))))) (-15 -2942 ((-871) $)) (-15 -1330 ((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883)))) (-15 -2556 ((-653 (-227)) (-653 (-653 (-953 (-227))))))))) (T -477)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-477)))) (-1949 (*1 *1) (-5 *1 (-477))) (-1954 (*1 *1 *1) (-5 *1 (-477))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-1954 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *4 (-653 (-931))) (-5 *1 (-477)))) (-1954 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *4 (-653 (-931))) (-5 *5 (-653 (-269))) (-5 *1 (-477)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-477)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) (-4119 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) (-1996 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) (-3590 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-1330 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *1 (-477)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-227))) (-5 *1 (-477))))) -(-13 (-1112) (-10 -8 (-15 -1949 ($)) (-15 -1954 ($ $)) (-15 -1954 ($ (-653 (-653 (-953 (-227)))))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269)))) (-15 -4431 ((-653 (-653 (-953 (-227)))) $)) (-15 -3692 ((-573) $)) (-15 -4119 ((-653 (-1106 (-387))) $)) (-15 -4119 ((-653 (-1106 (-387))) $ (-653 (-1106 (-387))))) (-15 -1996 ((-653 (-387)) $)) (-15 -1996 ((-653 (-387)) $ (-653 (-387)))) (-15 -1478 ((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931))) (-15 -1478 ((-1285) $ (-953 (-227)))) (-15 -1478 ((-1285) $ (-953 (-227)) (-883) (-883) (-931))) (-15 -3794 ((-1285) $ (-953 (-227)))) (-15 -3590 ((-1285) $ (-953 (-227)) (-883))) (-15 -2942 ($ (-653 (-653 (-953 (-227)))))) (-15 -2942 ((-871) $)) (-15 -1330 ((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883)))) (-15 -2556 ((-653 (-227)) (-653 (-653 (-953 (-227)))))))) -((-3093 (($ $) NIL) (($ $ $) 11))) -(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|))) (-479 |#2| |#3|) (-174) (-23)) (T -478)) -NIL -(-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 ((|#2| $) 20)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 16) (($ $ $) 14)) (-3077 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-479 |#1| |#2|) (-141) (-174) (-23)) (T -479)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2132 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1112) (-10 -8 (-15 -2565 (|t#2| $)) (-15 (-2132) ($) -1705) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3093 ($ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3406 (((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|))) 134)) (-3857 (((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))) 131)) (-3718 (((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))) 86))) -(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -3857 ((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3406 ((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3718 ((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))))) (-653 (-1189)) (-461) (-461)) (T -480)) -((-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-2 (|:| |dpolys| (-653 (-252 *5 *6))) (|:| |coords| (-653 (-573))))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461)))) (-3406 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-480 *4 *5 *6)) (-4 *6 (-461)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-653 (-653 (-252 *5 *6)))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) -(-10 -7 (-15 -3857 ((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3406 ((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3718 ((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))))) -((-2232 (((-3 $ "failed") $) 11)) (-3204 (($ $ $) 23)) (-4380 (($ $ $) 24)) (-3103 (($ $ $) 9)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 22))) -(((-481 |#1|) (-10 -8 (-15 -4380 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) (-482)) (T -481)) -NIL -(-10 -8 (-15 -4380 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-1959 (((-112) $) 18)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 25)) (-3965 (((-1132) $) 11)) (-3204 (($ $ $) 22)) (-4380 (($ $ $) 21)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 24)) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ $ (-573)) 23)) (* (($ $ $) 15))) -(((-482) (-141)) (T -482)) -((-1323 (*1 *1 *1) (-4 *1 (-482))) (-3103 (*1 *1 *1 *1) (-4 *1 (-482))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-482)) (-5 *2 (-573)))) (-3204 (*1 *1 *1 *1) (-4 *1 (-482))) (-4380 (*1 *1 *1 *1) (-4 *1 (-482)))) -(-13 (-735) (-10 -8 (-15 -1323 ($ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-573))) (-6 -4452) (-15 -3204 ($ $ $)) (-15 -4380 ($ $ $)))) -(((-102) . T) ((-622 (-871)) . T) ((-735) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 18)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) NIL) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 25)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 29 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 35 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 30 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 28 (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 16)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1276 |#2|)) NIL) (($ (-1265 |#1| |#2| |#3|)) 9) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 21)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 27)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-483 |#1| |#2| |#3|) (-13 (-1261 |#1|) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -2942 ($ (-1265 |#1| |#2| |#3|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -483)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-483 *3 *4 *5)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1261 |#1|) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -2942 ($ (-1265 |#1| |#2| |#3|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) 18)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 19)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 16)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-484 |#1| |#2| |#3| |#4|) (-1206 |#1| |#2|) (-1112) (-1112) (-1206 |#1| |#2|) |#2|) (T -484)) -NIL -(-1206 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) NIL)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-3 |#4| "failed") $) 42)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 58)) (-2212 (($ $ |#4|) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-4333 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-485 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -485)) -NIL -(-1223 |#1| |#2| |#3| |#4|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2999 (($) 17)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1835 (((-387) $) 21) (((-227) $) 24) (((-416 (-1185 (-573))) $) 18) (((-545) $) 53)) (-2942 (((-871) $) 51) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (((-227) $) 23) (((-387) $) 20)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-486) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))) (-1034) (-622 (-227)) (-622 (-387)) (-623 (-416 (-1185 (-573)))) (-623 (-545)) (-10 -8 (-15 -2999 ($))))) (T -486)) -((-2999 (*1 *1) (-5 *1 (-486)))) -(-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))) (-1034) (-622 (-227)) (-622 (-387)) (-623 (-416 (-1185 (-573)))) (-623 (-545)) (-10 -8 (-15 -2999 ($)))) -((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-487) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -487)) -((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487))))) -(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) 16)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 20)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 18)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) 13)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 19)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 11 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) 15 (|has| $ (-6 -4455))))) -(((-488 |#1| |#2| |#3|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112) (-1171)) (T -488)) -NIL -(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) -((-1926 (((-573) (-573) (-573)) 19)) (-4032 (((-112) (-573) (-573) (-573) (-573)) 28)) (-2092 (((-1280 (-653 (-573))) (-780) (-780)) 41))) -(((-489) (-10 -7 (-15 -1926 ((-573) (-573) (-573))) (-15 -4032 ((-112) (-573) (-573) (-573) (-573))) (-15 -2092 ((-1280 (-653 (-573))) (-780) (-780))))) (T -489)) -((-2092 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1280 (-653 (-573)))) (-5 *1 (-489)))) (-4032 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-489)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-489))))) -(-10 -7 (-15 -1926 ((-573) (-573) (-573))) (-15 -4032 ((-112) (-573) (-573) (-573) (-573))) (-15 -2092 ((-1280 (-653 (-573))) (-780) (-780)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) NIL)) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-491 (-2862 |#1|) (-780)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-491 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-491 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-491 (-2862 |#1|) (-780)) (-491 (-2862 |#1|) (-780))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-491 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-491 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-490 |#1| |#2|) (-13 (-959 |#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061)) (T -490)) -((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-490 *3 *4)) (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) -(-13 (-959 |#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) -((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) NIL (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) NIL (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 11)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) NIL)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) NIL (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) NIL (|has| |#2| (-132)) CONST)) (-2144 (($) NIL (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 17 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) NIL (|has| |#2| (-735))) (($ $ |#2|) NIL (|has| |#2| (-735))) (($ |#2| $) NIL (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-491 |#1| |#2|) (-243 |#1| |#2|) (-780) (-802)) (T -491)) -NIL -(-243 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-2623 (((-653 (-885)) $) 15)) (-2031 (((-515) $) 13)) (-3180 (((-1171) $) NIL)) (-1726 (($ (-515) (-653 (-885))) 11)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 22) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-492) (-13 (-1095) (-10 -8 (-15 -1726 ($ (-515) (-653 (-885)))) (-15 -2031 ((-515) $)) (-15 -2623 ((-653 (-885)) $))))) (T -492)) -((-1726 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-885))) (-5 *1 (-492)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-492)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-653 (-885))) (-5 *1 (-492))))) -(-13 (-1095) (-10 -8 (-15 -1726 ($ (-515) (-653 (-885)))) (-15 -2031 ((-515) $)) (-15 -2623 ((-653 (-885)) $)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-4241 (($ $ $) 48)) (-1480 (($ $ $) 47)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3751 ((|#1| $) 40)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 41)) (-3181 (($ |#1| $) 18)) (-1334 (($ (-653 |#1|)) 19)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 34)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 11)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 45)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) 29 (|has| $ (-6 -4455))))) -(((-493 |#1|) (-13 (-980 |#1|) (-10 -8 (-15 -1334 ($ (-653 |#1|))))) (-859)) (T -493)) -((-1334 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-493 *3))))) -(-13 (-980 |#1|) (-10 -8 (-15 -1334 ($ (-653 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ $) 71)) (-1598 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 45)) (-3965 (((-1132) $) NIL)) (-2969 (((-3 |#4| "failed") $) 117)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-573)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2942 (((-871) $) 110)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 32 T CONST)) (-2981 (((-112) $ $) 121)) (-3093 (($ $) 77) (($ $ $) NIL)) (-3077 (($ $ $) 72)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 78))) -(((-494 |#1| |#2| |#3| |#4|) (-343 |#1| |#2| |#3| |#4|) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -494)) -NIL -(-343 |#1| |#2| |#3| |#4|) -((-2258 (((-573) (-653 (-573))) 53)) (-2576 ((|#1| (-653 |#1|)) 94)) (-2950 (((-653 |#1|) (-653 |#1|)) 95)) (-2690 (((-653 |#1|) (-653 |#1|)) 97)) (-2872 ((|#1| (-653 |#1|)) 96)) (-3257 (((-653 (-573)) (-653 |#1|)) 56))) -(((-495 |#1|) (-10 -7 (-15 -2872 (|#1| (-653 |#1|))) (-15 -2576 (|#1| (-653 |#1|))) (-15 -2690 ((-653 |#1|) (-653 |#1|))) (-15 -2950 ((-653 |#1|) (-653 |#1|))) (-15 -3257 ((-653 (-573)) (-653 |#1|))) (-15 -2258 ((-573) (-653 (-573))))) (-1256 (-573))) (T -495)) -((-2258 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-573)) (-5 *1 (-495 *4)) (-4 *4 (-1256 *2)))) (-3257 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1256 (-573))) (-5 *2 (-653 (-573))) (-5 *1 (-495 *4)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573))))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573)))))) -(-10 -7 (-15 -2872 (|#1| (-653 |#1|))) (-15 -2576 (|#1| (-653 |#1|))) (-15 -2690 ((-653 |#1|) (-653 |#1|))) (-15 -2950 ((-653 |#1|) (-653 |#1|))) (-15 -3257 ((-653 (-573)) (-653 |#1|))) (-15 -2258 ((-573) (-653 (-573))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-1641 (($ (-416 (-573))) 9)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 16) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) -(((-496) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 16)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1641 ($ (-416 (-573))))))) (T -496)) -((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496))))) -(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 16)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1641 ($ (-416 (-573)))))) -((-3214 (((-653 |#2|) $) 31)) (-1547 (((-112) |#2| $) 36)) (-1575 (((-112) (-1 (-112) |#2|) $) 26)) (-2645 (($ $ (-653 (-301 |#2|))) 13) (($ $ (-301 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-653 |#2|) (-653 |#2|)) NIL)) (-3974 (((-780) (-1 (-112) |#2|) $) 30) (((-780) |#2| $) 34)) (-2942 (((-871) $) 45)) (-1646 (((-112) (-1 (-112) |#2|) $) 23)) (-2981 (((-112) $ $) 39)) (-2862 (((-780) $) 18))) -(((-497 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3214 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) (-498 |#2|) (-1230)) (T -497)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3214 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-498 |#1|) (-141) (-1230)) (T -498)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) (-1646 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1575 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-3974 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-780)))) (-1863 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-3214 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-3974 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-1547 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |t#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-316 |t#1|)) (-6 (-316 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4456)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -1646 ((-112) (-1 (-112) |t#1|) $)) (-15 -1575 ((-112) (-1 (-112) |t#1|) $)) (-15 -3974 ((-780) (-1 (-112) |t#1|) $)) (-15 -1863 ((-653 |t#1|) $)) (-15 -3214 ((-653 |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -3974 ((-780) |t#1| $)) (-15 -1547 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2942 ((|#1| $) 6) (($ |#1|) 9))) -(((-499 |#1|) (-141) (-1230)) (T -499)) -NIL -(-13 (-622 |t#1|) (-625 |t#1|)) -(((-625 |#1|) . T) ((-622 |#1|) . T)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2940 (($ (-1171)) 8)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (((-1171) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-500) (-13 (-1112) (-622 (-1171)) (-10 -8 (-15 -2940 ($ (-1171)))))) (T -500)) -((-2940 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-500))))) -(-13 (-1112) (-622 (-1171)) (-10 -8 (-15 -2940 ($ (-1171))))) -((-2363 (($ $) 15)) (-2342 (($ $) 24)) (-2388 (($ $) 12)) (-2401 (($ $) 10)) (-2374 (($ $) 17)) (-2352 (($ $) 22))) -(((-501 |#1|) (-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|))) (-502)) (T -501)) -NIL -(-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|))) -((-2363 (($ $) 11)) (-2342 (($ $) 10)) (-2388 (($ $) 9)) (-2401 (($ $) 8)) (-2374 (($ $) 7)) (-2352 (($ $) 6))) -(((-502) (-141)) (T -502)) -((-2363 (*1 *1 *1) (-4 *1 (-502))) (-2342 (*1 *1 *1) (-4 *1 (-502))) (-2388 (*1 *1 *1) (-4 *1 (-502))) (-2401 (*1 *1 *1) (-4 *1 (-502))) (-2374 (*1 *1 *1) (-4 *1 (-502))) (-2352 (*1 *1 *1) (-4 *1 (-502)))) -(-13 (-10 -8 (-15 -2352 ($ $)) (-15 -2374 ($ $)) (-15 -2401 ($ $)) (-15 -2388 ($ $)) (-15 -2342 ($ $)) (-15 -2363 ($ $)))) -((-4218 (((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)) 54))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)))) (-371) (-1256 |#1|) (-13 (-371) (-148) (-733 |#1| |#2|)) (-1256 |#3|)) (T -503)) -((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-4 *7 (-13 (-371) (-148) (-733 *5 *6))) (-5 *2 (-427 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1256 *7))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)))) -((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-4118 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1748 (((-112) $) 39)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2737 (((-112) $ $) 73)) (-4090 (((-653 (-621 $)) $) 50)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-3682 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-1732 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-573) $) NIL) (((-416 (-573)) $) 55)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-416 (-573)))) (|:| |vec| (-1280 (-416 (-573))))) (-698 $) (-1280 $)) NIL) (((-698 (-416 (-573))) (-698 $)) NIL) (((-698 (-416 (-573))) (-1280 $)) NIL)) (-2867 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) 42)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2965 (((-1137 (-573) (-621 $)) $) 37)) (-4325 (($ $ (-573)) NIL)) (-3421 (((-1185 $) (-1185 $) (-621 $)) 87) (((-1185 $) (-1185 $) (-653 (-621 $))) 62) (($ $ (-621 $)) 76) (($ $ (-653 (-621 $))) 77)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2597 (((-1185 $) (-621 $)) 74 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1323 (($ $) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2163 (((-780) $) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $) 36) (($ $ (-780)) NIL)) (-2975 (((-1137 (-573) (-621 $)) $) 20)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-1835 (((-387) $) 101) (((-227) $) 109) (((-171 (-387)) $) 117)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-1137 (-573) (-621 $))) 21)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) 93)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2144 (($) 22 T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) 24)) (-3103 (($ $ $) 44)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-416 (-573))) NIL) (($ $ (-573)) 48) (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ $) 27) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) -(((-504) (-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -2737 ((-112) $ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $))))))) (T -504)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2867 (*1 *1 *1) (-5 *1 (-504))) (-2737 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-504)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-621 (-504))) (-5 *1 (-504)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-653 (-621 (-504)))) (-5 *1 (-504)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-504))) (-5 *1 (-504)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-504)))) (-5 *1 (-504))))) -(-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -2737 ((-112) $ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $)))))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) 44 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 39 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 38)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 21)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 17 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 41 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 15 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 19)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 43) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 24)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 11 (|has| $ (-6 -4455))))) -(((-505 |#1| |#2|) (-19 |#1|) (-1230) (-573)) (T -505)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-709))) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-4 *1 (-450))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-1283 (-709)))) (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) +((-1706 (((-3 $ "failed") (-1283 (-324 (-388)))) 21) (((-3 $ "failed") (-1283 (-324 (-574)))) 19) (((-3 $ "failed") (-1283 (-965 (-388)))) 17) (((-3 $ "failed") (-1283 (-965 (-574)))) 15) (((-3 $ "failed") (-1283 (-417 (-965 (-388))))) 13) (((-3 $ "failed") (-1283 (-417 (-965 (-574))))) 11)) (-2216 (($ (-1283 (-324 (-388)))) 22) (($ (-1283 (-324 (-574)))) 20) (($ (-1283 (-965 (-388)))) 18) (($ (-1283 (-965 (-574)))) 16) (($ (-1283 (-417 (-965 (-388))))) 14) (($ (-1283 (-417 (-965 (-574))))) 12)) (-3741 (((-1288) $) 7)) (-2950 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) 23))) +(((-451) (-141)) (T -451)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451))))) +(-13 (-405) (-10 -8 (-15 -2950 ($ (-654 (-338)))) (-15 -2950 ($ (-338))) (-15 -2950 ($ (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338)))))) (-15 -2216 ($ (-1283 (-324 (-388))))) (-15 -1706 ((-3 $ "failed") (-1283 (-324 (-388))))) (-15 -2216 ($ (-1283 (-324 (-574))))) (-15 -1706 ((-3 $ "failed") (-1283 (-324 (-574))))) (-15 -2216 ($ (-1283 (-965 (-388))))) (-15 -1706 ((-3 $ "failed") (-1283 (-965 (-388))))) (-15 -2216 ($ (-1283 (-965 (-574))))) (-15 -1706 ((-3 $ "failed") (-1283 (-965 (-574))))) (-15 -2216 ($ (-1283 (-417 (-965 (-388)))))) (-15 -1706 ((-3 $ "failed") (-1283 (-417 (-965 (-388)))))) (-15 -2216 ($ (-1283 (-417 (-965 (-574)))))) (-15 -1706 ((-3 $ "failed") (-1283 (-417 (-965 (-574)))))))) +(((-623 (-872)) . T) ((-405) . T) ((-1233) . T)) +((-1951 (((-112)) 18)) (-4336 (((-112) (-112)) 19)) (-2186 (((-112)) 14)) (-1768 (((-112) (-112)) 15)) (-1416 (((-112)) 16)) (-1547 (((-112) (-112)) 17)) (-4376 (((-934) (-934)) 22) (((-934)) 21)) (-4406 (((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574))))) 52)) (-3064 (((-934) (-934)) 24) (((-934)) 23)) (-4283 (((-2 (|:| -3020 (-574)) (|:| -2679 (-654 |#1|))) |#1|) 94)) (-4095 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574))))))) 174)) (-4199 (((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112)) 207)) (-3657 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-4350 (((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-934) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-934) |#1| (-781)) 226) (((-3 |#1| "failed") (-934) |#1|) 228)) (-4200 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-4241 (((-112) |#1|) 44)) (-1555 (((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574))))) 99)) (-2806 (((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)) 211))) +(((-452 |#1|) (-10 -7 (-15 -4095 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))))) (-15 -1555 ((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))))) (-15 -3064 ((-934))) (-15 -3064 ((-934) (-934))) (-15 -4376 ((-934))) (-15 -4376 ((-934) (-934))) (-15 -4406 ((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))))) (-15 -4283 ((-2 (|:| -3020 (-574)) (|:| -2679 (-654 |#1|))) |#1|)) (-15 -1951 ((-112))) (-15 -4336 ((-112) (-112))) (-15 -2186 ((-112))) (-15 -1768 ((-112) (-112))) (-15 -4241 ((-112) |#1|)) (-15 -1416 ((-112))) (-15 -1547 ((-112) (-112))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1| (-781))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4200 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3657 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1| (-781))) (-15 -3657 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3657 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3657 ((-428 |#1|) |#1| (-781) (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1|)) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112))) (-15 -4199 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112))) (-15 -2806 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)))) (-1259 (-574))) (T -452)) +((-2806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1117 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4350 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-4350 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-4350 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-4350 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-934)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-4350 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-934)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) (-3657 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3657 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3657 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3657 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3657 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1416 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4241 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-2186 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1951 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4283 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3020 (-574)) (|:| -2679 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -4144 (-574))))) (-4 *4 (-1259 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-4376 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-4376 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-3064 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -4144 (-574))))) (-4 *4 (-1259 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| *4) (|:| -3737 (-574))))))) (-4 *4 (-1259 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) +(-10 -7 (-15 -4095 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))))) (-15 -1555 ((-747 (-781)) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))))) (-15 -3064 ((-934))) (-15 -3064 ((-934) (-934))) (-15 -4376 ((-934))) (-15 -4376 ((-934) (-934))) (-15 -4406 ((-781) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))))) (-15 -4283 ((-2 (|:| -3020 (-574)) (|:| -2679 (-654 |#1|))) |#1|)) (-15 -1951 ((-112))) (-15 -4336 ((-112) (-112))) (-15 -2186 ((-112))) (-15 -1768 ((-112) (-112))) (-15 -4241 ((-112) |#1|)) (-15 -1416 ((-112))) (-15 -1547 ((-112) (-112))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -4200 ((-428 |#1|) |#1| (-781))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4200 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4200 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3657 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1| (-781))) (-15 -3657 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3657 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3657 ((-428 |#1|) |#1| (-781) (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1|)) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781))) (-15 -4350 ((-3 |#1| "failed") (-934) |#1| (-654 (-781)) (-781) (-112))) (-15 -4199 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112))) (-15 -2806 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112) (-1117 (-781)) (-781)))) +((-3214 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-2204 (((-574) |#2|) 64)) (-2343 ((|#3| |#2|) 26)) (-2681 ((|#3| |#2| (-934)) 15)) (-4108 ((|#3| |#2|) 16)) (-1564 ((|#3| |#2|) 9)) (-1849 ((|#3| |#2|) 10)) (-3692 ((|#3| |#2| (-934)) 71) ((|#3| |#2|) 34)) (-3016 (((-574) |#2|) 66))) +(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3016 ((-574) |#2|)) (-15 -3692 (|#3| |#2|)) (-15 -3692 (|#3| |#2| (-934))) (-15 -2204 ((-574) |#2|)) (-15 -3214 ((-574) |#2| (-781))) (-15 -3214 ((-574) |#2|)) (-15 -2681 (|#3| |#2| (-934))) (-15 -2343 (|#3| |#2|)) (-15 -1564 (|#3| |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -4108 (|#3| |#2|))) (-1064) (-1259 |#1|) (-13 (-414) (-1053 |#1|) (-372) (-1218) (-292))) (T -453)) +((-4108 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-1564 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-2343 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1259 *5)) (-4 *6 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))))) (-3692 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1259 *4)) (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) +(-10 -7 (-15 -3016 ((-574) |#2|)) (-15 -3692 (|#3| |#2|)) (-15 -3692 (|#3| |#2| (-934))) (-15 -2204 ((-574) |#2|)) (-15 -3214 ((-574) |#2| (-781))) (-15 -3214 ((-574) |#2|)) (-15 -2681 (|#3| |#2| (-934))) (-15 -2343 (|#3| |#2|)) (-15 -1564 (|#3| |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -4108 (|#3| |#2|))) +((-3363 ((|#2| (-1283 |#1|)) 42)) (-4152 ((|#2| |#2| |#1|) 58)) (-1915 ((|#2| |#2| |#1|) 49)) (-4424 ((|#2| |#2|) 44)) (-4169 (((-112) |#2|) 32)) (-2573 (((-654 |#2|) (-934) (-428 |#2|)) 21)) (-4350 ((|#2| (-934) (-428 |#2|)) 25)) (-1555 (((-747 (-781)) (-428 |#2|)) 29))) +(((-454 |#1| |#2|) (-10 -7 (-15 -4169 ((-112) |#2|)) (-15 -3363 (|#2| (-1283 |#1|))) (-15 -4424 (|#2| |#2|)) (-15 -1915 (|#2| |#2| |#1|)) (-15 -4152 (|#2| |#2| |#1|)) (-15 -1555 ((-747 (-781)) (-428 |#2|))) (-15 -4350 (|#2| (-934) (-428 |#2|))) (-15 -2573 ((-654 |#2|) (-934) (-428 |#2|)))) (-1064) (-1259 |#1|)) (T -454)) +((-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-428 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-1064)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-428 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1064)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1064)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-4152 (*1 *2 *2 *3) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-1915 (*1 *2 *2 *3) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-4424 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-1064)) (-4 *2 (-1259 *4)) (-5 *1 (-454 *4 *2)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -4169 ((-112) |#2|)) (-15 -3363 (|#2| (-1283 |#1|))) (-15 -4424 (|#2| |#2|)) (-15 -1915 (|#2| |#2| |#1|)) (-15 -4152 (|#2| |#2| |#1|)) (-15 -1555 ((-747 (-781)) (-428 |#2|))) (-15 -4350 (|#2| (-934) (-428 |#2|))) (-15 -2573 ((-654 |#2|) (-934) (-428 |#2|)))) +((-2851 (((-781)) 59)) (-3463 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-3449 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-3402 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-4119 (((-781)) 58) (((-781) (-781)) 57)) (-3215 ((|#1| (-781) (-574)) 37)) (-3001 (((-1288)) 61))) +(((-455 |#1|) (-10 -7 (-15 -3215 (|#1| (-781) (-574))) (-15 -4119 ((-781) (-781))) (-15 -4119 ((-781))) (-15 -2851 ((-781))) (-15 -3001 ((-1288))) (IF (|has| |#1| (-414)) (PROGN (-15 -3402 ((-574) |#1|)) (-15 -3449 ((-574) |#1|)) (-15 -3463 ((-781) (-781))) (-15 -3463 ((-781)))) |%noBranch|)) (-1064)) (T -455)) +((-3463 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-3402 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) (-3001 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-2851 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-4119 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1064))))) +(-10 -7 (-15 -3215 (|#1| (-781) (-574))) (-15 -4119 ((-781) (-781))) (-15 -4119 ((-781))) (-15 -2851 ((-781))) (-15 -3001 ((-1288))) (IF (|has| |#1| (-414)) (PROGN (-15 -3402 ((-574) |#1|)) (-15 -3449 ((-574) |#1|)) (-15 -3463 ((-781) (-781))) (-15 -3463 ((-781)))) |%noBranch|)) +((-1887 (((-654 (-574)) (-574)) 76)) (-2941 (((-112) (-171 (-574))) 82)) (-4200 (((-428 (-171 (-574))) (-171 (-574))) 75))) +(((-456) (-10 -7 (-15 -4200 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1887 ((-654 (-574)) (-574))) (-15 -2941 ((-112) (-171 (-574)))))) (T -456)) +((-2941 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-1887 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574)))))) +(-10 -7 (-15 -4200 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1887 ((-654 (-574)) (-574))) (-15 -2941 ((-112) (-171 (-574))))) +((-1386 ((|#4| |#4| (-654 |#4|)) 82)) (-2054 (((-654 |#4|) (-654 |#4|) (-1174) (-1174)) 22) (((-654 |#4|) (-654 |#4|) (-1174)) 21) (((-654 |#4|) (-654 |#4|)) 13))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1386 (|#4| |#4| (-654 |#4|))) (-15 -2054 ((-654 |#4|) (-654 |#4|))) (-15 -2054 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2054 ((-654 |#4|) (-654 |#4|) (-1174) (-1174)))) (-315) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -457)) +((-2054 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2054 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-1386 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) +(-10 -7 (-15 -1386 (|#4| |#4| (-654 |#4|))) (-15 -2054 ((-654 |#4|) (-654 |#4|))) (-15 -2054 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2054 ((-654 |#4|) (-654 |#4|) (-1174) (-1174)))) +((-3904 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-3516 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77))) +(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3516 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -458)) +((-3904 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3904 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3904 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(-10 -7 (-15 -3516 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3516 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3904 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) +((-2537 (((-781) |#4|) 12)) (-4128 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|)))) 39)) (-1403 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4114 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2870 ((|#4| |#4| (-654 |#4|)) 54)) (-4288 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-4020 (((-1288) |#4|) 59)) (-3378 (((-1288) (-654 |#4|)) 69)) (-2861 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-3388 (((-1288) (-574)) 110)) (-3536 (((-654 |#4|) (-654 |#4|)) 104)) (-3305 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|)) |#4| (-781)) 31)) (-3515 (((-574) |#4|) 109)) (-3522 ((|#4| |#4|) 37)) (-4112 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-1512 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-2562 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3227 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3287 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2714 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-4411 (((-112) |#2| |#2|) 75)) (-1702 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3923 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2803 ((|#4| |#4| (-654 |#4|)) 97))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| |#4| (-654 |#4|))) (-15 -2870 (|#4| |#4| (-654 |#4|))) (-15 -4112 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -3227 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4411 ((-112) |#2| |#2|)) (-15 -3923 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1702 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2714 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3287 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4288 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -3522 (|#4| |#4|)) (-15 -4128 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|))))) (-15 -4114 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1403 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3536 ((-654 |#4|) (-654 |#4|))) (-15 -3515 ((-574) |#4|)) (-15 -4020 ((-1288) |#4|)) (-15 -2861 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1512 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -3378 ((-1288) (-654 |#4|))) (-15 -3388 ((-1288) (-574))) (-15 -2562 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3305 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|)) |#4| (-781))) (-15 -2537 ((-781) |#4|))) (-462) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -459)) +((-2537 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3305 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3634 *4))) (-5 *5 (-781)) (-4 *4 (-962 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-2562 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1512 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-2861 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1403 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-962 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-4128 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 *3)))) (-5 *4 (-781)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-962 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1702 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-3923 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5)))) (-4411 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-4112 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2870 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2803 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -2803 (|#4| |#4| (-654 |#4|))) (-15 -2870 (|#4| |#4| (-654 |#4|))) (-15 -4112 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -3227 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4411 ((-112) |#2| |#2|)) (-15 -3923 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1702 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2714 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3287 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4288 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -3522 (|#4| |#4|)) (-15 -4128 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|))))) (-15 -4114 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1403 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3536 ((-654 |#4|) (-654 |#4|))) (-15 -3515 ((-574) |#4|)) (-15 -4020 ((-1288) |#4|)) (-15 -2861 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1512 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -3378 ((-1288) (-654 |#4|))) (-15 -3388 ((-1288) (-574))) (-15 -2562 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3305 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3634 |#4|)) |#4| (-781))) (-15 -2537 ((-781) |#4|))) +((-3124 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-2220 (((-654 |#4|) (-654 |#4|) (-1174) (-1174)) 46) (((-654 |#4|) (-654 |#4|) (-1174)) 45) (((-654 |#4|) (-654 |#4|)) 34))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2220 ((-654 |#4|) (-654 |#4|))) (-15 -2220 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2220 ((-654 |#4|) (-654 |#4|) (-1174) (-1174))) (IF (|has| |#1| (-372)) (-15 -3124 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -460)) +((-3124 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-2220 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2220 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))) +(-10 -7 (-15 -2220 ((-654 |#4|) (-654 |#4|))) (-15 -2220 ((-654 |#4|) (-654 |#4|) (-1174))) (-15 -2220 ((-654 |#4|) (-654 |#4|) (-1174) (-1174))) (IF (|has| |#1| (-372)) (-15 -3124 (|#4| |#4| (-654 |#4|))) |%noBranch|)) +((-2844 (($ $ $) 14) (($ (-654 $)) 21)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 46)) (-2886 (($ $ $) NIL) (($ (-654 $)) 22))) +(((-461 |#1|) (-10 -8 (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2844 (|#1| (-654 |#1|))) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|))) (-462)) (T -461)) +NIL +(-10 -8 (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2844 (|#1| (-654 |#1|))) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2886 (|#1| |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-462) (-141)) (T -462)) +((-2886 (*1 *1 *1 *1) (-4 *1 (-462))) (-2886 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2844 (*1 *1 *1 *1) (-4 *1 (-462))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-462))))) +(-13 (-566) (-10 -8 (-15 -2886 ($ $ $)) (-15 -2886 ($ (-654 $))) (-15 -2844 ($ $ $)) (-15 -2844 ($ (-654 $))) (-15 -4161 ((-1188 $) (-1188 $) (-1188 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3462 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-2555 (((-1283 (-699 (-417 (-965 |#1|)))) (-1283 $)) NIL) (((-1283 (-699 (-417 (-965 |#1|))))) NIL)) (-4000 (((-1283 $)) NIL)) (-3063 (($) NIL T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL)) (-3294 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-4073 (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL) (((-699 (-417 (-965 |#1|)))) NIL)) (-3197 (((-417 (-965 |#1|)) $) NIL)) (-4060 (((-699 (-417 (-965 |#1|))) $ (-1283 $)) NIL) (((-699 (-417 (-965 |#1|))) $) NIL)) (-3790 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-2158 (((-1188 (-965 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-372))) (((-1188 (-417 (-965 |#1|)))) 90 (|has| |#1| (-566)))) (-3558 (($ $ (-934)) NIL)) (-2755 (((-417 (-965 |#1|)) $) NIL)) (-2390 (((-1188 (-417 (-965 |#1|))) $) 88 (|has| (-417 (-965 |#1|)) (-566)))) (-2866 (((-417 (-965 |#1|)) (-1283 $)) NIL) (((-417 (-965 |#1|))) NIL)) (-2447 (((-1188 (-417 (-965 |#1|))) $) NIL)) (-1550 (((-112)) NIL)) (-3875 (($ (-1283 (-417 (-965 |#1|))) (-1283 $)) 114) (($ (-1283 (-417 (-965 |#1|)))) NIL)) (-2978 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-3557 (((-934)) NIL)) (-2676 (((-112)) NIL)) (-2867 (($ $ (-934)) NIL)) (-3236 (((-112)) NIL)) (-3154 (((-112)) NIL)) (-3954 (((-112)) NIL)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL)) (-3502 (((-3 $ "failed")) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-3100 (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL) (((-699 (-417 (-965 |#1|)))) NIL)) (-4132 (((-417 (-965 |#1|)) $) NIL)) (-1830 (((-699 (-417 (-965 |#1|))) $ (-1283 $)) NIL) (((-699 (-417 (-965 |#1|))) $) NIL)) (-1341 (((-3 $ "failed") $) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-1719 (((-1188 (-965 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-372))) (((-1188 (-417 (-965 |#1|)))) 89 (|has| |#1| (-566)))) (-2883 (($ $ (-934)) NIL)) (-2670 (((-417 (-965 |#1|)) $) NIL)) (-2664 (((-1188 (-417 (-965 |#1|))) $) 85 (|has| (-417 (-965 |#1|)) (-566)))) (-3038 (((-417 (-965 |#1|)) (-1283 $)) NIL) (((-417 (-965 |#1|))) NIL)) (-1373 (((-1188 (-417 (-965 |#1|))) $) NIL)) (-1808 (((-112)) NIL)) (-1938 (((-1174) $) NIL)) (-3618 (((-112)) NIL)) (-4004 (((-112)) NIL)) (-3380 (((-112)) NIL)) (-3939 (((-1135) $) NIL)) (-3143 (((-417 (-965 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-1985 (((-417 (-965 |#1|)) $) 100 (|has| |#1| (-566)))) (-3113 (((-417 (-965 |#1|)) $) 104 (|has| |#1| (-566)))) (-1376 (((-1188 (-417 (-965 |#1|))) $) 94 (|has| |#1| (-566)))) (-2575 (((-417 (-965 |#1|))) 77 (|has| |#1| (-566)))) (-2810 (((-417 (-965 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-1771 (((-417 (-965 |#1|)) $) 99 (|has| |#1| (-566)))) (-2103 (((-417 (-965 |#1|)) $) 103 (|has| |#1| (-566)))) (-1449 (((-1188 (-417 (-965 |#1|))) $) 93 (|has| |#1| (-566)))) (-4158 (((-417 (-965 |#1|))) 73 (|has| |#1| (-566)))) (-2001 (($) 110) (($ (-1192)) 118) (($ (-1283 (-1192))) 117) (($ (-1283 $)) 105) (($ (-1192) (-1283 $)) 116) (($ (-1283 (-1192)) (-1283 $)) 115)) (-4147 (((-112)) NIL)) (-2209 (((-417 (-965 |#1|)) $ (-574)) NIL)) (-4421 (((-1283 (-417 (-965 |#1|))) $ (-1283 $)) 107) (((-699 (-417 (-965 |#1|))) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 (-965 |#1|))) $) 43) (((-699 (-417 (-965 |#1|))) (-1283 $)) NIL)) (-1846 (((-1283 (-417 (-965 |#1|))) $) NIL) (($ (-1283 (-417 (-965 |#1|)))) 40)) (-2414 (((-654 (-965 (-417 (-965 |#1|)))) (-1283 $)) NIL) (((-654 (-965 (-417 (-965 |#1|))))) NIL) (((-654 (-965 |#1|)) (-1283 $)) 108 (|has| |#1| (-566))) (((-654 (-965 |#1|))) 109 (|has| |#1| (-566)))) (-2987 (($ $ $) NIL)) (-4390 (((-112)) NIL)) (-2950 (((-872) $) NIL) (($ (-1283 (-417 (-965 |#1|)))) NIL)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 65)) (-2433 (((-654 (-1283 (-417 (-965 |#1|))))) NIL (|has| (-417 (-965 |#1|)) (-566)))) (-1391 (($ $ $ $) NIL)) (-2579 (((-112)) NIL)) (-2911 (($ (-699 (-417 (-965 |#1|))) $) NIL)) (-2824 (($ $ $) NIL)) (-4208 (((-112)) NIL)) (-4124 (((-112)) NIL)) (-2170 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) 106)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-965 |#1|))) NIL) (($ (-417 (-965 |#1|)) $) NIL) (($ (-1157 |#2| (-417 (-965 |#1|))) $) NIL))) +(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-965 |#1|))) (-658 (-1157 |#2| (-417 (-965 |#1|)))) (-10 -8 (-15 -2950 ($ (-1283 (-417 (-965 |#1|))))) (-15 -1359 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -1609 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -2001 ($)) (-15 -2001 ($ (-1192))) (-15 -2001 ($ (-1283 (-1192)))) (-15 -2001 ($ (-1283 $))) (-15 -2001 ($ (-1192) (-1283 $))) (-15 -2001 ($ (-1283 (-1192)) (-1283 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1719 ((-1188 (-417 (-965 |#1|))))) (-15 -1449 ((-1188 (-417 (-965 |#1|))) $)) (-15 -1771 ((-417 (-965 |#1|)) $)) (-15 -2103 ((-417 (-965 |#1|)) $)) (-15 -2158 ((-1188 (-417 (-965 |#1|))))) (-15 -1376 ((-1188 (-417 (-965 |#1|))) $)) (-15 -1985 ((-417 (-965 |#1|)) $)) (-15 -3113 ((-417 (-965 |#1|)) $)) (-15 -2810 ((-417 (-965 |#1|)) $ $)) (-15 -4158 ((-417 (-965 |#1|)))) (-15 -3143 ((-417 (-965 |#1|)) $ $)) (-15 -2575 ((-417 (-965 |#1|)))) (-15 -2414 ((-654 (-965 |#1|)) (-1283 $))) (-15 -2414 ((-654 (-965 |#1|))))) |%noBranch|))) (-174) (-934) (-654 (-1192)) (-1283 (-699 |#1|))) (T -463)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 *3)))) (-4 *3 (-174)) (-14 *6 (-1283 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) (-1359 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -3907 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1609 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -3907 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2001 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-934)) (-14 *4 (-654 (-1192))) (-14 *5 (-1283 (-699 *2))))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 *2)) (-14 *6 (-1283 (-699 *3))))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-1283 (-1192))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-1283 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2001 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 *2)) (-14 *7 (-1283 (-699 *4))))) (-2001 (*1 *1 *2 *3) (-12 (-5 *2 (-1283 (-1192))) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) (-1719 (*1 *2) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2158 (*1 *2) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2810 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-4158 (*1 *2) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-3143 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2575 (*1 *2) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-965 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) (-2414 (*1 *2) (-12 (-5 *2 (-654 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(-13 (-427 (-417 (-965 |#1|))) (-658 (-1157 |#2| (-417 (-965 |#1|)))) (-10 -8 (-15 -2950 ($ (-1283 (-417 (-965 |#1|))))) (-15 -1359 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -1609 ((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed"))) (-15 -2001 ($)) (-15 -2001 ($ (-1192))) (-15 -2001 ($ (-1283 (-1192)))) (-15 -2001 ($ (-1283 $))) (-15 -2001 ($ (-1192) (-1283 $))) (-15 -2001 ($ (-1283 (-1192)) (-1283 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1719 ((-1188 (-417 (-965 |#1|))))) (-15 -1449 ((-1188 (-417 (-965 |#1|))) $)) (-15 -1771 ((-417 (-965 |#1|)) $)) (-15 -2103 ((-417 (-965 |#1|)) $)) (-15 -2158 ((-1188 (-417 (-965 |#1|))))) (-15 -1376 ((-1188 (-417 (-965 |#1|))) $)) (-15 -1985 ((-417 (-965 |#1|)) $)) (-15 -3113 ((-417 (-965 |#1|)) $)) (-15 -2810 ((-417 (-965 |#1|)) $ $)) (-15 -4158 ((-417 (-965 |#1|)))) (-15 -3143 ((-417 (-965 |#1|)) $ $)) (-15 -2575 ((-417 (-965 |#1|)))) (-15 -2414 ((-654 (-965 |#1|)) (-1283 $))) (-15 -2414 ((-654 (-965 |#1|))))) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 18)) (-4349 (((-654 (-874 |#1|)) $) 87)) (-4172 (((-1188 $) $ (-874 |#1|)) 52) (((-1188 |#2|) $) 138)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4319 (($ $) NIL (|has| |#2| (-566)))) (-1731 (((-112) $) NIL (|has| |#2| (-566)))) (-4347 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL (|has| |#2| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3372 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2956 (($ $ (-654 (-574))) 93)) (-1401 (($ $) 80)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#2| (-922)))) (-2680 (($ $ |#2| |#3| $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) 65)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) 143) (($ (-1188 $) (-874 |#1|)) 58)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) 68)) (-4327 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-874 |#1|)) NIL)) (-2682 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-3577 (($ (-1 |#3| |#3|) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1407 (((-3 (-874 |#1|) "failed") $) 45)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) 47)) (-2844 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3843 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 46)) (-1354 ((|#2| $) 136)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-3902 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) 59) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4144 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) 174) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2143 (($) 22 T CONST)) (-2155 (($) 31 T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 131)) (** (($ $ (-934)) NIL) (($ $ (-781)) 129)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-464 |#1| |#2| |#3|) (-13 (-962 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064) (-244 (-2876 |#1|) (-781))) (T -464)) +((-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1192))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-244 (-2876 *3) (-781)))))) +(-13 (-962 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) +((-3000 (((-112) |#1| (-654 |#2|)) 91)) (-4429 (((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-2481 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|))) 102)) (-2230 ((|#2| |#2| |#1|) 35)) (-2169 (((-781) |#2| (-654 |#2|)) 26))) +(((-465 |#1| |#2|) (-10 -7 (-15 -2230 (|#2| |#2| |#1|)) (-15 -2169 ((-781) |#2| (-654 |#2|))) (-15 -4429 ((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -2481 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|)))) (-15 -3000 ((-112) |#1| (-654 |#2|)))) (-315) (-1259 |#1|)) (T -465)) +((-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1259 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-2481 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1283 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1259 *4)))) (-4429 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1259 *4)) (-5 *2 (-1283 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-2230 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -2230 (|#2| |#2| |#1|)) (-15 -2169 ((-781) |#2| (-654 |#2|))) (-15 -4429 ((-3 (-1283 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -2481 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1283 (-654 |#2|)))) (-15 -3000 ((-112) |#1| (-654 |#2|)))) +((-4200 (((-428 |#5|) |#5|) 24))) +(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4200 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192))))) (-803) (-566) (-566) (-962 |#4| |#2| |#1|)) (T -466)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-962 *7 *5 *4))))) +(-10 -7 (-15 -4200 ((-428 |#5|) |#5|))) +((-2524 ((|#3|) 38)) (-4161 (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 34))) +(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2524 (|#3|))) (-803) (-860) (-922) (-962 |#3| |#1| |#2|)) (T -467)) +((-2524 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-962 *2 *3 *4)))) (-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-922)) (-5 *1 (-467 *3 *4 *5 *6))))) +(-10 -7 (-15 -4161 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2524 (|#3|))) +((-4200 (((-428 (-1188 |#1|)) (-1188 |#1|)) 43))) +(((-468 |#1|) (-10 -7 (-15 -4200 ((-428 (-1188 |#1|)) (-1188 |#1|)))) (-315)) (T -468)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1188 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1188 *4))))) +(-10 -7 (-15 -4200 ((-428 (-1188 |#1|)) (-1188 |#1|)))) +((-4401 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781))) 43) (((-52) |#2| (-1192) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3596 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574))) 85) (((-52) |#2| (-1192) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4425 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))) 72)) (-4413 (((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574))) 50))) +(((-469 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781)))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -4413 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -4425 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -4425 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -469)) +((-3596 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3596 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3596 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4425 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4425 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4413 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4401 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-781))) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-781))) (-4 *7 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6))))) +(-10 -7 (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-781)))) (-15 -4401 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -4413 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -4425 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -4425 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|))) (-15 -3596 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-574)))) (-15 -3596 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574)))) (-15 -3596 ((-52) |#2| (-1192) (-302 |#2|) (-1250 (-417 (-574))) (-417 (-574))))) +((-2230 ((|#2| |#2| |#1|) 15)) (-2859 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-934)) 82)) (-3994 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934)) 72))) +(((-470 |#1| |#2|) (-10 -7 (-15 -3994 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934))) (-15 -2859 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-934))) (-15 -2230 (|#2| |#2| |#1|))) (-315) (-1259 |#1|)) (T -470)) +((-2230 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1259 *3)))) (-2859 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-934)) (-4 *3 (-1259 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-3994 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-934)) (-4 *5 (-315)) (-4 *3 (-1259 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) +(-10 -7 (-15 -3994 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-934))) (-15 -2859 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-934))) (-15 -2230 (|#2| |#2| |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 28)) (-2365 (($ |#3|) 25)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) 32)) (-4179 (($ |#2| |#4| $) 33)) (-4327 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1365 (((-723 |#3| |#4| |#5|) $) 15)) (-4245 ((|#3| $) 19)) (-2750 ((|#4| $) 17)) (-1377 ((|#2| $) 29)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1534 (($ |#2| |#3| |#4|) 26)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 36 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 34)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1377 (|#2| $)) (-15 -1365 ((-723 |#3| |#4| |#5|) $)) (-15 -2750 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -1401 ($ $)) (-15 -4327 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -2365 ($ |#3|)) (-15 -1534 ($ |#2| |#3| |#4|)) (-15 -4179 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1192)) (-174) (-860) (-244 (-2876 |#1|) (-781)) (-1 (-112) (-2 (|:| -2590 |#3|) (|:| -3843 |#4|)) (-2 (|:| -2590 |#3|) (|:| -3843 |#4|))) (-962 |#2| |#4| (-874 |#1|))) (T -471)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) (-2 (|:| -2590 *5) (|:| -3843 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-962 *4 *6 (-874 *3))))) (-1377 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *4) (|:| -3843 *5)) (-2 (|:| -2590 *4) (|:| -3843 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-962 *2 *5 (-874 *3))))) (-1365 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) (-2 (|:| -2590 *5) (|:| -3843 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-962 *4 *6 (-874 *3))))) (-2750 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *2)) (-2 (|:| -2590 *5) (|:| -3843 *2)))) (-4 *2 (-244 (-2876 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-962 *4 *2 (-874 *3))))) (-4245 (*1 *2 *1) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *5)) (-2 (|:| -2590 *2) (|:| -3843 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-962 *4 *5 (-874 *3))))) (-1401 (*1 *1 *1) (-12 (-14 *2 (-654 (-1192))) (-4 *3 (-174)) (-4 *5 (-244 (-2876 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *4) (|:| -3843 *5)) (-2 (|:| -2590 *4) (|:| -3843 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-962 *3 *5 (-874 *2))))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2876 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) (-2 (|:| -2590 *5) (|:| -3843 *6)))) (-14 *4 (-654 (-1192))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-962 *2 *6 (-874 *4))))) (-2365 (*1 *1 *2) (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *5)) (-2 (|:| -2590 *2) (|:| -3843 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-962 *4 *5 (-874 *3))))) (-1534 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1192))) (-4 *2 (-174)) (-4 *4 (-244 (-2876 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *3) (|:| -3843 *4)) (-2 (|:| -2590 *3) (|:| -3843 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-962 *2 *4 (-874 *5))))) (-4179 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1192))) (-4 *2 (-174)) (-4 *3 (-244 (-2876 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *3)) (-2 (|:| -2590 *5) (|:| -3843 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-962 *2 *3 (-874 *4)))))) +(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1377 (|#2| $)) (-15 -1365 ((-723 |#3| |#4| |#5|) $)) (-15 -2750 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -1401 ($ $)) (-15 -4327 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -2365 ($ |#3|)) (-15 -1534 ($ |#2| |#3| |#4|)) (-15 -4179 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-4192 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4192 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|) (-13 (-1053 (-417 (-574))) (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -472)) +((-4192 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-962 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1053 (-417 (-574))) (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -4192 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-4349 (((-654 |#3|) $) 41)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) NIL (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-2717 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 49)) (-2216 (($ (-654 |#4|)) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458)))) (-1874 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-3066 ((|#3| $) 47)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#4|) $) 14 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2464 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 21)) (-3320 (((-654 |#3|) $) NIL)) (-2704 (((-112) |#3| $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3939 (((-1135) $) NIL)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 39)) (-4272 (($) 17)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 16)) (-1846 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2962 (($ (-654 |#4|)) 13)) (-2018 (($ $ |#3|) NIL)) (-2250 (($ $ |#3|) NIL)) (-4091 (($ $ |#3|) NIL)) (-2950 (((-872) $) 38) (((-654 |#4|) $) 50)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 30)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-473 |#1| |#2| |#3| |#4|) (-13 (-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1846 ($ (-654 |#4|))) (-6 -4458) (-6 -4459))) (-1064) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -473)) +((-1846 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))) +(-13 (-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1846 ($ (-654 |#4|))) (-6 -4458) (-6 -4459))) +((-2143 (($) 11)) (-2155 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2155 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2143 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474)) +NIL +(-10 -8 (-15 -2155 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2143 (|#1|))) +((-2863 (((-112) $ $) 7)) (-1706 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-3112 (($ $ $) 24)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4144 ((|#2| $) 20)) (-2950 (((-872) $) 12) (($ |#1|) 26)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 25 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3073 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-475 |#1| |#2|) (-141) (-174) (-23)) (T -475)) +((-2155 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3112 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-480 |t#1| |t#2|) (-1053 |t#1|) (-10 -8 (-15 (-2155) ($) -1716) (-15 -3112 ($ $ $)))) +(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1053 |#1|) . T) ((-1115) . T)) +((-3454 (((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934)) 26)) (-3297 (((-1283 (-1283 (-574))) (-934)) 21))) +(((-476) (-10 -7 (-15 -3454 ((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934))) (-15 -3297 ((-1283 (-1283 (-574))) (-934))))) (T -476)) +((-3297 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 (-574)))) (-5 *1 (-476)))) (-3454 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 (-1283 (-574)))) (-5 *3 (-934)) (-5 *1 (-476))))) +(-10 -7 (-15 -3454 ((-1283 (-1283 (-574))) (-1283 (-1283 (-574))) (-934))) (-15 -3297 ((-1283 (-1283 (-574))) (-934)))) +((-3314 (((-574) (-574)) 32) (((-574)) 24)) (-2066 (((-574) (-574)) 28) (((-574)) 20)) (-1677 (((-574) (-574)) 30) (((-574)) 22)) (-3699 (((-112) (-112)) 14) (((-112)) 12)) (-1500 (((-112) (-112)) 13) (((-112)) 11)) (-2853 (((-112) (-112)) 26) (((-112)) 17))) +(((-477) (-10 -7 (-15 -1500 ((-112))) (-15 -3699 ((-112))) (-15 -1500 ((-112) (-112))) (-15 -3699 ((-112) (-112))) (-15 -2853 ((-112))) (-15 -1677 ((-574))) (-15 -2066 ((-574))) (-15 -3314 ((-574))) (-15 -2853 ((-112) (-112))) (-15 -1677 ((-574) (-574))) (-15 -2066 ((-574) (-574))) (-15 -3314 ((-574) (-574))))) (T -477)) +((-3314 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3314 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2066 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1677 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2853 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3699 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3699 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1500 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(-10 -7 (-15 -1500 ((-112))) (-15 -3699 ((-112))) (-15 -1500 ((-112) (-112))) (-15 -3699 ((-112) (-112))) (-15 -2853 ((-112))) (-15 -1677 ((-574))) (-15 -2066 ((-574))) (-15 -3314 ((-574))) (-15 -2853 ((-112) (-112))) (-15 -1677 ((-574) (-574))) (-15 -2066 ((-574) (-574))) (-15 -3314 ((-574) (-574)))) +((-2863 (((-112) $ $) NIL)) (-2007 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-2274 (((-654 (-1109 (-388))) $) 16) (((-654 (-1109 (-388))) $ (-654 (-1109 (-388)))) 142)) (-1610 (((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884))) 58)) (-2224 (((-654 (-654 (-956 (-227)))) $) 137)) (-3563 (((-1288) $ (-956 (-227)) (-884)) 163)) (-3488 (($ $) 136) (($ (-654 (-654 (-956 (-227))))) 149) (($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934))) 148) (($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270))) 150)) (-1938 (((-1174) $) NIL)) (-3666 (((-574) $) 110)) (-3939 (((-1135) $) NIL)) (-3446 (($) 147)) (-4050 (((-654 (-227)) (-654 (-654 (-956 (-227))))) 89)) (-4311 (((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934)) 155) (((-1288) $ (-956 (-227))) 157) (((-1288) $ (-956 (-227)) (-884) (-884) (-934)) 156)) (-2950 (((-872) $) 169) (($ (-654 (-654 (-956 (-227))))) 164)) (-4259 (((-112) $ $) NIL)) (-2090 (((-1288) $ (-956 (-227))) 162)) (-2985 (((-112) $ $) NIL))) +(((-478) (-13 (-1115) (-10 -8 (-15 -3446 ($)) (-15 -3488 ($ $)) (-15 -3488 ($ (-654 (-654 (-956 (-227)))))) (-15 -3488 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)))) (-15 -3488 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270)))) (-15 -2224 ((-654 (-654 (-956 (-227)))) $)) (-15 -3666 ((-574) $)) (-15 -2274 ((-654 (-1109 (-388))) $)) (-15 -2274 ((-654 (-1109 (-388))) $ (-654 (-1109 (-388))))) (-15 -2007 ((-654 (-388)) $)) (-15 -2007 ((-654 (-388)) $ (-654 (-388)))) (-15 -4311 ((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934))) (-15 -4311 ((-1288) $ (-956 (-227)))) (-15 -4311 ((-1288) $ (-956 (-227)) (-884) (-884) (-934))) (-15 -2090 ((-1288) $ (-956 (-227)))) (-15 -3563 ((-1288) $ (-956 (-227)) (-884))) (-15 -2950 ($ (-654 (-654 (-956 (-227)))))) (-15 -2950 ((-872) $)) (-15 -1610 ((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884)))) (-15 -4050 ((-654 (-227)) (-654 (-654 (-956 (-227))))))))) (T -478)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-3446 (*1 *1) (-5 *1 (-478))) (-3488 (*1 *1 *1) (-5 *1 (-478))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-3488 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-934))) (-5 *1 (-478)))) (-3488 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-934))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) (-2274 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2007 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-4311 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) (-4311 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) (-3563 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-478)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) (-1610 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478))))) +(-13 (-1115) (-10 -8 (-15 -3446 ($)) (-15 -3488 ($ $)) (-15 -3488 ($ (-654 (-654 (-956 (-227)))))) (-15 -3488 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)))) (-15 -3488 ($ (-654 (-654 (-956 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-934)) (-654 (-270)))) (-15 -2224 ((-654 (-654 (-956 (-227)))) $)) (-15 -3666 ((-574) $)) (-15 -2274 ((-654 (-1109 (-388))) $)) (-15 -2274 ((-654 (-1109 (-388))) $ (-654 (-1109 (-388))))) (-15 -2007 ((-654 (-388)) $)) (-15 -2007 ((-654 (-388)) $ (-654 (-388)))) (-15 -4311 ((-1288) $ (-654 (-956 (-227))) (-884) (-884) (-934))) (-15 -4311 ((-1288) $ (-956 (-227)))) (-15 -4311 ((-1288) $ (-956 (-227)) (-884) (-884) (-934))) (-15 -2090 ((-1288) $ (-956 (-227)))) (-15 -3563 ((-1288) $ (-956 (-227)) (-884))) (-15 -2950 ($ (-654 (-654 (-956 (-227)))))) (-15 -2950 ((-872) $)) (-15 -1610 ((-654 (-654 (-956 (-227)))) (-654 (-654 (-956 (-227)))) (-654 (-884)))) (-15 -4050 ((-654 (-227)) (-654 (-654 (-956 (-227)))))))) +((-3089 (($ $) NIL) (($ $ $) 11))) +(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479)) +NIL +(-10 -8 (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4144 ((|#2| $) 20)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 16) (($ $ $) 14)) (-3073 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-480 |#1| |#2|) (-141) (-174) (-23)) (T -480)) +((-4144 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2143 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1115) (-10 -8 (-15 -4144 (|t#2| $)) (-15 (-2143) ($) -1716) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3089 ($ $)) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2503 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-1490 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-2654 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86))) +(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -1490 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2503 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2654 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1192)) (-462) (-462)) (T -481)) +((-2654 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-2503 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(-10 -7 (-15 -1490 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2503 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2654 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) +((-2978 (((-3 $ "failed") $) 11)) (-2190 (($ $ $) 23)) (-2987 (($ $ $) 24)) (-3102 (($ $ $) 9)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22))) +(((-482 |#1|) (-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3102 (|#1| |#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) (-483)) (T -482)) +NIL +(-10 -8 (-15 -2987 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3102 (|#1| |#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-3063 (($) 19 T CONST)) (-2978 (((-3 $ "failed") $) 16)) (-2276 (((-112) $) 18)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 25)) (-3939 (((-1135) $) 11)) (-2190 (($ $ $) 22)) (-2987 (($ $ $) 21)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 24)) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) +(((-483) (-141)) (T -483)) +((-1327 (*1 *1 *1) (-4 *1 (-483))) (-3102 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-2190 (*1 *1 *1 *1) (-4 *1 (-483))) (-2987 (*1 *1 *1 *1) (-4 *1 (-483)))) +(-13 (-736) (-10 -8 (-15 -1327 ($ $)) (-15 -3102 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4455) (-15 -2190 ($ $ $)) (-15 -2987 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 18)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) NIL) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 25)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 35 (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 16)) (-4144 (((-417 (-574)) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1279 |#2|)) NIL) (($ (-1268 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 21)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 27)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-484 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -2950 ($ (-1268 |#1| |#2| |#3|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -484)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1264 |#1|) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -2950 ($ (-1268 |#1| |#2| |#3|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) 18)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) 19)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 16)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) NIL)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-485 |#1| |#2| |#3| |#4|) (-1209 |#1| |#2|) (-1115) (-1115) (-1209 |#1| |#2|) |#2|) (T -485)) +NIL +(-1209 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1346 (((-654 $) (-654 |#4|)) NIL)) (-4349 (((-654 |#3|) $) NIL)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3871 ((|#4| |#4| $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) 29 (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2717 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1779 ((|#4| |#4| $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2544 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) NIL)) (-1874 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2464 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-3320 (((-654 |#3|) $) NIL)) (-2704 (((-112) |#3| $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-3333 (((-3 |#4| "failed") $) 42)) (-4009 (((-654 |#4|) $) NIL)) (-1746 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2780 ((|#4| |#4| $) NIL)) (-3419 (((-112) $ $) NIL)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1371 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3967 (((-3 $ "failed") $ |#4|) 58)) (-4016 (($ $ |#4|) NIL)) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 14)) (-4144 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1846 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-2018 (($ $ |#3|) 52)) (-2250 (($ $ |#3|) 54)) (-2293 (($ $) NIL)) (-4091 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3988 (((-781) $) NIL (|has| |#3| (-377)))) (-4259 (((-112) $ $) NIL)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) NIL)) (-2488 (((-112) |#3| $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-486 |#1| |#2| |#3| |#4|) (-1226 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -486)) +NIL +(-1226 |#1| |#2| |#3| |#4|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3003 (($) 17)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-1846 (((-388) $) 21) (((-227) $) 24) (((-417 (-1188 (-574))) $) 18) (((-546) $) 53)) (-2950 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 8 T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-487) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))) (-1037) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1188 (-574)))) (-624 (-546)) (-10 -8 (-15 -3003 ($))))) (T -487)) +((-3003 (*1 *1) (-5 *1 (-487)))) +(-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))) (-1037) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1188 (-574)))) (-624 (-546)) (-10 -8 (-15 -3003 ($)))) +((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1806 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-488) (-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -488)) +((-1806 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488))))) +(-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $)))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) 16)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) 20)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 18)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) 13)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 19)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 11 (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) 15 (|has| $ (-6 -4458))))) +(((-489 |#1| |#2| |#3|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115) (-1174)) (T -489)) +NIL +(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) +((-3199 (((-574) (-574) (-574)) 19)) (-2649 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2104 (((-1283 (-654 (-574))) (-781) (-781)) 41))) +(((-490) (-10 -7 (-15 -3199 ((-574) (-574) (-574))) (-15 -2649 ((-112) (-574) (-574) (-574) (-574))) (-15 -2104 ((-1283 (-654 (-574))) (-781) (-781))))) (T -490)) +((-2104 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1283 (-654 (-574)))) (-5 *1 (-490)))) (-2649 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-3199 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) +(-10 -7 (-15 -3199 ((-574) (-574) (-574))) (-15 -2649 ((-112) (-574) (-574) (-574) (-574))) (-15 -2104 ((-1283 (-654 (-574))) (-781) (-781)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4319 (($ $) NIL (|has| |#2| (-566)))) (-1731 (((-112) $) NIL (|has| |#2| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL (|has| |#2| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3372 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2956 (($ $ (-654 (-574))) NIL)) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#2| (-922)))) (-2680 (($ $ |#2| (-492 (-2876 |#1|) (-781)) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#2| (-492 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-874 |#1|)) NIL)) (-2682 (((-492 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3577 (($ (-1 (-492 (-2876 |#1|) (-781)) (-492 (-2876 |#1|) (-781))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1407 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3843 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-3902 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4144 (((-492 (-2876 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-492 (-2876 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-491 |#1| |#2|) (-13 (-962 |#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) (-654 (-1192)) (-1064)) (T -491)) +((-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) +(-13 (-962 |#2| (-492 (-2876 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2956 ($ $ (-654 (-574)))))) +((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-1997 (((-112) $) NIL (|has| |#2| (-132)))) (-2365 (($ (-934)) NIL (|has| |#2| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) NIL (|has| |#2| (-803)))) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#2| (-377)))) (-2496 (((-574) $) NIL (|has| |#2| (-858)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) NIL (|has| |#2| (-1115)))) (-4232 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-2978 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) 11)) (-1348 (((-112) $) NIL (|has| |#2| (-858)))) (-1874 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (|has| |#2| (-736)))) (-3081 (((-112) $) NIL (|has| |#2| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-4187 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2464 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#2| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#2| (-1115)))) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-2546 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) NIL)) (-2900 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) NIL (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3781 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-4259 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2235 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#2| (-858)))) (-2143 (($) NIL (|has| |#2| (-132)) CONST)) (-2155 (($) NIL (|has| |#2| (-736)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2985 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3008 (((-112) $ $) 17 (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3073 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-934)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-492 |#1| |#2|) (-244 |#1| |#2|) (-781) (-803)) (T -492)) +NIL +(-244 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-2638 (((-654 (-886)) $) 15)) (-2041 (((-516) $) 13)) (-1938 (((-1174) $) NIL)) (-1794 (($ (-516) (-654 (-886))) 11)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 22) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-493) (-13 (-1098) (-10 -8 (-15 -1794 ($ (-516) (-654 (-886)))) (-15 -2041 ((-516) $)) (-15 -2638 ((-654 (-886)) $))))) (T -493)) +((-1794 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) +(-13 (-1098) (-10 -8 (-15 -1794 ($ (-516) (-654 (-886)))) (-15 -2041 ((-516) $)) (-15 -2638 ((-654 (-886)) $)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4099 (($ $ $) 48)) (-4333 (($ $ $) 47)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2953 ((|#1| $) 40)) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) 41)) (-1948 (($ |#1| $) 18)) (-1642 (($ (-654 |#1|)) 19)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2277 ((|#1| $) 34)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 11)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 45)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) 29 (|has| $ (-6 -4458))))) +(((-494 |#1|) (-13 (-983 |#1|) (-10 -8 (-15 -1642 ($ (-654 |#1|))))) (-860)) (T -494)) +((-1642 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) +(-13 (-983 |#1|) (-10 -8 (-15 -1642 ($ (-654 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2881 (($ $) 71)) (-3044 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-1674 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3939 (((-1135) $) NIL)) (-2974 (((-3 |#4| "failed") $) 117)) (-3933 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1425 (((-2 (|:| -2817 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2950 (((-872) $) 110)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 32 T CONST)) (-2985 (((-112) $ $) 121)) (-3089 (($ $) 77) (($ $ $) NIL)) (-3073 (($ $ $) 72)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78))) +(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495)) +NIL +(-344 |#1| |#2| |#3| |#4|) +((-3194 (((-574) (-654 (-574))) 53)) (-3026 ((|#1| (-654 |#1|)) 94)) (-3547 (((-654 |#1|) (-654 |#1|)) 95)) (-2882 (((-654 |#1|) (-654 |#1|)) 97)) (-2886 ((|#1| (-654 |#1|)) 96)) (-1514 (((-654 (-574)) (-654 |#1|)) 56))) +(((-496 |#1|) (-10 -7 (-15 -2886 (|#1| (-654 |#1|))) (-15 -3026 (|#1| (-654 |#1|))) (-15 -2882 ((-654 |#1|) (-654 |#1|))) (-15 -3547 ((-654 |#1|) (-654 |#1|))) (-15 -1514 ((-654 (-574)) (-654 |#1|))) (-15 -3194 ((-574) (-654 (-574))))) (-1259 (-574))) (T -496)) +((-3194 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1259 *2)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1259 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574))))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574)))))) +(-10 -7 (-15 -2886 (|#1| (-654 |#1|))) (-15 -3026 (|#1| (-654 |#1|))) (-15 -2882 ((-654 |#1|) (-654 |#1|))) (-15 -3547 ((-654 |#1|) (-654 |#1|))) (-15 -1514 ((-654 (-574)) (-654 |#1|))) (-15 -3194 ((-574) (-654 (-574))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-574) $) NIL (|has| (-574) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-574) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-574) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-3081 (((-112) $) NIL (|has| (-574) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-574) (-860)))) (-1787 (($ (-1 (-574) (-574)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3451 (($ (-417 (-574))) 9)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-2787 (((-574) $) NIL (|has| (-574) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-574) $) NIL)) (-1846 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL) (((-1019 16) $) 10)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-574) $) NIL (|has| (-574) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-574) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3102 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) +(((-497) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 16)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3451 ($ (-417 (-574))))))) (T -497)) +((-2010 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) +(-13 (-1007 (-574)) (-623 (-417 (-574))) (-623 (-1019 16)) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3451 ($ (-417 (-574)))))) +((-4187 (((-654 |#2|) $) 31)) (-3801 (((-112) |#2| $) 36)) (-4043 (((-112) (-1 (-112) |#2|) $) 26)) (-2660 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3948 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2950 (((-872) $) 45)) (-2235 (((-112) (-1 (-112) |#2|) $) 23)) (-2985 (((-112) $ $) 39)) (-2876 (((-781) $) 18))) +(((-498 |#1| |#2|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -3801 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -4187 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) (-499 |#2|) (-1233)) (T -498)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#2| |#2|)) (-15 -2660 (|#1| |#1| (-302 |#2|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -3801 ((-112) |#2| |#1|)) (-15 -3948 ((-781) |#2| |#1|)) (-15 -4187 ((-654 |#2|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-499 |#1|) (-141) (-1233)) (T -499)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) (-2464 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) (-2235 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-4043 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-3948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) (-4 *4 (-1233)) (-5 *2 (-781)))) (-1874 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-4187 (*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-3948 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-781)))) (-3801 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4459)) (-15 -2464 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4458)) (PROGN (-15 -2235 ((-112) (-1 (-112) |t#1|) $)) (-15 -4043 ((-112) (-1 (-112) |t#1|) $)) (-15 -3948 ((-781) (-1 (-112) |t#1|) $)) (-15 -1874 ((-654 |t#1|) $)) (-15 -4187 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -3948 ((-781) |t#1| $)) (-15 -3801 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2950 ((|#1| $) 6) (($ |#1|) 9))) +(((-500 |#1|) (-141) (-1233)) (T -500)) +NIL +(-13 (-623 |t#1|) (-626 |t#1|)) +(((-626 |#1|) . T) ((-623 |#1|) . T)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3465 (($ (-1174)) 8)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (((-1174) $) 12)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) +(((-501) (-13 (-1115) (-623 (-1174)) (-10 -8 (-15 -3465 ($ (-1174)))))) (T -501)) +((-3465 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-501))))) +(-13 (-1115) (-623 (-1174)) (-10 -8 (-15 -3465 ($ (-1174))))) +((-2378 (($ $) 15)) (-2357 (($ $) 24)) (-2403 (($ $) 12)) (-2415 (($ $) 10)) (-2388 (($ $) 17)) (-2367 (($ $) 22))) +(((-502 |#1|) (-10 -8 (-15 -2367 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|))) (-503)) (T -502)) +NIL +(-10 -8 (-15 -2367 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|))) +((-2378 (($ $) 11)) (-2357 (($ $) 10)) (-2403 (($ $) 9)) (-2415 (($ $) 8)) (-2388 (($ $) 7)) (-2367 (($ $) 6))) +(((-503) (-141)) (T -503)) +((-2378 (*1 *1 *1) (-4 *1 (-503))) (-2357 (*1 *1 *1) (-4 *1 (-503))) (-2403 (*1 *1 *1) (-4 *1 (-503))) (-2415 (*1 *1 *1) (-4 *1 (-503))) (-2388 (*1 *1 *1) (-4 *1 (-503))) (-2367 (*1 *1 *1) (-4 *1 (-503)))) +(-13 (-10 -8 (-15 -2367 ($ $)) (-15 -2388 ($ $)) (-15 -2415 ($ $)) (-15 -2403 ($ $)) (-15 -2357 ($ $)) (-15 -2378 ($ $)))) +((-4200 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1259 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1259 |#3|)) (T -504)) +((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1259 *7))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) +((-2863 (((-112) $ $) NIL)) (-2869 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-2263 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1997 (((-112) $) 39)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2091 (((-112) $ $) 73)) (-4067 (((-654 (-622 $)) $) 50)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2558 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-3569 (((-654 $) (-1188 $) (-1192)) NIL) (((-654 $) (-1188 $)) NIL) (((-654 $) (-965 $)) NIL)) (-1853 (($ (-1188 $) (-1192)) NIL) (($ (-1188 $)) NIL) (($ (-965 $)) NIL)) (-1706 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2800 (($ $ $) NIL)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 (-417 (-574)))) (|:| |vec| (-1283 (-417 (-574))))) (-699 $) (-1283 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1283 $)) NIL)) (-2881 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-4248 (($ $) NIL) (($ (-654 $)) NIL)) (-3667 (((-654 (-115)) $) NIL)) (-4151 (((-115) (-115)) NIL)) (-2276 (((-112) $) 42)) (-3127 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2970 (((-1140 (-574) (-622 $)) $) 37)) (-3649 (($ $ (-574)) NIL)) (-2681 (((-1188 $) (-1188 $) (-622 $)) 87) (((-1188 $) (-1188 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3256 (((-1188 $) (-622 $)) 74 (|has| $ (-1064)))) (-1787 (($ (-1 $ $) (-622 $)) NIL)) (-3487 (((-3 (-622 $) "failed") $) NIL)) (-2844 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-4138 (((-654 (-622 $)) $) NIL)) (-1784 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-2454 (((-112) $ (-115)) NIL) (((-112) $ (-1192)) NIL)) (-1327 (($ $) NIL)) (-1849 (((-781) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2192 (((-112) $ $) NIL) (((-112) $ (-1192)) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL (|has| $ (-1053 (-574))))) (-2660 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1192)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1192) (-1 $ (-654 $))) NIL) (($ $ (-1192) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3575 (((-781) $) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2734 (($ $) NIL) (($ $ $) NIL)) (-3878 (($ $) 36) (($ $ (-781)) NIL)) (-2981 (((-1140 (-574) (-622 $)) $) 20)) (-2611 (($ $) NIL (|has| $ (-1064)))) (-1846 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2950 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1140 (-574) (-622 $))) 21)) (-3781 (((-781)) NIL T CONST)) (-2081 (($ $) NIL) (($ (-654 $)) NIL)) (-2448 (((-112) (-115)) 93)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2155 (($) 22 T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) 24)) (-3102 (($ $ $) 44)) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-934) $) NIL))) +(((-505) (-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -2091 ((-112) $ $)) (-15 -2681 ((-1188 $) (-1188 $) (-622 $))) (-15 -2681 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -2681 ($ $ (-622 $))) (-15 -2681 ($ $ (-654 (-622 $))))))) (T -505)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2881 (*1 *1 *1) (-5 *1 (-505))) (-2091 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))) +(-13 (-310) (-27) (-1053 (-574)) (-1053 (-417 (-574))) (-649 (-574)) (-1037) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2950 ($ (-1140 (-574) (-622 $)))) (-15 -2970 ((-1140 (-574) (-622 $)) $)) (-15 -2981 ((-1140 (-574) (-622 $)) $)) (-15 -2881 ($ $)) (-15 -2091 ((-112) $ $)) (-15 -2681 ((-1188 $) (-1188 $) (-622 $))) (-15 -2681 ((-1188 $) (-1188 $) (-654 (-622 $)))) (-15 -2681 ($ $ (-622 $))) (-15 -2681 ($ $ (-654 (-622 $)))))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 38)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 21)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 17 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) 41 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) 15 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 19)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1250 (-574))) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 24)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 11 (|has| $ (-6 -4458))))) +(((-506 |#1| |#2|) (-19 |#1|) (-1233) (-574)) (T -506)) NIL (-19 |#1|) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL)) (-3601 (($ $ (-573) (-505 |#1| |#3|)) NIL)) (-2790 (($ $ (-573) (-505 |#1| |#2|)) NIL)) (-2579 (($) NIL T CONST)) (-3229 (((-505 |#1| |#3|) $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-505 |#1| |#2|) $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-506 |#1| |#2| |#3|) (-57 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) (-1230) (-573) (-573)) (T -506)) -NIL -(-57 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) -((-2646 (((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780)) 32)) (-3572 (((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780)) 43)) (-3276 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)) 107))) -(((-507 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780))) (-15 -2646 ((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780))) (-15 -3276 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)))) (-357) (-1256 |#1|) (-1256 |#2|)) (T -507)) -((-3276 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-698 *7))))) (-5 *5 (-780)) (-4 *8 (-1256 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-698 *7)))) (-5 *1 (-507 *6 *7 *8)))) (-2646 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-4 *5 (-357)) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-698 *6))))) (-5 *1 (-507 *5 *6 *7)) (-5 *3 (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-698 *6)))) (-4 *7 (-1256 *6)))) (-3572 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-780)) (-4 *3 (-357)) (-4 *5 (-1256 *3)) (-5 *2 (-653 (-1185 *3))) (-5 *1 (-507 *3 *5 *6)) (-4 *6 (-1256 *5))))) -(-10 -7 (-15 -3572 ((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780))) (-15 -2646 ((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780))) (-15 -3276 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)))) -((-2666 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))) 70)) (-2557 ((|#1| (-698 |#1|) |#1| (-780)) 24)) (-3755 (((-780) (-780) (-780)) 34)) (-1497 (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 50)) (-1765 (((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|) 58) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 55)) (-3594 ((|#1| (-698 |#1|) (-698 |#1|) |#1| (-573)) 28)) (-3856 ((|#1| (-698 |#1|)) 18))) -(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3856 (|#1| (-698 |#1|))) (-15 -2557 (|#1| (-698 |#1|) |#1| (-780))) (-15 -3594 (|#1| (-698 |#1|) (-698 |#1|) |#1| (-573))) (-15 -3755 ((-780) (-780) (-780))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -1497 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -2666 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))))) (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $)))) (-1256 |#1|) (-418 |#1| |#2|)) (T -508)) -((-2666 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1497 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1765 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1765 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3594 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-698 *2)) (-5 *4 (-573)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5)))) (-2557 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-698 *2)) (-5 *4 (-780)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-698 *2)) (-4 *4 (-1256 *2)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-418 *2 *4))))) -(-10 -7 (-15 -3856 (|#1| (-698 |#1|))) (-15 -2557 (|#1| (-698 |#1|) |#1| (-780))) (-15 -3594 (|#1| (-698 |#1|) (-698 |#1|) |#1| (-573))) (-15 -3755 ((-780) (-780) (-780))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -1497 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -2666 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))))) -((-2848 (((-112) $ $) NIL)) (-2876 (($ $) NIL)) (-2108 (($ $ $) 40)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-859)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-112) $ (-1247 (-573)) (-112)) NIL (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3334 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2457 (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) NIL)) (-1440 (((-573) (-112) $ (-573)) NIL (|has| (-112) (-1112))) (((-573) (-112) $) NIL (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) NIL)) (-1863 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-2097 (($ $ $) 38)) (-2075 (($ $) NIL)) (-3695 (($ $ $) NIL)) (-3789 (($ (-780) (-112)) 27)) (-1419 (($ $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 8 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL)) (-1480 (($ $ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3214 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ (-112) $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-112) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3112 (($ $ (-112)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 28)) (-2198 (($ $ (-1247 (-573))) NIL) (((-112) $ (-573)) 22) (((-112) $ (-573) (-112)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3974 (((-780) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112)))) (((-780) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 29)) (-1835 (((-545) $) NIL (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) NIL)) (-4156 (($ (-653 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2942 (((-871) $) 26)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2086 (($ $ $) 36)) (-2924 (($ $ $) NIL)) (-2244 (($ $ $) 45)) (-2254 (($ $) 43)) (-2235 (($ $ $) 44)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 30)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 31)) (-2909 (($ $ $) NIL)) (-2862 (((-780) $) 13 (|has| $ (-6 -4455))))) -(((-509 |#1|) (-13 (-124) (-10 -8 (-15 -2254 ($ $)) (-15 -2244 ($ $ $)) (-15 -2235 ($ $ $)))) (-573)) (T -509)) -((-2254 (*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) (-2244 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) (-2235 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573))))) -(-13 (-124) (-10 -8 (-15 -2254 ($ $)) (-15 -2244 ($ $ $)) (-15 -2235 ($ $ $)))) -((-2287 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|)) 35)) (-1327 (((-1185 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1185 |#4|)) 22)) (-3038 (((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|))) 46)) (-3736 (((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1327 (|#2| (-1 |#1| |#4|) (-1185 |#4|))) (-15 -1327 ((-1185 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2287 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|))) (-15 -3038 ((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|)))) (-15 -3736 ((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|))) (-1061) (-1256 |#1|) (-1256 |#2|) (-1061)) (T -510)) -((-3736 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *7))) (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1256 *6)))) (-3038 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-698 (-1185 *8))) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-1256 *5)) (-5 *2 (-698 *6)) (-5 *1 (-510 *5 *6 *7 *8)) (-4 *7 (-1256 *6)))) (-2287 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *4 (-1256 *5)) (-5 *2 (-1185 *7)) (-5 *1 (-510 *5 *4 *6 *7)) (-4 *6 (-1256 *4)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2))))) -(-10 -7 (-15 -1327 (|#2| (-1 |#1| |#4|) (-1185 |#4|))) (-15 -1327 ((-1185 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2287 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|))) (-15 -3038 ((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|)))) (-15 -3736 ((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1974 (((-1285) $) 25)) (-2198 (((-1171) $ (-1189)) 30)) (-1402 (((-1285) $) 17)) (-2942 (((-871) $) 27) (($ (-1171)) 26)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9))) -(((-511) (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -2942 ($ (-1171)))))) (T -511)) -((-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1171)) (-5 *1 (-511)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-511))))) -(-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -2942 ($ (-1171))))) -((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3343 ((|#1| |#4|) 10)) (-1946 ((|#3| |#4|) 17))) -(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3343 (|#1| |#4|)) (-15 -1946 (|#3| |#4|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-565) (-1004 |#1|) (-381 |#1|) (-381 |#2|)) (T -512)) -((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-381 *4)) (-4 *3 (-381 *5)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-4 *2 (-381 *4)) (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-381 *5)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *5 (-381 *2)) (-4 *3 (-381 *4))))) -(-10 -7 (-15 -3343 (|#1| |#4|)) (-15 -1946 (|#3| |#4|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2848 (((-112) $ $) NIL)) (-3725 (((-112) $ (-653 |#3|)) 126) (((-112) $) 127)) (-1748 (((-112) $) 178)) (-4368 (($ $ |#4|) 117) (($ $ |#4| (-653 |#3|)) 121)) (-2967 (((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|)) 171 (|has| |#3| (-623 (-1189))))) (-3152 (($ $ $) 107) (($ $ |#4|) 105)) (-1959 (((-112) $) 177)) (-3957 (($ $) 131)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 99) (($ (-653 $)) 101)) (-4254 (((-112) |#4| $) 129)) (-3036 (((-112) $ $) 82)) (-1339 (($ (-653 |#4|)) 106)) (-3965 (((-1132) $) NIL)) (-4432 (($ (-653 |#4|)) 175)) (-4410 (((-112) $) 176)) (-3207 (($ $) 85)) (-4387 (((-653 |#4|) $) 73)) (-1533 (((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|)) NIL)) (-2376 (((-112) |#4| $) 89)) (-2365 (((-573) $ (-653 |#3|)) 133) (((-573) $) 134)) (-2942 (((-871) $) 174) (($ (-653 |#4|)) 102)) (-3507 (((-112) $ $) NIL)) (-2640 (($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $))) NIL)) (-2981 (((-112) $ $) 84)) (-3077 (($ $ $) 109)) (** (($ $ (-780)) 115)) (* (($ $ $) 113))) -(((-513 |#1| |#2| |#3| |#4|) (-13 (-1112) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 -3077 ($ $ $)) (-15 -1959 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2376 ((-112) |#4| $)) (-15 -3036 ((-112) $ $)) (-15 -4254 ((-112) |#4| $)) (-15 -3725 ((-112) $ (-653 |#3|))) (-15 -3725 ((-112) $)) (-15 -3716 ($ $ $)) (-15 -3716 ($ (-653 $))) (-15 -3152 ($ $ $)) (-15 -3152 ($ $ |#4|)) (-15 -3207 ($ $)) (-15 -1533 ((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|))) (-15 -2640 ($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)))) (-15 -2365 ((-573) $ (-653 |#3|))) (-15 -2365 ((-573) $)) (-15 -3957 ($ $)) (-15 -1339 ($ (-653 |#4|))) (-15 -4432 ($ (-653 |#4|))) (-15 -4410 ((-112) $)) (-15 -4387 ((-653 |#4|) $)) (-15 -2942 ($ (-653 |#4|))) (-15 -4368 ($ $ |#4|)) (-15 -4368 ($ $ |#4| (-653 |#3|))) (IF (|has| |#3| (-623 (-1189))) (-15 -2967 ((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|))) |%noBranch|))) (-371) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -513)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1959 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-1748 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2376 (*1 *2 *3 *1) (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-4254 (*1 *2 *3 *1) (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3725 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-3725 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-653 (-513 *3 *4 *5 *6))) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-3207 (*1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1533 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-2 (|:| |mval| (-698 *4)) (|:| |invmval| (-698 *4)) (|:| |genIdeal| (-513 *4 *5 *6 *7)))) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-698 *3)) (|:| |invmval| (-698 *3)) (|:| |genIdeal| (-513 *3 *4 *5 *6)))) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-573)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-2365 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3957 (*1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1339 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4432 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4410 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-4387 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *6)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4368 (*1 *1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-4368 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *1 (-513 *4 *5 *6 *2)) (-4 *2 (-959 *4 *5 *6)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *6 (-623 (-1189))) (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1178 (-653 (-962 *4)) (-653 (-301 (-962 *4))))) (-5 *1 (-513 *4 *5 *6 *7))))) -(-13 (-1112) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 -3077 ($ $ $)) (-15 -1959 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2376 ((-112) |#4| $)) (-15 -3036 ((-112) $ $)) (-15 -4254 ((-112) |#4| $)) (-15 -3725 ((-112) $ (-653 |#3|))) (-15 -3725 ((-112) $)) (-15 -3716 ($ $ $)) (-15 -3716 ($ (-653 $))) (-15 -3152 ($ $ $)) (-15 -3152 ($ $ |#4|)) (-15 -3207 ($ $)) (-15 -1533 ((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|))) (-15 -2640 ($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)))) (-15 -2365 ((-573) $ (-653 |#3|))) (-15 -2365 ((-573) $)) (-15 -3957 ($ $)) (-15 -1339 ($ (-653 |#4|))) (-15 -4432 ($ (-653 |#4|))) (-15 -4410 ((-112) $)) (-15 -4387 ((-653 |#4|) $)) (-15 -2942 ($ (-653 |#4|))) (-15 -4368 ($ $ |#4|)) (-15 -4368 ($ $ |#4| (-653 |#3|))) (IF (|has| |#3| (-623 (-1189))) (-15 -2967 ((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|))) |%noBranch|))) -((-2635 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 176)) (-2542 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 177)) (-3101 (((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 129)) (-2696 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) NIL)) (-1360 (((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 179)) (-1651 (((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))) 195))) -(((-514 |#1| |#2|) (-10 -7 (-15 -2635 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2542 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2696 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -3101 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1360 ((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1651 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))))) (-653 (-1189)) (-780)) (T -514)) -((-1651 (*1 *2 *2 *3) (-12 (-5 *2 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *1 (-514 *4 *5)))) (-1360 (*1 *2 *3) (-12 (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-653 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573)))))) (-5 *1 (-514 *4 *5)) (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-513 (-416 (-573)) (-245 *4 (-780)) (-873 *3) (-252 *3 (-416 (-573))))) (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-514 *3 *4)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5))))) -(-10 -7 (-15 -2635 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2542 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2696 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -3101 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1360 ((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1651 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3298 (($) 6)) (-2942 (((-871) $) 12) (((-1189) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 8))) -(((-515) (-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -3298 ($))))) (T -515)) -((-3298 (*1 *1) (-5 *1 (-515)))) -(-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -3298 ($)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 11) (($ $ $) 35)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 21))) -(((-516 |#1| |#2|) (-13 (-21) (-518 |#1| |#2|)) (-21) (-859)) (T -516)) -NIL -(-13 (-21) (-518 |#1| |#2|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 13)) (-2579 (($) NIL T CONST)) (-1391 (($ $) 41)) (-4334 (($ |#1| |#2|) 38)) (-1776 (($ (-1 |#1| |#1|) $) 40)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) 42)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2981 (((-112) $ $) NIL)) (-3077 (($ $ $) 26)) (* (($ (-931) $) NIL) (($ (-780) $) 36))) -(((-517 |#1| |#2|) (-13 (-23) (-518 |#1| |#2|)) (-23) (-859)) (T -517)) -NIL -(-13 (-23) (-518 |#1| |#2|)) -((-2848 (((-112) $ $) 7)) (-1391 (($ $) 14)) (-4334 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 18)) (-1481 ((|#2| $) 15)) (-1369 ((|#1| $) 16)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-518 |#1| |#2|) (-141) (-1112) (-859)) (T -518)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-859)))) (-4334 (*1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1112)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-859)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859))))) -(-13 (-1112) (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -4334 ($ |t#1| |t#2|)) (-15 -1369 (|t#1| $)) (-15 -1481 (|t#2| $)) (-15 -1391 ($ $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) -(((-519 |#1| |#2|) (-13 (-801) (-518 |#1| |#2|)) (-801) (-859)) (T -519)) -NIL -(-13 (-801) (-518 |#1| |#2|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) 23)) (-2983 (((-3 $ "failed") $ $) 19)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) -(((-520 |#1| |#2|) (-13 (-802) (-518 |#1| |#2|)) (-802) (-859)) (T -520)) -NIL -(-13 (-802) (-518 |#1| |#2|)) -((-2848 (((-112) $ $) NIL)) (-1391 (($ $) 32)) (-4334 (($ |#1| |#2|) 28)) (-1776 (($ (-1 |#1| |#1|) $) 30)) (-1481 ((|#2| $) 34)) (-1369 ((|#1| $) 33)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) -(((-521 |#1| |#2|) (-518 |#1| |#2|) (-1112) (-859)) (T -521)) -NIL -(-518 |#1| |#2|) -((-2645 (($ $ (-653 |#2|) (-653 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-522 |#1| |#2| |#3|) (-10 -8 (-15 -2645 (|#1| |#1| |#2| |#3|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#3|)))) (-523 |#2| |#3|) (-1112) (-1230)) (T -522)) -NIL -(-10 -8 (-15 -2645 (|#1| |#1| |#2| |#3|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#3|)))) -((-2645 (($ $ (-653 |#1|) (-653 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-523 |#1| |#2|) (-141) (-1112) (-1230)) (T -523)) -((-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *5)) (-4 *1 (-523 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1230)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1230))))) -(-13 (-10 -8 (-15 -2645 ($ $ |t#1| |t#2|)) (-15 -2645 ($ $ (-653 |t#1|) (-653 |t#2|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 17)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 19)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) 24)) (-3892 ((|#2| $ (-573)) 22)) (-1911 (($ (-1 |#1| |#1|) $) 48)) (-3480 (($ (-1 |#2| |#2|) $) 45)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) 55 (|has| |#2| (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 44) (($ |#1|) NIL)) (-4317 ((|#2| |#1| $) 51)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 11 T CONST)) (-2981 (((-112) $ $) 30)) (-3077 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-931) $) NIL) (($ (-780) $) 37) (($ |#2| |#1|) 32))) -(((-524 |#1| |#2| |#3|) (-330 |#1| |#2|) (-1112) (-132) |#2|) (T -524)) -NIL -(-330 |#1| |#2|) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-1534 (((-112) (-112)) 32)) (-3142 ((|#1| $ (-573) |#1|) 42 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 77)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-1599 (($ $) 81 (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) 64)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-2380 (($ $ (-573)) 19)) (-2612 (((-780) $) 13)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 31)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 29 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 28 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ $ $ (-573)) 73) (($ |#1| $ (-573)) 57)) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3588 (($ (-653 |#1|)) 43)) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 24 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 60)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 21)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 53) (($ $ (-1247 (-573))) NIL)) (-3220 (($ $ (-1247 (-573))) 71) (($ $ (-573)) 65)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) 61 (|has| $ (-6 -4456)))) (-3166 (($ $) 51)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) 62) (($ $ |#1|) 59)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 22 (|has| $ (-6 -4455))))) -(((-525 |#1| |#2|) (-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) (-1230) (-573)) (T -525)) -((-3588 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-525 *3 *4)) (-14 *4 (-573)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 (-573)))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 *2))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 (-573))))) -(-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) -((-2848 (((-112) $ $) NIL)) (-2191 (((-1147) $) 11)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1691 (((-1147) $) 13)) (-2264 (((-1147) $) 9)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-526) (-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)) (-15 -2191 ((-1147) $)) (-15 -1691 ((-1147) $))))) (T -526)) -((-2264 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) -(-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)) (-15 -2191 ((-1147) $)) (-15 -1691 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-590 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-590 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-590 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-590 |#1|) "failed") $) NIL)) (-2205 (((-590 |#1|) $) NIL)) (-2854 (($ (-1280 (-590 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-590 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-590 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-590 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-590 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-590 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-590 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-590 |#1|) (-376)))) (-3421 (((-590 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-590 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-590 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-590 |#1|) (-376)))) (-2991 (((-1185 (-590 |#1|)) $) NIL (|has| (-590 |#1|) (-376)))) (-2700 (((-1185 (-590 |#1|)) $) NIL (|has| (-590 |#1|) (-376))) (((-3 (-1185 (-590 |#1|)) "failed") $ $) NIL (|has| (-590 |#1|) (-376)))) (-2840 (($ $ (-1185 (-590 |#1|))) NIL (|has| (-590 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-590 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| (-590 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-590 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-590 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-590 |#1|) (-376))) (($ $) NIL (|has| (-590 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-590 |#1|))) NIL)) (-2510 (($) NIL (|has| (-590 |#1|) (-376)))) (-4232 (($) NIL (|has| (-590 |#1|) (-376)))) (-2123 (((-1280 (-590 |#1|)) $) NIL) (((-698 (-590 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-590 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-590 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-590 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-590 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-590 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-590 |#1|) (-376))) (($ $) NIL (|has| (-590 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-590 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-590 |#1|)) NIL) (($ (-590 |#1|) $) NIL))) -(((-527 |#1| |#2|) (-336 (-590 |#1|)) (-931) (-931)) (T -527)) -NIL -(-336 (-590 |#1|)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) 51)) (-3601 (($ $ (-573) |#4|) NIL)) (-2790 (($ $ (-573) |#5|) NIL)) (-2579 (($) NIL T CONST)) (-3229 ((|#4| $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) 50)) (-2384 ((|#1| $ (-573) (-573)) 45)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) 33)) (-3789 (($ (-780) (-780) |#1|) 30)) (-2197 (((-780) $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) 31)) (-4011 (((-573) $) 32)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 37)) (-2326 (((-573) $) 39)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) 55 (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 14)) (-3508 (($) 16)) (-2198 ((|#1| $ (-573) (-573)) 48) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 ((|#5| $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-528 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1230) (-573) (-573) (-381 |#1|) (-381 |#1|)) (T -528)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL)) (-3960 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-1440 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-3063 (($) NIL T CONST)) (-4358 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1874 (((-654 |#1|) $) NIL)) (-2199 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-3144 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1233) (-574) (-574)) (T -507)) +NIL +(-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) +((-2412 (((-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-3710 (((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-3630 (((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107))) +(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3710 ((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781))) (-15 -2412 ((-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -3630 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1259 |#1|) (-1259 |#2|)) (T -508)) +((-3630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -3907 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1259 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -3907 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-2412 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3907 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -3907 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1259 *6)))) (-3710 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1259 *3)) (-5 *2 (-654 (-1188 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1259 *5))))) +(-10 -7 (-15 -3710 ((-654 (-1188 |#1|)) |#1| (-781) (-781) (-781))) (-15 -2412 ((-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -3630 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) +((-2642 (((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-4061 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-1739 (((-781) (-781) (-781)) 34)) (-1383 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-2161 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-3911 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-1483 ((|#1| (-699 |#1|)) 18))) +(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -1483 (|#1| (-699 |#1|))) (-15 -4061 (|#1| (-699 |#1|) |#1| (-781))) (-15 -3911 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1739 ((-781) (-781) (-781))) (-15 -2161 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2161 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -1383 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2642 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $)))) (-1259 |#1|) (-419 |#1| |#2|)) (T -509)) +((-2642 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1383 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2161 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2161 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1739 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3911 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-4061 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1259 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))) +(-10 -7 (-15 -1483 (|#1| (-699 |#1|))) (-15 -4061 (|#1| (-699 |#1|) |#1| (-781))) (-15 -3911 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1739 ((-781) (-781) (-781))) (-15 -2161 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2161 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -1383 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2642 ((-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -3907 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) +((-2863 (((-112) $ $) NIL)) (-2889 (($ $) NIL)) (-2119 (($ $ $) 40)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2212 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-112) $ (-1250 (-574)) (-112)) NIL (|has| $ (-6 -4459))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3310 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2881 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4459)))) (-2399 (((-112) $ (-574)) NIL)) (-1451 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1115))) (((-574) (-112) $) NIL (|has| (-112) (-1115))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1874 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-2108 (($ $ $) 38)) (-2086 (($ $) NIL)) (-2408 (($ $ $) NIL)) (-3763 (($ (-781) (-112)) 27)) (-4184 (($ $ $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 8 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL)) (-4333 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4187 (((-654 (-112)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL)) (-2464 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-112) $) NIL (|has| (-574) (-860)))) (-1745 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2485 (($ $ (-112)) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115))))) (-3670 (((-654 (-112)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 28)) (-2209 (($ $ (-1250 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3948 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-112) (-1115)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 29)) (-1846 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2962 (($ (-654 (-112))) NIL)) (-4131 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2950 (((-872) $) 26)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4458)))) (-2097 (($ $ $) 36)) (-2933 (($ $ $) NIL)) (-2259 (($ $ $) 45)) (-2268 (($ $) 43)) (-2248 (($ $ $) 44)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 30)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 31)) (-2921 (($ $ $) NIL)) (-2876 (((-781) $) 13 (|has| $ (-6 -4458))))) +(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2268 ($ $)) (-15 -2259 ($ $ $)) (-15 -2248 ($ $ $)))) (-574)) (T -510)) +((-2268 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2248 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))) +(-13 (-124) (-10 -8 (-15 -2268 ($ $)) (-15 -2259 ($ $ $)) (-15 -2248 ($ $ $)))) +((-3443 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|)) 35)) (-1578 (((-1188 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1188 |#4|)) 22)) (-3050 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|))) 46)) (-2808 (((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1578 (|#2| (-1 |#1| |#4|) (-1188 |#4|))) (-15 -1578 ((-1188 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3443 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|))) (-15 -3050 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|)))) (-15 -2808 ((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|))) (-1064) (-1259 |#1|) (-1259 |#2|) (-1064)) (T -511)) +((-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1259 *6)))) (-3050 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1188 *8))) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-1259 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1259 *6)))) (-3443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *4 (-1259 *5)) (-5 *2 (-1188 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1259 *4)))) (-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2))))) +(-10 -7 (-15 -1578 (|#2| (-1 |#1| |#4|) (-1188 |#4|))) (-15 -1578 ((-1188 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3443 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1188 |#4|))) (-15 -3050 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1188 |#4|)))) (-15 -2808 ((-1188 (-1188 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2394 (((-1288) $) 25)) (-2209 (((-1174) $ (-1192)) 30)) (-1413 (((-1288) $) 17)) (-2950 (((-872) $) 27) (($ (-1174)) 26)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 9))) +(((-512) (-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $)) (-15 -2950 ($ (-1174)))))) (T -512)) +((-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1174)) (-5 *1 (-512)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-512))))) +(-13 (-860) (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) (-15 -2394 ((-1288) $)) (-15 -2950 ($ (-1174))))) +((-1809 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3128 ((|#1| |#4|) 10)) (-3417 ((|#3| |#4|) 17))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3128 (|#1| |#4|)) (-15 -3417 (|#3| |#4|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1007 |#1|) (-382 |#1|) (-382 |#2|)) (T -513)) +((-1809 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))) +(-10 -7 (-15 -3128 (|#1| |#4|)) (-15 -3417 (|#3| |#4|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2863 (((-112) $ $) NIL)) (-2712 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-1997 (((-112) $) 178)) (-2850 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-2445 (((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1192))))) (-1670 (($ $ $) 107) (($ $ |#4|) 105)) (-2276 (((-112) $) 177)) (-3173 (($ $) 131)) (-1938 (((-1174) $) NIL)) (-2627 (($ $ $) 99) (($ (-654 $)) 101)) (-4207 (((-112) |#4| $) 129)) (-3027 (((-112) $ $) 82)) (-1674 (($ (-654 |#4|)) 106)) (-3939 (((-1135) $) NIL)) (-2236 (($ (-654 |#4|)) 175)) (-2028 (((-112) $) 176)) (-2220 (($ $) 85)) (-1802 (((-654 |#4|) $) 73)) (-3650 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-1743 (((-112) |#4| $) 89)) (-2900 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2950 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-4259 (((-112) $ $) NIL)) (-2354 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2985 (((-112) $ $) 84)) (-3073 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113))) +(((-514 |#1| |#2| |#3| |#4|) (-13 (-1115) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3073 ($ $ $)) (-15 -2276 ((-112) $)) (-15 -1997 ((-112) $)) (-15 -1743 ((-112) |#4| $)) (-15 -3027 ((-112) $ $)) (-15 -4207 ((-112) |#4| $)) (-15 -2712 ((-112) $ (-654 |#3|))) (-15 -2712 ((-112) $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ (-654 $))) (-15 -1670 ($ $ $)) (-15 -1670 ($ $ |#4|)) (-15 -2220 ($ $)) (-15 -3650 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -2354 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2900 ((-574) $ (-654 |#3|))) (-15 -2900 ((-574) $)) (-15 -3173 ($ $)) (-15 -1674 ($ (-654 |#4|))) (-15 -2236 ($ (-654 |#4|))) (-15 -2028 ((-112) $)) (-15 -1802 ((-654 |#4|) $)) (-15 -2950 ($ (-654 |#4|))) (-15 -2850 ($ $ |#4|)) (-15 -2850 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1192))) (-15 -2445 ((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -514)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-2276 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1997 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1743 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-4207 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6)))) (-2712 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-2712 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-2627 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-2627 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1670 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-1670 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-2220 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-3650 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-2900 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) (-2900 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-3173 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2028 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-1802 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2850 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) (-2850 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-962 *4 *5 *6)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *6 (-624 (-1192))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1181 (-654 (-965 *4)) (-654 (-302 (-965 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) +(-13 (-1115) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3073 ($ $ $)) (-15 -2276 ((-112) $)) (-15 -1997 ((-112) $)) (-15 -1743 ((-112) |#4| $)) (-15 -3027 ((-112) $ $)) (-15 -4207 ((-112) |#4| $)) (-15 -2712 ((-112) $ (-654 |#3|))) (-15 -2712 ((-112) $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ (-654 $))) (-15 -1670 ($ $ $)) (-15 -1670 ($ $ |#4|)) (-15 -2220 ($ $)) (-15 -3650 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -2354 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2900 ((-574) $ (-654 |#3|))) (-15 -2900 ((-574) $)) (-15 -3173 ($ $)) (-15 -1674 ($ (-654 |#4|))) (-15 -2236 ($ (-654 |#4|))) (-15 -2028 ((-112) $)) (-15 -1802 ((-654 |#4|) $)) (-15 -2950 ($ (-654 |#4|))) (-15 -2850 ($ $ |#4|)) (-15 -2850 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1192))) (-15 -2445 ((-1181 (-654 (-965 |#1|)) (-654 (-302 (-965 |#1|)))) (-654 |#4|))) |%noBranch|))) +((-3581 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-3920 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3094 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-2941 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-1862 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-2288 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195))) +(((-515 |#1| |#2|) (-10 -7 (-15 -3581 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3920 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2941 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3094 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1862 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2288 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1192)) (-781)) (T -515)) +((-2288 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-1862 (*1 *2 *3) (-12 (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5))))) +(-10 -7 (-15 -3581 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3920 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2941 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3094 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1862 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2288 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3851 (($) 6)) (-2950 (((-872) $) 12) (((-1192) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 8))) +(((-516) (-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -3851 ($))))) (T -516)) +((-3851 (*1 *1) (-5 *1 (-516)))) +(-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -3851 ($)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4344 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 11) (($ $ $) 35)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21))) +(((-517 |#1| |#2|) (-13 (-21) (-519 |#1| |#2|)) (-21) (-860)) (T -517)) +NIL +(-13 (-21) (-519 |#1| |#2|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 13)) (-3063 (($) NIL T CONST)) (-1401 (($ $) 41)) (-4327 (($ |#1| |#2|) 38)) (-1787 (($ (-1 |#1| |#1|) $) 40)) (-4344 ((|#2| $) NIL)) (-1377 ((|#1| $) 42)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2985 (((-112) $ $) NIL)) (-3073 (($ $ $) 26)) (* (($ (-934) $) NIL) (($ (-781) $) 36))) +(((-518 |#1| |#2|) (-13 (-23) (-519 |#1| |#2|)) (-23) (-860)) (T -518)) +NIL +(-13 (-23) (-519 |#1| |#2|)) +((-2863 (((-112) $ $) 7)) (-1401 (($ $) 14)) (-4327 (($ |#1| |#2|) 17)) (-1787 (($ (-1 |#1| |#1|) $) 18)) (-4344 ((|#2| $) 15)) (-1377 ((|#1| $) 16)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-519 |#1| |#2|) (-141) (-1115) (-860)) (T -519)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-860)))) (-4327 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1115)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-860)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860))))) +(-13 (-1115) (-10 -8 (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -4327 ($ |t#1| |t#2|)) (-15 -1377 (|t#1| $)) (-15 -4344 (|t#2| $)) (-15 -1401 ($ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4344 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 22)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +(((-520 |#1| |#2|) (-13 (-802) (-519 |#1| |#2|)) (-802) (-860)) (T -520)) +NIL +(-13 (-802) (-519 |#1| |#2|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3672 (($ $ $) 23)) (-2599 (((-3 $ "failed") $ $) 19)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4344 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +(((-521 |#1| |#2|) (-13 (-803) (-519 |#1| |#2|)) (-803) (-860)) (T -521)) +NIL +(-13 (-803) (-519 |#1| |#2|)) +((-2863 (((-112) $ $) NIL)) (-1401 (($ $) 32)) (-4327 (($ |#1| |#2|) 28)) (-1787 (($ (-1 |#1| |#1|) $) 30)) (-4344 ((|#2| $) 34)) (-1377 ((|#1| $) 33)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 20))) +(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1115) (-860)) (T -522)) +NIL +(-519 |#1| |#2|) +((-2660 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2660 (|#1| |#1| |#2| |#3|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1115) (-1233)) (T -523)) +NIL +(-10 -8 (-15 -2660 (|#1| |#1| |#2| |#3|)) (-15 -2660 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) +((-2660 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-524 |#1| |#2|) (-141) (-1115) (-1233)) (T -524)) +((-2660 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1233)))) (-2660 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1233))))) +(-13 (-10 -8 (-15 -2660 ($ $ |t#1| |t#2|)) (-15 -2660 ($ $ (-654 |t#1|) (-654 |t#2|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 17)) (-2389 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 19)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781) $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3757 ((|#1| $ (-574)) 24)) (-3729 ((|#2| $ (-574)) 22)) (-3028 (($ (-1 |#1| |#1|) $) 48)) (-2071 (($ (-1 |#2| |#2|) $) 45)) (-1938 (((-1174) $) NIL)) (-2038 (($ $ $) 55 (|has| |#2| (-802)))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 44) (($ |#1|) NIL)) (-3584 ((|#2| |#1| $) 51)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 11 T CONST)) (-2985 (((-112) $ $) 30)) (-3073 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-934) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32))) +(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1115) (-132) |#2|) (T -525)) +NIL +(-331 |#1| |#2|) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3658 (((-112) (-112)) 32)) (-3134 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) 77)) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-3054 (($ $) 81 (|has| |#1| (-1115)))) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) 64)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1782 (($ $ (-574)) 19)) (-3408 (((-781) $) 13)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 31)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 29 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4099 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) 28 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1948 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3868 (($ (-654 |#1|)) 43)) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) 24 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 60)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 21)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1250 (-574))) NIL)) (-4253 (($ $ (-1250 (-574))) 71) (($ $ (-574)) 65)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) 61 (|has| $ (-6 -4459)))) (-3156 (($ $) 51)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-3539 (($ $ $) 62) (($ $ |#1|) 59)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 22 (|has| $ (-6 -4458))))) +(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3868 ($ (-654 |#1|))) (-15 -3408 ((-781) $)) (-15 -1782 ($ $ (-574))) (-15 -3658 ((-112) (-112))))) (-1233) (-574)) (T -526)) +((-3868 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 (-574)))) (-1782 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 *2))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 (-574))))) +(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -3868 ($ (-654 |#1|))) (-15 -3408 ((-781) $)) (-15 -1782 ($ $ (-574))) (-15 -3658 ((-112) (-112))))) +((-2863 (((-112) $ $) NIL)) (-3831 (((-1150) $) 11)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2727 (((-1150) $) 13)) (-2279 (((-1150) $) 9)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-527) (-13 (-1098) (-10 -8 (-15 -2279 ((-1150) $)) (-15 -3831 ((-1150) $)) (-15 -2727 ((-1150) $))))) (T -527)) +((-2279 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) +(-13 (-1098) (-10 -8 (-15 -2279 ((-1150) $)) (-15 -3831 ((-1150) $)) (-15 -2727 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (((-591 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-591 |#1|) "failed") $) NIL)) (-2216 (((-591 |#1|) $) NIL)) (-3875 (($ (-1283 (-591 |#1|))) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-591 |#1|) (-377)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL (|has| (-591 |#1|) (-377)))) (-1627 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-4278 (($ $ (-781)) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2941 (((-112) $) NIL)) (-3837 (((-934) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-934)) $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| (-591 |#1|) (-377)))) (-4340 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-2681 (((-591 |#1|) $) NIL) (($ $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 (-591 |#1|)) $) NIL) (((-1188 $) $ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-3880 (((-934) $) NIL (|has| (-591 |#1|) (-377)))) (-2695 (((-1188 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-1729 (((-1188 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1188 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-3749 (($ $ (-1188 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2590 (($ (-934)) NIL (|has| (-591 |#1|) (-377)))) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL (|has| (-591 |#1|) (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4200 (((-428 $) $) NIL)) (-4210 (((-843 (-934))) NIL) (((-934)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2900 (((-135)) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-4144 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2611 (((-1188 (-591 |#1|))) NIL)) (-3627 (($) NIL (|has| (-591 |#1|) (-377)))) (-4022 (($) NIL (|has| (-591 |#1|) (-377)))) (-4421 (((-1283 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1283 $)) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-3270 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2832 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL) (((-1283 $) (-934)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3583 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL))) +(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-934) (-934)) (T -528)) +NIL +(-337 (-591 |#1|)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) 51)) (-3960 (($ $ (-574) |#4|) NIL)) (-1440 (($ $ (-574) |#5|) NIL)) (-3063 (($) NIL T CONST)) (-4358 ((|#4| $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) 50)) (-2399 ((|#1| $ (-574) (-574)) 45)) (-1874 (((-654 |#1|) $) NIL)) (-2199 (((-781) $) 33)) (-3763 (($ (-781) (-781) |#1|) 30)) (-2208 (((-781) $) 38)) (-2121 (((-112) $ (-781)) NIL)) (-1536 (((-574) $) 31)) (-2419 (((-574) $) 32)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) 37)) (-2514 (((-574) $) 39)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) 55 (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 14)) (-4272 (($) 16)) (-2209 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-3144 ((|#5| $ (-574)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1233) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529)) NIL (-57 |#1| |#4| |#5|) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 70 (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 23 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 21 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4456))) (($ $ "rest" $) 24 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) 28 (|has| $ (-6 -4456)))) (-4422 (($ $) 29)) (-2925 (($ $) 18) (($ $ (-780)) 32)) (-1599 (($ $) 62 (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) 27 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 31 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) 58 (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) 13) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 12)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 16)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) NIL) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-1628 (((-112) $) 35)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) 40)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 36)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 26)) (-3996 (($ $ $) 61) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) 10) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (((-871) $) 50 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) 54 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 9 (|has| $ (-6 -4455))))) -(((-529 |#1| |#2|) (-675 |#1|) (-1230) (-573)) (T -529)) -NIL -(-675 |#1|) -((-2801 ((|#4| |#4|) 38)) (-3583 (((-780) |#4|) 44)) (-2928 (((-780) |#4|) 45)) (-4209 (((-653 |#3|) |#4|) 55 (|has| |#3| (-6 -4456)))) (-3299 (((-3 |#4| "failed") |#4|) 67)) (-2697 ((|#4| |#4|) 59)) (-2529 ((|#1| |#4|) 58))) -(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2801 (|#4| |#4|)) (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (IF (|has| |#3| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|) (-15 -2529 (|#1| |#4|)) (-15 -2697 (|#4| |#4|)) (-15 -3299 ((-3 |#4| "failed") |#4|))) (-371) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -530)) -((-3299 (*1 *2 *2) (|partial| -12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-371)) (-5 *1 (-530 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) (-4209 (*1 *2 *3) (-12 (|has| *6 (-6 -4456)) (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2801 (*1 *2 *2) (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(-10 -7 (-15 -2801 (|#4| |#4|)) (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (IF (|has| |#3| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|) (-15 -2529 (|#1| |#4|)) (-15 -2697 (|#4| |#4|)) (-15 -3299 ((-3 |#4| "failed") |#4|))) -((-2801 ((|#8| |#4|) 20)) (-4209 (((-653 |#3|) |#4|) 29 (|has| |#7| (-6 -4456)))) (-3299 (((-3 |#8| "failed") |#4|) 23))) -(((-531 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2801 (|#8| |#4|)) (-15 -3299 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|)) (-565) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|) (-1004 |#1|) (-381 |#5|) (-381 |#5|) (-696 |#5| |#6| |#7|)) (T -531)) -((-4209 (*1 *2 *3) (-12 (|has| *9 (-6 -4456)) (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7)) (-5 *2 (-653 *6)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-696 *4 *5 *6)) (-4 *10 (-696 *7 *8 *9)))) (-3299 (*1 *2 *3) (|partial| -12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7))))) -(-10 -7 (-15 -2801 (|#8| |#4|)) (-15 -3299 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) NIL)) (-3596 (($ $ $) NIL)) (-1724 (($ (-611 |#1| |#3|)) NIL) (($ $) NIL)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) 21)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-611 |#1| |#3|)) NIL)) (-2790 (($ $ (-573) (-611 |#1| |#2|)) NIL)) (-1681 (($ (-780) |#1|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 30 (|has| |#1| (-314)))) (-3229 (((-611 |#1| |#3|) $ (-573)) NIL)) (-3583 (((-780) $) 33 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) 35 (|has| |#1| (-565)))) (-4209 (((-653 (-611 |#1| |#2|)) $) 38 (|has| |#1| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) 28 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 10)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 13)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 42 (|has| |#1| (-371)))) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) 26 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-611 |#1| |#2|) $ (-573)) NIL)) (-2942 (($ (-611 |#1| |#2|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-611 |#1| |#2|) $ (-611 |#1| |#2|)) NIL) (((-611 |#1| |#3|) (-611 |#1| |#3|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-532 |#1| |#2| |#3|) (-696 |#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) (-1061) (-573) (-573)) (T -532)) -NIL -(-696 |#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3564 (((-653 (-1229)) $) 13)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL) (($ (-653 (-1229))) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-533) (-13 (-1095) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -3564 ((-653 (-1229)) $))))) (T -533)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533))))) -(-13 (-1095) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -3564 ((-653 (-1229)) $)))) -((-2848 (((-112) $ $) NIL)) (-3969 (((-1147) $) 14)) (-3180 (((-1171) $) NIL)) (-1807 (((-515) $) 11)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-534) (-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3969 ((-1147) $))))) (T -534)) -((-1807 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-534)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-534))))) -(-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3969 ((-1147) $)))) -((-3769 (((-700 (-1238)) $) 15)) (-4370 (((-700 (-1236)) $) 38)) (-3464 (((-700 (-1235)) $) 29)) (-3310 (((-700 (-558)) $) 12)) (-4395 (((-700 (-556)) $) 42)) (-2731 (((-700 (-555)) $) 33)) (-3983 (((-780) $ (-129)) 54))) -(((-535 |#1|) (-10 -8 (-15 -3983 ((-780) |#1| (-129))) (-15 -4370 ((-700 (-1236)) |#1|)) (-15 -4395 ((-700 (-556)) |#1|)) (-15 -3464 ((-700 (-1235)) |#1|)) (-15 -2731 ((-700 (-555)) |#1|)) (-15 -3769 ((-700 (-1238)) |#1|)) (-15 -3310 ((-700 (-558)) |#1|))) (-536)) (T -535)) -NIL -(-10 -8 (-15 -3983 ((-780) |#1| (-129))) (-15 -4370 ((-700 (-1236)) |#1|)) (-15 -4395 ((-700 (-556)) |#1|)) (-15 -3464 ((-700 (-1235)) |#1|)) (-15 -2731 ((-700 (-555)) |#1|)) (-15 -3769 ((-700 (-1238)) |#1|)) (-15 -3310 ((-700 (-558)) |#1|))) -((-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1981 (($ $) 6))) -(((-536) (-141)) (T -536)) -((-1870 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-130))))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-558))))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1238))))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-555))))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1235))))) (-4395 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-556))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1236))))) (-3983 (*1 *2 *1 *3) (-12 (-4 *1 (-536)) (-5 *3 (-129)) (-5 *2 (-780))))) -(-13 (-175) (-10 -8 (-15 -1870 ((-700 (-130)) $)) (-15 -3310 ((-700 (-558)) $)) (-15 -3769 ((-700 (-1238)) $)) (-15 -2731 ((-700 (-555)) $)) (-15 -3464 ((-700 (-1235)) $)) (-15 -4395 ((-700 (-556)) $)) (-15 -4370 ((-700 (-1236)) $)) (-15 -3983 ((-780) $ (-129))))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 70 (|has| $ (-6 -4459)))) (-4251 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2212 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-4031 (($ $ $) 23 (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 21 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4459))) (($ $ "rest" $) 24 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) NIL)) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3063 (($) NIL T CONST)) (-3680 (($ $) 28 (|has| $ (-6 -4459)))) (-4424 (($ $) 29)) (-2934 (($ $) 18) (($ $ (-781)) 32)) (-3054 (($ $) 62 (|has| |#1| (-1115)))) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-2841 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1874 (((-654 |#1|) $) 27 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 31 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4099 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4333 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) 58 (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1948 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) 13) (($ $ (-781)) NIL)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2949 (((-112) $) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 12)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 16)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-1418 (((-574) $ $) NIL)) (-4253 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3325 (((-112) $) 35)) (-2592 (($ $) NIL)) (-4423 (($ $) NIL (|has| $ (-6 -4459)))) (-1798 (((-781) $) NIL)) (-1523 (($ $) 40)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 36)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 26)) (-3539 (($ $ $) 61) (($ $ |#1|) NIL)) (-4131 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) 54 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 9 (|has| $ (-6 -4458))))) +(((-530 |#1| |#2|) (-676 |#1|) (-1233) (-574)) (T -530)) +NIL +(-676 |#1|) +((-1538 ((|#4| |#4|) 38)) (-3557 (((-781) |#4|) 44)) (-3352 (((-781) |#4|) 45)) (-3819 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4459)))) (-3861 (((-3 |#4| "failed") |#4|) 67)) (-2952 ((|#4| |#4|) 59)) (-3798 ((|#1| |#4|) 58))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1538 (|#4| |#4|)) (-15 -3557 ((-781) |#4|)) (-15 -3352 ((-781) |#4|)) (IF (|has| |#3| (-6 -4459)) (-15 -3819 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3798 (|#1| |#4|)) (-15 -2952 (|#4| |#4|)) (-15 -3861 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531)) +((-3861 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2952 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3798 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3819 (*1 *2 *3) (-12 (|has| *6 (-6 -4459)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -1538 (|#4| |#4|)) (-15 -3557 ((-781) |#4|)) (-15 -3352 ((-781) |#4|)) (IF (|has| |#3| (-6 -4459)) (-15 -3819 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3798 (|#1| |#4|)) (-15 -2952 (|#4| |#4|)) (-15 -3861 ((-3 |#4| "failed") |#4|))) +((-1538 ((|#8| |#4|) 20)) (-3819 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4459)))) (-3861 (((-3 |#8| "failed") |#4|) 23))) +(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1538 (|#8| |#4|)) (-15 -3861 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4459)) (-15 -3819 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1007 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532)) +((-3819 (*1 *2 *3) (-12 (|has| *9 (-6 -4459)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-3861 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-1538 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))) +(-10 -7 (-15 -1538 (|#8| |#4|)) (-15 -3861 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4459)) (-15 -3819 ((-654 |#3|) |#4|)) |%noBranch|)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781) (-781)) NIL)) (-3929 (($ $ $) NIL)) (-1772 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-3385 (((-112) $) NIL)) (-1875 (($ $ (-574) (-574)) 21)) (-2142 (($ $ (-574) (-574)) NIL)) (-3328 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-4084 (($ $) NIL)) (-3087 (((-112) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3269 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-3960 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-1440 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-2607 (($ (-781) |#1|) NIL)) (-3063 (($) NIL T CONST)) (-1538 (($ $) 30 (|has| |#1| (-315)))) (-4358 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3557 (((-781) $) 33 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1874 (((-654 |#1|) $) NIL)) (-3352 (((-781) $) 35 (|has| |#1| (-566)))) (-3819 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2199 (((-781) $) NIL)) (-3763 (($ (-781) (-781) |#1|) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2197 ((|#1| $) 28 (|has| |#1| (-6 (-4460 "*"))))) (-1536 (((-574) $) 10)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) 13)) (-2514 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#1|))) NIL)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3160 (((-654 (-654 |#1|)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3861 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-1546 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3381 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-3808 (((-112) $) NIL)) (-3798 ((|#1| $) 26 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-3144 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2950 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1064) (-574) (-574)) (T -533)) +NIL +(-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3628 (((-654 (-1232)) $) 13)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL) (($ (-654 (-1232))) 11)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-534) (-13 (-1098) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -3628 ((-654 (-1232)) $))))) (T -534)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534))))) +(-13 (-1098) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -3628 ((-654 (-1232)) $)))) +((-2863 (((-112) $ $) NIL)) (-3275 (((-1150) $) 14)) (-1938 (((-1174) $) NIL)) (-4436 (((-516) $) 11)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-535) (-13 (-1098) (-10 -8 (-15 -4436 ((-516) $)) (-15 -3275 ((-1150) $))))) (T -535)) +((-4436 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) +(-13 (-1098) (-10 -8 (-15 -4436 ((-516) $)) (-15 -3275 ((-1150) $)))) +((-1871 (((-701 (-1241)) $) 15)) (-2874 (((-701 (-1239)) $) 38)) (-1906 (((-701 (-1238)) $) 29)) (-3974 (((-701 (-559)) $) 12)) (-1894 (((-701 (-557)) $) 42)) (-2035 (((-701 (-556)) $) 33)) (-3404 (((-781) $ (-129)) 54))) +(((-536 |#1|) (-10 -8 (-15 -3404 ((-781) |#1| (-129))) (-15 -2874 ((-701 (-1239)) |#1|)) (-15 -1894 ((-701 (-557)) |#1|)) (-15 -1906 ((-701 (-1238)) |#1|)) (-15 -2035 ((-701 (-556)) |#1|)) (-15 -1871 ((-701 (-1241)) |#1|)) (-15 -3974 ((-701 (-559)) |#1|))) (-537)) (T -536)) +NIL +(-10 -8 (-15 -3404 ((-781) |#1| (-129))) (-15 -2874 ((-701 (-1239)) |#1|)) (-15 -1894 ((-701 (-557)) |#1|)) (-15 -1906 ((-701 (-1238)) |#1|)) (-15 -2035 ((-701 (-556)) |#1|)) (-15 -1871 ((-701 (-1241)) |#1|)) (-15 -3974 ((-701 (-559)) |#1|))) +((-1871 (((-701 (-1241)) $) 12)) (-2874 (((-701 (-1239)) $) 8)) (-1906 (((-701 (-1238)) $) 10)) (-3974 (((-701 (-559)) $) 13)) (-1894 (((-701 (-557)) $) 9)) (-2035 (((-701 (-556)) $) 11)) (-3404 (((-781) $ (-129)) 7)) (-3825 (((-701 (-130)) $) 14)) (-2474 (($ $) 6))) +(((-537) (-141)) (T -537)) +((-3825 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1241))))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1238))))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-3404 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) +(-13 (-175) (-10 -8 (-15 -3825 ((-701 (-130)) $)) (-15 -3974 ((-701 (-559)) $)) (-15 -1871 ((-701 (-1241)) $)) (-15 -2035 ((-701 (-556)) $)) (-15 -1906 ((-701 (-1238)) $)) (-15 -1894 ((-701 (-557)) $)) (-15 -2874 ((-701 (-1239)) $)) (-15 -3404 ((-781) $ (-129))))) (((-175) . T)) -((-1766 (((-1185 |#1|) (-780)) 115)) (-1635 (((-1280 |#1|) (-1280 |#1|) (-931)) 108)) (-2448 (((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|) 123)) (-1416 (((-1280 |#1|) (-1280 |#1|) (-780)) 53)) (-2819 (((-1280 |#1|) (-931)) 110)) (-1555 (((-1280 |#1|) (-1280 |#1|) (-573)) 30)) (-3881 (((-1185 |#1|) (-1280 |#1|)) 116)) (-4081 (((-1280 |#1|) (-931)) 137)) (-3514 (((-112) (-1280 |#1|)) 120)) (-3421 (((-1280 |#1|) (-1280 |#1|) (-931)) 100)) (-2297 (((-1185 |#1|) (-1280 |#1|)) 131)) (-3589 (((-931) (-1280 |#1|)) 96)) (-1323 (((-1280 |#1|) (-1280 |#1|)) 38)) (-2575 (((-1280 |#1|) (-931) (-931)) 140)) (-4276 (((-1280 |#1|) (-1280 |#1|) (-1132) (-1132)) 29)) (-3314 (((-1280 |#1|) (-1280 |#1|) (-780) (-1132)) 54)) (-3914 (((-1280 (-1280 |#1|)) (-931)) 136)) (-3103 (((-1280 |#1|) (-1280 |#1|) (-1280 |#1|)) 121)) (** (((-1280 |#1|) (-1280 |#1|) (-573)) 67)) (* (((-1280 |#1|) (-1280 |#1|) (-1280 |#1|)) 31))) -(((-537 |#1|) (-10 -7 (-15 -2448 ((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|)) (-15 -2819 ((-1280 |#1|) (-931))) (-15 -2575 ((-1280 |#1|) (-931) (-931))) (-15 -3881 ((-1185 |#1|) (-1280 |#1|))) (-15 -1766 ((-1185 |#1|) (-780))) (-15 -3314 ((-1280 |#1|) (-1280 |#1|) (-780) (-1132))) (-15 -1416 ((-1280 |#1|) (-1280 |#1|) (-780))) (-15 -4276 ((-1280 |#1|) (-1280 |#1|) (-1132) (-1132))) (-15 -1555 ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 ** ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 * ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3103 ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3421 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1635 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1323 ((-1280 |#1|) (-1280 |#1|))) (-15 -3589 ((-931) (-1280 |#1|))) (-15 -3514 ((-112) (-1280 |#1|))) (-15 -3914 ((-1280 (-1280 |#1|)) (-931))) (-15 -4081 ((-1280 |#1|) (-931))) (-15 -2297 ((-1185 |#1|) (-1280 |#1|)))) (-357)) (T -537)) -((-2297 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 *4))) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-537 *4)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-931)) (-5 *1 (-537 *4)))) (-1323 (*1 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-4276 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1132)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3314 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1280 *5)) (-5 *3 (-780)) (-5 *4 (-1132)) (-4 *5 (-357)) (-5 *1 (-537 *5)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)))) (-2575 (*1 *2 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-1285)) (-5 *1 (-537 *4))))) -(-10 -7 (-15 -2448 ((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|)) (-15 -2819 ((-1280 |#1|) (-931))) (-15 -2575 ((-1280 |#1|) (-931) (-931))) (-15 -3881 ((-1185 |#1|) (-1280 |#1|))) (-15 -1766 ((-1185 |#1|) (-780))) (-15 -3314 ((-1280 |#1|) (-1280 |#1|) (-780) (-1132))) (-15 -1416 ((-1280 |#1|) (-1280 |#1|) (-780))) (-15 -4276 ((-1280 |#1|) (-1280 |#1|) (-1132) (-1132))) (-15 -1555 ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 ** ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 * ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3103 ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3421 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1635 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1323 ((-1280 |#1|) (-1280 |#1|))) (-15 -3589 ((-931) (-1280 |#1|))) (-15 -3514 ((-112) (-1280 |#1|))) (-15 -3914 ((-1280 (-1280 |#1|)) (-931))) (-15 -4081 ((-1280 |#1|) (-931))) (-15 -2297 ((-1185 |#1|) (-1280 |#1|)))) -((-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) NIL)) (-1870 (((-700 (-130)) $) 26)) (-2855 (((-1132) $ (-1132)) 31)) (-1440 (((-1132) $) 30)) (-3549 (((-112) $) 20)) (-1560 (($ (-397)) 14) (($ (-1171)) 16)) (-3482 (((-112) $) 27)) (-2942 (((-871) $) 34)) (-1981 (($ $) 28))) -(((-538) (-13 (-536) (-622 (-871)) (-10 -8 (-15 -1560 ($ (-397))) (-15 -1560 ($ (-1171))) (-15 -3482 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1440 ((-1132) $)) (-15 -2855 ((-1132) $ (-1132)))))) (T -538)) -((-1560 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-538)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-538)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-538)))) (-2855 (*1 *2 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-538))))) -(-13 (-536) (-622 (-871)) (-10 -8 (-15 -1560 ($ (-397))) (-15 -1560 ($ (-1171))) (-15 -3482 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1440 ((-1132) $)) (-15 -2855 ((-1132) $ (-1132))))) -((-2115 (((-1 |#1| |#1|) |#1|) 11)) (-2083 (((-1 |#1| |#1|)) 10))) -(((-539 |#1|) (-10 -7 (-15 -2083 ((-1 |#1| |#1|))) (-15 -2115 ((-1 |#1| |#1|) |#1|))) (-13 (-735) (-25))) (T -539)) -((-2115 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25))))) (-2083 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) -(-10 -7 (-15 -2083 ((-1 |#1| |#1|))) (-15 -2115 ((-1 |#1| |#1|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ (-780) |#1|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 (-780) (-780)) $) NIL)) (-1481 ((|#1| $) NIL)) (-1369 (((-780) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) -(((-540 |#1|) (-13 (-802) (-518 (-780) |#1|)) (-859)) (T -540)) -NIL -(-13 (-802) (-518 (-780) |#1|)) -((-3658 (((-653 |#2|) (-1185 |#1|) |#3|) 98)) (-2558 (((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))) 114)) (-3840 (((-1185 |#1|) (-698 |#1|)) 110))) -(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -3840 ((-1185 |#1|) (-698 |#1|))) (-15 -3658 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -2558 ((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))))) (-371) (-371) (-13 (-371) (-857))) (T -541)) -((-2558 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *6)) (-5 *5 (-1 (-427 (-1185 *6)) (-1185 *6))) (-4 *6 (-371)) (-5 *2 (-653 (-2 (|:| |outval| *7) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 *7)))))) (-5 *1 (-541 *6 *7 *4)) (-4 *7 (-371)) (-4 *4 (-13 (-371) (-857))))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *5)) (-4 *5 (-371)) (-5 *2 (-653 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *2 (-1185 *4)) (-5 *1 (-541 *4 *5 *6)) (-4 *5 (-371)) (-4 *6 (-13 (-371) (-857)))))) -(-10 -7 (-15 -3840 ((-1185 |#1|) (-698 |#1|))) (-15 -3658 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -2558 ((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))))) -((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) 39)) (-2034 (((-700 (-130)) $ (-130)) 40)) (-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) 35)) (-1870 (((-700 (-130)) $) 37)) (-1577 (((-112) $) 27)) (-2833 (((-700 $) (-588) (-964)) 18) (((-700 $) (-500) (-964)) 24)) (-2942 (((-871) $) 48)) (-1981 (($ $) 42))) -(((-542) (-13 (-776 (-588)) (-622 (-871)) (-10 -8 (-15 -2833 ((-700 $) (-500) (-964)))))) (T -542)) -((-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-500)) (-5 *4 (-964)) (-5 *2 (-700 (-542))) (-5 *1 (-542))))) -(-13 (-776 (-588)) (-622 (-871)) (-10 -8 (-15 -2833 ((-700 $) (-500) (-964))))) -((-2305 (((-852 (-573))) 12)) (-2315 (((-852 (-573))) 14)) (-1743 (((-842 (-573))) 9))) -(((-543) (-10 -7 (-15 -1743 ((-842 (-573)))) (-15 -2305 ((-852 (-573)))) (-15 -2315 ((-852 (-573)))))) (T -543)) -((-2315 (*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) (-2305 (*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) (-1743 (*1 *2) (-12 (-5 *2 (-842 (-573))) (-5 *1 (-543))))) -(-10 -7 (-15 -1743 ((-842 (-573)))) (-15 -2305 ((-852 (-573)))) (-15 -2315 ((-852 (-573))))) -((-3973 (((-545) (-1189)) 15)) (-2283 ((|#1| (-545)) 20))) -(((-544 |#1|) (-10 -7 (-15 -3973 ((-545) (-1189))) (-15 -2283 (|#1| (-545)))) (-1230)) (T -544)) -((-2283 (*1 *2 *3) (-12 (-5 *3 (-545)) (-5 *1 (-544 *2)) (-4 *2 (-1230)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-545)) (-5 *1 (-544 *4)) (-4 *4 (-1230))))) -(-10 -7 (-15 -3973 ((-545) (-1189))) (-15 -2283 (|#1| (-545)))) -((-2848 (((-112) $ $) NIL)) (-2136 (((-1171) $) 55)) (-2146 (((-112) $) 51)) (-4004 (((-1189) $) 52)) (-4203 (((-112) $) 49)) (-3248 (((-1171) $) 50)) (-3666 (($ (-1171)) 56)) (-3476 (((-112) $) NIL)) (-2328 (((-112) $) NIL)) (-2245 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-2155 (($ $ (-653 (-1189))) 21)) (-2283 (((-52) $) 23)) (-3159 (((-112) $) NIL)) (-4025 (((-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2708 (($ $ (-653 (-1189)) (-1189)) 73)) (-2532 (((-112) $) NIL)) (-2383 (((-227) $) NIL)) (-3806 (($ $) 44)) (-1444 (((-871) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2198 (($ $ (-573)) NIL) (($ $ (-653 (-573))) NIL)) (-4292 (((-653 $) $) 30)) (-4250 (((-1189) (-653 $)) 57)) (-1835 (($ (-1171)) NIL) (($ (-1189)) 19) (($ (-573)) 8) (($ (-227)) 28) (($ (-871)) NIL) (($ (-653 $)) 65) (((-1116) $) 12) (($ (-1116)) 13)) (-2420 (((-1189) (-1189) (-653 $)) 60)) (-2942 (((-871) $) 54)) (-4347 (($ $) 59)) (-4051 (($ $) 58)) (-1874 (($ $ (-653 $)) 66)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) 29)) (-2132 (($) 9 T CONST)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) 74)) (-3103 (($ $ $) 82)) (-3077 (($ $ $) 75)) (** (($ $ (-780)) 81) (($ $ (-573)) 80)) (* (($ $ $) 76)) (-2862 (((-573) $) NIL))) -(((-545) (-13 (-1115 (-1171) (-1189) (-573) (-227) (-871)) (-623 (-1116)) (-10 -8 (-15 -2283 ((-52) $)) (-15 -1835 ($ (-1116))) (-15 -1874 ($ $ (-653 $))) (-15 -2708 ($ $ (-653 (-1189)) (-1189))) (-15 -2155 ($ $ (-653 (-1189)))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ (-573))) (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -3806 ($ $)) (-15 -2136 ((-1171) $)) (-15 -3666 ($ (-1171))) (-15 -4250 ((-1189) (-653 $))) (-15 -2420 ((-1189) (-1189) (-653 $)))))) (T -545)) -((-2283 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-545)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-545)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-545))) (-5 *1 (-545)))) (-2708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1189)) (-5 *1 (-545)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-545)))) (-3077 (*1 *1 *1 *1) (-5 *1 (-545))) (* (*1 *1 *1 *1) (-5 *1 (-545))) (-3103 (*1 *1 *1 *1) (-5 *1 (-545))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-545)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-545)))) (-2132 (*1 *1) (-5 *1 (-545))) (-2144 (*1 *1) (-5 *1 (-545))) (-3806 (*1 *1 *1) (-5 *1 (-545))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-545)))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-545)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-653 (-545))) (-5 *2 (-1189)) (-5 *1 (-545)))) (-2420 (*1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-545))) (-5 *1 (-545))))) -(-13 (-1115 (-1171) (-1189) (-573) (-227) (-871)) (-623 (-1116)) (-10 -8 (-15 -2283 ((-52) $)) (-15 -1835 ($ (-1116))) (-15 -1874 ($ $ (-653 $))) (-15 -2708 ($ $ (-653 (-1189)) (-1189))) (-15 -2155 ($ $ (-653 (-1189)))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ (-573))) (-15 (-2132) ($) -1705) (-15 (-2144) ($) -1705) (-15 -3806 ($ $)) (-15 -2136 ((-1171) $)) (-15 -3666 ($ (-1171))) (-15 -4250 ((-1189) (-653 $))) (-15 -2420 ((-1189) (-1189) (-653 $))))) -((-4001 ((|#2| |#2|) 17)) (-1719 ((|#2| |#2|) 13)) (-2970 ((|#2| |#2| (-573) (-573)) 20)) (-4190 ((|#2| |#2|) 15))) -(((-546 |#1| |#2|) (-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) (-13 (-565) (-148)) (-1271 |#1|)) (T -546)) -((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-546 *4 *2)) (-4 *2 (-1271 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3))))) -(-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) -((-3993 (((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))) 32)) (-4375 (((-653 |#2|) (-962 |#1|) |#3|) 54) (((-653 |#2|) (-1185 |#1|) |#3|) 53)) (-4227 (((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|) 106))) -(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -4375 ((-653 |#2|) (-962 |#1|) |#3|)) (-15 -4227 ((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|)) (-15 -3993 ((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))))) (-461) (-371) (-13 (-371) (-857))) (T -547)) -((-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1189))) (-4 *6 (-371)) (-5 *2 (-653 (-301 (-962 *6)))) (-5 *1 (-547 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-13 (-371) (-857))))) (-4227 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-547 *6 *7 *5)) (-4 *7 (-371)) (-4 *5 (-13 (-371) (-857))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) -(-10 -7 (-15 -4375 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -4375 ((-653 |#2|) (-962 |#1|) |#3|)) (-15 -4227 ((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|)) (-15 -3993 ((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))))) -((-4115 ((|#2| |#2| |#1|) 17)) (-4257 ((|#2| (-653 |#2|)) 31)) (-3284 ((|#2| (-653 |#2|)) 52))) -(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4257 (|#2| (-653 |#2|))) (-15 -3284 (|#2| (-653 |#2|))) (-15 -4115 (|#2| |#2| |#1|))) (-314) (-1256 |#1|) |#1| (-1 |#1| |#1| (-780))) (T -548)) -((-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-780))) (-5 *1 (-548 *3 *2 *4 *5)) (-4 *2 (-1256 *3)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780))))) (-4257 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) -(-10 -7 (-15 -4257 (|#2| (-653 |#2|))) (-15 -3284 (|#2| (-653 |#2|))) (-15 -4115 (|#2| |#2| |#1|))) -((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))) 89) (((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|))) 210))) -(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|)))) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))))) (-859) (-802) (-13 (-314) (-148)) (-959 |#3| |#2| |#1|)) (T -549)) -((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *8 (-959 *7 *6 *5)) (-5 *2 (-427 (-1185 *8))) (-5 *1 (-549 *5 *6 *7 *8)) (-5 *3 (-1185 *8)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *2 (-427 *3)) (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-959 *7 *6 *5))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|)))) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))))) -((-4001 ((|#4| |#4|) 74)) (-1719 ((|#4| |#4|) 70)) (-2970 ((|#4| |#4| (-573) (-573)) 76)) (-4190 ((|#4| |#4|) 72))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1719 (|#4| |#4|)) (-15 -4190 (|#4| |#4|)) (-15 -4001 (|#4| |#4|)) (-15 -2970 (|#4| |#4| (-573) (-573)))) (-13 (-371) (-376) (-623 (-573))) (-1256 |#1|) (-733 |#1| |#2|) (-1271 |#3|)) (T -550)) -((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) (-4 *5 (-1256 *4)) (-4 *6 (-733 *4 *5)) (-5 *1 (-550 *4 *5 *6 *2)) (-4 *2 (-1271 *6)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5))))) -(-10 -7 (-15 -1719 (|#4| |#4|)) (-15 -4190 (|#4| |#4|)) (-15 -4001 (|#4| |#4|)) (-15 -2970 (|#4| |#4| (-573) (-573)))) -((-4001 ((|#2| |#2|) 27)) (-1719 ((|#2| |#2|) 23)) (-2970 ((|#2| |#2| (-573) (-573)) 29)) (-4190 ((|#2| |#2|) 25))) -(((-551 |#1| |#2|) (-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) (-13 (-371) (-376) (-623 (-573))) (-1271 |#1|)) (T -551)) -((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1271 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3))))) -(-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) -((-1860 (((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)) 18) (((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|)) 14) (((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|)) 32))) -(((-552 |#1| |#2|) (-10 -7 (-15 -1860 ((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)))) (-1061) (-1256 |#1|)) (T -552)) -((-1860 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) (-1860 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) (-1860 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-573) "failed") *5)) (-4 *5 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *5 *3)) (-4 *3 (-1256 *5))))) -(-10 -7 (-15 -1860 ((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)))) -((-1783 (($ $ $) 84)) (-2427 (((-427 $) $) 52)) (-1695 (((-3 (-573) "failed") $) 64)) (-2205 (((-573) $) 42)) (-3810 (((-3 (-416 (-573)) "failed") $) 79)) (-2551 (((-112) $) 26)) (-4434 (((-416 (-573)) $) 77)) (-2696 (((-112) $) 55)) (-3643 (($ $ $ $) 92)) (-4152 (((-112) $) 17)) (-2637 (($ $ $) 62)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 74)) (-1470 (((-3 $ "failed") $) 69)) (-3808 (($ $) 24)) (-2585 (($ $ $) 90)) (-3816 (($) 65)) (-4264 (($ $) 58)) (-4218 (((-427 $) $) 50)) (-2270 (((-112) $) 15)) (-2163 (((-780) $) 32)) (-3904 (($ $) 11) (($ $ (-780)) NIL)) (-3166 (($ $) 18)) (-1835 (((-573) $) NIL) (((-545) $) 41) (((-902 (-573)) $) 45) (((-387) $) 35) (((-227) $) 38)) (-1545 (((-780)) 9)) (-1373 (((-112) $ $) 21)) (-1677 (($ $ $) 60))) -(((-553 |#1|) (-10 -8 (-15 -2585 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1373 ((-112) |#1| |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1835 ((-573) |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -4152 ((-112) |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1545 ((-780)))) (-554)) (T -553)) -((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-553 *3)) (-4 *3 (-554))))) -(-10 -8 (-15 -2585 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1373 ((-112) |#1| |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1835 ((-573) |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -4152 ((-112) |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1545 ((-780)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1783 (($ $ $) 92)) (-2983 (((-3 $ "failed") $ $) 20)) (-3519 (($ $ $ $) 81)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-2800 (((-112) $ $) 134)) (-1983 (((-573) $) 123)) (-3958 (($ $ $) 95)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 115)) (-2205 (((-573) $) 116)) (-2784 (($ $ $) 138)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 113) (((-698 (-573)) (-698 $)) 112) (((-698 (-573)) (-1280 $)) 111)) (-2232 (((-3 $ "failed") $) 37)) (-3810 (((-3 (-416 (-573)) "failed") $) 89)) (-2551 (((-112) $) 91)) (-4434 (((-416 (-573)) $) 90)) (-2819 (($) 88) (($ $) 87)) (-2796 (($ $ $) 137)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 132)) (-2696 (((-112) $) 59)) (-3643 (($ $ $ $) 79)) (-1420 (($ $ $) 93)) (-4152 (((-112) $) 125)) (-2637 (($ $ $) 104)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 107)) (-1959 (((-112) $) 35)) (-2250 (((-112) $) 99)) (-1470 (((-3 $ "failed") $) 101)) (-3339 (((-112) $) 124)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 141)) (-2460 (($ $ $ $) 80)) (-3659 (($ $ $) 126)) (-3751 (($ $ $) 127)) (-3808 (($ $) 83)) (-4134 (($ $) 96)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-2585 (($ $ $) 78)) (-3816 (($) 100 T CONST)) (-1605 (($ $) 85)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4264 (($ $) 105)) (-4218 (((-427 $) $) 56)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 139)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 133)) (-2270 (((-112) $) 98)) (-2163 (((-780) $) 135)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 136)) (-3904 (($ $) 121) (($ $ (-780)) 119)) (-2294 (($ $) 84)) (-3166 (($ $) 86)) (-1835 (((-573) $) 117) (((-545) $) 109) (((-902 (-573)) $) 108) (((-387) $) 103) (((-227) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 114)) (-1545 (((-780)) 32 T CONST)) (-1373 (((-112) $ $) 94)) (-1677 (($ $ $) 106)) (-3507 (((-112) $ $) 9)) (-2629 (($) 97)) (-2516 (((-112) $ $) 45)) (-3813 (($ $ $ $) 82)) (-1660 (($ $) 122)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $) 120) (($ $ (-780)) 118)) (-3040 (((-112) $ $) 129)) (-3015 (((-112) $ $) 130)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 128)) (-3005 (((-112) $ $) 131)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-573) $) 110))) -(((-554) (-141)) (T -554)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2629 (*1 *1) (-4 *1 (-554))) (-4134 (*1 *1 *1) (-4 *1 (-554))) (-3958 (*1 *1 *1 *1) (-4 *1 (-554))) (-1373 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-1420 (*1 *1 *1 *1) (-4 *1 (-554))) (-1783 (*1 *1 *1 *1) (-4 *1 (-554))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) (-2819 (*1 *1) (-4 *1 (-554))) (-2819 (*1 *1 *1) (-4 *1 (-554))) (-3166 (*1 *1 *1) (-4 *1 (-554))) (-1605 (*1 *1 *1) (-4 *1 (-554))) (-2294 (*1 *1 *1) (-4 *1 (-554))) (-3808 (*1 *1 *1) (-4 *1 (-554))) (-3813 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-3519 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-2460 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-3643 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-2585 (*1 *1 *1 *1) (-4 *1 (-554)))) -(-13 (-1234) (-314) (-829) (-238) (-623 (-573)) (-1050 (-573)) (-648 (-573)) (-623 (-545)) (-623 (-902 (-573))) (-896 (-573)) (-144) (-1034) (-148) (-1164) (-10 -8 (-15 -2250 ((-112) $)) (-15 -2270 ((-112) $)) (-6 -4454) (-15 -2629 ($)) (-15 -4134 ($ $)) (-15 -3958 ($ $ $)) (-15 -1373 ((-112) $ $)) (-15 -1420 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $)) (-15 -2819 ($)) (-15 -2819 ($ $)) (-15 -3166 ($ $)) (-15 -1605 ($ $)) (-15 -2294 ($ $)) (-15 -3808 ($ $)) (-15 -3813 ($ $ $ $)) (-15 -3519 ($ $ $ $)) (-15 -2460 ($ $ $ $)) (-15 -3643 ($ $ $ $)) (-15 -2585 ($ $ $)) (-6 -4453))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-144) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-545)) . T) ((-623 (-573)) . T) ((-623 (-902 (-573))) . T) ((-235 $) . T) ((-238) . T) ((-237) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0=(-573)) . T) ((-657 $) . T) ((-649 $) . T) ((-648 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-829) . T) ((-857) . T) ((-859) . T) ((-896 (-573)) . T) ((-930) . T) ((-1034) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) . T) ((-1230) . T) ((-1234) . T)) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-555) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -555)) -((-2579 (*1 *1) (-5 *1 (-555)))) -(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) +((-2174 (((-1188 |#1|) (-781)) 115)) (-1646 (((-1283 |#1|) (-1283 |#1|) (-934)) 108)) (-4236 (((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|) 123)) (-4153 (((-1283 |#1|) (-1283 |#1|) (-781)) 53)) (-2834 (((-1283 |#1|) (-934)) 110)) (-3885 (((-1283 |#1|) (-1283 |#1|) (-574)) 30)) (-3634 (((-1188 |#1|) (-1283 |#1|)) 116)) (-1888 (((-1283 |#1|) (-934)) 137)) (-4340 (((-112) (-1283 |#1|)) 120)) (-2681 (((-1283 |#1|) (-1283 |#1|) (-934)) 100)) (-3525 (((-1188 |#1|) (-1283 |#1|)) 131)) (-3880 (((-934) (-1283 |#1|)) 96)) (-1327 (((-1283 |#1|) (-1283 |#1|)) 38)) (-2590 (((-1283 |#1|) (-934) (-934)) 140)) (-3246 (((-1283 |#1|) (-1283 |#1|) (-1135) (-1135)) 29)) (-4015 (((-1283 |#1|) (-1283 |#1|) (-781) (-1135)) 54)) (-3907 (((-1283 (-1283 |#1|)) (-934)) 136)) (-3102 (((-1283 |#1|) (-1283 |#1|) (-1283 |#1|)) 121)) (** (((-1283 |#1|) (-1283 |#1|) (-574)) 67)) (* (((-1283 |#1|) (-1283 |#1|) (-1283 |#1|)) 31))) +(((-538 |#1|) (-10 -7 (-15 -4236 ((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|)) (-15 -2834 ((-1283 |#1|) (-934))) (-15 -2590 ((-1283 |#1|) (-934) (-934))) (-15 -3634 ((-1188 |#1|) (-1283 |#1|))) (-15 -2174 ((-1188 |#1|) (-781))) (-15 -4015 ((-1283 |#1|) (-1283 |#1|) (-781) (-1135))) (-15 -4153 ((-1283 |#1|) (-1283 |#1|) (-781))) (-15 -3246 ((-1283 |#1|) (-1283 |#1|) (-1135) (-1135))) (-15 -3885 ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 ** ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 * ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -3102 ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -2681 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1646 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1327 ((-1283 |#1|) (-1283 |#1|))) (-15 -3880 ((-934) (-1283 |#1|))) (-15 -4340 ((-112) (-1283 |#1|))) (-15 -3907 ((-1283 (-1283 |#1|)) (-934))) (-15 -1888 ((-1283 |#1|) (-934))) (-15 -3525 ((-1188 |#1|) (-1283 |#1|)))) (-358)) (T -538)) +((-3525 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-934)) (-5 *1 (-538 *4)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1646 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2681 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3102 (*1 *2 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3885 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3246 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1135)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-4153 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-4015 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1283 *5)) (-5 *3 (-781)) (-5 *4 (-1135)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)))) (-2590 (*1 *2 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) (-4 *4 (-358)) (-5 *2 (-1288)) (-5 *1 (-538 *4))))) +(-10 -7 (-15 -4236 ((-1288) (-1283 (-654 (-2 (|:| -3078 |#1|) (|:| -2590 (-1135))))) |#1|)) (-15 -2834 ((-1283 |#1|) (-934))) (-15 -2590 ((-1283 |#1|) (-934) (-934))) (-15 -3634 ((-1188 |#1|) (-1283 |#1|))) (-15 -2174 ((-1188 |#1|) (-781))) (-15 -4015 ((-1283 |#1|) (-1283 |#1|) (-781) (-1135))) (-15 -4153 ((-1283 |#1|) (-1283 |#1|) (-781))) (-15 -3246 ((-1283 |#1|) (-1283 |#1|) (-1135) (-1135))) (-15 -3885 ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 ** ((-1283 |#1|) (-1283 |#1|) (-574))) (-15 * ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -3102 ((-1283 |#1|) (-1283 |#1|) (-1283 |#1|))) (-15 -2681 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1646 ((-1283 |#1|) (-1283 |#1|) (-934))) (-15 -1327 ((-1283 |#1|) (-1283 |#1|))) (-15 -3880 ((-934) (-1283 |#1|))) (-15 -4340 ((-112) (-1283 |#1|))) (-15 -3907 ((-1283 (-1283 |#1|)) (-934))) (-15 -1888 ((-1283 |#1|) (-934))) (-15 -3525 ((-1188 |#1|) (-1283 |#1|)))) +((-1871 (((-701 (-1241)) $) NIL)) (-2874 (((-701 (-1239)) $) NIL)) (-1906 (((-701 (-1238)) $) NIL)) (-3974 (((-701 (-559)) $) NIL)) (-1894 (((-701 (-557)) $) NIL)) (-2035 (((-701 (-556)) $) NIL)) (-3404 (((-781) $ (-129)) NIL)) (-3825 (((-701 (-130)) $) 26)) (-3888 (((-1135) $ (-1135)) 31)) (-1451 (((-1135) $) 30)) (-1582 (((-112) $) 20)) (-3922 (($ (-398)) 14) (($ (-1174)) 16)) (-2095 (((-112) $) 27)) (-2950 (((-872) $) 34)) (-2474 (($ $) 28))) +(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -3922 ($ (-398))) (-15 -3922 ($ (-1174))) (-15 -2095 ((-112) $)) (-15 -1582 ((-112) $)) (-15 -1451 ((-1135) $)) (-15 -3888 ((-1135) $ (-1135)))))) (T -539)) +((-3922 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-539)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-539)))) (-3888 (*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-539))))) +(-13 (-537) (-623 (-872)) (-10 -8 (-15 -3922 ($ (-398))) (-15 -3922 ($ (-1174))) (-15 -2095 ((-112) $)) (-15 -1582 ((-112) $)) (-15 -1451 ((-1135) $)) (-15 -3888 ((-1135) $ (-1135))))) +((-2125 (((-1 |#1| |#1|) |#1|) 11)) (-2180 (((-1 |#1| |#1|)) 10))) +(((-540 |#1|) (-10 -7 (-15 -2180 ((-1 |#1| |#1|))) (-15 -2125 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540)) +((-2125 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-2180 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) +(-10 -7 (-15 -2180 ((-1 |#1| |#1|))) (-15 -2125 ((-1 |#1| |#1|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-4327 (($ (-781) |#1|) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1787 (($ (-1 (-781) (-781)) $) NIL)) (-4344 ((|#1| $) NIL)) (-1377 (((-781) $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL))) +(((-541 |#1|) (-13 (-803) (-519 (-781) |#1|)) (-860)) (T -541)) +NIL +(-13 (-803) (-519 (-781) |#1|)) +((-3345 (((-654 |#2|) (-1188 |#1|) |#3|) 98)) (-4070 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))) 114)) (-4434 (((-1188 |#1|) (-699 |#1|)) 110))) +(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -4434 ((-1188 |#1|) (-699 |#1|))) (-15 -3345 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -4070 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542)) +((-4070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1188 *6)) (-1188 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4434 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1188 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) +(-10 -7 (-15 -4434 ((-1188 |#1|) (-699 |#1|))) (-15 -3345 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -4070 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1188 |#1|)) (-1188 |#1|))))) +((-1424 (((-701 (-1241)) $ (-1241)) NIL)) (-2559 (((-701 (-559)) $ (-559)) NIL)) (-2285 (((-781) $ (-129)) 39)) (-1727 (((-701 (-130)) $ (-130)) 40)) (-1871 (((-701 (-1241)) $) NIL)) (-2874 (((-701 (-1239)) $) NIL)) (-1906 (((-701 (-1238)) $) NIL)) (-3974 (((-701 (-559)) $) NIL)) (-1894 (((-701 (-557)) $) NIL)) (-2035 (((-701 (-556)) $) NIL)) (-3404 (((-781) $ (-129)) 35)) (-3825 (((-701 (-130)) $) 37)) (-2862 (((-112) $) 27)) (-3694 (((-701 $) (-589) (-967)) 18) (((-701 $) (-501) (-967)) 24)) (-2950 (((-872) $) 48)) (-2474 (($ $) 42))) +(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3694 ((-701 $) (-501) (-967)))))) (T -543)) +((-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-967)) (-5 *2 (-701 (-543))) (-5 *1 (-543))))) +(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3694 ((-701 $) (-501) (-967))))) +((-2321 (((-853 (-574))) 12)) (-2328 (((-853 (-574))) 14)) (-1755 (((-843 (-574))) 9))) +(((-544) (-10 -7 (-15 -1755 ((-843 (-574)))) (-15 -2321 ((-853 (-574)))) (-15 -2328 ((-853 (-574)))))) (T -544)) +((-2328 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2321 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1755 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))) +(-10 -7 (-15 -1755 ((-843 (-574)))) (-15 -2321 ((-853 (-574)))) (-15 -2328 ((-853 (-574))))) +((-3317 (((-546) (-1192)) 15)) (-2298 ((|#1| (-546)) 20))) +(((-545 |#1|) (-10 -7 (-15 -3317 ((-546) (-1192))) (-15 -2298 (|#1| (-546)))) (-1233)) (T -545)) +((-2298 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1233)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1233))))) +(-10 -7 (-15 -3317 ((-546) (-1192))) (-15 -2298 (|#1| (-546)))) +((-2863 (((-112) $ $) NIL)) (-1429 (((-1174) $) 55)) (-1503 (((-112) $) 51)) (-3978 (((-1192) $) 52)) (-3755 (((-112) $) 49)) (-3231 (((-1174) $) 50)) (-3418 (($ (-1174)) 56)) (-2031 (((-112) $) NIL)) (-2539 (((-112) $) NIL)) (-3082 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-2166 (($ $ (-654 (-1192))) 21)) (-2298 (((-52) $) 23)) (-1728 (((-112) $) NIL)) (-3999 (((-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2721 (($ $ (-654 (-1192)) (-1192)) 73)) (-3827 (((-112) $) NIL)) (-2398 (((-227) $) NIL)) (-3779 (($ $) 44)) (-1455 (((-872) $) NIL)) (-4096 (((-112) $ $) NIL)) (-2209 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4281 (((-654 $) $) 30)) (-4237 (((-1192) (-654 $)) 57)) (-1846 (($ (-1174)) NIL) (($ (-1192)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1119) $) 12) (($ (-1119)) 13)) (-2439 (((-1192) (-1192) (-654 $)) 60)) (-2950 (((-872) $) 54)) (-2629 (($ $) 59)) (-2856 (($ $) 58)) (-3866 (($ $ (-654 $)) 66)) (-4259 (((-112) $ $) NIL)) (-3273 (((-112) $) 29)) (-2143 (($) 9 T CONST)) (-2155 (($) 11 T CONST)) (-2985 (((-112) $ $) 74)) (-3102 (($ $ $) 82)) (-3073 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2876 (((-574) $) NIL))) +(((-546) (-13 (-1118 (-1174) (-1192) (-574) (-227) (-872)) (-624 (-1119)) (-10 -8 (-15 -2298 ((-52) $)) (-15 -1846 ($ (-1119))) (-15 -3866 ($ $ (-654 $))) (-15 -2721 ($ $ (-654 (-1192)) (-1192))) (-15 -2166 ($ $ (-654 (-1192)))) (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 -3102 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1716) (-15 1 ($) -1716) (-15 -3779 ($ $)) (-15 -1429 ((-1174) $)) (-15 -3418 ($ (-1174))) (-15 -4237 ((-1192) (-654 $))) (-15 -2439 ((-1192) (-1192) (-654 $)))))) (T -546)) +((-2298 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-546)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2721 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1192)) (-5 *1 (-546)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-546)))) (-3073 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3102 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2143 (*1 *1) (-5 *1 (-546))) (-2155 (*1 *1) (-5 *1 (-546))) (-3779 (*1 *1 *1) (-5 *1 (-546))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-546)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-546)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1192)) (-5 *1 (-546)))) (-2439 (*1 *2 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) +(-13 (-1118 (-1174) (-1192) (-574) (-227) (-872)) (-624 (-1119)) (-10 -8 (-15 -2298 ((-52) $)) (-15 -1846 ($ (-1119))) (-15 -3866 ($ $ (-654 $))) (-15 -2721 ($ $ (-654 (-1192)) (-1192))) (-15 -2166 ($ $ (-654 (-1192)))) (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 -3102 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2143) ($) -1716) (-15 (-2155) ($) -1716) (-15 -3779 ($ $)) (-15 -1429 ((-1174) $)) (-15 -3418 ($ (-1174))) (-15 -4237 ((-1192) (-654 $))) (-15 -2439 ((-1192) (-1192) (-654 $))))) +((-3589 ((|#2| |#2|) 17)) (-1722 ((|#2| |#2|) 13)) (-2470 ((|#2| |#2| (-574) (-574)) 20)) (-1704 ((|#2| |#2|) 15))) +(((-547 |#1| |#2|) (-10 -7 (-15 -1722 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1274 |#1|)) (T -547)) +((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1274 *4)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -1722 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-574) (-574)))) +((-3509 (((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))) 32)) (-2931 (((-654 |#2|) (-965 |#1|) |#3|) 54) (((-654 |#2|) (-1188 |#1|) |#3|) 53)) (-3982 (((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|) 106))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2931 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -2931 ((-654 |#2|) (-965 |#1|) |#3|)) (-15 -3982 ((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|)) (-15 -3509 ((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))))) (-462) (-372) (-13 (-372) (-858))) (T -548)) +((-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1192))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-965 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-3982 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -2931 ((-654 |#2|) (-1188 |#1|) |#3|)) (-15 -2931 ((-654 |#2|) (-965 |#1|) |#3|)) (-15 -3982 ((-654 (-654 |#2|)) (-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)) |#3|)) (-15 -3509 ((-654 (-302 (-965 |#2|))) (-654 |#2|) (-654 (-1192))))) +((-2230 ((|#2| |#2| |#1|) 17)) (-4240 ((|#2| (-654 |#2|)) 31)) (-3703 ((|#2| (-654 |#2|)) 52))) +(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4240 (|#2| (-654 |#2|))) (-15 -3703 (|#2| (-654 |#2|))) (-15 -2230 (|#2| |#2| |#1|))) (-315) (-1259 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549)) +((-2230 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1259 *3)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(-10 -7 (-15 -4240 (|#2| (-654 |#2|))) (-15 -3703 (|#2| (-654 |#2|))) (-15 -2230 (|#2| |#2| |#1|))) +((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|))) 210))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|)))) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-962 |#3| |#2| |#1|)) (T -550)) +((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-962 *7 *6 *5)) (-5 *2 (-428 (-1188 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1188 *8)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-962 *7 *6 *5))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4| (-1 (-428 (-1188 |#3|)) (-1188 |#3|)))) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|) (-1 (-428 (-1188 |#3|)) (-1188 |#3|))))) +((-3589 ((|#4| |#4|) 74)) (-1722 ((|#4| |#4|) 70)) (-2470 ((|#4| |#4| (-574) (-574)) 76)) (-1704 ((|#4| |#4|) 72))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1722 (|#4| |#4|)) (-15 -1704 (|#4| |#4|)) (-15 -3589 (|#4| |#4|)) (-15 -2470 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1259 |#1|) (-734 |#1| |#2|) (-1274 |#3|)) (T -551)) +((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1259 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1274 *6)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5))))) +(-10 -7 (-15 -1722 (|#4| |#4|)) (-15 -1704 (|#4| |#4|)) (-15 -3589 (|#4| |#4|)) (-15 -2470 (|#4| |#4| (-574) (-574)))) +((-3589 ((|#2| |#2|) 27)) (-1722 ((|#2| |#2|) 23)) (-2470 ((|#2| |#2| (-574) (-574)) 29)) (-1704 ((|#2| |#2|) 25))) +(((-552 |#1| |#2|) (-10 -7 (-15 -1722 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1274 |#1|)) (T -552)) +((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1274 *4)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -1722 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -2470 (|#2| |#2| (-574) (-574)))) +((-3742 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32))) +(((-553 |#1| |#2|) (-10 -7 (-15 -3742 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3742 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3742 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1064) (-1259 |#1|)) (T -553)) +((-3742 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) (-3742 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) (-3742 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1064)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1259 *5))))) +(-10 -7 (-15 -3742 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3742 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -3742 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) +((-4223 (($ $ $) 84)) (-2153 (((-428 $) $) 52)) (-1706 (((-3 (-574) "failed") $) 64)) (-2216 (((-574) $) 42)) (-2222 (((-3 (-417 (-574)) "failed") $) 79)) (-4002 (((-112) $) 26)) (-2258 (((-417 (-574)) $) 77)) (-2941 (((-112) $) 55)) (-3202 (($ $ $ $) 92)) (-1348 (((-112) $) 17)) (-2325 (($ $ $) 62)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-4217 (((-3 $ "failed") $) 69)) (-3780 (($ $) 24)) (-3135 (($ $ $) 90)) (-3791 (($) 65)) (-3125 (($ $) 58)) (-4200 (((-428 $) $) 50)) (-3304 (((-112) $) 15)) (-3575 (((-781) $) 32)) (-3878 (($ $) 11) (($ $ (-781)) NIL)) (-3156 (($ $) 18)) (-1846 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-3781 (((-781)) 9)) (-1649 (((-112) $ $) 21)) (-2561 (($ $ $) 60))) +(((-554 |#1|) (-10 -8 (-15 -3135 (|#1| |#1| |#1|)) (-15 -3202 (|#1| |#1| |#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -4223 (|#1| |#1| |#1|)) (-15 -1649 ((-112) |#1| |#1|)) (-15 -3304 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -2325 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1846 ((-574) |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -1348 ((-112) |#1|)) (-15 -3575 ((-781) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -2941 ((-112) |#1|)) (-15 -3781 ((-781)))) (-555)) (T -554)) +((-3781 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))) +(-10 -8 (-15 -3135 (|#1| |#1| |#1|)) (-15 -3202 (|#1| |#1| |#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -4223 (|#1| |#1| |#1|)) (-15 -1649 ((-112) |#1| |#1|)) (-15 -3304 ((-112) |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -2325 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1846 ((-574) |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -1348 ((-112) |#1|)) (-15 -3575 ((-781) |#1|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -2941 ((-112) |#1|)) (-15 -3781 ((-781)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4223 (($ $ $) 92)) (-2599 (((-3 $ "failed") $ $) 20)) (-4393 (($ $ $ $) 81)) (-3313 (($ $) 57)) (-2153 (((-428 $) $) 58)) (-1526 (((-112) $ $) 134)) (-2496 (((-574) $) 123)) (-3931 (($ $ $) 95)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 115)) (-2216 (((-574) $) 116)) (-2800 (($ $ $) 138)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1283 $)) 111)) (-2978 (((-3 $ "failed") $) 37)) (-2222 (((-3 (-417 (-574)) "failed") $) 89)) (-4002 (((-112) $) 91)) (-2258 (((-417 (-574)) $) 90)) (-2834 (($) 88) (($ $) 87)) (-2811 (($ $ $) 137)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 132)) (-2941 (((-112) $) 59)) (-3202 (($ $ $ $) 79)) (-4194 (($ $ $) 93)) (-1348 (((-112) $) 125)) (-2325 (($ $ $) 104)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-2276 (((-112) $) 35)) (-3127 (((-112) $) 99)) (-4217 (((-3 $ "failed") $) 101)) (-3081 (((-112) $) 124)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-4351 (($ $ $ $) 80)) (-3632 (($ $ $) 126)) (-2953 (($ $ $) 127)) (-3780 (($ $) 83)) (-4108 (($ $) 96)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3135 (($ $ $) 78)) (-3791 (($) 100 T CONST)) (-1615 (($ $) 85)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-3125 (($ $) 105)) (-4200 (((-428 $) $) 56)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 139)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-3304 (((-112) $) 98)) (-3575 (((-781) $) 135)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 136)) (-3878 (($ $) 121) (($ $ (-781)) 119)) (-2309 (($ $) 84)) (-3156 (($ $) 86)) (-1846 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-3781 (((-781)) 32 T CONST)) (-1649 (((-112) $ $) 94)) (-2561 (($ $ $) 106)) (-4259 (((-112) $ $) 9)) (-2644 (($) 97)) (-3676 (((-112) $ $) 45)) (-2255 (($ $ $ $) 82)) (-2366 (($ $) 122)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $) 120) (($ $ (-781)) 118)) (-3040 (((-112) $ $) 129)) (-3017 (((-112) $ $) 130)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 128)) (-3008 (((-112) $ $) 131)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110))) +(((-555) (-141)) (T -555)) +((-3127 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2644 (*1 *1) (-4 *1 (-555))) (-4108 (*1 *1 *1) (-4 *1 (-555))) (-3931 (*1 *1 *1 *1) (-4 *1 (-555))) (-1649 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-4194 (*1 *1 *1 *1) (-4 *1 (-555))) (-4223 (*1 *1 *1 *1) (-4 *1 (-555))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2222 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2834 (*1 *1) (-4 *1 (-555))) (-2834 (*1 *1 *1) (-4 *1 (-555))) (-3156 (*1 *1 *1) (-4 *1 (-555))) (-1615 (*1 *1 *1) (-4 *1 (-555))) (-2309 (*1 *1 *1) (-4 *1 (-555))) (-3780 (*1 *1 *1) (-4 *1 (-555))) (-2255 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4393 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4351 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3202 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3135 (*1 *1 *1 *1) (-4 *1 (-555)))) +(-13 (-1237) (-315) (-830) (-239) (-624 (-574)) (-1053 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1037) (-148) (-1167) (-10 -8 (-15 -3127 ((-112) $)) (-15 -3304 ((-112) $)) (-6 -4457) (-15 -2644 ($)) (-15 -4108 ($ $)) (-15 -3931 ($ $ $)) (-15 -1649 ((-112) $ $)) (-15 -4194 ($ $ $)) (-15 -4223 ($ $ $)) (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $)) (-15 -2834 ($)) (-15 -2834 ($ $)) (-15 -3156 ($ $)) (-15 -1615 ($ $)) (-15 -2309 ($ $)) (-15 -3780 ($ $)) (-15 -2255 ($ $ $ $)) (-15 -4393 ($ $ $ $)) (-15 -4351 ($ $ $ $)) (-15 -3202 ($ $ $ $)) (-15 -3135 ($ $ $)) (-6 -4456))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-933) . T) ((-1037) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) . T) ((-1233) . T) ((-1237) . T)) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-556) (-13 (-854) (-10 -8 (-15 -3063 ($) -1716)))) (T -556)) +((-3063 (*1 *1) (-5 *1 (-556)))) +(-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-556) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -556)) -((-2579 (*1 *1) (-5 *1 (-556)))) -(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-557) (-13 (-854) (-10 -8 (-15 -3063 ($) -1716)))) (T -557)) +((-3063 (*1 *1) (-5 *1 (-557)))) +(-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-557) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -557)) -((-2579 (*1 *1) (-5 *1 (-557)))) -(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-558) (-13 (-854) (-10 -8 (-15 -3063 ($) -1716)))) (T -558)) +((-3063 (*1 *1) (-5 *1 (-558)))) +(-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-558) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -558)) -((-2579 (*1 *1) (-5 *1 (-558)))) -(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-559) (-13 (-854) (-10 -8 (-15 -3063 ($) -1716)))) (T -559)) +((-3063 (*1 *1) (-5 *1 (-559)))) +(-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-559 |#1| |#2| |#3|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455)))) (T -559)) -NIL -(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) -((-4075 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))) 50))) -(((-560 |#1| |#2|) (-10 -7 (-15 -4075 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))))) (-565) (-13 (-27) (-439 |#1|))) (T -560)) -((-4075 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-1 (-1185 *3) (-1185 *3))) (-4 *3 (-13 (-27) (-439 *6))) (-4 *6 (-565)) (-5 *2 (-595 *3)) (-5 *1 (-560 *6 *3))))) -(-10 -7 (-15 -4075 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))))) -((-3501 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-1630 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2494 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-561 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2494 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3501 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1630 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-565) (-1050 (-573))) (-13 (-27) (-439 |#1|)) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -561)) -((-1630 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-27) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *7 (-1256 (-416 *6))) (-5 *1 (-561 *4 *5 *6 *7 *2)) (-4 *2 (-350 *5 *6 *7)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) -(-10 -7 (-15 -2494 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3501 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1630 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3580 (((-112) (-573) (-573)) 12)) (-4206 (((-573) (-573)) 7)) (-3354 (((-573) (-573) (-573)) 10))) -(((-562) (-10 -7 (-15 -4206 ((-573) (-573))) (-15 -3354 ((-573) (-573) (-573))) (-15 -3580 ((-112) (-573) (-573))))) (T -562)) -((-3580 (*1 *2 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-562)))) (-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) -(-10 -7 (-15 -4206 ((-573) (-573))) (-15 -3354 ((-573) (-573) (-573))) (-15 -3580 ((-112) (-573) (-573)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3013 ((|#1| $) 67)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2363 (($ $) 97)) (-2246 (($ $) 80)) (-3280 ((|#1| $) 68)) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 79)) (-2342 (($ $) 96)) (-2225 (($ $) 81)) (-2388 (($ $) 95)) (-2266 (($ $) 82)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 75)) (-2205 (((-573) $) 76)) (-2232 (((-3 $ "failed") $) 37)) (-1824 (($ |#1| |#1|) 72)) (-4152 (((-112) $) 66)) (-2999 (($) 107)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 78)) (-3339 (((-112) $) 65)) (-3659 (($ $ $) 113)) (-3751 (($ $ $) 112)) (-3118 (($ $) 104)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3151 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-416 (-573))) 70)) (-4040 ((|#1| $) 69)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-1608 (($ $) 105)) (-2401 (($ $) 94)) (-2274 (($ $) 83)) (-2374 (($ $) 93)) (-2255 (($ $) 84)) (-2352 (($ $) 92)) (-2236 (($ $) 85)) (-1914 (((-112) $ |#1|) 64)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 103)) (-2304 (($ $) 91)) (-2516 (((-112) $ $) 45)) (-2413 (($ $) 102)) (-2286 (($ $) 90)) (-2464 (($ $) 101)) (-2324 (($ $) 89)) (-2520 (($ $) 100)) (-2333 (($ $) 88)) (-2452 (($ $) 99)) (-2314 (($ $) 87)) (-2426 (($ $) 98)) (-2296 (($ $) 86)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 110)) (-3015 (((-112) $ $) 109)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 111)) (-3005 (((-112) $ $) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ $) 106) (($ $ (-416 (-573))) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-563 |#1|) (-141) (-13 (-413) (-1215))) (T -563)) -((-3151 (*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-1824 (*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3151 (*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) (-1914 (*1 *2 *1 *3) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112))))) -(-13 (-461) (-859) (-1215) (-1014) (-1050 (-573)) (-10 -8 (-6 -3550) (-15 -3151 ($ |t#1| |t#1|)) (-15 -1824 ($ |t#1| |t#1|)) (-15 -3151 ($ |t#1|)) (-15 -3151 ($ (-416 (-573)))) (-15 -4040 (|t#1| $)) (-15 -3280 (|t#1| $)) (-15 -3013 (|t#1| $)) (-15 -4152 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1914 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-291) . T) ((-297) . T) ((-461) . T) ((-502) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-859) . T) ((-1014) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) . T) ((-1218) . T)) -((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 9)) (-2456 (($ $) 11)) (-1345 (((-112) $) 20)) (-2232 (((-3 $ "failed") $) 16)) (-2516 (((-112) $ $) 22))) -(((-564 |#1|) (-10 -8 (-15 -1345 ((-112) |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) (-565)) (T -564)) -NIL -(-10 -8 (-15 -1345 ((-112) |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-565) (-141)) (T -565)) -((-2837 (*1 *1 *1 *1) (|partial| -4 *1 (-565))) (-4359 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1642 *1) (|:| -4442 *1) (|:| |associate| *1))) (-4 *1 (-565)))) (-2456 (*1 *1 *1) (-4 *1 (-565))) (-2516 (*1 *2 *1 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-297) (-10 -8 (-15 -2837 ((-3 $ "failed") $ $)) (-15 -4359 ((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $)) (-15 -2456 ($ $)) (-15 -2516 ((-112) $ $)) (-15 -1345 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3625 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|)) 38)) (-3344 (((-595 |#2|) |#2| (-1189)) 63)) (-2122 (((-3 |#2| "failed") |#2| (-1189)) 156)) (-3578 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))) 159)) (-4315 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|) 41))) -(((-566 |#1| |#2|) (-10 -7 (-15 -4315 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|)) (-15 -3625 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1189))) (-15 -3344 ((-595 |#2|) |#2| (-1189))) (-15 -3578 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -566)) -((-3578 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1189)) (-5 *6 (-653 (-621 *3))) (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *7 *3)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3)))) (-4315 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) -(-10 -7 (-15 -4315 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|)) (-15 -3625 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1189))) (-15 -3344 ((-595 |#2|) |#2| (-1189))) (-15 -3578 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))))) -((-2427 (((-427 |#1|) |#1|) 19)) (-4218 (((-427 |#1|) |#1|) 34)) (-2978 (((-3 |#1| "failed") |#1|) 49)) (-2072 (((-427 |#1|) |#1|) 60))) -(((-567 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2072 ((-427 |#1|) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) (-554)) (T -567)) -((-2978 (*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-554)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) (-2427 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554))))) -(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2072 ((-427 |#1|) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) -((-1570 (($) 9)) (-2007 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1762 (((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3181 (($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2624 (($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1907 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-1535 (((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3498 (((-1285)) 11))) -(((-568) (-10 -8 (-15 -1570 ($)) (-15 -3498 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2624 ($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1535 ((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -568)) -((-1907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-568)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-568)))) (-2007 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-568)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-568)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-568)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-568)))) (-3498 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-568)))) (-1570 (*1 *1) (-5 *1 (-568)))) -(-10 -8 (-15 -1570 ($)) (-15 -3498 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2624 ($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1535 ((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-4193 (((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|)) 35)) (-1414 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|)) 115)) (-3031 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 85) (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|)) 55)) (-1915 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|))) 92) (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|)) 114)) (-2752 (((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|)) 116)) (-1479 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 133 (|has| |#3| (-665 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|)) 132 (|has| |#3| (-665 |#2|)))) (-4344 ((|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|) 53)) (-2853 (((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|)) 34))) -(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -4193 ((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|))) (-15 -4344 (|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|)) (-15 -2853 ((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|))) (IF (|has| |#3| (-665 |#2|)) (PROGN (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-148) (-648 (-573))) (-13 (-439 |#1|) (-27) (-1215)) (-1112)) (T -569)) -((-1479 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-416 (-1185 *4))) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-1479 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-1185 *4)) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *6)) (-4 *6 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-1185 (-416 (-1185 *6)))) (-5 *1 (-569 *5 *6 *7)) (-5 *3 (-1185 *6)) (-4 *7 (-1112)))) (-4344 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1185 (-416 (-1185 *2)))) (-5 *4 (-621 *2)) (-4 *2 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1112)))) (-4193 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-1185 (-416 (-1185 *3)))) (-5 *1 (-569 *6 *3 *7)) (-5 *5 (-1185 *3)) (-4 *7 (-1112)))) (-2752 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-416 (-1185 *2))) (-4 *2 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) (-2752 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-1185 *2)) (-4 *2 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) (-1414 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) (-1414 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-1185 *3)) (-4 *3 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) (-1915 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-1915 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-3031 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-3031 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) -(-10 -7 (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -4193 ((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|))) (-15 -4344 (|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|)) (-15 -2853 ((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|))) (IF (|has| |#3| (-665 |#2|)) (PROGN (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))))) |%noBranch|)) -((-2605 (((-573) (-573) (-780)) 85)) (-4339 (((-573) (-573)) 83)) (-3268 (((-573) (-573)) 81)) (-1976 (((-573) (-573)) 87)) (-3127 (((-573) (-573) (-573)) 65)) (-2595 (((-573) (-573) (-573)) 62)) (-4116 (((-416 (-573)) (-573)) 30)) (-4065 (((-573) (-573)) 34)) (-4211 (((-573) (-573)) 74)) (-1866 (((-573) (-573)) 46)) (-4172 (((-653 (-573)) (-573)) 80)) (-3276 (((-573) (-573) (-573) (-573) (-573)) 58)) (-1669 (((-416 (-573)) (-573)) 55))) -(((-570) (-10 -7 (-15 -1669 ((-416 (-573)) (-573))) (-15 -3276 ((-573) (-573) (-573) (-573) (-573))) (-15 -4172 ((-653 (-573)) (-573))) (-15 -1866 ((-573) (-573))) (-15 -4211 ((-573) (-573))) (-15 -4065 ((-573) (-573))) (-15 -4116 ((-416 (-573)) (-573))) (-15 -2595 ((-573) (-573) (-573))) (-15 -3127 ((-573) (-573) (-573))) (-15 -1976 ((-573) (-573))) (-15 -3268 ((-573) (-573))) (-15 -4339 ((-573) (-573))) (-15 -2605 ((-573) (-573) (-780))))) (T -570)) -((-2605 (*1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-780)) (-5 *1 (-570)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-2595 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4116 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) (-3276 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1669 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) -(-10 -7 (-15 -1669 ((-416 (-573)) (-573))) (-15 -3276 ((-573) (-573) (-573) (-573) (-573))) (-15 -4172 ((-653 (-573)) (-573))) (-15 -1866 ((-573) (-573))) (-15 -4211 ((-573) (-573))) (-15 -4065 ((-573) (-573))) (-15 -4116 ((-416 (-573)) (-573))) (-15 -2595 ((-573) (-573) (-573))) (-15 -3127 ((-573) (-573) (-573))) (-15 -1976 ((-573) (-573))) (-15 -3268 ((-573) (-573))) (-15 -4339 ((-573) (-573))) (-15 -2605 ((-573) (-573) (-780)))) -((-2299 (((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-571 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2299 ((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -571)) -((-2299 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1353 *3))) (-5 *1 (-571 *5 *6 *7 *3)) (-4 *3 (-350 *5 *6 *7))))) -(-10 -7 (-15 -2299 ((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2299 (((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)) 18))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2299 ((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -572)) -((-2299 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |answer| (-416 *6)) (|:| -1353 (-416 *6)) (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) (-5 *1 (-572 *5 *6)) (-5 *3 (-416 *6))))) -(-10 -7 (-15 -2299 ((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 30)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 96)) (-2456 (($ $) 97)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) 52)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) 91)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) 54)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 77) (((-698 (-573)) (-698 $)) 73) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 93)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) 79) (($ $) 80)) (-2796 (($ $ $) 90)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) 70)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) 34)) (-2250 (((-112) $) 85)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) 43)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) 55)) (-3659 (($ $ $) 87)) (-3751 (($ $ $) 86)) (-3808 (($ $) NIL)) (-4134 (($ $) 49)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) 69)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) 38)) (-3965 (((-1132) $) 42)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 128)) (-2872 (($ $ $) 94) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) 114)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 112)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 89)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) 40)) (-3166 (($ $) 36)) (-1835 (((-573) $) 48) (((-545) $) 64) (((-902 (-573)) $) NIL) (((-387) $) 58) (((-227) $) 61) (((-1171) $) 66)) (-2942 (((-871) $) 46) (($ (-573)) 47) (($ $) NIL) (($ (-573)) 47)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) 35)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) 51)) (-1660 (($ $) 78)) (-2132 (($) 6 T CONST)) (-2144 (($) 31 T CONST)) (-2808 (((-1171) $) 26) (((-1171) $ (-112)) 27) (((-1285) (-831) $) 28) (((-1285) (-831) $ (-112)) 29)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) 50)) (-3015 (((-112) $ $) 81)) (-2981 (((-112) $ $) 33)) (-3027 (((-112) $ $) 82)) (-3005 (((-112) $ $) 10)) (-3093 (($ $) 16) (($ $ $) 39)) (-3077 (($ $ $) 37)) (** (($ $ (-931)) NIL) (($ $ (-780)) 84)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 83) (($ $ $) 53) (($ (-573) $) 83))) -(((-573) (-13 (-554) (-623 (-1171)) (-837) (-10 -7 (-6 -4442) (-6 -4447) (-6 -4443) (-6 -4437)))) (T -573)) -NIL -(-13 (-554) (-623 (-1171)) (-837) (-10 -7 (-6 -4442) (-6 -4447) (-6 -4443) (-6 -4437))) -((-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075)) 116) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778)) 118)) (-1626 (((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189)) 195) (((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171)) 194) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075)) 199) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387)) 200) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387)) 201) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387))))) 202) (((-1047) (-323 (-387)) (-1106 (-852 (-387)))) 190) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387)) 189) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387)) 185) (((-1047) (-778)) 177) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075)) 184))) -(((-574) (-10 -7 (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075))) (-15 -1626 ((-1047) (-778))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189))))) (T -574)) -((-1626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) (-5 *5 (-1189)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) (-5 *5 (-1171)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-778)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *1 (-574)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574))))) -(-10 -7 (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075))) (-15 -1626 ((-1047) (-778))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189)))) -((-1825 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|)) 196)) (-1415 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|)) 99)) (-2953 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|) 192)) (-1862 (((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189))) 201)) (-4184 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189)) 210 (|has| |#3| (-665 |#2|))))) -(((-575 |#1| |#2| |#3|) (-10 -7 (-15 -1415 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|))) (-15 -2953 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|))) (-15 -1862 ((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)))) (IF (|has| |#3| (-665 |#2|)) (-15 -4184 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-148) (-648 (-573))) (-13 (-439 |#1|) (-27) (-1215)) (-1112)) (T -575)) -((-4184 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-1189)) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-1862 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-4 *2 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1112)))) (-1825 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1112)))) (-2953 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112)))) (-1415 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) -(-10 -7 (-15 -1415 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|))) (-15 -2953 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|))) (-15 -1862 ((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)))) (IF (|has| |#3| (-665 |#2|)) (-15 -4184 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189))) |%noBranch|)) -((-3679 (((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189)) 64)) (-2947 (((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|)) 175 (-12 (|has| |#2| (-1151)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)) 154 (-12 (|has| |#2| (-638)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573)))))) (-3033 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)) 156 (-12 (|has| |#2| (-638)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573))))))) -(((-576 |#1| |#2|) (-10 -7 (-15 -3679 ((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (PROGN (IF (|has| |#2| (-638)) (PROGN (-15 -3033 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) (-15 -2947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) (IF (|has| |#2| (-1151)) (-15 -2947 ((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1050 (-573)) (-461) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -576)) -((-2947 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1189)) (-5 *4 (-852 *2)) (-4 *2 (-1151)) (-4 *2 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *1 (-576 *5 *2)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3033 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| -1317 *3) (|:| |nconst| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) -(-10 -7 (-15 -3679 ((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (PROGN (IF (|has| |#2| (-638)) (PROGN (-15 -3033 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) (-15 -2947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) (IF (|has| |#2| (-1151)) (-15 -2947 ((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3355 (((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))) 41)) (-1626 (((-595 (-416 |#2|)) (-416 |#2|)) 28)) (-3053 (((-3 (-416 |#2|) "failed") (-416 |#2|)) 17)) (-2500 (((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|)) 48))) -(((-577 |#1| |#2|) (-10 -7 (-15 -1626 ((-595 (-416 |#2|)) (-416 |#2|))) (-15 -3053 ((-3 (-416 |#2|) "failed") (-416 |#2|))) (-15 -2500 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -577)) -((-3355 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-653 (-416 *6))) (-5 *3 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *5 *6)))) (-2500 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3861 (-416 *5)) (|:| |coeff| (-416 *5)))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5)))) (-3053 (*1 *2 *2) (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148) (-1050 (-573)))) (-5 *1 (-577 *3 *4)))) (-1626 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-595 (-416 *5))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5))))) -(-10 -7 (-15 -1626 ((-595 (-416 |#2|)) (-416 |#2|))) (-15 -3053 ((-3 (-416 |#2|) "failed") (-416 |#2|))) (-15 -2500 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))))) -((-2874 (((-3 (-573) "failed") |#1|) 14)) (-3159 (((-112) |#1|) 13)) (-4025 (((-573) |#1|) 9))) -(((-578 |#1|) (-10 -7 (-15 -4025 ((-573) |#1|)) (-15 -3159 ((-112) |#1|)) (-15 -2874 ((-3 (-573) "failed") |#1|))) (-1050 (-573))) (T -578)) -((-2874 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2)))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1050 (-573))))) (-4025 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2))))) -(-10 -7 (-15 -4025 ((-573) |#1|)) (-15 -3159 ((-112) |#1|)) (-15 -2874 ((-3 (-573) "failed") |#1|))) -((-4187 (((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|)))) 48)) (-3390 (((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189)) 28)) (-3019 (((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189)) 23)) (-4271 (((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))) 35))) -(((-579 |#1|) (-10 -7 (-15 -3390 ((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -3019 ((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189))) (-15 -4187 ((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|))))) (-15 -4271 ((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))))) (-13 (-565) (-1050 (-573)) (-148))) (T -579)) -((-4271 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-2 (|:| -3861 (-416 (-962 *5))) (|:| |coeff| (-416 (-962 *5))))) (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5))))) (-4187 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 (-416 (-962 *6)))) (-5 *3 (-416 (-962 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6)))) (-3019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-148))) (-5 *1 (-579 *4)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-595 (-416 (-962 *5)))) (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5)))))) -(-10 -7 (-15 -3390 ((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -3019 ((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189))) (-15 -4187 ((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|))))) (-15 -4271 ((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))))) -((-2848 (((-112) $ $) 75)) (-1748 (((-112) $) 48)) (-3013 ((|#1| $) 39)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) 79)) (-2363 (($ $) 139)) (-2246 (($ $) 118)) (-3280 ((|#1| $) 37)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL)) (-2342 (($ $) 141)) (-2225 (($ $) 114)) (-2388 (($ $) 143)) (-2266 (($ $) 122)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 93)) (-2205 (((-573) $) 95)) (-2232 (((-3 $ "failed") $) 78)) (-1824 (($ |#1| |#1|) 35)) (-4152 (((-112) $) 44)) (-2999 (($) 104)) (-1959 (((-112) $) 55)) (-4325 (($ $ (-573)) NIL)) (-3339 (((-112) $) 45)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3118 (($ $) 106)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3151 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-416 (-573))) 92)) (-4040 ((|#1| $) 36)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) 81) (($ (-653 $)) NIL)) (-2837 (((-3 $ "failed") $ $) 80)) (-1608 (($ $) 108)) (-2401 (($ $) 147)) (-2274 (($ $) 120)) (-2374 (($ $) 149)) (-2255 (($ $) 124)) (-2352 (($ $) 145)) (-2236 (($ $) 116)) (-1914 (((-112) $ |#1|) 42)) (-2942 (((-871) $) 100) (($ (-573)) 83) (($ $) NIL) (($ (-573)) 83)) (-1545 (((-780)) 102 T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 161)) (-2304 (($ $) 130)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 159)) (-2286 (($ $) 126)) (-2464 (($ $) 157)) (-2324 (($ $) 137)) (-2520 (($ $) 155)) (-2333 (($ $) 135)) (-2452 (($ $) 153)) (-2314 (($ $) 132)) (-2426 (($ $) 151)) (-2296 (($ $) 128)) (-2132 (($) 30 T CONST)) (-2144 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 49)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 47)) (-3093 (($ $) 53) (($ $ $) 54)) (-3077 (($ $ $) 52)) (** (($ $ (-931)) 71) (($ $ (-780)) NIL) (($ $ $) 110) (($ $ (-416 (-573))) 163)) (* (($ (-931) $) 66) (($ (-780) $) NIL) (($ (-573) $) 65) (($ $ $) 61))) -(((-580 |#1|) (-563 |#1|) (-13 (-413) (-1215))) (T -580)) -NIL -(-563 |#1|) -((-3711 (((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573))) 27))) -(((-581) (-10 -7 (-15 -3711 ((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573)))))) (T -581)) -((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 (-573)))) (-5 *3 (-1185 (-573))) (-5 *1 (-581))))) -(-10 -7 (-15 -3711 ((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573))))) -((-2626 (((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189)) 19)) (-1940 (((-653 (-621 |#2|)) (-653 |#2|) (-1189)) 23)) (-4357 (((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|))) 11)) (-3842 ((|#2| |#2| (-1189)) 59 (|has| |#1| (-565)))) (-1366 ((|#2| |#2| (-1189)) 87 (-12 (|has| |#2| (-291)) (|has| |#1| (-461))))) (-1855 (((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189)) 25)) (-4356 (((-621 |#2|) (-653 (-621 |#2|))) 24)) (-2794 (((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) 115 (-12 (|has| |#2| (-291)) (|has| |#2| (-638)) (|has| |#2| (-1050 (-1189))) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-461)) (|has| |#1| (-896 (-573))))))) -(((-582 |#1| |#2|) (-10 -7 (-15 -2626 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189))) (-15 -4356 ((-621 |#2|) (-653 (-621 |#2|)))) (-15 -1855 ((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189))) (-15 -4357 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|)))) (-15 -1940 ((-653 (-621 |#2|)) (-653 |#2|) (-1189))) (IF (|has| |#1| (-565)) (-15 -3842 (|#2| |#2| (-1189))) |%noBranch|) (IF (|has| |#1| (-461)) (IF (|has| |#2| (-291)) (PROGN (-15 -1366 (|#2| |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (IF (|has| |#2| (-638)) (IF (|has| |#2| (-1050 (-1189))) (-15 -2794 ((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1112) (-439 |#1|)) (T -582)) -((-2794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-595 *3) *3 (-1189))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1189))) (-4 *3 (-291)) (-4 *3 (-638)) (-4 *3 (-1050 *4)) (-4 *3 (-439 *7)) (-5 *4 (-1189)) (-4 *7 (-623 (-902 (-573)))) (-4 *7 (-461)) (-4 *7 (-896 (-573))) (-4 *7 (-1112)) (-5 *2 (-595 *3)) (-5 *1 (-582 *7 *3)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-461)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *2)) (-4 *2 (-291)) (-4 *2 (-439 *4)))) (-3842 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *2)) (-4 *2 (-439 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-1189)) (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *2 (-653 (-621 *6))) (-5 *1 (-582 *5 *6)))) (-4357 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-621 *4))) (-4 *4 (-439 *3)) (-4 *3 (-1112)) (-5 *1 (-582 *3 *4)))) (-1855 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-621 *6))) (-5 *4 (-1189)) (-5 *2 (-621 *6)) (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *1 (-582 *5 *6)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-653 (-621 *5))) (-4 *4 (-1112)) (-5 *2 (-621 *5)) (-5 *1 (-582 *4 *5)) (-4 *5 (-439 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-621 *5))) (-5 *3 (-1189)) (-4 *5 (-439 *4)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *5))))) -(-10 -7 (-15 -2626 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189))) (-15 -4356 ((-621 |#2|) (-653 (-621 |#2|)))) (-15 -1855 ((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189))) (-15 -4357 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|)))) (-15 -1940 ((-653 (-621 |#2|)) (-653 |#2|) (-1189))) (IF (|has| |#1| (-565)) (-15 -3842 (|#2| |#2| (-1189))) |%noBranch|) (IF (|has| |#1| (-461)) (IF (|has| |#2| (-291)) (PROGN (-15 -1366 (|#2| |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (IF (|has| |#2| (-638)) (IF (|has| |#2| (-1050 (-1189))) (-15 -2794 ((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2037 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|)) 199)) (-2856 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|))) 174)) (-3971 (((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|))) 171)) (-3466 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2019 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2956 (((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|)) 202)) (-2663 (((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|)) 205)) (-3320 (((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)) 88)) (-3685 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2758 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|))) 178)) (-3704 (((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|)) 166)) (-1595 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|)) 189)) (-1356 (((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|)) 210))) -(((-583 |#1| |#2|) (-10 -7 (-15 -2019 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1595 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -2037 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|))) (-15 -2663 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|))) (-15 -1356 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|))) (-15 -2856 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|)))) (-15 -2758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|)))) (-15 -2956 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|)))) (-15 -3466 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3704 ((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -3320 ((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3685 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -583)) -((-3685 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-583 *5 *3)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |ir| (-595 (-416 *6))) (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6)))) (-3704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-632 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112))) (-573) *4)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *1 (-583 *4 *5)))) (-3466 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-371)) (-5 *1 (-583 *4 *2)) (-4 *2 (-1256 *4)))) (-3971 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-653 (-416 *7))) (-4 *7 (-1256 *6)) (-5 *3 (-416 *7)) (-4 *6 (-371)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6 *7)))) (-2956 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -3861 (-416 *6)) (|:| |coeff| (-416 *6)))) (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6)))) (-2758 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3903 *7) (|:| |sol?| (-112))) (-573) *7)) (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) (-5 *3 (-416 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-583 *7 *8)))) (-2856 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) (-5 *3 (-416 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-583 *7 *8)))) (-1356 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2663 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2037 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-653 *6) "failed") (-573) *6 *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-1595 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2019 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) -(-10 -7 (-15 -2019 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1595 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -2037 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|))) (-15 -2663 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|))) (-15 -1356 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|))) (-15 -2856 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|)))) (-15 -2758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|)))) (-15 -2956 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|)))) (-15 -3466 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3704 ((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -3320 ((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3685 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-4066 (((-3 |#2| "failed") |#2| (-1189) (-1189)) 10))) -(((-584 |#1| |#2|) (-10 -7 (-15 -4066 ((-3 |#2| "failed") |#2| (-1189) (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-1151) (-29 |#1|))) (T -584)) -((-4066 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-1151) (-29 *4)))))) -(-10 -7 (-15 -4066 ((-3 |#2| "failed") |#2| (-1189) (-1189)))) -((-3534 (((-700 (-1238)) $ (-1238)) 26)) (-4340 (((-700 (-558)) $ (-558)) 25)) (-1960 (((-780) $ (-129)) 27)) (-2034 (((-700 (-130)) $ (-130)) 24)) (-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1981 (($ $) 6))) -(((-585) (-141)) (T -585)) -NIL -(-13 (-536) (-869)) -(((-175) . T) ((-536) . T) ((-869) . T)) -((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) NIL)) (-2034 (((-700 (-130)) $ (-130)) NIL)) (-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) NIL)) (-1870 (((-700 (-130)) $) NIL)) (-3549 (((-112) $) NIL)) (-3637 (($ (-397)) 14) (($ (-1171)) 16)) (-2942 (((-871) $) NIL)) (-1981 (($ $) NIL))) -(((-586) (-13 (-585) (-622 (-871)) (-10 -8 (-15 -3637 ($ (-397))) (-15 -3637 ($ (-1171))) (-15 -3549 ((-112) $))))) (T -586)) -((-3637 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-586)))) (-3637 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-586)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586))))) -(-13 (-585) (-622 (-871)) (-10 -8 (-15 -3637 ($ (-397))) (-15 -3637 ($ (-1171))) (-15 -3549 ((-112) $)))) -((-2848 (((-112) $ $) NIL)) (-3247 (($) 7 T CONST)) (-3180 (((-1171) $) NIL)) (-1451 (($) 6 T CONST)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15)) (-3176 (($) 9 T CONST)) (-4404 (($) 8 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-587) (-13 (-1112) (-10 -8 (-15 -1451 ($) -1705) (-15 -3247 ($) -1705) (-15 -4404 ($) -1705) (-15 -3176 ($) -1705)))) (T -587)) -((-1451 (*1 *1) (-5 *1 (-587))) (-3247 (*1 *1) (-5 *1 (-587))) (-4404 (*1 *1) (-5 *1 (-587))) (-3176 (*1 *1) (-5 *1 (-587)))) -(-13 (-1112) (-10 -8 (-15 -1451 ($) -1705) (-15 -3247 ($) -1705) (-15 -4404 ($) -1705) (-15 -3176 ($) -1705))) -((-2848 (((-112) $ $) NIL)) (-1801 (((-700 $) (-500)) 21)) (-3180 (((-1171) $) NIL)) (-2987 (($ (-1171)) 14)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 33)) (-2421 (((-215 4 (-130)) $) 24)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 26))) -(((-588) (-13 (-1112) (-10 -8 (-15 -2987 ($ (-1171))) (-15 -2421 ((-215 4 (-130)) $)) (-15 -1801 ((-700 $) (-500)))))) (T -588)) -((-2987 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-588)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-588)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-500)) (-5 *2 (-700 (-588))) (-5 *1 (-588))))) -(-13 (-1112) (-10 -8 (-15 -2987 ($ (-1171))) (-15 -2421 ((-215 4 (-130)) $)) (-15 -1801 ((-700 $) (-500))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) 75)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) 81)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 66)) (-1970 (($ $) 43)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) 16)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) 37)) (-4054 (((-573) $) 41)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) 24)) (-2837 (((-3 $ "failed") $ $) 71)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) 17)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 72)) (-3006 (((-1169 (-573)) $) 19)) (-4101 (($ $) 26)) (-2942 (((-871) $) 102) (($ (-573)) 61) (($ $) NIL)) (-1545 (((-780)) 15 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) 46)) (-2132 (($) 44 T CONST)) (-2144 (($) 21 T CONST)) (-2981 (((-112) $ $) 52)) (-3093 (($ $) 60) (($ $ $) 48)) (-3077 (($ $ $) 59)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 62) (($ $ $) 63))) -(((-589 |#1| |#2|) (-878 |#1|) (-573) (-112)) (T -589)) -NIL -(-878 |#1|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 30)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) 59)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) 95)) (-2205 (($ $) 94)) (-2854 (($ (-1280 $)) 93)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 44)) (-2819 (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 61)) (-1708 (((-112) $) NIL)) (-2104 (($ $) NIL) (($ $ (-780)) NIL)) (-2696 (((-112) $) NIL)) (-2534 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-1959 (((-112) $) NIL)) (-4081 (($) 49 (|has| $ (-376)))) (-3514 (((-112) $) NIL (|has| $ (-376)))) (-3421 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 $) $ (-931)) NIL (|has| $ (-376))) (((-1185 $) $) 104)) (-3589 (((-931) $) 67)) (-2991 (((-1185 $) $) NIL (|has| $ (-376)))) (-2700 (((-3 (-1185 $) "failed") $ $) NIL (|has| $ (-376))) (((-1185 $) $) NIL (|has| $ (-376)))) (-2840 (($ $ (-1185 $)) NIL (|has| $ (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) 60)) (-2772 (((-112) $) 87)) (-3965 (((-1132) $) NIL)) (-2969 (($) 28 (|has| $ (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 54)) (-4218 (((-427 $) $) NIL)) (-3216 (((-931)) 86) (((-842 (-931))) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL) (((-780) $) NIL)) (-2365 (((-135)) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2565 (((-931) $) 85) (((-842 (-931)) $) NIL)) (-2984 (((-1185 $)) 102)) (-2510 (($) 66)) (-4232 (($) 50 (|has| $ (-376)))) (-2123 (((-698 $) (-1280 $)) NIL) (((-1280 $) $) 91)) (-1835 (((-573) $) 40)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) 42) (($ $) NIL) (($ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1545 (((-780)) 51 T CONST)) (-3507 (((-112) $ $) 107)) (-3914 (((-1280 $) (-931)) 97) (((-1280 $)) 96)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 31 T CONST)) (-2144 (($) 27 T CONST)) (-1629 (($ $ (-780)) NIL (|has| $ (-376))) (($ $) NIL (|has| $ (-376)))) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 34)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 81) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-590 |#1|) (-13 (-357) (-336 $) (-623 (-573))) (-931)) (T -590)) -NIL -(-13 (-357) (-336 $) (-623 (-573))) -((-3611 (((-1285) (-1171)) 10))) -(((-591) (-10 -7 (-15 -3611 ((-1285) (-1171))))) (T -591)) -((-3611 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-591))))) -(-10 -7 (-15 -3611 ((-1285) (-1171)))) -((-3834 (((-595 |#2|) (-595 |#2|)) 42)) (-2127 (((-653 |#2|) (-595 |#2|)) 44)) (-2129 ((|#2| (-595 |#2|)) 50))) -(((-592 |#1| |#2|) (-10 -7 (-15 -3834 ((-595 |#2|) (-595 |#2|))) (-15 -2127 ((-653 |#2|) (-595 |#2|))) (-15 -2129 (|#2| (-595 |#2|)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-29 |#1|) (-1215))) (T -592)) -((-2129 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1215))) (-5 *1 (-592 *4 *2)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1215))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 *5)) (-5 *1 (-592 *4 *5)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1215))) (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-592 *3 *4))))) -(-10 -7 (-15 -3834 ((-595 |#2|) (-595 |#2|))) (-15 -2127 ((-653 |#2|) (-595 |#2|))) (-15 -2129 (|#2| (-595 |#2|)))) -((-1776 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 30))) -(((-593 |#1| |#2|) (-10 -7 (-15 -1776 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -1776 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-371) (-371)) (T -593)) -((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-593 *5 *6)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-371)) (-4 *2 (-371)) (-5 *1 (-593 *5 *2)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3861 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-2 (|:| -3861 *6) (|:| |coeff| *6))) (-5 *1 (-593 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6))))) -(-10 -7 (-15 -1776 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -1776 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1847 (($ (-515) (-606)) 14)) (-2063 (($ (-515) (-606) $) 16)) (-3300 (($ (-515) (-606)) 15)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) 7) (((-1194) $) 6)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-594) (-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -1847 ($ (-515) (-606))) (-15 -3300 ($ (-515) (-606))) (-15 -2063 ($ (-515) (-606) $))))) (T -594)) -((-1847 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594)))) (-3300 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594)))) (-2063 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) -(-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -1847 ($ (-515) (-606))) (-15 -3300 ($ (-515) (-606))) (-15 -2063 ($ (-515) (-606) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 76)) (-2205 ((|#1| $) NIL)) (-3861 ((|#1| $) 30)) (-3864 (((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2782 (($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1353 (((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $) 31)) (-3180 (((-1171) $) NIL)) (-3376 (($ |#1| |#1|) 38) (($ |#1| (-1189)) 49 (|has| |#1| (-1050 (-1189))))) (-3965 (((-1132) $) NIL)) (-4047 (((-112) $) 35)) (-3904 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1189)) 89 (|has| |#1| (-910 (-1189))))) (-2942 (((-871) $) 110) (($ |#1|) 29)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 18 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 17) (($ $ $) NIL)) (-3077 (($ $ $) 85)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 16) (($ (-416 (-573)) $) 41) (($ $ (-416 (-573))) NIL))) -(((-595 |#1|) (-13 (-726 (-416 (-573))) (-1050 |#1|) (-10 -8 (-15 -2782 ($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3861 (|#1| $)) (-15 -1353 ((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $)) (-15 -3864 ((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4047 ((-112) $)) (-15 -3376 ($ |#1| |#1|)) (-15 -3904 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-910 (-1189))) (-15 -3904 (|#1| $ (-1189))) |%noBranch|) (IF (|has| |#1| (-1050 (-1189))) (-15 -3376 ($ |#1| (-1189))) |%noBranch|))) (-371)) (T -595)) -((-2782 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *2)) (|:| |logand| (-1185 *2))))) (-5 *4 (-653 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-371)) (-5 *1 (-595 *2)))) (-3861 (*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *3)) (|:| |logand| (-1185 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-3376 (*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-3904 (*1 *2 *1 *3) (-12 (-4 *2 (-371)) (-4 *2 (-910 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1189)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *1 (-595 *2)) (-4 *2 (-1050 *3)) (-4 *2 (-371))))) -(-13 (-726 (-416 (-573))) (-1050 |#1|) (-10 -8 (-15 -2782 ($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3861 (|#1| $)) (-15 -1353 ((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $)) (-15 -3864 ((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4047 ((-112) $)) (-15 -3376 ($ |#1| |#1|)) (-15 -3904 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-910 (-1189))) (-15 -3904 (|#1| $ (-1189))) |%noBranch|) (IF (|has| |#1| (-1050 (-1189))) (-15 -3376 ($ |#1| (-1189))) |%noBranch|))) -((-1898 (((-112) |#1|) 16)) (-4242 (((-3 |#1| "failed") |#1|) 14)) (-3651 (((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|) 38) (((-3 |#1| "failed") |#1| (-780)) 18)) (-3934 (((-112) |#1| (-780)) 19)) (-2857 ((|#1| |#1|) 42)) (-1696 ((|#1| |#1| (-780)) 45))) -(((-596 |#1|) (-10 -7 (-15 -3934 ((-112) |#1| (-780))) (-15 -3651 ((-3 |#1| "failed") |#1| (-780))) (-15 -3651 ((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|)) (-15 -1696 (|#1| |#1| (-780))) (-15 -1898 ((-112) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2857 (|#1| |#1|))) (-554)) (T -596)) -((-2857 (*1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-4242 (*1 *2 *2) (|partial| -12 (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-1898 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554)))) (-1696 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -3907 (-780)))) (-5 *1 (-596 *3)) (-4 *3 (-554)))) (-3651 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) -(-10 -7 (-15 -3934 ((-112) |#1| (-780))) (-15 -3651 ((-3 |#1| "failed") |#1| (-780))) (-15 -3651 ((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|)) (-15 -1696 (|#1| |#1| (-780))) (-15 -1898 ((-112) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2857 (|#1| |#1|))) -((-4202 (((-1185 |#1|) (-931)) 44))) -(((-597 |#1|) (-10 -7 (-15 -4202 ((-1185 |#1|) (-931)))) (-357)) (T -597)) -((-4202 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-597 *4)) (-4 *4 (-357))))) -(-10 -7 (-15 -4202 ((-1185 |#1|) (-931)))) -((-3834 (((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|)))) 27)) (-1626 (((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189)) 34 (|has| |#1| (-148)))) (-2127 (((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|)))) 19)) (-1567 (((-323 |#1|) (-416 (-962 |#1|)) (-1189)) 32 (|has| |#1| (-148)))) (-2129 (((-323 |#1|) (-595 (-416 (-962 |#1|)))) 21))) -(((-598 |#1|) (-10 -7 (-15 -3834 ((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|))))) (-15 -2127 ((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|))))) (-15 -2129 ((-323 |#1|) (-595 (-416 (-962 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1626 ((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -1567 ((-323 |#1|) (-416 (-962 |#1|)) (-1189)))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-648 (-573)))) (T -598)) -((-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *5)) (-5 *1 (-598 *5)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (-323 *5) (-653 (-323 *5)))) (-5 *1 (-598 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-595 (-416 (-962 *4)))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-598 *4)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-595 (-416 (-962 *4)))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 (-323 *4))) (-5 *1 (-598 *4)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-595 (-416 (-962 *3)))) (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-598 *3))))) -(-10 -7 (-15 -3834 ((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|))))) (-15 -2127 ((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|))))) (-15 -2129 ((-323 |#1|) (-595 (-416 (-962 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1626 ((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -1567 ((-323 |#1|) (-416 (-962 |#1|)) (-1189)))) |%noBranch|)) -((-2339 (((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573)))) 78) (((-653 (-698 (-573))) (-653 (-931))) 79) (((-698 (-573)) (-653 (-931)) (-915 (-573))) 72)) (-3673 (((-780) (-653 (-931))) 69))) -(((-599) (-10 -7 (-15 -3673 ((-780) (-653 (-931)))) (-15 -2339 ((-698 (-573)) (-653 (-931)) (-915 (-573)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573))))))) (T -599)) -((-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-915 (-573)))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-915 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-599)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-780)) (-5 *1 (-599))))) -(-10 -7 (-15 -3673 ((-780) (-653 (-931)))) (-15 -2339 ((-698 (-573)) (-653 (-931)) (-915 (-573)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573)))))) -((-2199 (((-653 |#5|) |#5| (-112)) 100)) (-3674 (((-112) |#5| (-653 |#5|)) 34))) -(((-600 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2199 ((-653 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-653 |#5|)))) (-13 (-314) (-148)) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3| |#4|)) (T -600)) -((-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1121 *5 *6 *7 *8)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-600 *5 *6 *7 *8 *3)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-653 *3)) (-5 *1 (-600 *5 *6 *7 *8 *3)) (-4 *3 (-1121 *5 *6 *7 *8))))) -(-10 -7 (-15 -2199 ((-653 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-653 |#5|)))) -((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-601) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -601)) -((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601))))) -(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) -((-2848 (((-112) $ $) NIL (|has| (-145) (-1112)))) (-3315 (($ $) 38)) (-2391 (($ $) NIL)) (-3952 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 67)) (-3689 (((-112) $ $ (-573)) 62)) (-3834 (((-653 $) $ (-145)) 75) (((-653 $) $ (-142)) 76)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-859))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-145) $ (-573) (-145)) 59 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2616 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-3403 (($ $ (-1247 (-573)) $) 57)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3334 (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) NIL)) (-3732 (((-112) $ $) 88)) (-1440 (((-573) (-1 (-112) (-145)) $) NIL) (((-573) (-145) $) NIL (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 64 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 63) (((-573) (-142) $ (-573)) 66)) (-1863 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 9)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 32 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3470 (((-573) $) 47 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 89)) (-2682 (((-780) $ $ (-145)) 86)) (-2446 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2422 (($ $) 41)) (-3878 (($ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-2630 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3180 (((-1171) $) 43 (|has| (-145) (-1112)))) (-1593 (($ (-145) $ (-573)) NIL) (($ $ $ (-573)) 27)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) 85 (|has| (-145) (-1112)))) (-2914 (((-145) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3112 (($ $ (-145)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) NIL)) (-3811 (((-112) $) 15)) (-3508 (($) 10)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) 68) (($ $ (-1247 (-573))) 25) (($ $ $) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3919 (($ $ $ (-573)) 81 (|has| $ (-6 -4456)))) (-3166 (($ $) 20)) (-1835 (((-545) $) NIL (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) NIL)) (-4156 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-653 $)) 82)) (-2942 (($ (-145)) NIL) (((-871) $) 31 (|has| (-145) (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| (-145) (-1112)))) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2981 (((-112) $ $) 17 (|has| (-145) (-1112)))) (-3027 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3005 (((-112) $ $) 18 (|has| (-145) (-859)))) (-2862 (((-780) $) 16 (|has| $ (-6 -4455))))) -(((-602 |#1|) (-1156) (-573)) (T -602)) -NIL -(-1156) -((-3559 (((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|)) 32))) -(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|))) (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|)) (T -603)) -((-3559 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) (-5 *1 (-603 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) (-3559 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1106 *3)) (-4 *3 (-959 *7 *6 *4)) (-4 *6 (-802)) (-4 *4 (-859)) (-4 *7 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) (-5 *1 (-603 *6 *4 *7 *3))))) -(-10 -7 (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|))) (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 71)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 58) (($ $ (-573) (-573)) 59)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 65)) (-3316 (($ $) 109)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3442 (((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573))) 241)) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 36)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1488 (((-112) $) NIL)) (-2534 (((-573) $) 63) (((-573) $ (-573)) 64)) (-1959 (((-112) $) NIL)) (-2976 (($ $ (-931)) 83)) (-2861 (($ (-1 |#1| (-573)) $) 80)) (-3676 (((-112) $) 26)) (-4334 (($ |#1| (-573)) 22) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-2327 (($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 13)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $) 161 (|has| |#1| (-38 (-416 (-573)))))) (-2656 (((-3 $ "failed") $ $ (-112)) 108)) (-3188 (($ $ $) 116)) (-3965 (((-1132) $) NIL)) (-3292 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 15)) (-3121 (((-1038 (-852 (-573))) $) 14)) (-2212 (($ $ (-573)) 47)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573)))))) (-2198 ((|#1| $ (-573)) 62) (($ $ $) NIL (|has| (-573) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2565 (((-573) $) NIL)) (-4101 (($ $) 48)) (-2942 (((-871) $) NIL) (($ (-573)) 29) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4317 ((|#1| $ (-573)) 61)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 39 T CONST)) (-3358 ((|#1| $) NIL)) (-3239 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-3606 (($ $) 169 (|has| |#1| (-38 (-416 (-573)))))) (-3030 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2710 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-4328 (($ $) 201 (|has| |#1| (-38 (-416 (-573)))))) (-4295 (($ $) 173 (|has| |#1| (-38 (-416 (-573)))))) (-2105 (($ $ (-416 (-573))) 177 (|has| |#1| (-38 (-416 (-573)))))) (-1475 (($ $ |#1|) 157 (|has| |#1| (-38 (-416 (-573)))))) (-1431 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-1802 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-3434 (($ $) 203 (|has| |#1| (-38 (-416 (-573)))))) (-2835 (($ $) 175 (|has| |#1| (-38 (-416 (-573)))))) (-4029 (($ $) 199 (|has| |#1| (-38 (-416 (-573)))))) (-2159 (($ $) 171 (|has| |#1| (-38 (-416 (-573)))))) (-3308 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2468 (($ $) 172 (|has| |#1| (-38 (-416 (-573)))))) (-3468 (($ $) 209 (|has| |#1| (-38 (-416 (-573)))))) (-2905 (($ $) 185 (|has| |#1| (-38 (-416 (-573)))))) (-3258 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2174 (($ $) 181 (|has| |#1| (-38 (-416 (-573)))))) (-4041 (($ $) 213 (|has| |#1| (-38 (-416 (-573)))))) (-3277 (($ $) 189 (|has| |#1| (-38 (-416 (-573)))))) (-3523 (($ $) 215 (|has| |#1| (-38 (-416 (-573)))))) (-1648 (($ $) 191 (|has| |#1| (-38 (-416 (-573)))))) (-3893 (($ $) 211 (|has| |#1| (-38 (-416 (-573)))))) (-2631 (($ $) 187 (|has| |#1| (-38 (-416 (-573)))))) (-3756 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-1707 (($ $) 183 (|has| |#1| (-38 (-416 (-573)))))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2132 (($) 30 T CONST)) (-2144 (($) 40 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2981 (((-112) $ $) 73)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 91) (($ $ $) 72)) (-3077 (($ $ $) 88)) (** (($ $ (-931)) NIL) (($ $ (-780)) 111)) (* (($ (-931) $) 98) (($ (-780) $) 96) (($ (-573) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-604 |#1|) (-13 (-1258 |#1| (-573)) (-10 -8 (-15 -2327 ($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3121 ((-1038 (-852 (-573))) $)) (-15 -3292 ((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $)) (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3676 ((-112) $)) (-15 -2861 ($ (-1 |#1| (-573)) $)) (-15 -2656 ((-3 $ "failed") $ $ (-112))) (-15 -3316 ($ $)) (-15 -3188 ($ $ $)) (-15 -3442 ((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (-15 -1475 ($ $ |#1|)) (-15 -2105 ($ $ (-416 (-573)))) (-15 -1802 ($ $)) (-15 -1431 ($ $)) (-15 -2710 ($ $)) (-15 -2468 ($ $)) (-15 -3606 ($ $)) (-15 -2159 ($ $)) (-15 -4295 ($ $)) (-15 -2835 ($ $)) (-15 -2174 ($ $)) (-15 -1707 ($ $)) (-15 -2905 ($ $)) (-15 -2631 ($ $)) (-15 -3277 ($ $)) (-15 -1648 ($ $)) (-15 -3030 ($ $)) (-15 -3308 ($ $)) (-15 -3239 ($ $)) (-15 -4029 ($ $)) (-15 -4328 ($ $)) (-15 -3434 ($ $)) (-15 -3258 ($ $)) (-15 -3756 ($ $)) (-15 -3468 ($ $)) (-15 -3893 ($ $)) (-15 -4041 ($ $)) (-15 -3523 ($ $))) |%noBranch|))) (-1061)) (T -604)) -((-3676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-2327 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *4)))) (-4 *4 (-1061)) (-5 *1 (-604 *4)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) (-2656 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061)))) (-3188 (*1 *1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061)))) (-3442 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *6)))) (-5 *4 (-1038 (-852 (-573)))) (-5 *5 (-1189)) (-5 *7 (-416 (-573))) (-4 *6 (-1061)) (-5 *2 (-871)) (-5 *1 (-604 *6)))) (-1626 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-604 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1061)))) (-1802 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1431 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3606 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4295 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2835 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2905 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2631 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3277 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3030 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4029 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3893 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(-13 (-1258 |#1| (-573)) (-10 -8 (-15 -2327 ($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3121 ((-1038 (-852 (-573))) $)) (-15 -3292 ((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $)) (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3676 ((-112) $)) (-15 -2861 ($ (-1 |#1| (-573)) $)) (-15 -2656 ((-3 $ "failed") $ $ (-112))) (-15 -3316 ($ $)) (-15 -3188 ($ $ $)) (-15 -3442 ((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (-15 -1475 ($ $ |#1|)) (-15 -2105 ($ $ (-416 (-573)))) (-15 -1802 ($ $)) (-15 -1431 ($ $)) (-15 -2710 ($ $)) (-15 -2468 ($ $)) (-15 -3606 ($ $)) (-15 -2159 ($ $)) (-15 -4295 ($ $)) (-15 -2835 ($ $)) (-15 -2174 ($ $)) (-15 -1707 ($ $)) (-15 -2905 ($ $)) (-15 -2631 ($ $)) (-15 -3277 ($ $)) (-15 -1648 ($ $)) (-15 -3030 ($ $)) (-15 -3308 ($ $)) (-15 -3239 ($ $)) (-15 -4029 ($ $)) (-15 -4328 ($ $)) (-15 -3434 ($ $)) (-15 -3258 ($ $)) (-15 -3756 ($ $)) (-15 -3468 ($ $)) (-15 -3893 ($ $)) (-15 -4041 ($ $)) (-15 -3523 ($ $))) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 63)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3622 (($ (-1169 |#1|)) 9)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 44)) (-1488 (((-112) $) 56)) (-2534 (((-780) $) 61) (((-780) $ (-780)) 60)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ $) 46 (|has| |#1| (-565)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-1169 |#1|) $) 25)) (-1545 (((-780)) 55 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 10 T CONST)) (-2144 (($) 14 T CONST)) (-2981 (((-112) $ $) 24)) (-3093 (($ $) 32) (($ $ $) 16)) (-3077 (($ $ $) 27)) (** (($ $ (-931)) NIL) (($ $ (-780)) 53)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-573)) 38))) -(((-605 |#1|) (-13 (-1061) (-111 |#1| |#1|) (-10 -8 (-15 -1920 ((-1169 |#1|) $)) (-15 -3622 ($ (-1169 |#1|))) (-15 -1488 ((-112) $)) (-15 -2534 ((-780) $)) (-15 -2534 ((-780) $ (-780))) (-15 * ($ $ (-573))) (IF (|has| |#1| (-565)) (-6 (-565)) |%noBranch|))) (-1061)) (T -605)) -((-1920 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-605 *3)))) (-1488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-2534 (*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-605 *3)) (-4 *3 (-1061))))) -(-13 (-1061) (-111 |#1| |#1|) (-10 -8 (-15 -1920 ((-1169 |#1|) $)) (-15 -3622 ($ (-1169 |#1|))) (-15 -1488 ((-112) $)) (-15 -2534 ((-780) $)) (-15 -2534 ((-780) $ (-780))) (-15 * ($ $ (-573))) (IF (|has| |#1| (-565)) (-6 (-565)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-2706 (($) 8 T CONST)) (-2568 (($) 7 T CONST)) (-3353 (($ $ (-653 $)) 16)) (-3180 (((-1171) $) NIL)) (-3417 (($) 6 T CONST)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) 15) (((-1194) $) 10)) (-2957 (($) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-606) (-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -3417 ($) -1705) (-15 -2568 ($) -1705) (-15 -2706 ($) -1705) (-15 -2957 ($) -1705) (-15 -3353 ($ $ (-653 $)))))) (T -606)) -((-3417 (*1 *1) (-5 *1 (-606))) (-2568 (*1 *1) (-5 *1 (-606))) (-2706 (*1 *1) (-5 *1 (-606))) (-2957 (*1 *1) (-5 *1 (-606))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-606))) (-5 *1 (-606))))) -(-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -3417 ($) -1705) (-15 -2568 ($) -1705) (-15 -2706 ($) -1705) (-15 -2957 ($) -1705) (-15 -3353 ($ $ (-653 $))))) -((-1776 (((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)) 15))) -(((-607 |#1| |#2|) (-10 -7 (-15 -1776 ((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)))) (-1230) (-1230)) (T -607)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-610 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-610 *6)) (-5 *1 (-607 *5 *6))))) -(-10 -7 (-15 -1776 ((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)))) -((-1776 (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)) 20) (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|)) 19) (((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|)) 18))) -(((-608 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)))) (-1230) (-1230) (-1230)) (T -608)) -((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-1169 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-608 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-610 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-608 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-610 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-610 *8)) (-5 *1 (-608 *6 *7 *8))))) -(-10 -7 (-15 -1776 ((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)))) -((-4111 ((|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))) 57)) (-4407 (((-171 |#2|) |#3|) 122)) (-3869 ((|#3| (-171 |#2|)) 46)) (-3004 ((|#2| |#3|) 21)) (-1647 ((|#3| |#2|) 35))) -(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -3869 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -1647 (|#3| |#2|)) (-15 -4407 ((-171 |#2|) |#3|)) (-15 -4111 (|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))))) (-565) (-13 (-439 |#1|) (-1014) (-1215)) (-13 (-439 (-171 |#1|)) (-1014) (-1215))) (T -609)) -((-4111 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-653 (-1189))) (-4 *2 (-13 (-439 (-171 *5)) (-1014) (-1215))) (-4 *5 (-565)) (-5 *1 (-609 *5 *6 *2)) (-4 *6 (-13 (-439 *5) (-1014) (-1215))))) (-4407 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-171 *5)) (-5 *1 (-609 *4 *5 *3)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215))))) (-1647 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) (-5 *1 (-609 *4 *3 *2)) (-4 *3 (-13 (-439 *4) (-1014) (-1215))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) (-5 *1 (-609 *4 *2 *3)) (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215))))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) (-5 *1 (-609 *4 *5 *2))))) -(-10 -7 (-15 -3869 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -1647 (|#3| |#2|)) (-15 -4407 ((-171 |#2|) |#3|)) (-15 -4111 (|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))))) -((-2164 (($ (-1 (-112) |#1|) $) 17)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2092 (($ (-1 |#1| |#1|) |#1|) 9)) (-2139 (($ (-1 (-112) |#1|) $) 13)) (-2151 (($ (-1 (-112) |#1|) $) 15)) (-2955 (((-1169 |#1|) $) 18)) (-2942 (((-871) $) NIL))) -(((-610 |#1|) (-13 (-622 (-871)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2955 ((-1169 |#1|) $)))) (-1230)) (T -610)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1230))))) -(-13 (-622 (-871)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2955 ((-1169 |#1|) $)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) NIL (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-611 |#1| |#2|) (-1278 |#1|) (-1230) (-573)) (T -611)) -NIL -(-1278 |#1|) -((-3791 (((-1285) $ |#2| |#2|) 35)) (-1968 ((|#2| $) 23)) (-3470 ((|#2| $) 21)) (-2446 (($ (-1 |#3| |#3|) $) 32)) (-1776 (($ (-1 |#3| |#3|) $) 30)) (-2914 ((|#3| $) 26)) (-3112 (($ $ |#3|) 33)) (-2547 (((-112) |#3| $) 17)) (-1535 (((-653 |#3|) $) 15)) (-2198 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-612 |#1| |#2| |#3|) (-10 -8 (-15 -3791 ((-1285) |#1| |#2| |#2|)) (-15 -3112 (|#1| |#1| |#3|)) (-15 -2914 (|#3| |#1|)) (-15 -1968 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -2547 ((-112) |#3| |#1|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|))) (-613 |#2| |#3|) (-1112) (-1230)) (T -612)) -NIL -(-10 -8 (-15 -3791 ((-1285) |#1| |#2| |#2|)) (-15 -3112 (|#1| |#1| |#3|)) (-15 -2914 (|#3| |#1|)) (-15 -1968 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -2547 ((-112) |#3| |#1|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#2| (-1112)))) (-3791 (((-1285) $ |#1| |#1|) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-2457 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 52)) (-1863 (((-653 |#2|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 44 (|has| |#1| (-859)))) (-3214 (((-653 |#2|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 45 (|has| |#1| (-859)))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#2| (-1112)))) (-1977 (((-653 |#1|) $) 47)) (-2560 (((-112) |#1| $) 48)) (-3965 (((-1132) $) 21 (|has| |#2| (-1112)))) (-2914 ((|#2| $) 43 (|has| |#1| (-859)))) (-3112 (($ $ |#2|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 27 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 26 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 24 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3974 (((-780) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4455))) (((-780) |#2| $) 29 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#2| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-613 |#1| |#2|) (-141) (-1112) (-1230)) (T -613)) -((-1535 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-653 *4)))) (-2560 (*1 *2 *3 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-653 *3)))) (-2547 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-613 *4 *3)) (-4 *4 (-1112)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *3 (-859)) (-4 *2 (-1230)))) (-3112 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-3791 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-1285))))) -(-13 (-498 |t#2|) (-295 |t#1| |t#2|) (-10 -8 (-15 -1535 ((-653 |t#2|) $)) (-15 -2560 ((-112) |t#1| $)) (-15 -1977 ((-653 |t#1|) $)) (IF (|has| |t#2| (-1112)) (IF (|has| $ (-6 -4455)) (-15 -2547 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -3470 (|t#1| $)) (-15 -1968 (|t#1| $)) (-15 -2914 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3112 ($ $ |t#2|)) (-15 -3791 ((-1285) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1112)) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871)))) ((-293 |#1| |#2|) . T) ((-295 |#1| |#2|) . T) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-498 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-1112) |has| |#2| (-1112)) ((-1230) . T)) -((-2942 (((-871) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-614) (-13 (-622 (-871)) (-499 (-130)))) (T -614)) -NIL -(-13 (-622 (-871)) (-499 (-130))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) NIL) (((-1194) $) NIL) (((-1229) $) 14) (($ (-653 (-1229))) 13)) (-4289 (((-653 (-1229)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-615) (-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -4289 ((-653 (-1229)) $))))) (T -615)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615))))) -(-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -4289 ((-653 (-1229)) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-1280 (-698 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1888 (((-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3360 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1454 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1390 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3612 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1546 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2743 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3397 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-4053 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2650 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-2492 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2854 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (($ (-1280 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3583 (((-931)) NIL (|has| |#2| (-375 |#1|)))) (-3720 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1565 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3675 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2582 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3619 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-1729 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2780 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3753 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-2000 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1912 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3242 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-3455 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2198 ((|#1| $ (-573)) NIL (|has| |#2| (-426 |#1|)))) (-2123 (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $) (-1280 $)) NIL (|has| |#2| (-375 |#1|))) (((-1280 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1835 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-1664 (((-653 (-962 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-653 (-962 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2942 (((-871) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL (|has| |#2| (-426 |#1|)))) (-2649 (((-653 (-1280 |#1|))) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2900 (($ (-698 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4243 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2744 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 24)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-616 |#1| |#2|) (-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) (-174) (-753 |#1|)) (T -616)) -((-2942 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-616 *3 *2)) (-4 *2 (-753 *3))))) -(-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-4288 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) 39)) (-3777 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-1171) |#1|) 49)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#1| "failed") (-1171) $) 52)) (-2579 (($) NIL T CONST)) (-2169 (($ $ (-1171)) 25)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2596 (((-3 |#1| "failed") (-1171) $) 53) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4455)))) (-3334 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-4188 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) 38)) (-2457 ((|#1| $ (-1171) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-1171)) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-1508 (($ $) 54)) (-1674 (($ (-397)) 23) (($ (-397) (-1171)) 22)) (-2031 (((-397) $) 40)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1762 (((-653 (-1171)) $) 45)) (-4201 (((-112) (-1171) $) NIL)) (-4175 (((-1171) $) 41)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 43)) (-2198 ((|#1| $ (-1171) |#1|) NIL) ((|#1| $ (-1171)) 48)) (-2428 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-2942 (((-871) $) 21)) (-1981 (($ $) 26)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-617 |#1|) (-13 (-372 (-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-1206 (-1171) |#1|) (-10 -8 (-6 -4455) (-15 -1508 ($ $)))) (-1112)) (T -617)) -((-1508 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-1112))))) -(-13 (-372 (-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-1206 (-1171) |#1|) (-10 -8 (-6 -4455) (-15 -1508 ($ $)))) -((-1547 (((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 16)) (-1762 (((-653 |#2|) $) 20)) (-4201 (((-112) |#2| $) 12))) -(((-618 |#1| |#2| |#3|) (-10 -8 (-15 -1762 ((-653 |#2|) |#1|)) (-15 -4201 ((-112) |#2| |#1|)) (-15 -1547 ((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|))) (-619 |#2| |#3|) (-1112) (-1112)) (T -618)) -NIL -(-10 -8 (-15 -1762 ((-653 |#2|) |#1|)) (-15 -4201 ((-112) |#2| |#1|)) (-15 -1547 ((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|))) -((-2848 (((-112) $ $) 19 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41)) (-3965 (((-1132) $) 21 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52)) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51)) (-2942 (((-871) $) 18 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-619 |#1| |#2|) (-141) (-1112) (-1112)) (T -619)) -((-4201 (*1 *2 *3 *1) (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-112)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-653 *3)))) (-2596 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-2161 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(-13 (-231 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -4201 ((-112) |t#1| $)) (-15 -1762 ((-653 |t#1|) $)) (-15 -2596 ((-3 |t#2| "failed") |t#1| $)) (-15 -2161 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) ((-622 (-871)) -2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #0#) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-316 #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-498 #0#) . T) ((-523 #0# #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-1112) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) ((-1230) . T)) -((-3411 (((-621 |#2|) |#1|) 17)) (-2672 (((-3 |#1| "failed") (-621 |#2|)) 21))) -(((-620 |#1| |#2|) (-10 -7 (-15 -3411 ((-621 |#2|) |#1|)) (-15 -2672 ((-3 |#1| "failed") (-621 |#2|)))) (-1112) (-1112)) (T -620)) -((-2672 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) (-5 *1 (-620 *2 *4)))) (-3411 (*1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *1 (-620 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) -(-10 -7 (-15 -3411 ((-621 |#2|) |#1|)) (-15 -2672 ((-3 |#1| "failed") (-621 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1371 (((-3 (-1189) "failed") $) 46)) (-4239 (((-1285) $ (-780)) 22)) (-1440 (((-780) $) 20)) (-4173 (((-115) $) 9)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1774 (($ (-115) (-653 |#1|) (-780)) 32) (($ (-1189)) 33)) (-1667 (((-112) $ (-115)) 15) (((-112) $ (-1189)) 13)) (-1839 (((-780) $) 17)) (-3965 (((-1132) $) NIL)) (-1835 (((-902 (-573)) $) 95 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 102 (|has| |#1| (-623 (-902 (-387))))) (((-545) $) 88 (|has| |#1| (-623 (-545))))) (-2942 (((-871) $) 72)) (-3507 (((-112) $ $) NIL)) (-3607 (((-653 |#1|) $) 19)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53))) -(((-621 |#1|) (-13 (-133) (-859) (-894 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -3607 ((-653 |#1|) $)) (-15 -1839 ((-780) $)) (-15 -1774 ($ (-115) (-653 |#1|) (-780))) (-15 -1774 ($ (-1189))) (-15 -1371 ((-3 (-1189) "failed") $)) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) (-1112)) (T -621)) -((-4173 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1774 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-1112)) (-5 *1 (-621 *5)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1371 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112))))) -(-13 (-133) (-859) (-894 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -3607 ((-653 |#1|) $)) (-15 -1839 ((-780) $)) (-15 -1774 ($ (-115) (-653 |#1|) (-780))) (-15 -1774 ($ (-1189))) (-15 -1371 ((-3 (-1189) "failed") $)) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) -((-2942 ((|#1| $) 6))) -(((-622 |#1|) (-141) (-1230)) (T -622)) -((-2942 (*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1230))))) -(-13 (-10 -8 (-15 -2942 (|t#1| $)))) -((-1835 ((|#1| $) 6))) -(((-623 |#1|) (-141) (-1230)) (T -623)) -((-1835 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1230))))) -(-13 (-10 -8 (-15 -1835 (|t#1| $)))) -((-2524 (((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)) 15) (((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)) 16))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|))) (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)))) (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -624)) -((-2524 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-1185 (-416 *6))) (-5 *1 (-624 *5 *6)) (-5 *3 (-416 *6)))) (-2524 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-1185 (-416 *5))) (-5 *1 (-624 *4 *5)) (-5 *3 (-416 *5))))) -(-10 -7 (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|))) (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)))) -((-2942 (($ |#1|) 6))) -(((-625 |#1|) (-141) (-1230)) (T -625)) -((-2942 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1230))))) -(-13 (-10 -8 (-15 -2942 ($ |t#1|)))) -((-2848 (((-112) $ $) NIL)) (-2032 (($) 14 T CONST)) (-1561 (($) 15 T CONST)) (-2097 (($ $ $) 29)) (-2075 (($ $) 27)) (-3180 (((-1171) $) NIL)) (-2546 (($ $ $) 30)) (-3965 (((-1132) $) NIL)) (-2883 (($) 11 T CONST)) (-3391 (($ $ $) 31)) (-2942 (((-871) $) 35)) (-2121 (((-112) $ (|[\|\|]| -2883)) 24) (((-112) $ (|[\|\|]| -2032)) 26) (((-112) $ (|[\|\|]| -1561)) 21)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 28)) (-2981 (((-112) $ $) 18))) -(((-626) (-13 (-979) (-10 -8 (-15 -2032 ($) -1705) (-15 -2121 ((-112) $ (|[\|\|]| -2883))) (-15 -2121 ((-112) $ (|[\|\|]| -2032))) (-15 -2121 ((-112) $ (|[\|\|]| -1561)))))) (T -626)) -((-2032 (*1 *1) (-5 *1 (-626))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-626)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-626)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-626))))) -(-13 (-979) (-10 -8 (-15 -2032 ($) -1705) (-15 -2121 ((-112) $ (|[\|\|]| -2883))) (-15 -2121 ((-112) $ (|[\|\|]| -2032))) (-15 -2121 ((-112) $ (|[\|\|]| -1561))))) -((-1835 (($ |#1|) 6))) -(((-627 |#1|) (-141) (-1230)) (T -627)) -((-1835 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1230))))) -(-13 (-10 -8 (-15 -1835 ($ |t#1|)))) -((-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10))) -(((-628 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-629 |#2|) (-1061)) (T -628)) -NIL -(-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 41)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-629 |#1|) (-141) (-1061)) (T -629)) -((-2942 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1061))))) -(-13 (-1061) (-657 |t#1|) (-10 -8 (-15 -2942 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-1959 (((-112) $) NIL)) (-2965 ((|#1| $) 13)) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2975 ((|#3| $) 15)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL)) (-1545 (((-780)) 20 T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3103 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-630 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-735) |#2|)) (T -630)) -((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-735) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-735) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-630 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-735) *3)))) (-2975 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) -((-1676 ((|#2| |#2| (-1189) (-1189)) 16))) -(((-631 |#1| |#2|) (-10 -7 (-15 -1676 (|#2| |#2| (-1189) (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -631)) -((-1676 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-29 *4)))))) -(-10 -7 (-15 -1676 (|#2| |#2| (-1189) (-1189)))) -((-2848 (((-112) $ $) 64)) (-1748 (((-112) $) 58)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3123 ((|#1| $) 55)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-4016 (((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)) 111 (|has| |#1| (-371)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 27)) (-2232 (((-3 $ "failed") $) 88)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2534 (((-573) $) 22)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) 40)) (-4334 (($ |#1| (-573)) 24)) (-1369 ((|#1| $) 57)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) 101 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) 93)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2163 (((-780) $) 115 (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 114 (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2565 (((-573) $) 38)) (-1835 (((-416 |#2|) $) 47)) (-2942 (((-871) $) 69) (($ (-573)) 35) (($ $) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 34) (($ |#2|) 25)) (-4317 ((|#1| $ (-573)) 72)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 9 T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) 21)) (-3093 (($ $) 51) (($ $ $) NIL)) (-3077 (($ $ $) 90)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 29) (($ $ $) 49))) -(((-632 |#1| |#2|) (-13 (-233 |#2|) (-565) (-623 (-416 |#2|)) (-420 |#1|) (-1050 |#2|) (-10 -8 (-15 -3676 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -2534 ((-573) $)) (-15 -1391 ($ $)) (-15 -1369 (|#1| $)) (-15 -3123 (|#1| $)) (-15 -4317 (|#1| $ (-573))) (-15 -4334 ($ |#1| (-573))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-314)) (-15 -4016 ((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)))) |%noBranch|))) (-565) (-1256 |#1|)) (T -632)) -((-3676 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-112)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-2565 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-2534 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-1391 (*1 *1 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-1369 (*1 *2 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) (-4 *4 (-1256 *2)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) (-4 *4 (-1256 *2)))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *4 (-565)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -2868 (-632 *4 *5)) (|:| -3954 (-416 *5)))) (-5 *1 (-632 *4 *5)) (-5 *3 (-416 *5))))) -(-13 (-233 |#2|) (-565) (-623 (-416 |#2|)) (-420 |#1|) (-1050 |#2|) (-10 -8 (-15 -3676 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -2534 ((-573) $)) (-15 -1391 ($ $)) (-15 -1369 (|#1| $)) (-15 -3123 (|#1| $)) (-15 -4317 (|#1| $ (-573))) (-15 -4334 ($ |#1| (-573))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-314)) (-15 -4016 ((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)))) |%noBranch|))) -((-3527 (((-653 |#6|) (-653 |#4|) (-112)) 54)) (-2017 ((|#6| |#6|) 48))) -(((-633 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2017 (|#6| |#6|)) (-15 -3527 ((-653 |#6|) (-653 |#4|) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|) (-1121 |#1| |#2| |#3| |#4|)) (T -633)) -((-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *10)) (-5 *1 (-633 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *10 (-1121 *5 *6 *7 *8)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-633 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *2 (-1121 *3 *4 *5 *6))))) -(-10 -7 (-15 -2017 (|#6| |#6|)) (-15 -3527 ((-653 |#6|) (-653 |#4|) (-112)))) -((-2996 (((-112) |#3| (-780) (-653 |#3|)) 29)) (-2038 (((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)) 69))) -(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2996 ((-112) |#3| (-780) (-653 |#3|))) (-15 -2038 ((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)))) (-859) (-802) (-314) (-959 |#3| |#2| |#1|)) (T -634)) -((-2038 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1687 (-653 (-2 (|:| |irr| *10) (|:| -3287 (-573))))))) (-5 *6 (-653 *3)) (-5 *7 (-653 *8)) (-4 *8 (-859)) (-4 *3 (-314)) (-4 *10 (-959 *3 *9 *8)) (-4 *9 (-802)) (-5 *2 (-2 (|:| |polfac| (-653 *10)) (|:| |correct| *3) (|:| |corrfact| (-653 (-1185 *3))))) (-5 *1 (-634 *8 *9 *3 *10)) (-5 *4 (-653 (-1185 *3))))) (-2996 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-780)) (-5 *5 (-653 *3)) (-4 *3 (-314)) (-4 *6 (-859)) (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-634 *6 *7 *3 *8)) (-4 *8 (-959 *3 *7 *6))))) -(-10 -7 (-15 -2996 ((-112) |#3| (-780) (-653 |#3|))) (-15 -2038 ((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)))) -((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-635) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -635)) -((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635))))) -(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-4386 (($ $) 77)) (-3118 (((-673 |#1| |#2|) $) 60)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 81)) (-4278 (((-653 (-301 |#2|)) $ $) 42)) (-3965 (((-1132) $) NIL)) (-1608 (($ (-673 |#1| |#2|)) 56)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 66) (((-1295 |#1| |#2|) $) NIL) (((-1300 |#1| |#2|) $) 74)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 61 T CONST)) (-3328 (((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $) 41)) (-3271 (((-653 (-673 |#1| |#2|)) (-653 |#1|)) 73)) (-3256 (((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $) 46)) (-2981 (((-112) $ $) 62)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 52))) -(((-636 |#1| |#2| |#3|) (-13 (-482) (-10 -8 (-15 -1608 ($ (-673 |#1| |#2|))) (-15 -3118 ((-673 |#1| |#2|) $)) (-15 -3256 ((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $)) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1300 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -1653 ((-653 |#1|) $)) (-15 -3271 ((-653 (-673 |#1| |#2|)) (-653 |#1|))) (-15 -3328 ((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $)) (-15 -4278 ((-653 (-301 |#2|)) $ $)))) (-859) (-13 (-174) (-726 (-416 (-573)))) (-931)) (T -636)) -((-1608 (*1 *1 *2) (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-5 *1 (-636 *3 *4 *5)) (-14 *5 (-931)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-673 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-903 *3)) (|:| |c| *4)))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-636 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-13 (-174) (-726 (-416 (-573))))) (-14 *4 (-931)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-673 *4 *5))) (-5 *1 (-636 *4 *5 *6)) (-4 *5 (-13 (-174) (-726 (-416 (-573))))) (-14 *6 (-931)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-681 *3)) (|:| |c| *4)))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-4278 (*1 *2 *1 *1) (-12 (-5 *2 (-653 (-301 *4))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) -(-13 (-482) (-10 -8 (-15 -1608 ($ (-673 |#1| |#2|))) (-15 -3118 ((-673 |#1| |#2|) $)) (-15 -3256 ((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $)) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1300 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -1653 ((-653 |#1|) $)) (-15 -3271 ((-653 (-673 |#1| |#2|)) (-653 |#1|))) (-15 -3328 ((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $)) (-15 -4278 ((-653 (-301 |#2|)) $ $)))) -((-3527 (((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)) 103) (((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112)) 77)) (-3483 (((-112) (-653 (-789 |#1| (-873 |#2|)))) 26)) (-3474 (((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)) 102)) (-3783 (((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112)) 76)) (-3207 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|)))) 30)) (-1890 (((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|)))) 29))) -(((-637 |#1| |#2|) (-10 -7 (-15 -3483 ((-112) (-653 (-789 |#1| (-873 |#2|))))) (-15 -1890 ((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|))))) (-15 -3207 ((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))))) (-15 -3783 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3474 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)))) (-461) (-653 (-1189))) (T -637)) -((-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) (-5 *1 (-637 *5 *6)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-637 *5 *6)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) (-5 *1 (-637 *5 *6)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-637 *5 *6)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4)))) (-1890 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-653 (-789 *4 (-873 *5)))) (-4 *4 (-461)) (-14 *5 (-653 (-1189))) (-5 *2 (-112)) (-5 *1 (-637 *4 *5))))) -(-10 -7 (-15 -3483 ((-112) (-653 (-789 |#1| (-873 |#2|))))) (-15 -1890 ((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|))))) (-15 -3207 ((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))))) (-15 -3783 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3474 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)))) -((-2363 (($ $) 38)) (-2246 (($ $) 21)) (-2342 (($ $) 37)) (-2225 (($ $) 22)) (-2388 (($ $) 36)) (-2266 (($ $) 23)) (-2999 (($) 48)) (-3118 (($ $) 45)) (-4078 (($ $) 17)) (-3376 (($ $ (-1104 $)) 7) (($ $ (-1189)) 6)) (-1608 (($ $) 46)) (-4068 (($ $) 15)) (-2213 (($ $) 16)) (-2401 (($ $) 35)) (-2274 (($ $) 24)) (-2374 (($ $) 34)) (-2255 (($ $) 25)) (-2352 (($ $) 33)) (-2236 (($ $) 26)) (-2439 (($ $) 44)) (-2304 (($ $) 32)) (-2413 (($ $) 43)) (-2286 (($ $) 31)) (-2464 (($ $) 42)) (-2324 (($ $) 30)) (-2520 (($ $) 41)) (-2333 (($ $) 29)) (-2452 (($ $) 40)) (-2314 (($ $) 28)) (-2426 (($ $) 39)) (-2296 (($ $) 27)) (-2228 (($ $) 19)) (-4076 (($ $) 20)) (-2050 (($ $) 18)) (** (($ $ $) 47))) -(((-638) (-141)) (T -638)) -((-4076 (*1 *1 *1) (-4 *1 (-638))) (-2228 (*1 *1 *1) (-4 *1 (-638))) (-2050 (*1 *1 *1) (-4 *1 (-638))) (-4078 (*1 *1 *1) (-4 *1 (-638))) (-2213 (*1 *1 *1) (-4 *1 (-638))) (-4068 (*1 *1 *1) (-4 *1 (-638)))) -(-13 (-969) (-1215) (-10 -8 (-15 -4076 ($ $)) (-15 -2228 ($ $)) (-15 -2050 ($ $)) (-15 -4078 ($ $)) (-15 -2213 ($ $)) (-15 -4068 ($ $)))) -(((-35) . T) ((-95) . T) ((-291) . T) ((-502) . T) ((-969) . T) ((-1215) . T) ((-1218) . T)) -((-4173 (((-115) (-115)) 88)) (-4078 ((|#2| |#2|) 28)) (-3376 ((|#2| |#2| (-1104 |#2|)) 84) ((|#2| |#2| (-1189)) 50)) (-4068 ((|#2| |#2|) 27)) (-2213 ((|#2| |#2|) 29)) (-3109 (((-112) (-115)) 33)) (-2228 ((|#2| |#2|) 24)) (-4076 ((|#2| |#2|) 26)) (-2050 ((|#2| |#2|) 25))) -(((-639 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4076 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3376 (|#2| |#2| (-1189))) (-15 -3376 (|#2| |#2| (-1104 |#2|)))) (-565) (-13 (-439 |#1|) (-1014) (-1215))) (T -639)) -((-3376 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)))) (-3376 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-639 *3 *4)) (-4 *4 (-13 (-439 *3) (-1014) (-1215))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215)))))) -(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4076 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3376 (|#2| |#2| (-1189))) (-15 -3376 (|#2| |#2| (-1104 |#2|)))) -((-2980 (((-490 |#1| |#2|) (-252 |#1| |#2|)) 63)) (-1905 (((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 89)) (-3719 (((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|)) 91) (((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|)) 90)) (-3226 (((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|))) 134)) (-2229 (((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 104)) (-1329 (((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|))) 145)) (-3667 (((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|))) 68)) (-2896 (((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 47)) (-3195 (((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|))) 60)) (-2901 (((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|))) 112))) -(((-640 |#1| |#2|) (-10 -7 (-15 -3226 ((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|)))) (-15 -1329 ((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|)))) (-15 -1905 ((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -2896 ((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3667 ((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|)))) (-15 -2901 ((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2229 ((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3195 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2980 ((-490 |#1| |#2|) (-252 |#1| |#2|)))) (-653 (-1189)) (-461)) (T -640)) -((-2980 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-490 *4 *5)) (-5 *1 (-640 *4 *5)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5)))) (-2229 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-873 *4)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5)))) (-2901 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-252 *5 *6))) (-4 *6 (-461)) (-5 *2 (-252 *5 *6)) (-14 *5 (-653 (-1189))) (-5 *1 (-640 *5 *6)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-490 *5 *6))) (-5 *3 (-490 *5 *6)) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-1280 *6)) (-5 *1 (-640 *5 *6)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-653 (-490 *3 *4))) (-14 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-640 *3 *4)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) (-4 *6 (-461)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) (-4 *6 (-461)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-653 (-252 *4 *5))) (-5 *1 (-640 *4 *5)))) (-1329 (*1 *2 *3) (-12 (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-2 (|:| |glbase| (-653 (-252 *4 *5))) (|:| |glval| (-653 (-573))))) (-5 *1 (-640 *4 *5)) (-5 *3 (-653 (-252 *4 *5))))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-2 (|:| |gblist| (-653 (-252 *4 *5))) (|:| |gvlist| (-653 (-573))))) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -3226 ((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|)))) (-15 -1329 ((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|)))) (-15 -1905 ((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -2896 ((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3667 ((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|)))) (-15 -2901 ((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2229 ((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3195 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2980 ((-490 |#1| |#2|) (-252 |#1| |#2|)))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-52) $ (-1171) (-52)) 16) (((-52) $ (-1189) (-52)) 17)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1171) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1171) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-52) $ (-1171) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1171)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1508 (($ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1463 (($ (-397)) 9)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1171)) $) NIL)) (-4201 (((-112) (-1171) $) NIL)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2914 (((-52) $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1171)) 14) (((-52) $ (-1171) (-52)) NIL) (((-52) $ (-1189)) 15)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-641) (-13 (-1206 (-1171) (-52)) (-293 (-1189) (-52)) (-10 -8 (-15 -1463 ($ (-397))) (-15 -1508 ($ $)) (-15 -3142 ((-52) $ (-1189) (-52)))))) (T -641)) -((-1463 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-641)))) (-1508 (*1 *1 *1) (-5 *1 (-641))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1189)) (-5 *1 (-641))))) -(-13 (-1206 (-1171) (-52)) (-293 (-1189) (-52)) (-10 -8 (-15 -1463 ($ (-397))) (-15 -1508 ($ $)) (-15 -3142 ((-52) $ (-1189) (-52))))) -((-3103 (($ $ |#2|) 10))) -(((-642 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-643 |#2|) (-174)) (T -642)) -NIL -(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2955 (($ $ $) 34)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 33 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-643 |#1|) (-141) (-174)) (T -643)) -((-2955 (*1 *1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) -(-13 (-726 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2955 ($ $ $)) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-1280 (-698 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1888 (((-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3360 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1454 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1390 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3612 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1546 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2743 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3397 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-4053 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2650 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-2492 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2854 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (($ (-1280 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3583 (((-931)) NIL (|has| |#2| (-375 |#1|)))) (-3720 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1565 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3675 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2582 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3619 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-1729 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2780 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3753 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-2000 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1912 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3242 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-3455 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2198 ((|#1| $ (-573)) NIL (|has| |#2| (-426 |#1|)))) (-2123 (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $) (-1280 $)) NIL (|has| |#2| (-375 |#1|))) (((-1280 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1835 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-1664 (((-653 (-962 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-653 (-962 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2942 (((-871) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL (|has| |#2| (-426 |#1|)))) (-2649 (((-653 (-1280 |#1|))) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2900 (($ (-698 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4243 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2744 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 20)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-644 |#1| |#2|) (-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) (-174) (-753 |#1|)) (T -644)) -((-2942 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-644 *3 *2)) (-4 *2 (-753 *3))))) -(-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) -((-4061 (((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)) 106) (((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|))) 131)) (-3244 (((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|))) 136))) -(((-645 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|)))) (-15 -3244 ((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|)))) (-15 -4061 ((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -645)) -((-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-301 *3)) (-5 *5 (-1171)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-852 *3)) (-5 *1 (-645 *6 *3)))) (-3244 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-301 (-842 *3))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-842 *3)) (-5 *1 (-645 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-852 *3))) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (-852 *3) (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) "failed")) (-5 *1 (-645 *5 *3))))) -(-10 -7 (-15 -4061 ((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|)))) (-15 -3244 ((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|)))) (-15 -4061 ((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)))) -((-4061 (((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)) 86) (((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 20) (((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|)))) 35)) (-3244 (((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 23) (((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|)))) 43))) -(((-646 |#1|) (-10 -7 (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)))) (-461)) (T -646)) -((-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-301 (-416 (-962 *6)))) (-5 *5 (-1171)) (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-852 *3)) (-5 *1 (-646 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-461)) (-5 *2 (-842 *3)) (-5 *1 (-646 *5)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-842 (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-842 (-416 (-962 *5)))) (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-461)) (-5 *2 (-3 (-852 *3) (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) "failed")) (-5 *1 (-646 *5)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-852 (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-3 (-852 (-416 (-962 *5))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 *5))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 *5))) "failed"))) "failed")) (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5)))))) -(-10 -7 (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)))) -((-2898 (((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|) 64 (-2075 (|has| |#1| (-371)))) (((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|) 49 (|has| |#1| (-371)))) (-4062 (((-112) (-1280 |#2|)) 33)) (-4287 (((-3 (-1280 |#1|) "failed") (-1280 |#2|)) 40))) -(((-647 |#1| |#2|) (-10 -7 (-15 -4062 ((-112) (-1280 |#2|))) (-15 -4287 ((-3 (-1280 |#1|) "failed") (-1280 |#2|))) (IF (|has| |#1| (-371)) (-15 -2898 ((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|)) (-15 -2898 ((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|)))) (-565) (-13 (-1061) (-648 |#1|))) (T -647)) -((-2898 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) (-2075 (-4 *5 (-371))) (-4 *5 (-565)) (-5 *2 (-1280 (-416 *5))) (-5 *1 (-647 *5 *4)))) (-2898 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-1280 *5)) (-5 *1 (-647 *5 *4)))) (-4287 (*1 *2 *3) (|partial| -12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) (-4 *4 (-565)) (-5 *2 (-1280 *4)) (-5 *1 (-647 *4 *5)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) -(-10 -7 (-15 -4062 ((-112) (-1280 |#2|))) (-15 -4287 ((-3 (-1280 |#1|) "failed") (-1280 |#2|))) (IF (|has| |#1| (-371)) (-15 -2898 ((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|)) (-15 -2898 ((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2759 (((-698 |#1|) (-1280 $)) 31) (((-698 |#1|) (-698 $)) 30) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 29)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) -(((-648 |#1|) (-141) (-1061)) (T -648)) -((-2759 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) (-5 *2 (-698 *4)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-698 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) (-5 *2 (-698 *4)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *1)) (-5 *4 (-1280 *1)) (-4 *1 (-648 *5)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 *5))))))) -(-13 (-657 |t#1|) (-10 -8 (-15 -2759 ((-698 |t#1|) (-1280 $))) (-15 -2759 ((-698 |t#1|) (-698 $))) (-15 -2759 ((-2 (|:| -1423 (-698 |t#1|)) (|:| |vec| (-1280 |t#1|))) (-698 $) (-1280 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-649 |#1|) (-141) (-1070)) (T -649)) -NIL -(-13 (-655 |t#1|) (-1063 |t#1|)) -(((-102) . T) ((-622 (-871)) . T) ((-655 |#1|) . T) ((-1063 |#1|) . T) ((-1112) . T)) -((-2682 ((|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|) 17) ((|#2| (-653 |#1|) (-653 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|)) 12))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|)) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)))) (-1112) (-1230)) (T -650)) -((-2682 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-650 *5 *6)))) (-2682 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 *5)) (-4 *6 (-1112)) (-4 *5 (-1230)) (-5 *2 (-1 *5 *6)) (-5 *1 (-650 *6 *5)))) (-2682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *2 (-1 *6 *5)) (-5 *1 (-650 *5 *6))))) -(-10 -7 (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|)) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)))) -((-3094 (((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|) 18)) (-1776 (((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)) 13))) -(((-651 |#1| |#2|) (-10 -7 (-15 -3094 ((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) (-1230) (-1230)) (T -651)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-651 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-651 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-653 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-653 *5)) (-5 *1 (-651 *6 *5))))) -(-10 -7 (-15 -3094 ((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) -((-1776 (((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)) 21))) -(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)))) (-1230) (-1230) (-1230)) (T -652)) -((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-653 *6)) (-5 *5 (-653 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-653 *8)) (-5 *1 (-652 *6 *7 *8))))) -(-10 -7 (-15 -1776 ((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) NIL (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3059 (($ $ $) 37 (|has| |#1| (-1112)))) (-1848 (($ $ $) 41 (|has| |#1| (-1112)))) (-3116 (($ $ $) 44 (|has| |#1| (-1112)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $) 23) (($ $ (-780)) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) 36 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2064 (((-112) $) 11)) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3520 (($) 9 T CONST)) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) 20) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 39)) (-3508 (($) 38)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) 42) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 53 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-2224 (($ |#1| $) 12)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) 35) (($ |#1| $) 43) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2858 (($ $ $) 13)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 31 (|has| |#1| (-837))) (((-1171) $ (-112)) 32 (|has| |#1| (-837))) (((-1285) (-831) $) 33 (|has| |#1| (-837))) (((-1285) (-831) $ (-112)) 34 (|has| |#1| (-837)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-653 |#1|) (-13 (-675 |#1|) (-10 -8 (-15 -3520 ($) -1705) (-15 -2064 ((-112) $)) (-15 -2224 ($ |#1| $)) (-15 -2858 ($ $ $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3059 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -3116 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) (-1230)) (T -653)) -((-3520 (*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1230)))) (-2224 (*1 *1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-2858 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-3059 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)))) (-1848 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)))) (-3116 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) -(-13 (-675 |#1|) (-10 -8 (-15 -3520 ($) -1705) (-15 -2064 ((-112) $)) (-15 -2224 ($ |#1| $)) (-15 -2858 ($ $ $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3059 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -3116 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11) (($ (-1194)) NIL) (((-1194) $) NIL) ((|#1| $) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-654 |#1|) (-13 (-1095) (-622 |#1|)) (-1112)) (T -654)) -NIL -(-13 (-1095) (-622 |#1|)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-655 |#1|) (-141) (-1070)) (T -655)) -((-2132 (*1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070))))) -(-13 (-1112) (-10 -8 (-15 (-2132) ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4013 (($ |#1| |#1| $) 43)) (-3450 (((-112) $ (-780)) NIL)) (-3557 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-1599 (($ $) 45)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 56 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 9 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 37)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 47)) (-3181 (($ |#1| $) 29) (($ |#1| $ (-780)) 42)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3815 ((|#1| $) 50)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 23)) (-3508 (($) 28)) (-2765 (((-112) $) 54)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 67)) (-2428 (($) 26) (($ (-653 |#1|)) 19)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) 63 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 20)) (-1835 (((-545) $) 34 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-2942 (((-871) $) 14 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 24)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 69 (|has| |#1| (-1112)))) (-2862 (((-780) $) 17 (|has| $ (-6 -4455))))) -(((-656 |#1|) (-13 (-704 |#1|) (-10 -8 (-6 -4455) (-15 -2765 ((-112) $)) (-15 -4013 ($ |#1| |#1| $)))) (-1112)) (T -656)) -((-2765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1112)))) (-4013 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1112))))) -(-13 (-704 |#1|) (-10 -8 (-6 -4455) (-15 -2765 ((-112) $)) (-15 -4013 ($ |#1| |#1| $)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) -(((-657 |#1|) (-141) (-1070)) (T -657)) -NIL -(-13 (-21) (-655 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) 17)) (-4123 (($ $ |#1|) 69)) (-2176 (($ $) 39)) (-4422 (($ $) 37)) (-1695 (((-3 |#1| "failed") $) 61)) (-2205 ((|#1| $) NIL)) (-3739 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3471 (((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573)) 56)) (-2841 ((|#1| $ (-573)) 35)) (-3884 ((|#2| $ (-573)) 34)) (-1911 (($ (-1 |#1| |#1|) $) 41)) (-3584 (($ (-1 |#2| |#2|) $) 47)) (-3827 (($) 11)) (-2443 (($ |#1| |#2|) 24)) (-1342 (($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|)))) 25)) (-4418 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 14)) (-3135 (($ |#1| $) 71)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3488 (((-112) $ $) 76)) (-2942 (((-871) $) 21) (($ |#1|) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 27))) -(((-658 |#1| |#2| |#3|) (-13 (-1112) (-1050 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573))) (-15 -4418 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -2443 ($ |#1| |#2|)) (-15 -1342 ($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -3884 (|#2| $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -4422 ($ $)) (-15 -2176 ($ $)) (-15 -1486 ((-780) $)) (-15 -3827 ($)) (-15 -4123 ($ $ |#1|)) (-15 -3135 ($ |#1| $)) (-15 -3739 ($ |#1| |#2| $)) (-15 -3739 ($ $ $)) (-15 -3488 ((-112) $ $)) (-15 -3584 ($ (-1 |#2| |#2|) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)))) (-1112) (-23) |#2|) (T -658)) -((-3471 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-871) (-871) (-871))) (-5 *4 (-573)) (-5 *2 (-871)) (-5 *1 (-658 *5 *6 *7)) (-4 *5 (-1112)) (-4 *6 (-23)) (-14 *7 *6))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-2443 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-23)) (-5 *1 (-658 *4 *2 *5)) (-4 *4 (-1112)) (-14 *5 *2))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-1112)) (-5 *1 (-658 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4422 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-3827 (*1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-4123 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3135 (*1 *1 *2 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3739 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3488 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-658 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1112) (-1050 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573))) (-15 -4418 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -2443 ($ |#1| |#2|)) (-15 -1342 ($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -3884 (|#2| $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -4422 ($ $)) (-15 -2176 ($ $)) (-15 -1486 ((-780) $)) (-15 -3827 ($)) (-15 -4123 ($ $ |#1|)) (-15 -3135 ($ |#1| $)) (-15 -3739 ($ |#1| |#2| $)) (-15 -3739 ($ $ $)) (-15 -3488 ((-112) $ $)) (-15 -3584 ($ (-1 |#2| |#2|) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)))) -((-3470 (((-573) $) 31)) (-1593 (($ |#2| $ (-573)) 27) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) 12)) (-2560 (((-112) (-573) $) 18)) (-4156 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-653 $)) NIL))) -(((-659 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3470 ((-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -2560 ((-112) (-573) |#1|))) (-660 |#2|) (-1230)) (T -659)) -NIL -(-10 -8 (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3470 ((-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -2560 ((-112) (-573) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-660 |#1|) (-141) (-1230)) (T -660)) -((-3789 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-4156 (*1 *1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-1593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-1593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1247 (-573))) (|has| *1 (-6 -4456)) (-4 *1 (-660 *2)) (-4 *2 (-1230))))) -(-13 (-613 (-573) |t#1|) (-152 |t#1|) (-293 (-1247 (-573)) $) (-10 -8 (-15 -3789 ($ (-780) |t#1|)) (-15 -4156 ($ $ |t#1|)) (-15 -4156 ($ |t#1| $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ (-653 $))) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2836 ($ $ (-573))) (-15 -2836 ($ $ (-1247 (-573)))) (-15 -1593 ($ |t#1| $ (-573))) (-15 -1593 ($ $ $ (-573))) (IF (|has| $ (-6 -4456)) (-15 -3142 (|t#1| $ (-1247 (-573)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-1994 (((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189)) 44))) -(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189))) (-15 -1994 ((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969)) (-665 |#2|)) (T -661)) -((-1994 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-661 *6 *2 *3)) (-4 *3 (-665 *2)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-4 *4 (-13 (-29 *6) (-1215) (-969))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) (-5 *1 (-661 *6 *4 *3)) (-4 *3 (-665 *4))))) -(-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189))) (-15 -1994 ((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) NIL (|has| |#1| (-371)))) (-2130 (($ $ (-780)) NIL (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) NIL)) (-1576 (($ $ $) NIL (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) NIL)) (-4372 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-662 |#1|) (-665 |#1|) (-238)) (T -662)) -NIL -(-665 |#1|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) NIL (|has| |#1| (-371)))) (-2130 (($ $ (-780)) NIL (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1576 (($ $ $) NIL (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) NIL)) (-4372 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-663 |#1| |#2|) (-13 (-665 |#1|) (-293 |#2| |#2|)) (-238) (-13 (-657 |#1|) (-10 -8 (-15 -3904 ($ $))))) (T -663)) -NIL -(-13 (-665 |#1|) (-293 |#2| |#2|)) -((-3164 (($ $) 29)) (-4372 (($ $) 27)) (-3609 (($) 13))) -(((-664 |#1| |#2|) (-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3609 (|#1|))) (-665 |#2|) (-1061)) (T -664)) -NIL -(-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3609 (|#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3164 (($ $) 87 (|has| |#1| (-371)))) (-4426 (($ $ $) 89 (|has| |#1| (-371)))) (-2130 (($ $ (-780)) 88 (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2843 (($ $ $) 50 (|has| |#1| (-371)))) (-4151 (($ $ $) 51 (|has| |#1| (-371)))) (-2674 (($ $ $) 53 (|has| |#1| (-371)))) (-4376 (($ $ $) 48 (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 47 (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) 49 (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 52 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) 80 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 77 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 74)) (-2205 (((-573) $) 79 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 76 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 75)) (-1391 (($ $) 69)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-461)))) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 67)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 62 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63 (|has| |#1| (-565)))) (-4036 (((-780) $) 71)) (-2128 (($ $ $) 57 (|has| |#1| (-371)))) (-3326 (($ $ $) 58 (|has| |#1| (-371)))) (-2606 (($ $ $) 46 (|has| |#1| (-371)))) (-4319 (($ $ $) 55 (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 54 (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) 56 (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 59 (|has| |#1| (-371)))) (-1369 ((|#1| $) 70)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) 92)) (-1576 (($ $ $) 86 (|has| |#1| (-371)))) (-2565 (((-780) $) 72)) (-3257 ((|#1| $) 61 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 78 (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 73)) (-1920 (((-653 |#1|) $) 66)) (-4317 ((|#1| $ (-780)) 68)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2900 ((|#1| $ |#1| |#1|) 65)) (-4372 (($ $) 90)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($) 91)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-665 |#1|) (-141) (-1061)) (T -665)) -((-3609 (*1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) (-4426 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-665 *3)) (-4 *3 (-1061)) (-4 *3 (-371)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1576 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(-13 (-861 |t#1|) (-293 |t#1| |t#1|) (-10 -8 (-15 -3609 ($)) (-15 -4372 ($ $)) (IF (|has| |t#1| (-371)) (PROGN (-15 -4426 ($ $ $)) (-15 -2130 ($ $ (-780))) (-15 -3164 ($ $)) (-15 -1576 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-293 |#1| |#1|) . T) ((-420 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T) ((-861 |#1|) . T)) -((-2877 (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))) 85 (|has| |#1| (-27)))) (-4218 (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))) 84 (|has| |#1| (-27))) (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 19))) -(((-666 |#1| |#2|) (-10 -7 (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)))) (-15 -2877 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))))) |%noBranch|)) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -666)) -((-2877 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-662 (-416 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-662 (-416 *6)))))) -(-10 -7 (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)))) (-15 -2877 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) 28 (|has| |#1| (-371)))) (-2130 (($ $ (-780)) 31 (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) 24)) (-1576 (($ $ $) 33 (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) 20) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) 23)) (-4372 (($ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 8 T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-667 |#1| |#2|) (-665 |#1|) (-1061) (-1 |#1| |#1|)) (T -667)) -NIL -(-665 |#1|) -((-4426 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2130 ((|#2| |#2| (-780) (-1 |#1| |#1|)) 45)) (-1576 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-668 |#1| |#2|) (-10 -7 (-15 -4426 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2130 (|#2| |#2| (-780) (-1 |#1| |#1|))) (-15 -1576 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-371) (-665 |#1|)) (T -668)) -((-1576 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) (-4 *2 (-665 *4)))) (-2130 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-5 *1 (-668 *5 *2)) (-4 *2 (-665 *5)))) (-4426 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) (-4 *2 (-665 *4))))) -(-10 -7 (-15 -4426 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2130 (|#2| |#2| (-780) (-1 |#1| |#1|))) (-15 -1576 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2924 (($ $ $) 9))) -(((-669 |#1|) (-10 -8 (-15 -2924 (|#1| |#1| |#1|))) (-670)) (T -669)) -NIL -(-10 -8 (-15 -2924 (|#1| |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-2876 (($ $) 10)) (-2924 (($ $ $) 8)) (-2981 (((-112) $ $) 6)) (-2909 (($ $ $) 9))) -(((-670) (-141)) (T -670)) -((-2876 (*1 *1 *1) (-4 *1 (-670))) (-2909 (*1 *1 *1 *1) (-4 *1 (-670))) (-2924 (*1 *1 *1 *1) (-4 *1 (-670)))) -(-13 (-102) (-10 -8 (-15 -2876 ($ $)) (-15 -2909 ($ $ $)) (-15 -2924 ($ $ $)))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) NIL)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-560 |#1| |#2| |#3|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458)))) (T -560)) +NIL +(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) +((-1833 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))) 50))) +(((-561 |#1| |#2|) (-10 -7 (-15 -1833 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561)) +((-1833 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1188 *3) (-1188 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3))))) +(-10 -7 (-15 -1833 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1188 |#2|) (-1188 |#2|))))) +((-4204 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3348 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1571 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1571 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4204 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3348 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1053 (-574))) (-13 (-27) (-440 |#1|)) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562)) +((-3348 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *7 (-1259 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(-10 -7 (-15 -1571 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4204 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3348 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3797 (((-112) (-574) (-574)) 12)) (-3789 (((-574) (-574)) 7)) (-3248 (((-574) (-574) (-574)) 10))) +(((-563) (-10 -7 (-15 -3789 ((-574) (-574))) (-15 -3248 ((-574) (-574) (-574))) (-15 -3797 ((-112) (-574) (-574))))) (T -563)) +((-3797 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-3248 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) +(-10 -7 (-15 -3789 ((-574) (-574))) (-15 -3248 ((-574) (-574) (-574))) (-15 -3797 ((-112) (-574) (-574)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3015 ((|#1| $) 67)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2378 (($ $) 97)) (-2260 (($ $) 80)) (-3672 ((|#1| $) 68)) (-2599 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 79)) (-2357 (($ $) 96)) (-2238 (($ $) 81)) (-2403 (($ $) 95)) (-2281 (($ $) 82)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 75)) (-2216 (((-574) $) 76)) (-2978 (((-3 $ "failed") $) 37)) (-1484 (($ |#1| |#1|) 72)) (-1348 (((-112) $) 66)) (-3003 (($) 107)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 78)) (-3081 (((-112) $) 65)) (-3632 (($ $ $) 113)) (-2953 (($ $ $) 112)) (-3111 (($ $) 104)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1661 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-2730 ((|#1| $) 69)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-1619 (($ $) 105)) (-2415 (($ $) 94)) (-2289 (($ $) 83)) (-2388 (($ $) 93)) (-2271 (($ $) 84)) (-2367 (($ $) 92)) (-2249 (($ $) 85)) (-3059 (((-112) $ |#1|) 64)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 103)) (-2319 (($ $) 91)) (-3676 (((-112) $ $) 45)) (-2428 (($ $) 102)) (-2301 (($ $) 90)) (-2479 (($ $) 101)) (-2339 (($ $) 89)) (-2535 (($ $) 100)) (-2348 (($ $) 88)) (-2467 (($ $) 99)) (-2329 (($ $) 87)) (-2442 (($ $) 98)) (-2311 (($ $) 86)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 110)) (-3017 (((-112) $ $) 109)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 111)) (-3008 (((-112) $ $) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-564 |#1|) (-141) (-13 (-414) (-1218))) (T -564)) +((-1661 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-1484 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-1661 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) (-3059 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112))))) +(-13 (-462) (-860) (-1218) (-1017) (-1053 (-574)) (-10 -8 (-6 -3524) (-15 -1661 ($ |t#1| |t#1|)) (-15 -1484 ($ |t#1| |t#1|)) (-15 -1661 ($ |t#1|)) (-15 -1661 ($ (-417 (-574)))) (-15 -2730 (|t#1| $)) (-15 -3672 (|t#1| $)) (-15 -3015 (|t#1| $)) (-15 -1348 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3059 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1017) . T) ((-1053 (-574)) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) . T) ((-1221) . T)) +((-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 9)) (-4319 (($ $) 11)) (-1731 (((-112) $) 20)) (-2978 (((-3 $ "failed") $) 16)) (-3676 (((-112) $ $) 22))) +(((-565 |#1|) (-10 -8 (-15 -1731 ((-112) |#1|)) (-15 -3676 ((-112) |#1| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) (-566)) (T -565)) +NIL +(-10 -8 (-15 -1731 ((-112) |#1|)) (-15 -3676 ((-112) |#1| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -2746 ((-2 (|:| -3462 |#1|) (|:| -4445 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-566) (-141)) (T -566)) +((-2852 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3462 *1) (|:| -4445 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-4319 (*1 *1 *1) (-4 *1 (-566))) (-3676 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2852 ((-3 $ "failed") $ $)) (-15 -2746 ((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $)) (-15 -4319 ($ $)) (-15 -3676 ((-112) $ $)) (-15 -1731 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2995 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|)) 38)) (-3139 (((-596 |#2|) |#2| (-1192)) 63)) (-4409 (((-3 |#2| "failed") |#2| (-1192)) 156)) (-3776 (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-3560 (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|) 41))) +(((-567 |#1| |#2|) (-10 -7 (-15 -3560 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|)) (-15 -2995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|))) (-15 -4409 ((-3 |#2| "failed") |#2| (-1192))) (-15 -3139 ((-596 |#2|) |#2| (-1192))) (-15 -3776 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -567)) +((-3776 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1192)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-4409 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-2995 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-3560 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(-10 -7 (-15 -3560 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) |#2|)) (-15 -2995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1192) (-654 |#2|))) (-15 -4409 ((-3 |#2| "failed") |#2| (-1192))) (-15 -3139 ((-596 |#2|) |#2| (-1192))) (-15 -3776 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1192) (-622 |#2|) (-654 (-622 |#2|))))) +((-2153 (((-428 |#1|) |#1|) 19)) (-4200 (((-428 |#1|) |#1|) 34)) (-2553 (((-3 |#1| "failed") |#1|) 49)) (-2088 (((-428 |#1|) |#1|) 60))) +(((-568 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -2088 ((-428 |#1|) |#1|)) (-15 -2553 ((-3 |#1| "failed") |#1|))) (-555)) (T -568)) +((-2553 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-2088 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-2153 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -2088 ((-428 |#1|) |#1|)) (-15 -2553 ((-3 |#1| "failed") |#1|))) +((-4005 (($) 9)) (-2017 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1773 (((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-1948 (($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3490 (($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1918 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3670 (((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2272 (((-1288)) 11))) +(((-569) (-10 -8 (-15 -4005 ($)) (-15 -2272 ((-1288))) (-15 -1773 ((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3490 ($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1948 ($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2017 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3670 ((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1918 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569)) +((-1918 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2017 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-2272 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-569)))) (-4005 (*1 *1) (-5 *1 (-569)))) +(-10 -8 (-15 -4005 ($)) (-15 -2272 ((-1288))) (-15 -1773 ((-654 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3490 ($ (-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1948 ($ (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2017 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3670 ((-654 (-2 (|:| -3666 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1918 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-4172 (((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|)) 35)) (-4134 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|)) 115)) (-2972 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|)) 55)) (-3070 (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|))) 92) (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|)) 114)) (-2256 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|)) 116)) (-4322 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4338 ((|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|) 53)) (-2868 (((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|)) 34))) +(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -2972 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -2972 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -3070 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|))) (-15 -3070 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|))) (-15 -4134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2256 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|))) (-15 -2256 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4172 ((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|))) (-15 -4338 (|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|)) (-15 -2868 ((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -4322 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -4322 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1218)) (-1115)) (T -570)) +((-4322 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1188 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-4322 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1188 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1188 (-417 (-1188 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1188 *6)) (-4 *7 (-1115)))) (-4338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1188 (-417 (-1188 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1115)))) (-4172 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1188 (-417 (-1188 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1188 *3)) (-4 *7 (-1115)))) (-2256 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-417 (-1188 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) (-2256 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-1188 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) (-4134 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) (-4134 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1188 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) (-3070 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-3070 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-2972 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) (-2972 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) +(-10 -7 (-15 -2972 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -2972 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -3070 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1188 |#2|))) (-15 -3070 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1188 |#2|))) (-15 -4134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -2256 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) |#2| (-1188 |#2|))) (-15 -2256 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)) (-622 |#2|) |#2| (-417 (-1188 |#2|)))) (-15 -4172 ((-1188 (-417 (-1188 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1188 |#2|))) (-15 -4338 (|#2| (-1188 (-417 (-1188 |#2|))) (-622 |#2|) |#2|)) (-15 -2868 ((-1188 (-417 (-1188 |#2|))) (-1188 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -4322 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1188 |#2|))) (-15 -4322 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1188 |#2|))))) |%noBranch|)) +((-3346 (((-574) (-574) (-781)) 85)) (-2547 (((-574) (-574)) 83)) (-1633 (((-574) (-574)) 81)) (-2422 (((-574) (-574)) 87)) (-2653 (((-574) (-574) (-574)) 65)) (-3234 (((-574) (-574) (-574)) 62)) (-2242 (((-417 (-574)) (-574)) 30)) (-3002 (((-574) (-574)) 34)) (-3838 (((-574) (-574)) 74)) (-3796 (((-574) (-574)) 46)) (-1531 (((-654 (-574)) (-574)) 80)) (-3630 (((-574) (-574) (-574) (-574) (-574)) 58)) (-2478 (((-417 (-574)) (-574)) 55))) +(((-571) (-10 -7 (-15 -2478 ((-417 (-574)) (-574))) (-15 -3630 ((-574) (-574) (-574) (-574) (-574))) (-15 -1531 ((-654 (-574)) (-574))) (-15 -3796 ((-574) (-574))) (-15 -3838 ((-574) (-574))) (-15 -3002 ((-574) (-574))) (-15 -2242 ((-417 (-574)) (-574))) (-15 -3234 ((-574) (-574) (-574))) (-15 -2653 ((-574) (-574) (-574))) (-15 -2422 ((-574) (-574))) (-15 -1633 ((-574) (-574))) (-15 -2547 ((-574) (-574))) (-15 -3346 ((-574) (-574) (-781))))) (T -571)) +((-3346 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2653 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3234 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2242 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1531 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-3630 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2478 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) +(-10 -7 (-15 -2478 ((-417 (-574)) (-574))) (-15 -3630 ((-574) (-574) (-574) (-574) (-574))) (-15 -1531 ((-654 (-574)) (-574))) (-15 -3796 ((-574) (-574))) (-15 -3838 ((-574) (-574))) (-15 -3002 ((-574) (-574))) (-15 -2242 ((-417 (-574)) (-574))) (-15 -3234 ((-574) (-574) (-574))) (-15 -2653 ((-574) (-574) (-574))) (-15 -2422 ((-574) (-574))) (-15 -1633 ((-574) (-574))) (-15 -2547 ((-574) (-574))) (-15 -3346 ((-574) (-574) (-781)))) +((-3546 (((-2 (|:| |answer| |#4|) (|:| -1800 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3546 ((-2 (|:| |answer| |#4|) (|:| -1800 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572)) +((-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1800 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))) +(-10 -7 (-15 -3546 ((-2 (|:| |answer| |#4|) (|:| -1800 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3546 (((-2 (|:| |answer| (-417 |#2|)) (|:| -1800 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18))) +(((-573 |#1| |#2|) (-10 -7 (-15 -3546 ((-2 (|:| |answer| (-417 |#2|)) (|:| -1800 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -573)) +((-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -1800 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -3546 ((-2 (|:| |answer| (-417 |#2|)) (|:| -1800 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 30)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 96)) (-4319 (($ $) 97)) (-1731 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4393 (($ $ $ $) 52)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL)) (-3931 (($ $ $) 91)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2800 (($ $ $) 54)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) 93)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL)) (-4002 (((-112) $) NIL)) (-2258 (((-417 (-574)) $) NIL)) (-2834 (($) 79) (($ $) 80)) (-2811 (($ $ $) 90)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3202 (($ $ $ $) NIL)) (-4194 (($ $ $) 70)) (-1348 (((-112) $) NIL)) (-2325 (($ $ $) NIL)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2276 (((-112) $) 34)) (-3127 (((-112) $) 85)) (-4217 (((-3 $ "failed") $) NIL)) (-3081 (((-112) $) 43)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4351 (($ $ $ $) 55)) (-3632 (($ $ $) 87)) (-2953 (($ $ $) 86)) (-3780 (($ $) NIL)) (-4108 (($ $) 49)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) 69)) (-3135 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1615 (($ $) 38)) (-3939 (((-1135) $) 42)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 128)) (-2886 (($ $ $) 94) (($ (-654 $)) NIL)) (-3125 (($ $) NIL)) (-4200 (((-428 $) $) 114)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 112)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 89)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2309 (($ $) 40)) (-3156 (($ $) 36)) (-1846 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1174) $) 66)) (-2950 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-3781 (((-781)) NIL T CONST)) (-1649 (((-112) $ $) NIL)) (-2561 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-2644 (($) 35)) (-3676 (((-112) $ $) NIL)) (-2255 (($ $ $ $) 51)) (-2366 (($ $) 78)) (-2143 (($) 6 T CONST)) (-2155 (($) 31 T CONST)) (-1579 (((-1174) $) 26) (((-1174) $ (-112)) 27) (((-1288) (-832) $) 28) (((-1288) (-832) $ (-112)) 29)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3040 (((-112) $ $) 50)) (-3017 (((-112) $ $) 81)) (-2985 (((-112) $ $) 33)) (-3029 (((-112) $ $) 82)) (-3008 (((-112) $ $) 10)) (-3089 (($ $) 16) (($ $ $) 39)) (-3073 (($ $ $) 37)) (** (($ $ (-934)) NIL) (($ $ (-781)) 84)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83))) +(((-574) (-13 (-555) (-624 (-1174)) (-838) (-10 -7 (-6 -4445) (-6 -4450) (-6 -4446) (-6 -4440)))) (T -574)) +NIL +(-13 (-555) (-624 (-1174)) (-838) (-10 -7 (-6 -4445) (-6 -4450) (-6 -4446) (-6 -4440))) +((-3942 (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078)) 116) (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779)) 118)) (-3302 (((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192)) 195) (((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174)) 194) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078)) 199) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388)) 200) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388)) 201) (((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388))))) 202) (((-1050) (-324 (-388)) (-1109 (-853 (-388)))) 190) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388)) 189) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388)) 185) (((-1050) (-779)) 177) (((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078)) 184))) +(((-575) (-10 -7 (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078))) (-15 -3302 ((-1050) (-779))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078))) (-15 -3302 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174))) (-15 -3302 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192))))) (T -575)) +((-3302 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-1192)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-1174)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *1 (-575)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1050)) (-5 *1 (-575)))) (-3302 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575))))) +(-10 -7 (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388) (-1078))) (-15 -3302 ((-1050) (-779))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-1109 (-853 (-388))))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388))) (-15 -3302 ((-1050) (-324 (-388)) (-654 (-1109 (-853 (-388)))) (-388) (-388) (-1078))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050))) (-779) (-1078))) (-15 -3302 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1174))) (-15 -3302 ((-3 (-1050) "failed") (-324 (-388)) (-1107 (-853 (-388))) (-1192)))) +((-1495 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-4142 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-3578 (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-3764 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192))) 201)) (-1650 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192)) 210 (|has| |#3| (-666 |#2|))))) +(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -4142 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -3578 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -1495 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3764 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)))) (IF (|has| |#3| (-666 |#2|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1218)) (-1115)) (T -576)) +((-1650 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1192)) (-4 *4 (-13 (-440 *7) (-27) (-1218))) (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) (-3764 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-4 *2 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1115)))) (-1495 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1115)))) (-3578 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115)))) (-4142 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) +(-10 -7 (-15 -4142 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -3578 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -1495 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3764 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1192)))) (IF (|has| |#3| (-666 |#2|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3907 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1192))) |%noBranch|)) +((-3541 (((-2 (|:| -1513 |#2|) (|:| |nconst| |#2|)) |#2| (-1192)) 64)) (-3518 (((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1154)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-2993 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3541 ((-2 (|:| -1513 |#2|) (|:| |nconst| |#2|)) |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2993 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) (-15 -3518 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) (IF (|has| |#2| (-1154)) (-15 -3518 ((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1053 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -577)) +((-3518 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1192)) (-5 *4 (-853 *2)) (-4 *2 (-1154)) (-4 *2 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-3518 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-2993 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -1513 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(-10 -7 (-15 -3541 ((-2 (|:| -1513 |#2|) (|:| |nconst| |#2|)) |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -2993 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) (-15 -3518 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) (IF (|has| |#2| (-1154)) (-15 -3518 ((-3 |#2| "failed") |#2| (-1192) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3260 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-3302 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-3209 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-1618 (((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48))) +(((-578 |#1| |#2|) (-10 -7 (-15 -3302 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3209 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1618 ((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3260 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -578)) +((-3260 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-1618 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -1527 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-3209 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148) (-1053 (-574)))) (-5 *1 (-578 *3 *4)))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) +(-10 -7 (-15 -3302 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3209 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -1618 ((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -3260 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) +((-4037 (((-3 (-574) "failed") |#1|) 14)) (-1728 (((-112) |#1|) 13)) (-3999 (((-574) |#1|) 9))) +(((-579 |#1|) (-10 -7 (-15 -3999 ((-574) |#1|)) (-15 -1728 ((-112) |#1|)) (-15 -4037 ((-3 (-574) "failed") |#1|))) (-1053 (-574))) (T -579)) +((-4037 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1053 (-574))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2))))) +(-10 -7 (-15 -3999 ((-574) |#1|)) (-15 -1728 ((-112) |#1|)) (-15 -4037 ((-3 (-574) "failed") |#1|))) +((-1676 (((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|)))) 48)) (-2317 (((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192)) 28)) (-2958 (((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192)) 23)) (-3191 (((-3 (-2 (|:| -1527 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))) 35))) +(((-580 |#1|) (-10 -7 (-15 -2317 ((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -2958 ((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192))) (-15 -1676 ((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|))))) (-15 -3191 ((-3 (-2 (|:| -1527 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))))) (-13 (-566) (-1053 (-574)) (-148))) (T -580)) +((-3191 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-2 (|:| -1527 (-417 (-965 *5))) (|:| |coeff| (-417 (-965 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5))))) (-1676 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 (-417 (-965 *6)))) (-5 *3 (-417 (-965 *6))) (-4 *6 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-2958 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-148))) (-5 *1 (-580 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) (-5 *2 (-596 (-417 (-965 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5)))))) +(-10 -7 (-15 -2317 ((-596 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -2958 ((-3 (-417 (-965 |#1|)) "failed") (-417 (-965 |#1|)) (-1192))) (-15 -1676 ((-3 (-2 (|:| |mainpart| (-417 (-965 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-965 |#1|))) (|:| |logand| (-417 (-965 |#1|))))))) "failed") (-417 (-965 |#1|)) (-1192) (-654 (-417 (-965 |#1|))))) (-15 -3191 ((-3 (-2 (|:| -1527 (-417 (-965 |#1|))) (|:| |coeff| (-417 (-965 |#1|)))) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))))) +((-2863 (((-112) $ $) 75)) (-1997 (((-112) $) 48)) (-3015 ((|#1| $) 39)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) 79)) (-2378 (($ $) 139)) (-2260 (($ $) 118)) (-3672 ((|#1| $) 37)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL)) (-2357 (($ $) 141)) (-2238 (($ $) 114)) (-2403 (($ $) 143)) (-2281 (($ $) 122)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) 93)) (-2216 (((-574) $) 95)) (-2978 (((-3 $ "failed") $) 78)) (-1484 (($ |#1| |#1|) 35)) (-1348 (((-112) $) 44)) (-3003 (($) 104)) (-2276 (((-112) $) 55)) (-3649 (($ $ (-574)) NIL)) (-3081 (((-112) $) 45)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-3111 (($ $) 106)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1661 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-2730 ((|#1| $) 36)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) 81) (($ (-654 $)) NIL)) (-2852 (((-3 $ "failed") $ $) 80)) (-1619 (($ $) 108)) (-2415 (($ $) 147)) (-2289 (($ $) 120)) (-2388 (($ $) 149)) (-2271 (($ $) 124)) (-2367 (($ $) 145)) (-2249 (($ $) 116)) (-3059 (((-112) $ |#1|) 42)) (-2950 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-3781 (((-781)) 102 T CONST)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 161)) (-2319 (($ $) 130)) (-3676 (((-112) $ $) NIL)) (-2428 (($ $) 159)) (-2301 (($ $) 126)) (-2479 (($ $) 157)) (-2339 (($ $) 137)) (-2535 (($ $) 155)) (-2348 (($ $) 135)) (-2467 (($ $) 153)) (-2329 (($ $) 132)) (-2442 (($ $) 151)) (-2311 (($ $) 128)) (-2143 (($) 30 T CONST)) (-2155 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 49)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 47)) (-3089 (($ $) 53) (($ $ $) 54)) (-3073 (($ $ $) 52)) (** (($ $ (-934)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-934) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61))) +(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1218))) (T -581)) +NIL +(-564 |#1|) +((-2580 (((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574))) 27))) +(((-582) (-10 -7 (-15 -2580 ((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574)))))) (T -582)) +((-2580 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 (-574)))) (-5 *3 (-1188 (-574))) (-5 *1 (-582))))) +(-10 -7 (-15 -2580 ((-3 (-654 (-1188 (-574))) "failed") (-654 (-1188 (-574))) (-1188 (-574))))) +((-3512 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192)) 19)) (-3355 (((-654 (-622 |#2|)) (-654 |#2|) (-1192)) 23)) (-4353 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-1325 ((|#2| |#2| (-1192)) 59 (|has| |#1| (-566)))) (-3894 ((|#2| |#2| (-1192)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-3698 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192)) 25)) (-2725 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-1473 (((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1053 (-1192))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574))))))) +(((-583 |#1| |#2|) (-10 -7 (-15 -3512 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192))) (-15 -2725 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3698 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3355 ((-654 (-622 |#2|)) (-654 |#2|) (-1192))) (IF (|has| |#1| (-566)) (-15 -1325 (|#2| |#2| (-1192))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3894 (|#2| |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1053 (-1192))) (-15 -1473 ((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1115) (-440 |#1|)) (T -583)) +((-1473 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1192))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1192))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1053 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1192)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1115)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-462)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-1325 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1192)) (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1115)) (-5 *1 (-583 *3 *4)))) (-3698 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1192)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *1 (-583 *5 *6)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1115)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-3512 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1192)) (-4 *5 (-440 *4)) (-4 *4 (-1115)) (-5 *1 (-583 *4 *5))))) +(-10 -7 (-15 -3512 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1192))) (-15 -2725 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3698 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1192))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3355 ((-654 (-622 |#2|)) (-654 |#2|) (-1192))) (IF (|has| |#1| (-566)) (-15 -1325 (|#2| |#2| (-1192))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3894 (|#2| |#2| (-1192))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1053 (-1192))) (-15 -1473 ((-596 |#2|) |#2| (-1192) (-1 (-596 |#2|) |#2| (-1192)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1192)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1756 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-3898 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-3295 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-1926 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2846 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3597 (((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-2603 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-4075 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-2336 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-4221 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-2518 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-3021 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-1839 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210))) +(((-584 |#1| |#2|) (-10 -7 (-15 -2846 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3021 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1756 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2603 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1839 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -3898 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -4221 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3597 ((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -3295 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1926 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2518 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4075 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2336 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -584)) +((-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-2518 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *1 (-584 *4 *5)))) (-1926 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1259 *4)))) (-3295 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1259 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-3597 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1527 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-4221 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3877 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-3898 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1527 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-1839 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -1527 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2603 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1527 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -1527 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1756 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-3021 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1527 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(-10 -7 (-15 -2846 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3021 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1756 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2603 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -1839 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -3898 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -4221 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3597 ((-3 (-2 (|:| -1527 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -3295 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1926 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2518 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3877 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4075 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2336 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1754 (((-3 |#2| "failed") |#2| (-1192) (-1192)) 10))) +(((-585 |#1| |#2|) (-10 -7 (-15 -1754 ((-3 |#2| "failed") |#2| (-1192) (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-1154) (-29 |#1|))) (T -585)) +((-1754 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-1154) (-29 *4)))))) +(-10 -7 (-15 -1754 ((-3 |#2| "failed") |#2| (-1192) (-1192)))) +((-1424 (((-701 (-1241)) $ (-1241)) 26)) (-2559 (((-701 (-559)) $ (-559)) 25)) (-2285 (((-781) $ (-129)) 27)) (-1727 (((-701 (-130)) $ (-130)) 24)) (-1871 (((-701 (-1241)) $) 12)) (-2874 (((-701 (-1239)) $) 8)) (-1906 (((-701 (-1238)) $) 10)) (-3974 (((-701 (-559)) $) 13)) (-1894 (((-701 (-557)) $) 9)) (-2035 (((-701 (-556)) $) 11)) (-3404 (((-781) $ (-129)) 7)) (-3825 (((-701 (-130)) $) 14)) (-2474 (($ $) 6))) +(((-586) (-141)) (T -586)) +NIL +(-13 (-537) (-870)) +(((-175) . T) ((-537) . T) ((-870) . T)) +((-1424 (((-701 (-1241)) $ (-1241)) NIL)) (-2559 (((-701 (-559)) $ (-559)) NIL)) (-2285 (((-781) $ (-129)) NIL)) (-1727 (((-701 (-130)) $ (-130)) NIL)) (-1871 (((-701 (-1241)) $) NIL)) (-2874 (((-701 (-1239)) $) NIL)) (-1906 (((-701 (-1238)) $) NIL)) (-3974 (((-701 (-559)) $) NIL)) (-1894 (((-701 (-557)) $) NIL)) (-2035 (((-701 (-556)) $) NIL)) (-3404 (((-781) $ (-129)) NIL)) (-3825 (((-701 (-130)) $) NIL)) (-1582 (((-112) $) NIL)) (-3136 (($ (-398)) 14) (($ (-1174)) 16)) (-2950 (((-872) $) NIL)) (-2474 (($ $) NIL))) +(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -3136 ($ (-398))) (-15 -3136 ($ (-1174))) (-15 -1582 ((-112) $))))) (T -587)) +((-3136 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-587)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))) +(-13 (-586) (-623 (-872)) (-10 -8 (-15 -3136 ($ (-398))) (-15 -3136 ($ (-1174))) (-15 -1582 ((-112) $)))) +((-2863 (((-112) $ $) NIL)) (-3230 (($) 7 T CONST)) (-1938 (((-1174) $) NIL)) (-1462 (($) 6 T CONST)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15)) (-1900 (($) 9 T CONST)) (-1973 (($) 8 T CONST)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) +(((-588) (-13 (-1115) (-10 -8 (-15 -1462 ($) -1716) (-15 -3230 ($) -1716) (-15 -1973 ($) -1716) (-15 -1900 ($) -1716)))) (T -588)) +((-1462 (*1 *1) (-5 *1 (-588))) (-3230 (*1 *1) (-5 *1 (-588))) (-1973 (*1 *1) (-5 *1 (-588))) (-1900 (*1 *1) (-5 *1 (-588)))) +(-13 (-1115) (-10 -8 (-15 -1462 ($) -1716) (-15 -3230 ($) -1716) (-15 -1973 ($) -1716) (-15 -1900 ($) -1716))) +((-2863 (((-112) $ $) NIL)) (-1813 (((-701 $) (-501)) 21)) (-1938 (((-1174) $) NIL)) (-2650 (($ (-1174)) 14)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 33)) (-2115 (((-215 4 (-130)) $) 24)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 26))) +(((-589) (-13 (-1115) (-10 -8 (-15 -2650 ($ (-1174))) (-15 -2115 ((-215 4 (-130)) $)) (-15 -1813 ((-701 $) (-501)))))) (T -589)) +((-2650 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-589)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) +(-13 (-1115) (-10 -8 (-15 -2650 ($ (-1174))) (-15 -2115 ((-215 4 (-130)) $)) (-15 -1813 ((-701 $) (-501))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) 75)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-1446 (($ (-1188 (-574)) (-574)) 81)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) 66)) (-2353 (($ $) 43)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-3837 (((-781) $) 16)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4154 (((-574)) 37)) (-2880 (((-574) $) 41)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-574)) 24)) (-2852 (((-3 $ "failed") $ $) 71)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) 17)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 72)) (-2829 (((-1172 (-574)) $) 19)) (-2073 (($ $) 26)) (-2950 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-3781 (((-781)) 15 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) 46)) (-2143 (($) 44 T CONST)) (-2155 (($) 21 T CONST)) (-2985 (((-112) $ $) 52)) (-3089 (($ $) 60) (($ $ $) 48)) (-3073 (($ $ $) 59)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63))) +(((-590 |#1| |#2|) (-879 |#1|) (-574) (-112)) (T -590)) +NIL +(-879 |#1|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 30)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-3334 (((-1205 (-934) (-781)) (-574)) 59)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 $ "failed") $) 95)) (-2216 (($ $) 94)) (-3875 (($ (-1283 $)) 93)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) 44)) (-2834 (($) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) 61)) (-1627 (((-112) $) NIL)) (-4278 (($ $) NIL) (($ $ (-781)) NIL)) (-2941 (((-112) $) NIL)) (-3837 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2276 (((-112) $) NIL)) (-1888 (($) 49 (|has| $ (-377)))) (-4340 (((-112) $) NIL (|has| $ (-377)))) (-2681 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-4217 (((-3 $ "failed") $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 $) $ (-934)) NIL (|has| $ (-377))) (((-1188 $) $) 104)) (-3880 (((-934) $) 67)) (-2695 (((-1188 $) $) NIL (|has| $ (-377)))) (-1729 (((-3 (-1188 $) "failed") $ $) NIL (|has| $ (-377))) (((-1188 $) $) NIL (|has| $ (-377)))) (-3749 (($ $ (-1188 $)) NIL (|has| $ (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) 60)) (-4370 (((-112) $) 87)) (-3939 (((-1135) $) NIL)) (-2974 (($) 28 (|has| $ (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 54)) (-4200 (((-428 $) $) NIL)) (-4210 (((-934)) 86) (((-843 (-934))) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2900 (((-135)) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-4144 (((-934) $) 85) (((-843 (-934)) $) NIL)) (-2611 (((-1188 $)) 102)) (-3627 (($) 66)) (-4022 (($) 50 (|has| $ (-377)))) (-4421 (((-699 $) (-1283 $)) NIL) (((-1283 $) $) 91)) (-1846 (((-574) $) 40)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3270 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3781 (((-781)) 51 T CONST)) (-4259 (((-112) $ $) 107)) (-3907 (((-1283 $) (-934)) 97) (((-1283 $)) 96)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) 31 T CONST)) (-2155 (($) 27 T CONST)) (-3337 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-934)) (T -591)) +NIL +(-13 (-358) (-337 $) (-624 (-574))) +((-4051 (((-1288) (-1174)) 10))) +(((-592) (-10 -7 (-15 -4051 ((-1288) (-1174))))) (T -592)) +((-4051 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-592))))) +(-10 -7 (-15 -4051 ((-1288) (-1174)))) +((-4369 (((-596 |#2|) (-596 |#2|)) 42)) (-2138 (((-654 |#2|) (-596 |#2|)) 44)) (-1361 ((|#2| (-596 |#2|)) 50))) +(((-593 |#1| |#2|) (-10 -7 (-15 -4369 ((-596 |#2|) (-596 |#2|))) (-15 -2138 ((-654 |#2|) (-596 |#2|))) (-15 -1361 (|#2| (-596 |#2|)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1218))) (T -593)) +((-1361 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1218))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1218))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-4369 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1218))) (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4))))) +(-10 -7 (-15 -4369 ((-596 |#2|) (-596 |#2|))) (-15 -2138 ((-654 |#2|) (-596 |#2|))) (-15 -1361 (|#2| (-596 |#2|)))) +((-1787 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30))) +(((-594 |#1| |#2|) (-10 -7 (-15 -1787 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1787 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1787 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594)) +((-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1527 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -1527 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))) +(-10 -7 (-15 -1787 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1787 ((-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1527 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1787 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3617 (($ (-516) (-607)) 14)) (-2002 (($ (-516) (-607) $) 16)) (-3873 (($ (-516) (-607)) 15)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) 7) (((-1197) $) 6)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-595) (-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -3617 ($ (-516) (-607))) (-15 -3873 ($ (-516) (-607))) (-15 -2002 ($ (-516) (-607) $))))) (T -595)) +((-3617 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-2002 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -3617 ($ (-516) (-607))) (-15 -3873 ($ (-516) (-607))) (-15 -2002 ($ (-516) (-607) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 76)) (-2216 ((|#1| $) NIL)) (-1527 ((|#1| $) 30)) (-1556 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1363 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1800 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $) 31)) (-1938 (((-1174) $) NIL)) (-3452 (($ |#1| |#1|) 38) (($ |#1| (-1192)) 49 (|has| |#1| (-1053 (-1192))))) (-3939 (((-1135) $) NIL)) (-2804 (((-112) $) 35)) (-3878 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1192)) 89 (|has| |#1| (-913 (-1192))))) (-2950 (((-872) $) 110) (($ |#1|) 29)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 18 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3073 (($ $ $) 85)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL))) +(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1053 |#1|) (-10 -8 (-15 -1363 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1527 (|#1| $)) (-15 -1800 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $)) (-15 -1556 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2804 ((-112) $)) (-15 -3452 ($ |#1| |#1|)) (-15 -3878 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1192))) (-15 -3878 (|#1| $ (-1192))) |%noBranch|) (IF (|has| |#1| (-1053 (-1192))) (-15 -3452 ($ |#1| (-1192))) |%noBranch|))) (-372)) (T -596)) +((-1363 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *2)) (|:| |logand| (-1188 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-1527 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *3)) (|:| |logand| (-1188 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3452 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3878 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-913 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1192)))) (-3452 (*1 *1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *1 (-596 *2)) (-4 *2 (-1053 *3)) (-4 *2 (-372))))) +(-13 (-727 (-417 (-574))) (-1053 |#1|) (-10 -8 (-15 -1363 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1527 (|#1| $)) (-15 -1800 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 |#1|)) (|:| |logand| (-1188 |#1|)))) $)) (-15 -1556 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2804 ((-112) $)) (-15 -3452 ($ |#1| |#1|)) (-15 -3878 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1192))) (-15 -3878 (|#1| $ (-1192))) |%noBranch|) (IF (|has| |#1| (-1053 (-1192))) (-15 -3452 ($ |#1| (-1192))) |%noBranch|))) +((-4087 (((-112) |#1|) 16)) (-4111 (((-3 |#1| "failed") |#1|) 14)) (-3279 (((-2 (|:| -2644 |#1|) (|:| -3843 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-4101 (((-112) |#1| (-781)) 19)) (-3908 ((|#1| |#1|) 42)) (-2758 ((|#1| |#1| (-781)) 45))) +(((-597 |#1|) (-10 -7 (-15 -4101 ((-112) |#1| (-781))) (-15 -3279 ((-3 |#1| "failed") |#1| (-781))) (-15 -3279 ((-2 (|:| -2644 |#1|) (|:| -3843 (-781))) |#1|)) (-15 -2758 (|#1| |#1| (-781))) (-15 -4087 ((-112) |#1|)) (-15 -4111 ((-3 |#1| "failed") |#1|)) (-15 -3908 (|#1| |#1|))) (-555)) (T -597)) +((-3908 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4111 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -3843 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-3279 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -4101 ((-112) |#1| (-781))) (-15 -3279 ((-3 |#1| "failed") |#1| (-781))) (-15 -3279 ((-2 (|:| -2644 |#1|) (|:| -3843 (-781))) |#1|)) (-15 -2758 (|#1| |#1| (-781))) (-15 -4087 ((-112) |#1|)) (-15 -4111 ((-3 |#1| "failed") |#1|)) (-15 -3908 (|#1| |#1|))) +((-3745 (((-1188 |#1|) (-934)) 44))) +(((-598 |#1|) (-10 -7 (-15 -3745 ((-1188 |#1|) (-934)))) (-358)) (T -598)) +((-3745 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358))))) +(-10 -7 (-15 -3745 ((-1188 |#1|) (-934)))) +((-4369 (((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|)))) 27)) (-3302 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192)) 34 (|has| |#1| (-148)))) (-2138 (((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|)))) 19)) (-3973 (((-324 |#1|) (-417 (-965 |#1|)) (-1192)) 32 (|has| |#1| (-148)))) (-1361 (((-324 |#1|) (-596 (-417 (-965 |#1|)))) 21))) +(((-599 |#1|) (-10 -7 (-15 -4369 ((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|))))) (-15 -2138 ((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|))))) (-15 -1361 ((-324 |#1|) (-596 (-417 (-965 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3302 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3973 ((-324 |#1|) (-417 (-965 |#1|)) (-1192)))) |%noBranch|)) (-13 (-462) (-1053 (-574)) (-649 (-574)))) (T -599)) +((-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-965 *4)))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-965 *4)))) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-4369 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-965 *3)))) (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))) +(-10 -7 (-15 -4369 ((-596 (-417 (-965 |#1|))) (-596 (-417 (-965 |#1|))))) (-15 -2138 ((-654 (-324 |#1|)) (-596 (-417 (-965 |#1|))))) (-15 -1361 ((-324 |#1|) (-596 (-417 (-965 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3302 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -3973 ((-324 |#1|) (-417 (-965 |#1|)) (-1192)))) |%noBranch|)) +((-2647 (((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-934))) 79) (((-699 (-574)) (-654 (-934)) (-918 (-574))) 72)) (-3479 (((-781) (-654 (-934))) 69))) +(((-600) (-10 -7 (-15 -3479 ((-781) (-654 (-934)))) (-15 -2647 ((-699 (-574)) (-654 (-934)) (-918 (-574)))) (-15 -2647 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2647 ((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574))))))) (T -600)) +((-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-918 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-918 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-781)) (-5 *1 (-600))))) +(-10 -7 (-15 -3479 ((-781) (-654 (-934)))) (-15 -2647 ((-699 (-574)) (-654 (-934)) (-918 (-574)))) (-15 -2647 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2647 ((-654 (-699 (-574))) (-654 (-934)) (-654 (-918 (-574)))))) +((-3897 (((-654 |#5|) |#5| (-112)) 100)) (-3491 (((-112) |#5| (-654 |#5|)) 34))) +(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3897 ((-654 |#5|) |#5| (-112))) (-15 -3491 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1124 |#1| |#2| |#3| |#4|)) (T -601)) +((-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1124 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1124 *5 *6 *7 *8))))) +(-10 -7 (-15 -3897 ((-654 |#5|) |#5| (-112))) (-15 -3491 ((-112) |#5| (-654 |#5|)))) +((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1806 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-602) (-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -602)) +((-1806 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602))))) +(-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $)))) +((-2863 (((-112) $ $) NIL (|has| (-145) (-1115)))) (-4025 (($ $) 38)) (-1877 (($ $) NIL)) (-3120 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 67)) (-3664 (((-112) $ $ (-574)) 62)) (-4369 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-4251 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-2212 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-860))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-2631 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2469 (($ $ (-1250 (-574)) $) 57)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) NIL)) (-3705 (((-112) $ $) 88)) (-1451 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1874 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 9)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 32 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-145) (-860)))) (-4333 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-4187 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-1965 (((-574) $) 47 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 89)) (-2697 (((-781) $ $ (-145)) 86)) (-2464 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2128 (($ $) 41)) (-1681 (($ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-2645 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-1938 (((-1174) $) 43 (|has| (-145) (-1115)))) (-1604 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) 85 (|has| (-145) (-1115)))) (-2924 (((-145) $) NIL (|has| (-574) (-860)))) (-1745 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2485 (($ $ (-145)) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3670 (((-654 (-145)) $) NIL)) (-2234 (((-112) $) 15)) (-4272 (($) 10)) (-2209 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1250 (-574))) 25) (($ $ $) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3957 (($ $ $ (-574)) 81 (|has| $ (-6 -4459)))) (-3156 (($ $) 20)) (-1846 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) NIL)) (-4131 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2950 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| (-145) (-1115)))) (-2235 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2985 (((-112) $ $) 17 (|has| (-145) (-1115)))) (-3029 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3008 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2876 (((-781) $) 16 (|has| $ (-6 -4458))))) +(((-603 |#1|) (-1159) (-574)) (T -603)) +NIL +(-1159) +((-3534 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|)) 32))) +(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|)) (T -604)) +((-3534 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1109 *3)) (-4 *3 (-962 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3))))) +(-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1109 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 71)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-4034 (($ $) 109)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2919 (((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574))) 241)) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4396 (((-112) $) NIL)) (-3837 (((-574) $) 63) (((-574) $ (-574)) 64)) (-2276 (((-112) $) NIL)) (-2528 (($ $ (-934)) 83)) (-3936 (($ (-1 |#1| (-574)) $) 80)) (-3513 (((-112) $) 26)) (-4327 (($ |#1| (-574)) 22) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-2525 (($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3302 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-2521 (((-3 $ "failed") $ $ (-112)) 108)) (-2013 (($ $ $) 116)) (-3939 (((-1135) $) NIL)) (-3792 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-2577 (((-1041 (-853 (-574))) $) 14)) (-4016 (($ $ (-574)) 47)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2209 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-4144 (((-574) $) NIL)) (-2073 (($ $) 48)) (-2950 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3584 ((|#1| $ (-574)) 61)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) 39 T CONST)) (-3332 ((|#1| $) NIL)) (-1350 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-4011 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2961 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-1826 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2426 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-3400 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-4289 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-4276 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-4320 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-4381 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2827 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-3715 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2610 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-1623 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-3955 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-4428 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-1944 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-3152 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-1524 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-3659 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2741 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-3641 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-4427 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-2257 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-3739 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-3542 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-1747 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-1616 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2143 (($) 30 T CONST)) (-2155 (($) 40 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2985 (((-112) $ $) 73)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 91) (($ $ $) 72)) (-3073 (($ $ $) 88)) (** (($ $ (-934)) NIL) (($ $ (-781)) 111)) (* (($ (-934) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-605 |#1|) (-13 (-1261 |#1| (-574)) (-10 -8 (-15 -2525 ($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -2577 ((-1041 (-853 (-574))) $)) (-15 -3792 ((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3513 ((-112) $)) (-15 -3936 ($ (-1 |#1| (-574)) $)) (-15 -2521 ((-3 $ "failed") $ $ (-112))) (-15 -4034 ($ $)) (-15 -2013 ($ $ $)) (-15 -2919 ((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $)) (-15 -4276 ($ $ |#1|)) (-15 -4289 ($ $ (-417 (-574)))) (-15 -4381 ($ $)) (-15 -4320 ($ $)) (-15 -1826 ($ $)) (-15 -4428 ($ $)) (-15 -4011 ($ $)) (-15 -1623 ($ $)) (-15 -3400 ($ $)) (-15 -3715 ($ $)) (-15 -3659 ($ $)) (-15 -1616 ($ $)) (-15 -3152 ($ $)) (-15 -3542 ($ $)) (-15 -3641 ($ $)) (-15 -2257 ($ $)) (-15 -2961 ($ $)) (-15 -3955 ($ $)) (-15 -1350 ($ $)) (-15 -2610 ($ $)) (-15 -2426 ($ $)) (-15 -2827 ($ $)) (-15 -1524 ($ $)) (-15 -1747 ($ $)) (-15 -1944 ($ $)) (-15 -3739 ($ $)) (-15 -2741 ($ $)) (-15 -4427 ($ $))) |%noBranch|))) (-1064)) (T -605)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-2525 (*1 *1 *2 *3) (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1064)) (-5 *1 (-605 *4)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) (-3936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) (-2521 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) (-4034 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064)))) (-2013 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064)))) (-2919 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1041 (-853 (-574)))) (-5 *5 (-1192)) (-5 *7 (-417 (-574))) (-4 *6 (-1064)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1064)))) (-4381 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4320 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1826 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4428 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4011 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1623 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3715 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3641 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1350 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2610 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2426 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2827 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-3739 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-2741 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) (-4427 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(-13 (-1261 |#1| (-574)) (-10 -8 (-15 -2525 ($ (-1041 (-853 (-574))) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -2577 ((-1041 (-853 (-574))) $)) (-15 -3792 ((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3513 ((-112) $)) (-15 -3936 ($ (-1 |#1| (-574)) $)) (-15 -2521 ((-3 $ "failed") $ $ (-112))) (-15 -4034 ($ $)) (-15 -2013 ($ $ $)) (-15 -2919 ((-872) (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1041 (-853 (-574))) (-1192) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $)) (-15 -4276 ($ $ |#1|)) (-15 -4289 ($ $ (-417 (-574)))) (-15 -4381 ($ $)) (-15 -4320 ($ $)) (-15 -1826 ($ $)) (-15 -4428 ($ $)) (-15 -4011 ($ $)) (-15 -1623 ($ $)) (-15 -3400 ($ $)) (-15 -3715 ($ $)) (-15 -3659 ($ $)) (-15 -1616 ($ $)) (-15 -3152 ($ $)) (-15 -3542 ($ $)) (-15 -3641 ($ $)) (-15 -2257 ($ $)) (-15 -2961 ($ $)) (-15 -3955 ($ $)) (-15 -1350 ($ $)) (-15 -2610 ($ $)) (-15 -2426 ($ $)) (-15 -2827 ($ $)) (-15 -1524 ($ $)) (-15 -1747 ($ $)) (-15 -1944 ($ $)) (-15 -3739 ($ $)) (-15 -2741 ($ $)) (-15 -4427 ($ $))) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 63)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3596 (($ (-1172 |#1|)) 9)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) 44)) (-4396 (((-112) $) 56)) (-3837 (((-781) $) 61) (((-781) $ (-781)) 60)) (-2276 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-1172 |#1|) $) 25)) (-3781 (((-781)) 55 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 10 T CONST)) (-2155 (($) 14 T CONST)) (-2985 (((-112) $ $) 24)) (-3089 (($ $) 32) (($ $ $) 16)) (-3073 (($ $ $) 27)) (** (($ $ (-934)) NIL) (($ $ (-781)) 53)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38))) +(((-606 |#1|) (-13 (-1064) (-111 |#1| |#1|) (-10 -8 (-15 -3133 ((-1172 |#1|) $)) (-15 -3596 ($ (-1172 |#1|))) (-15 -4396 ((-112) $)) (-15 -3837 ((-781) $)) (-15 -3837 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1064)) (T -606)) +((-3133 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-606 *3)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (-3837 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1064))))) +(-13 (-1064) (-111 |#1| |#1|) (-10 -8 (-15 -3133 ((-1172 |#1|) $)) (-15 -3596 ($ (-1172 |#1|))) (-15 -4396 ((-112) $)) (-15 -3837 ((-781) $)) (-15 -3837 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1790 (($) 8 T CONST)) (-4165 (($) 7 T CONST)) (-3239 (($ $ (-654 $)) 16)) (-1938 (((-1174) $) NIL)) (-2634 (($) 6 T CONST)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) 15) (((-1197) $) 10)) (-3606 (($) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-607) (-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -2634 ($) -1716) (-15 -4165 ($) -1716) (-15 -1790 ($) -1716) (-15 -3606 ($) -1716) (-15 -3239 ($ $ (-654 $)))))) (T -607)) +((-2634 (*1 *1) (-5 *1 (-607))) (-4165 (*1 *1) (-5 *1 (-607))) (-1790 (*1 *1) (-5 *1 (-607))) (-3606 (*1 *1) (-5 *1 (-607))) (-3239 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) +(-13 (-1115) (-500 (-1197)) (-10 -8 (-15 -2634 ($) -1716) (-15 -4165 ($) -1716) (-15 -1790 ($) -1716) (-15 -3606 ($) -1716) (-15 -3239 ($ $ (-654 $))))) +((-1787 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15))) +(((-608 |#1| |#2|) (-10 -7 (-15 -1787 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1233) (-1233)) (T -608)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))) +(-10 -7 (-15 -1787 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) +((-1787 (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)) 20) (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18))) +(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|))) (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)))) (-1233) (-1233) (-1233)) (T -609)) +((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1172 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8))))) +(-10 -7 (-15 -1787 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-611 |#2|))) (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1172 |#2|)))) +((-2189 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))) 57)) (-1996 (((-171 |#2|) |#3|) 122)) (-1599 ((|#3| (-171 |#2|)) 46)) (-2815 ((|#2| |#3|) 21)) (-2243 ((|#3| |#2|) 35))) +(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -1599 (|#3| (-171 |#2|))) (-15 -2815 (|#2| |#3|)) (-15 -2243 (|#3| |#2|)) (-15 -1996 ((-171 |#2|) |#3|)) (-15 -2189 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))))) (-566) (-13 (-440 |#1|) (-1017) (-1218)) (-13 (-440 (-171 |#1|)) (-1017) (-1218))) (T -610)) +((-2189 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1192))) (-4 *2 (-13 (-440 (-171 *5)) (-1017) (-1218))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1017) (-1218))))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218))))) (-2243 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1017) (-1218))))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218))))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) (-5 *1 (-610 *4 *5 *2))))) +(-10 -7 (-15 -1599 (|#3| (-171 |#2|))) (-15 -2815 (|#2| |#3|)) (-15 -2243 (|#3| |#2|)) (-15 -1996 ((-171 |#2|) |#3|)) (-15 -2189 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1192))))) +((-2175 (($ (-1 (-112) |#1|) $) 17)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2104 (($ (-1 |#1| |#1|) |#1|) 9)) (-2150 (($ (-1 (-112) |#1|) $) 13)) (-2162 (($ (-1 (-112) |#1|) $) 15)) (-2962 (((-1172 |#1|) $) 18)) (-2950 (((-872) $) NIL))) +(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2175 ($ (-1 (-112) |#1|) $)) (-15 -2104 ($ (-1 |#1| |#1|) |#1|)) (-15 -2962 ((-1172 |#1|) $)))) (-1233)) (T -611)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2104 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1233))))) +(-13 (-623 (-872)) (-10 -8 (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2175 ($ (-1 (-112) |#1|) $)) (-15 -2104 ($ (-1 |#1| |#1|) |#1|)) (-15 -2962 ((-1172 |#1|) $)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781)) NIL (|has| |#1| (-23)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1697 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-2713 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2546 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3073 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-612 |#1| |#2|) (-1281 |#1|) (-1233) (-574)) (T -612)) +NIL +(-1281 |#1|) +((-2057 (((-1288) $ |#2| |#2|) 35)) (-2344 ((|#2| $) 23)) (-1965 ((|#2| $) 21)) (-2464 (($ (-1 |#3| |#3|) $) 32)) (-1787 (($ (-1 |#3| |#3|) $) 30)) (-2924 ((|#3| $) 26)) (-2485 (($ $ |#3|) 33)) (-3961 (((-112) |#3| $) 17)) (-3670 (((-654 |#3|) $) 15)) (-2209 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -2057 ((-1288) |#1| |#2| |#2|)) (-15 -2485 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2344 (|#2| |#1|)) (-15 -1965 (|#2| |#1|)) (-15 -3961 ((-112) |#3| |#1|)) (-15 -3670 ((-654 |#3|) |#1|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2464 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1115) (-1233)) (T -613)) +NIL +(-10 -8 (-15 -2057 ((-1288) |#1| |#2| |#2|)) (-15 -2485 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2344 (|#2| |#1|)) (-15 -1965 (|#2| |#1|)) (-15 -3961 ((-112) |#3| |#1|)) (-15 -3670 ((-654 |#3|) |#1|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2464 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#2| (-1115)))) (-2057 (((-1288) $ |#1| |#1|) 41 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-2473 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 52)) (-1874 (((-654 |#2|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-2344 ((|#1| $) 44 (|has| |#1| (-860)))) (-4187 (((-654 |#2|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-1965 ((|#1| $) 45 (|has| |#1| (-860)))) (-2464 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#2| (-1115)))) (-2435 (((-654 |#1|) $) 47)) (-4088 (((-112) |#1| $) 48)) (-3939 (((-1135) $) 21 (|has| |#2| (-1115)))) (-2924 ((|#2| $) 43 (|has| |#1| (-860)))) (-2485 (($ $ |#2|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3948 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4458))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#2| (-1115)))) (-2235 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#2| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-614 |#1| |#2|) (-141) (-1115) (-1233)) (T -614)) +((-3670 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-654 *4)))) (-4088 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-654 *3)))) (-3961 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1115)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) (-4 *2 (-860)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *3 (-860)) (-4 *2 (-1233)))) (-2485 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) (-2057 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) (-5 *2 (-1288))))) +(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -3670 ((-654 |t#2|) $)) (-15 -4088 ((-112) |t#1| $)) (-15 -2435 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1115)) (IF (|has| $ (-6 -4458)) (-15 -3961 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -1965 (|t#1| $)) (-15 -2344 (|t#1| $)) (-15 -2924 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2485 ($ $ |t#2|)) (-15 -2057 ((-1288) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1115)) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-1115) |has| |#2| (-1115)) ((-1233) . T)) +((-2950 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-615) (-13 (-623 (-872)) (-500 (-130)))) (T -615)) +NIL +(-13 (-623 (-872)) (-500 (-130))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) NIL) (((-1197) $) NIL) (((-1232) $) 14) (($ (-654 (-1232))) 13)) (-4279 (((-654 (-1232)) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-616) (-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -4279 ((-654 (-1232)) $))))) (T -616)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616))))) +(-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-654 (-1232)))) (-15 -4279 ((-654 (-1232)) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3462 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-2555 (((-1283 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1283 (-699 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4000 (((-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3063 (($) NIL T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3294 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4073 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3197 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4060 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3790 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2158 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3558 (($ $ (-934)) NIL)) (-2755 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2390 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2866 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2447 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1550 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3875 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1283 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2978 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3557 (((-934)) NIL (|has| |#2| (-376 |#1|)))) (-2676 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2867 (($ $ (-934)) NIL)) (-3236 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3954 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3502 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3100 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4132 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1830 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1341 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1719 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2883 (($ $ (-934)) NIL)) (-2670 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2664 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3038 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1373 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1808 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1938 (((-1174) $) NIL)) (-3618 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4004 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3380 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3939 (((-1135) $) NIL)) (-4147 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2209 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-4421 (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $) (-1283 $)) NIL (|has| |#2| (-376 |#1|))) (((-1283 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1846 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2414 (((-654 (-965 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-965 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2987 (($ $ $) NIL)) (-4390 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2950 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL (|has| |#2| (-427 |#1|)))) (-2433 (((-654 (-1283 |#1|))) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1391 (($ $ $ $) NIL)) (-2579 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2911 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2824 (($ $ $) NIL)) (-4208 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4124 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2170 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2143 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) 24)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617)) +((-2950 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))) +(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-3347 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) 39)) (-3751 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL) (($) NIL)) (-2057 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-1174) |#1|) 49)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#1| "failed") (-1174) $) 52)) (-3063 (($) NIL T CONST)) (-3613 (($ $ (-1174)) 25)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-3245 (((-3 |#1| "failed") (-1174) $) 53) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (|has| $ (-6 -4458)))) (-3310 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-1685 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) 38)) (-2473 ((|#1| $ (-1174) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-1174)) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-1479 (($ $) 54)) (-1686 (($ (-398)) 23) (($ (-398) (-1174)) 22)) (-2041 (((-398) $) 40)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-1174) $) NIL (|has| (-1174) (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458))) (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-1965 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1773 (((-654 (-1174)) $) 45)) (-3735 (((-112) (-1174) $) NIL)) (-1552 (((-1174) $) 41)) (-1494 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-2435 (((-654 (-1174)) $) NIL)) (-4088 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) NIL (|has| (-1174) (-860)))) (-1745 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 43)) (-2209 ((|#1| $ (-1174) |#1|) NIL) ((|#1| $ (-1174)) 48)) (-2163 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL) (($) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-2950 (((-872) $) 21)) (-2474 (($ $) 26)) (-4259 (((-112) $ $) NIL)) (-2765 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) (-1209 (-1174) |#1|) (-10 -8 (-6 -4458) (-15 -1479 ($ $)))) (-1115)) (T -618)) +((-1479 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1115))))) +(-13 (-373 (-398) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) (-1209 (-1174) |#1|) (-10 -8 (-6 -4458) (-15 -1479 ($ $)))) +((-3801 (((-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) 16)) (-1773 (((-654 |#2|) $) 20)) (-3735 (((-112) |#2| $) 12))) +(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1773 ((-654 |#2|) |#1|)) (-15 -3735 ((-112) |#2| |#1|)) (-15 -3801 ((-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|))) (-620 |#2| |#3|) (-1115) (-1115)) (T -619)) +NIL +(-10 -8 (-15 -1773 ((-654 |#2|) |#1|)) (-15 -3735 ((-112) |#2| |#1|)) (-15 -3801 ((-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|))) +((-2863 (((-112) $ $) 19 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-3063 (($) 7 T CONST)) (-2818 (($ $) 59 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-1773 (((-654 |#1|) $) 64)) (-3735 (((-112) |#1| $) 65)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 40)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 41)) (-3939 (((-1135) $) 21 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 52)) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 42)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2163 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 49)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 51)) (-2950 (((-872) $) 18 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 43)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-620 |#1| |#2|) (-141) (-1115) (-1115)) (T -620)) +((-3735 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-112)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-5 *2 (-654 *3)))) (-3245 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-2172 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(-13 (-231 (-2 (|:| -3666 |t#1|) (|:| -1918 |t#2|))) (-10 -8 (-15 -3735 ((-112) |t#1| $)) (-15 -1773 ((-654 |t#1|) $)) (-15 -3245 ((-3 |t#2| "failed") |t#1| $)) (-15 -2172 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((-102) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) ((-623 (-872)) -2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-1115) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) ((-1233) . T)) +((-2563 (((-622 |#2|) |#1|) 17)) (-2701 (((-3 |#1| "failed") (-622 |#2|)) 21))) +(((-621 |#1| |#2|) (-10 -7 (-15 -2563 ((-622 |#2|) |#1|)) (-15 -2701 ((-3 |#1| "failed") (-622 |#2|)))) (-1115) (-1115)) (T -621)) +((-2701 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) (-5 *1 (-621 *2 *4)))) (-2563 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) +(-10 -7 (-15 -2563 ((-622 |#2|) |#1|)) (-15 -2701 ((-3 |#1| "failed") (-622 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-2636 (((-3 (-1192) "failed") $) 46)) (-4081 (((-1288) $ (-781)) 22)) (-1451 (((-781) $) 20)) (-4151 (((-115) $) 9)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1784 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1192)) 33)) (-2454 (((-112) $ (-115)) 15) (((-112) $ (-1192)) 13)) (-1849 (((-781) $) 17)) (-3939 (((-1135) $) NIL)) (-1846 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2950 (((-872) $) 72)) (-4259 (((-112) $ $) NIL)) (-4021 (((-654 |#1|) $) 19)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 51)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 53))) +(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4151 ((-115) $)) (-15 -4021 ((-654 |#1|) $)) (-15 -1849 ((-781) $)) (-15 -1784 ($ (-115) (-654 |#1|) (-781))) (-15 -1784 ($ (-1192))) (-15 -2636 ((-3 (-1192) "failed") $)) (-15 -2454 ((-112) $ (-115))) (-15 -2454 ((-112) $ (-1192))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1115)) (T -622)) +((-4151 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-1784 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1115)) (-5 *1 (-622 *5)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-2636 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) (-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115)))) (-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115))))) +(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4151 ((-115) $)) (-15 -4021 ((-654 |#1|) $)) (-15 -1849 ((-781) $)) (-15 -1784 ($ (-115) (-654 |#1|) (-781))) (-15 -1784 ($ (-1192))) (-15 -2636 ((-3 (-1192) "failed") $)) (-15 -2454 ((-112) $ (-115))) (-15 -2454 ((-112) $ (-1192))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +((-2950 ((|#1| $) 6))) +(((-623 |#1|) (-141) (-1233)) (T -623)) +((-2950 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1233))))) +(-13 (-10 -8 (-15 -2950 (|t#1| $)))) +((-1846 ((|#1| $) 6))) +(((-624 |#1|) (-141) (-1233)) (T -624)) +((-1846 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1233))))) +(-13 (-10 -8 (-15 -1846 (|t#1| $)))) +((-3744 (((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16))) +(((-625 |#1| |#2|) (-10 -7 (-15 -3744 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3744 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -625)) +((-3744 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-1188 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-3744 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-1188 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5))))) +(-10 -7 (-15 -3744 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -3744 ((-3 (-1188 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) +((-2950 (($ |#1|) 6))) +(((-626 |#1|) (-141) (-1233)) (T -626)) +((-2950 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1233))))) +(-13 (-10 -8 (-15 -2950 ($ |t#1|)))) +((-2863 (((-112) $ $) NIL)) (-2042 (($) 14 T CONST)) (-1572 (($) 15 T CONST)) (-2108 (($ $ $) 29)) (-2086 (($ $) 27)) (-1938 (((-1174) $) NIL)) (-3951 (($ $ $) 30)) (-3939 (((-1135) $) NIL)) (-2896 (($) 11 T CONST)) (-2331 (($ $ $) 31)) (-2950 (((-872) $) 35)) (-2132 (((-112) $ (|[\|\|]| -2896)) 24) (((-112) $ (|[\|\|]| -2042)) 26) (((-112) $ (|[\|\|]| -1572)) 21)) (-4259 (((-112) $ $) NIL)) (-2097 (($ $ $) 28)) (-2985 (((-112) $ $) 18))) +(((-627) (-13 (-982) (-10 -8 (-15 -2042 ($) -1716) (-15 -2132 ((-112) $ (|[\|\|]| -2896))) (-15 -2132 ((-112) $ (|[\|\|]| -2042))) (-15 -2132 ((-112) $ (|[\|\|]| -1572)))))) (T -627)) +((-2042 (*1 *1) (-5 *1 (-627))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1572)) (-5 *2 (-112)) (-5 *1 (-627))))) +(-13 (-982) (-10 -8 (-15 -2042 ($) -1716) (-15 -2132 ((-112) $ (|[\|\|]| -2896))) (-15 -2132 ((-112) $ (|[\|\|]| -2042))) (-15 -2132 ((-112) $ (|[\|\|]| -1572))))) +((-1846 (($ |#1|) 6))) +(((-628 |#1|) (-141) (-1233)) (T -628)) +((-1846 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1233))))) +(-13 (-10 -8 (-15 -1846 ($ |t#1|)))) +((-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) +(((-629 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-630 |#2|) (-1064)) (T -629)) +NIL +(-10 -8 (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-630 |#1|) (-141) (-1064)) (T -630)) +((-2950 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1064))))) +(-13 (-1064) (-658 |t#1|) (-10 -8 (-15 -2950 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2496 (((-574) $) NIL (|has| |#1| (-858)))) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-1348 (((-112) $) NIL (|has| |#1| (-858)))) (-2276 (((-112) $) NIL)) (-2970 ((|#1| $) 13)) (-3081 (((-112) $) NIL (|has| |#1| (-858)))) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-2953 (($ $ $) NIL (|has| |#1| (-858)))) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2981 ((|#3| $) 15)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-3781 (((-781)) 20 T CONST)) (-4259 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-858)))) (-2143 (($) NIL T CONST)) (-2155 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3102 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3102 ($ $ |#3|)) (-15 -3102 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631)) +((-3102 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3102 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3102 ($ $ |#3|)) (-15 -3102 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) +((-2548 ((|#2| |#2| (-1192) (-1192)) 16))) +(((-632 |#1| |#2|) (-10 -7 (-15 -2548 (|#2| |#2| (-1192) (-1192)))) (-13 (-315) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-972) (-29 |#1|))) (T -632)) +((-2548 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-29 *4)))))) +(-10 -7 (-15 -2548 (|#2| |#2| (-1192) (-1192)))) +((-2863 (((-112) $ $) 64)) (-1997 (((-112) $) 58)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2601 ((|#1| $) 55)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2471 (((-2 (|:| -3987 $) (|:| -3141 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 27)) (-2978 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3837 (((-574) $) 22)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) 40)) (-4327 (($ |#1| (-574)) 24)) (-1377 ((|#1| $) 57)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) 93)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3575 (((-781) $) 115 (|has| |#1| (-372)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 114 (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-4144 (((-574) $) 38)) (-1846 (((-417 |#2|) $) 47)) (-2950 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-3584 ((|#1| $ (-574)) 72)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 9 T CONST)) (-2155 (($) 14 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) 21)) (-3089 (($ $) 51) (($ $ $) NIL)) (-3073 (($ $ $) 90)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49))) +(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1053 |#2|) (-10 -8 (-15 -3513 ((-112) $)) (-15 -4144 ((-574) $)) (-15 -3837 ((-574) $)) (-15 -1401 ($ $)) (-15 -1377 (|#1| $)) (-15 -2601 (|#1| $)) (-15 -3584 (|#1| $ (-574))) (-15 -4327 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2471 ((-2 (|:| -3987 $) (|:| -3141 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1259 |#1|)) (T -633)) +((-3513 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-3837 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1259 *3)))) (-1401 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-2601 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1259 *2)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1259 *2)))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -3987 (-633 *4 *5)) (|:| -3141 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))) +(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1053 |#2|) (-10 -8 (-15 -3513 ((-112) $)) (-15 -4144 ((-574) $)) (-15 -3837 ((-574) $)) (-15 -1401 ($ $)) (-15 -1377 (|#1| $)) (-15 -2601 (|#1| $)) (-15 -3584 (|#1| $ (-574))) (-15 -4327 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2471 ((-2 (|:| -3987 $) (|:| -3141 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) +((-1346 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-2820 ((|#6| |#6|) 48))) +(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2820 (|#6| |#6|)) (-15 -1346 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|) (-1124 |#1| |#2| |#3| |#4|)) (T -634)) +((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *10 (-1124 *5 *6 *7 *8)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *2 (-1124 *3 *4 *5 *6))))) +(-10 -7 (-15 -2820 (|#6| |#6|)) (-15 -1346 ((-654 |#6|) (-654 |#4|) (-112)))) +((-2751 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-1766 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2679 (-654 (-2 (|:| |irr| |#4|) (|:| -3737 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69))) +(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1766 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2679 (-654 (-2 (|:| |irr| |#4|) (|:| -3737 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-962 |#3| |#2| |#1|)) (T -635)) +((-1766 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2679 (-654 (-2 (|:| |irr| *10) (|:| -3737 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-962 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1188 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1188 *3))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-962 *3 *7 *6))))) +(-10 -7 (-15 -2751 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1766 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1188 |#3|)))) "failed") |#3| (-654 (-1188 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2679 (-654 (-2 (|:| |irr| |#4|) (|:| -3737 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) +((-2863 (((-112) $ $) NIL)) (-1818 (((-1150) $) 11)) (-1806 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-636) (-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $))))) (T -636)) +((-1806 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636))))) +(-13 (-1098) (-10 -8 (-15 -1806 ((-1150) $)) (-15 -1818 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1665 (((-654 |#1|) $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-1792 (($ $) 77)) (-3111 (((-674 |#1| |#2|) $) 60)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 81)) (-3257 (((-654 (-302 |#2|)) $ $) 42)) (-3939 (((-1135) $) NIL)) (-1619 (($ (-674 |#1| |#2|)) 56)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) 66) (((-1298 |#1| |#2|) $) NIL) (((-1303 |#1| |#2|) $) 74)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 61 T CONST)) (-2967 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-3587 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-1502 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2985 (((-112) $ $) 62)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52))) +(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1619 ($ (-674 |#1| |#2|))) (-15 -3111 ((-674 |#1| |#2|) $)) (-15 -1502 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1303 |#1| |#2|) $)) (-15 -1792 ($ $)) (-15 -1665 ((-654 |#1|) $)) (-15 -3587 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2967 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -3257 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-934)) (T -637)) +((-1619 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-934)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-934)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-934)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) (-3257 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) +(-13 (-483) (-10 -8 (-15 -1619 ($ (-674 |#1| |#2|))) (-15 -3111 ((-674 |#1| |#2|) $)) (-15 -1502 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1303 |#1| |#2|) $)) (-15 -1792 ($ $)) (-15 -1665 ((-654 |#1|) $)) (-15 -3587 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2967 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -3257 ((-654 (-302 |#2|)) $ $)))) +((-1346 (((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-2106 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-2009 (((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-2004 (((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-2220 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-4019 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29))) +(((-638 |#1| |#2|) (-10 -7 (-15 -2106 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4019 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -2220 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -2004 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2009 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1346 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1346 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1192))) (T -638)) +((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-638 *5 *6)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-638 *5 *6)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4)))) (-4019 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1192))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(-10 -7 (-15 -2106 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4019 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -2220 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -2004 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -2009 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1346 ((-654 (-1061 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -1346 ((-654 (-1161 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) +((-2378 (($ $) 38)) (-2260 (($ $) 21)) (-2357 (($ $) 37)) (-2238 (($ $) 22)) (-2403 (($ $) 36)) (-2281 (($ $) 23)) (-3003 (($) 48)) (-3111 (($ $) 45)) (-4052 (($ $) 17)) (-3452 (($ $ (-1107 $)) 7) (($ $ (-1192)) 6)) (-1619 (($ $) 46)) (-4044 (($ $) 15)) (-2225 (($ $) 16)) (-2415 (($ $) 35)) (-2289 (($ $) 24)) (-2388 (($ $) 34)) (-2271 (($ $) 25)) (-2367 (($ $) 33)) (-2249 (($ $) 26)) (-2455 (($ $) 44)) (-2319 (($ $) 32)) (-2428 (($ $) 43)) (-2301 (($ $) 31)) (-2479 (($ $) 42)) (-2339 (($ $) 30)) (-2535 (($ $) 41)) (-2348 (($ $) 29)) (-2467 (($ $) 40)) (-2329 (($ $) 28)) (-2442 (($ $) 39)) (-2311 (($ $) 27)) (-4126 (($ $) 19)) (-1844 (($ $) 20)) (-1869 (($ $) 18)) (** (($ $ $) 47))) +(((-639) (-141)) (T -639)) +((-1844 (*1 *1 *1) (-4 *1 (-639))) (-4126 (*1 *1 *1) (-4 *1 (-639))) (-1869 (*1 *1 *1) (-4 *1 (-639))) (-4052 (*1 *1 *1) (-4 *1 (-639))) (-2225 (*1 *1 *1) (-4 *1 (-639))) (-4044 (*1 *1 *1) (-4 *1 (-639)))) +(-13 (-972) (-1218) (-10 -8 (-15 -1844 ($ $)) (-15 -4126 ($ $)) (-15 -1869 ($ $)) (-15 -4052 ($ $)) (-15 -2225 ($ $)) (-15 -4044 ($ $)))) +(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-972) . T) ((-1218) . T) ((-1221) . T)) +((-4151 (((-115) (-115)) 88)) (-4052 ((|#2| |#2|) 28)) (-3452 ((|#2| |#2| (-1107 |#2|)) 84) ((|#2| |#2| (-1192)) 50)) (-4044 ((|#2| |#2|) 27)) (-2225 ((|#2| |#2|) 29)) (-2448 (((-112) (-115)) 33)) (-4126 ((|#2| |#2|) 24)) (-1844 ((|#2| |#2|) 26)) (-1869 ((|#2| |#2|) 25))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -1844 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1869 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -3452 (|#2| |#2| (-1192))) (-15 -3452 (|#2| |#2| (-1107 |#2|)))) (-566) (-13 (-440 |#1|) (-1017) (-1218))) (T -640)) +((-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-1869 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1017) (-1218))))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1017) (-1218))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218)))))) +(-10 -7 (-15 -2448 ((-112) (-115))) (-15 -4151 ((-115) (-115))) (-15 -1844 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1869 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -3452 (|#2| |#2| (-1192))) (-15 -3452 (|#2| |#2| (-1107 |#2|)))) +((-2576 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2973 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-2666 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-4324 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-2944 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-1600 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-3429 (((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-3058 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-2089 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-3108 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112))) +(((-641 |#1| |#2|) (-10 -7 (-15 -4324 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1600 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2973 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2666 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2666 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3058 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3429 ((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -3108 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2944 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2089 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2576 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1192)) (-462)) (T -641)) +((-2576 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2944 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-3108 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1192))) (-5 *1 (-641 *5 *6)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-1283 *6)) (-5 *1 (-641 *5 *6)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2666 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-1600 (*1 *2 *3) (-12 (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5))))) +(-10 -7 (-15 -4324 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1600 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2973 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2666 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2666 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3058 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3429 ((-1283 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -3108 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2944 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2089 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2576 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL)) (-2057 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-52) $ (-1174) (-52)) 16) (((-52) $ (-1192) (-52)) 17)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 (-52) "failed") (-1174) $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-3245 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1174) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (((-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2473 (((-52) $ (-1174) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1174)) NIL)) (-1874 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-1479 (($ $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-1174) $) NIL (|has| (-1174) (-860)))) (-4187 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-1965 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1474 (($ (-398)) 9)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-1773 (((-654 (-1174)) $) NIL)) (-3735 (((-112) (-1174) $) NIL)) (-1494 (((-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL)) (-1948 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL)) (-2435 (((-654 (-1174)) $) NIL)) (-4088 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-2924 (((-52) $) NIL (|has| (-1174) (-860)))) (-1745 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL)) (-2485 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-3670 (((-654 (-52)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 (((-52) $ (-1174)) 14) (((-52) $ (-1174) (-52)) NIL) (((-52) $ (-1192)) 15)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-642) (-13 (-1209 (-1174) (-52)) (-294 (-1192) (-52)) (-10 -8 (-15 -1474 ($ (-398))) (-15 -1479 ($ $)) (-15 -3134 ((-52) $ (-1192) (-52)))))) (T -642)) +((-1474 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-1479 (*1 *1 *1) (-5 *1 (-642))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1192)) (-5 *1 (-642))))) +(-13 (-1209 (-1174) (-52)) (-294 (-1192) (-52)) (-10 -8 (-15 -1474 ($ (-398))) (-15 -1479 ($ $)) (-15 -3134 ((-52) $ (-1192) (-52))))) +((-3102 (($ $ |#2|) 10))) +(((-643 |#1| |#2|) (-10 -8 (-15 -3102 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643)) +NIL +(-10 -8 (-15 -3102 (|#1| |#1| |#2|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2962 (($ $ $) 34)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-644 |#1|) (-141) (-174)) (T -644)) +((-2962 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) +(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2962 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3102 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3462 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-2555 (((-1283 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1283 (-699 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4000 (((-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3063 (($) NIL T CONST)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3294 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4073 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3197 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4060 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-3790 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2158 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3558 (($ $ (-934)) NIL)) (-2755 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2390 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2866 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2447 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1550 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3875 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1283 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2978 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3557 (((-934)) NIL (|has| |#2| (-376 |#1|)))) (-2676 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2867 (($ $ (-934)) NIL)) (-3236 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3154 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3954 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3502 (((-3 $ "failed")) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3100 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-4132 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1830 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1341 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1719 (((-1188 (-965 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2883 (($ $ (-934)) NIL)) (-2670 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2664 (((-1188 |#1|) $) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3038 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1373 (((-1188 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-1808 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1938 (((-1174) $) NIL)) (-3618 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4004 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3380 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3939 (((-1135) $) NIL)) (-4147 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2209 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-4421 (((-699 |#1|) (-1283 $)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1283 $) (-1283 $)) NIL (|has| |#2| (-376 |#1|))) (((-1283 |#1|) $ (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-1846 (($ (-1283 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1283 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2414 (((-654 (-965 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-965 |#1|)) (-1283 $)) NIL (|has| |#2| (-376 |#1|)))) (-2987 (($ $ $) NIL)) (-4390 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2950 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL (|has| |#2| (-427 |#1|)))) (-2433 (((-654 (-1283 |#1|))) NIL (-2832 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1391 (($ $ $ $) NIL)) (-2579 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2911 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2824 (($ $ $) NIL)) (-4208 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4124 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2170 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) 20)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645)) +((-2950 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))) +(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2950 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) +((-2959 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-1397 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136))) +(((-646 |#1| |#2|) (-10 -7 (-15 -2959 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -1397 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2959 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -646)) +((-2959 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1174)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-1397 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1218) (-440 *5))) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3))))) +(-10 -7 (-15 -2959 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -1397 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -2959 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1174)))) +((-2959 (((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)) 86) (((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 20) (((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|)))) 35)) (-1397 (((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 23) (((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|)))) 43))) +(((-647 |#1|) (-10 -7 (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|))))) (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -1397 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|))))) (-15 -1397 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)))) (-462)) (T -647)) +((-2959 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-965 *6)))) (-5 *5 (-1174)) (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-965 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-965 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-965 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5)))))) +(-10 -7 (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-853 (-965 |#1|))))) (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-965 |#1|))) "failed"))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -1397 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-843 (-965 |#1|))))) (-15 -1397 ((-843 (-417 (-965 |#1|))) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2959 ((-3 (-853 (-417 (-965 |#1|))) "failed") (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))) (-1174)))) +((-3083 (((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|) 64 (-2086 (|has| |#1| (-372)))) (((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-2969 (((-112) (-1283 |#2|)) 33)) (-3336 (((-3 (-1283 |#1|) "failed") (-1283 |#2|)) 40))) +(((-648 |#1| |#2|) (-10 -7 (-15 -2969 ((-112) (-1283 |#2|))) (-15 -3336 ((-3 (-1283 |#1|) "failed") (-1283 |#2|))) (IF (|has| |#1| (-372)) (-15 -3083 ((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|)) (-15 -3083 ((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|)))) (-566) (-13 (-1064) (-649 |#1|))) (T -648)) +((-3083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) (-2086 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1283 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-3083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1283 *5)) (-5 *1 (-648 *5 *4)))) (-3336 (*1 *2 *3) (|partial| -12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1283 *4)) (-5 *1 (-648 *4 *5)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) +(-10 -7 (-15 -2969 ((-112) (-1283 |#2|))) (-15 -3336 ((-3 (-1283 |#1|) "failed") (-1283 |#2|))) (IF (|has| |#1| (-372)) (-15 -3083 ((-3 (-1283 |#1|) "failed") (-1283 |#2|) |#2|)) (-15 -3083 ((-3 (-1283 (-417 |#1|)) "failed") (-1283 |#2|) |#2|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-4232 (((-699 |#1|) (-1283 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 29)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-649 |#1|) (-141) (-1064)) (T -649)) +((-4232 (*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) (-5 *2 (-699 *4)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) (-5 *2 (-699 *4)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1283 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -4226 (-699 *5)) (|:| |vec| (-1283 *5))))))) +(-13 (-658 |t#1|) (-10 -8 (-15 -4232 ((-699 |t#1|) (-1283 $))) (-15 -4232 ((-699 |t#1|) (-699 $))) (-15 -4232 ((-2 (|:| -4226 (-699 |t#1|)) (|:| |vec| (-1283 |t#1|))) (-699 $) (-1283 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-650 |#1|) (-141) (-1073)) (T -650)) +NIL +(-13 (-656 |t#1|) (-1066 |t#1|)) +(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1066 |#1|) . T) ((-1115) . T)) +((-2697 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12))) +(((-651 |#1| |#2|) (-10 -7 (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1115) (-1233)) (T -651)) +((-2697 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-651 *5 *6)))) (-2697 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1115)) (-4 *5 (-1233)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))) +(-10 -7 (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2697 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2697 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) +((-2316 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1787 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13))) +(((-652 |#1| |#2|) (-10 -7 (-15 -2316 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1787 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1233) (-1233)) (T -652)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-652 *5 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))) +(-10 -7 (-15 -2316 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1787 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) +((-1787 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21))) +(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1233) (-1233) (-1233)) (T -653)) +((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8))))) +(-10 -7 (-15 -1787 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2212 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2785 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-4031 (($ $ $) NIL (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "rest" $) NIL (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3278 (($ $ $) 37 (|has| |#1| (-1115)))) (-3625 (($ $ $) 41 (|has| |#1| (-1115)))) (-2531 (($ $ $) 44 (|has| |#1| (-1115)))) (-1657 (($ (-1 (-112) |#1|) $) NIL)) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2407 ((|#1| $) NIL)) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2934 (($ $) 23) (($ $ (-781)) NIL)) (-3054 (($ $) NIL (|has| |#1| (-1115)))) (-2818 (($ $) 36 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) NIL (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) NIL)) (-3310 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-2841 (((-112) $) NIL)) (-1451 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115))) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2074 (((-112) $) 11)) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3494 (($) 9 T CONST)) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4099 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4333 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1797 (($ |#1|) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1948 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) 20) (($ $ (-781)) NIL)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2949 (((-112) $) NIL)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) 39)) (-4272 (($) 38)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-1418 (((-574) $ $) NIL)) (-4253 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-3325 (((-112) $) NIL)) (-2592 (($ $) NIL)) (-4423 (($ $) NIL (|has| $ (-6 -4459)))) (-1798 (((-781) $) NIL)) (-1523 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-2237 (($ |#1| $) 12)) (-3539 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4131 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2871 (($ $ $) 13)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1579 (((-1174) $) 31 (|has| |#1| (-838))) (((-1174) $ (-112)) 32 (|has| |#1| (-838))) (((-1288) (-832) $) 33 (|has| |#1| (-838))) (((-1288) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3494 ($) -1716) (-15 -2074 ((-112) $)) (-15 -2237 ($ |#1| $)) (-15 -2871 ($ $ $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3278 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -2531 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1233)) (T -654)) +((-3494 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1233)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-2871 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) (-3278 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)))) (-3625 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)))) (-2531 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) +(-13 (-676 |#1|) (-10 -8 (-15 -3494 ($) -1716) (-15 -2074 ((-112) $)) (-15 -2237 ($ |#1| $)) (-15 -2871 ($ $ $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3278 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -2531 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11) (($ (-1197)) NIL) (((-1197) $) NIL) ((|#1| $) 8)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-655 |#1|) (-13 (-1098) (-623 |#1|)) (-1115)) (T -655)) +NIL +(-13 (-1098) (-623 |#1|)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-656 |#1|) (-141) (-1073)) (T -656)) +((-2143 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1073)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1073))))) +(-13 (-1115) (-10 -8 (-15 (-2143) ($) -1716) (-15 -1997 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2446 (($ |#1| |#1| $) 43)) (-1750 (((-112) $ (-781)) NIL)) (-1657 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3054 (($ $) 45)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) 56 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 9 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 37)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) 47)) (-1948 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2277 ((|#1| $) 50)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 23)) (-4272 (($) 28)) (-4304 (((-112) $) 54)) (-1560 (((-654 (-2 (|:| -1918 |#1|) (|:| -3948 (-781)))) $) 67)) (-2163 (($) 26) (($ (-654 |#1|)) 19)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 20)) (-1846 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) NIL)) (-2950 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 24)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 69 (|has| |#1| (-1115)))) (-2876 (((-781) $) 17 (|has| $ (-6 -4458))))) +(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4458) (-15 -4304 ((-112) $)) (-15 -2446 ($ |#1| |#1| $)))) (-1115)) (T -657)) +((-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1115)))) (-2446 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1115))))) +(-13 (-705 |#1|) (-10 -8 (-6 -4458) (-15 -4304 ((-112) $)) (-15 -2446 ($ |#1| |#1| $)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) +(((-658 |#1|) (-141) (-1073)) (T -658)) +NIL +(-13 (-21) (-656 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781) $) 17)) (-2304 (($ $ |#1|) 69)) (-3680 (($ $) 39)) (-4424 (($ $) 37)) (-1706 (((-3 |#1| "failed") $) 61)) (-2216 ((|#1| $) NIL)) (-3719 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-1977 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-3757 ((|#1| $ (-574)) 35)) (-3661 ((|#2| $ (-574)) 34)) (-3028 (($ (-1 |#1| |#1|) $) 41)) (-3826 (($ (-1 |#2| |#2|) $) 47)) (-4305 (($) 11)) (-4193 (($ |#1| |#2|) 24)) (-1698 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|)))) 25)) (-2102 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 14)) (-2742 (($ |#1| $) 71)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2164 (((-112) $ $) 76)) (-2950 (((-872) $) 21) (($ |#1|) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 27))) +(((-659 |#1| |#2| |#3|) (-13 (-1115) (-1053 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -2102 ((-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $)) (-15 -4193 ($ |#1| |#2|)) (-15 -1698 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))))) (-15 -3661 (|#2| $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -4424 ($ $)) (-15 -3680 ($ $)) (-15 -1497 ((-781) $)) (-15 -4305 ($)) (-15 -2304 ($ $ |#1|)) (-15 -2742 ($ |#1| $)) (-15 -3719 ($ |#1| |#2| $)) (-15 -3719 ($ $ $)) (-15 -2164 ((-112) $ $)) (-15 -3826 ($ (-1 |#2| |#2|) $)) (-15 -3028 ($ (-1 |#1| |#1|) $)))) (-1115) (-23) |#2|) (T -659)) +((-1977 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1115)) (-4 *6 (-23)) (-14 *7 *6))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-4193 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-1698 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1115)) (-14 *5 *2))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1115)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4424 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3680 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-4305 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-2304 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-2742 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3719 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) (-2164 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1115) (-1053 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -2102 ((-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $)) (-15 -4193 ($ |#1| |#2|)) (-15 -1698 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))))) (-15 -3661 (|#2| $ (-574))) (-15 -3757 (|#1| $ (-574))) (-15 -4424 ($ $)) (-15 -3680 ($ $)) (-15 -1497 ((-781) $)) (-15 -4305 ($)) (-15 -2304 ($ $ |#1|)) (-15 -2742 ($ |#1| $)) (-15 -3719 ($ |#1| |#2| $)) (-15 -3719 ($ $ $)) (-15 -2164 ((-112) $ $)) (-15 -3826 ($ (-1 |#2| |#2|) $)) (-15 -3028 ($ (-1 |#1| |#1|) $)))) +((-1965 (((-574) $) 31)) (-1604 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) 12)) (-4088 (((-112) (-574) $) 18)) (-4131 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL))) +(((-660 |#1| |#2|) (-10 -8 (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -1965 ((-574) |#1|)) (-15 -2435 ((-654 (-574)) |#1|)) (-15 -4088 ((-112) (-574) |#1|))) (-661 |#2|) (-1233)) (T -660)) +NIL +(-10 -8 (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -4131 (|#1| (-654 |#1|))) (-15 -4131 (|#1| |#1| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#2|)) (-15 -1965 ((-574) |#1|)) (-15 -2435 ((-654 (-574)) |#1|)) (-15 -4088 ((-112) (-574) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-661 |#1|) (-141) (-1233)) (T -661)) +((-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-4131 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-1604 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1233)))) (-1604 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1250 (-574))) (|has| *1 (-6 -4459)) (-4 *1 (-661 *2)) (-4 *2 (-1233))))) +(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1250 (-574)) $) (-10 -8 (-15 -3763 ($ (-781) |t#1|)) (-15 -4131 ($ $ |t#1|)) (-15 -4131 ($ |t#1| $)) (-15 -4131 ($ $ $)) (-15 -4131 ($ (-654 $))) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2854 ($ $ (-574))) (-15 -2854 ($ $ (-1250 (-574)))) (-15 -1604 ($ |t#1| $ (-574))) (-15 -1604 ($ $ $ (-574))) (IF (|has| $ (-6 -4459)) (-15 -3134 (|t#1| $ (-1250 (-574)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2613 (((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) "failed") |#3| |#2| (-1192)) 44))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) "failed") |#3| |#2| (-1192))) (-15 -2613 ((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972)) (-666 |#2|)) (T -662)) +((-2613 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-2613 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1218) (-972))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3907 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) "failed") |#3| |#2| (-1192))) (-15 -2613 ((-3 |#2| "failed") |#3| |#2| (-1192) |#2| (-654 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1777 (($ $) NIL (|has| |#1| (-372)))) (-2173 (($ $ $) NIL (|has| |#1| (-372)))) (-1374 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3785 (($ $ $) NIL (|has| |#1| (-372)))) (-1334 (($ $ $) NIL (|has| |#1| (-372)))) (-2723 (($ $ $) NIL (|has| |#1| (-372)))) (-2942 (($ $ $) NIL (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-2276 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-2682 (((-781) $) NIL)) (-1351 (($ $ $) NIL (|has| |#1| (-372)))) (-2945 (($ $ $) NIL (|has| |#1| (-372)))) (-3357 (($ $ $) NIL (|has| |#1| (-372)))) (-3602 (($ $ $) NIL (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2209 ((|#1| $ |#1|) NIL)) (-4054 (($ $ $) NIL (|has| |#1| (-372)))) (-4144 (((-781) $) NIL)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) NIL)) (-2897 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-663 |#1|) (-666 |#1|) (-239)) (T -663)) +NIL +(-666 |#1|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1777 (($ $) NIL (|has| |#1| (-372)))) (-2173 (($ $ $) NIL (|has| |#1| (-372)))) (-1374 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3785 (($ $ $) NIL (|has| |#1| (-372)))) (-1334 (($ $ $) NIL (|has| |#1| (-372)))) (-2723 (($ $ $) NIL (|has| |#1| (-372)))) (-2942 (($ $ $) NIL (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-2276 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-2682 (((-781) $) NIL)) (-1351 (($ $ $) NIL (|has| |#1| (-372)))) (-2945 (($ $ $) NIL (|has| |#1| (-372)))) (-3357 (($ $ $) NIL (|has| |#1| (-372)))) (-3602 (($ $ $) NIL (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2209 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4054 (($ $ $) NIL (|has| |#1| (-372)))) (-4144 (((-781) $) NIL)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) NIL)) (-2897 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3878 ($ $))))) (T -664)) +NIL +(-13 (-666 |#1|) (-294 |#2| |#2|)) +((-1777 (($ $) 29)) (-2897 (($ $) 27)) (-3583 (($) 13))) +(((-665 |#1| |#2|) (-10 -8 (-15 -1777 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -3583 (|#1|))) (-666 |#2|) (-1064)) (T -665)) +NIL +(-10 -8 (-15 -1777 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -3583 (|#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1777 (($ $) 87 (|has| |#1| (-372)))) (-2173 (($ $ $) 89 (|has| |#1| (-372)))) (-1374 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3785 (($ $ $) 50 (|has| |#1| (-372)))) (-1334 (($ $ $) 51 (|has| |#1| (-372)))) (-2723 (($ $ $) 53 (|has| |#1| (-372)))) (-2942 (($ $ $) 48 (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 47 (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 52 (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 75)) (-1401 (($ $) 69)) (-2978 (((-3 $ "failed") $) 37)) (-1420 (($ $) 60 (|has| |#1| (-462)))) (-2276 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 67)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 62 (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63 (|has| |#1| (-566)))) (-2682 (((-781) $) 71)) (-1351 (($ $ $) 57 (|has| |#1| (-372)))) (-2945 (($ $ $) 58 (|has| |#1| (-372)))) (-3357 (($ $ $) 46 (|has| |#1| (-372)))) (-3602 (($ $ $) 55 (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 54 (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 59 (|has| |#1| (-372)))) (-1377 ((|#1| $) 70)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2209 ((|#1| $ |#1|) 92)) (-4054 (($ $ $) 86 (|has| |#1| (-372)))) (-4144 (((-781) $) 72)) (-1514 ((|#1| $) 61 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 73)) (-3133 (((-654 |#1|) $) 66)) (-3584 ((|#1| $ (-781)) 68)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2911 ((|#1| $ |#1| |#1|) 65)) (-2897 (($ $) 90)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($) 91)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-666 |#1|) (-141) (-1064)) (T -666)) +((-3583 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1064)) (-4 *3 (-372)))) (-1777 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-4054 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3583 ($)) (-15 -2897 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -2173 ($ $ $)) (-15 -1374 ($ $ (-781))) (-15 -1777 ($ $)) (-15 -4054 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T) ((-862 |#1|) . T)) +((-4057 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4200 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19))) +(((-667 |#1| |#2|) (-10 -7 (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -4057 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -667)) +((-4057 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))) +(-10 -7 (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4200 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -4057 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1777 (($ $) NIL (|has| |#1| (-372)))) (-2173 (($ $ $) 28 (|has| |#1| (-372)))) (-1374 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3785 (($ $ $) NIL (|has| |#1| (-372)))) (-1334 (($ $ $) NIL (|has| |#1| (-372)))) (-2723 (($ $ $) NIL (|has| |#1| (-372)))) (-2942 (($ $ $) NIL (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-2276 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-2682 (((-781) $) NIL)) (-1351 (($ $ $) NIL (|has| |#1| (-372)))) (-2945 (($ $ $) NIL (|has| |#1| (-372)))) (-3357 (($ $ $) NIL (|has| |#1| (-372)))) (-3602 (($ $ $) NIL (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2209 ((|#1| $ |#1|) 24)) (-4054 (($ $ $) 33 (|has| |#1| (-372)))) (-4144 (((-781) $) NIL)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) 23)) (-2897 (($ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 8 T CONST)) (-3583 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-668 |#1| |#2|) (-666 |#1|) (-1064) (-1 |#1| |#1|)) (T -668)) +NIL +(-666 |#1|) +((-2173 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-1374 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-4054 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-669 |#1| |#2|) (-10 -7 (-15 -2173 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1374 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -4054 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669)) +((-4054 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-1374 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-2173 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4))))) +(-10 -7 (-15 -2173 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1374 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -4054 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2933 (($ $ $) 9))) +(((-670 |#1|) (-10 -8 (-15 -2933 (|#1| |#1| |#1|))) (-671)) (T -670)) +NIL +(-10 -8 (-15 -2933 (|#1| |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-2889 (($ $) 10)) (-2933 (($ $ $) 8)) (-2985 (((-112) $ $) 6)) (-2921 (($ $ $) 9))) +(((-671) (-141)) (T -671)) +((-2889 (*1 *1 *1) (-4 *1 (-671))) (-2921 (*1 *1 *1 *1) (-4 *1 (-671))) (-2933 (*1 *1 *1 *1) (-4 *1 (-671)))) +(-13 (-102) (-10 -8 (-15 -2889 ($ $)) (-15 -2921 ($ $ $)) (-15 -2933 ($ $ $)))) (((-102) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 15)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2965 ((|#1| $) 23)) (-3659 (($ $ $) NIL (|has| |#1| (-800)))) (-3751 (($ $ $) NIL (|has| |#1| (-800)))) (-3180 (((-1171) $) 48)) (-3965 (((-1132) $) NIL)) (-2975 ((|#3| $) 24)) (-2942 (((-871) $) 43)) (-3507 (((-112) $ $) 22)) (-2132 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-800)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-800)))) (-2981 (((-112) $ $) 20)) (-3027 (((-112) $ $) NIL (|has| |#1| (-800)))) (-3005 (((-112) $ $) 26 (|has| |#1| (-800)))) (-3103 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3093 (($ $) 17) (($ $ $) NIL)) (-3077 (($ $ $) 29)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-671 |#1| |#2| |#3|) (-13 (-726 |#2|) (-10 -8 (IF (|has| |#1| (-800)) (-6 (-800)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) (-726 |#2|) (-174) (|SubsetCategory| (-735) |#2|)) (T -671)) -((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)) (-4 *2 (|SubsetCategory| (-735) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-726 *4)) (-4 *3 (|SubsetCategory| (-735) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-726 *3)) (-5 *1 (-671 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-735) *3)))) (-2975 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4))))) -(-13 (-726 |#2|) (-10 -8 (IF (|has| |#1| (-800)) (-6 (-800)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) -((-3370 (((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)) 33))) -(((-672 |#1|) (-10 -7 (-15 -3370 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)))) (-919)) (T -672)) -((-3370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *4))) (-5 *3 (-1185 *4)) (-4 *4 (-919)) (-5 *1 (-672 *4))))) -(-10 -7 (-15 -3370 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 84)) (-4398 (($ $ (-780)) 94)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1680 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 50)) (-1695 (((-3 (-681 |#1|) "failed") $) NIL)) (-2205 (((-681 |#1|) $) NIL)) (-1391 (($ $) 93)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-681 |#1|) |#2|) 70)) (-4386 (($ $) 89)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 49)) (-3228 (((-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-681 |#1|) $) NIL)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ |#1| $) 32) (($ $ (-653 |#1|) (-653 $)) 34)) (-2565 (((-780) $) 91)) (-2955 (($ $ $) 20) (($ (-681 |#1|) (-681 |#1|)) 79) (($ (-681 |#1|) $) 77) (($ $ (-681 |#1|)) 78)) (-2942 (((-871) $) NIL) (($ |#1|) 76) (((-1295 |#1| |#2|) $) 60) (((-1304 |#1| |#2|) $) 43) (($ (-681 |#1|)) 27)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-681 |#1|)) NIL)) (-1857 ((|#2| (-1304 |#1| |#2|) $) 45)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 23 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4284 (((-3 $ "failed") (-1295 |#1| |#2|)) 62)) (-2670 (($ (-681 |#1|)) 14)) (-2981 (((-112) $ $) 46)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) 68) (($ $ $) NIL)) (-3077 (($ $ $) 31)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-681 |#1|)) NIL))) -(((-673 |#1| |#2|) (-13 (-382 |#1| |#2|) (-390 |#2| (-681 |#1|)) (-10 -8 (-15 -4284 ((-3 $ "failed") (-1295 |#1| |#2|))) (-15 -2955 ($ (-681 |#1|) (-681 |#1|))) (-15 -2955 ($ (-681 |#1|) $)) (-15 -2955 ($ $ (-681 |#1|))))) (-859) (-174)) (T -673)) -((-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *1 (-673 *3 *4)))) (-2955 (*1 *1 *2 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174))))) -(-13 (-382 |#1| |#2|) (-390 |#2| (-681 |#1|)) (-10 -8 (-15 -4284 ((-3 $ "failed") (-1295 |#1| |#2|))) (-15 -2955 ($ (-681 |#1|) (-681 |#1|))) (-15 -2955 ($ (-681 |#1|) $)) (-15 -2955 ($ $ (-681 |#1|))))) -((-1473 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2748 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3557 (($ (-1 (-112) |#2|) $) 29)) (-2176 (($ $) 65)) (-1599 (($ $) 74)) (-2596 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1440 (((-573) |#2| $ (-573)) 71) (((-573) |#2| $) NIL) (((-573) (-1 (-112) |#2|) $) 54)) (-3789 (($ (-780) |#2|) 63)) (-4241 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1480 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1787 (($ |#2|) 15)) (-3181 (($ $ $ (-573)) 42) (($ |#2| $ (-573)) 40)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3220 (($ $ (-1247 (-573))) 51) (($ $ (-573)) 44)) (-3919 (($ $ $ (-573)) 70)) (-3166 (($ $) 68)) (-3005 (((-112) $ $) 76))) -(((-674 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -3220 (|#1| |#1| (-573))) (-15 -3220 (|#1| |#1| (-1247 (-573)))) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3181 (|#1| |#2| |#1| (-573))) (-15 -3181 (|#1| |#1| |#1| (-573))) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -2176 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3789 (|#1| (-780) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) (-675 |#2|) (-1230)) (T -674)) -NIL -(-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -3220 (|#1| |#1| (-573))) (-15 -3220 (|#1| |#1| (-1247 (-573)))) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3181 (|#1| |#2| |#1| (-573))) (-15 -3181 (|#1| |#1| |#1| (-573))) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -2176 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3789 (|#1| (-780) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-1473 (((-112) $) 144 (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2748 (($ $) 148 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4456)))) (-2770 (($ $) 143 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 131)) (-2164 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4455)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2176 (($ $) 146 (|has| $ (-6 -4456)))) (-4422 (($ $) 136)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-1599 (($ $) 133 (|has| |#1| (-1112)))) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 132 (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) 127)) (-3334 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4455))) (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1440 (((-573) |#1| $ (-573)) 141 (|has| |#1| (-1112))) (((-573) |#1| $) 140 (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) 139)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3659 (($ $ $) 149 (|has| |#1| (-859)))) (-4241 (($ $ $) 134 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1480 (($ $ $) 142 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-3751 (($ $ $) 150 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1787 (($ |#1|) 124)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-3181 (($ $ $ (-573)) 129) (($ |#1| $ (-573)) 128)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-1903 (((-112) $) 86)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-3220 (($ $ (-1247 (-573))) 126) (($ $ (-573)) 125)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 145 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62) (($ $ |#1|) 61)) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 152 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 153 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 151 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 154 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-675 |#1|) (-141) (-1230)) (T -675)) -((-1787 (*1 *1 *2) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1230))))) -(-13 (-1161 |t#1|) (-381 |t#1|) (-289 |t#1|) (-10 -8 (-15 -1787 ($ |t#1|)))) -(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-289 |#1|) . T) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1022 |#1|) . T) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1161 |#1|) . T) ((-1230) . T) ((-1268 |#1|) . T)) -((-1994 (((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|))) 22) (((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)) 14)) (-3583 (((-780) (-698 |#1|) (-1280 |#1|)) 30)) (-1460 (((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|)) 24)) (-4298 (((-112) (-698 |#1|) (-1280 |#1|)) 27))) -(((-676 |#1|) (-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|))) (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|)))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|)))) (-15 -1460 ((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|))) (-15 -4298 ((-112) (-698 |#1|) (-1280 |#1|))) (-15 -3583 ((-780) (-698 |#1|) (-1280 |#1|)))) (-371)) (T -676)) -((-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-5 *2 (-780)) (-5 *1 (-676 *5)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-5 *2 (-112)) (-5 *1 (-676 *5)))) (-1460 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1280 *4)) (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *1 (-676 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5)))))) (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5)))))) (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5))))) (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5))))) (-5 *1 (-676 *5)) (-5 *4 (-1280 *5))))) -(-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|))) (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|)))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|)))) (-15 -1460 ((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|))) (-15 -4298 ((-112) (-698 |#1|) (-1280 |#1|))) (-15 -3583 ((-780) (-698 |#1|) (-1280 |#1|)))) -((-1994 (((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|) 60)) (-3583 (((-780) |#4| |#3|) 18)) (-1460 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4298 (((-112) |#4| |#3|) 14))) -(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|)) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|))) (-15 -1460 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4298 ((-112) |#4| |#3|)) (-15 -3583 ((-780) |#4| |#3|))) (-371) (-13 (-381 |#1|) (-10 -7 (-6 -4456))) (-13 (-381 |#1|) (-10 -7 (-6 -4456))) (-696 |#1| |#2| |#3|)) (T -677)) -((-3583 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-780)) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-4298 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-112)) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-1460 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-371)) (-4 *5 (-13 (-381 *4) (-10 -7 (-6 -4456)))) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))) (-5 *1 (-677 *4 *5 *2 *3)) (-4 *3 (-696 *4 *5 *2)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *7 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-653 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3914 (-653 *7))))) (-5 *1 (-677 *5 *6 *7 *3)) (-5 *4 (-653 *7)) (-4 *3 (-696 *5 *6 *7)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) -(-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|)) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|))) (-15 -1460 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4298 ((-112) |#4| |#3|)) (-15 -3583 ((-780) |#4| |#3|))) -((-4098 (((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)) 51))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)))) (-565) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -678)) -((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *7)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 (-416 *8)) "failed")) (|:| -3914 (-653 (-1280 (-416 *8)))))) (-5 *1 (-678 *5 *6 *7 *8))))) -(-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-1635 ((|#2| $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#2|))) NIL) (((-1280 (-698 |#2|)) (-1280 $)) NIL)) (-1916 (((-112) $) NIL)) (-1888 (((-1280 $)) 42)) (-3450 (((-112) $ (-780)) NIL)) (-1681 (($ |#2|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) NIL (|has| |#2| (-314)))) (-3229 (((-245 |#1| |#2|) $ (-573)) NIL)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#2| (-565)))) (-3360 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-1454 (((-698 |#2|)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-1390 ((|#2| $) NIL)) (-3612 (((-698 |#2|) $) NIL) (((-698 |#2|) $ (-1280 $)) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| |#2| (-565)))) (-2743 (((-1185 (-962 |#2|))) NIL (|has| |#2| (-371)))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#2| $) NIL)) (-3397 (((-1185 |#2|) $) NIL (|has| |#2| (-565)))) (-4053 ((|#2|) NIL) ((|#2| (-1280 $)) NIL)) (-2650 (((-1185 |#2|) $) NIL)) (-2492 (((-112)) NIL)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-2854 (($ (-1280 |#2|)) NIL) (($ (-1280 |#2|) (-1280 $)) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3583 (((-780) $) NIL (|has| |#2| (-565))) (((-931)) 43)) (-2384 ((|#2| $ (-573) (-573)) NIL)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL)) (-2928 (((-780) $) NIL (|has| |#2| (-565)))) (-4209 (((-653 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-565)))) (-2188 (((-780) $) NIL)) (-4275 (((-112)) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#2| $) NIL (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#2|))) NIL)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1612 (((-653 (-653 |#2|)) $) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#2| (-565)))) (-3675 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-2582 (((-698 |#2|)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-3619 ((|#2| $) NIL)) (-1729 (((-698 |#2|) $) NIL) (((-698 |#2|) $ (-1280 $)) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| |#2| (-565)))) (-3753 (((-1185 (-962 |#2|))) NIL (|has| |#2| (-371)))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#2| $) NIL)) (-2000 (((-1185 |#2|) $) NIL (|has| |#2| (-565)))) (-1912 ((|#2|) NIL) ((|#2| (-1280 $)) NIL)) (-3242 (((-1185 |#2|) $) NIL)) (-3455 (((-112)) NIL)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-4293 (((-112)) NIL)) (-3299 (((-3 $ "failed") $) NIL (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) (-573) |#2|) NIL) ((|#2| $ (-573) (-573)) 28) ((|#2| $ (-573)) NIL)) (-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-3856 ((|#2| $) NIL)) (-1633 (($ (-653 |#2|)) NIL)) (-2530 (((-112) $) NIL)) (-3372 (((-245 |#1| |#2|) $) NIL)) (-2529 ((|#2| $) NIL (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2123 (((-698 |#2|) (-1280 $)) NIL) (((-1280 |#2|) $) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $ (-1280 $)) 31)) (-1835 (($ (-1280 |#2|)) NIL) (((-1280 |#2|) $) NIL)) (-1664 (((-653 (-962 |#2|))) NIL) (((-653 (-962 |#2|)) (-1280 $)) NIL)) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL)) (-1921 (((-245 |#1| |#2|) $ (-573)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (((-698 |#2|) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 41)) (-2649 (((-653 (-1280 |#2|))) NIL (|has| |#2| (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL)) (-2900 (($ (-698 |#2|) $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL)) (-4243 (((-112)) NIL)) (-2744 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-679 |#1| |#2|) (-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-426 |#2|)) (-931) (-174)) (T -679)) -NIL -(-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-426 |#2|)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2099 (((-653 (-1147)) $) 10)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-680) (-13 (-1095) (-10 -8 (-15 -2099 ((-653 (-1147)) $))))) (T -680)) -((-2099 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-680))))) -(-13 (-1095) (-10 -8 (-15 -2099 ((-653 (-1147)) $)))) -((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) NIL)) (-3903 (($ $) 62)) (-1407 (((-112) $) NIL)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3398 (((-3 $ "failed") (-828 |#1|)) 27)) (-2761 (((-112) (-828 |#1|)) 17)) (-2106 (($ (-828 |#1|)) 28)) (-2580 (((-112) $ $) 36)) (-4134 (((-931) $) 43)) (-3890 (($ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4218 (((-653 $) (-828 |#1|)) 19)) (-2942 (((-871) $) 51) (($ |#1|) 40) (((-828 |#1|) $) 47) (((-686 |#1|) $) 52)) (-3507 (((-112) $ $) NIL)) (-2571 (((-59 (-653 $)) (-653 |#1|) (-931)) 67)) (-3848 (((-653 $) (-653 |#1|) (-931)) 70)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 63)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 46))) -(((-681 |#1|) (-13 (-859) (-1050 |#1|) (-10 -8 (-15 -1407 ((-112) $)) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ((-686 |#1|) $)) (-15 -4218 ((-653 $) (-828 |#1|))) (-15 -2761 ((-112) (-828 |#1|))) (-15 -2106 ($ (-828 |#1|))) (-15 -3398 ((-3 $ "failed") (-828 |#1|))) (-15 -1653 ((-653 |#1|) $)) (-15 -2571 ((-59 (-653 $)) (-653 |#1|) (-931))) (-15 -3848 ((-653 $) (-653 |#1|) (-931))))) (-859)) (T -681)) -((-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-686 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-681 *4))) (-5 *1 (-681 *4)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-112)) (-5 *1 (-681 *4)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3)))) (-3398 (*1 *1 *2) (|partial| -12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) (-5 *2 (-59 (-653 (-681 *5)))) (-5 *1 (-681 *5)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) (-5 *2 (-653 (-681 *5))) (-5 *1 (-681 *5))))) -(-13 (-859) (-1050 |#1|) (-10 -8 (-15 -1407 ((-112) $)) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ((-686 |#1|) $)) (-15 -4218 ((-653 $) (-828 |#1|))) (-15 -2761 ((-112) (-828 |#1|))) (-15 -2106 ($ (-828 |#1|))) (-15 -3398 ((-3 $ "failed") (-828 |#1|))) (-15 -1653 ((-653 |#1|) $)) (-15 -2571 ((-59 (-653 $)) (-653 |#1|) (-931))) (-15 -3848 ((-653 $) (-653 |#1|) (-931))))) -((-3082 ((|#2| $) 100)) (-1969 (($ $) 121)) (-3450 (((-112) $ (-780)) 35)) (-2925 (($ $) 109) (($ $ (-780)) 112)) (-3435 (((-112) $) 122)) (-3113 (((-653 $) $) 96)) (-3208 (((-112) $ $) 92)) (-2078 (((-112) $ (-780)) 33)) (-1968 (((-573) $) 66)) (-3470 (((-573) $) 65)) (-2673 (((-112) $ (-780)) 31)) (-2880 (((-112) $) 98)) (-3359 ((|#2| $) 113) (($ $ (-780)) 117)) (-1593 (($ $ $ (-573)) 83) (($ |#2| $ (-573)) 82)) (-1977 (((-653 (-573)) $) 64)) (-2560 (((-112) (-573) $) 59)) (-2914 ((|#2| $) NIL) (($ $ (-780)) 108)) (-2212 (($ $ (-573)) 125)) (-1903 (((-112) $) 124)) (-1575 (((-112) (-1 (-112) |#2|) $) 42)) (-1535 (((-653 |#2|) $) 46)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1247 (-573))) 79) ((|#2| $ (-573)) 57) ((|#2| $ (-573) |#2|) 58)) (-1501 (((-573) $ $) 91)) (-2836 (($ $ (-1247 (-573))) 78) (($ $ (-573)) 72)) (-1628 (((-112) $) 87)) (-1992 (($ $) 105)) (-4072 (((-780) $) 104)) (-1512 (($ $) 103)) (-2955 (($ (-653 |#2|)) 53)) (-4101 (($ $) 126)) (-1811 (((-653 $) $) 90)) (-1716 (((-112) $ $) 89)) (-1646 (((-112) (-1 (-112) |#2|) $) 41)) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 39))) -(((-682 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -2212 (|#1| |#1| (-573))) (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -1535 ((-653 |#2|) |#1|)) (-15 -2560 ((-112) (-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -3470 ((-573) |#1|)) (-15 -1968 ((-573) |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -1501 ((-573) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) (-683 |#2|) (-1230)) (T -682)) -NIL -(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -2212 (|#1| |#1| (-573))) (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -1535 ((-653 |#2|) |#1|)) (-15 -2560 ((-112) (-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -3470 ((-573) |#1|)) (-15 -1968 ((-573) |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -1501 ((-573) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 104)) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2048 (($ $) 126)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 105)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2908 (((-780) $) 125)) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3942 (($ $) 128)) (-1722 (((-112) $) 129)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2723 ((|#1| $) 127)) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-2212 (($ $ (-573)) 124)) (-1903 (((-112) $) 86)) (-2578 (((-112) $) 130)) (-2687 (((-112) $) 131)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-4101 (($ $) 123)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-683 |#1|) (-141) (-1230)) (T -683)) -((-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) -(-13 (-1161 |t#1|) (-10 -8 (-15 -3334 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (-15 -2687 ((-112) $)) (-15 -2578 ((-112) $)) (-15 -1722 ((-112) $)) (-15 -3942 ($ $)) (-15 -2723 (|t#1| $)) (-15 -2048 ($ $)) (-15 -2908 ((-780) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1161 |#1|) . T) ((-1230) . T) ((-1268 |#1|) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1918 (($ (-780) (-780) (-780)) 53 (|has| |#1| (-1061)))) (-3450 (((-112) $ (-780)) NIL)) (-2183 ((|#1| $ (-780) (-780) (-780) |#1|) 47)) (-2579 (($) NIL T CONST)) (-3739 (($ $ $) 57 (|has| |#1| (-1061)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3691 (((-1280 (-780)) $) 12)) (-2091 (($ (-1189) $ $) 34)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2831 (($ (-780)) 55 (|has| |#1| (-1061)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-780) (-780) (-780)) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2955 (($ (-653 (-653 (-653 |#1|)))) 67)) (-2942 (($ (-968 (-968 (-968 |#1|)))) 23) (((-968 (-968 (-968 |#1|))) $) 19) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-684 |#1|) (-13 (-498 |#1|) (-10 -8 (IF (|has| |#1| (-1061)) (PROGN (-15 -1918 ($ (-780) (-780) (-780))) (-15 -2831 ($ (-780))) (-15 -3739 ($ $ $))) |%noBranch|) (-15 -2955 ($ (-653 (-653 (-653 |#1|))))) (-15 -2198 (|#1| $ (-780) (-780) (-780))) (-15 -2183 (|#1| $ (-780) (-780) (-780) |#1|)) (-15 -2942 ($ (-968 (-968 (-968 |#1|))))) (-15 -2942 ((-968 (-968 (-968 |#1|))) $)) (-15 -2091 ($ (-1189) $ $)) (-15 -3691 ((-1280 (-780)) $)))) (-1112)) (T -684)) -((-1918 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) (-4 *3 (-1112)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) (-4 *3 (-1112)))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1061)) (-4 *2 (-1112)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-653 *3)))) (-4 *3 (-1112)) (-5 *1 (-684 *3)))) (-2198 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) (-2183 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-4 *3 (-1112)) (-5 *1 (-684 *3)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-5 *1 (-684 *3)) (-4 *3 (-1112)))) (-2091 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-684 *3)) (-4 *3 (-1112)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1280 (-780))) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) -(-13 (-498 |#1|) (-10 -8 (IF (|has| |#1| (-1061)) (PROGN (-15 -1918 ($ (-780) (-780) (-780))) (-15 -2831 ($ (-780))) (-15 -3739 ($ $ $))) |%noBranch|) (-15 -2955 ($ (-653 (-653 (-653 |#1|))))) (-15 -2198 (|#1| $ (-780) (-780) (-780))) (-15 -2183 (|#1| $ (-780) (-780) (-780) |#1|)) (-15 -2942 ($ (-968 (-968 (-968 |#1|))))) (-15 -2942 ((-968 (-968 (-968 |#1|))) $)) (-15 -2091 ($ (-1189) $ $)) (-15 -3691 ((-1280 (-780)) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2030 (((-492) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-685) (-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -2043 ((-1147) $))))) (T -685)) -((-2030 (*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-685)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-685))))) -(-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -2043 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 15)) (-3903 (($ $) 19)) (-1407 (((-112) $) 20)) (-1695 (((-3 |#1| "failed") $) 23)) (-2205 ((|#1| $) 21)) (-2925 (($ $) 37)) (-4386 (($ $) 25)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-2580 (((-112) $ $) 47)) (-4134 (((-931) $) 40)) (-3890 (($ $) 18)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) 36)) (-2942 (((-871) $) 32) (($ |#1|) 24) (((-828 |#1|) $) 28)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-686 |#1|) (-13 (-859) (-1050 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2914 (|#1| $)) (-15 -3890 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -3903 ($ $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -686)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-2914 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859))))) -(-13 (-859) (-1050 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2914 (|#1| $)) (-15 -3890 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -3903 ($ $)) (-15 -1653 ((-653 |#1|) $)))) -((-3096 ((|#1| (-1 |#1| (-780) |#1|) (-780) |#1|) 11)) (-4128 ((|#1| (-1 |#1| |#1|) (-780) |#1|) 9))) -(((-687 |#1|) (-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-780) |#1|)) (-15 -3096 (|#1| (-1 |#1| (-780) |#1|) (-780) |#1|))) (-1112)) (T -687)) -((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-780) *2)) (-5 *4 (-780)) (-4 *2 (-1112)) (-5 *1 (-687 *2)))) (-4128 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-780)) (-4 *2 (-1112)) (-5 *1 (-687 *2))))) -(-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-780) |#1|)) (-15 -3096 (|#1| (-1 |#1| (-780) |#1|) (-780) |#1|))) -((-2648 ((|#2| |#1| |#2|) 9)) (-2636 ((|#1| |#1| |#2|) 8))) -(((-688 |#1| |#2|) (-10 -7 (-15 -2636 (|#1| |#1| |#2|)) (-15 -2648 (|#2| |#1| |#2|))) (-1112) (-1112)) (T -688)) -((-2648 (*1 *2 *3 *2) (-12 (-5 *1 (-688 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *1 (-688 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2636 (|#1| |#1| |#2|)) (-15 -2648 (|#2| |#1| |#2|))) -((-4405 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1112) (-1112) (-1112)) (T -689)) -((-4405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-689 *5 *6 *2))))) -(-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 21)) (-2285 (((-653 (-1229)) $) 19)) (-3469 (($ (-653 (-1229)) (-1229)) 14)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 29) (($ (-1194)) NIL) (((-1194) $) NIL) (((-1229) $) 22) (($ (-1130)) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-690) (-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-1130))) (-15 -3469 ($ (-653 (-1229)) (-1229))) (-15 -2285 ((-653 (-1229)) $)) (-15 -2334 ((-1229) $))))) (T -690)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1130)) (-5 *1 (-690)))) (-3469 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1229))) (-5 *3 (-1229)) (-5 *1 (-690)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-690)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-690))))) -(-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-1130))) (-15 -3469 ($ (-653 (-1229)) (-1229))) (-15 -2285 ((-653 (-1229)) $)) (-15 -2334 ((-1229) $)))) -((-3096 (((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)) 26)) (-2196 (((-1 |#1|) |#1|) 8)) (-2802 ((|#1| |#1|) 19)) (-1387 (((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2942 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-780)) 23))) -(((-691 |#1|) (-10 -7 (-15 -2196 ((-1 |#1|) |#1|)) (-15 -2942 ((-1 |#1|) |#1|)) (-15 -1387 (|#1| (-1 |#1| |#1|))) (-15 -1387 ((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573))) (-15 -2802 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-780))) (-15 -3096 ((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)))) (-1112)) (T -691)) -((-3096 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-780) *3)) (-4 *3 (-1112)) (-5 *1 (-691 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *4 (-1112)) (-5 *1 (-691 *4)))) (-2802 (*1 *2 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1112)))) (-1387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-653 *5) (-653 *5))) (-5 *4 (-573)) (-5 *2 (-653 *5)) (-5 *1 (-691 *5)) (-4 *5 (-1112)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-691 *2)) (-4 *2 (-1112)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112)))) (-2196 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2196 ((-1 |#1|) |#1|)) (-15 -2942 ((-1 |#1|) |#1|)) (-15 -1387 (|#1| (-1 |#1| |#1|))) (-15 -1387 ((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573))) (-15 -2802 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-780))) (-15 -3096 ((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)))) -((-2993 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1964 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1705 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1317 (((-1 |#2| |#1|) |#2|) 11))) -(((-692 |#1| |#2|) (-10 -7 (-15 -1317 ((-1 |#2| |#1|) |#2|)) (-15 -1964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2993 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1112) (-1112)) (T -692)) -((-2993 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5)) (-4 *4 (-1112)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1 *5)) (-5 *1 (-692 *4 *5)))) (-1317 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-692 *4 *3)) (-4 *4 (-1112)) (-4 *3 (-1112))))) -(-10 -7 (-15 -1317 ((-1 |#2| |#1|) |#2|)) (-15 -1964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2993 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3089 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1760 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1530 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1526 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2015 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -1760 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1530 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1526 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2015 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3089 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1112) (-1112) (-1112)) (T -693)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-1 *7 *5)) (-5 *1 (-693 *5 *6 *7)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-693 *4 *5 *6)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-1112)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *5 (-1112)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6)))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1112)) (-4 *4 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *5 *4 *6))))) -(-10 -7 (-15 -1760 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1530 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1526 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2015 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3089 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2867 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1776 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-694 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2867 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1061) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|) (-1061) (-381 |#5|) (-381 |#5|) (-696 |#5| |#6| |#7|)) (T -694)) -((-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1061)) (-4 *2 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *8 (-381 *2)) (-4 *9 (-381 *2)) (-5 *1 (-694 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-696 *5 *6 *7)) (-4 *10 (-696 *2 *8 *9)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8))))) -(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2867 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2215 (($ (-780) (-780)) 42)) (-3596 (($ $ $) 71)) (-1724 (($ |#3|) 66) (($ $) 67)) (-2932 (((-112) $) 36)) (-1734 (($ $ (-573) (-573)) 82)) (-4107 (($ $ (-573) (-573)) 83)) (-3975 (($ $ (-573) (-573) (-573) (-573)) 88)) (-3321 (($ $) 69)) (-1916 (((-112) $) 15)) (-2598 (($ $ (-573) (-573) $) 89)) (-3142 ((|#2| $ (-573) (-573) |#2|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) 87)) (-1681 (($ (-780) |#2|) 53)) (-2913 (($ (-653 (-653 |#2|))) 51)) (-1612 (((-653 (-653 |#2|)) $) 78)) (-2150 (($ $ $) 70)) (-2837 (((-3 $ "failed") $ |#2|) 120)) (-2198 ((|#2| $ (-573) (-573)) NIL) ((|#2| $ (-573) (-573) |#2|) NIL) (($ $ (-653 (-573)) (-653 (-573))) 86)) (-1633 (($ (-653 |#2|)) 54) (($ (-653 $)) 56)) (-2530 (((-112) $) 28)) (-2942 (($ |#4|) 61) (((-871) $) NIL)) (-1494 (((-112) $) 38)) (-3103 (($ $ |#2|) 122)) (-3093 (($ $ $) 93) (($ $) 96)) (-3077 (($ $ $) 91)) (** (($ $ (-780)) 109) (($ $ (-573)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-573) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-695 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2598 (|#1| |#1| (-573) (-573) |#1|)) (-15 -3975 (|#1| |#1| (-573) (-573) (-573) (-573))) (-15 -4107 (|#1| |#1| (-573) (-573))) (-15 -1734 (|#1| |#1| (-573) (-573))) (-15 -3142 (|#1| |#1| (-653 (-573)) (-653 (-573)) |#1|)) (-15 -2198 (|#1| |#1| (-653 (-573)) (-653 (-573)))) (-15 -1612 ((-653 (-653 |#2|)) |#1|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -1724 (|#1| |#3|)) (-15 -2942 (|#1| |#4|)) (-15 -1633 (|#1| (-653 |#1|))) (-15 -1633 (|#1| (-653 |#2|))) (-15 -1681 (|#1| (-780) |#2|)) (-15 -2913 (|#1| (-653 (-653 |#2|)))) (-15 -2215 (|#1| (-780) (-780))) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573)))) (-696 |#2| |#3| |#4|) (-1061) (-381 |#2|) (-381 |#2|)) (T -695)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2598 (|#1| |#1| (-573) (-573) |#1|)) (-15 -3975 (|#1| |#1| (-573) (-573) (-573) (-573))) (-15 -4107 (|#1| |#1| (-573) (-573))) (-15 -1734 (|#1| |#1| (-573) (-573))) (-15 -3142 (|#1| |#1| (-653 (-573)) (-653 (-573)) |#1|)) (-15 -2198 (|#1| |#1| (-653 (-573)) (-653 (-573)))) (-15 -1612 ((-653 (-653 |#2|)) |#1|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -1724 (|#1| |#3|)) (-15 -2942 (|#1| |#4|)) (-15 -1633 (|#1| (-653 |#1|))) (-15 -1633 (|#1| (-653 |#2|))) (-15 -1681 (|#1| (-780) |#2|)) (-15 -2913 (|#1| (-653 (-653 |#2|)))) (-15 -2215 (|#1| (-780) (-780))) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) 98)) (-3596 (($ $ $) 88)) (-1724 (($ |#2|) 92) (($ $) 91)) (-2932 (((-112) $) 100)) (-1734 (($ $ (-573) (-573)) 84)) (-4107 (($ $ (-573) (-573)) 83)) (-3975 (($ $ (-573) (-573) (-573) (-573)) 82)) (-3321 (($ $) 90)) (-1916 (((-112) $) 102)) (-3450 (((-112) $ (-780)) 8)) (-2598 (($ $ (-573) (-573) $) 81)) (-3142 ((|#1| $ (-573) (-573) |#1|) 45) (($ $ (-653 (-573)) (-653 (-573)) $) 85)) (-3601 (($ $ (-573) |#2|) 43)) (-2790 (($ $ (-573) |#3|) 42)) (-1681 (($ (-780) |#1|) 96)) (-2579 (($) 7 T CONST)) (-2801 (($ $) 68 (|has| |#1| (-314)))) (-3229 ((|#2| $ (-573)) 47)) (-3583 (((-780) $) 67 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) 44)) (-2384 ((|#1| $ (-573) (-573)) 49)) (-1863 (((-653 |#1|) $) 31)) (-2928 (((-780) $) 66 (|has| |#1| (-565)))) (-4209 (((-653 |#3|) $) 65 (|has| |#1| (-565)))) (-2188 (((-780) $) 52)) (-3789 (($ (-780) (-780) |#1|) 58)) (-2197 (((-780) $) 51)) (-2078 (((-112) $ (-780)) 9)) (-2431 ((|#1| $) 63 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 56)) (-4011 (((-573) $) 54)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 55)) (-2326 (((-573) $) 53)) (-2913 (($ (-653 (-653 |#1|))) 97)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1612 (((-653 (-653 |#1|)) $) 87)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 62 (|has| |#1| (-371)))) (-2150 (($ $ $) 89)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) 57)) (-2837 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) (-573)) 50) ((|#1| $ (-573) (-573) |#1|) 48) (($ $ (-653 (-573)) (-653 (-573))) 86)) (-1633 (($ (-653 |#1|)) 95) (($ (-653 $)) 94)) (-2530 (((-112) $) 101)) (-2529 ((|#1| $) 64 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1921 ((|#3| $ (-573)) 46)) (-2942 (($ |#3|) 93) (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 99)) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) 69 (|has| |#1| (-371)))) (-3093 (($ $ $) 79) (($ $) 78)) (-3077 (($ $ $) 80)) (** (($ $ (-780)) 71) (($ $ (-573)) 61 (|has| |#1| (-371)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-573) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-696 |#1| |#2| |#3|) (-141) (-1061) (-381 |t#1|) (-381 |t#1|)) (T -696)) -((-1916 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2215 (*1 *1 *2 *2) (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1681 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *2)) (-4 *4 (-381 *3)) (-4 *2 (-381 *3)))) (-1724 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *2 *4)) (-4 *2 (-381 *3)) (-4 *4 (-381 *3)))) (-1724 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-2150 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3596 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-653 (-653 *3))))) (-2198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3142 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1734 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-4107 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3975 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2598 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-696 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *2 (-381 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-696 *3 *2 *4)) (-4 *3 (-1061)) (-4 *2 (-381 *3)) (-4 *4 (-381 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-565)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-314)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-653 *5)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-3299 (*1 *1 *1) (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-371))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -1916 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -2932 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -2215 ($ (-780) (-780))) (-15 -2913 ($ (-653 (-653 |t#1|)))) (-15 -1681 ($ (-780) |t#1|)) (-15 -1633 ($ (-653 |t#1|))) (-15 -1633 ($ (-653 $))) (-15 -2942 ($ |t#3|)) (-15 -1724 ($ |t#2|)) (-15 -1724 ($ $)) (-15 -3321 ($ $)) (-15 -2150 ($ $ $)) (-15 -3596 ($ $ $)) (-15 -1612 ((-653 (-653 |t#1|)) $)) (-15 -2198 ($ $ (-653 (-573)) (-653 (-573)))) (-15 -3142 ($ $ (-653 (-573)) (-653 (-573)) $)) (-15 -1734 ($ $ (-573) (-573))) (-15 -4107 ($ $ (-573) (-573))) (-15 -3975 ($ $ (-573) (-573) (-573) (-573))) (-15 -2598 ($ $ (-573) (-573) $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-573) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-780))) (IF (|has| |t#1| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-314)) (-15 -2801 ($ $)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -3583 ((-780) $)) (-15 -2928 ((-780) $)) (-15 -4209 ((-653 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4457 "*"))) (PROGN (-15 -2529 (|t#1| $)) (-15 -2431 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-15 -3299 ((-3 $ "failed") $)) (-15 ** ($ $ (-573)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-57 |#1| |#2| |#3|) . T) ((-1230) . T)) -((-2801 ((|#4| |#4|) 92 (|has| |#1| (-314)))) (-3583 (((-780) |#4|) 120 (|has| |#1| (-565)))) (-2928 (((-780) |#4|) 96 (|has| |#1| (-565)))) (-4209 (((-653 |#3|) |#4|) 103 (|has| |#1| (-565)))) (-1553 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 135 (|has| |#1| (-314)))) (-2431 ((|#1| |#4|) 52)) (-3311 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-565)))) (-3299 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-371)))) (-2887 ((|#4| |#4|) 88 (|has| |#1| (-565)))) (-2632 ((|#4| |#4| |#1| (-573) (-573)) 60)) (-1509 ((|#4| |#4| (-573) (-573)) 55)) (-2025 ((|#4| |#4| |#1| (-573) (-573)) 65)) (-2529 ((|#1| |#4|) 98)) (-4372 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-565))))) -(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2529 (|#1| |#4|)) (-15 -2431 (|#1| |#4|)) (-15 -1509 (|#4| |#4| (-573) (-573))) (-15 -2632 (|#4| |#4| |#1| (-573) (-573))) (-15 -2025 (|#4| |#4| |#1| (-573) (-573))) (IF (|has| |#1| (-565)) (PROGN (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (-15 -4209 ((-653 |#3|) |#4|)) (-15 -2887 (|#4| |#4|)) (-15 -3311 ((-3 |#4| "failed") |#4|)) (-15 -4372 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -2801 (|#4| |#4|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -697)) -((-3299 (*1 *2 *2) (|partial| -12 (-4 *3 (-371)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-1553 (*1 *2 *3 *3) (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-697 *3 *4 *5 *6)) (-4 *6 (-696 *3 *4 *5)))) (-2801 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-4372 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2887 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2025 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) (-4 *2 (-696 *3 *5 *6)))) (-2632 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) (-4 *2 (-696 *3 *5 *6)))) (-1509 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *1 (-697 *4 *5 *6 *2)) (-4 *2 (-696 *4 *5 *6)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5))))) -(-10 -7 (-15 -2529 (|#1| |#4|)) (-15 -2431 (|#1| |#4|)) (-15 -1509 (|#4| |#4| (-573) (-573))) (-15 -2632 (|#4| |#4| |#1| (-573) (-573))) (-15 -2025 (|#4| |#4| |#1| (-573) (-573))) (IF (|has| |#1| (-565)) (PROGN (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (-15 -4209 ((-653 |#3|) |#4|)) (-15 -2887 (|#4| |#4|)) (-15 -3311 ((-3 |#4| "failed") |#4|)) (-15 -4372 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -2801 (|#4| |#4|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) 64)) (-3596 (($ $ $) NIL)) (-1724 (($ (-1280 |#1|)) NIL) (($ $) NIL)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) 22)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-1280 |#1|)) NIL)) (-2790 (($ $ (-573) (-1280 |#1|)) NIL)) (-1681 (($ (-780) |#1|) 37)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 46 (|has| |#1| (-314)))) (-3229 (((-1280 |#1|) $ (-573)) NIL)) (-3583 (((-780) $) 48 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) 69)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) 50 (|has| |#1| (-565)))) (-4209 (((-653 (-1280 |#1|)) $) 53 (|has| |#1| (-565)))) (-2188 (((-780) $) 32)) (-3789 (($ (-780) (-780) |#1|) 28)) (-2197 (((-780) $) 33)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) 44 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 10)) (-4011 (((-573) $) 11)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 14)) (-2326 (((-573) $) 65)) (-2913 (($ (-653 (-653 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) 76)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 60 (|has| |#1| (-371)))) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL) (($ (-1280 |#1|)) 70)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) 42 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 80 (|has| |#1| (-623 (-545))))) (-1921 (((-1280 |#1|) $ (-573)) NIL)) (-2942 (($ (-1280 |#1|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) 38) (($ $ (-573)) 62 (|has| |#1| (-371)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-1280 |#1|) $ (-1280 |#1|)) NIL) (((-1280 |#1|) (-1280 |#1|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-698 |#1|) (-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 -1633 ($ (-1280 |#1|))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 $ "failed") $)) |%noBranch|))) (-1061)) (T -698)) -((-3299 (*1 *1 *1) (|partial| -12 (-5 *1 (-698 *2)) (-4 *2 (-371)) (-4 *2 (-1061)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-698 *3))))) -(-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 -1633 ($ (-1280 |#1|))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 $ "failed") $)) |%noBranch|))) -((-4326 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 37)) (-3012 (((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|) 32)) (-3336 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780)) 43)) (-3765 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 25)) (-3472 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 29) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 27)) (-3361 (((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|)) 31)) (-3362 (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 23)) (** (((-698 |#1|) (-698 |#1|) (-780)) 46))) -(((-699 |#1|) (-10 -7 (-15 -3362 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3361 ((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|))) (-15 -3012 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -4326 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3336 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780))) (-15 ** ((-698 |#1|) (-698 |#1|) (-780)))) (-1061)) (T -699)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-699 *4)))) (-3336 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-699 *4)))) (-4326 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3012 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3472 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3765 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) -(-10 -7 (-15 -3362 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3361 ((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|))) (-15 -3012 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -4326 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3336 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780))) (-15 ** ((-698 |#1|) (-698 |#1|) (-780)))) -((-1695 (((-3 |#1| "failed") $) 18)) (-2205 ((|#1| $) NIL)) (-2233 (($) 7 T CONST)) (-1840 (($ |#1|) 8)) (-2942 (($ |#1|) 16) (((-871) $) 23)) (-2121 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2233)) 11)) (-1331 ((|#1| $) 15))) -(((-700 |#1|) (-13 (-1275) (-1050 |#1|) (-622 (-871)) (-10 -8 (-15 -1840 ($ |#1|)) (-15 -2121 ((-112) $ (|[\|\|]| |#1|))) (-15 -2121 ((-112) $ (|[\|\|]| -2233))) (-15 -1331 (|#1| $)) (-15 -2233 ($) -1705))) (-622 (-871))) (T -700)) -((-1840 (*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-622 (-871))) (-5 *2 (-112)) (-5 *1 (-700 *4)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2233)) (-5 *2 (-112)) (-5 *1 (-700 *4)) (-4 *4 (-622 (-871))))) (-1331 (*1 *2 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) (-2233 (*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) -(-13 (-1275) (-1050 |#1|) (-622 (-871)) (-10 -8 (-15 -1840 ($ |#1|)) (-15 -2121 ((-112) $ (|[\|\|]| |#1|))) (-15 -2121 ((-112) $ (|[\|\|]| -2233))) (-15 -1331 (|#1| $)) (-15 -2233 ($) -1705))) -((-1328 ((|#2| |#2| |#4|) 29)) (-2753 (((-698 |#2|) |#3| |#4|) 35)) (-3858 (((-698 |#2|) |#2| |#4|) 34)) (-3457 (((-1280 |#2|) |#2| |#4|) 16)) (-4415 ((|#2| |#3| |#4|) 28)) (-1510 (((-698 |#2|) |#3| |#4| (-780) (-780)) 47)) (-3034 (((-698 |#2|) |#2| |#4| (-780)) 46))) -(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 ((-1280 |#2|) |#2| |#4|)) (-15 -4415 (|#2| |#3| |#4|)) (-15 -1328 (|#2| |#2| |#4|)) (-15 -3858 ((-698 |#2|) |#2| |#4|)) (-15 -3034 ((-698 |#2|) |#2| |#4| (-780))) (-15 -2753 ((-698 |#2|) |#3| |#4|)) (-15 -1510 ((-698 |#2|) |#3| |#4| (-780) (-780)))) (-1112) (-910 |#1|) (-381 |#2|) (-13 (-381 |#1|) (-10 -7 (-6 -4455)))) (T -701)) -((-1510 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *7 (-910 *6)) (-5 *2 (-698 *7)) (-5 *1 (-701 *6 *7 *3 *4)) (-4 *3 (-381 *7)) (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455)))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *6 (-910 *5)) (-5 *2 (-698 *6)) (-5 *1 (-701 *5 *6 *3 *4)) (-4 *3 (-381 *6)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *3 (-910 *6)) (-5 *2 (-698 *3)) (-5 *1 (-701 *6 *3 *7 *4)) (-4 *7 (-381 *3)) (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455)))))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-698 *3)) (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-1328 (*1 *2 *2 *3) (-12 (-4 *4 (-1112)) (-4 *2 (-910 *4)) (-5 *1 (-701 *4 *2 *5 *3)) (-4 *5 (-381 *2)) (-4 *3 (-13 (-381 *4) (-10 -7 (-6 -4455)))))) (-4415 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *2 (-910 *5)) (-5 *1 (-701 *5 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-1280 *3)) (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) -(-10 -7 (-15 -3457 ((-1280 |#2|) |#2| |#4|)) (-15 -4415 (|#2| |#3| |#4|)) (-15 -1328 (|#2| |#2| |#4|)) (-15 -3858 ((-698 |#2|) |#2| |#4|)) (-15 -3034 ((-698 |#2|) |#2| |#4| (-780))) (-15 -2753 ((-698 |#2|) |#3| |#4|)) (-15 -1510 ((-698 |#2|) |#3| |#4| (-780) (-780)))) -((-2382 (((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)) 20)) (-3343 ((|#1| (-698 |#2|)) 9)) (-1946 (((-698 |#1|) (-698 |#2|)) 18))) -(((-702 |#1| |#2|) (-10 -7 (-15 -3343 (|#1| (-698 |#2|))) (-15 -1946 ((-698 |#1|) (-698 |#2|))) (-15 -2382 ((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)))) (-565) (-1004 |#1|)) (T -702)) -((-2382 (*1 *2 *3) (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |num| (-698 *4)) (|:| |den| *4))) (-5 *1 (-702 *4 *5)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) (-5 *2 (-698 *4)) (-5 *1 (-702 *4 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-698 *4)) (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-702 *2 *4))))) -(-10 -7 (-15 -3343 (|#1| (-698 |#2|))) (-15 -1946 ((-698 |#1|) (-698 |#2|))) (-15 -2382 ((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2114 (((-698 (-708))) NIL) (((-698 (-708)) (-1280 $)) NIL)) (-1635 (((-708) $) NIL)) (-2363 (($ $) NIL (|has| (-708) (-1215)))) (-2246 (($ $) NIL (|has| (-708) (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-708) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-4285 (($ $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-2427 (((-427 $) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-4228 (($ $) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-2800 (((-112) $ $) NIL (|has| (-708) (-314)))) (-1486 (((-780)) NIL (|has| (-708) (-376)))) (-2342 (($ $) NIL (|has| (-708) (-1215)))) (-2225 (($ $) NIL (|has| (-708) (-1215)))) (-2388 (($ $) NIL (|has| (-708) (-1215)))) (-2266 (($ $) NIL (|has| (-708) (-1215)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-708) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-708) (-1050 (-416 (-573)))))) (-2205 (((-573) $) NIL) (((-708) $) NIL) (((-416 (-573)) $) NIL (|has| (-708) (-1050 (-416 (-573)))))) (-2854 (($ (-1280 (-708))) NIL) (($ (-1280 (-708)) (-1280 $)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-708) (-357)))) (-2784 (($ $ $) NIL (|has| (-708) (-314)))) (-1720 (((-698 (-708)) $) NIL) (((-698 (-708)) $ (-1280 $)) NIL)) (-2759 (((-698 (-708)) (-1280 $)) NIL) (((-698 (-708)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-708))) (|:| |vec| (-1280 (-708)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-708) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-708) (-648 (-573)))) (((-698 (-573)) (-1280 $)) NIL (|has| (-708) (-648 (-573))))) (-2867 (((-3 $ "failed") (-416 (-1185 (-708)))) NIL (|has| (-708) (-371))) (($ (-1185 (-708))) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4238 (((-708) $) 29)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| (-708) (-554)))) (-2551 (((-112) $) NIL (|has| (-708) (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| (-708) (-554)))) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-708) (-376)))) (-2796 (($ $ $) NIL (|has| (-708) (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-708) (-314)))) (-3731 (($) NIL (|has| (-708) (-357)))) (-1708 (((-112) $) NIL (|has| (-708) (-357)))) (-2104 (($ $) NIL (|has| (-708) (-357))) (($ $ (-780)) NIL (|has| (-708) (-357)))) (-2696 (((-112) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-1610 (((-2 (|:| |r| (-708)) (|:| |phi| (-708))) $) NIL (-12 (|has| (-708) (-1072)) (|has| (-708) (-1215))))) (-2999 (($) NIL (|has| (-708) (-1215)))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-708) (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-708) (-896 (-573))))) (-2534 (((-842 (-931)) $) NIL (|has| (-708) (-357))) (((-931) $) NIL (|has| (-708) (-357)))) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215))))) (-3421 (((-708) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-708) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-708) (-314)))) (-2297 (((-1185 (-708)) $) NIL (|has| (-708) (-371)))) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 (-708) (-708)) $) NIL)) (-3589 (((-931) $) NIL (|has| (-708) (-376)))) (-3118 (($ $) NIL (|has| (-708) (-1215)))) (-2853 (((-1185 (-708)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-708) (-314))) (($ $ $) NIL (|has| (-708) (-314)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| (-708) (-371)))) (-3816 (($) NIL (|has| (-708) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-708) (-376)))) (-1507 (($) NIL)) (-4248 (((-708) $) 31)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-708) (-314)))) (-2872 (($ (-653 $)) NIL (|has| (-708) (-314))) (($ $ $) NIL (|has| (-708) (-314)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-708) (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-4218 (((-427 $) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-708) (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-708) (-314)))) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-708)) NIL (|has| (-708) (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-708) (-314)))) (-1608 (($ $) NIL (|has| (-708) (-1215)))) (-2645 (($ $ (-1189) (-708)) NIL (|has| (-708) (-523 (-1189) (-708)))) (($ $ (-653 (-1189)) (-653 (-708))) NIL (|has| (-708) (-523 (-1189) (-708)))) (($ $ (-653 (-301 (-708)))) NIL (|has| (-708) (-316 (-708)))) (($ $ (-301 (-708))) NIL (|has| (-708) (-316 (-708)))) (($ $ (-708) (-708)) NIL (|has| (-708) (-316 (-708)))) (($ $ (-653 (-708)) (-653 (-708))) NIL (|has| (-708) (-316 (-708))))) (-2163 (((-780) $) NIL (|has| (-708) (-314)))) (-2198 (($ $ (-708)) NIL (|has| (-708) (-293 (-708) (-708))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-708) (-314)))) (-3592 (((-708)) NIL) (((-708) (-1280 $)) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL (|has| (-708) (-357))) (((-780) $) NIL (|has| (-708) (-357)))) (-3904 (($ $ (-1 (-708) (-708))) NIL) (($ $ (-1 (-708) (-708)) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189)) NIL (|has| (-708) (-910 (-1189)))) (($ $) NIL (|has| (-708) (-238))) (($ $ (-780)) NIL (|has| (-708) (-238)))) (-4303 (((-698 (-708)) (-1280 $) (-1 (-708) (-708))) NIL (|has| (-708) (-371)))) (-2984 (((-1185 (-708))) NIL)) (-2401 (($ $) NIL (|has| (-708) (-1215)))) (-2274 (($ $) NIL (|has| (-708) (-1215)))) (-2510 (($) NIL (|has| (-708) (-357)))) (-2374 (($ $) NIL (|has| (-708) (-1215)))) (-2255 (($ $) NIL (|has| (-708) (-1215)))) (-2352 (($ $) NIL (|has| (-708) (-1215)))) (-2236 (($ $) NIL (|has| (-708) (-1215)))) (-2123 (((-698 (-708)) (-1280 $)) NIL) (((-1280 (-708)) $) NIL) (((-698 (-708)) (-1280 $) (-1280 $)) NIL) (((-1280 (-708)) $ (-1280 $)) NIL)) (-1835 (((-545) $) NIL (|has| (-708) (-623 (-545)))) (((-171 (-227)) $) NIL (|has| (-708) (-1034))) (((-171 (-387)) $) NIL (|has| (-708) (-1034))) (((-902 (-387)) $) NIL (|has| (-708) (-623 (-902 (-387))))) (((-902 (-573)) $) NIL (|has| (-708) (-623 (-902 (-573))))) (($ (-1185 (-708))) NIL) (((-1185 (-708)) $) NIL) (($ (-1280 (-708))) NIL) (((-1280 (-708)) $) NIL)) (-3204 (($ $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| $ (-146)) (|has| (-708) (-919))) (|has| (-708) (-357))))) (-3561 (($ (-708) (-708)) 12)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-708)) NIL) (($ (-171 (-387))) 13) (($ (-171 (-573))) 19) (($ (-171 (-708))) 28) (($ (-171 (-710))) 25) (((-171 (-387)) $) 33) (($ (-416 (-573))) NIL (-2817 (|has| (-708) (-1050 (-416 (-573)))) (|has| (-708) (-371))))) (-4279 (($ $) NIL (|has| (-708) (-357))) (((-3 $ "failed") $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| $ (-146)) (|has| (-708) (-919))) (|has| (-708) (-146))))) (-2517 (((-1185 (-708)) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2439 (($ $) NIL (|has| (-708) (-1215)))) (-2304 (($ $) NIL (|has| (-708) (-1215)))) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) NIL (|has| (-708) (-1215)))) (-2286 (($ $) NIL (|has| (-708) (-1215)))) (-2464 (($ $) NIL (|has| (-708) (-1215)))) (-2324 (($ $) NIL (|has| (-708) (-1215)))) (-3607 (((-708) $) NIL (|has| (-708) (-1215)))) (-2520 (($ $) NIL (|has| (-708) (-1215)))) (-2333 (($ $) NIL (|has| (-708) (-1215)))) (-2452 (($ $) NIL (|has| (-708) (-1215)))) (-2314 (($ $) NIL (|has| (-708) (-1215)))) (-2426 (($ $) NIL (|has| (-708) (-1215)))) (-2296 (($ $) NIL (|has| (-708) (-1215)))) (-1660 (($ $) NIL (|has| (-708) (-1072)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 (-708) (-708))) NIL) (($ $ (-1 (-708) (-708)) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189)) NIL (|has| (-708) (-910 (-1189)))) (($ $) NIL (|has| (-708) (-238))) (($ $ (-780)) NIL (|has| (-708) (-238)))) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-708) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ $) NIL (|has| (-708) (-1215))) (($ $ (-416 (-573))) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215)))) (($ $ (-573)) NIL (|has| (-708) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-708) $) NIL) (($ $ (-708)) NIL) (($ (-416 (-573)) $) NIL (|has| (-708) (-371))) (($ $ (-416 (-573))) NIL (|has| (-708) (-371))))) -(((-703) (-13 (-396) (-167 (-708)) (-10 -8 (-15 -2942 ($ (-171 (-387)))) (-15 -2942 ($ (-171 (-573)))) (-15 -2942 ($ (-171 (-708)))) (-15 -2942 ($ (-171 (-710)))) (-15 -2942 ((-171 (-387)) $))))) (T -703)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-573))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-708))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-703)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703))))) -(-13 (-396) (-167 (-708)) (-10 -8 (-15 -2942 ($ (-171 (-387)))) (-15 -2942 ($ (-171 (-573)))) (-15 -2942 ($ (-171 (-708)))) (-15 -2942 ($ (-171 (-710)))) (-15 -2942 ((-171 (-387)) $)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-704 |#1|) (-141) (-1112)) (T -704)) -((-3181 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-704 *2)) (-4 *2 (-1112)))) (-1599 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1112)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-2 (|:| -1907 *3) (|:| -3974 (-780)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -3181 ($ |t#1| $ (-780))) (-15 -1599 ($ $)) (-15 -2493 ((-653 (-2 (|:| -1907 |t#1|) (|:| -3974 (-780)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-2332 (((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573)) 65)) (-3953 ((|#1| |#1| (-573)) 62)) (-2872 ((|#1| |#1| |#1| (-573)) 46)) (-4218 (((-653 |#1|) |#1| (-573)) 49)) (-4240 ((|#1| |#1| (-573) |#1| (-573)) 40)) (-3773 (((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573)) 61))) -(((-705 |#1|) (-10 -7 (-15 -2872 (|#1| |#1| |#1| (-573))) (-15 -3953 (|#1| |#1| (-573))) (-15 -4218 ((-653 |#1|) |#1| (-573))) (-15 -3773 ((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573))) (-15 -2332 ((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573))) (-15 -4240 (|#1| |#1| (-573) |#1| (-573)))) (-1256 (-573))) (T -705)) -((-4240 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| -4218 *5) (|:| -2565 (-573))))) (-5 *4 (-573)) (-4 *5 (-1256 *4)) (-5 *2 (-653 *5)) (-5 *1 (-705 *5)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -2565 *4)))) (-5 *1 (-705 *3)) (-4 *3 (-1256 *4)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-653 *3)) (-5 *1 (-705 *3)) (-4 *3 (-1256 *4)))) (-3953 (*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) (-2872 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) -(-10 -7 (-15 -2872 (|#1| |#1| |#1| (-573))) (-15 -3953 (|#1| |#1| (-573))) (-15 -4218 ((-653 |#1|) |#1| (-573))) (-15 -3773 ((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573))) (-15 -2332 ((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573))) (-15 -4240 (|#1| |#1| (-573) |#1| (-573)))) -((-1425 (((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2496 (((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 53) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 55) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 57)) (-2986 (((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269))) NIL)) (-3522 (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 58))) -(((-706) (-10 -7 (-15 -2496 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -3522 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2986 ((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -1425 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -706)) -((-1425 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *1 (-706)))) (-2986 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-3522 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-2496 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *1 (-706)))) (-2496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-2496 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706))))) -(-10 -7 (-15 -2496 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -3522 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2986 ((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -1425 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|)) 86) (((-427 |#4|) |#4|) 266))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) (-859) (-802) (-357) (-959 |#3| |#2| |#1|)) (T -707)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 97)) (-3770 (((-573) $) 34)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-2579 (($) NIL T CONST)) (-2350 (($ $) NIL)) (-1695 (((-3 (-573) "failed") $) 85) (((-3 (-416 (-573)) "failed") $) 28) (((-3 (-387) "failed") $) 82)) (-2205 (((-573) $) 87) (((-416 (-573)) $) 79) (((-387) $) 80)) (-2784 (($ $ $) 109)) (-2232 (((-3 $ "failed") $) 100)) (-2796 (($ $ $) 108)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 89) (((-931) (-931)) 88)) (-4152 (((-112) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-2534 (((-573) $) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3421 (($ $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2771 (((-573) (-573)) 94) (((-573)) 95)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-1445 (((-573) (-573)) 92) (((-573)) 93)) (-3751 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 17)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 104)) (-2827 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL)) (-3733 (($ $) NIL)) (-2383 (($ (-573) (-573)) NIL) (($ (-573) (-573) (-931)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 105)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 24)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 107)) (-3006 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-2985 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-902 (-387)) $) NIL)) (-2942 (((-871) $) 63) (($ (-573)) 75) (($ $) NIL) (($ (-416 (-573))) 78) (($ (-573)) 75) (($ (-416 (-573))) 78) (($ (-387)) 72) (((-387) $) 61) (($ (-710)) 66)) (-1545 (((-780)) 119 T CONST)) (-4300 (($ (-573) (-573) (-931)) 54)) (-2437 (($ $) NIL)) (-2628 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 91) (((-931) (-931)) 90)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 18 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 96)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 118)) (-3103 (($ $ $) 77)) (-3093 (($ $) 115) (($ $ $) 116)) (-3077 (($ $ $) 114)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 110) (($ $ $) 101) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-708) (-13 (-413) (-396) (-371) (-1050 (-387)) (-1050 (-416 (-573))) (-148) (-10 -8 (-15 -3785 ((-931) (-931))) (-15 -3785 ((-931))) (-15 -2629 ((-931) (-931))) (-15 -1445 ((-573) (-573))) (-15 -1445 ((-573))) (-15 -2771 ((-573) (-573))) (-15 -2771 ((-573))) (-15 -2942 ((-387) $)) (-15 -2942 ($ (-710))) (-15 -4299 ((-573) $)) (-15 -3907 ((-573) $)) (-15 -4300 ($ (-573) (-573) (-931)))))) (T -708)) -((-3907 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-3785 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-1445 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2771 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-387)) (-5 *1 (-708)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-708)))) (-4300 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-5 *1 (-708))))) -(-13 (-413) (-396) (-371) (-1050 (-387)) (-1050 (-416 (-573))) (-148) (-10 -8 (-15 -3785 ((-931) (-931))) (-15 -3785 ((-931))) (-15 -2629 ((-931) (-931))) (-15 -1445 ((-573) (-573))) (-15 -1445 ((-573))) (-15 -2771 ((-573) (-573))) (-15 -2771 ((-573))) (-15 -2942 ((-387) $)) (-15 -2942 ($ (-710))) (-15 -4299 ((-573) $)) (-15 -3907 ((-573) $)) (-15 -4300 ($ (-573) (-573) (-931))))) -((-1803 (((-698 |#1|) (-698 |#1|) |#1| |#1|) 85)) (-2801 (((-698 |#1|) (-698 |#1|) |#1|) 66)) (-2400 (((-698 |#1|) (-698 |#1|) |#1|) 86)) (-1975 (((-698 |#1|) (-698 |#1|)) 67)) (-1553 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 84))) -(((-709 |#1|) (-10 -7 (-15 -1975 ((-698 |#1|) (-698 |#1|))) (-15 -2801 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -2400 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -1803 ((-698 |#1|) (-698 |#1|) |#1| |#1|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) (-314)) (T -709)) -((-1553 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-709 *3)) (-4 *3 (-314)))) (-1803 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) -(-10 -7 (-15 -1975 ((-698 |#1|) (-698 |#1|))) (-15 -2801 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -2400 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -1803 ((-698 |#1|) (-698 |#1|) |#1| |#1|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 31)) (-2205 (((-573) $) 29)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($ $) NIL) (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) NIL)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-3337 (((-931) (-931)) 10) (((-931)) 9)) (-3751 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4134 (($ $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2294 (($ $) NIL)) (-3166 (($ $) NIL)) (-1835 (((-227) $) NIL) (((-387) $) NIL) (((-902 (-573)) $) NIL) (((-545) $) NIL) (((-573) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) 28) (($ $) NIL) (($ (-573)) 28) (((-323 $) (-323 (-573))) 18)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) -(((-710) (-13 (-396) (-554) (-10 -8 (-15 -3337 ((-931) (-931))) (-15 -3337 ((-931))) (-15 -2942 ((-323 $) (-323 (-573))))))) (T -710)) -((-3337 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) (-3337 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-323 (-573))) (-5 *2 (-323 (-710))) (-5 *1 (-710))))) -(-13 (-396) (-554) (-10 -8 (-15 -3337 ((-931) (-931))) (-15 -3337 ((-931))) (-15 -2942 ((-323 $) (-323 (-573)))))) -((-2747 (((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)) 19)) (-2849 (((-1 |#4| |#2| |#3|) (-1189)) 12))) -(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2849 ((-1 |#4| |#2| |#3|) (-1189))) (-15 -2747 ((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)))) (-623 (-545)) (-1230) (-1230) (-1230)) (T -711)) -((-2747 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *3 *5 *6 *7)) (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *7 (-1230)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *4 *5 *6 *7)) (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *7 (-1230))))) -(-10 -7 (-15 -2849 ((-1 |#4| |#2| |#3|) (-1189))) (-15 -2747 ((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)))) -((-1993 (((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)) 43) (((-1 (-227) (-227)) |#1| (-1189)) 48))) -(((-712 |#1|) (-10 -7 (-15 -1993 ((-1 (-227) (-227)) |#1| (-1189))) (-15 -1993 ((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)))) (-623 (-545))) (T -712)) -((-1993 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-712 *3)) (-4 *3 (-623 (-545))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-712 *3)) (-4 *3 (-623 (-545)))))) -(-10 -7 (-15 -1993 ((-1 (-227) (-227)) |#1| (-1189))) (-15 -1993 ((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)))) -((-2708 (((-1189) |#1| (-1189) (-653 (-1189))) 10) (((-1189) |#1| (-1189) (-1189) (-1189)) 13) (((-1189) |#1| (-1189) (-1189)) 12) (((-1189) |#1| (-1189)) 11))) -(((-713 |#1|) (-10 -7 (-15 -2708 ((-1189) |#1| (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-653 (-1189))))) (-623 (-545))) (T -713)) -((-2708 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545)))))) -(-10 -7 (-15 -2708 ((-1189) |#1| (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-653 (-1189))))) -((-2227 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-714 |#1| |#2|) (-10 -7 (-15 -2227 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1230) (-1230)) (T -714)) -((-2227 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1230)) (-4 *4 (-1230))))) -(-10 -7 (-15 -2227 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2340 (((-1 |#3| |#2|) (-1189)) 11)) (-2747 (((-1 |#3| |#2|) |#1| (-1189)) 21))) -(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-1 |#3| |#2|) (-1189))) (-15 -2747 ((-1 |#3| |#2|) |#1| (-1189)))) (-623 (-545)) (-1230) (-1230)) (T -715)) -((-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *3 *5 *6)) (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *4 *5 *6)) (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) -(-10 -7 (-15 -2340 ((-1 |#3| |#2|) (-1189))) (-15 -2747 ((-1 |#3| |#2|) |#1| (-1189)))) -((-3393 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|) 92)) (-4361 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|) 110)) (-2160 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|) 47))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2160 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|)) (-15 -4361 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|)) (-15 -3393 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -716)) -((-3393 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-653 (-1185 *13))) (-5 *3 (-1185 *13)) (-5 *4 (-653 *12)) (-5 *5 (-653 *10)) (-5 *6 (-653 *13)) (-5 *7 (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *13))))) (-5 *8 (-653 (-780))) (-5 *9 (-1280 (-653 (-1185 *10)))) (-4 *12 (-859)) (-4 *10 (-314)) (-4 *13 (-959 *10 *11 *12)) (-4 *11 (-802)) (-5 *1 (-716 *11 *12 *10 *13)))) (-4361 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-653 *11)) (-5 *5 (-653 (-1185 *9))) (-5 *6 (-653 *9)) (-5 *7 (-653 *12)) (-5 *8 (-653 (-780))) (-4 *11 (-859)) (-4 *9 (-314)) (-4 *12 (-959 *9 *10 *11)) (-4 *10 (-802)) (-5 *2 (-653 (-1185 *12))) (-5 *1 (-716 *10 *11 *9 *12)) (-5 *3 (-1185 *12)))) (-2160 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-653 (-1185 *11))) (-5 *3 (-1185 *11)) (-5 *4 (-653 *10)) (-5 *5 (-653 *8)) (-5 *6 (-653 (-780))) (-5 *7 (-1280 (-653 (-1185 *8)))) (-4 *10 (-859)) (-4 *8 (-314)) (-4 *11 (-959 *8 *9 *10)) (-4 *9 (-802)) (-5 *1 (-716 *9 *10 *8 *11))))) -(-10 -7 (-15 -2160 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|)) (-15 -4361 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|)) (-15 -3393 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 48)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 46)) (-4036 (((-780) $) 50)) (-1369 ((|#1| $) 49)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 (((-780) $) 51)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4317 ((|#1| $ (-780)) 47)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-717 |#1|) (-141) (-1061)) (T -717)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061))))) -(-13 (-1061) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2565 ((-780) $)) (-15 -4036 ((-780) $)) (-15 -1369 (|t#1| $)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ (-780))) (-15 -4334 ($ |t#1| (-780))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-1776 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-718 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|))) (-565) (-1256 |#1|) (-1256 (-416 |#2|)) (-565) (-1256 |#4|) (-1256 (-416 |#5|))) (T -718)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-565)) (-4 *7 (-565)) (-4 *6 (-1256 *5)) (-4 *2 (-1256 (-416 *8))) (-5 *1 (-718 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1256 (-416 *6))) (-4 *8 (-1256 *7))))) -(-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1437 (((-1171) (-871)) 38)) (-1402 (((-1285) (-1171)) 31)) (-2187 (((-1171) (-871)) 28)) (-3211 (((-1171) (-871)) 29)) (-2942 (((-871) $) NIL) (((-1171) (-871)) 27)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-719) (-13 (-1112) (-10 -7 (-15 -2942 ((-1171) (-871))) (-15 -2187 ((-1171) (-871))) (-15 -3211 ((-1171) (-871))) (-15 -1437 ((-1171) (-871))) (-15 -1402 ((-1285) (-1171)))))) (T -719)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-719))))) -(-13 (-1112) (-10 -7 (-15 -2942 ((-1171) (-871))) (-15 -2187 ((-1171) (-871))) (-15 -3211 ((-1171) (-871))) (-15 -1437 ((-1171) (-871))) (-15 -1402 ((-1285) (-1171))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2867 (($ |#1| |#2|) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 ((|#2| $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2569 (((-3 $ "failed") $ $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) ((|#1| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-371) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720)) -((-3621 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2867 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-371) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)))) -((-2848 (((-112) $ $) 87)) (-1748 (((-112) $) 36)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) NIL (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-1486 (((-780)) 54 (|has| |#1| (-376)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-2027 ((|#2| |#2|) 50)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 40)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ |#2|) 48)) (-2232 (((-3 $ "failed") $) 97)) (-2819 (($) 58 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) NIL (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-3287 (((-968 $)) 89)) (-2343 (($ $ |#1| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 85) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3621 ((|#2|) 51)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2853 ((|#2| $) 47)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) 34)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3818 (($ $) 88 (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 98 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) 38) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-3418 (((-968 $)) 42)) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) 68) (($ (-573)) NIL) (($ |#1|) 65) (($ (-1094)) NIL) (($ |#2|) 75) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) 70) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 25 T CONST)) (-3608 (((-1280 |#1|) $) 83)) (-2484 (($ (-1280 |#1|)) 57)) (-2144 (($) 8 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1878 (((-1280 |#1|) $) NIL)) (-2981 (((-112) $ $) 76)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 79) (($ $ $) NIL)) (-3077 (($ $ $) 39)) (** (($ $ (-931)) NIL) (($ $ (-780)) 92)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 64) (($ $ $) 82) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-721 |#1| |#2|) (-13 (-1256 |#1|) (-625 |#2|) (-10 -8 (-15 -2027 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2867 ($ |#2|)) (-15 -2853 (|#2| $)) (-15 -3608 ((-1280 |#1|) $)) (-15 -2484 ($ (-1280 |#1|))) (-15 -1878 ((-1280 |#1|) $)) (-15 -3287 ((-968 $))) (-15 -3418 ((-968 $))) (IF (|has| |#1| (-357)) (-15 -3818 ($ $)) |%noBranch|) (IF (|has| |#1| (-376)) (-6 (-376)) |%noBranch|))) (-1061) (-1256 |#1|)) (T -721)) -((-2027 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) (-3621 (*1 *2) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) (-2867 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) (-2853 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3418 (*1 *2) (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *2 (-1061)) (-5 *1 (-721 *2 *3)) (-4 *3 (-1256 *2))))) -(-13 (-1256 |#1|) (-625 |#2|) (-10 -8 (-15 -2027 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2867 ($ |#2|)) (-15 -2853 (|#2| $)) (-15 -3608 ((-1280 |#1|) $)) (-15 -2484 ($ (-1280 |#1|))) (-15 -1878 ((-1280 |#1|) $)) (-15 -3287 ((-968 $))) (-15 -3418 ((-968 $))) (IF (|has| |#1| (-357)) (-15 -3818 ($ $)) |%noBranch|) (IF (|has| |#1| (-376)) (-6 (-376)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 ((|#1| $) 13)) (-3965 (((-1132) $) NIL)) (-3907 ((|#2| $) 12)) (-2955 (($ |#1| |#2|) 16)) (-2942 (((-871) $) NIL) (($ (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) 15) (((-2 (|:| -2575 |#1|) (|:| -3907 |#2|)) $) 14)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11))) -(((-722 |#1| |#2| |#3|) (-13 (-859) (-499 (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) (-10 -8 (-15 -3907 (|#2| $)) (-15 -2575 (|#1| $)) (-15 -2955 ($ |#1| |#2|)))) (-859) (-1112) (-1 (-112) (-2 (|:| -2575 |#1|) (|:| -3907 |#2|)) (-2 (|:| -2575 |#1|) (|:| -3907 |#2|)))) (T -722)) -((-3907 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-722 *3 *2 *4)) (-4 *3 (-859)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *2)) (-2 (|:| -2575 *3) (|:| -3907 *2)))))) (-2575 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-722 *2 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) (-2 (|:| -2575 *2) (|:| -3907 *3)))))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1112)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) (-2 (|:| -2575 *2) (|:| -3907 *3))))))) -(-13 (-859) (-499 (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) (-10 -8 (-15 -3907 (|#2| $)) (-15 -2575 (|#1| $)) (-15 -2955 ($ |#1| |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 66)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2205 ((|#1| $) NIL) (((-115) $) 39)) (-2232 (((-3 $ "failed") $) 103)) (-4316 ((|#2| (-115) |#2|) 93)) (-1959 (((-112) $) NIL)) (-1769 (($ |#1| (-369 (-115))) 14)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3627 (($ $ (-1 |#2| |#2|)) 65)) (-3630 (($ $ (-1 |#2| |#2|)) 44)) (-2198 ((|#2| $ |#2|) 33)) (-3078 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2942 (((-871) $) 73) (($ (-573)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 37 T CONST)) (-3507 (((-112) $ $) NIL)) (-4372 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2132 (($) 21 T CONST)) (-2144 (($) 9 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 48) (($ $ $) NIL)) (-3077 (($ $ $) 83)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ (-115) (-573)) NIL) (($ $ (-573)) 64)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-723 |#1| |#2|) (-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#2| |#2|))) (-15 -3627 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#2| (-115) |#2|)) (-15 -1769 ($ |#1| (-369 (-115)))))) (-1061) (-657 |#1|)) (T -723)) -((-4372 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-4372 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-3078 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *5)) (-4 *5 (-657 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)) (-4 *4 (-657 *3)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *2)) (-4 *2 (-657 *4)))) (-1769 (*1 *1 *2 *3) (-12 (-5 *3 (-369 (-115))) (-4 *2 (-1061)) (-5 *1 (-723 *2 *4)) (-4 *4 (-657 *2))))) -(-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#2| |#2|))) (-15 -3627 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#2| (-115) |#2|)) (-15 -1769 ($ |#1| (-369 (-115)))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 33)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ |#1| |#2|) 25)) (-2232 (((-3 $ "failed") $) 51)) (-1959 (((-112) $) 35)) (-3621 ((|#2| $) 12)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 52)) (-3965 (((-1132) $) NIL)) (-2569 (((-3 $ "failed") $ $) 50)) (-2942 (((-871) $) 24) (($ (-573)) 19) ((|#1| $) 13)) (-1545 (((-780)) 28 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 16 T CONST)) (-2144 (($) 30 T CONST)) (-2981 (((-112) $ $) 41)) (-3093 (($ $) 46) (($ $ $) 40)) (-3077 (($ $ $) 43)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 21) (($ $ $) 20))) -(((-724 |#1| |#2| |#3| |#4| |#5|) (-13 (-1061) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -724)) -((-2232 (*1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3621 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2867 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1323 (*1 *1 *1) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1061) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) -((* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-725 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-726 |#2|) (-174)) (T -725)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-726 |#1|) (-141) (-174)) (T -726)) -NIL -(-13 (-111 |t#1| |t#1|) (-649 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-3958 (($ |#1|) 17) (($ $ |#1|) 20)) (-3465 (($ |#1|) 18) (($ $ |#1|) 21)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1959 (((-112) $) NIL)) (-2745 (($ |#1| |#1| |#1| |#1|) 8)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 16)) (-3965 (((-1132) $) NIL)) (-2645 ((|#1| $ |#1|) 24) (((-842 |#1|) $ (-842 |#1|)) 32)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 39)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 9 T CONST)) (-2981 (((-112) $ $) 48)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 14))) -(((-727 |#1|) (-13 (-482) (-10 -8 (-15 -2745 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -3465 ($ |#1|)) (-15 -2232 ($)) (-15 -3958 ($ $ |#1|)) (-15 -3465 ($ $ |#1|)) (-15 -2232 ($ $)) (-15 -2645 (|#1| $ |#1|)) (-15 -2645 ((-842 |#1|) $ (-842 |#1|))))) (-371)) (T -727)) -((-2745 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3465 (*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2232 (*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2232 (*1 *1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-842 *3)) (-4 *3 (-371)) (-5 *1 (-727 *3))))) -(-13 (-482) (-10 -8 (-15 -2745 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -3465 ($ |#1|)) (-15 -2232 ($)) (-15 -3958 ($ $ |#1|)) (-15 -3465 ($ $ |#1|)) (-15 -2232 ($ $)) (-15 -2645 (|#1| $ |#1|)) (-15 -2645 ((-842 |#1|) $ (-842 |#1|))))) -((-3681 (($ $ (-931)) 19)) (-2022 (($ $ (-931)) 20)) (** (($ $ (-931)) 10))) -(((-728 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) (-729)) (T -728)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-3681 (($ $ (-931)) 16)) (-2022 (($ $ (-931)) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14)) (* (($ $ $) 17))) -(((-729) (-141)) (T -729)) -((* (*1 *1 *1 *1) (-4 *1 (-729))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931))))) -(-13 (-1112) (-10 -8 (-15 * ($ $ $)) (-15 -3681 ($ $ (-931))) (-15 -2022 ($ $ (-931))) (-15 ** ($ $ (-931))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3681 (($ $ (-931)) NIL) (($ $ (-780)) 18)) (-1959 (((-112) $) 10)) (-2022 (($ $ (-931)) NIL) (($ $ (-780)) 19)) (** (($ $ (-931)) NIL) (($ $ (-780)) 16))) -(((-730 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-780))) (-15 -2022 (|#1| |#1| (-780))) (-15 -3681 (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) (-731)) (T -730)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-780))) (-15 -2022 (|#1| |#1| (-780))) (-15 -3681 (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-1546 (((-3 $ "failed") $) 18)) (-3681 (($ $ (-931)) 16) (($ $ (-780)) 23)) (-2232 (((-3 $ "failed") $) 20)) (-1959 (((-112) $) 24)) (-2780 (((-3 $ "failed") $) 19)) (-2022 (($ $ (-931)) 15) (($ $ (-780)) 22)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14) (($ $ (-780)) 21)) (* (($ $ $) 17))) -(((-731) (-141)) (T -731)) -((-2144 (*1 *1) (-4 *1 (-731))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (-2232 (*1 *1 *1) (|partial| -4 *1 (-731))) (-2780 (*1 *1 *1) (|partial| -4 *1 (-731))) (-1546 (*1 *1 *1) (|partial| -4 *1 (-731)))) -(-13 (-729) (-10 -8 (-15 (-2144) ($) -1705) (-15 -1959 ((-112) $)) (-15 -3681 ($ $ (-780))) (-15 -2022 ($ $ (-780))) (-15 ** ($ $ (-780))) (-15 -2232 ((-3 $ "failed") $)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1546 ((-3 $ "failed") $)))) -(((-102) . T) ((-622 (-871)) . T) ((-729) . T) ((-1112) . T)) -((-1486 (((-780)) 39)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 23)) (-2867 (($ |#3|) NIL) (((-3 $ "failed") (-416 |#3|)) 49)) (-2232 (((-3 $ "failed") $) 69)) (-2819 (($) 43)) (-3421 ((|#2| $) 21)) (-2969 (($) 18)) (-3904 (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-4303 (((-698 |#2|) (-1280 $) (-1 |#2| |#2|)) 64)) (-1835 (((-1280 |#2|) $) NIL) (($ (-1280 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2517 ((|#3| $) 36)) (-3914 (((-1280 $)) 33))) -(((-732 |#1| |#2| |#3|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2819 (|#1|)) (-15 -1486 ((-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -4303 ((-698 |#2|) (-1280 |#1|) (-1 |#2| |#2|))) (-15 -2867 ((-3 |#1| "failed") (-416 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2867 (|#1| |#3|)) (-15 -2969 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -3914 ((-1280 |#1|))) (-15 -2517 (|#3| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) (-733 |#2| |#3|) (-174) (-1256 |#2|)) (T -732)) -((-1486 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-780)) (-5 *1 (-732 *3 *4 *5)) (-4 *3 (-733 *4 *5))))) -(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2819 (|#1|)) (-15 -1486 ((-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -4303 ((-698 |#2|) (-1280 |#1|) (-1 |#2| |#2|))) (-15 -2867 ((-3 |#1| "failed") (-416 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2867 (|#1| |#3|)) (-15 -2969 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -3914 ((-1280 |#1|))) (-15 -2517 (|#3| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (|has| |#1| (-371)))) (-2456 (($ $) 104 (|has| |#1| (-371)))) (-1345 (((-112) $) 106 (|has| |#1| (-371)))) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 123 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 124 (|has| |#1| (-371)))) (-2800 (((-112) $ $) 114 (|has| |#1| (-371)))) (-1486 (((-780)) 97 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 176)) (-2205 (((-573) $) 180 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 177)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-357)))) (-2784 (($ $ $) 118 (|has| |#1| (-371)))) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 172) (((-698 |#1|) (-698 $)) 171) (((-698 |#1|) (-1280 $)) 170)) (-2867 (($ |#2|) 167) (((-3 $ "failed") (-416 |#2|)) 164 (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| |#1| (-376)))) (-2796 (($ $ $) 117 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| |#1| (-371)))) (-3731 (($) 158 (|has| |#1| (-357)))) (-1708 (((-112) $) 159 (|has| |#1| (-357)))) (-2104 (($ $ (-780)) 150 (|has| |#1| (-357))) (($ $) 149 (|has| |#1| (-357)))) (-2696 (((-112) $) 125 (|has| |#1| (-371)))) (-2534 (((-931) $) 161 (|has| |#1| (-357))) (((-842 (-931)) $) 147 (|has| |#1| (-357)))) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-1470 (((-3 $ "failed") $) 151 (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| |#1| (-371)))) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3589 (((-931) $) 99 (|has| |#1| (-376)))) (-2853 ((|#2| $) 165)) (-2829 (($ (-653 $)) 110 (|has| |#1| (-371))) (($ $ $) 109 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 126 (|has| |#1| (-371)))) (-3816 (($) 152 (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| |#1| (-376)))) (-3965 (((-1132) $) 11)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 108 (|has| |#1| (-371))) (($ $ $) 107 (|has| |#1| (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| |#1| (-357)))) (-4218 (((-427 $) $) 122 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) 102 (|has| |#1| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| |#1| (-371)))) (-2163 (((-780) $) 115 (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| |#1| (-371)))) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-1637 (((-780) $) 160 (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) 148 (|has| |#1| (-357)))) (-3904 (($ $ (-780)) 145 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) 143 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) 142 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189))) 141 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1189) (-780)) 140 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-780))) 139 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1 |#1| |#1|) (-780)) 132 (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-371)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-371)))) (-2984 ((|#2|) 168)) (-2510 (($) 157 (|has| |#1| (-357)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (|has| |#1| (-357)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-371))) (($ (-416 (-573))) 96 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (($ $) 153 (|has| |#1| (-357))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2516 (((-112) $ $) 105 (|has| |#1| (-371)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 146 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) 144 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) 138 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189))) 137 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1189) (-780)) 136 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-780))) 135 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1 |#1| |#1|) (-780)) 134 (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-371)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 127 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-416 (-573)) $) 129 (|has| |#1| (-371))) (($ $ (-416 (-573))) 128 (|has| |#1| (-371))))) -(((-733 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -733)) -((-2969 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-733 *2 *3)) (-4 *3 (-1256 *2)))) (-2984 (*1 *2) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2867 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) (-1835 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2867 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-371)) (-4 *3 (-174)) (-4 *1 (-733 *3 *4)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-4 *1 (-733 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1256 *5)) (-5 *2 (-698 *5))))) -(-13 (-418 |t#1| |t#2|) (-174) (-623 |t#2|) (-420 |t#1|) (-385 |t#1|) (-10 -8 (-15 -2969 ($)) (-15 -2984 (|t#2|)) (-15 -2867 ($ |t#2|)) (-15 -1835 ($ |t#2|)) (-15 -2853 (|t#2| $)) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-6 (-371)) (-6 (-233 |t#1|)) (-15 -2867 ((-3 $ "failed") (-416 |t#2|))) (-15 -4303 ((-698 |t#1|) (-1280 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-38 |#1|) . T) ((-38 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-102) . T) ((-111 #0# #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-357)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-357)) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) . T) ((-623 |#2|) . T) ((-235 $) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-233 |#1|) |has| |#1| (-371)) ((-238) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-237) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-248) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-297) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-314) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-371) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-411) |has| |#1| (-357)) ((-376) -2817 (|has| |#1| (-376)) (|has| |#1| (-357))) ((-357) |has| |#1| (-357)) ((-378 |#1| |#2|) . T) ((-418 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-565) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-649 |#1|) . T) ((-649 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-726 |#1|) . T) ((-726 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189)))) ((-930) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-357)) ((-1230) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-1234) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)))) -((-2579 (($) 11)) (-2232 (((-3 $ "failed") $) 14)) (-1959 (((-112) $) 10)) (** (($ $ (-931)) NIL) (($ $ (-780)) 20))) -(((-734 |#1|) (-10 -8 (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 ** (|#1| |#1| (-931)))) (-735)) (T -734)) -NIL -(-10 -8 (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 ** (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-1959 (((-112) $) 18)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14) (($ $ (-780)) 17)) (* (($ $ $) 15))) -(((-735) (-141)) (T -735)) -((-2144 (*1 *1) (-4 *1 (-735))) (-2579 (*1 *1) (-4 *1 (-735))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-780)))) (-2232 (*1 *1 *1) (|partial| -4 *1 (-735)))) -(-13 (-1124) (-10 -8 (-15 (-2144) ($) -1705) (-15 -2579 ($) -1705) (-15 -1959 ((-112) $)) (-15 ** ($ $ (-780))) (-15 -2232 ((-3 $ "failed") $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1124) . T) ((-1112) . T)) -((-2641 (((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3834 (((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1927 ((|#2| (-416 |#2|) (-1 |#2| |#2|)) 13)) (-2478 (((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)) 48))) -(((-736 |#1| |#2|) (-10 -7 (-15 -3834 ((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2641 ((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1927 (|#2| (-416 |#2|) (-1 |#2| |#2|))) (-15 -2478 ((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -736)) -((-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1359 (-416 *6)) (|:| |special| (-416 *6)))) (-5 *1 (-736 *5 *6)) (-5 *3 (-416 *6)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-416 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-736 *5 *2)) (-4 *5 (-371)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -1359 (-427 *3)) (|:| |special| (-427 *3)))) (-5 *1 (-736 *5 *3)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -1359 *3) (|:| |special| *3))) (-5 *1 (-736 *5 *3))))) -(-10 -7 (-15 -3834 ((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2641 ((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1927 (|#2| (-416 |#2|) (-1 |#2| |#2|))) (-15 -2478 ((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)))) -((-1338 ((|#7| (-653 |#5|) |#6|) NIL)) (-1776 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-737 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1338 (|#7| (-653 |#5|) |#6|))) (-859) (-802) (-802) (-1061) (-1061) (-959 |#4| |#2| |#1|) (-959 |#5| |#3| |#1|)) (T -737)) -((-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *9)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *8 (-1061)) (-4 *2 (-959 *9 *7 *5)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) (-4 *4 (-959 *8 *6 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1061)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *2 (-959 *9 *7 *5)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) (-4 *4 (-959 *8 *6 *5))))) -(-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1338 (|#7| (-653 |#5|) |#6|))) -((-1776 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|))) (-859) (-859) (-802) (-802) (-1061) (-959 |#5| |#3| |#1|) (-959 |#5| |#4| |#2|)) (T -738)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-802)) (-4 *9 (-1061)) (-4 *2 (-959 *9 *8 *6)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-802)) (-4 *4 (-959 *9 *7 *5))))) -(-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|))) -((-4218 (((-427 |#4|) |#4|) 42))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-314) (-959 (-962 |#3|) |#1| |#2|)) (T -739)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-959 (-962 *6) *4 *5))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-540 (-873 |#1|)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-540 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-540 (-873 |#1|)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-540 (-873 |#1|)) (-540 (-873 |#1|))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-540 (-873 |#1|)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ $) NIL (|has| |#2| (-565))) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-540 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-740 |#1| |#2|) (-959 |#2| (-540 (-873 |#1|)) (-873 |#1|)) (-653 (-1189)) (-1061)) (T -740)) -NIL -(-959 |#2| (-540 (-873 |#1|)) (-873 |#1|)) -((-1658 (((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|) 14)) (-1519 ((|#4| |#4| |#2|) 33)) (-2638 ((|#4| (-416 (-962 |#3|)) |#2|) 64)) (-2738 ((|#4| (-1185 (-962 |#3|)) |#2|) 77)) (-3677 ((|#4| (-1185 |#4|) |#2|) 51)) (-4120 ((|#4| |#4| |#2|) 54)) (-4218 (((-427 |#4|) |#4|) 40))) -(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1658 ((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|)) (-15 -4120 (|#4| |#4| |#2|)) (-15 -3677 (|#4| (-1185 |#4|) |#2|)) (-15 -1519 (|#4| |#4| |#2|)) (-15 -2738 (|#4| (-1185 (-962 |#3|)) |#2|)) (-15 -2638 (|#4| (-416 (-962 |#3|)) |#2|)) (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))) (-565) (-959 (-416 (-962 |#3|)) |#1| |#2|)) (T -741)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5)))) (-2638 (*1 *2 *3 *4) (-12 (-4 *6 (-565)) (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-5 *3 (-416 (-962 *6))) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 (-962 *6))) (-4 *6 (-565)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))))) (-1519 (*1 *2 *2 *3) (-12 (-4 *4 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)))) (-4120 (*1 *2 *2 *3) (-12 (-4 *4 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) (-1658 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) (-5 *2 (-2 (|:| -3280 (-962 *6)) (|:| -4040 (-962 *6)))) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5))))) -(-10 -7 (-15 -1658 ((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|)) (-15 -4120 (|#4| |#4| |#2|)) (-15 -3677 (|#4| (-1185 |#4|) |#2|)) (-15 -1519 (|#4| |#4| |#2|)) (-15 -2738 (|#4| (-1185 (-962 |#3|)) |#2|)) (-15 -2638 (|#4| (-416 (-962 |#3|)) |#2|)) (-15 -4218 ((-427 |#4|) |#4|))) -((-4218 (((-427 |#4|) |#4|) 54))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-859) (-13 (-314) (-148)) (-959 (-416 |#3|) |#1| |#2|)) (T -742)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-959 (-416 *6) *4 *5))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) -((-1776 (((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)) 18))) -(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)))) (-1061) (-1061) (-735)) (T -743)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5 *7)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *7 (-735)) (-5 *2 (-744 *6 *7)) (-5 *1 (-743 *5 *6 *7))))) -(-10 -7 (-15 -1776 ((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 36)) (-1662 (((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $) 37)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) 22 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2205 ((|#2| $) NIL) ((|#1| $) NIL)) (-1391 (($ $) 102 (|has| |#2| (-859)))) (-2232 (((-3 $ "failed") $) 85)) (-2819 (($) 48 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 70)) (-2518 (((-653 $) $) 52)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 68)) (-3589 (((-931) $) 43 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-1358 ((|#2| $) 101 (|has| |#2| (-859)))) (-1369 ((|#1| $) 100 (|has| |#2| (-859)))) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 35 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 99) (($ (-573)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|)))) 11)) (-1920 (((-653 |#1|) $) 54)) (-4317 ((|#1| $ |#2|) 115)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2144 (($) 44 T CONST)) (-2981 (((-112) $ $) 105)) (-3093 (($ $) 61) (($ $ $) NIL)) (-3077 (($ $ $) 33)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-744 |#1| |#2|) (-13 (-1061) (-1050 |#2|) (-1050 |#1|) (-10 -8 (-15 -4334 ($ |#1| |#2|)) (-15 -4317 (|#1| $ |#2|)) (-15 -2942 ($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))))) (-15 -1662 ((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -3676 ((-112) $)) (-15 -1920 ((-653 |#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-859)) (PROGN (-15 -1358 (|#2| $)) (-15 -1369 (|#1| $)) (-15 -1391 ($ $))) |%noBranch|))) (-1061) (-735)) (T -744)) -((-4334 (*1 *1 *2 *3) (-12 (-5 *1 (-744 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-735)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-735)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) (-4 *3 (-1061)) (-4 *4 (-735)) (-5 *1 (-744 *3 *4)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-744 *3 *4)) (-4 *4 (-735)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-653 (-744 *3 *4))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1358 (*1 *2 *1) (-12 (-4 *2 (-735)) (-4 *2 (-859)) (-5 *1 (-744 *3 *2)) (-4 *3 (-1061)))) (-1369 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *3 (-735)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1061)) (-4 *3 (-735))))) -(-13 (-1061) (-1050 |#2|) (-1050 |#1|) (-10 -8 (-15 -4334 ($ |#1| |#2|)) (-15 -4317 (|#1| $ |#2|)) (-15 -2942 ($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))))) (-15 -1662 ((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -3676 ((-112) $)) (-15 -1920 ((-653 |#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-859)) (PROGN (-15 -1358 (|#2| $)) (-15 -1369 (|#1| $)) (-15 -1391 ($ $))) |%noBranch|))) -((-2848 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2180 (($ $ $) 73)) (-3319 (((-112) $ $) 74)) (-3450 (((-112) $ (-780)) 8)) (-1506 (($ (-653 |#1|)) 69) (($) 68)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 65)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 70)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-3631 (($ $ |#1|) 72) (($ $ $) 71)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18)) (-4280 (($ (-653 |#1|)) 67) (($) 66)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-745 |#1|) (-141) (-1112)) (T -745)) -NIL -(-13 (-704 |t#1|) (-1110 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-704 |#1|) . T) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2180 (($ $ $) 96)) (-3319 (((-112) $ $) 104)) (-3450 (((-112) $ (-780)) NIL)) (-1506 (($ (-653 |#1|)) 26) (($) 17)) (-3557 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-1599 (($ $) 85)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 70 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455))) (($ |#1| $ (-573)) 75) (($ (-1 (-112) |#1|) $ (-573)) 78)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $ (-573)) 80) (($ (-1 (-112) |#1|) $ (-573)) 81)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 32 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 103)) (-3237 (($) 15) (($ |#1|) 28) (($ (-653 |#1|)) 23)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) 38)) (-1547 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 89)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 94)) (-2487 ((|#1| $) 62)) (-3181 (($ |#1| $) 63) (($ |#1| $ (-780)) 86)) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3815 ((|#1| $) 61)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 56)) (-3508 (($) 14)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 55)) (-3631 (($ $ |#1|) NIL) (($ $ $) 95)) (-2428 (($) 16) (($ (-653 |#1|)) 25)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) 68 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 79)) (-1835 (((-545) $) 36 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 22)) (-2942 (((-871) $) 49)) (-4280 (($ (-653 |#1|)) 27) (($) 18)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 |#1|)) 24)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 100)) (-2862 (((-780) $) 67 (|has| $ (-6 -4455))))) -(((-746 |#1|) (-13 (-745 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -3237 ($)) (-15 -3237 ($ |#1|)) (-15 -3237 ($ (-653 |#1|))) (-15 -3214 ((-653 |#1|) $)) (-15 -3334 ($ |#1| $ (-573))) (-15 -3334 ($ (-1 (-112) |#1|) $ (-573))) (-15 -2596 ($ |#1| $ (-573))) (-15 -2596 ($ (-1 (-112) |#1|) $ (-573))))) (-1112)) (T -746)) -((-3237 (*1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3237 (*1 *1 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-746 *3)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-746 *3)) (-4 *3 (-1112)))) (-3334 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3334 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) (-5 *1 (-746 *4)))) (-2596 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-2596 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) (-5 *1 (-746 *4))))) -(-13 (-745 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -3237 ($)) (-15 -3237 ($ |#1|)) (-15 -3237 ($ (-653 |#1|))) (-15 -3214 ((-653 |#1|) $)) (-15 -3334 ($ |#1| $ (-573))) (-15 -3334 ($ (-1 (-112) |#1|) $ (-573))) (-15 -2596 ($ |#1| $ (-573))) (-15 -2596 ($ (-1 (-112) |#1|) $ (-573))))) -((-1322 (((-1285) (-1171)) 8))) -(((-747) (-10 -7 (-15 -1322 ((-1285) (-1171))))) (T -747)) -((-1322 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-747))))) -(-10 -7 (-15 -1322 ((-1285) (-1171)))) -((-4379 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 15))) -(((-748 |#1|) (-10 -7 (-15 -4379 ((-653 |#1|) (-653 |#1|) (-653 |#1|)))) (-859)) (T -748)) -((-4379 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-748 *3))))) -(-10 -7 (-15 -4379 ((-653 |#1|) (-653 |#1|) (-653 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#2|) $) 148)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 141 (|has| |#1| (-565)))) (-2456 (($ $) 140 (|has| |#1| (-565)))) (-1345 (((-112) $) 138 (|has| |#1| (-565)))) (-2363 (($ $) 97 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 80 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 79 (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 96 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 81 (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) 95 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 82 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1391 (($ $) 132)) (-2232 (((-3 $ "failed") $) 37)) (-4052 (((-962 |#1|) $ (-780)) 110) (((-962 |#1|) $ (-780) (-780)) 109)) (-1488 (((-112) $) 149)) (-2999 (($) 107 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ |#2|) 112) (((-780) $ |#2| (-780)) 111)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 78 (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) 130)) (-4334 (($ $ (-653 |#2|) (-653 (-540 |#2|))) 147) (($ $ |#2| (-540 |#2|)) 146) (($ |#1| (-540 |#2|)) 131) (($ $ |#2| (-780)) 114) (($ $ (-653 |#2|) (-653 (-780))) 113)) (-1776 (($ (-1 |#1| |#1|) $) 129)) (-3118 (($ $) 104 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 127)) (-1369 ((|#1| $) 126)) (-3180 (((-1171) $) 10)) (-1626 (($ $ |#2|) 108 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) 11)) (-2212 (($ $ (-780)) 115)) (-2837 (((-3 $ "failed") $ $) 142 (|has| |#1| (-565)))) (-1608 (($ $) 105 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ |#2| $) 123) (($ $ (-653 |#2|) (-653 $)) 122) (($ $ (-653 (-301 $))) 121) (($ $ (-301 $)) 120) (($ $ $ $) 119) (($ $ (-653 $) (-653 $)) 118)) (-3904 (($ $ |#2|) 46) (($ $ (-653 |#2|)) 45) (($ $ |#2| (-780)) 44) (($ $ (-653 |#2|) (-653 (-780))) 43)) (-2565 (((-540 |#2|) $) 128)) (-2401 (($ $) 94 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 83 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 93 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 84 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 92 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 85 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 150)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-565))) (($ (-416 (-573))) 135 (|has| |#1| (-38 (-416 (-573)))))) (-4317 ((|#1| $ (-540 |#2|)) 133) (($ $ |#2| (-780)) 117) (($ $ (-653 |#2|) (-653 (-780))) 116)) (-4279 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 103 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 91 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 139 (|has| |#1| (-565)))) (-2413 (($ $) 102 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 90 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 101 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 89 (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) 100 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 88 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 99 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 87 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 98 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 86 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#2|) 42) (($ $ (-653 |#2|)) 41) (($ $ |#2| (-780)) 40) (($ $ (-653 |#2|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 134 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ $) 106 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 77 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 137 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 136 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-749 |#1| |#2|) (-141) (-1061) (-859)) (T -749)) -((-4317 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) (-4 *2 (-859)))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-749 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2534 (*1 *2 *1 *3) (-12 (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *2 (-780)))) (-2534 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-780)) (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)) (-5 *2 (-962 *4)))) (-4052 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)) (-5 *2 (-962 *4)))) (-1626 (*1 *1 *1 *2) (-12 (-4 *1 (-749 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)) (-4 *3 (-38 (-416 (-573))))))) -(-13 (-910 |t#2|) (-985 |t#1| (-540 |t#2|) |t#2|) (-523 |t#2| $) (-316 $) (-10 -8 (-15 -4317 ($ $ |t#2| (-780))) (-15 -4317 ($ $ (-653 |t#2|) (-653 (-780)))) (-15 -2212 ($ $ (-780))) (-15 -4334 ($ $ |t#2| (-780))) (-15 -4334 ($ $ (-653 |t#2|) (-653 (-780)))) (-15 -2534 ((-780) $ |t#2|)) (-15 -2534 ((-780) $ |t#2| (-780))) (-15 -4052 ((-962 |t#1|) $ (-780))) (-15 -4052 ((-962 |t#1|) $ (-780) (-780))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |t#2|)) (-6 (-1014)) (-6 (-1215))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-540 |#2|)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-297) |has| |#1| (-565)) ((-316 $) . T) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-523 |#2| $) . T) ((-523 $ $) . T) ((-565) |has| |#1| (-565)) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 |#2|) . T) ((-985 |#1| #0# |#2|) . T) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573))))) -((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|)) 30) (((-427 |#4|) |#4|) 26))) -(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) (-859) (-802) (-13 (-314) (-148)) (-959 |#3| |#2| |#1|)) (T -750)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) -(-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) -((-3380 (((-427 |#4|) |#4| |#2|) 140)) (-2369 (((-427 |#4|) |#4|) NIL)) (-2427 (((-427 (-1185 |#4|)) (-1185 |#4|)) 127) (((-427 |#4|) |#4|) 52)) (-2067 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|))) 81)) (-3394 (((-1185 |#3|) (-1185 |#3|) (-573)) 166)) (-2292 (((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780)) 75)) (-2853 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|)) 79)) (-1942 (((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|))) 27)) (-2787 (((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573)) 72)) (-4160 (((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) 162)) (-2252 ((|#4| (-573) (-427 |#4|)) 73)) (-3579 (((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) NIL))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2427 ((-427 |#4|) |#4|)) (-15 -2427 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -2369 ((-427 |#4|) |#4|)) (-15 -4160 ((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -3380 ((-427 |#4|) |#4| |#2|)) (-15 -2787 ((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573))) (-15 -2067 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -1942 ((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -2252 (|#4| (-573) (-427 |#4|))) (-15 -3579 ((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -2853 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|))) (-15 -2292 ((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780))) (-15 -3394 ((-1185 |#3|) (-1185 |#3|) (-573)))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -751)) -((-3394 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *6)) (-5 *3 (-573)) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-4 *7 (-859)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-4 *8 (-314)) (-5 *2 (-653 (-780))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *5 (-780)))) (-2853 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1185 *11)) (-5 *6 (-653 *10)) (-5 *7 (-653 (-780))) (-5 *8 (-653 *11)) (-4 *10 (-859)) (-4 *11 (-314)) (-4 *9 (-802)) (-4 *5 (-959 *11 *9 *10)) (-5 *2 (-653 (-1185 *5))) (-5 *1 (-751 *9 *10 *11 *5)) (-5 *3 (-1185 *5)))) (-3579 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-427 *2)) (-4 *2 (-959 *7 *5 *6)) (-5 *1 (-751 *5 *6 *7 *2)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-314)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-5 *2 (-2 (|:| |upol| (-1185 *8)) (|:| |Lval| (-653 *8)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 *8)) (|:| -3907 (-573))))) (|:| |ctpol| *8))) (-5 *1 (-751 *6 *7 *8 *9)))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *6 (-802)) (-4 *9 (-959 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 *9)) (|:| -3907 (-573))))))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-573)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-5 *2 (-2 (|:| -3881 (-1185 *9)) (|:| |polval| (-1185 *8)))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)) (-5 *4 (-1185 *8)))) (-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5))))) -(-10 -7 (-15 -2427 ((-427 |#4|) |#4|)) (-15 -2427 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -2369 ((-427 |#4|) |#4|)) (-15 -4160 ((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -3380 ((-427 |#4|) |#4| |#2|)) (-15 -2787 ((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573))) (-15 -2067 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -1942 ((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -2252 (|#4| (-573) (-427 |#4|))) (-15 -3579 ((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -2853 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|))) (-15 -2292 ((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780))) (-15 -3394 ((-1185 |#3|) (-1185 |#3|) (-573)))) -((-3009 (($ $ (-931)) 17))) -(((-752 |#1| |#2|) (-10 -8 (-15 -3009 (|#1| |#1| (-931)))) (-753 |#2|) (-174)) (T -752)) -NIL -(-10 -8 (-15 -3009 (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3681 (($ $ (-931)) 31)) (-3009 (($ $ (-931)) 38)) (-2022 (($ $ (-931)) 32)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-753 |#1|) (-141) (-174)) (T -753)) -((-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-753 *3)) (-4 *3 (-174))))) -(-13 (-770) (-726 |t#1|) (-10 -8 (-15 -3009 ($ $ (-931))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-3183 (((-1047) (-698 (-227)) (-573) (-112) (-573)) 25)) (-3768 (((-1047) (-698 (-227)) (-573) (-112) (-573)) 24))) -(((-754) (-10 -7 (-15 -3768 ((-1047) (-698 (-227)) (-573) (-112) (-573))) (-15 -3183 ((-1047) (-698 (-227)) (-573) (-112) (-573))))) (T -754)) -((-3183 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-754)))) (-3768 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-754))))) -(-10 -7 (-15 -3768 ((-1047) (-698 (-227)) (-573) (-112) (-573))) (-15 -3183 ((-1047) (-698 (-227)) (-573) (-112) (-573)))) -((-1466 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) 43)) (-1931 (((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) 39)) (-4135 (((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 32))) -(((-755) (-10 -7 (-15 -4135 ((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -1931 ((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN))))) (-15 -1466 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN))))))) (T -755)) -((-1466 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1047)) (-5 *1 (-755)))) (-1931 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1047)) (-5 *1 (-755)))) (-4135 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-755))))) -(-10 -7 (-15 -4135 ((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -1931 ((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN))))) (-15 -1466 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))))) -((-2504 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 34)) (-1645 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 33)) (-2501 (((-1047) (-573) (-698 (-227)) (-573)) 32)) (-2181 (((-1047) (-573) (-698 (-227)) (-573)) 31)) (-4084 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 30)) (-4043 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-2559 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-2103 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573)) 27)) (-2372 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 24)) (-4307 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 23)) (-1455 (((-1047) (-573) (-698 (-227)) (-573)) 22)) (-4262 (((-1047) (-573) (-698 (-227)) (-573)) 21))) -(((-756) (-10 -7 (-15 -4262 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1455 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -4307 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2372 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2103 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2559 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4043 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4084 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2181 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -2501 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1645 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2504 ((-1047) (-573) (-573) (-698 (-227)) (-573))))) (T -756)) -((-2504 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-1645 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2501 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2181 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4084 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4043 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2559 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2103 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2372 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4307 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-1455 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4262 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756))))) -(-10 -7 (-15 -4262 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1455 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -4307 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2372 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2103 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2559 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4043 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4084 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2181 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -2501 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1645 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2504 ((-1047) (-573) (-573) (-698 (-227)) (-573)))) -((-3437 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1377 (((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573)) 51)) (-1485 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1947 (((-1047) (-227) (-227) (-573) (-573) (-573) (-573)) 46)) (-4200 (((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 45)) (-4133 (((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 44)) (-4301 (((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 43)) (-3912 (((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 42)) (-3524 (((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 38)) (-3381 (((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 37)) (-3165 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 33)) (-1813 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 32))) -(((-757) (-10 -7 (-15 -1813 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3165 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3381 ((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3524 ((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3912 ((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4301 ((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4133 ((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4200 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -1947 ((-1047) (-227) (-227) (-573) (-573) (-573) (-573))) (-15 -1485 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))) (-15 -1377 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573))) (-15 -3437 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))))) (T -757)) -((-3437 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1377 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1485 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1947 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4200 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4133 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4301 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3912 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3524 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3381 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3165 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1813 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757))))) -(-10 -7 (-15 -1813 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3165 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3381 ((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3524 ((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3912 ((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4301 ((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4133 ((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4200 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -1947 ((-1047) (-227) (-227) (-573) (-573) (-573) (-573))) (-15 -1485 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))) (-15 -1377 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573))) (-15 -3437 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))))) -((-3091 (((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3618 (((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397)) 69) (((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3998 (((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) 57)) (-3899 (((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) 50)) (-2279 (((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2381 (((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2005 (((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) 42)) (-3102 (((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-758) (-10 -7 (-15 -3102 ((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2005 ((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -2381 ((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2279 ((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -3899 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -3998 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397))) (-15 -3091 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -758)) -((-3091 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3618 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-397)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3618 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3998 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3899 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2279 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2381 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2005 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3102 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) -(-10 -7 (-15 -3102 ((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2005 ((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -2381 ((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2279 ((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -3899 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -3998 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397))) (-15 -3091 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-4305 (((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573)) 45)) (-1679 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) 41)) (-2172 (((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 23))) -(((-759) (-10 -7 (-15 -2172 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1679 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY))))) (-15 -4305 ((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573))))) (T -759)) -((-4305 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-684 (-227))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-759)))) (-1679 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1047)) (-5 *1 (-759)))) (-2172 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-759))))) -(-10 -7 (-15 -2172 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1679 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY))))) (-15 -4305 ((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573)))) -((-2756 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573)) 35)) (-3951 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573)) 34)) (-2777 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573)) 33)) (-2903 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-1616 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-1587 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573)) 27)) (-1374 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573)) 24)) (-4212 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573)) 23)) (-2079 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 22)) (-2894 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 21))) -(((-760) (-10 -7 (-15 -2894 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2079 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4212 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1374 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1587 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573))) (-15 -1616 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2903 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2777 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573))) (-15 -3951 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573))) (-15 -2756 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573))))) (T -760)) -((-2756 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-3951 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2777 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2903 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1616 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1587 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1374 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-4212 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2079 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2894 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760))))) -(-10 -7 (-15 -2894 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2079 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4212 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1374 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1587 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573))) (-15 -1616 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2903 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2777 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573))) (-15 -3951 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573))) (-15 -2756 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573)))) -((-2906 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 45)) (-2941 (((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573)) 44)) (-2214 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 43)) (-3737 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 42)) (-4433 (((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573)) 41)) (-3085 (((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573)) 40)) (-1997 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573)) 39)) (-1661 (((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573))) 38)) (-3626 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 35)) (-3886 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573)) 34)) (-2284 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573)) 33)) (-2902 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 32)) (-3274 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573)) 31)) (-1399 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573)) 30)) (-1426 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573)) 29)) (-3546 (((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573)) 28)) (-3784 (((-1047) (-573) (-698 (-227)) (-227) (-573)) 24)) (-2101 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 21))) -(((-761) (-10 -7 (-15 -2101 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3784 ((-1047) (-573) (-698 (-227)) (-227) (-573))) (-15 -3546 ((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573))) (-15 -1426 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -1399 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573))) (-15 -3274 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573))) (-15 -2902 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2284 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573))) (-15 -3886 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573))) (-15 -3626 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1661 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)))) (-15 -1997 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573))) (-15 -3085 ((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -4433 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3737 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2214 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2941 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2906 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))))) (T -761)) -((-2906 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2941 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2214 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3737 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-4433 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3085 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1997 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1661 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3626 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3886 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2284 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2902 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3274 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1399 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1426 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3546 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3784 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2101 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761))))) -(-10 -7 (-15 -2101 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3784 ((-1047) (-573) (-698 (-227)) (-227) (-573))) (-15 -3546 ((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573))) (-15 -1426 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -1399 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573))) (-15 -3274 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573))) (-15 -2902 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2284 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573))) (-15 -3886 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573))) (-15 -3626 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1661 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)))) (-15 -1997 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573))) (-15 -3085 ((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -4433 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3737 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2214 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2941 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2906 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)))) -((-2692 (((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573)) 63)) (-3809 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3169 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) 58)) (-1683 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573)) 51)) (-2173 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3056 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2124 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1588 (((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-762) (-10 -7 (-15 -1588 ((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2124 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1))))) (-15 -3056 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2))))) (-15 -2173 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1))))) (-15 -1683 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573))) (-15 -3169 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS))))) (-15 -3809 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2692 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573))))) (T -762)) -((-2692 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3809 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3169 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-698 (-227))) (-5 *6 (-112)) (-5 *7 (-698 (-573))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-1683 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-2173 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-1588 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) -(-10 -7 (-15 -1588 ((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2124 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1))))) (-15 -3056 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2))))) (-15 -2173 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1))))) (-15 -1683 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573))) (-15 -3169 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS))))) (-15 -3809 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2692 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573)))) -((-2234 (((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)) 47)) (-4140 (((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573)) 46)) (-4108 (((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573)) 45)) (-2593 (((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 40)) (-2193 (((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573)) 39)) (-1438 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-573)) 36)) (-4169 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573)) 35)) (-3481 (((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573)) 34)) (-1804 (((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573)) 33)) (-4346 (((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573)) 32))) -(((-763) (-10 -7 (-15 -4346 ((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573))) (-15 -1804 ((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573))) (-15 -3481 ((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573))) (-15 -4169 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573))) (-15 -1438 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2193 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573))) (-15 -2593 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4108 ((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -4140 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2234 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573))))) (T -763)) -((-2234 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4140 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4108 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-2593 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-2193 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-1438 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4169 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-3481 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-653 (-112))) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *7 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-1804 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-698 (-573))) (-5 *5 (-112)) (-5 *7 (-698 (-227))) (-5 *3 (-573)) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4346 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-653 (-112))) (-5 *7 (-698 (-227))) (-5 *8 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-763))))) -(-10 -7 (-15 -4346 ((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573))) (-15 -1804 ((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573))) (-15 -3481 ((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573))) (-15 -4169 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573))) (-15 -1438 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2193 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573))) (-15 -2593 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4108 ((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -4140 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2234 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)))) -((-2904 (((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)) 79)) (-4348 (((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573)) 68)) (-2891 (((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397)) 56) (((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) 55)) (-4255 (((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573)) 37)) (-2461 (((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573)) 33)) (-2210 (((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573)) 30)) (-2851 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-2521 (((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-2621 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 27)) (-2442 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573)) 26)) (-2182 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 25)) (-2178 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 24)) (-3332 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 23)) (-3537 (((-1047) (-698 (-227)) (-573) (-573) (-573) (-573)) 22)) (-1757 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 21))) -(((-764) (-10 -7 (-15 -1757 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -3537 ((-1047) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -3332 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2178 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2182 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2442 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2621 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2521 ((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2851 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2210 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -2461 ((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573))) (-15 -4255 ((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397))) (-15 -4348 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2904 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573))))) (T -764)) -((-2904 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-4348 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2891 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-397)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2891 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-4255 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2461 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2210 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2851 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2521 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2621 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2442 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2182 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2178 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-3332 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-3537 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-1757 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764))))) -(-10 -7 (-15 -1757 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -3537 ((-1047) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -3332 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2178 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2182 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2442 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2621 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2521 ((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2851 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2210 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -2461 ((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573))) (-15 -4255 ((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397))) (-15 -4348 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2904 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)))) -((-2148 (((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) 64)) (-1643 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573)) 60)) (-2192 (((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3981 (((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573)) 37)) (-2525 (((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573)) 36)) (-2204 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 33)) (-3775 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227))) 32)) (-3894 (((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573)) 28)) (-4034 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573)) 27)) (-2899 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573)) 26)) (-1828 (((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573)) 22))) -(((-765) (-10 -7 (-15 -1828 ((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2899 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -4034 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -3894 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573))) (-15 -3775 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)))) (-15 -2204 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2525 ((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3981 ((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -2192 ((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE))))) (-15 -1643 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -2148 ((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD))))))) (T -765)) -((-2148 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-1643 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2192 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3981 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2525 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2204 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3775 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3894 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-4034 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2899 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-1828 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-765))))) -(-10 -7 (-15 -1828 ((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2899 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -4034 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -3894 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573))) (-15 -3775 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)))) (-15 -2204 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2525 ((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3981 ((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -2192 ((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE))))) (-15 -1643 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -2148 ((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))))) -((-2828 (((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227))) 29)) (-2505 (((-1047) (-1171) (-573) (-573) (-698 (-227))) 28)) (-2282 (((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227))) 27)) (-2702 (((-1047) (-573) (-573) (-573) (-698 (-227))) 21))) -(((-766) (-10 -7 (-15 -2702 ((-1047) (-573) (-573) (-573) (-698 (-227)))) (-15 -2282 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227)))) (-15 -2505 ((-1047) (-1171) (-573) (-573) (-698 (-227)))) (-15 -2828 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)))))) (T -766)) -((-2828 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2282 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2702 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766))))) -(-10 -7 (-15 -2702 ((-1047) (-573) (-573) (-573) (-698 (-227)))) (-15 -2282 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227)))) (-15 -2505 ((-1047) (-1171) (-573) (-573) (-698 (-227)))) (-15 -2828 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227))))) -((-4077 (((-1047) (-227) (-227) (-227) (-227) (-573)) 62)) (-2938 (((-1047) (-227) (-227) (-227) (-573)) 61)) (-4093 (((-1047) (-227) (-227) (-227) (-573)) 60)) (-2847 (((-1047) (-227) (-227) (-573)) 59)) (-3429 (((-1047) (-227) (-573)) 58)) (-1589 (((-1047) (-227) (-573)) 57)) (-4104 (((-1047) (-227) (-573)) 56)) (-2734 (((-1047) (-227) (-573)) 55)) (-3597 (((-1047) (-227) (-573)) 54)) (-3024 (((-1047) (-227) (-573)) 53)) (-3530 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 52)) (-1652 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 51)) (-1700 (((-1047) (-227) (-573)) 50)) (-4230 (((-1047) (-227) (-573)) 49)) (-2291 (((-1047) (-227) (-573)) 48)) (-1607 (((-1047) (-227) (-573)) 47)) (-3318 (((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573)) 46)) (-3979 (((-1047) (-1171) (-171 (-227)) (-1171) (-573)) 45)) (-2133 (((-1047) (-1171) (-171 (-227)) (-1171) (-573)) 44)) (-1572 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 43)) (-2028 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 42)) (-3224 (((-1047) (-227) (-573)) 39)) (-1761 (((-1047) (-227) (-573)) 38)) (-2988 (((-1047) (-227) (-573)) 37)) (-1432 (((-1047) (-227) (-573)) 36)) (-4063 (((-1047) (-227) (-573)) 35)) (-4208 (((-1047) (-227) (-573)) 34)) (-3487 (((-1047) (-227) (-573)) 33)) (-1544 (((-1047) (-227) (-573)) 32)) (-2211 (((-1047) (-227) (-573)) 31)) (-3819 (((-1047) (-227) (-573)) 30)) (-4129 (((-1047) (-227) (-227) (-227) (-573)) 29)) (-2722 (((-1047) (-227) (-573)) 28)) (-1856 (((-1047) (-227) (-573)) 27)) (-4180 (((-1047) (-227) (-573)) 26)) (-3664 (((-1047) (-227) (-573)) 25)) (-4148 (((-1047) (-227) (-573)) 24)) (-1842 (((-1047) (-171 (-227)) (-573)) 21))) -(((-767) (-10 -7 (-15 -1842 ((-1047) (-171 (-227)) (-573))) (-15 -4148 ((-1047) (-227) (-573))) (-15 -3664 ((-1047) (-227) (-573))) (-15 -4180 ((-1047) (-227) (-573))) (-15 -1856 ((-1047) (-227) (-573))) (-15 -2722 ((-1047) (-227) (-573))) (-15 -4129 ((-1047) (-227) (-227) (-227) (-573))) (-15 -3819 ((-1047) (-227) (-573))) (-15 -2211 ((-1047) (-227) (-573))) (-15 -1544 ((-1047) (-227) (-573))) (-15 -3487 ((-1047) (-227) (-573))) (-15 -4208 ((-1047) (-227) (-573))) (-15 -4063 ((-1047) (-227) (-573))) (-15 -1432 ((-1047) (-227) (-573))) (-15 -2988 ((-1047) (-227) (-573))) (-15 -1761 ((-1047) (-227) (-573))) (-15 -3224 ((-1047) (-227) (-573))) (-15 -2028 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1572 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -2133 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3979 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3318 ((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1607 ((-1047) (-227) (-573))) (-15 -2291 ((-1047) (-227) (-573))) (-15 -4230 ((-1047) (-227) (-573))) (-15 -1700 ((-1047) (-227) (-573))) (-15 -1652 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3530 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3024 ((-1047) (-227) (-573))) (-15 -3597 ((-1047) (-227) (-573))) (-15 -2734 ((-1047) (-227) (-573))) (-15 -4104 ((-1047) (-227) (-573))) (-15 -1589 ((-1047) (-227) (-573))) (-15 -3429 ((-1047) (-227) (-573))) (-15 -2847 ((-1047) (-227) (-227) (-573))) (-15 -4093 ((-1047) (-227) (-227) (-227) (-573))) (-15 -2938 ((-1047) (-227) (-227) (-227) (-573))) (-15 -4077 ((-1047) (-227) (-227) (-227) (-227) (-573))))) (T -767)) -((-4077 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2938 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4093 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2847 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3530 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1652 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3318 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-573)) (-5 *5 (-171 (-227))) (-5 *6 (-1171)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3979 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2133 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1572 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2028 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4129 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(-10 -7 (-15 -1842 ((-1047) (-171 (-227)) (-573))) (-15 -4148 ((-1047) (-227) (-573))) (-15 -3664 ((-1047) (-227) (-573))) (-15 -4180 ((-1047) (-227) (-573))) (-15 -1856 ((-1047) (-227) (-573))) (-15 -2722 ((-1047) (-227) (-573))) (-15 -4129 ((-1047) (-227) (-227) (-227) (-573))) (-15 -3819 ((-1047) (-227) (-573))) (-15 -2211 ((-1047) (-227) (-573))) (-15 -1544 ((-1047) (-227) (-573))) (-15 -3487 ((-1047) (-227) (-573))) (-15 -4208 ((-1047) (-227) (-573))) (-15 -4063 ((-1047) (-227) (-573))) (-15 -1432 ((-1047) (-227) (-573))) (-15 -2988 ((-1047) (-227) (-573))) (-15 -1761 ((-1047) (-227) (-573))) (-15 -3224 ((-1047) (-227) (-573))) (-15 -2028 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1572 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -2133 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3979 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3318 ((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1607 ((-1047) (-227) (-573))) (-15 -2291 ((-1047) (-227) (-573))) (-15 -4230 ((-1047) (-227) (-573))) (-15 -1700 ((-1047) (-227) (-573))) (-15 -1652 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3530 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3024 ((-1047) (-227) (-573))) (-15 -3597 ((-1047) (-227) (-573))) (-15 -2734 ((-1047) (-227) (-573))) (-15 -4104 ((-1047) (-227) (-573))) (-15 -1589 ((-1047) (-227) (-573))) (-15 -3429 ((-1047) (-227) (-573))) (-15 -2847 ((-1047) (-227) (-227) (-573))) (-15 -4093 ((-1047) (-227) (-227) (-227) (-573))) (-15 -2938 ((-1047) (-227) (-227) (-227) (-573))) (-15 -4077 ((-1047) (-227) (-227) (-227) (-227) (-573)))) -((-2766 (((-1285)) 20)) (-1851 (((-1171)) 31)) (-3568 (((-1171)) 30)) (-4321 (((-1116) (-1189) (-698 (-573))) 45) (((-1116) (-1189) (-698 (-227))) 41)) (-3686 (((-112)) 19)) (-3366 (((-1171) (-1171)) 34))) -(((-768) (-10 -7 (-15 -3568 ((-1171))) (-15 -1851 ((-1171))) (-15 -3366 ((-1171) (-1171))) (-15 -4321 ((-1116) (-1189) (-698 (-227)))) (-15 -4321 ((-1116) (-1189) (-698 (-573)))) (-15 -3686 ((-112))) (-15 -2766 ((-1285))))) (T -768)) -((-2766 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-768)))) (-3686 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-768)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-573))) (-5 *2 (-1116)) (-5 *1 (-768)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-227))) (-5 *2 (-1116)) (-5 *1 (-768)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768)))) (-1851 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768)))) (-3568 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) -(-10 -7 (-15 -3568 ((-1171))) (-15 -1851 ((-1171))) (-15 -3366 ((-1171) (-1171))) (-15 -4321 ((-1116) (-1189) (-698 (-227)))) (-15 -4321 ((-1116) (-1189) (-698 (-573)))) (-15 -3686 ((-112))) (-15 -2766 ((-1285)))) -((-4380 (($ $ $) 10)) (-3531 (($ $ $ $) 9)) (-4366 (($ $ $) 12))) -(((-769 |#1|) (-10 -8 (-15 -4366 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#1|))) (-770)) (T -769)) -NIL -(-10 -8 (-15 -4366 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3681 (($ $ (-931)) 31)) (-2022 (($ $ (-931)) 32)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30))) -(((-770) (-141)) (T -770)) -((-3531 (*1 *1 *1 *1 *1) (-4 *1 (-770))) (-4380 (*1 *1 *1 *1) (-4 *1 (-770))) (-4366 (*1 *1 *1 *1) (-4 *1 (-770)))) -(-13 (-21) (-729) (-10 -8 (-15 -3531 ($ $ $ $)) (-15 -4380 ($ $ $)) (-15 -4366 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-729) . T) ((-1112) . T)) -((-2942 (((-871) $) NIL) (($ (-573)) 10))) -(((-771 |#1|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-772)) (T -771)) -NIL -(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1546 (((-3 $ "failed") $) 43)) (-3681 (($ $ (-931)) 31) (($ $ (-780)) 38)) (-2232 (((-3 $ "failed") $) 41)) (-1959 (((-112) $) 37)) (-2780 (((-3 $ "failed") $) 42)) (-2022 (($ $ (-931)) 32) (($ $ (-780)) 39)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12) (($ (-573)) 34)) (-1545 (((-780)) 35 T CONST)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2144 (($) 36 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33) (($ $ (-780)) 40)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30))) -(((-772) (-141)) (T -772)) -((-1545 (*1 *2) (-12 (-4 *1 (-772)) (-5 *2 (-780)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-772))))) -(-13 (-770) (-731) (-10 -8 (-15 -1545 ((-780)) -1705) (-15 -2942 ($ (-573))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-729) . T) ((-731) . T) ((-770) . T) ((-1112) . T)) -((-2087 (((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|) 33)) (-3687 (((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|) 23)) (-2517 (((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189)) 20) (((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573))))) 19))) -(((-773 |#1|) (-10 -7 (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))))) (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189))) (-15 -3687 ((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|)) (-15 -2087 ((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|))) (-13 (-371) (-857))) (T -773)) -((-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 *4))))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857))))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *4 (-1189)) (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-371) (-857))))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) -(-10 -7 (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))))) (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189))) (-15 -3687 ((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|)) (-15 -2087 ((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|))) -((-1468 (((-176 (-573)) |#1|) 27))) -(((-774 |#1|) (-10 -7 (-15 -1468 ((-176 (-573)) |#1|))) (-413)) (T -774)) -((-1468 (*1 *2 *3) (-12 (-5 *2 (-176 (-573))) (-5 *1 (-774 *3)) (-4 *3 (-413))))) -(-10 -7 (-15 -1468 ((-176 (-573)) |#1|))) -((-2128 ((|#1| |#1| |#1|) 28)) (-3326 ((|#1| |#1| |#1|) 27)) (-2606 ((|#1| |#1| |#1|) 38)) (-4319 ((|#1| |#1| |#1|) 34)) (-3541 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3028 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 26))) -(((-775 |#1| |#2|) (-10 -7 (-15 -3028 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1| |#1|))) (-717 |#2|) (-371)) (T -775)) -((-2606 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-4319 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-2128 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3326 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-371)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-775 *3 *4)) (-4 *3 (-717 *4))))) -(-10 -7 (-15 -3028 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1| |#1|))) -((-3534 (((-700 (-1238)) $ (-1238)) 26)) (-4340 (((-700 (-558)) $ (-558)) 25)) (-1960 (((-780) $ (-129)) 27)) (-2034 (((-700 (-130)) $ (-130)) 24)) (-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1577 (((-112) $) 31)) (-2833 (((-700 $) |#1| (-964)) 32)) (-1981 (($ $) 6))) -(((-776 |#1|) (-141) (-1112)) (T -776)) -((-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-964)) (-4 *3 (-1112)) (-5 *2 (-700 *1)) (-4 *1 (-776 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(-13 (-585) (-10 -8 (-15 -2833 ((-700 $) |t#1| (-964))) (-15 -1577 ((-112) $)))) -(((-175) . T) ((-536) . T) ((-585) . T) ((-869) . T)) -((-3574 (((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)) 71)) (-3529 (((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573))))) 69)) (-3592 (((-573)) 85))) -(((-777 |#1| |#2|) (-10 -7 (-15 -3592 ((-573))) (-15 -3529 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))))) (-15 -3574 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)))) (-1256 (-573)) (-418 (-573) |#1|)) (T -777)) -((-3574 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-777 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-1256 (-573))) (-5 *2 (-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573))))) (-5 *1 (-777 *3 *4)) (-4 *4 (-418 (-573) *3)))) (-3592 (*1 *2) (-12 (-4 *3 (-1256 *2)) (-5 *2 (-573)) (-5 *1 (-777 *3 *4)) (-4 *4 (-418 *2 *3))))) -(-10 -7 (-15 -3592 ((-573))) (-15 -3529 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))))) (-15 -3574 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)))) -((-2848 (((-112) $ $) NIL)) (-2205 (((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-778) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2205 ((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -778)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-778)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-778)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-778)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-778))))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2205 ((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-2298 (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))) 18) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189))) 17)) (-1994 (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))) 20) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189))) 19))) -(((-779 |#1|) (-10 -7 (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))))) (-565)) (T -779)) -((-1994 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) (-2298 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5))))) -(-10 -7 (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) 10)) (-2983 (((-3 $ "failed") $ $) 15)) (-3958 (($ $ (-573)) 11)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2872 (($ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 6 T CONST)) (-2144 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ $ $) NIL))) -(((-780) (-13 (-802) (-735) (-10 -8 (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-573))) (-15 -2819 ($ $)) (-6 (-4457 "*"))))) (T -780)) -((-2796 (*1 *1 *1 *1) (-5 *1 (-780))) (-2784 (*1 *1 *1 *1) (-5 *1 (-780))) (-2872 (*1 *1 *1 *1) (-5 *1 (-780))) (-1405 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3152 (-780)) (|:| -3132 (-780)))) (-5 *1 (-780)))) (-2837 (*1 *1 *1 *1) (|partial| -5 *1 (-780))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-780)))) (-2819 (*1 *1 *1) (-5 *1 (-780)))) -(-13 (-802) (-735) (-10 -8 (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-573))) (-15 -2819 ($ $)) (-6 (-4457 "*")))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 15)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2970 ((|#1| $) 23)) (-3632 (($ $ $) NIL (|has| |#1| (-801)))) (-2953 (($ $ $) NIL (|has| |#1| (-801)))) (-1938 (((-1174) $) 48)) (-3939 (((-1135) $) NIL)) (-2981 ((|#3| $) 24)) (-2950 (((-872) $) 43)) (-4259 (((-112) $ $) 22)) (-2143 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2985 (((-112) $ $) 20)) (-3029 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3008 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3102 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3089 (($ $) 17) (($ $ $) NIL)) (-3073 (($ $ $) 29)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3102 ($ $ |#3|)) (-15 -3102 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672)) +((-3102 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3102 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2981 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))) +(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3102 ($ $ |#3|)) (-15 -3102 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2981 (|#3| $)))) +((-3392 (((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)) 33))) +(((-673 |#1|) (-10 -7 (-15 -3392 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)))) (-922)) (T -673)) +((-3392 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *4))) (-5 *3 (-1188 *4)) (-4 *4 (-922)) (-5 *1 (-673 *4))))) +(-10 -7 (-15 -3392 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1665 (((-654 |#1|) $) 84)) (-1923 (($ $ (-781)) 94)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2596 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 50)) (-1706 (((-3 (-682 |#1|) "failed") $) NIL)) (-2216 (((-682 |#1|) $) NIL)) (-1401 (($ $) 93)) (-1901 (((-781) $) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ (-682 |#1|) |#2|) 70)) (-1792 (($ $) 89)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4365 (((-1307 |#1| |#2|) (-1307 |#1| |#2|) $) 49)) (-4345 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-682 |#1|) $) NIL)) (-1377 ((|#2| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-4144 (((-781) $) 91)) (-2962 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2950 (((-872) $) NIL) (($ |#1|) 76) (((-1298 |#1| |#2|) $) 60) (((-1307 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-682 |#1|)) NIL)) (-1868 ((|#2| (-1307 |#1| |#2|) $) 45)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 23 T CONST)) (-1502 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3301 (((-3 $ "failed") (-1298 |#1| |#2|)) 62)) (-2677 (($ (-682 |#1|)) 14)) (-2985 (((-112) $ $) 46)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) 68) (($ $ $) NIL)) (-3073 (($ $ $) 31)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL))) +(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -3301 ((-3 $ "failed") (-1298 |#1| |#2|))) (-15 -2962 ($ (-682 |#1|) (-682 |#1|))) (-15 -2962 ($ (-682 |#1|) $)) (-15 -2962 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674)) +((-3301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2962 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2962 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174))))) +(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -3301 ((-3 $ "failed") (-1298 |#1| |#2|))) (-15 -2962 ($ (-682 |#1|) (-682 |#1|))) (-15 -2962 ($ (-682 |#1|) $)) (-15 -2962 ($ $ (-682 |#1|))))) +((-4251 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2212 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1657 (($ (-1 (-112) |#2|) $) 29)) (-3680 (($ $) 65)) (-3054 (($ $) 74)) (-3245 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2881 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1451 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3763 (($ (-781) |#2|) 63)) (-4099 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4333 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1787 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1797 (($ |#2|) 15)) (-1948 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-1745 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-4253 (($ $ (-1250 (-574))) 51) (($ $ (-574)) 44)) (-3957 (($ $ $ (-574)) 70)) (-3156 (($ $) 68)) (-3008 (((-112) $ $) 76))) +(((-675 |#1| |#2|) (-10 -8 (-15 -1797 (|#1| |#2|)) (-15 -4253 (|#1| |#1| (-574))) (-15 -4253 (|#1| |#1| (-1250 (-574)))) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1948 (|#1| |#2| |#1| (-574))) (-15 -1948 (|#1| |#1| |#1| (-574))) (-15 -4099 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -4333 (|#1| |#1| |#1|)) (-15 -4251 ((-112) |#1|)) (-15 -3957 (|#1| |#1| |#1| (-574))) (-15 -3680 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3763 (|#1| (-781) |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) (-676 |#2|) (-1233)) (T -675)) +NIL +(-10 -8 (-15 -1797 (|#1| |#2|)) (-15 -4253 (|#1| |#1| (-574))) (-15 -4253 (|#1| |#1| (-1250 (-574)))) (-15 -3245 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1948 (|#1| |#2| |#1| (-574))) (-15 -1948 (|#1| |#1| |#1| (-574))) (-15 -4099 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#2| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -4333 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4251 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1451 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1451 ((-574) |#2| |#1|)) (-15 -1451 ((-574) |#2| |#1| (-574))) (-15 -4333 (|#1| |#1| |#1|)) (-15 -4251 ((-112) |#1|)) (-15 -3957 (|#1| |#1| |#1| (-574))) (-15 -3680 (|#1| |#1|)) (-15 -2212 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -3008 ((-112) |#1| |#1|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2881 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1745 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3763 (|#1| (-781) |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 (|#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1980 (($ $) 68)) (-2057 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-4251 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2212 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4459)))) (-2785 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-4031 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-1657 (($ (-1 (-112) |#1|) $) 131)) (-2175 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4458)))) (-2407 ((|#1| $) 67)) (-3063 (($) 7 T CONST)) (-3680 (($ $) 146 (|has| $ (-6 -4459)))) (-4424 (($ $) 136)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-3054 (($ $) 133 (|has| |#1| (-1115)))) (-2818 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 132 (|has| |#1| (-1115))) (($ (-1 (-112) |#1|) $) 127)) (-3310 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4458))) (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-2841 (((-112) $) 85)) (-1451 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1115))) (((-574) |#1| $) 140 (|has| |#1| (-1115))) (((-574) (-1 (-112) |#1|) $) 139)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 97 (|has| (-574) (-860)))) (-3632 (($ $ $) 149 (|has| |#1| (-860)))) (-4099 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4333 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 96 (|has| (-574) (-860)))) (-2953 (($ $ $) 150 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1797 (($ |#1|) 124)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-1948 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1604 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2435 (((-654 (-574)) $) 94)) (-4088 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2485 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-2949 (((-112) $) 86)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 92)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1418 (((-574) $ $) 45)) (-4253 (($ $ (-1250 (-574))) 126) (($ $ (-574)) 125)) (-2854 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-3325 (((-112) $) 47)) (-2592 (($ $) 63)) (-4423 (($ $) 60 (|has| $ (-6 -4459)))) (-1798 (((-781) $) 64)) (-1523 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 145 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-3539 (($ $ $) 62) (($ $ |#1|) 61)) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-676 |#1|) (-141) (-1233)) (T -676)) +((-1797 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1233))))) +(-13 (-1164 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1797 ($ |t#1|)))) +(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1025 |#1|) . T) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1164 |#1|) . T) ((-1233) . T) ((-1271 |#1|) . T)) +((-2613 (((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)) 14)) (-3557 (((-781) (-699 |#1|) (-1283 |#1|)) 30)) (-4125 (((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|)) 24)) (-3420 (((-112) (-699 |#1|) (-1283 |#1|)) 27))) +(((-677 |#1|) (-10 -7 (-15 -2613 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|))) (-15 -2613 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|))) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|)))) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|)))) (-15 -4125 ((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|))) (-15 -3420 ((-112) (-699 |#1|) (-1283 |#1|))) (-15 -3557 ((-781) (-699 |#1|) (-1283 |#1|)))) (-372)) (T -677)) +((-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-4125 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1283 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -3907 (-654 (-1283 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -3907 (-654 (-1283 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -3907 (-654 (-1283 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *5) "failed")) (|:| -3907 (-654 (-1283 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1283 *5))))) +(-10 -7 (-15 -2613 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|))) (-15 -2613 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-654 (-654 |#1|)) (-1283 |#1|))) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-699 |#1|) (-654 (-1283 |#1|)))) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|))))) (-654 (-654 |#1|)) (-654 (-1283 |#1|)))) (-15 -4125 ((-3 (-1283 |#1|) "failed") (-699 |#1|) (-1283 |#1|))) (-15 -3420 ((-112) (-699 |#1|) (-1283 |#1|))) (-15 -3557 ((-781) (-699 |#1|) (-1283 |#1|)))) +((-2613 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|) 60)) (-3557 (((-781) |#4| |#3|) 18)) (-4125 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3420 (((-112) |#4| |#3|) 14))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2613 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|)) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -4125 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3420 ((-112) |#4| |#3|)) (-15 -3557 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4459))) (-13 (-382 |#1|) (-10 -7 (-6 -4459))) (-697 |#1| |#2| |#3|)) (T -678)) +((-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-3420 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-4125 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4459)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3907 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(-10 -7 (-15 -2613 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|)) (-15 -2613 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -4125 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3420 ((-112) |#4| |#3|)) (-15 -3557 ((-781) |#4| |#3|))) +((-2043 (((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -3907 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51))) +(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2043 ((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -3907 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -679)) +((-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 (-417 *8)) "failed")) (|:| -3907 (-654 (-1283 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8))))) +(-10 -7 (-15 -2043 ((-2 (|:| |particular| (-3 (-1283 (-417 |#4|)) "failed")) (|:| -3907 (-654 (-1283 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3462 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1646 ((|#2| $) NIL)) (-3385 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-2555 (((-1283 (-699 |#2|))) NIL) (((-1283 (-699 |#2|)) (-1283 $)) NIL)) (-3087 (((-112) $) NIL)) (-4000 (((-1283 $)) 42)) (-1750 (((-112) $ (-781)) NIL)) (-2607 (($ |#2|) NIL)) (-3063 (($) NIL T CONST)) (-1538 (($ $) NIL (|has| |#2| (-315)))) (-4358 (((-246 |#1| |#2|) $ (-574)) NIL)) (-1609 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3294 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-4073 (((-699 |#2|)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-3197 ((|#2| $) NIL)) (-4060 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1283 $)) NIL)) (-3790 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-2158 (((-1188 (-965 |#2|))) NIL (|has| |#2| (-372)))) (-3558 (($ $ (-934)) NIL)) (-2755 ((|#2| $) NIL)) (-2390 (((-1188 |#2|) $) NIL (|has| |#2| (-566)))) (-2866 ((|#2|) NIL) ((|#2| (-1283 $)) NIL)) (-2447 (((-1188 |#2|) $) NIL)) (-1550 (((-112)) NIL)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-3875 (($ (-1283 |#2|)) NIL) (($ (-1283 |#2|) (-1283 $)) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-3557 (((-781) $) NIL (|has| |#2| (-566))) (((-934)) 43)) (-2399 ((|#2| $ (-574) (-574)) NIL)) (-2676 (((-112)) NIL)) (-2867 (($ $ (-934)) NIL)) (-1874 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL)) (-3352 (((-781) $) NIL (|has| |#2| (-566)))) (-3819 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2199 (((-781) $) NIL)) (-3236 (((-112)) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2197 ((|#2| $) NIL (|has| |#2| (-6 (-4460 "*"))))) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#2|))) NIL)) (-2464 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3160 (((-654 (-654 |#2|)) $) NIL)) (-3154 (((-112)) NIL)) (-3954 (((-112)) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1359 (((-3 (-2 (|:| |particular| $) (|:| -3907 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3502 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-3100 (((-699 |#2|)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-4132 ((|#2| $) NIL)) (-1830 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1283 $)) NIL)) (-1341 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-1719 (((-1188 (-965 |#2|))) NIL (|has| |#2| (-372)))) (-2883 (($ $ (-934)) NIL)) (-2670 ((|#2| $) NIL)) (-2664 (((-1188 |#2|) $) NIL (|has| |#2| (-566)))) (-3038 ((|#2|) NIL) ((|#2| (-1283 $)) NIL)) (-1373 (((-1188 |#2|) $) NIL)) (-1808 (((-112)) NIL)) (-1938 (((-1174) $) NIL)) (-3618 (((-112)) NIL)) (-4004 (((-112)) NIL)) (-3380 (((-112)) NIL)) (-3861 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-4147 (((-112)) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-4043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-1483 ((|#2| $) NIL)) (-3381 (($ (-654 |#2|)) NIL)) (-3808 (((-112) $) NIL)) (-3413 (((-246 |#1| |#2|) $) NIL)) (-3798 ((|#2| $) NIL (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-4421 (((-699 |#2|) (-1283 $)) NIL) (((-1283 |#2|) $) NIL) (((-699 |#2|) (-1283 $) (-1283 $)) NIL) (((-1283 |#2|) $ (-1283 $)) 31)) (-1846 (($ (-1283 |#2|)) NIL) (((-1283 |#2|) $) NIL)) (-2414 (((-654 (-965 |#2|))) NIL) (((-654 (-965 |#2|)) (-1283 $)) NIL)) (-2987 (($ $ $) NIL)) (-4390 (((-112)) NIL)) (-3144 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 41)) (-2433 (((-654 (-1283 |#2|))) NIL (|has| |#2| (-566)))) (-1391 (($ $ $ $) NIL)) (-2579 (((-112)) NIL)) (-2911 (($ (-699 |#2|) $) NIL)) (-2235 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2824 (($ $ $) NIL)) (-4208 (((-112)) NIL)) (-4124 (((-112)) NIL)) (-2170 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-680 |#1| |#2|) (-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-934) (-174)) (T -680)) +NIL +(-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4219 (((-654 (-1150)) $) 10)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-681) (-13 (-1098) (-10 -8 (-15 -4219 ((-654 (-1150)) $))))) (T -681)) +((-4219 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-681))))) +(-13 (-1098) (-10 -8 (-15 -4219 ((-654 (-1150)) $)))) +((-2863 (((-112) $ $) NIL)) (-1665 (((-654 |#1|) $) NIL)) (-3877 (($ $) 62)) (-3717 (((-112) $) NIL)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-2401 (((-3 $ "failed") (-829 |#1|)) 27)) (-4255 (((-112) (-829 |#1|)) 17)) (-4302 (($ (-829 |#1|)) 28)) (-3074 (((-112) $ $) 36)) (-4108 (((-934) $) 43)) (-3864 (($ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4200 (((-654 $) (-829 |#1|)) 19)) (-2950 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-4259 (((-112) $ $) NIL)) (-2996 (((-59 (-654 $)) (-654 |#1|) (-934)) 67)) (-1400 (((-654 $) (-654 |#1|) (-934)) 70)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 63)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 46))) +(((-682 |#1|) (-13 (-860) (-1053 |#1|) (-10 -8 (-15 -3717 ((-112) $)) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -4108 ((-934) $)) (-15 -3074 ((-112) $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ((-687 |#1|) $)) (-15 -4200 ((-654 $) (-829 |#1|))) (-15 -4255 ((-112) (-829 |#1|))) (-15 -4302 ($ (-829 |#1|))) (-15 -2401 ((-3 $ "failed") (-829 |#1|))) (-15 -1665 ((-654 |#1|) $)) (-15 -2996 ((-59 (-654 $)) (-654 |#1|) (-934))) (-15 -1400 ((-654 $) (-654 |#1|) (-934))))) (-860)) (T -682)) +((-3717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-4302 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-2401 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) +(-13 (-860) (-1053 |#1|) (-10 -8 (-15 -3717 ((-112) $)) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -4108 ((-934) $)) (-15 -3074 ((-112) $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ((-687 |#1|) $)) (-15 -4200 ((-654 $) (-829 |#1|))) (-15 -4255 ((-112) (-829 |#1|))) (-15 -4302 ($ (-829 |#1|))) (-15 -2401 ((-3 $ "failed") (-829 |#1|))) (-15 -1665 ((-654 |#1|) $)) (-15 -2996 ((-59 (-654 $)) (-654 |#1|) (-934))) (-15 -1400 ((-654 $) (-654 |#1|) (-934))))) +((-3078 ((|#2| $) 100)) (-1980 (($ $) 121)) (-1750 (((-112) $ (-781)) 35)) (-2934 (($ $) 109) (($ $ (-781)) 112)) (-2841 (((-112) $) 122)) (-2495 (((-654 $) $) 96)) (-2232 (((-112) $ $) 92)) (-2121 (((-112) $ (-781)) 33)) (-2344 (((-574) $) 66)) (-1965 (((-574) $) 65)) (-2713 (((-112) $ (-781)) 31)) (-4086 (((-112) $) 98)) (-3333 ((|#2| $) 113) (($ $ (-781)) 117)) (-1604 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-2435 (((-654 (-574)) $) 64)) (-4088 (((-112) (-574) $) 59)) (-2924 ((|#2| $) NIL) (($ $ (-781)) 108)) (-4016 (($ $ (-574)) 125)) (-2949 (((-112) $) 124)) (-4043 (((-112) (-1 (-112) |#2|) $) 42)) (-3670 (((-654 |#2|) $) 46)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1250 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-1418 (((-574) $ $) 91)) (-2854 (($ $ (-1250 (-574))) 78) (($ $ (-574)) 72)) (-3325 (((-112) $) 87)) (-2592 (($ $) 105)) (-1798 (((-781) $) 104)) (-1523 (($ $) 103)) (-2962 (($ (-654 |#2|)) 53)) (-2073 (($ $) 126)) (-1355 (((-654 $) $) 90)) (-1692 (((-112) $ $) 89)) (-2235 (((-112) (-1 (-112) |#2|) $) 41)) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 39))) +(((-683 |#1| |#2|) (-10 -8 (-15 -2073 (|#1| |#1|)) (-15 -4016 (|#1| |#1| (-574))) (-15 -2841 ((-112) |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -3670 ((-654 |#2|) |#1|)) (-15 -4088 ((-112) (-574) |#1|)) (-15 -2435 ((-654 (-574)) |#1|)) (-15 -1965 ((-574) |#1|)) (-15 -2344 ((-574) |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -2592 (|#1| |#1|)) (-15 -1798 ((-781) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -2232 ((-112) |#1| |#1|)) (-15 -1692 ((-112) |#1| |#1|)) (-15 -1418 ((-574) |#1| |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781)))) (-684 |#2|) (-1233)) (T -683)) +NIL +(-10 -8 (-15 -2073 (|#1| |#1|)) (-15 -4016 (|#1| |#1| (-574))) (-15 -2841 ((-112) |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -3670 ((-654 |#2|) |#1|)) (-15 -4088 ((-112) (-574) |#1|)) (-15 -2435 ((-654 (-574)) |#1|)) (-15 -1965 ((-574) |#1|)) (-15 -2344 ((-574) |#1|)) (-15 -2962 (|#1| (-654 |#2|))) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2854 (|#1| |#1| (-574))) (-15 -2854 (|#1| |#1| (-1250 (-574)))) (-15 -1604 (|#1| |#2| |#1| (-574))) (-15 -1604 (|#1| |#1| |#1| (-574))) (-15 -2592 (|#1| |#1|)) (-15 -1798 ((-781) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -2232 ((-112) |#1| |#1|)) (-15 -1692 ((-112) |#1| |#1|)) (-15 -1418 ((-574) |#1| |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -4043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1980 (($ $) 68)) (-2057 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-4031 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 104)) (-2407 ((|#1| $) 67)) (-3063 (($) 7 T CONST)) (-1858 (($ $) 126)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-2818 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 105)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-2841 (((-112) $) 85)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3185 (((-781) $) 125)) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 97 (|has| (-574) (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 96 (|has| (-574) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-4189 (($ $) 128)) (-1751 (((-112) $) 129)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-1604 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2435 (((-654 (-574)) $) 94)) (-4088 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-1949 ((|#1| $) 127)) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2485 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-4016 (($ $ (-574)) 124)) (-2949 (((-112) $) 86)) (-3051 (((-112) $) 130)) (-2848 (((-112) $) 131)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 92)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1418 (((-574) $ $) 45)) (-2854 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-3325 (((-112) $) 47)) (-2592 (($ $) 63)) (-4423 (($ $) 60 (|has| $ (-6 -4459)))) (-1798 (((-781) $) 64)) (-1523 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-3539 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2073 (($ $) 123)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-684 |#1|) (-141) (-1233)) (T -684)) +((-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-4189 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) (-2073 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) +(-13 (-1164 |t#1|) (-10 -8 (-15 -3310 ($ (-1 (-112) |t#1|) $)) (-15 -2175 ($ (-1 (-112) |t#1|) $)) (-15 -2848 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -1751 ((-112) $)) (-15 -4189 ($ $)) (-15 -1949 (|t#1| $)) (-15 -1858 ($ $)) (-15 -3185 ((-781) $)) (-15 -4016 ($ $ (-574))) (-15 -2073 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1164 |#1|) . T) ((-1233) . T) ((-1271 |#1|) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3110 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1064)))) (-1750 (((-112) $ (-781)) NIL)) (-3759 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-3063 (($) NIL T CONST)) (-3719 (($ $ $) 57 (|has| |#1| (-1064)))) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2375 (((-1283 (-781)) $) 12)) (-4159 (($ (-1192) $ $) 34)) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3673 (($ (-781)) 55 (|has| |#1| (-1064)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-781) (-781) (-781)) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2962 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2950 (($ (-971 (-971 (-971 |#1|)))) 23) (((-971 (-971 (-971 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1064)) (PROGN (-15 -3110 ($ (-781) (-781) (-781))) (-15 -3673 ($ (-781))) (-15 -3719 ($ $ $))) |%noBranch|) (-15 -2962 ($ (-654 (-654 (-654 |#1|))))) (-15 -2209 (|#1| $ (-781) (-781) (-781))) (-15 -3759 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2950 ($ (-971 (-971 (-971 |#1|))))) (-15 -2950 ((-971 (-971 (-971 |#1|))) $)) (-15 -4159 ($ (-1192) $ $)) (-15 -2375 ((-1283 (-781)) $)))) (-1115)) (T -685)) +((-3110 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) (-4 *3 (-1115)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) (-4 *3 (-1115)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1064)) (-4 *2 (-1115)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1115)) (-5 *1 (-685 *3)))) (-2209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) (-3759 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-4 *3 (-1115)) (-5 *1 (-685 *3)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1115)))) (-4159 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-685 *3)) (-4 *3 (-1115)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1283 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) +(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1064)) (PROGN (-15 -3110 ($ (-781) (-781) (-781))) (-15 -3673 ($ (-781))) (-15 -3719 ($ $ $))) |%noBranch|) (-15 -2962 ($ (-654 (-654 (-654 |#1|))))) (-15 -2209 (|#1| $ (-781) (-781) (-781))) (-15 -3759 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2950 ($ (-971 (-971 (-971 |#1|))))) (-15 -2950 ((-971 (-971 (-971 |#1|))) $)) (-15 -4159 ($ (-1192) $ $)) (-15 -2375 ((-1283 (-781)) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1708 (((-493) $) 10)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 19) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 12)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-686) (-13 (-1098) (-10 -8 (-15 -1708 ((-493) $)) (-15 -2053 ((-1150) $))))) (T -686)) +((-1708 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-686))))) +(-13 (-1098) (-10 -8 (-15 -1708 ((-493) $)) (-15 -2053 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1665 (((-654 |#1|) $) 15)) (-3877 (($ $) 19)) (-3717 (((-112) $) 20)) (-1706 (((-3 |#1| "failed") $) 23)) (-2216 ((|#1| $) 21)) (-2934 (($ $) 37)) (-1792 (($ $) 25)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-3074 (((-112) $ $) 47)) (-4108 (((-934) $) 40)) (-3864 (($ $) 18)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) 36)) (-2950 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 13)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-687 |#1|) (-13 (-860) (-1053 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -3864 ($ $)) (-15 -4108 ((-934) $)) (-15 -3074 ((-112) $ $)) (-15 -1792 ($ $)) (-15 -2934 ($ $)) (-15 -3717 ((-112) $)) (-15 -3877 ($ $)) (-15 -1665 ((-654 |#1|) $)))) (-860)) (T -687)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3877 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))) +(-13 (-860) (-1053 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2950 ((-829 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -3864 ($ $)) (-15 -4108 ((-934) $)) (-15 -3074 ((-112) $ $)) (-15 -1792 ($ $)) (-15 -2934 ($ $)) (-15 -3717 ((-112) $)) (-15 -3877 ($ $)) (-15 -1665 ((-654 |#1|) $)))) +((-2334 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4102 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9))) +(((-688 |#1|) (-10 -7 (-15 -4102 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -2334 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1115)) (T -688)) +((-2334 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1115)) (-5 *1 (-688 *2)))) (-4102 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1115)) (-5 *1 (-688 *2))))) +(-10 -7 (-15 -4102 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -2334 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) +((-2663 ((|#2| |#1| |#2|) 9)) (-2651 ((|#1| |#1| |#2|) 8))) +(((-689 |#1| |#2|) (-10 -7 (-15 -2651 (|#1| |#1| |#2|)) (-15 -2663 (|#2| |#1| |#2|))) (-1115) (-1115)) (T -689)) +((-2663 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(-10 -7 (-15 -2651 (|#1| |#1| |#2|)) (-15 -2663 (|#2| |#1| |#2|))) +((-4404 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1115) (-1115) (-1115)) (T -690)) +((-4404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)) (-5 *1 (-690 *5 *6 *2))))) +(-10 -7 (-15 -4404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 21)) (-2300 (((-654 (-1232)) $) 19)) (-1954 (($ (-654 (-1232)) (-1232)) 14)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 29) (($ (-1197)) NIL) (((-1197) $) NIL) (((-1232) $) 22) (($ (-1133)) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-691) (-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-1133))) (-15 -1954 ($ (-654 (-1232)) (-1232))) (-15 -2300 ((-654 (-1232)) $)) (-15 -2349 ((-1232) $))))) (T -691)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-691)))) (-1954 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1232))) (-5 *3 (-1232)) (-5 *1 (-691)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-691)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-691))))) +(-13 (-1098) (-623 (-1232)) (-10 -8 (-15 -2950 ($ (-1133))) (-15 -1954 ($ (-654 (-1232)) (-1232))) (-15 -2300 ((-654 (-1232)) $)) (-15 -2349 ((-1232) $)))) +((-2334 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-3886 (((-1 |#1|) |#1|) 8)) (-2817 ((|#1| |#1|) 19)) (-2283 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2950 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23))) +(((-692 |#1|) (-10 -7 (-15 -3886 ((-1 |#1|) |#1|)) (-15 -2950 ((-1 |#1|) |#1|)) (-15 -2283 (|#1| (-1 |#1| |#1|))) (-15 -2283 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2817 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -2334 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1115)) (T -692)) +((-2334 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1115)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1115)) (-5 *1 (-692 *4)))) (-2817 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1115)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1115)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1115)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115)))) (-3886 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115))))) +(-10 -7 (-15 -3886 ((-1 |#1|) |#1|)) (-15 -2950 ((-1 |#1|) |#1|)) (-15 -2283 (|#1| (-1 |#1| |#1|))) (-15 -2283 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2817 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -2334 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) +((-2718 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2315 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1716 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1513 (((-1 |#2| |#1|) |#2|) 11))) +(((-693 |#1| |#2|) (-10 -7 (-15 -1513 ((-1 |#2| |#1|) |#2|)) (-15 -2315 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1716 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2718 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1115) (-1115)) (T -693)) +((-2718 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1115)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1115)) (-4 *3 (-1115))))) +(-10 -7 (-15 -1513 ((-1 |#2| |#1|) |#2|)) (-15 -2315 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1716 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2718 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2284 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2114 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3621 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3585 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2794 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3621 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3585 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2794 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2284 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1115) (-1115) (-1115)) (T -694)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1115)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1115)))) (-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1115)) (-4 *4 (-1115)) (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) +(-10 -7 (-15 -2114 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3621 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3585 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2794 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2284 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2881 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1787 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1787 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2881 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1064) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1064) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695)) +((-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1064)) (-4 *2 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))) +(-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1787 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2881 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2227 (($ (-781) (-781)) 42)) (-3929 (($ $ $) 71)) (-1772 (($ |#3|) 66) (($ $) 67)) (-3385 (((-112) $) 36)) (-1875 (($ $ (-574) (-574)) 82)) (-2142 (($ $ (-574) (-574)) 83)) (-3328 (($ $ (-574) (-574) (-574) (-574)) 88)) (-4084 (($ $) 69)) (-3087 (((-112) $) 15)) (-3269 (($ $ (-574) (-574) $) 89)) (-3134 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-2607 (($ (-781) |#2|) 53)) (-2923 (($ (-654 (-654 |#2|))) 51)) (-3160 (((-654 (-654 |#2|)) $) 78)) (-1546 (($ $ $) 70)) (-2852 (((-3 $ "failed") $ |#2|) 120)) (-2209 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-3381 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-3808 (((-112) $) 28)) (-2950 (($ |#4|) 61) (((-872) $) NIL)) (-1349 (((-112) $) 38)) (-3102 (($ $ |#2|) 122)) (-3089 (($ $ $) 93) (($ $) 96)) (-3073 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3102 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3269 (|#1| |#1| (-574) (-574) |#1|)) (-15 -3328 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -2142 (|#1| |#1| (-574) (-574))) (-15 -1875 (|#1| |#1| (-574) (-574))) (-15 -3134 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2209 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -3160 ((-654 (-654 |#2|)) |#1|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1772 (|#1| |#3|)) (-15 -2950 (|#1| |#4|)) (-15 -3381 (|#1| (-654 |#1|))) (-15 -3381 (|#1| (-654 |#2|))) (-15 -2607 (|#1| (-781) |#2|)) (-15 -2923 (|#1| (-654 (-654 |#2|)))) (-15 -2227 (|#1| (-781) (-781))) (-15 -1349 ((-112) |#1|)) (-15 -3385 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -3087 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1064) (-382 |#2|) (-382 |#2|)) (T -696)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3102 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3269 (|#1| |#1| (-574) (-574) |#1|)) (-15 -3328 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -2142 (|#1| |#1| (-574) (-574))) (-15 -1875 (|#1| |#1| (-574) (-574))) (-15 -3134 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2209 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -3160 ((-654 (-654 |#2|)) |#1|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -1546 (|#1| |#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1772 (|#1| |#3|)) (-15 -2950 (|#1| |#4|)) (-15 -3381 (|#1| (-654 |#1|))) (-15 -3381 (|#1| (-654 |#2|))) (-15 -2607 (|#1| (-781) |#2|)) (-15 -2923 (|#1| (-654 (-654 |#2|)))) (-15 -2227 (|#1| (-781) (-781))) (-15 -1349 ((-112) |#1|)) (-15 -3385 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -3087 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) (-574)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2227 (($ (-781) (-781)) 98)) (-3929 (($ $ $) 88)) (-1772 (($ |#2|) 92) (($ $) 91)) (-3385 (((-112) $) 100)) (-1875 (($ $ (-574) (-574)) 84)) (-2142 (($ $ (-574) (-574)) 83)) (-3328 (($ $ (-574) (-574) (-574) (-574)) 82)) (-4084 (($ $) 90)) (-3087 (((-112) $) 102)) (-1750 (((-112) $ (-781)) 8)) (-3269 (($ $ (-574) (-574) $) 81)) (-3134 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-3960 (($ $ (-574) |#2|) 43)) (-1440 (($ $ (-574) |#3|) 42)) (-2607 (($ (-781) |#1|) 96)) (-3063 (($) 7 T CONST)) (-1538 (($ $) 68 (|has| |#1| (-315)))) (-4358 ((|#2| $ (-574)) 47)) (-3557 (((-781) $) 67 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2399 ((|#1| $ (-574) (-574)) 49)) (-1874 (((-654 |#1|) $) 31)) (-3352 (((-781) $) 66 (|has| |#1| (-566)))) (-3819 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2199 (((-781) $) 52)) (-3763 (($ (-781) (-781) |#1|) 58)) (-2208 (((-781) $) 51)) (-2121 (((-112) $ (-781)) 9)) (-2197 ((|#1| $) 63 (|has| |#1| (-6 (-4460 "*"))))) (-1536 (((-574) $) 56)) (-2419 (((-574) $) 54)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2612 (((-574) $) 55)) (-2514 (((-574) $) 53)) (-2923 (($ (-654 (-654 |#1|))) 97)) (-2464 (($ (-1 |#1| |#1|) $) 35)) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3160 (((-654 (-654 |#1|)) $) 87)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3861 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-1546 (($ $ $) 89)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) 57)) (-2852 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-3381 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-3808 (((-112) $) 101)) (-3798 ((|#1| $) 64 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-3144 ((|#3| $ (-574)) 46)) (-2950 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-1349 (((-112) $) 99)) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3102 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3089 (($ $ $) 79) (($ $) 78)) (-3073 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-697 |#1| |#2| |#3|) (-141) (-1064) (-382 |t#1|) (-382 |t#1|)) (T -697)) +((-3087 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2227 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-1772 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-1772 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-4084 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1546 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2209 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3134 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1875 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2142 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3328 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3269 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1064)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-1538 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-3861 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4459) (-6 -4458) (-15 -3087 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -3385 ((-112) $)) (-15 -1349 ((-112) $)) (-15 -2227 ($ (-781) (-781))) (-15 -2923 ($ (-654 (-654 |t#1|)))) (-15 -2607 ($ (-781) |t#1|)) (-15 -3381 ($ (-654 |t#1|))) (-15 -3381 ($ (-654 $))) (-15 -2950 ($ |t#3|)) (-15 -1772 ($ |t#2|)) (-15 -1772 ($ $)) (-15 -4084 ($ $)) (-15 -1546 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -3160 ((-654 (-654 |t#1|)) $)) (-15 -2209 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3134 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -1875 ($ $ (-574) (-574))) (-15 -2142 ($ $ (-574) (-574))) (-15 -3328 ($ $ (-574) (-574) (-574) (-574))) (-15 -3269 ($ $ (-574) (-574) $)) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3102 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -1538 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3557 ((-781) $)) (-15 -3352 ((-781) $)) (-15 -3819 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4460 "*"))) (PROGN (-15 -3798 (|t#1| $)) (-15 -2197 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -3861 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-57 |#1| |#2| |#3|) . T) ((-1233) . T)) +((-1538 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3557 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-3352 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-3819 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-3859 (((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-2197 ((|#1| |#4|) 52)) (-3985 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-3861 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-4150 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-3550 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-1489 ((|#4| |#4| (-574) (-574)) 55)) (-1671 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-3798 ((|#1| |#4|) 98)) (-2897 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566))))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3798 (|#1| |#4|)) (-15 -2197 (|#1| |#4|)) (-15 -1489 (|#4| |#4| (-574) (-574))) (-15 -3550 (|#4| |#4| |#1| (-574) (-574))) (-15 -1671 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3557 ((-781) |#4|)) (-15 -3352 ((-781) |#4|)) (-15 -3819 ((-654 |#3|) |#4|)) (-15 -4150 (|#4| |#4|)) (-15 -3985 ((-3 |#4| "failed") |#4|)) (-15 -2897 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -1538 (|#4| |#4|)) (-15 -3859 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3861 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698)) +((-3861 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3859 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2897 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3985 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1671 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3550 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-1489 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3798 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))) +(-10 -7 (-15 -3798 (|#1| |#4|)) (-15 -2197 (|#1| |#4|)) (-15 -1489 (|#4| |#4| (-574) (-574))) (-15 -3550 (|#4| |#4| |#1| (-574) (-574))) (-15 -1671 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3557 ((-781) |#4|)) (-15 -3352 ((-781) |#4|)) (-15 -3819 ((-654 |#3|) |#4|)) (-15 -4150 (|#4| |#4|)) (-15 -3985 ((-3 |#4| "failed") |#4|)) (-15 -2897 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -1538 (|#4| |#4|)) (-15 -3859 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3861 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781) (-781)) 64)) (-3929 (($ $ $) NIL)) (-1772 (($ (-1283 |#1|)) NIL) (($ $) NIL)) (-3385 (((-112) $) NIL)) (-1875 (($ $ (-574) (-574)) 22)) (-2142 (($ $ (-574) (-574)) NIL)) (-3328 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-4084 (($ $) NIL)) (-3087 (((-112) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3269 (($ $ (-574) (-574) $) NIL)) (-3134 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-3960 (($ $ (-574) (-1283 |#1|)) NIL)) (-1440 (($ $ (-574) (-1283 |#1|)) NIL)) (-2607 (($ (-781) |#1|) 37)) (-3063 (($) NIL T CONST)) (-1538 (($ $) 46 (|has| |#1| (-315)))) (-4358 (((-1283 |#1|) $ (-574)) NIL)) (-3557 (((-781) $) 48 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 69)) (-2399 ((|#1| $ (-574) (-574)) NIL)) (-1874 (((-654 |#1|) $) NIL)) (-3352 (((-781) $) 50 (|has| |#1| (-566)))) (-3819 (((-654 (-1283 |#1|)) $) 53 (|has| |#1| (-566)))) (-2199 (((-781) $) 32)) (-3763 (($ (-781) (-781) |#1|) 28)) (-2208 (((-781) $) 33)) (-2121 (((-112) $ (-781)) NIL)) (-2197 ((|#1| $) 44 (|has| |#1| (-6 (-4460 "*"))))) (-1536 (((-574) $) 10)) (-2419 (((-574) $) 11)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2612 (((-574) $) 14)) (-2514 (((-574) $) 65)) (-2923 (($ (-654 (-654 |#1|))) NIL)) (-2464 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3160 (((-654 (-654 |#1|)) $) 76)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3861 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-1546 (($ $ $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2485 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-3381 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1283 |#1|)) 70)) (-3808 (((-112) $) NIL)) (-3798 ((|#1| $) 42 (|has| |#1| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-1846 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-3144 (((-1283 |#1|) $ (-574)) NIL)) (-2950 (($ (-1283 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $ $) NIL) (($ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1283 |#1|) $ (-1283 |#1|)) NIL) (((-1283 |#1|) (-1283 |#1|) $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-699 |#1|) (-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 -3381 ($ (-1283 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3861 ((-3 $ "failed") $)) |%noBranch|))) (-1064)) (T -699)) +((-3861 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1064)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-699 *3))))) +(-13 (-697 |#1| (-1283 |#1|) (-1283 |#1|)) (-10 -8 (-15 -3381 ($ (-1283 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3861 ((-3 $ "failed") $)) |%noBranch|))) +((-2400 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-2902 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-3045 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-1837 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-1988 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-3303 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-3316 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46))) +(((-700 |#1|) (-10 -7 (-15 -3316 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1837 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1988 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1988 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3303 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2902 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -2400 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3045 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1064)) (T -700)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-700 *4)))) (-3045 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-700 *4)))) (-2400 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-2902 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-3303 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-1988 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-1988 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-1837 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) (-3316 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(-10 -7 (-15 -3316 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1837 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1988 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1988 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3303 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2902 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -2400 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3045 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) +((-1706 (((-3 |#1| "failed") $) 18)) (-2216 ((|#1| $) NIL)) (-2246 (($) 7 T CONST)) (-3556 (($ |#1|) 8)) (-2950 (($ |#1|) 16) (((-872) $) 23)) (-2132 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2246)) 11)) (-1337 ((|#1| $) 15))) +(((-701 |#1|) (-13 (-1278) (-1053 |#1|) (-623 (-872)) (-10 -8 (-15 -3556 ($ |#1|)) (-15 -2132 ((-112) $ (|[\|\|]| |#1|))) (-15 -2132 ((-112) $ (|[\|\|]| -2246))) (-15 -1337 (|#1| $)) (-15 -2246 ($) -1716))) (-623 (-872))) (T -701)) +((-3556 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2246)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1337 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2246 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(-13 (-1278) (-1053 |#1|) (-623 (-872)) (-10 -8 (-15 -3556 ($ |#1|)) (-15 -2132 ((-112) $ (|[\|\|]| |#1|))) (-15 -2132 ((-112) $ (|[\|\|]| -2246))) (-15 -1337 (|#1| $)) (-15 -2246 ($) -1716))) +((-1586 ((|#2| |#2| |#4|) 29)) (-2266 (((-699 |#2|) |#3| |#4|) 35)) (-1504 (((-699 |#2|) |#2| |#4|) 34)) (-1831 (((-1283 |#2|) |#2| |#4|) 16)) (-2069 ((|#2| |#3| |#4|) 28)) (-1501 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-3005 (((-699 |#2|) |#2| |#4| (-781)) 46))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1831 ((-1283 |#2|) |#2| |#4|)) (-15 -2069 (|#2| |#3| |#4|)) (-15 -1586 (|#2| |#2| |#4|)) (-15 -1504 ((-699 |#2|) |#2| |#4|)) (-15 -3005 ((-699 |#2|) |#2| |#4| (-781))) (-15 -2266 ((-699 |#2|) |#3| |#4|)) (-15 -1501 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1115) (-913 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4458)))) (T -702)) +((-1501 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *7 (-913 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458)))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *6 (-913 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *3 (-913 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458)))))) (-1504 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-1586 (*1 *2 *2 *3) (-12 (-4 *4 (-1115)) (-4 *2 (-913 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4458)))))) (-2069 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *2 (-913 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458)))))) (-1831 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-1283 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) +(-10 -7 (-15 -1831 ((-1283 |#2|) |#2| |#4|)) (-15 -2069 (|#2| |#3| |#4|)) (-15 -1586 (|#2| |#2| |#4|)) (-15 -1504 ((-699 |#2|) |#2| |#4|)) (-15 -3005 ((-699 |#2|) |#2| |#4| (-781))) (-15 -2266 ((-699 |#2|) |#3| |#4|)) (-15 -1501 ((-699 |#2|) |#3| |#4| (-781) (-781)))) +((-1809 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-3128 ((|#1| (-699 |#2|)) 9)) (-3417 (((-699 |#1|) (-699 |#2|)) 18))) +(((-703 |#1| |#2|) (-10 -7 (-15 -3128 (|#1| (-699 |#2|))) (-15 -3417 ((-699 |#1|) (-699 |#2|))) (-15 -1809 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1007 |#1|)) (T -703)) +((-1809 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4))))) +(-10 -7 (-15 -3128 (|#1| (-699 |#2|))) (-15 -3417 ((-699 |#1|) (-699 |#2|))) (-15 -1809 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4368 (((-699 (-709))) NIL) (((-699 (-709)) (-1283 $)) NIL)) (-1646 (((-709) $) NIL)) (-2378 (($ $) NIL (|has| (-709) (-1218)))) (-2260 (($ $) NIL (|has| (-709) (-1218)))) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-3313 (($ $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-2153 (((-428 $) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-4211 (($ $) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-1526 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1497 (((-781)) NIL (|has| (-709) (-377)))) (-2357 (($ $) NIL (|has| (-709) (-1218)))) (-2238 (($ $) NIL (|has| (-709) (-1218)))) (-2403 (($ $) NIL (|has| (-709) (-1218)))) (-2281 (($ $) NIL (|has| (-709) (-1218)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1053 (-417 (-574)))))) (-2216 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1053 (-417 (-574)))))) (-3875 (($ (-1283 (-709))) NIL) (($ (-1283 (-709)) (-1283 $)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2800 (($ $ $) NIL (|has| (-709) (-315)))) (-1732 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1283 $)) NIL)) (-4232 (((-699 (-709)) (-1283 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-709))) (|:| |vec| (-1283 (-709)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1283 $)) NIL (|has| (-709) (-649 (-574))))) (-2881 (((-3 $ "failed") (-417 (-1188 (-709)))) NIL (|has| (-709) (-372))) (($ (-1188 (-709))) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4222 (((-709) $) 29)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-4002 (((-112) $) NIL (|has| (-709) (-555)))) (-2258 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-709) (-377)))) (-2811 (($ $ $) NIL (|has| (-709) (-315)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-2776 (($) NIL (|has| (-709) (-358)))) (-1627 (((-112) $) NIL (|has| (-709) (-358)))) (-4278 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-2941 (((-112) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-3149 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1075)) (|has| (-709) (-1218))))) (-3003 (($) NIL (|has| (-709) (-1218)))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-3837 (((-843 (-934)) $) NIL (|has| (-709) (-358))) (((-934) $) NIL (|has| (-709) (-358)))) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218))))) (-2681 (((-709) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-3525 (((-1188 (-709)) $) NIL (|has| (-709) (-372)))) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1787 (($ (-1 (-709) (-709)) $) NIL)) (-3880 (((-934) $) NIL (|has| (-709) (-377)))) (-3111 (($ $) NIL (|has| (-709) (-1218)))) (-2868 (((-1188 (-709)) $) NIL)) (-2844 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| (-709) (-372)))) (-3791 (($) NIL (|has| (-709) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-709) (-377)))) (-1468 (($) NIL)) (-4233 (((-709) $) 31)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-709) (-315)))) (-2886 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-709) (-358)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-922))))) (-4200 (((-428 $) $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| (-709) (-922))) (|has| (-709) (-372))))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| (-709) (-315)))) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1619 (($ $) NIL (|has| (-709) (-1218)))) (-2660 (($ $ (-1192) (-709)) NIL (|has| (-709) (-524 (-1192) (-709)))) (($ $ (-654 (-1192)) (-654 (-709))) NIL (|has| (-709) (-524 (-1192) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-3575 (((-781) $) NIL (|has| (-709) (-315)))) (-2209 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| (-709) (-315)))) (-3902 (((-709)) NIL) (((-709) (-1283 $)) NIL)) (-3411 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3878 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192)) NIL (|has| (-709) (-913 (-1192)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3450 (((-699 (-709)) (-1283 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-2611 (((-1188 (-709))) NIL)) (-2415 (($ $) NIL (|has| (-709) (-1218)))) (-2289 (($ $) NIL (|has| (-709) (-1218)))) (-3627 (($) NIL (|has| (-709) (-358)))) (-2388 (($ $) NIL (|has| (-709) (-1218)))) (-2271 (($ $) NIL (|has| (-709) (-1218)))) (-2367 (($ $) NIL (|has| (-709) (-1218)))) (-2249 (($ $) NIL (|has| (-709) (-1218)))) (-4421 (((-699 (-709)) (-1283 $)) NIL) (((-1283 (-709)) $) NIL) (((-699 (-709)) (-1283 $) (-1283 $)) NIL) (((-1283 (-709)) $ (-1283 $)) NIL)) (-1846 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1037))) (((-171 (-388)) $) NIL (|has| (-709) (-1037))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1188 (-709))) NIL) (((-1188 (-709)) $) NIL) (($ (-1283 (-709))) NIL) (((-1283 (-709)) $) NIL)) (-2190 (($ $) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-922))) (|has| (-709) (-358))))) (-3535 (($ (-709) (-709)) 12)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2832 (|has| (-709) (-1053 (-417 (-574)))) (|has| (-709) (-372))))) (-3270 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2832 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-922))) (|has| (-709) (-146))))) (-3688 (((-1188 (-709)) $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL)) (-2455 (($ $) NIL (|has| (-709) (-1218)))) (-2319 (($ $) NIL (|has| (-709) (-1218)))) (-3676 (((-112) $ $) NIL)) (-2428 (($ $) NIL (|has| (-709) (-1218)))) (-2301 (($ $) NIL (|has| (-709) (-1218)))) (-2479 (($ $) NIL (|has| (-709) (-1218)))) (-2339 (($ $) NIL (|has| (-709) (-1218)))) (-4021 (((-709) $) NIL (|has| (-709) (-1218)))) (-2535 (($ $) NIL (|has| (-709) (-1218)))) (-2348 (($ $) NIL (|has| (-709) (-1218)))) (-2467 (($ $) NIL (|has| (-709) (-1218)))) (-2329 (($ $) NIL (|has| (-709) (-1218)))) (-2442 (($ $) NIL (|has| (-709) (-1218)))) (-2311 (($ $) NIL (|has| (-709) (-1218)))) (-2366 (($ $) NIL (|has| (-709) (-1075)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-709) (-913 (-1192)))) (($ $ (-1192)) NIL (|has| (-709) (-913 (-1192)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL (|has| (-709) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1218))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1017)) (|has| (-709) (-1218)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372))))) +(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2950 ($ (-171 (-388)))) (-15 -2950 ($ (-171 (-574)))) (-15 -2950 ($ (-171 (-709)))) (-15 -2950 ($ (-171 (-711)))) (-15 -2950 ((-171 (-388)) $))))) (T -704)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))) +(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2950 ($ (-171 (-388)))) (-15 -2950 ($ (-171 (-574)))) (-15 -2950 ($ (-171 (-709)))) (-15 -2950 ($ (-171 (-711)))) (-15 -2950 ((-171 (-388)) $)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3054 (($ $) 63)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-1560 (((-654 (-2 (|:| -1918 |#1|) (|:| -3948 (-781)))) $) 62)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-705 |#1|) (-141) (-1115)) (T -705)) +((-1948 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1115)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1115)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-2 (|:| -1918 *3) (|:| -3948 (-781)))))))) +(-13 (-241 |t#1|) (-10 -8 (-15 -1948 ($ |t#1| $ (-781))) (-15 -3054 ($ $)) (-15 -1560 ((-654 (-2 (|:| -1918 |t#1|) (|:| -3948 (-781)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2587 (((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) (-574)) 65)) (-3129 ((|#1| |#1| (-574)) 62)) (-2886 ((|#1| |#1| |#1| (-574)) 46)) (-4200 (((-654 |#1|) |#1| (-574)) 49)) (-4090 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-1911 (((-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) |#1| (-574)) 61))) +(((-706 |#1|) (-10 -7 (-15 -2886 (|#1| |#1| |#1| (-574))) (-15 -3129 (|#1| |#1| (-574))) (-15 -4200 ((-654 |#1|) |#1| (-574))) (-15 -1911 ((-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) |#1| (-574))) (-15 -2587 ((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) (-574))) (-15 -4090 (|#1| |#1| (-574) |#1| (-574)))) (-1259 (-574))) (T -706)) +((-4090 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) (-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4200 *5) (|:| -4144 (-574))))) (-5 *4 (-574)) (-4 *5 (-1259 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -4144 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1259 *4)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1259 *4)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -2886 (|#1| |#1| |#1| (-574))) (-15 -3129 (|#1| |#1| (-574))) (-15 -4200 ((-654 |#1|) |#1| (-574))) (-15 -1911 ((-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) |#1| (-574))) (-15 -2587 ((-654 |#1|) (-654 (-2 (|:| -4200 |#1|) (|:| -4144 (-574)))) (-574))) (-15 -4090 (|#1| |#1| (-574) |#1| (-574)))) +((-4250 (((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1581 (((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 53) (((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 55) (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 57)) (-2637 (((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270))) NIL)) (-4416 (((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270))) 58))) +(((-707) (-10 -7 (-15 -1581 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1581 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1581 ((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -4416 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2637 ((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -4250 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707)) +((-4250 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-2637 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-4416 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-1581 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-1581 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) (-1581 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707))))) +(-10 -7 (-15 -1581 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1581 ((-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -1581 ((-1148 (-227)) (-1148 (-227)) (-1 (-956 (-227)) (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -4416 ((-1148 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1109 (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -2637 ((-1148 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1109 (-227)) (-654 (-270)))) (-15 -4250 ((-1 (-956 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|)) 86) (((-428 |#4|) |#4|) 266))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) (-860) (-803) (-358) (-962 |#3| |#2| |#1|)) (T -708)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 97)) (-1882 (((-574) $) 34)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4430 (($ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) NIL)) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL)) (-3063 (($) NIL T CONST)) (-2760 (($ $) NIL)) (-1706 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2216 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2800 (($ $ $) 109)) (-2978 (((-3 $ "failed") $) 100)) (-2811 (($ $ $) 108)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3760 (((-934)) 89) (((-934) (-934)) 88)) (-1348 (((-112) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3837 (((-574) $) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL)) (-2681 (($ $) NIL)) (-3081 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4360 (((-574) (-574)) 94) (((-574)) 95)) (-3632 (($ $ $) NIL) (($) NIL (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-1333 (((-574) (-574)) 92) (((-574)) 93)) (-2953 (($ $ $) NIL) (($) NIL (-12 (-2086 (|has| $ (-6 -4441))) (-2086 (|has| $ (-6 -4449)))))) (-4290 (((-574) $) 17)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 104)) (-3653 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL)) (-2787 (($ $) NIL)) (-2398 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-934)) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 105)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3843 (((-574) $) 24)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 107)) (-2829 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-2622 (((-934) (-574)) NIL (|has| $ (-6 -4449)))) (-1846 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2950 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-3781 (((-781)) 119 T CONST)) (-3430 (($ (-574) (-574) (-934)) 54)) (-2251 (($ $) NIL)) (-3530 (((-934)) NIL) (((-934) (-934)) NIL (|has| $ (-6 -4449)))) (-4259 (((-112) $ $) NIL)) (-2644 (((-934)) 91) (((-934) (-934)) 90)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 18 T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 96)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 118)) (-3102 (($ $ $) 77)) (-3089 (($ $) 115) (($ $ $) 116)) (-3073 (($ $ $) 114)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-709) (-13 (-414) (-397) (-372) (-1053 (-388)) (-1053 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-934) (-934))) (-15 -3760 ((-934))) (-15 -2644 ((-934) (-934))) (-15 -1333 ((-574) (-574))) (-15 -1333 ((-574))) (-15 -4360 ((-574) (-574))) (-15 -4360 ((-574))) (-15 -2950 ((-388) $)) (-15 -2950 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -3843 ((-574) $)) (-15 -3430 ($ (-574) (-574) (-934)))))) (T -709)) +((-3843 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3760 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-2644 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-1333 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4360 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4360 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-3430 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-5 *1 (-709))))) +(-13 (-414) (-397) (-372) (-1053 (-388)) (-1053 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-934) (-934))) (-15 -3760 ((-934))) (-15 -2644 ((-934) (-934))) (-15 -1333 ((-574) (-574))) (-15 -1333 ((-574))) (-15 -4360 ((-574) (-574))) (-15 -4360 ((-574))) (-15 -2950 ((-388) $)) (-15 -2950 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -3843 ((-574) $)) (-15 -3430 ($ (-574) (-574) (-934))))) +((-4391 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-1538 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-1945 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-2409 (((-699 |#1|) (-699 |#1|)) 67)) (-3859 (((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|) 84))) +(((-710 |#1|) (-10 -7 (-15 -2409 ((-699 |#1|) (-699 |#1|))) (-15 -1538 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1945 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -4391 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3859 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|))) (-315)) (T -710)) +((-3859 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-4391 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-1945 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-1538 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(-10 -7 (-15 -2409 ((-699 |#1|) (-699 |#1|))) (-15 -1538 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1945 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -4391 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -3859 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4393 (($ $ $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL)) (-3931 (($ $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) 31)) (-2216 (((-574) $) 29)) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL)) (-4002 (((-112) $) NIL)) (-2258 (((-417 (-574)) $) NIL)) (-2834 (($ $) NIL) (($) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3202 (($ $ $ $) NIL)) (-4194 (($ $ $) NIL)) (-1348 (((-112) $) NIL)) (-2325 (($ $ $) NIL)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2276 (((-112) $) NIL)) (-3127 (((-112) $) NIL)) (-4217 (((-3 $ "failed") $) NIL)) (-3081 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4351 (($ $ $ $) NIL)) (-3632 (($ $ $) NIL)) (-3056 (((-934) (-934)) 10) (((-934)) 9)) (-2953 (($ $ $) NIL)) (-3780 (($ $) NIL)) (-4108 (($ $) NIL)) (-2844 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3135 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1615 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3125 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2309 (($ $) NIL)) (-3156 (($ $) NIL)) (-1846 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-3781 (((-781)) NIL T CONST)) (-1649 (((-112) $ $) NIL)) (-2561 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-3676 (((-112) $ $) NIL)) (-2255 (($ $ $ $) NIL)) (-2366 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +(((-711) (-13 (-397) (-555) (-10 -8 (-15 -3056 ((-934) (-934))) (-15 -3056 ((-934))) (-15 -2950 ((-324 $) (-324 (-574))))))) (T -711)) +((-3056 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) (-3056 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))) +(-13 (-397) (-555) (-10 -8 (-15 -3056 ((-934) (-934))) (-15 -3056 ((-934))) (-15 -2950 ((-324 $) (-324 (-574)))))) +((-2202 (((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)) 19)) (-3834 (((-1 |#4| |#2| |#3|) (-1192)) 12))) +(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3834 ((-1 |#4| |#2| |#3|) (-1192))) (-15 -2202 ((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)))) (-624 (-546)) (-1233) (-1233) (-1233)) (T -712)) +((-2202 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *7 (-1233)))) (-3834 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) (-4 *7 (-1233))))) +(-10 -7 (-15 -3834 ((-1 |#4| |#2| |#3|) (-1192))) (-15 -2202 ((-1 |#4| |#2| |#3|) |#1| (-1192) (-1192)))) +((-2602 (((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)) 43) (((-1 (-227) (-227)) |#1| (-1192)) 48))) +(((-713 |#1|) (-10 -7 (-15 -2602 ((-1 (-227) (-227)) |#1| (-1192))) (-15 -2602 ((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)))) (-624 (-546))) (T -713)) +((-2602 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-2602 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -2602 ((-1 (-227) (-227)) |#1| (-1192))) (-15 -2602 ((-1 (-227) (-227) (-227)) |#1| (-1192) (-1192)))) +((-2721 (((-1192) |#1| (-1192) (-654 (-1192))) 10) (((-1192) |#1| (-1192) (-1192) (-1192)) 13) (((-1192) |#1| (-1192) (-1192)) 12) (((-1192) |#1| (-1192)) 11))) +(((-714 |#1|) (-10 -7 (-15 -2721 ((-1192) |#1| (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-1192) (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-654 (-1192))))) (-624 (-546))) (T -714)) +((-2721 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2721 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2721 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2721 (*1 *2 *3 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -2721 ((-1192) |#1| (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-1192) (-1192))) (-15 -2721 ((-1192) |#1| (-1192) (-654 (-1192))))) +((-2239 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-715 |#1| |#2|) (-10 -7 (-15 -2239 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1233) (-1233)) (T -715)) +((-2239 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1233)) (-4 *4 (-1233))))) +(-10 -7 (-15 -2239 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2658 (((-1 |#3| |#2|) (-1192)) 11)) (-2202 (((-1 |#3| |#2|) |#1| (-1192)) 21))) +(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -2658 ((-1 |#3| |#2|) (-1192))) (-15 -2202 ((-1 |#3| |#2|) |#1| (-1192)))) (-624 (-546)) (-1233) (-1233)) (T -716)) +((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) +(-10 -7 (-15 -2658 ((-1 |#3| |#2|) (-1192))) (-15 -2202 ((-1 |#3| |#2|) |#1| (-1192)))) +((-2350 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|) 92)) (-2767 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-1634 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|) 47))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1634 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|)) (-15 -2767 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -2350 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -717)) +((-2350 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1188 *13))) (-5 *3 (-1188 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1283 (-654 (-1188 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-962 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-2767 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1188 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-962 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1188 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1188 *12)))) (-1634 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1188 *11))) (-5 *3 (-1188 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1283 (-654 (-1188 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-962 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11))))) +(-10 -7 (-15 -1634 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1188 |#4|)) (-1283 (-654 (-1188 |#3|))) |#3|)) (-15 -2767 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -2350 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-654 |#2|) (-654 (-1188 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1283 (-654 (-1188 |#3|))) |#3|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1401 (($ $) 48)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 46)) (-2682 (((-781) $) 50)) (-1377 ((|#1| $) 49)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4144 (((-781) $) 51)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3584 ((|#1| $ (-781)) 47)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-718 |#1|) (-141) (-1064)) (T -718)) +((-4144 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064))))) +(-13 (-1064) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4144 ((-781) $)) (-15 -2682 ((-781) $)) (-15 -1377 (|t#1| $)) (-15 -1401 ($ $)) (-15 -3584 (|t#1| $ (-781))) (-15 -4327 ($ |t#1| (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-1787 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1259 |#1|) (-1259 (-417 |#2|)) (-566) (-1259 |#4|) (-1259 (-417 |#5|))) (T -719)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1259 *5)) (-4 *2 (-1259 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1259 (-417 *6))) (-4 *8 (-1259 *7))))) +(-10 -7 (-15 -1787 (|#6| (-1 |#4| |#1|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4384 (((-1174) (-872)) 38)) (-1413 (((-1288) (-1174)) 31)) (-3802 (((-1174) (-872)) 28)) (-4168 (((-1174) (-872)) 29)) (-2950 (((-872) $) NIL) (((-1174) (-872)) 27)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-720) (-13 (-1115) (-10 -7 (-15 -2950 ((-1174) (-872))) (-15 -3802 ((-1174) (-872))) (-15 -4168 ((-1174) (-872))) (-15 -4384 ((-1174) (-872))) (-15 -1413 ((-1288) (-1174)))))) (T -720)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-720))))) +(-13 (-1115) (-10 -7 (-15 -2950 ((-1174) (-872))) (-15 -3802 ((-1174) (-872))) (-15 -4168 ((-1174) (-872))) (-15 -4384 ((-1174) (-872))) (-15 -1413 ((-1288) (-1174))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-2881 (($ |#1| |#2|) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4154 ((|#2| $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2982 (((-3 $ "failed") $ $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -4154 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -2982 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721)) +((-4154 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-372) (-10 -8 (-15 -4154 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -2982 ((-3 $ "failed") $ $)))) +((-2863 (((-112) $ $) 87)) (-1997 (((-112) $) 36)) (-3806 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1709 (($ (-1188 |#1|)) NIL)) (-4172 (((-1188 $) $ (-1097)) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1641 (($ $ $) NIL (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1497 (((-781)) 54 (|has| |#1| (-377)))) (-1815 (($ $ (-781)) NIL)) (-2574 (($ $ (-781)) NIL)) (-1687 ((|#2| |#2|) 50)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL)) (-3372 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 40)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ |#2|) 48)) (-2978 (((-3 $ "failed") $) 97)) (-2834 (($) 58 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3203 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#1| (-566)))) (-3276 (((-2 (|:| -1868 |#1|) (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-3737 (((-971 $)) 89)) (-2680 (($ $ |#1| (-781) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ $) NIL (|has| |#1| (-566)))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2528 (($ $ (-781)) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 85) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1097)) NIL) (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-4154 ((|#2|) 51)) (-2682 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3577 (($ (-1 (-781) (-781)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-1188 |#1|) $) NIL)) (-1407 (((-3 (-1097) "failed") $) NIL)) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-2868 ((|#2| $) 47)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) 34)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1097)) (|:| -3843 (-781))) "failed") $) NIL)) (-3302 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2296 (($ $) 88 (|has| |#1| (-358)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3233 (((-3 $ "failed") $ (-781)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 98 (|has| |#1| (-372)))) (-3902 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4144 (((-781) $) 38) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2648 (((-971 $)) 42)) (-4017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1097)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) 70) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 25 T CONST)) (-4030 (((-1283 |#1|) $) 83)) (-1476 (($ (-1283 |#1|)) 57)) (-2155 (($) 8 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3909 (((-1283 |#1|) $) NIL)) (-2985 (((-112) $ $) 76)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 79) (($ $ $) NIL)) (-3073 (($ $ $) 39)) (** (($ $ (-934)) NIL) (($ $ (-781)) 92)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-722 |#1| |#2|) (-13 (-1259 |#1|) (-626 |#2|) (-10 -8 (-15 -1687 (|#2| |#2|)) (-15 -4154 (|#2|)) (-15 -2881 ($ |#2|)) (-15 -2868 (|#2| $)) (-15 -4030 ((-1283 |#1|) $)) (-15 -1476 ($ (-1283 |#1|))) (-15 -3909 ((-1283 |#1|) $)) (-15 -3737 ((-971 $))) (-15 -2648 ((-971 $))) (IF (|has| |#1| (-358)) (-15 -2296 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1064) (-1259 |#1|)) (T -722)) +((-1687 (*1 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) (-4154 (*1 *2) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) (-2881 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-3909 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-3737 (*1 *2) (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-2648 (*1 *2) (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1259 *3)))) (-2296 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1064)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1259 *2))))) +(-13 (-1259 |#1|) (-626 |#2|) (-10 -8 (-15 -1687 (|#2| |#2|)) (-15 -4154 (|#2|)) (-15 -2881 ($ |#2|)) (-15 -2868 (|#2| $)) (-15 -4030 ((-1283 |#1|) $)) (-15 -1476 ($ (-1283 |#1|))) (-15 -3909 ((-1283 |#1|) $)) (-15 -3737 ((-971 $))) (-15 -2648 ((-971 $))) (IF (|has| |#1| (-358)) (-15 -2296 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 ((|#1| $) 13)) (-3939 (((-1135) $) NIL)) (-3843 ((|#2| $) 12)) (-2962 (($ |#1| |#2|) 16)) (-2950 (((-872) $) NIL) (($ (-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) 15) (((-2 (|:| -2590 |#1|) (|:| -3843 |#2|)) $) 14)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 11))) +(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) (-10 -8 (-15 -3843 (|#2| $)) (-15 -2590 (|#1| $)) (-15 -2962 ($ |#1| |#2|)))) (-860) (-1115) (-1 (-112) (-2 (|:| -2590 |#1|) (|:| -3843 |#2|)) (-2 (|:| -2590 |#1|) (|:| -3843 |#2|)))) (T -723)) +((-3843 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *3) (|:| -3843 *2)) (-2 (|:| -2590 *3) (|:| -3843 *2)))))) (-2590 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1115)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *3)) (-2 (|:| -2590 *2) (|:| -3843 *3)))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1115)) (-14 *4 (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *3)) (-2 (|:| -2590 *2) (|:| -3843 *3))))))) +(-13 (-860) (-500 (-2 (|:| -2590 |#1|) (|:| -3843 |#2|))) (-10 -8 (-15 -3843 (|#2| $)) (-15 -2590 (|#1| $)) (-15 -2962 ($ |#1| |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 66)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2216 ((|#1| $) NIL) (((-115) $) 39)) (-2978 (((-3 $ "failed") $) 103)) (-3571 ((|#2| (-115) |#2|) 93)) (-2276 (((-112) $) NIL)) (-4107 (($ |#1| (-370 (-115))) 14)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3018 (($ $ (-1 |#2| |#2|)) 65)) (-3053 (($ $ (-1 |#2| |#2|)) 44)) (-2209 ((|#2| $ |#2|) 33)) (-3468 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2950 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) 37 T CONST)) (-4259 (((-112) $ $) NIL)) (-2897 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2143 (($) 21 T CONST)) (-2155 (($) 9 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) 48) (($ $ $) NIL)) (-3073 (($ $ $) 83)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-724 |#1| |#2|) (-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2897 ($ $)) (-15 -2897 ($ $ $)) (-15 -3468 (|#1| |#1|))) |%noBranch|) (-15 -3053 ($ $ (-1 |#2| |#2|))) (-15 -3018 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3571 (|#2| (-115) |#2|)) (-15 -4107 ($ |#1| (-370 (-115)))))) (-1064) (-658 |#1|)) (T -724)) +((-2897 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3468 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-3571 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-4107 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1064)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2))))) +(-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2897 ($ $)) (-15 -2897 ($ $ $)) (-15 -3468 (|#1| |#1|))) |%noBranch|) (-15 -3053 ($ $ (-1 |#2| |#2|))) (-15 -3018 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3571 (|#2| (-115) |#2|)) (-15 -4107 ($ |#1| (-370 (-115)))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 33)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2881 (($ |#1| |#2|) 25)) (-2978 (((-3 $ "failed") $) 51)) (-2276 (((-112) $) 35)) (-4154 ((|#2| $) 12)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 52)) (-3939 (((-1135) $) NIL)) (-2982 (((-3 $ "failed") $ $) 50)) (-2950 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-3781 (((-781)) 28 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 16 T CONST)) (-2155 (($) 30 T CONST)) (-2985 (((-112) $ $) 41)) (-3089 (($ $) 46) (($ $ $) 40)) (-3073 (($ $ $) 43)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20))) +(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1064) (-10 -8 (-15 -4154 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -2982 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725)) +((-2978 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4154 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2950 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1327 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1064) (-10 -8 (-15 -4154 (|#2| $)) (-15 -2950 (|#1| $)) (-15 -2881 ($ |#1| |#2|)) (-15 -2982 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $)) (-15 -1327 ($ $)))) +((* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-727 |#2|) (-174)) (T -726)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-727 |#1|) (-141) (-174)) (T -727)) +NIL +(-13 (-111 |t#1| |t#1|) (-650 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-3931 (($ |#1|) 17) (($ $ |#1|) 20)) (-1916 (($ |#1|) 18) (($ $ |#1|) 21)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2276 (((-112) $) NIL)) (-2183 (($ |#1| |#1| |#1| |#1|) 8)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 16)) (-3939 (((-1135) $) NIL)) (-2660 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-2950 (((-872) $) 39)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 9 T CONST)) (-2985 (((-112) $ $) 48)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14))) +(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -2183 ($ |#1| |#1| |#1| |#1|)) (-15 -3931 ($ |#1|)) (-15 -1916 ($ |#1|)) (-15 -2978 ($)) (-15 -3931 ($ $ |#1|)) (-15 -1916 ($ $ |#1|)) (-15 -2978 ($ $)) (-15 -2660 (|#1| $ |#1|)) (-15 -2660 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728)) +((-2183 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3931 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1916 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2978 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-1916 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2660 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2660 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))) +(-13 (-483) (-10 -8 (-15 -2183 ($ |#1| |#1| |#1| |#1|)) (-15 -3931 ($ |#1|)) (-15 -1916 ($ |#1|)) (-15 -2978 ($)) (-15 -3931 ($ $ |#1|)) (-15 -1916 ($ $ |#1|)) (-15 -2978 ($ $)) (-15 -2660 (|#1| $ |#1|)) (-15 -2660 ((-843 |#1|) $ (-843 |#1|))))) +((-3558 (($ $ (-934)) 19)) (-2883 (($ $ (-934)) 20)) (** (($ $ (-934)) 10))) +(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-934))) (-15 -2883 (|#1| |#1| (-934))) (-15 -3558 (|#1| |#1| (-934)))) (-730)) (T -729)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-934))) (-15 -2883 (|#1| |#1| (-934))) (-15 -3558 (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-3558 (($ $ (-934)) 16)) (-2883 (($ $ (-934)) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14)) (* (($ $ $) 17))) +(((-730) (-141)) (T -730)) +((* (*1 *1 *1 *1) (-4 *1 (-730))) (-3558 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) (-2883 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934))))) +(-13 (-1115) (-10 -8 (-15 * ($ $ $)) (-15 -3558 ($ $ (-934))) (-15 -2883 ($ $ (-934))) (-15 ** ($ $ (-934))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3558 (($ $ (-934)) NIL) (($ $ (-781)) 18)) (-2276 (((-112) $) 10)) (-2883 (($ $ (-934)) NIL) (($ $ (-781)) 19)) (** (($ $ (-934)) NIL) (($ $ (-781)) 16))) +(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2883 (|#1| |#1| (-781))) (-15 -3558 (|#1| |#1| (-781))) (-15 -2276 ((-112) |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -2883 (|#1| |#1| (-934))) (-15 -3558 (|#1| |#1| (-934)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2883 (|#1| |#1| (-781))) (-15 -3558 (|#1| |#1| (-781))) (-15 -2276 ((-112) |#1|)) (-15 ** (|#1| |#1| (-934))) (-15 -2883 (|#1| |#1| (-934))) (-15 -3558 (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-3790 (((-3 $ "failed") $) 18)) (-3558 (($ $ (-934)) 16) (($ $ (-781)) 23)) (-2978 (((-3 $ "failed") $) 20)) (-2276 (((-112) $) 24)) (-1341 (((-3 $ "failed") $) 19)) (-2883 (($ $ (-934)) 15) (($ $ (-781)) 22)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2155 (($) 25 T CONST)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17))) +(((-732) (-141)) (T -732)) +((-2155 (*1 *1) (-4 *1 (-732))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-3558 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-2883 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-2978 (*1 *1 *1) (|partial| -4 *1 (-732))) (-1341 (*1 *1 *1) (|partial| -4 *1 (-732))) (-3790 (*1 *1 *1) (|partial| -4 *1 (-732)))) +(-13 (-730) (-10 -8 (-15 (-2155) ($) -1716) (-15 -2276 ((-112) $)) (-15 -3558 ($ $ (-781))) (-15 -2883 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -2978 ((-3 $ "failed") $)) (-15 -1341 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1115) . T)) +((-1497 (((-781)) 39)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2881 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-2978 (((-3 $ "failed") $) 69)) (-2834 (($) 43)) (-2681 ((|#2| $) 21)) (-2974 (($) 18)) (-3878 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-3450 (((-699 |#2|) (-1283 $) (-1 |#2| |#2|)) 64)) (-1846 (((-1283 |#2|) $) NIL) (($ (-1283 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3688 ((|#3| $) 36)) (-3907 (((-1283 $)) 33))) +(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2834 (|#1|)) (-15 -1497 ((-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3450 ((-699 |#2|) (-1283 |#1|) (-1 |#2| |#2|))) (-15 -2881 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1846 (|#1| |#3|)) (-15 -2881 (|#1| |#3|)) (-15 -2974 (|#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 (|#3| |#1|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3907 ((-1283 |#1|))) (-15 -3688 (|#3| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1259 |#2|)) (T -733)) +((-1497 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))) +(-10 -8 (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -2834 (|#1|)) (-15 -1497 ((-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3450 ((-699 |#2|) (-1283 |#1|) (-1 |#2| |#2|))) (-15 -2881 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1846 (|#1| |#3|)) (-15 -2881 (|#1| |#3|)) (-15 -2974 (|#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -1846 (|#3| |#1|)) (-15 -1846 (|#1| (-1283 |#2|))) (-15 -1846 ((-1283 |#2|) |#1|)) (-15 -3907 ((-1283 |#1|))) (-15 -3688 (|#3| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 103 (|has| |#1| (-372)))) (-4319 (($ $) 104 (|has| |#1| (-372)))) (-1731 (((-112) $) 106 (|has| |#1| (-372)))) (-4368 (((-699 |#1|) (-1283 $)) 53) (((-699 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-3334 (((-1205 (-934) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 123 (|has| |#1| (-372)))) (-2153 (((-428 $) $) 124 (|has| |#1| (-372)))) (-1526 (((-112) $ $) 114 (|has| |#1| (-372)))) (-1497 (((-781)) 97 (|has| |#1| (-377)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2216 (((-574) $) 180 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 177)) (-3875 (($ (-1283 |#1|) (-1283 $)) 55) (($ (-1283 |#1|)) 71)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2800 (($ $ $) 118 (|has| |#1| (-372)))) (-1732 (((-699 |#1|) $ (-1283 $)) 60) (((-699 |#1|) $) 66)) (-4232 (((-699 (-574)) (-1283 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1283 $)) 170)) (-2881 (($ |#2|) 167) (((-3 $ "failed") (-417 |#2|)) 164 (|has| |#1| (-372)))) (-2978 (((-3 $ "failed") $) 37)) (-3557 (((-934)) 61)) (-2834 (($) 100 (|has| |#1| (-377)))) (-2811 (($ $ $) 117 (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 112 (|has| |#1| (-372)))) (-2776 (($) 158 (|has| |#1| (-358)))) (-1627 (((-112) $) 159 (|has| |#1| (-358)))) (-4278 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-2941 (((-112) $) 125 (|has| |#1| (-372)))) (-3837 (((-934) $) 161 (|has| |#1| (-358))) (((-843 (-934)) $) 147 (|has| |#1| (-358)))) (-2276 (((-112) $) 35)) (-2681 ((|#1| $) 58)) (-4217 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-372)))) (-3525 ((|#2| $) 51 (|has| |#1| (-372)))) (-3880 (((-934) $) 99 (|has| |#1| (-377)))) (-2868 ((|#2| $) 165)) (-2844 (($ (-654 $)) 110 (|has| |#1| (-372))) (($ $ $) 109 (|has| |#1| (-372)))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 126 (|has| |#1| (-372)))) (-3791 (($) 152 (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 98 (|has| |#1| (-377)))) (-3939 (((-1135) $) 11)) (-2974 (($) 169)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 111 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 108 (|has| |#1| (-372))) (($ $ $) 107 (|has| |#1| (-372)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) 155 (|has| |#1| (-358)))) (-4200 (((-428 $) $) 122 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 119 (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) 102 (|has| |#1| (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-372)))) (-3575 (((-781) $) 115 (|has| |#1| (-372)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 116 (|has| |#1| (-372)))) (-3902 ((|#1| (-1283 $)) 54) ((|#1|) 67)) (-3411 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3878 (($ $ (-781)) 145 (-2832 (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 143 (-2832 (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) 142 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192))) 141 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1192) (-781)) 140 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-781))) 139 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 132 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-372)))) (-3450 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-2611 ((|#2|) 168)) (-3627 (($) 157 (|has| |#1| (-358)))) (-4421 (((-1283 |#1|) $ (-1283 $)) 57) (((-699 |#1|) (-1283 $) (-1283 $)) 56) (((-1283 |#1|) $) 73) (((-699 |#1|) (-1283 $)) 72)) (-1846 (((-1283 |#1|) $) 70) (($ (-1283 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 154 (|has| |#1| (-358)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-372))) (($ (-417 (-574))) 96 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3688 ((|#2| $) 52)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3907 (((-1283 $)) 74)) (-3676 (((-112) $ $) 105 (|has| |#1| (-372)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-781)) 146 (-2832 (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 144 (-2832 (-2097 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) 138 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192))) 137 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1192) (-781)) 136 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-781))) 135 (-2097 (|has| |#1| (-913 (-1192))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 134 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-372)))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 130 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) +(((-734 |#1| |#2|) (-141) (-174) (-1259 |t#1|)) (T -734)) +((-2974 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1259 *2)))) (-2611 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-2881 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) (-1846 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) (-2881 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-1283 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1259 *5)) (-5 *2 (-699 *5))))) +(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2974 ($)) (-15 -2611 (|t#2|)) (-15 -2881 ($ |t#2|)) (-15 -1846 ($ |t#2|)) (-15 -2868 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2881 ((-3 $ "failed") (-417 |t#2|))) (-15 -3450 ((-699 |t#1|) (-1283 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-238) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2832 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192)))) ((-933) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) -2832 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-358)) ((-1233) -2832 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1237) -2832 (|has| |#1| (-358)) (|has| |#1| (-372)))) +((-3063 (($) 11)) (-2978 (((-3 $ "failed") $) 14)) (-2276 (((-112) $) 10)) (** (($ $ (-934)) NIL) (($ $ (-781)) 20))) +(((-735 |#1|) (-10 -8 (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -2276 ((-112) |#1|)) (-15 -3063 (|#1|)) (-15 ** (|#1| |#1| (-934)))) (-736)) (T -735)) +NIL +(-10 -8 (-15 -2978 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -2276 ((-112) |#1|)) (-15 -3063 (|#1|)) (-15 ** (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-3063 (($) 19 T CONST)) (-2978 (((-3 $ "failed") $) 16)) (-2276 (((-112) $) 18)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15))) +(((-736) (-141)) (T -736)) +((-2155 (*1 *1) (-4 *1 (-736))) (-3063 (*1 *1) (-4 *1 (-736))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-2978 (*1 *1 *1) (|partial| -4 *1 (-736)))) +(-13 (-1127) (-10 -8 (-15 (-2155) ($) -1716) (-15 -3063 ($) -1716) (-15 -2276 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -2978 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1127) . T) ((-1115) . T)) +((-2364 (((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4369 (((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3210 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-1425 (((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48))) +(((-737 |#1| |#2|) (-10 -7 (-15 -4369 ((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2364 ((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3210 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1425 ((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1259 |#1|)) (T -737)) +((-1425 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1366 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-2364 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1366 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-4369 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1366 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))) +(-10 -7 (-15 -4369 ((-2 (|:| -1366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2364 ((-2 (|:| -1366 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3210 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -1425 ((-2 (|:| |poly| |#2|) (|:| -1366 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) +((-1343 ((|#7| (-654 |#5|) |#6|) NIL)) (-1787 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1787 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1343 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1064) (-1064) (-962 |#4| |#2| |#1|) (-962 |#5| |#3| |#1|)) (T -738)) +((-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1064)) (-4 *2 (-962 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-962 *8 *6 *5)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1064)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-962 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-962 *8 *6 *5))))) +(-10 -7 (-15 -1787 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1343 (|#7| (-654 |#5|) |#6|))) +((-1787 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1787 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1064) (-962 |#5| |#3| |#1|) (-962 |#5| |#4| |#2|)) (T -739)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1064)) (-4 *2 (-962 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-962 *9 *7 *5))))) +(-10 -7 (-15 -1787 (|#7| (-1 |#2| |#1|) |#6|))) +((-4200 (((-428 |#4|) |#4|) 42))) +(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192))))) (-315) (-962 (-965 |#3|) |#1| |#2|)) (T -740)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-962 (-965 *6) *4 *5))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1188 $) $ (-874 |#1|)) NIL) (((-1188 |#2|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4319 (($ $) NIL (|has| |#2| (-566)))) (-1731 (((-112) $) NIL (|has| |#2| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL (|has| |#2| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-874 |#1|) $) NIL)) (-3372 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#2| (-922)))) (-2680 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#2|) (-874 |#1|)) NIL) (($ (-1188 $) (-874 |#1|)) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-874 |#1|)) NIL)) (-2682 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3577 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1407 (((-3 (-874 |#1|) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3843 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-3902 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4144 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574))))))) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-741 |#1| |#2|) (-962 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1192)) (-1064)) (T -741)) +NIL +(-962 |#2| (-541 (-874 |#1|)) (-874 |#1|)) +((-2347 (((-2 (|:| -3672 (-965 |#3|)) (|:| -2730 (-965 |#3|))) |#4|) 14)) (-3523 ((|#4| |#4| |#2|) 33)) (-2337 ((|#4| (-417 (-965 |#3|)) |#2|) 64)) (-2100 ((|#4| (-1188 (-965 |#3|)) |#2|) 77)) (-3520 ((|#4| (-1188 |#4|) |#2|) 51)) (-2282 ((|#4| |#4| |#2|) 54)) (-4200 (((-428 |#4|) |#4|) 40))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-2 (|:| -3672 (-965 |#3|)) (|:| -2730 (-965 |#3|))) |#4|)) (-15 -2282 (|#4| |#4| |#2|)) (-15 -3520 (|#4| (-1188 |#4|) |#2|)) (-15 -3523 (|#4| |#4| |#2|)) (-15 -2100 (|#4| (-1188 (-965 |#3|)) |#2|)) (-15 -2337 (|#4| (-417 (-965 |#3|)) |#2|)) (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)))) (-566) (-962 (-417 (-965 |#3|)) |#1| |#2|)) (T -742)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5)))) (-2337 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-965 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 (-965 *6))) (-4 *6 (-566)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))))) (-3523 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *6 (-566)))) (-2282 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -3672 (-965 *6)) (|:| -2730 (-965 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5))))) +(-10 -7 (-15 -2347 ((-2 (|:| -3672 (-965 |#3|)) (|:| -2730 (-965 |#3|))) |#4|)) (-15 -2282 (|#4| |#4| |#2|)) (-15 -3520 (|#4| (-1188 |#4|) |#2|)) (-15 -3523 (|#4| |#4| |#2|)) (-15 -2100 (|#4| (-1188 (-965 |#3|)) |#2|)) (-15 -2337 (|#4| (-417 (-965 |#3|)) |#2|)) (-15 -4200 ((-428 |#4|) |#4|))) +((-4200 (((-428 |#4|) |#4|) 54))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-962 (-417 |#3|) |#1| |#2|)) (T -743)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-962 (-417 *6) *4 *5))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4|))) +((-1787 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18))) +(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1064) (-1064) (-736)) (T -744)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7))))) +(-10 -7 (-15 -1787 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 36)) (-2389 (((-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|))) $) 37)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2216 ((|#2| $) NIL) ((|#1| $) NIL)) (-1401 (($ $) 102 (|has| |#2| (-860)))) (-2978 (((-3 $ "failed") $) 85)) (-2834 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) 70)) (-3700 (((-654 $) $) 52)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| |#2|) 17)) (-1787 (($ (-1 |#1| |#1|) $) 68)) (-3880 (((-934) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1365 ((|#2| $) 101 (|has| |#2| (-860)))) (-1377 ((|#1| $) 100 (|has| |#2| (-860)))) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|)))) 11)) (-3133 (((-654 |#1|) $) 54)) (-3584 ((|#1| $ |#2|) 115)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2155 (($) 44 T CONST)) (-2985 (((-112) $ $) 105)) (-3089 (($ $) 61) (($ $ $) NIL)) (-3073 (($ $ $) 33)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-745 |#1| |#2|) (-13 (-1064) (-1053 |#2|) (-1053 |#1|) (-10 -8 (-15 -4327 ($ |#1| |#2|)) (-15 -3584 (|#1| $ |#2|)) (-15 -2950 ($ (-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|))))) (-15 -2389 ((-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|))) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -3513 ((-112) $)) (-15 -3133 ((-654 |#1|) $)) (-15 -3700 ((-654 $) $)) (-15 -1901 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1365 (|#2| $)) (-15 -1377 (|#1| $)) (-15 -1401 ($ $))) |%noBranch|))) (-1064) (-736)) (T -745)) +((-4327 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-736)))) (-3584 (*1 *2 *1 *3) (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1868 *3) (|:| -3805 *4)))) (-4 *3 (-1064)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1868 *3) (|:| -3805 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) (-1365 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1064)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1064)) (-4 *3 (-736))))) +(-13 (-1064) (-1053 |#2|) (-1053 |#1|) (-10 -8 (-15 -4327 ($ |#1| |#2|)) (-15 -3584 (|#1| $ |#2|)) (-15 -2950 ($ (-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|))))) (-15 -2389 ((-654 (-2 (|:| -1868 |#1|) (|:| -3805 |#2|))) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -3513 ((-112) $)) (-15 -3133 ((-654 |#1|) $)) (-15 -3700 ((-654 $) $)) (-15 -1901 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1365 (|#2| $)) (-15 -1377 (|#1| $)) (-15 -1401 ($ $))) |%noBranch|))) +((-2863 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3728 (($ $ $) 73)) (-4065 (((-112) $ $) 74)) (-1750 (((-112) $ (-781)) 8)) (-1517 (($ (-654 |#1|)) 69) (($) 68)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3054 (($ $) 63)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) 65)) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22)) (-2627 (($ $ $) 70)) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-1560 (((-654 (-2 (|:| -1918 |#1|) (|:| -3948 (-781)))) $) 62)) (-3062 (($ $ |#1|) 72) (($ $ $) 71)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18)) (-4268 (($ (-654 |#1|)) 67) (($) 66)) (-4259 (((-112) $ $) 23)) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-746 |#1|) (-141) (-1115)) (T -746)) +NIL +(-13 (-705 |t#1|) (-1113 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-705 |#1|) . T) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3728 (($ $ $) 96)) (-4065 (((-112) $ $) 104)) (-1750 (((-112) $ (-781)) NIL)) (-1517 (($ (-654 |#1|)) 26) (($) 17)) (-1657 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3054 (($ $) 85)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) 70 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 32 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) 103)) (-1322 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) 38)) (-3801 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 89)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-2627 (($ $ $) 94)) (-1494 ((|#1| $) 62)) (-1948 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3939 (((-1135) $) NIL)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2277 ((|#1| $) 61)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 56)) (-4272 (($) 14)) (-1560 (((-654 (-2 (|:| -1918 |#1|) (|:| -3948 (-781)))) $) 55)) (-3062 (($ $ |#1|) NIL) (($ $ $) 95)) (-2163 (($) 16) (($ (-654 |#1|)) 25)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 79)) (-1846 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 22)) (-2950 (((-872) $) 49)) (-4268 (($ (-654 |#1|)) 27) (($) 18)) (-4259 (((-112) $ $) NIL)) (-2765 (($ (-654 |#1|)) 24)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 100)) (-2876 (((-781) $) 67 (|has| $ (-6 -4458))))) +(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -1322 ($)) (-15 -1322 ($ |#1|)) (-15 -1322 ($ (-654 |#1|))) (-15 -4187 ((-654 |#1|) $)) (-15 -3310 ($ |#1| $ (-574))) (-15 -3310 ($ (-1 (-112) |#1|) $ (-574))) (-15 -3245 ($ |#1| $ (-574))) (-15 -3245 ($ (-1 (-112) |#1|) $ (-574))))) (-1115)) (T -747)) +((-1322 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-1322 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-747 *3)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1115)))) (-3310 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-3310 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) (-5 *1 (-747 *4)))) (-3245 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) (-3245 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) (-5 *1 (-747 *4))))) +(-13 (-746 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -1322 ($)) (-15 -1322 ($ |#1|)) (-15 -1322 ($ (-654 |#1|))) (-15 -4187 ((-654 |#1|) $)) (-15 -3310 ($ |#1| $ (-574))) (-15 -3310 ($ (-1 (-112) |#1|) $ (-574))) (-15 -3245 ($ |#1| $ (-574))) (-15 -3245 ($ (-1 (-112) |#1|) $ (-574))))) +((-1326 (((-1288) (-1174)) 8))) +(((-748) (-10 -7 (-15 -1326 ((-1288) (-1174))))) (T -748)) +((-1326 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-748))))) +(-10 -7 (-15 -1326 ((-1288) (-1174)))) +((-2975 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15))) +(((-749 |#1|) (-10 -7 (-15 -2975 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749)) +((-2975 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) +(-10 -7 (-15 -2975 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 |#2|) $) 148)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 141 (|has| |#1| (-566)))) (-4319 (($ $) 140 (|has| |#1| (-566)))) (-1731 (((-112) $) 138 (|has| |#1| (-566)))) (-2378 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 79 (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-1401 (($ $) 132)) (-2978 (((-3 $ "failed") $) 37)) (-4026 (((-965 |#1|) $ (-781)) 110) (((-965 |#1|) $ (-781) (-781)) 109)) (-4396 (((-112) $) 149)) (-3003 (($) 107 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $ |#2|) 112) (((-781) $ |#2| (-781)) 111)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 78 (|has| |#1| (-38 (-417 (-574)))))) (-3513 (((-112) $) 130)) (-4327 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 147) (($ $ |#2| (-541 |#2|)) 146) (($ |#1| (-541 |#2|)) 131) (($ $ |#2| (-781)) 114) (($ $ (-654 |#2|) (-654 (-781))) 113)) (-1787 (($ (-1 |#1| |#1|) $) 129)) (-3111 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 127)) (-1377 ((|#1| $) 126)) (-1938 (((-1174) $) 10)) (-3302 (($ $ |#2|) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) 11)) (-4016 (($ $ (-781)) 115)) (-2852 (((-3 $ "failed") $ $) 142 (|has| |#1| (-566)))) (-1619 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ |#2| $) 123) (($ $ (-654 |#2|) (-654 $)) 122) (($ $ (-654 (-302 $))) 121) (($ $ (-302 $)) 120) (($ $ $ $) 119) (($ $ (-654 $) (-654 $)) 118)) (-3878 (($ $ |#2|) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2| (-781)) 44) (($ $ (-654 |#2|) (-654 (-781))) 43)) (-4144 (((-541 |#2|) $) 128)) (-2415 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 150)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-566))) (($ (-417 (-574))) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3584 ((|#1| $ (-541 |#2|)) 133) (($ $ |#2| (-781)) 117) (($ $ (-654 |#2|) (-654 (-781))) 116)) (-3270 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 139 (|has| |#1| (-566)))) (-2428 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ |#2|) 42) (($ $ (-654 |#2|)) 41) (($ $ |#2| (-781)) 40) (($ $ (-654 |#2|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 134 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ $) 106 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 77 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 136 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-750 |#1| |#2|) (-141) (-1064) (-860)) (T -750)) +((-3584 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) (-4 *2 (-860)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-3837 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3837 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)) (-5 *2 (-965 *4)))) (-4026 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) (-4 *5 (-860)) (-5 *2 (-965 *4)))) (-3302 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574))))))) +(-13 (-913 |t#2|) (-988 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -3584 ($ $ |t#2| (-781))) (-15 -3584 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -4016 ($ $ (-781))) (-15 -4327 ($ $ |t#2| (-781))) (-15 -4327 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -3837 ((-781) $ |t#2|)) (-15 -3837 ((-781) $ |t#2| (-781))) (-15 -4026 ((-965 |t#1|) $ (-781))) (-15 -4026 ((-965 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $ |t#2|)) (-6 (-1017)) (-6 (-1218))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 |#2|) . T) ((-988 |#1| #0# |#2|) . T) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574))))) +((-4200 (((-428 (-1188 |#4|)) (-1188 |#4|)) 30) (((-428 |#4|) |#4|) 26))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-962 |#3| |#2| |#1|)) (T -751)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) +(-10 -7 (-15 -4200 ((-428 |#4|) |#4|)) (-15 -4200 ((-428 (-1188 |#4|)) (-1188 |#4|)))) +((-3484 (((-428 |#4|) |#4| |#2|) 140)) (-1683 (((-428 |#4|) |#4|) NIL)) (-2153 (((-428 (-1188 |#4|)) (-1188 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-2033 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -3843 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-2358 (((-1188 |#3|) (-1188 |#3|) (-574)) 166)) (-3495 (((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781)) 75)) (-2868 (((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-3376 (((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-1411 (((-2 (|:| -3634 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574)) 72)) (-1426 (((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574))))) 162)) (-3150 ((|#4| (-574) (-428 |#4|)) 73)) (-3788 (((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574))))) NIL))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2153 ((-428 |#4|) |#4|)) (-15 -2153 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -1683 ((-428 |#4|) |#4|)) (-15 -1426 ((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))))) (-15 -3484 ((-428 |#4|) |#4| |#2|)) (-15 -1411 ((-2 (|:| -3634 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574))) (-15 -2033 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -3843 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3376 ((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3150 (|#4| (-574) (-428 |#4|))) (-15 -3788 ((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))))) (-15 -2868 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -3495 ((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781))) (-15 -2358 ((-1188 |#3|) (-1188 |#3|) (-574)))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -752)) +((-2358 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-3495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2868 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1188 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-962 *11 *9 *10)) (-5 *2 (-654 (-1188 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1188 *5)))) (-3788 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -3843 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-962 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-3376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1188 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 *8)) (|:| -3843 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-2033 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-962 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 *9)) (|:| -3843 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)))) (-1411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-5 *2 (-2 (|:| -3634 (-1188 *9)) (|:| |polval| (-1188 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)) (-5 *4 (-1188 *8)))) (-3484 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -3843 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5))))) +(-10 -7 (-15 -2153 ((-428 |#4|) |#4|)) (-15 -2153 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -1683 ((-428 |#4|) |#4|)) (-15 -1426 ((-574) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))))) (-15 -3484 ((-428 |#4|) |#4| |#2|)) (-15 -1411 ((-2 (|:| -3634 (-1188 |#4|)) (|:| |polval| (-1188 |#3|))) (-1188 |#4|) (-1188 |#3|) (-574))) (-15 -2033 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4200 (-1188 |#4|)) (|:| -3843 (-574)))))) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3376 ((-2 (|:| |upol| (-1188 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574))))) (|:| |ctpol| |#3|)) (-1188 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3150 (|#4| (-574) (-428 |#4|))) (-15 -3788 ((-112) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))) (-654 (-2 (|:| -4200 (-1188 |#3|)) (|:| -3843 (-574)))))) (-15 -2868 ((-3 (-654 (-1188 |#4|)) "failed") (-1188 |#4|) (-1188 |#3|) (-1188 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -3495 ((-654 (-781)) (-1188 |#4|) (-654 |#2|) (-781))) (-15 -2358 ((-1188 |#3|) (-1188 |#3|) (-574)))) +((-2867 (($ $ (-934)) 17))) +(((-753 |#1| |#2|) (-10 -8 (-15 -2867 (|#1| |#1| (-934)))) (-754 |#2|) (-174)) (T -753)) +NIL +(-10 -8 (-15 -2867 (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3558 (($ $ (-934)) 31)) (-2867 (($ $ (-934)) 38)) (-2883 (($ $ (-934)) 32)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2987 (($ $ $) 28)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-1391 (($ $ $ $) 29)) (-2824 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-754 |#1|) (-141) (-174)) (T -754)) +((-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) +(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -2867 ($ $ (-934))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-1970 (((-1050) (-699 (-227)) (-574) (-112) (-574)) 25)) (-1860 (((-1050) (-699 (-227)) (-574) (-112) (-574)) 24))) +(((-755) (-10 -7 (-15 -1860 ((-1050) (-699 (-227)) (-574) (-112) (-574))) (-15 -1970 ((-1050) (-699 (-227)) (-574) (-112) (-574))))) (T -755)) +((-1970 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-755)))) (-1860 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-755))))) +(-10 -7 (-15 -1860 ((-1050) (-699 (-227)) (-574) (-112) (-574))) (-15 -1970 ((-1050) (-699 (-227)) (-574) (-112) (-574)))) +((-4176 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-3253 (((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-4309 (((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 32))) +(((-756) (-10 -7 (-15 -4309 ((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3253 ((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -4176 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756)) +((-4176 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1050)) (-5 *1 (-756)))) (-3253 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1050)) (-5 *1 (-756)))) (-4309 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-756))))) +(-10 -7 (-15 -4309 ((-1050) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3253 ((-1050) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -4176 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))))) +((-1658 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 34)) (-2226 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 33)) (-1629 (((-1050) (-574) (-699 (-227)) (-574)) 32)) (-3738 (((-1050) (-574) (-699 (-227)) (-574)) 31)) (-1917 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-2761 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-4080 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-4263 (((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-1712 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-3492 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-4082 (((-1050) (-574) (-699 (-227)) (-574)) 22)) (-3104 (((-1050) (-574) (-699 (-227)) (-574)) 21))) +(((-757) (-10 -7 (-15 -3104 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -4082 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3492 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1712 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4263 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4080 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2761 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1917 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3738 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -1629 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -2226 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1658 ((-1050) (-574) (-574) (-699 (-227)) (-574))))) (T -757)) +((-1658 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-2226 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-1629 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3738 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-1917 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-2761 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-4080 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-4263 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-1712 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3492 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-4082 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757)))) (-3104 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-757))))) +(-10 -7 (-15 -3104 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -4082 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -3492 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1712 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4263 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4080 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2761 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1917 ((-1050) (-574) (-574) (-1174) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3738 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -1629 ((-1050) (-574) (-699 (-227)) (-574))) (-15 -2226 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1658 ((-1050) (-574) (-574) (-699 (-227)) (-574)))) +((-2864 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3319 (((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-4386 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3427 (((-1050) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-3725 (((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-4299 (((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-3440 (((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-3889 (((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-4438 (((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 38)) (-3496 (((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 37)) (-1788 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 33)) (-1378 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) 32))) +(((-758) (-10 -7 (-15 -1378 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -1788 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3496 ((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -4438 ((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3889 ((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3440 ((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4299 ((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3725 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3427 ((-1050) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -4386 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -3319 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2864 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758)) +((-2864 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3319 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-4386 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3427 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3725 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-4299 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3440 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3889 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-4438 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-3496 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-758)))) (-1788 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758)))) (-1378 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *2 (-1050)) (-5 *1 (-758))))) +(-10 -7 (-15 -1378 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -1788 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3496 ((-1050) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -4438 ((-1050) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395))))) (-15 -3889 ((-1050) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3440 ((-1050) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4299 ((-1050) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3725 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3427 ((-1050) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -4386 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -3319 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2864 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))))) +((-2294 (((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4122 (((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3555 (((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-3784 (((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-3393 (((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1796 (((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2710 (((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-2384 (((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-759) (-10 -7 (-15 -2384 ((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2710 ((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1796 ((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3393 ((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3784 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3555 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -4122 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -4122 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2294 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759)) +((-2294 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-4122 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-4122 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3555 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3784 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1050)) (-5 *1 (-759)))) (-3393 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-1796 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-2710 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759)))) (-2384 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) +(-10 -7 (-15 -2384 ((-1050) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2710 ((-1050) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1796 ((-1050) (-227) (-574) (-574) (-227) (-1174) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3393 ((-1050) (-227) (-574) (-574) (-1174) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3784 ((-1050) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3555 ((-1050) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -4122 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -4122 ((-1050) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2294 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3472 (((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-2584 (((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-3642 (((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23))) +(((-760) (-10 -7 (-15 -3642 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2584 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -3472 ((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760)) +((-3472 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-760)))) (-2584 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1050)) (-5 *1 (-760)))) (-3642 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-760))))) +(-10 -7 (-15 -3642 ((-1050) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2584 ((-1050) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1174) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -3472 ((-1050) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)))) +((-2297 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-3109 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-4422 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-3130 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3204 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-2943 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-1320 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-3848 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-2134 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-3036 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21))) +(((-761) (-10 -7 (-15 -3036 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2134 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3848 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1320 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2943 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3204 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3130 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4422 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3109 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -2297 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761)) +((-2297 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3109 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-4422 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3130 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3204 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2943 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-761)))) (-1320 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3848 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-2134 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761)))) (-3036 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-761))))) +(-10 -7 (-15 -3036 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -2134 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3848 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1320 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2943 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3204 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3130 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4422 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3109 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -2297 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)))) +((-3164 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-3477 (((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-4023 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-2822 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-2247 (((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-2253 (((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-2624 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-2377 (((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-3006 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-3682 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-3432 (((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-3119 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-3614 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-3456 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-4260 (((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-1551 (((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-2015 (((-1050) (-574) (-699 (-227)) (-227) (-574)) 24)) (-4243 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21))) +(((-762) (-10 -7 (-15 -4243 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2015 ((-1050) (-574) (-699 (-227)) (-227) (-574))) (-15 -1551 ((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -4260 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3456 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -3614 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -3119 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3432 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -3682 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -3006 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2377 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -2624 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -2253 ((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2247 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2822 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4023 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3477 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3164 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762)) +((-3164 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3477 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4023 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2822 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2247 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2253 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2624 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2377 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3006 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3682 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3432 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3119 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3614 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-3456 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4260 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-1551 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-2015 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1050)) (-5 *1 (-762)))) (-4243 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-762))))) +(-10 -7 (-15 -4243 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2015 ((-1050) (-574) (-699 (-227)) (-227) (-574))) (-15 -1551 ((-1050) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -4260 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3456 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -3614 ((-1050) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -3119 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3432 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -3682 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -3006 ((-1050) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2377 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -2624 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -2253 ((-1050) (-1174) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2247 ((-1050) (-1174) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2822 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4023 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3477 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3164 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)))) +((-2894 (((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-2213 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1824 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-2633 (((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-3652 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3243 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4432 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2955 (((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-763) (-10 -7 (-15 -2955 ((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4432 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -3243 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3652 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -2633 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -1824 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2213 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2894 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763)) +((-2894 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-2213 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-1824 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-2633 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-763)))) (-3652 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-3243 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-4432 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1050)) (-5 *1 (-763)))) (-2955 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) +(-10 -7 (-15 -2955 ((-1050) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -4432 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -3243 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3652 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -2633 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -1824 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2213 ((-1050) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2894 ((-1050) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)))) +((-2989 (((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-4364 (((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-2154 (((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-3212 (((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-3852 (((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-4395 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-1499 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-2082 (((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-4403 (((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-2616 (((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32))) +(((-764) (-10 -7 (-15 -2616 ((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -4403 ((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2082 ((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -1499 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -4395 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3852 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3212 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2154 ((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4364 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2989 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764)) +((-2989 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4364 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-2154 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3212 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-3852 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4395 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-764)))) (-1499 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-2082 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-4403 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-764)))) (-2616 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1050)) (-5 *1 (-764))))) +(-10 -7 (-15 -2616 ((-1050) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -4403 ((-1050) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -2082 ((-1050) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -1499 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -4395 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3852 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3212 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2154 ((-1050) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4364 ((-1050) (-1174) (-1174) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2989 ((-1050) (-1174) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) +((-3142 (((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-2643 (((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-4190 (((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-4216 (((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-4363 (((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-3995 (((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3853 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3711 (((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3470 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-4182 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-3748 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 25)) (-3704 (((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-3012 (((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-1453 (((-1050) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-2080 (((-1050) (-574) (-574) (-699 (-227)) (-574)) 21))) +(((-765) (-10 -7 (-15 -2080 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1453 ((-1050) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3012 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3704 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3748 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -4182 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3470 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3711 ((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3853 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3995 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4363 ((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4216 ((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4190 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -4190 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2643 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3142 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765)) +((-3142 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2643 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4190 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4190 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4216 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4363 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3995 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3853 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3711 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3470 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-4182 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3748 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3704 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-3012 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765)))) (-1453 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-765)))) (-2080 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-765))))) +(-10 -7 (-15 -2080 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -1453 ((-1050) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3012 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3704 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3748 ((-1050) (-574) (-574) (-699 (-227)) (-574))) (-15 -4182 ((-1050) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3470 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3711 ((-1050) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3853 ((-1050) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3995 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -4363 ((-1050) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4216 ((-1050) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4190 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -4190 ((-1050) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2643 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3142 ((-1050) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) +((-1525 (((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-3473 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-3841 (((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3384 (((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-3754 (((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-3945 (((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-1930 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-3750 (((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-2661 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-3096 (((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-1528 (((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22))) +(((-766) (-10 -7 (-15 -1528 ((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -3096 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2661 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3750 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -1930 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -3945 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3754 ((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3384 ((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3841 ((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -3473 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1525 ((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766)) +((-1525 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3473 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3841 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3384 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3754 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3945 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-1930 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3750 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-766)))) (-2661 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-3096 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-766)))) (-1528 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) (-5 *1 (-766))))) +(-10 -7 (-15 -1528 ((-1050) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -3096 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -2661 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3750 ((-1050) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -1930 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -3945 ((-1050) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3754 ((-1050) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3384 ((-1050) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3841 ((-1050) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -3473 ((-1050) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1525 ((-1050) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))))) +((-3663 (((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-1667 (((-1050) (-1174) (-574) (-574) (-699 (-227))) 28)) (-3422 (((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-1748 (((-1050) (-574) (-574) (-574) (-699 (-227))) 21))) +(((-767) (-10 -7 (-15 -1748 ((-1050) (-574) (-574) (-574) (-699 (-227)))) (-15 -3422 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -1667 ((-1050) (-1174) (-574) (-574) (-699 (-227)))) (-15 -3663 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767)) +((-3663 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767)))) (-1667 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767)))) (-3422 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-767)))) (-1748 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) (-5 *1 (-767))))) +(-10 -7 (-15 -1748 ((-1050) (-574) (-574) (-574) (-699 (-227)))) (-15 -3422 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -1667 ((-1050) (-1174) (-574) (-574) (-699 (-227)))) (-15 -3663 ((-1050) (-1174) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))))) +((-1857 (((-1050) (-227) (-227) (-227) (-227) (-574)) 62)) (-3444 (((-1050) (-227) (-227) (-227) (-574)) 61)) (-1989 (((-1050) (-227) (-227) (-227) (-574)) 60)) (-3823 (((-1050) (-227) (-227) (-574)) 59)) (-2770 (((-1050) (-227) (-574)) 58)) (-2966 (((-1050) (-227) (-574)) 57)) (-2107 (((-1050) (-227) (-574)) 56)) (-2058 (((-1050) (-227) (-574)) 55)) (-3941 (((-1050) (-227) (-574)) 54)) (-2903 (((-1050) (-227) (-574)) 53)) (-1380 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 52)) (-2299 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 51)) (-2789 (((-1050) (-227) (-574)) 50)) (-4003 (((-1050) (-227) (-574)) 49)) (-3485 (((-1050) (-227) (-574)) 48)) (-3126 (((-1050) (-227) (-574)) 47)) (-4055 (((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574)) 46)) (-3362 (((-1050) (-1174) (-171 (-227)) (-1174) (-574)) 45)) (-1398 (((-1050) (-1174) (-171 (-227)) (-1174) (-574)) 44)) (-4024 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 43)) (-1696 (((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574)) 42)) (-4303 (((-1050) (-227) (-574)) 39)) (-2126 (((-1050) (-227) (-574)) 38)) (-2662 (((-1050) (-227) (-574)) 37)) (-4332 (((-1050) (-227) (-574)) 36)) (-2979 (((-1050) (-227) (-574)) 35)) (-3809 (((-1050) (-227) (-574)) 34)) (-2149 (((-1050) (-227) (-574)) 33)) (-3769 (((-1050) (-227) (-574)) 32)) (-4006 (((-1050) (-227) (-574)) 31)) (-2307 (((-1050) (-227) (-574)) 30)) (-4261 (((-1050) (-227) (-227) (-227) (-574)) 29)) (-1939 (((-1050) (-227) (-574)) 28)) (-3708 (((-1050) (-227) (-574)) 27)) (-1607 (((-1050) (-227) (-574)) 26)) (-3399 (((-1050) (-227) (-574)) 25)) (-4418 (((-1050) (-227) (-574)) 24)) (-3580 (((-1050) (-171 (-227)) (-574)) 21))) +(((-768) (-10 -7 (-15 -3580 ((-1050) (-171 (-227)) (-574))) (-15 -4418 ((-1050) (-227) (-574))) (-15 -3399 ((-1050) (-227) (-574))) (-15 -1607 ((-1050) (-227) (-574))) (-15 -3708 ((-1050) (-227) (-574))) (-15 -1939 ((-1050) (-227) (-574))) (-15 -4261 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2307 ((-1050) (-227) (-574))) (-15 -4006 ((-1050) (-227) (-574))) (-15 -3769 ((-1050) (-227) (-574))) (-15 -2149 ((-1050) (-227) (-574))) (-15 -3809 ((-1050) (-227) (-574))) (-15 -2979 ((-1050) (-227) (-574))) (-15 -4332 ((-1050) (-227) (-574))) (-15 -2662 ((-1050) (-227) (-574))) (-15 -2126 ((-1050) (-227) (-574))) (-15 -4303 ((-1050) (-227) (-574))) (-15 -1696 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -4024 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -1398 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3362 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -4055 ((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3126 ((-1050) (-227) (-574))) (-15 -3485 ((-1050) (-227) (-574))) (-15 -4003 ((-1050) (-227) (-574))) (-15 -2789 ((-1050) (-227) (-574))) (-15 -2299 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -1380 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -2903 ((-1050) (-227) (-574))) (-15 -3941 ((-1050) (-227) (-574))) (-15 -2058 ((-1050) (-227) (-574))) (-15 -2107 ((-1050) (-227) (-574))) (-15 -2966 ((-1050) (-227) (-574))) (-15 -2770 ((-1050) (-227) (-574))) (-15 -3823 ((-1050) (-227) (-227) (-574))) (-15 -1989 ((-1050) (-227) (-227) (-227) (-574))) (-15 -3444 ((-1050) (-227) (-227) (-227) (-574))) (-15 -1857 ((-1050) (-227) (-227) (-227) (-227) (-574))))) (T -768)) +((-1857 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3444 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1989 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3823 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1380 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2299 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4003 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4055 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1174)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3362 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1398 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4024 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1696 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4332 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2979 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4261 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-4418 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(-10 -7 (-15 -3580 ((-1050) (-171 (-227)) (-574))) (-15 -4418 ((-1050) (-227) (-574))) (-15 -3399 ((-1050) (-227) (-574))) (-15 -1607 ((-1050) (-227) (-574))) (-15 -3708 ((-1050) (-227) (-574))) (-15 -1939 ((-1050) (-227) (-574))) (-15 -4261 ((-1050) (-227) (-227) (-227) (-574))) (-15 -2307 ((-1050) (-227) (-574))) (-15 -4006 ((-1050) (-227) (-574))) (-15 -3769 ((-1050) (-227) (-574))) (-15 -2149 ((-1050) (-227) (-574))) (-15 -3809 ((-1050) (-227) (-574))) (-15 -2979 ((-1050) (-227) (-574))) (-15 -4332 ((-1050) (-227) (-574))) (-15 -2662 ((-1050) (-227) (-574))) (-15 -2126 ((-1050) (-227) (-574))) (-15 -4303 ((-1050) (-227) (-574))) (-15 -1696 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -4024 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -1398 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -3362 ((-1050) (-1174) (-171 (-227)) (-1174) (-574))) (-15 -4055 ((-1050) (-574) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -3126 ((-1050) (-227) (-574))) (-15 -3485 ((-1050) (-227) (-574))) (-15 -4003 ((-1050) (-227) (-574))) (-15 -2789 ((-1050) (-227) (-574))) (-15 -2299 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -1380 ((-1050) (-227) (-171 (-227)) (-574) (-1174) (-574))) (-15 -2903 ((-1050) (-227) (-574))) (-15 -3941 ((-1050) (-227) (-574))) (-15 -2058 ((-1050) (-227) (-574))) (-15 -2107 ((-1050) (-227) (-574))) (-15 -2966 ((-1050) (-227) (-574))) (-15 -2770 ((-1050) (-227) (-574))) (-15 -3823 ((-1050) (-227) (-227) (-574))) (-15 -1989 ((-1050) (-227) (-227) (-227) (-574))) (-15 -3444 ((-1050) (-227) (-227) (-227) (-574))) (-15 -1857 ((-1050) (-227) (-227) (-227) (-227) (-574)))) +((-4315 (((-1288)) 20)) (-3655 (((-1174)) 31)) (-3668 (((-1174)) 30)) (-3611 (((-1119) (-1192) (-699 (-574))) 45) (((-1119) (-1192) (-699 (-227))) 41)) (-3660 (((-112)) 19)) (-3360 (((-1174) (-1174)) 34))) +(((-769) (-10 -7 (-15 -3668 ((-1174))) (-15 -3655 ((-1174))) (-15 -3360 ((-1174) (-1174))) (-15 -3611 ((-1119) (-1192) (-699 (-227)))) (-15 -3611 ((-1119) (-1192) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -4315 ((-1288))))) (T -769)) +((-4315 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-769)))) (-3660 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-574))) (-5 *2 (-1119)) (-5 *1 (-769)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-227))) (-5 *2 (-1119)) (-5 *1 (-769)))) (-3360 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769)))) (-3655 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769)))) (-3668 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) +(-10 -7 (-15 -3668 ((-1174))) (-15 -3655 ((-1174))) (-15 -3360 ((-1174) (-1174))) (-15 -3611 ((-1119) (-1192) (-699 (-227)))) (-15 -3611 ((-1119) (-1192) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -4315 ((-1288)))) +((-2987 (($ $ $) 10)) (-1391 (($ $ $ $) 9)) (-2824 (($ $ $) 12))) +(((-770 |#1|) (-10 -8 (-15 -2824 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -1391 (|#1| |#1| |#1| |#1|))) (-771)) (T -770)) +NIL +(-10 -8 (-15 -2824 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -1391 (|#1| |#1| |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3558 (($ $ (-934)) 31)) (-2883 (($ $ (-934)) 32)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2987 (($ $ $) 28)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-1391 (($ $ $ $) 29)) (-2824 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 33)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) +(((-771) (-141)) (T -771)) +((-1391 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-2987 (*1 *1 *1 *1) (-4 *1 (-771))) (-2824 (*1 *1 *1 *1) (-4 *1 (-771)))) +(-13 (-21) (-730) (-10 -8 (-15 -1391 ($ $ $ $)) (-15 -2987 ($ $ $)) (-15 -2824 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1115) . T)) +((-2950 (((-872) $) NIL) (($ (-574)) 10))) +(((-772 |#1|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-773)) (T -772)) +NIL +(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3790 (((-3 $ "failed") $) 43)) (-3558 (($ $ (-934)) 31) (($ $ (-781)) 38)) (-2978 (((-3 $ "failed") $) 41)) (-2276 (((-112) $) 37)) (-1341 (((-3 $ "failed") $) 42)) (-2883 (($ $ (-934)) 32) (($ $ (-781)) 39)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2987 (($ $ $) 28)) (-2950 (((-872) $) 12) (($ (-574)) 34)) (-3781 (((-781)) 35 T CONST)) (-4259 (((-112) $ $) 9)) (-1391 (($ $ $ $) 29)) (-2824 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2155 (($) 36 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 33) (($ $ (-781)) 40)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) +(((-773) (-141)) (T -773)) +((-3781 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))) +(-13 (-771) (-732) (-10 -8 (-15 -3781 ((-781)) -1716) (-15 -2950 ($ (-574))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1115) . T)) +((-2210 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-2346 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-3688 (((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192)) 20) (((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19))) +(((-774 |#1|) (-10 -7 (-15 -3688 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -3688 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192))) (-15 -2346 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -2210 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774)) +((-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1192)) (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -3688 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -3688 ((-965 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1192))) (-15 -2346 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -2210 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) +((-4197 (((-176 (-574)) |#1|) 27))) +(((-775 |#1|) (-10 -7 (-15 -4197 ((-176 (-574)) |#1|))) (-414)) (T -775)) +((-4197 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))) +(-10 -7 (-15 -4197 ((-176 (-574)) |#1|))) +((-1351 ((|#1| |#1| |#1|) 28)) (-2945 ((|#1| |#1| |#1|) 27)) (-3357 ((|#1| |#1| |#1|) 38)) (-3602 ((|#1| |#1| |#1|) 34)) (-1496 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2938 (((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|) 26))) +(((-776 |#1| |#2|) (-10 -7 (-15 -2938 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -1496 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776)) +((-3357 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3602 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-1496 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-1351 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2938 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))) +(-10 -7 (-15 -2938 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -1496 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#1|))) +((-1424 (((-701 (-1241)) $ (-1241)) 26)) (-2559 (((-701 (-559)) $ (-559)) 25)) (-2285 (((-781) $ (-129)) 27)) (-1727 (((-701 (-130)) $ (-130)) 24)) (-1871 (((-701 (-1241)) $) 12)) (-2874 (((-701 (-1239)) $) 8)) (-1906 (((-701 (-1238)) $) 10)) (-3974 (((-701 (-559)) $) 13)) (-1894 (((-701 (-557)) $) 9)) (-2035 (((-701 (-556)) $) 11)) (-3404 (((-781) $ (-129)) 7)) (-3825 (((-701 (-130)) $) 14)) (-2862 (((-112) $) 31)) (-3694 (((-701 $) |#1| (-967)) 32)) (-2474 (($ $) 6))) +(((-777 |#1|) (-141) (-1115)) (T -777)) +((-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-967)) (-4 *3 (-1115)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(-13 (-586) (-10 -8 (-15 -3694 ((-701 $) |t#1| (-967))) (-15 -2862 ((-112) $)))) +(((-175) . T) ((-537) . T) ((-586) . T) ((-870) . T)) +((-3734 (((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-1369 (((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-3902 (((-574)) 85))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3902 ((-574))) (-15 -1369 ((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -3734 ((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1259 (-574)) (-419 (-574) |#1|)) (T -778)) +((-3734 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1259 *3)) (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1369 (*1 *2) (-12 (-4 *3 (-1259 (-574))) (-5 *2 (-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-3902 (*1 *2) (-12 (-4 *3 (-1259 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3))))) +(-10 -7 (-15 -3902 ((-574))) (-15 -1369 ((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -3734 ((-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) +((-2863 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-779) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779))))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-3537 (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))) 18) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192))) 17)) (-2613 (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))) 20) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192))) 19))) +(((-780 |#1|) (-10 -7 (-15 -3537 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -3537 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))))) (-566)) (T -780)) +((-2613 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5))))) +(-10 -7 (-15 -3537 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -3537 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-965 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3672 (($ $ $) 10)) (-2599 (((-3 $ "failed") $ $) 15)) (-3931 (($ $ (-574)) 11)) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-2276 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2886 (($ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 6 T CONST)) (-2155 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL))) +(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -2696 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3931 ($ $ (-574))) (-15 -2834 ($ $)) (-6 (-4460 "*"))))) (T -781)) +((-2811 (*1 *1 *1 *1) (-5 *1 (-781))) (-2800 (*1 *1 *1 *1) (-5 *1 (-781))) (-2886 (*1 *1 *1 *1) (-5 *1 (-781))) (-2696 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1670 (-781)) (|:| -2711 (-781)))) (-5 *1 (-781)))) (-2852 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2834 (*1 *1 *1) (-5 *1 (-781)))) +(-13 (-803) (-736) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -2696 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3931 ($ $ (-574))) (-15 -2834 ($ $)) (-6 (-4460 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-1994 (((-3 |#2| "failed") |#2| |#2| (-115) (-1189)) 37))) -(((-781 |#1| |#2|) (-10 -7 (-15 -1994 ((-3 |#2| "failed") |#2| |#2| (-115) (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -781)) -((-1994 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-781 *5 *2)) (-4 *2 (-13 (-29 *5) (-1215) (-969)))))) -(-10 -7 (-15 -1994 ((-3 |#2| "failed") |#2| |#2| (-115) (-1189)))) -((-2942 (((-783) |#1|) 8))) -(((-782 |#1|) (-10 -7 (-15 -2942 ((-783) |#1|))) (-1230)) (T -782)) -((-2942 (*1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-782 *3)) (-4 *3 (-1230))))) -(-10 -7 (-15 -2942 ((-783) |#1|))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-783) (-1112)) (T -783)) -NIL -(-1112) -((-3421 ((|#2| |#4|) 35))) -(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3421 (|#2| |#4|))) (-461) (-1256 |#1|) (-733 |#1| |#2|) (-1256 |#3|)) (T -784)) -((-3421 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-733 *4 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-784 *4 *2 *5 *3)) (-4 *3 (-1256 *5))))) -(-10 -7 (-15 -3421 (|#2| |#4|))) -((-2232 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4427 (((-1285) (-1171) (-1171) |#4| |#5|) 33)) (-4168 ((|#4| |#4| |#5|) 74)) (-2852 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 79)) (-4049 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 16))) -(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2232 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4168 (|#4| |#4| |#5|)) (-15 -2852 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4427 ((-1285) (-1171) (-1171) |#4| |#5|)) (-15 -4049 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -785)) -((-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4427 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1171)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *4 (-1077 *6 *7 *8)) (-5 *2 (-1285)) (-5 *1 (-785 *6 *7 *8 *4 *5)) (-4 *5 (-1083 *6 *7 *8 *4)))) (-2852 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4168 (*1 *2 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *2 (-1077 *4 *5 *6)) (-5 *1 (-785 *4 *5 *6 *2 *3)) (-4 *3 (-1083 *4 *5 *6 *2)))) (-2232 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(-10 -7 (-15 -2232 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4168 (|#4| |#4| |#5|)) (-15 -2852 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4427 ((-1285) (-1171) (-1171) |#4| |#5|)) (-15 -4049 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|))) -((-1695 (((-3 (-1185 (-1185 |#1|)) "failed") |#4|) 51)) (-1740 (((-653 |#4|) |#4|) 22)) (-1629 ((|#4| |#4|) 17))) -(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1740 ((-653 |#4|) |#4|)) (-15 -1695 ((-3 (-1185 (-1185 |#1|)) "failed") |#4|)) (-15 -1629 (|#4| |#4|))) (-357) (-336 |#1|) (-1256 |#2|) (-1256 |#3|) (-931)) (T -786)) -((-1629 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-336 *3)) (-4 *5 (-1256 *4)) (-5 *1 (-786 *3 *4 *5 *2 *6)) (-4 *2 (-1256 *5)) (-14 *6 (-931)))) (-1695 (*1 *2 *3) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *4))) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) (-14 *7 (-931)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) (-5 *2 (-653 *3)) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) (-14 *7 (-931))))) -(-10 -7 (-15 -1740 ((-653 |#4|) |#4|)) (-15 -1695 ((-3 (-1185 (-1185 |#1|)) "failed") |#4|)) (-15 -1629 (|#4| |#4|))) -((-4378 (((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|)) 72)) (-3122 (((-653 (-780)) |#1|) 20))) -(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|))) (-15 -3122 ((-653 (-780)) |#1|))) (-1256 |#4|) (-802) (-859) (-314) (-959 |#4| |#2| |#3|)) (T -787)) -((-3122 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-653 (-780))) (-5 *1 (-787 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *6)) (-4 *7 (-959 *6 *4 *5)))) (-4378 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1256 *9)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-314)) (-4 *10 (-959 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-653 (-1185 *10))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *10))))) (|:| |nfacts| (-653 *6)) (|:| |nlead| (-653 *10)))) (-5 *1 (-787 *6 *7 *8 *9 *10)) (-5 *3 (-1185 *10)) (-5 *4 (-653 *6)) (-5 *5 (-653 *10))))) -(-10 -7 (-15 -4378 ((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|))) (-15 -3122 ((-653 (-780)) |#1|))) -((-4360 (((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|) 31)) (-1400 (((-653 |#1|) (-698 (-416 (-573))) |#1|) 21)) (-2517 (((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189)) 18) (((-962 (-416 (-573))) (-698 (-416 (-573)))) 17))) -(((-788 |#1|) (-10 -7 (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))))) (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189))) (-15 -1400 ((-653 |#1|) (-698 (-416 (-573))) |#1|)) (-15 -4360 ((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|))) (-13 (-371) (-857))) (T -788)) -((-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 (-2 (|:| |outval| *4) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 *4)))))) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *4 (-1189)) (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *5)) (-4 *5 (-13 (-371) (-857))))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857)))))) -(-10 -7 (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))))) (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189))) (-15 -1400 ((-653 |#1|) (-698 (-416 (-573))) |#1|)) (-15 -4360 ((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 36)) (-4354 (((-653 |#2|) $) NIL)) (-4193 (((-1185 $) $ |#2|) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#2|)) NIL)) (-1969 (($ $) 30)) (-2218 (((-112) $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) 110 (|has| |#1| (-565)))) (-2698 (((-653 $) $ $) 123 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (((-3 $ "failed") (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (((-3 $ "failed") (-962 |#1|)) NIL (-2817 (-12 (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573))))) (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-554)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-1004 (-573))))))) (((-3 (-1137 |#1| |#2|) "failed") $) 21)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#2| $) NIL) (($ (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (($ (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (($ (-962 |#1|)) NIL (-2817 (-12 (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573))))) (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-554)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-1004 (-573))))))) (((-1137 |#1| |#2|) $) NIL)) (-2277 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-565)))) (-1391 (($ $) NIL) (($ $ |#2|) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-4310 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4421 (((-112) $) NIL)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 81)) (-3128 (($ $) 136 (|has| |#1| (-461)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-3342 (($ $) NIL (|has| |#1| (-565)))) (-4235 (($ $) NIL (|has| |#1| (-565)))) (-2450 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4176 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2343 (($ $ |#1| (-540 |#2|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) 57)) (-3772 (((-780) $) NIL)) (-4022 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-3558 (($ $ $ $ $) 107 (|has| |#1| (-565)))) (-3338 ((|#2| $) 22)) (-4344 (($ (-1185 |#1|) |#2|) NIL) (($ (-1185 $) |#2|) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 |#2|)) NIL) (($ $ |#2| (-780)) 38) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2018 (($ $ $) 63)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-2093 (((-112) $) NIL)) (-4036 (((-540 |#2|) $) NIL) (((-780) $ |#2|) NIL) (((-653 (-780)) $ (-653 |#2|)) NIL)) (-3726 (((-780) $) 23)) (-1382 (($ (-1 (-540 |#2|) (-540 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1453 (((-3 |#2| "failed") $) NIL)) (-3232 (($ $) NIL (|has| |#1| (-461)))) (-1972 (($ $) NIL (|has| |#1| (-461)))) (-2933 (((-653 $) $) NIL)) (-2311 (($ $) 39)) (-2116 (($ $) NIL (|has| |#1| (-461)))) (-2118 (((-653 $) $) 43)) (-2923 (($ $) 41)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 96)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 78) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) NIL) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#2|) NIL)) (-4335 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1841 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3180 (((-1171) $) NIL)) (-2395 (($ $ $) 125 (|has| |#1| (-565)))) (-3565 (((-653 $) $) 32)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-780))) "failed") $) NIL)) (-3161 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-3430 (($ $ $) NIL)) (-3816 (($ $) 24)) (-2614 (((-112) $ $) NIL)) (-1973 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-1448 (($ $ $) NIL)) (-2030 (($ $) 26)) (-3965 (((-1132) $) NIL)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-565)))) (-1337 (((-112) $) 56)) (-1348 ((|#1| $) 58)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 ((|#1| |#1| $) 133 (|has| |#1| (-461))) (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-565)))) (-3333 (($ $ |#1|) 129 (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-1467 (($ $ |#1|) 128 (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-653 |#2|) (-653 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-653 |#2|) (-653 $)) NIL)) (-3592 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) NIL) (((-780) $ |#2|) 45) (((-653 (-780)) $ (-653 |#2|)) NIL)) (-3671 (($ $) NIL)) (-3346 (($ $) 35)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545))))) (($ (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (($ (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (($ (-962 |#1|)) NIL (|has| |#2| (-623 (-1189)))) (((-1171) $) NIL (-12 (|has| |#1| (-1050 (-573))) (|has| |#2| (-623 (-1189))))) (((-962 |#1|) $) NIL (|has| |#2| (-623 (-1189))))) (-3257 ((|#1| $) 132 (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-962 |#1|) $) NIL (|has| |#2| (-623 (-1189)))) (((-1137 |#1| |#2|) $) 18) (($ (-1137 |#1| |#2|)) 19) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 |#2|)) NIL) (($ $ |#2| (-780)) 47) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 13 T CONST)) (-3251 (((-3 (-112) "failed") $ $) NIL)) (-2144 (($) 37 T CONST)) (-2389 (($ $ $ $ (-780)) 105 (|has| |#1| (-565)))) (-3306 (($ $ $ (-780)) 104 (|has| |#1| (-565)))) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 75)) (-3077 (($ $ $) 85)) (** (($ $ (-931)) NIL) (($ $ (-780)) 70)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 62) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-789 |#1| |#2|) (-13 (-1077 |#1| (-540 |#2|) |#2|) (-622 (-1137 |#1| |#2|)) (-1050 (-1137 |#1| |#2|))) (-1061) (-859)) (T -789)) -NIL -(-13 (-1077 |#1| (-540 |#2|) |#2|) (-622 (-1137 |#1| |#2|)) (-1050 (-1137 |#1| |#2|))) -((-1776 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 13))) -(((-790 |#1| |#2|) (-10 -7 (-15 -1776 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1061) (-1061)) (T -790)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) -(-10 -7 (-15 -1776 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 12)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3445 (((-653 $) $ $) 54 (|has| |#1| (-565)))) (-4183 (($ $ $) 50 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL) (((-3 (-1185 |#1|) "failed") $) 10)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL) (((-1185 |#1|) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) 87 (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) 86 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2018 (($ $ $) 27)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $) 37)) (-3064 (($ $ $) 41)) (-4416 (($ $ $) 47)) (-1941 (((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 46)) (-3180 (((-1171) $) NIL)) (-2395 (($ $ $) 56 (|has| |#1| (-565)))) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-565)))) (-3074 (((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-565)))) (-1989 (((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-565)))) (-1337 (((-112) $) 13)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2826 (($ $ (-780) |#1| $) 26)) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-565)))) (-2821 (((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1094)) NIL) (((-1185 |#1|) $) 7) (($ (-1185 |#1|)) 8) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 28 T CONST)) (-2144 (($) 32 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 40) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-791 |#1|) (-13 (-1256 |#1|) (-622 (-1185 |#1|)) (-1050 (-1185 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#1| $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $)) (-15 -3064 ($ $ $)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4416 ($ $ $)) (IF (|has| |#1| (-565)) (PROGN (-15 -3445 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2821 ((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1989 ((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $)) (-15 -3074 ((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1061)) (T -791)) -((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-2018 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-3459 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-791 *3)) (|:| |polden| *3) (|:| -2488 (-780)))) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-3064 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-1941 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1857 *3) (|:| |gap| (-780)) (|:| -3152 (-791 *3)) (|:| -3132 (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-4416 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-3445 (*1 *2 *1 *1) (-12 (-5 *2 (-653 (-791 *3))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-2395 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-565)) (-4 *2 (-1061)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-4178 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-1873 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-1989 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) -(-13 (-1256 |#1|) (-622 (-1185 |#1|)) (-1050 (-1185 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#1| $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $)) (-15 -3064 ($ $ $)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4416 ($ $ $)) (IF (|has| |#1| (-565)) (PROGN (-15 -3445 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2821 ((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1989 ((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $)) (-15 -3074 ((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3617 ((|#1| (-780) |#1|) 33 (|has| |#1| (-38 (-416 (-573)))))) (-3172 ((|#1| (-780) |#1|) 23)) (-3796 ((|#1| (-780) |#1|) 35 (|has| |#1| (-38 (-416 (-573))))))) -(((-792 |#1|) (-10 -7 (-15 -3172 (|#1| (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -3796 (|#1| (-780) |#1|)) (-15 -3617 (|#1| (-780) |#1|))) |%noBranch|)) (-174)) (T -792)) -((-3617 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3172 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -3172 (|#1| (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -3796 (|#1| (-780) |#1|)) (-15 -3617 (|#1| (-780) |#1|))) |%noBranch|)) -((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-793 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -793)) -NIL -(-13 (-1083 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) -((-1376 (((-3 (-387) "failed") (-323 |#1|) (-931)) 62 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-387) "failed") (-323 |#1|)) 54 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-387) "failed") (-416 (-962 |#1|)) (-931)) 41 (|has| |#1| (-565))) (((-3 (-387) "failed") (-416 (-962 |#1|))) 40 (|has| |#1| (-565))) (((-3 (-387) "failed") (-962 |#1|) (-931)) 31 (|has| |#1| (-1061))) (((-3 (-387) "failed") (-962 |#1|)) 30 (|has| |#1| (-1061)))) (-3088 (((-387) (-323 |#1|) (-931)) 99 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-387) (-323 |#1|)) 94 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-387) (-416 (-962 |#1|)) (-931)) 91 (|has| |#1| (-565))) (((-387) (-416 (-962 |#1|))) 90 (|has| |#1| (-565))) (((-387) (-962 |#1|) (-931)) 86 (|has| |#1| (-1061))) (((-387) (-962 |#1|)) 85 (|has| |#1| (-1061))) (((-387) |#1| (-931)) 76) (((-387) |#1|) 22)) (-2589 (((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)) 71 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 (-171 |#1|))) 70 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 |#1|) (-931)) 63 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 |#1|)) 61 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931)) 46 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|)))) 45 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931)) 39 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 |#1|))) 38 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)) 28 (|has| |#1| (-1061))) (((-3 (-171 (-387)) "failed") (-962 |#1|)) 26 (|has| |#1| (-1061))) (((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)) 18 (|has| |#1| (-174))) (((-3 (-171 (-387)) "failed") (-962 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4142 (((-171 (-387)) (-323 (-171 |#1|)) (-931)) 102 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 (-171 |#1|))) 101 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 |#1|) (-931)) 100 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 |#1|)) 98 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931)) 93 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 (-171 |#1|)))) 92 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 |#1|)) (-931)) 89 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 |#1|))) 88 (|has| |#1| (-565))) (((-171 (-387)) (-962 |#1|) (-931)) 84 (|has| |#1| (-1061))) (((-171 (-387)) (-962 |#1|)) 83 (|has| |#1| (-1061))) (((-171 (-387)) (-962 (-171 |#1|)) (-931)) 78 (|has| |#1| (-174))) (((-171 (-387)) (-962 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-387)) (-171 |#1|) (-931)) 80 (|has| |#1| (-174))) (((-171 (-387)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-387)) |#1| (-931)) 27) (((-171 (-387)) |#1|) 25))) -(((-794 |#1|) (-10 -7 (-15 -3088 ((-387) |#1|)) (-15 -3088 ((-387) |#1| (-931))) (-15 -4142 ((-171 (-387)) |#1|)) (-15 -4142 ((-171 (-387)) |#1| (-931))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-387)) (-171 |#1|))) (-15 -4142 ((-171 (-387)) (-171 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -3088 ((-387) (-962 |#1|))) (-15 -3088 ((-387) (-962 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 |#1|))) (-15 -4142 ((-171 (-387)) (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -3088 ((-387) (-416 (-962 |#1|)))) (-15 -3088 ((-387) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -3088 ((-387) (-323 |#1|))) (-15 -3088 ((-387) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 |#1|))) (-15 -4142 ((-171 (-387)) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-962 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-962 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)))) (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-323 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|)) (-623 (-387))) (T -794)) -((-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) (-3088 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2))))) -(-10 -7 (-15 -3088 ((-387) |#1|)) (-15 -3088 ((-387) |#1| (-931))) (-15 -4142 ((-171 (-387)) |#1|)) (-15 -4142 ((-171 (-387)) |#1| (-931))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-387)) (-171 |#1|))) (-15 -4142 ((-171 (-387)) (-171 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -3088 ((-387) (-962 |#1|))) (-15 -3088 ((-387) (-962 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 |#1|))) (-15 -4142 ((-171 (-387)) (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -3088 ((-387) (-416 (-962 |#1|)))) (-15 -3088 ((-387) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -3088 ((-387) (-323 |#1|))) (-15 -3088 ((-387) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 |#1|))) (-15 -4142 ((-171 (-387)) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-962 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-962 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)))) (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-323 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|)) -((-4323 (((-931) (-1171)) 89)) (-1758 (((-3 (-387) "failed") (-1171)) 36)) (-2470 (((-387) (-1171)) 34)) (-1698 (((-931) (-1171)) 63)) (-1781 (((-1171) (-931)) 73)) (-3374 (((-1171) (-931)) 62))) -(((-795) (-10 -7 (-15 -3374 ((-1171) (-931))) (-15 -1698 ((-931) (-1171))) (-15 -1781 ((-1171) (-931))) (-15 -4323 ((-931) (-1171))) (-15 -2470 ((-387) (-1171))) (-15 -1758 ((-3 (-387) "failed") (-1171))))) (T -795)) -((-1758 (*1 *2 *3) (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) -(-10 -7 (-15 -3374 ((-1171) (-931))) (-15 -1698 ((-931) (-1171))) (-15 -1781 ((-1171) (-931))) (-15 -4323 ((-931) (-1171))) (-15 -2470 ((-387) (-1171))) (-15 -1758 ((-3 (-387) "failed") (-1171)))) -((-2848 (((-112) $ $) 7)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 16) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 14)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-796) (-141)) (T -796)) -((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047)))))) (-4377 (*1 *2 *3 *2) (-12 (-4 *1 (-796)) (-5 *2 (-1047)) (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047)))))) (-4377 (*1 *2 *3 *2) (-12 (-4 *1 (-796)) (-5 *2 (-1047)) (-5 *3 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4377 ((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4377 ((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3665 (((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387))) 55) (((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 52)) (-2805 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 61)) (-3591 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 50)) (-4338 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387))) 63) (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 62))) -(((-797) (-10 -7 (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -3591 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -2805 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))))) (T -797)) -((-2805 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3665 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-573)) (-5 *6 (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3665 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-573)) (-5 *6 (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3591 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-4338 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-4338 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797))))) -(-10 -7 (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -3591 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -2805 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))))) -((-1792 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 64)) (-1644 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 40)) (-2591 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 63)) (-3291 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 38)) (-3178 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 62)) (-3628 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 24)) (-4039 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 41)) (-4121 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 39)) (-3451 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 37))) -(((-798) (-10 -7 (-15 -3451 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4121 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4039 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -3628 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3291 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1644 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3178 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -2591 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1792 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))))) (T -798)) -((-1792 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-2591 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3178 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-1644 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3291 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3628 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-4039 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-4121 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3451 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573))))) -(-10 -7 (-15 -3451 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4121 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4039 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -3628 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3291 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1644 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3178 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -2591 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1792 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)))) -((-1909 (((-1225 |#1|) |#1| (-227) (-573)) 69))) -(((-799 |#1|) (-10 -7 (-15 -1909 ((-1225 |#1|) |#1| (-227) (-573)))) (-986)) (T -799)) -((-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-573)) (-5 *2 (-1225 *3)) (-5 *1 (-799 *3)) (-4 *3 (-986))))) -(-10 -7 (-15 -1909 ((-1225 |#1|) |#1| (-227) (-573)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3093 (($ $ $) 31) (($ $) 30)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26) (($ (-573) $) 29))) -(((-800) (-141)) (T -800)) -NIL -(-13 (-804) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) +((-2613 (((-3 |#2| "failed") |#2| |#2| (-115) (-1192)) 37))) +(((-782 |#1| |#2|) (-10 -7 (-15 -2613 ((-3 |#2| "failed") |#2| |#2| (-115) (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -782)) +((-2613 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1218) (-972)))))) +(-10 -7 (-15 -2613 ((-3 |#2| "failed") |#2| |#2| (-115) (-1192)))) +((-2950 (((-784) |#1|) 8))) +(((-783 |#1|) (-10 -7 (-15 -2950 ((-784) |#1|))) (-1233)) (T -783)) +((-2950 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1233))))) +(-10 -7 (-15 -2950 ((-784) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 7)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9))) +(((-784) (-1115)) (T -784)) +NIL +(-1115) +((-2681 ((|#2| |#4|) 35))) +(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2681 (|#2| |#4|))) (-462) (-1259 |#1|) (-734 |#1| |#2|) (-1259 |#3|)) (T -785)) +((-2681 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1259 *5))))) +(-10 -7 (-15 -2681 (|#2| |#4|))) +((-2978 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2185 (((-1288) (-1174) (-1174) |#4| |#5|) 33)) (-1487 ((|#4| |#4| |#5|) 74)) (-3863 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|) 79)) (-2828 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|) 16))) +(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2978 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1487 (|#4| |#4| |#5|)) (-15 -3863 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -2185 ((-1288) (-1174) (-1174) |#4| |#5|)) (-15 -2828 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -786)) +((-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2185 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1174)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1080 *6 *7 *8)) (-5 *2 (-1288)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1086 *6 *7 *8 *4)))) (-3863 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1487 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1080 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1086 *4 *5 *6 *2)))) (-2978 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(-10 -7 (-15 -2978 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1487 (|#4| |#4| |#5|)) (-15 -3863 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -2185 ((-1288) (-1174) (-1174) |#4| |#5|)) (-15 -2828 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|))) +((-1706 (((-3 (-1188 (-1188 |#1|)) "failed") |#4|) 51)) (-1933 (((-654 |#4|) |#4|) 22)) (-3337 ((|#4| |#4|) 17))) +(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1933 ((-654 |#4|) |#4|)) (-15 -1706 ((-3 (-1188 (-1188 |#1|)) "failed") |#4|)) (-15 -3337 (|#4| |#4|))) (-358) (-337 |#1|) (-1259 |#2|) (-1259 |#3|) (-934)) (T -787)) +((-3337 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1259 *5)) (-14 *6 (-934)))) (-1706 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) (-14 *7 (-934)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) (-14 *7 (-934))))) +(-10 -7 (-15 -1933 ((-654 |#4|) |#4|)) (-15 -1706 ((-3 (-1188 (-1188 |#1|)) "failed") |#4|)) (-15 -3337 (|#4| |#4|))) +((-2965 (((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-2591 (((-654 (-781)) |#1|) 20))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2965 ((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -2591 ((-654 (-781)) |#1|))) (-1259 |#4|) (-803) (-860) (-315) (-962 |#4| |#2| |#3|)) (T -788)) +((-2591 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1259 *6)) (-4 *7 (-962 *6 *4 *5)))) (-2965 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1259 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-962 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1188 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1188 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10))))) +(-10 -7 (-15 -2965 ((-2 (|:| |deter| (-654 (-1188 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1188 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -2591 ((-654 (-781)) |#1|))) +((-2757 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-3471 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-3688 (((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192)) 18) (((-965 (-417 (-574))) (-699 (-417 (-574)))) 17))) +(((-789 |#1|) (-10 -7 (-15 -3688 ((-965 (-417 (-574))) (-699 (-417 (-574))))) (-15 -3688 ((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192))) (-15 -3471 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -2757 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789)) +((-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1192)) (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) +(-10 -7 (-15 -3688 ((-965 (-417 (-574))) (-699 (-417 (-574))))) (-15 -3688 ((-965 (-417 (-574))) (-699 (-417 (-574))) (-1192))) (-15 -3471 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -2757 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 36)) (-4349 (((-654 |#2|) $) NIL)) (-4172 (((-1188 $) $ |#2|) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1980 (($ $) 30)) (-4056 (((-112) $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1641 (($ $ $) 110 (|has| |#1| (-566)))) (-2964 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (((-3 $ "failed") (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (((-3 $ "failed") (-965 |#1|)) NIL (-2832 (-12 (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-1007 (-574))))))) (((-3 (-1140 |#1| |#2|) "failed") $) 21)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#2| $) NIL) (($ (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (($ (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (($ (-965 |#1|)) NIL (-2832 (-12 (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-1007 (-574))))))) (((-1140 |#1| |#2|) $) NIL)) (-3372 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1401 (($ $) NIL) (($ $ |#2|) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-3514 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2137 (((-112) $) NIL)) (-3276 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 81)) (-2665 (($ $) 136 (|has| |#1| (-462)))) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-3118 (($ $) NIL (|has| |#1| (-566)))) (-4053 (($ $) NIL (|has| |#1| (-566)))) (-4258 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1562 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2680 (($ $ |#1| (-541 |#2|) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) 57)) (-1901 (((-781) $) NIL)) (-2541 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1668 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-3066 ((|#2| $) 22)) (-4338 (($ (-1188 |#1|) |#2|) NIL) (($ (-1188 $) |#2|) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2833 (($ $ $) 63)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#2|) NIL)) (-4169 (((-112) $) NIL)) (-2682 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-2724 (((-781) $) 23)) (-3577 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1407 (((-3 |#2| "failed") $) NIL)) (-4387 (($ $) NIL (|has| |#1| (-462)))) (-2372 (($ $) NIL (|has| |#1| (-462)))) (-3394 (((-654 $) $) NIL)) (-2379 (($ $) 39)) (-4378 (($ $) NIL (|has| |#1| (-462)))) (-4388 (((-654 $) $) 43)) (-3318 (($ $) 41)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1855 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1509 (-781))) $ $) 96)) (-3365 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $) 78) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $ |#2|) NIL)) (-3644 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $) NIL) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $ |#2|) NIL)) (-2499 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3568 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1938 (((-1174) $) NIL)) (-1897 (($ $ $) 125 (|has| |#1| (-566)))) (-3638 (((-654 $) $) 32)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| |#2|) (|:| -3843 (-781))) "failed") $) NIL)) (-1746 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2780 (($ $ $) NIL)) (-3791 (($ $) 24)) (-3419 (((-112) $ $) NIL)) (-2385 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1371 (($ $ $) NIL)) (-1708 (($ $) 26)) (-3939 (((-1135) $) NIL)) (-3855 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-1583 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1342 (((-112) $) 56)) (-1354 ((|#1| $) 58)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2917 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-3023 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-4186 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-3902 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4144 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-3459 (($ $) NIL)) (-3161 (($ $) 35)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-965 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192))))) (($ (-965 (-574))) NIL (-2832 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1192))) (-2086 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1192)))))) (($ (-965 |#1|)) NIL (|has| |#2| (-624 (-1192)))) (((-1174) $) NIL (-12 (|has| |#1| (-1053 (-574))) (|has| |#2| (-624 (-1192))))) (((-965 |#1|) $) NIL (|has| |#2| (-624 (-1192))))) (-1514 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-965 |#1|) $) NIL (|has| |#2| (-624 (-1192)))) (((-1140 |#1| |#2|) $) 18) (($ (-1140 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 13 T CONST)) (-1448 (((-3 (-112) "failed") $ $) NIL)) (-2155 (($) 37 T CONST)) (-1854 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-3934 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 75)) (-3073 (($ $ $) 85)) (** (($ $ (-934)) NIL) (($ $ (-781)) 70)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-790 |#1| |#2|) (-13 (-1080 |#1| (-541 |#2|) |#2|) (-623 (-1140 |#1| |#2|)) (-1053 (-1140 |#1| |#2|))) (-1064) (-860)) (T -790)) +NIL +(-13 (-1080 |#1| (-541 |#2|) |#2|) (-623 (-1140 |#1| |#2|)) (-1053 (-1140 |#1| |#2|))) +((-1787 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13))) +(((-791 |#1| |#2|) (-10 -7 (-15 -1787 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1064) (-1064)) (T -791)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) +(-10 -7 (-15 -1787 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 12)) (-3806 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1709 (($ (-1188 |#1|)) NIL)) (-4172 (((-1188 $) $ (-1097)) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1703 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-1641 (($ $ $) 50 (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1815 (($ $ (-781)) NIL)) (-2574 (($ $ (-781)) NIL)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL) (((-3 (-1188 |#1|) "failed") $) 10)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL) (((-1188 |#1|) $) NIL)) (-3372 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3203 (($ $ $) NIL)) (-1577 (($ $ $) 87 (|has| |#1| (-566)))) (-3276 (((-2 (|:| -1868 |#1|) (|:| -1670 $) (|:| -2711 $)) $ $) 86 (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-781) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ $) NIL (|has| |#1| (-566)))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2528 (($ $ (-781)) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2833 (($ $ $) 27)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1097)) NIL) (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2682 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3577 (($ (-1 (-781) (-781)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-1188 |#1|) $) NIL)) (-1407 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1855 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1509 (-781))) $ $) 37)) (-3331 (($ $ $) 41)) (-2079 (($ $ $) 47)) (-3365 (((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $) 46)) (-1938 (((-1174) $) NIL)) (-1897 (($ $ $) 56 (|has| |#1| (-566)))) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1097)) (|:| -3843 (-781))) "failed") $) NIL)) (-3302 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-3855 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-1583 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-3436 (((-2 (|:| -3372 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-2554 (((-2 (|:| -3372 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1342 (((-112) $) 13)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3645 (($ $ (-781) |#1| $) 26)) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2917 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-1680 (((-2 (|:| -3372 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3233 (((-3 $ "failed") $ (-781)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3902 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4144 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-4017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1097)) NIL) (((-1188 |#1|) $) 7) (($ (-1188 |#1|)) 8) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 28 T CONST)) (-2155 (($) 32 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) 40) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-792 |#1|) (-13 (-1259 |#1|) (-623 (-1188 |#1|)) (-1053 (-1188 |#1|)) (-10 -8 (-15 -3645 ($ $ (-781) |#1| $)) (-15 -2833 ($ $ $)) (-15 -1855 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1509 (-781))) $ $)) (-15 -3331 ($ $ $)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2079 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -1703 ((-654 $) $ $)) (-15 -1897 ($ $ $)) (-15 -2917 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1583 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -3855 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -1680 ((-2 (|:| -3372 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2554 ((-2 (|:| -3372 |#1|) (|:| |coef1| $)) $ $)) (-15 -3436 ((-2 (|:| -3372 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1064)) (T -792)) +((-3645 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-2833 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-1855 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -1509 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-3331 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-3365 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1868 *3) (|:| |gap| (-781)) (|:| -1670 (-792 *3)) (|:| -2711 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) (-2079 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) (-1703 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-1897 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1064)))) (-2917 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-1583 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-3855 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-1680 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3372 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-2554 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3372 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) (-3436 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3372 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) +(-13 (-1259 |#1|) (-623 (-1188 |#1|)) (-1053 (-1188 |#1|)) (-10 -8 (-15 -3645 ($ $ (-781) |#1| $)) (-15 -2833 ($ $ $)) (-15 -1855 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1509 (-781))) $ $)) (-15 -3331 ($ $ $)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2079 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -1703 ((-654 $) $ $)) (-15 -1897 ($ $ $)) (-15 -2917 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1583 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -3855 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -1680 ((-2 (|:| -3372 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2554 ((-2 (|:| -3372 |#1|) (|:| |coef1| $)) $ $)) (-15 -3436 ((-2 (|:| -3372 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4110 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-1859 ((|#1| (-781) |#1|) 23)) (-2111 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574))))))) +(((-793 |#1|) (-10 -7 (-15 -1859 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2111 (|#1| (-781) |#1|)) (-15 -4110 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793)) +((-4110 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2111 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1859 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -1859 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2111 (|#1| (-781) |#1|)) (-15 -4110 (|#1| (-781) |#1|))) |%noBranch|)) +((-2863 (((-112) $ $) 7)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) 86)) (-1346 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) 102) (((-112) $) 98)) (-3871 ((|#4| |#4| $) 93)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1779 ((|#4| |#4| $) 90)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2544 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) 106)) (-3288 (((-112) |#4| $) 137)) (-1861 (((-112) |#4| $) 134)) (-2196 (((-112) |#4| $) 138) (((-112) $) 135)) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2737 (((-654 $) |#4| $) 130)) (-2538 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2627 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3599 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4009 (((-654 |#4|) $) 108)) (-1746 (((-112) |#4| $) 100) (((-112) $) 96)) (-2780 ((|#4| |#4| $) 91)) (-3419 (((-112) $ $) 111)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) 101) (((-112) $) 97)) (-1371 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3967 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-4144 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-2293 (($ $) 89)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3988 (((-781) $) 77 (|has| |#3| (-377)))) (-4259 (((-112) $ $) 9)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2457 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) 82)) (-2906 (((-112) |#4| $) 136)) (-2488 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -794)) +NIL +(-13 (-1086 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) +((-3307 (((-3 (-388) "failed") (-324 |#1|) (-934)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-965 |#1|)) (-934)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-965 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-965 |#1|) (-934)) 31 (|has| |#1| (-1064))) (((-3 (-388) "failed") (-965 |#1|)) 30 (|has| |#1| (-1064)))) (-3084 (((-388) (-324 |#1|) (-934)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-965 |#1|)) (-934)) 91 (|has| |#1| (-566))) (((-388) (-417 (-965 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-965 |#1|) (-934)) 86 (|has| |#1| (-1064))) (((-388) (-965 |#1|)) 85 (|has| |#1| (-1064))) (((-388) |#1| (-934)) 76) (((-388) |#1|) 22)) (-3179 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-934)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-965 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)) 28 (|has| |#1| (-1064))) (((-3 (-171 (-388)) "failed") (-965 |#1|)) 26 (|has| |#1| (-1064))) (((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-965 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4116 (((-171 (-388)) (-324 (-171 |#1|)) (-934)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-934)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 |#1|)) (-934)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-965 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-965 |#1|) (-934)) 84 (|has| |#1| (-1064))) (((-171 (-388)) (-965 |#1|)) 83 (|has| |#1| (-1064))) (((-171 (-388)) (-965 (-171 |#1|)) (-934)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-965 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-934)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-934)) 27) (((-171 (-388)) |#1|) 25))) +(((-795 |#1|) (-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-934))) (-15 -4116 ((-171 (-388)) |#1|)) (-15 -4116 ((-171 (-388)) |#1| (-934))) (IF (|has| |#1| (-174)) (PROGN (-15 -4116 ((-171 (-388)) (-171 |#1|))) (-15 -4116 ((-171 (-388)) (-171 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-965 (-171 |#1|)))) (-15 -4116 ((-171 (-388)) (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3084 ((-388) (-965 |#1|))) (-15 -3084 ((-388) (-965 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-965 |#1|))) (-15 -4116 ((-171 (-388)) (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-965 |#1|)))) (-15 -3084 ((-388) (-417 (-965 |#1|)) (-934))) (-15 -4116 ((-171 (-388)) (-417 (-965 |#1|)))) (-15 -4116 ((-171 (-388)) (-417 (-965 |#1|)) (-934))) (-15 -4116 ((-171 (-388)) (-417 (-965 (-171 |#1|))))) (-15 -4116 ((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-324 |#1|))) (-15 -4116 ((-171 (-388)) (-324 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4116 ((-171 (-388)) (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-965 |#1|))) (-15 -3307 ((-3 (-388) "failed") (-965 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 |#1|))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-417 (-965 |#1|)))) (-15 -3307 ((-3 (-388) "failed") (-417 (-965 |#1|)) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3307 ((-3 (-388) "failed") (-324 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795)) +((-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3307 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3307 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3307 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3307 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3307 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3307 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-3179 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-934)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4116 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3084 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))) +(-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-934))) (-15 -4116 ((-171 (-388)) |#1|)) (-15 -4116 ((-171 (-388)) |#1| (-934))) (IF (|has| |#1| (-174)) (PROGN (-15 -4116 ((-171 (-388)) (-171 |#1|))) (-15 -4116 ((-171 (-388)) (-171 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-965 (-171 |#1|)))) (-15 -4116 ((-171 (-388)) (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3084 ((-388) (-965 |#1|))) (-15 -3084 ((-388) (-965 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-965 |#1|))) (-15 -4116 ((-171 (-388)) (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-965 |#1|)))) (-15 -3084 ((-388) (-417 (-965 |#1|)) (-934))) (-15 -4116 ((-171 (-388)) (-417 (-965 |#1|)))) (-15 -4116 ((-171 (-388)) (-417 (-965 |#1|)) (-934))) (-15 -4116 ((-171 (-388)) (-417 (-965 (-171 |#1|))))) (-15 -4116 ((-171 (-388)) (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-324 |#1|))) (-15 -4116 ((-171 (-388)) (-324 |#1|) (-934))) (-15 -4116 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4116 ((-171 (-388)) (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 (-171 |#1|)) (-934)))) |%noBranch|) (IF (|has| |#1| (-1064)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-965 |#1|))) (-15 -3307 ((-3 (-388) "failed") (-965 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 |#1|))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-965 |#1|) (-934)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-417 (-965 |#1|)))) (-15 -3307 ((-3 (-388) "failed") (-417 (-965 |#1|)) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 |#1|)) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-417 (-965 (-171 |#1|))) (-934))) (IF (|has| |#1| (-860)) (PROGN (-15 -3307 ((-3 (-388) "failed") (-324 |#1|))) (-15 -3307 ((-3 (-388) "failed") (-324 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-934))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -3179 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-934)))) |%noBranch|)) |%noBranch|)) +((-3629 (((-934) (-1174)) 89)) (-2093 (((-3 (-388) "failed") (-1174)) 36)) (-1331 (((-388) (-1174)) 34)) (-2778 (((-934) (-1174)) 63)) (-4203 (((-1174) (-934)) 73)) (-3433 (((-1174) (-934)) 62))) +(((-796) (-10 -7 (-15 -3433 ((-1174) (-934))) (-15 -2778 ((-934) (-1174))) (-15 -4203 ((-1174) (-934))) (-15 -3629 ((-934) (-1174))) (-15 -1331 ((-388) (-1174))) (-15 -2093 ((-3 (-388) "failed") (-1174))))) (T -796)) +((-2093 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) +(-10 -7 (-15 -3433 ((-1174) (-934))) (-15 -2778 ((-934) (-1174))) (-15 -4203 ((-1174) (-934))) (-15 -3629 ((-934) (-1174))) (-15 -1331 ((-388) (-1174))) (-15 -2093 ((-3 (-388) "failed") (-1174)))) +((-2863 (((-112) $ $) 7)) (-2954 (((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 16) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050)) 14)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-797) (-141)) (T -797)) +((-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050)))))) (-2954 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1050)) (-5 *3 (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050)))))) (-2954 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1050)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1115) (-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2954 ((-1050) (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) (|:| |extra| (-1050))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2954 ((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1050))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3409 (((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388))) 55) (((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 52)) (-1557 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 61)) (-3892 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 50)) (-2536 (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388))) 63) (((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))) 62))) +(((-798) (-10 -7 (-15 -2536 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -2536 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -3892 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3409 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3409 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -1557 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))))) (T -798)) +((-1557 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-3892 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-2536 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798)))) (-2536 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) (-5 *1 (-798))))) +(-10 -7 (-15 -2536 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -2536 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -3892 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3409 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)))) (-15 -3409 ((-1288) (-1283 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388))) (-388) (-1283 (-388)) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)) (-1283 (-388)))) (-15 -1557 ((-1288) (-1283 (-388)) (-574) (-388) (-388) (-574) (-1 (-1288) (-1283 (-388)) (-1283 (-388)) (-388))))) +((-4317 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-2215 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-3189 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-3782 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-1919 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-3030 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-2719 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-2292 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-1761 (((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37))) +(((-799) (-10 -7 (-15 -1761 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2292 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2719 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3030 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3782 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2215 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1919 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3189 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4317 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799)) +((-4317 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3189 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1919 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2215 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3782 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3030 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2719 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2292 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1761 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) +(-10 -7 (-15 -1761 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2292 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2719 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3030 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3782 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2215 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1919 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3189 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4317 ((-2 (|:| -3078 (-388)) (|:| -2692 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)))) +((-3007 (((-1228 |#1|) |#1| (-227) (-574)) 69))) +(((-800 |#1|) (-10 -7 (-15 -3007 ((-1228 |#1|) |#1| (-227) (-574)))) (-989)) (T -800)) +((-3007 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1228 *3)) (-5 *1 (-800 *3)) (-4 *3 (-989))))) +(-10 -7 (-15 -3007 ((-1228 |#1|) |#1| (-227) (-574)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 25)) (-2599 (((-3 $ "failed") $ $) 27)) (-3063 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3073 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26) (($ (-574) $) 29))) (((-801) (-141)) (T -801)) NIL -(-13 (-803) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-803) . T) ((-859) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-3280 (($ $ $) 28)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) +(-13 (-805) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 25)) (-3063 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3073 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) (((-802) (-141)) (T -802)) -((-3280 (*1 *1 *1 *1) (-4 *1 (-802)))) -(-13 (-804) (-10 -8 (-15 -3280 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22))) -(((-803) (-141)) (T -803)) NIL -(-13 (-859) (-25)) -(((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-859) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) +(-13 (-804) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 25)) (-3672 (($ $ $) 28)) (-2599 (((-3 $ "failed") $ $) 27)) (-3063 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3073 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) +(((-803) (-141)) (T -803)) +((-3672 (*1 *1 *1 *1) (-4 *1 (-803)))) +(-13 (-805) (-10 -8 (-15 -3672 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3073 (($ $ $) 21)) (* (($ (-934) $) 22))) (((-804) (-141)) (T -804)) NIL -(-13 (-801) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-801) . T) ((-803) . T) ((-859) . T) ((-1112) . T)) -((-1748 (((-112) $) 42)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 43)) (-3810 (((-3 (-416 (-573)) "failed") $) 78)) (-2551 (((-112) $) 72)) (-4434 (((-416 (-573)) $) 76)) (-3421 ((|#2| $) 26)) (-1776 (($ (-1 |#2| |#2|) $) 23)) (-1323 (($ $) 58)) (-1835 (((-545) $) 67)) (-3204 (($ $) 21)) (-2942 (((-871) $) 53) (($ (-573)) 40) (($ |#2|) 38) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 10)) (-1660 ((|#2| $) 71)) (-2981 (((-112) $ $) 30)) (-3005 (((-112) $ $) 69)) (-3093 (($ $) 32) (($ $ $) NIL)) (-3077 (($ $ $) 31)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-805 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-806 |#2|) (-174)) (T -805)) -((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-805 *3 *4)) (-4 *3 (-806 *4))))) -(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-1486 (((-780)) 58 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 100 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 97 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 94)) (-2205 (((-573) $) 99 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 96 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 95)) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 84)) (-3810 (((-3 (-416 (-573)) "failed") $) 71 (|has| |#1| (-554)))) (-2551 (((-112) $) 73 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 72 (|has| |#1| (-554)))) (-2819 (($) 61 (|has| |#1| (-376)))) (-1959 (((-112) $) 35)) (-3766 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3421 ((|#1| $) 76)) (-3659 (($ $ $) 67 (|has| |#1| (-859)))) (-3751 (($ $ $) 66 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 86)) (-3589 (((-931) $) 60 (|has| |#1| (-376)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 70 (|has| |#1| (-371)))) (-2575 (($ (-931)) 59 (|has| |#1| (-376)))) (-2625 ((|#1| $) 81)) (-3227 ((|#1| $) 82)) (-4204 ((|#1| $) 83)) (-4231 ((|#1| $) 77)) (-3875 ((|#1| $) 78)) (-1881 ((|#1| $) 79)) (-2473 ((|#1| $) 80)) (-3965 (((-1132) $) 11)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 92 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 90 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 89 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 88 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 87 (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) 93 (|has| |#1| (-293 |#1| |#1|)))) (-1835 (((-545) $) 68 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 85)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 98 (|has| |#1| (-1050 (-416 (-573)))))) (-4279 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 ((|#1| $) 74 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 64 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 63 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 65 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 62 (|has| |#1| (-859)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-806 |#1|) (-141) (-174)) (T -806)) -((-3204 (*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3766 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-1323 (*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) -(-13 (-38 |t#1|) (-420 |t#1|) (-346 |t#1|) (-10 -8 (-15 -3204 ($ $)) (-15 -4238 (|t#1| $)) (-15 -4204 (|t#1| $)) (-15 -3227 (|t#1| $)) (-15 -2625 (|t#1| $)) (-15 -2473 (|t#1| $)) (-15 -1881 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -4231 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -3766 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-371)) (-15 -1323 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-376) |has| |#1| (-376)) ((-346 |#1|) . T) ((-420 |#1|) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-293 |#1| |#1|))) -((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-806 |#2|) (-174) (-806 |#4|) (-174)) (T -807)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-806 *6)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *4 (-806 *5))))) -(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-1011 |#1|) "failed") $) 35) (((-3 (-573) "failed") $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573))))) (((-3 (-416 (-573)) "failed") $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 ((|#1| $) NIL) (((-1011 |#1|) $) 33) (((-573) $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573))))) (((-416 (-573)) $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 16)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-2819 (($) NIL (|has| |#1| (-376)))) (-1959 (((-112) $) NIL)) (-3766 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1011 |#1|) (-1011 |#1|)) 29)) (-3421 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2625 ((|#1| $) 22)) (-3227 ((|#1| $) 20)) (-4204 ((|#1| $) 18)) (-4231 ((|#1| $) 26)) (-3875 ((|#1| $) 25)) (-1881 ((|#1| $) 24)) (-2473 ((|#1| $) 23)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1011 |#1|)) 30) (($ (-416 (-573))) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 ((|#1| $) NIL (|has| |#1| (-1072)))) (-2132 (($) 8 T CONST)) (-2144 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-808 |#1|) (-13 (-806 |#1|) (-420 (-1011 |#1|)) (-10 -8 (-15 -3766 ($ (-1011 |#1|) (-1011 |#1|))))) (-174)) (T -808)) -((-3766 (*1 *1 *2 *2) (-12 (-5 *2 (-1011 *3)) (-4 *3 (-174)) (-5 *1 (-808 *3))))) -(-13 (-806 |#1|) (-420 (-1011 |#1|)) (-10 -8 (-15 -3766 ($ (-1011 |#1|) (-1011 |#1|))))) -((-2848 (((-112) $ $) 7)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2981 (((-112) $ $) 6))) -(((-809) (-141)) (T -809)) -((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-3871 (*1 *2 *3) (-12 (-4 *1 (-809)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1047))))) -(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3871 ((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2960 (((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)) 19))) -(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -2960 ((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969)) (-665 |#2|)) (T -810)) -((-2960 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-4 *4 (-13 (-29 *6) (-1215) (-969))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) (-5 *1 (-810 *6 *4 *3)) (-4 *3 (-665 *4))))) -(-10 -7 (-15 -2960 ((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)))) -((-1994 (((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)) 28) (((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189)) 18) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189)) 24) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189)) 26) (((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189)) 37) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189)) 35))) -(((-811 |#1| |#2|) (-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189))) (-15 -1994 ((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189))) (-15 -1994 ((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -1994 ((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -811)) -((-1994 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-301 *2)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-811 *6 *2)))) (-1994 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-301 *2)) (-5 *4 (-115)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-5 *1 (-811 *6 *2)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3914 (-653 *3))) *3 "failed")) (-5 *1 (-811 *6 *3)) (-4 *3 (-13 (-29 *6) (-1215) (-969))))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3914 (-653 *7))) *7 "failed")) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-698 *6)) (-5 *4 (-1189)) (-4 *6 (-13 (-29 *5) (-1215) (-969))) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-1280 *6))) (-5 *1 (-811 *5 *6)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-698 *7)) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)) (-5 *4 (-1280 *7))))) -(-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189))) (-15 -1994 ((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189))) (-15 -1994 ((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -1994 ((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)))) -((-1935 (($) 9)) (-2102 (((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1762 (((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3181 (($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))) 24)) (-1364 (($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) 22)) (-3995 (((-1285)) 11))) -(((-812) (-10 -8 (-15 -1935 ($)) (-15 -3995 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1364 ($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-15 -2102 ((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -812)) -((-2102 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) (-5 *1 (-812)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))) (-5 *1 (-812)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-5 *1 (-812)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-812)))) (-3995 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-812)))) (-1935 (*1 *1) (-5 *1 (-812)))) -(-10 -8 (-15 -1935 ($)) (-15 -3995 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1364 ($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-15 -2102 ((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3090 ((|#2| |#2| (-1189)) 17)) (-3130 ((|#2| |#2| (-1189)) 56)) (-3189 (((-1 |#2| |#2|) (-1189)) 11))) -(((-813 |#1| |#2|) (-10 -7 (-15 -3090 (|#2| |#2| (-1189))) (-15 -3130 (|#2| |#2| (-1189))) (-15 -3189 ((-1 |#2| |#2|) (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -813)) -((-3189 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-13 (-29 *4) (-1215) (-969))))) (-3130 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969))))) (-3090 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969)))))) -(-10 -7 (-15 -3090 (|#2| |#2| (-1189))) (-15 -3130 (|#2| |#2| (-1189))) (-15 -3189 ((-1 |#2| |#2|) (-1189)))) -((-1994 (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387)) 128) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387)) 129) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387)) 131) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387)) 133) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387)) 134) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387))) 136) (((-1047) (-817) (-1075)) 120) (((-1047) (-817)) 121)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075)) 80) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817)) 82))) -(((-814) (-10 -7 (-15 -1994 ((-1047) (-817))) (-15 -1994 ((-1047) (-817) (-1075))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075))))) (T -814)) -((-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-814)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1047)) (-5 *1 (-814))))) -(-10 -7 (-15 -1994 ((-1047) (-817))) (-15 -1994 ((-1047) (-817) (-1075))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075)))) -((-2184 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|) 33))) -(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2184 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|))) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -815)) -((-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *4)) (-4 *4 (-350 *5 *6 *7)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-815 *5 *6 *7 *4))))) -(-10 -7 (-15 -2184 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|))) -((-2382 (((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))) 53)) (-4381 (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|) 62) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|) 61) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|) 20) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|) 21)) (-1919 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4071 ((|#2| |#3| (-653 (-416 |#2|))) 109) (((-3 |#2| "failed") |#3| (-416 |#2|)) 105))) -(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 ((-3 |#2| "failed") |#3| (-416 |#2|))) (-15 -4071 (|#2| |#3| (-653 (-416 |#2|)))) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|)) (-15 -1919 (|#2| |#3| |#1|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|)) (-15 -1919 (|#2| |#4| |#1|)) (-15 -2382 ((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-416 (-573)))) (-1256 |#1|) (-665 |#2|) (-665 (-416 |#2|))) (T -816)) -((-2382 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-653 (-416 *6))))) (-5 *1 (-816 *5 *6 *7 *3)) (-5 *4 (-653 (-416 *6))) (-4 *7 (-665 *6)) (-4 *3 (-665 (-416 *6))))) (-1919 (*1 *2 *3 *4) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *5 *3)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-665 *2)) (-4 *3 (-665 (-416 *2))))) (-4381 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) (-5 *1 (-816 *5 *4 *6 *3)) (-4 *6 (-665 *4)) (-4 *3 (-665 (-416 *4))))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) (-5 *1 (-816 *4 *5 *6 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 (-416 *5))))) (-1919 (*1 *2 *3 *4) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *3 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *5 (-665 (-416 *2))))) (-4381 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) (-5 *1 (-816 *5 *4 *3 *6)) (-4 *3 (-665 *4)) (-4 *6 (-665 (-416 *4))))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) (-5 *1 (-816 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-665 (-416 *5))))) (-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-416 *2))) (-4 *2 (-1256 *5)) (-5 *1 (-816 *5 *2 *3 *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *6 (-665 (-416 *2))))) (-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-416 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-816 *5 *2 *3 *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *6 (-665 *4))))) -(-10 -7 (-15 -4071 ((-3 |#2| "failed") |#3| (-416 |#2|))) (-15 -4071 (|#2| |#3| (-653 (-416 |#2|)))) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|)) (-15 -1919 (|#2| |#3| |#1|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|)) (-15 -1919 (|#2| |#4| |#1|)) (-15 -2382 ((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))))) -((-2848 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-817) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2205 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -817)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-817)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-817))))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2205 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-1354 (((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|)) 154)) (-3179 (((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|)) 52)) (-1332 (((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|) 122)) (-4392 ((|#2| |#3|) 42)) (-3137 (((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|)) 99)) (-4096 ((|#3| |#3| (-416 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#2| |#3|)) (-15 -1332 ((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|)) (-15 -3137 ((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -4096 (|#3| |#3| |#2|)) (-15 -4096 (|#3| |#3| (-416 |#2|)))) (-13 (-371) (-148) (-1050 (-416 (-573)))) (-1256 |#1|) (-665 |#2|) (-665 (-416 |#2|))) (T -818)) -((-4096 (*1 *2 *2 *3) (-12 (-5 *3 (-416 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *1 (-818 *4 *5 *2 *6)) (-4 *2 (-665 *5)) (-4 *6 (-665 *3)))) (-4096 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-1256 *4)) (-5 *1 (-818 *4 *3 *2 *5)) (-4 *2 (-665 *3)) (-4 *5 (-665 (-416 *3))))) (-1354 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-653 *7) *7 (-1185 *7))) (-5 *5 (-1 (-427 *7) *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |frac| (-416 *7)) (|:| -4122 *3)))) (-5 *1 (-818 *6 *7 *3 *8)) (-4 *3 (-665 *7)) (-4 *8 (-665 (-416 *7))))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 *3)))) (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) (-4 *7 (-665 (-416 *6))))) (-3137 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -1705 *5) (|:| -4122 *3)))) (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) (-4 *7 (-665 (-416 *6))))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -4122 *5)))) (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-665 (-416 *5))))) (-4392 (*1 *2 *3) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-818 *4 *2 *3 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *5 (-665 (-416 *2)))))) -(-10 -7 (-15 -4392 (|#2| |#3|)) (-15 -1332 ((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|)) (-15 -3137 ((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -4096 (|#3| |#3| |#2|)) (-15 -4096 (|#3| |#3| (-416 |#2|)))) -((-2317 (((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|))) 147) (((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|)) 146) (((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|))) 141) (((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|)) 139)) (-3184 ((|#2| (-663 |#2| (-416 |#2|))) 88) ((|#2| (-662 (-416 |#2|))) 91))) -(((-819 |#1| |#2|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -3184 (|#2| (-662 (-416 |#2|)))) (-15 -3184 (|#2| (-663 |#2| (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -819)) -((-3184 (*1 *2 *3) (-12 (-5 *3 (-663 *2 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-662 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-819 *5 *6)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-819 *5 *6))))) -(-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -3184 (|#2| (-662 (-416 |#2|)))) (-15 -3184 (|#2| (-663 |#2| (-416 |#2|))))) -((-3745 (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|) 49))) -(((-820 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3745 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|))) (-371) (-665 |#1|) (-1256 |#1|) (-733 |#1| |#3|) (-665 |#4|)) (T -820)) -((-3745 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *7 (-1256 *5)) (-4 *4 (-733 *5 *7)) (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) (-5 *1 (-820 *5 *6 *7 *4 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 *4))))) -(-10 -7 (-15 -3745 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|))) -((-1354 (((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 47)) (-3960 (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|))) 164 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-662 (-416 |#2|))) 166 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|)) 38) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 39) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|)) 36) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 37)) (-3179 (((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 96))) -(((-821 |#1| |#2|) (-10 -7 (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)))) |%noBranch|)) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -821)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-663 *5 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-662 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 (-663 *6 (-416 *6)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |frac| (-416 *6)) (|:| -4122 (-663 *6 (-416 *6)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6))))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) (-5 *5 (-1 (-427 *7) *7)) (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-662 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) (-5 *5 (-1 (-427 *7) *7)) (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6))))) -(-10 -7 (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)))) |%noBranch|)) -((-2058 (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|)) 110) (((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|)) 15)) (-2298 (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)) 116)) (-1994 (((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|)) 54))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2058 ((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|))) (-15 -2058 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|))) (-15 -2298 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)))) (-371) (-665 |#1|)) (T -822)) -((-2298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3914 (-653 *6))) *7 *6)) (-4 *6 (-371)) (-4 *7 (-665 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *6) "failed")) (|:| -3914 (-653 (-1280 *6))))) (-5 *1 (-822 *6 *7)) (-5 *4 (-1280 *6)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3914 (-653 *6))) "failed") *7 *6)) (-4 *6 (-371)) (-4 *7 (-665 *6)) (-5 *2 (-2 (|:| |particular| (-1280 *6)) (|:| -3914 (-698 *6)))) (-5 *1 (-822 *6 *7)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *6)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-665 *5)) (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *5)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| A (-698 *5)) (|:| |eqs| (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5)) (|:| -4122 *6) (|:| |rh| *5)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *6 (-665 *5))))) -(-10 -7 (-15 -2058 ((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|))) (-15 -2058 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|))) (-15 -2298 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)))) -((-3585 (((-698 |#1|) (-653 |#1|) (-780)) 14) (((-698 |#1|) (-653 |#1|)) 15)) (-3497 (((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|)) 39)) (-1460 (((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)) 46))) -(((-823 |#1| |#2|) (-10 -7 (-15 -3585 ((-698 |#1|) (-653 |#1|))) (-15 -3585 ((-698 |#1|) (-653 |#1|) (-780))) (-15 -3497 ((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|))) (-15 -1460 ((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)))) (-371) (-665 |#1|)) (T -823)) -((-1460 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-653 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-371)) (-5 *1 (-823 *2 *3)) (-4 *3 (-665 *2)))) (-3497 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-1280 *4)) (-5 *1 (-823 *4 *3)) (-4 *3 (-665 *4)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-371)) (-5 *2 (-698 *5)) (-5 *1 (-823 *5 *6)) (-4 *6 (-665 *5)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)) (-5 *1 (-823 *4 *5)) (-4 *5 (-665 *4))))) -(-10 -7 (-15 -3585 ((-698 |#1|) (-653 |#1|))) (-15 -3585 ((-698 |#1|) (-653 |#1|) (-780))) (-15 -3497 ((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|))) (-15 -1460 ((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) NIL (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) NIL (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) NIL)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) NIL (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) NIL (|has| |#2| (-132)) CONST)) (-2144 (($) NIL (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 11 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) NIL (|has| |#2| (-735))) (($ $ |#2|) NIL (|has| |#2| (-735))) (($ |#2| $) NIL (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-824 |#1| |#2| |#3|) (-243 |#1| |#2|) (-780) (-802) (-1 (-112) (-1280 |#2|) (-1280 |#2|))) (T -824)) -NIL -(-243 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ (-1189)) NIL)) (-3447 (((-780) $) NIL) (((-780) $ (-1189)) NIL)) (-4354 (((-653 (-827 (-1189))) $) NIL)) (-4193 (((-1185 $) $ (-827 (-1189))) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-827 (-1189)))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-827 (-1189)) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL) (((-3 (-1137 |#1| (-1189)) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-827 (-1189)) $) NIL) (((-1189) $) NIL) (((-1137 |#1| (-1189)) $) NIL)) (-2277 (($ $ $ (-827 (-1189))) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-827 (-1189))) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-827 (-1189))) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-827 (-1189)) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-827 (-1189)) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-827 (-1189))) NIL) (($ (-1185 $) (-827 (-1189))) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-827 (-1189))) NIL)) (-4036 (((-540 (-827 (-1189))) $) NIL) (((-780) $ (-827 (-1189))) NIL) (((-653 (-780)) $ (-653 (-827 (-1189)))) NIL)) (-1382 (($ (-1 (-540 (-827 (-1189))) (-540 (-827 (-1189)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) (-1189)) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 (-827 (-1189)) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 (((-827 (-1189)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-827 (-1189))) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-827 (-1189)) |#1|) NIL) (($ $ (-653 (-827 (-1189))) (-653 |#1|)) NIL) (($ $ (-827 (-1189)) $) NIL) (($ $ (-653 (-827 (-1189))) (-653 $)) NIL) (($ $ (-1189) $) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 $)) NIL (|has| |#1| (-238))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ (-827 (-1189))) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-827 (-1189))) NIL) (($ $ (-653 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 (-1189)) $) NIL)) (-2565 (((-540 (-827 (-1189))) $) NIL) (((-780) $ (-827 (-1189))) NIL) (((-653 (-780)) $ (-653 (-827 (-1189)))) NIL) (((-780) $ (-1189)) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-827 (-1189))) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-827 (-1189))) NIL) (($ (-1189)) NIL) (($ (-1137 |#1| (-1189))) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-827 (-1189))) NIL) (($ $ (-653 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-825 |#1|) (-13 (-259 |#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) (-1050 (-1137 |#1| (-1189)))) (-1061)) (T -825)) -NIL -(-13 (-259 |#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) (-1050 (-1137 |#1| (-1189)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-371)))) (-2456 (($ $) NIL (|has| |#2| (-371)))) (-1345 (((-112) $) NIL (|has| |#2| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#2| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-371)))) (-2800 (((-112) $ $) NIL (|has| |#2| (-371)))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#2| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#2| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#2| (-371)))) (-2696 (((-112) $) NIL (|has| |#2| (-371)))) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2829 (($ (-653 $)) NIL (|has| |#2| (-371))) (($ $ $) NIL (|has| |#2| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 20 (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-371))) (($ $ $) NIL (|has| |#2| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2163 (((-780) $) NIL (|has| |#2| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-3904 (($ $) 13) (($ $ (-780)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-416 (-573))) NIL (|has| |#2| (-371))) (($ $) NIL (|has| |#2| (-371)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-371)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) 15 (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL) (($ $ (-573)) 18 (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-416 (-573)) $) NIL (|has| |#2| (-371))) (($ $ (-416 (-573))) NIL (|has| |#2| (-371))))) -(((-826 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-499 |#2|) (-10 -7 (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|))) (-1112) (-910 |#1|) |#1|) (T -826)) -NIL -(-13 (-111 $ $) (-238) (-499 |#2|) (-10 -7 (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2534 (((-780) $) 11)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3844 (($ |#1| (-780)) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-827 |#1|) (-272 |#1|) (-859)) (T -827)) -NIL -(-272 |#1|) -((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 38)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1680 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2925 (($ $) 42)) (-2232 (((-3 $ "failed") $) NIL)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1959 (((-112) $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-780) $ (-573)) NIL)) (-4386 (($ $) 54)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3584 (($ (-1 (-780) (-780)) $) NIL)) (-1435 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2580 (((-112) $ $) 51)) (-4134 (((-780) $) 34)) (-3180 (((-1171) $) NIL)) (-3254 (($ $ $) NIL)) (-1513 (($ $ $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) 41)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) NIL)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2823 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ |#1| (-780)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-828 |#1|) (-13 (-394 |#1|) (-855) (-10 -8 (-15 -2914 (|#1| $)) (-15 -2925 ($ $)) (-15 -4386 ($ $)) (-15 -2580 ((-112) $ $)) (-15 -1435 ((-3 $ "failed") $ |#1|)) (-15 -1680 ((-3 $ "failed") $ |#1|)) (-15 -2823 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4134 ((-780) $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -828)) -((-2914 (*1 *2 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-1435 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2823 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-828 *3)) (|:| |rm| (-828 *3)))) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-828 *3)) (-4 *3 (-859))))) -(-13 (-394 |#1|) (-855) (-10 -8 (-15 -2914 (|#1| $)) (-15 -2925 ($ $)) (-15 -4386 ($ $)) (-15 -2580 ((-112) $ $)) (-15 -1435 ((-3 $ "failed") $ |#1|)) (-15 -1680 ((-3 $ "failed") $ |#1|)) (-15 -2823 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4134 ((-780) $)) (-15 -1653 ((-653 |#1|) $)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1983 (((-573) $) 59)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-4152 (((-112) $) 57)) (-1959 (((-112) $) 35)) (-3339 (((-112) $) 58)) (-3659 (($ $ $) 56)) (-3751 (($ $ $) 55)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 60)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 53)) (-3015 (((-112) $ $) 52)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 54)) (-3005 (((-112) $ $) 51)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-829) (-141)) (T -829)) -NIL -(-13 (-565) (-857)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3146 (($ (-1132)) 7)) (-3312 (((-112) $ (-1171) (-1132)) 15)) (-3069 (((-831) $) 12)) (-3377 (((-831) $) 11)) (-2754 (((-1285) $) 9)) (-1556 (((-112) $ (-1132)) 16))) -(((-830) (-10 -8 (-15 -3146 ($ (-1132))) (-15 -2754 ((-1285) $)) (-15 -3377 ((-831) $)) (-15 -3069 ((-831) $)) (-15 -3312 ((-112) $ (-1171) (-1132))) (-15 -1556 ((-112) $ (-1132))))) (T -830)) -((-1556 (*1 *2 *1 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-112)) (-5 *1 (-830)))) (-3312 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-1132)) (-5 *2 (-112)) (-5 *1 (-830)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-830)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-830))))) -(-10 -8 (-15 -3146 ($ (-1132))) (-15 -2754 ((-1285) $)) (-15 -3377 ((-831) $)) (-15 -3069 ((-831) $)) (-15 -3312 ((-112) $ (-1171) (-1132))) (-15 -1556 ((-112) $ (-1132)))) -((-1816 (((-1285) $ (-832)) 12)) (-2068 (((-1285) $ (-1189)) 32)) (-1397 (((-1285) $ (-1171) (-1171)) 34)) (-4174 (((-1285) $ (-1171)) 33)) (-4097 (((-1285) $) 19)) (-3852 (((-1285) $ (-573)) 28)) (-2238 (((-1285) $ (-227)) 30)) (-3879 (((-1285) $) 18)) (-2910 (((-1285) $) 26)) (-3976 (((-1285) $) 25)) (-3068 (((-1285) $) 23)) (-1895 (((-1285) $) 24)) (-1837 (((-1285) $) 22)) (-2300 (((-1285) $) 21)) (-3989 (((-1285) $) 20)) (-2721 (((-1285) $) 16)) (-1408 (((-1285) $) 17)) (-1852 (((-1285) $) 15)) (-1928 (((-1285) $) 14)) (-2644 (((-1285) $) 13)) (-3098 (($ (-1171) (-832)) 9)) (-4259 (($ (-1171) (-1171) (-832)) 8)) (-2303 (((-1189) $) 51)) (-1596 (((-1189) $) 55)) (-3425 (((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $) 54)) (-1517 (((-1171) $) 52)) (-2145 (((-1285) $) 41)) (-1550 (((-573) $) 49)) (-3452 (((-227) $) 50)) (-3071 (((-1285) $) 40)) (-2773 (((-1285) $) 48)) (-2386 (((-1285) $) 47)) (-1871 (((-1285) $) 45)) (-1666 (((-1285) $) 46)) (-4251 (((-1285) $) 44)) (-1427 (((-1285) $) 43)) (-3555 (((-1285) $) 42)) (-1747 (((-1285) $) 38)) (-3632 (((-1285) $) 39)) (-1957 (((-1285) $) 37)) (-2319 (((-1285) $) 36)) (-2275 (((-1285) $) 35)) (-2454 (((-1285) $) 11))) -(((-831) (-10 -8 (-15 -4259 ($ (-1171) (-1171) (-832))) (-15 -3098 ($ (-1171) (-832))) (-15 -2454 ((-1285) $)) (-15 -1816 ((-1285) $ (-832))) (-15 -2644 ((-1285) $)) (-15 -1928 ((-1285) $)) (-15 -1852 ((-1285) $)) (-15 -2721 ((-1285) $)) (-15 -1408 ((-1285) $)) (-15 -3879 ((-1285) $)) (-15 -4097 ((-1285) $)) (-15 -3989 ((-1285) $)) (-15 -2300 ((-1285) $)) (-15 -1837 ((-1285) $)) (-15 -3068 ((-1285) $)) (-15 -1895 ((-1285) $)) (-15 -3976 ((-1285) $)) (-15 -2910 ((-1285) $)) (-15 -3852 ((-1285) $ (-573))) (-15 -2238 ((-1285) $ (-227))) (-15 -2068 ((-1285) $ (-1189))) (-15 -4174 ((-1285) $ (-1171))) (-15 -1397 ((-1285) $ (-1171) (-1171))) (-15 -2275 ((-1285) $)) (-15 -2319 ((-1285) $)) (-15 -1957 ((-1285) $)) (-15 -1747 ((-1285) $)) (-15 -3632 ((-1285) $)) (-15 -3071 ((-1285) $)) (-15 -2145 ((-1285) $)) (-15 -3555 ((-1285) $)) (-15 -1427 ((-1285) $)) (-15 -4251 ((-1285) $)) (-15 -1871 ((-1285) $)) (-15 -1666 ((-1285) $)) (-15 -2386 ((-1285) $)) (-15 -2773 ((-1285) $)) (-15 -1550 ((-573) $)) (-15 -3452 ((-227) $)) (-15 -2303 ((-1189) $)) (-15 -1517 ((-1171) $)) (-15 -3425 ((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $)) (-15 -1596 ((-1189) $)))) (T -831)) -((-1596 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1171)) (|:| -2031 (-1171)))) (-5 *1 (-831)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-831)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-831)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-831)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2068 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2238 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2910 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3098 (*1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831)))) (-4259 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) -(-10 -8 (-15 -4259 ($ (-1171) (-1171) (-832))) (-15 -3098 ($ (-1171) (-832))) (-15 -2454 ((-1285) $)) (-15 -1816 ((-1285) $ (-832))) (-15 -2644 ((-1285) $)) (-15 -1928 ((-1285) $)) (-15 -1852 ((-1285) $)) (-15 -2721 ((-1285) $)) (-15 -1408 ((-1285) $)) (-15 -3879 ((-1285) $)) (-15 -4097 ((-1285) $)) (-15 -3989 ((-1285) $)) (-15 -2300 ((-1285) $)) (-15 -1837 ((-1285) $)) (-15 -3068 ((-1285) $)) (-15 -1895 ((-1285) $)) (-15 -3976 ((-1285) $)) (-15 -2910 ((-1285) $)) (-15 -3852 ((-1285) $ (-573))) (-15 -2238 ((-1285) $ (-227))) (-15 -2068 ((-1285) $ (-1189))) (-15 -4174 ((-1285) $ (-1171))) (-15 -1397 ((-1285) $ (-1171) (-1171))) (-15 -2275 ((-1285) $)) (-15 -2319 ((-1285) $)) (-15 -1957 ((-1285) $)) (-15 -1747 ((-1285) $)) (-15 -3632 ((-1285) $)) (-15 -3071 ((-1285) $)) (-15 -2145 ((-1285) $)) (-15 -3555 ((-1285) $)) (-15 -1427 ((-1285) $)) (-15 -4251 ((-1285) $)) (-15 -1871 ((-1285) $)) (-15 -1666 ((-1285) $)) (-15 -2386 ((-1285) $)) (-15 -2773 ((-1285) $)) (-15 -1550 ((-573) $)) (-15 -3452 ((-227) $)) (-15 -2303 ((-1189) $)) (-15 -1517 ((-1171) $)) (-15 -3425 ((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $)) (-15 -1596 ((-1189) $))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-3741 (($) 16)) (-2249 (($) 14)) (-4394 (($) 17)) (-3167 (($) 15)) (-2981 (((-112) $ $) 9))) -(((-832) (-13 (-1112) (-10 -8 (-15 -2249 ($)) (-15 -3741 ($)) (-15 -4394 ($)) (-15 -3167 ($))))) (T -832)) -((-2249 (*1 *1) (-5 *1 (-832))) (-3741 (*1 *1) (-5 *1 (-832))) (-4394 (*1 *1) (-5 *1 (-832))) (-3167 (*1 *1) (-5 *1 (-832)))) -(-13 (-1112) (-10 -8 (-15 -2249 ($)) (-15 -3741 ($)) (-15 -4394 ($)) (-15 -3167 ($)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23) (($ (-1189)) 19)) (-3507 (((-112) $ $) NIL)) (-2959 (((-112) $) 10)) (-1838 (((-112) $) 9)) (-3528 (((-112) $) 11)) (-2055 (((-112) $) 8)) (-2981 (((-112) $ $) 21))) -(((-833) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2055 ((-112) $)) (-15 -1838 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -3528 ((-112) $))))) (T -833)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-833)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2055 ((-112) $)) (-15 -1838 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -3528 ((-112) $)))) -((-2848 (((-112) $ $) NIL)) (-3304 (($ (-833) (-653 (-1189))) 32)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2166 (((-833) $) 33)) (-3948 (((-653 (-1189)) $) 34)) (-2942 (((-871) $) 31)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-834) (-13 (-1112) (-10 -8 (-15 -2166 ((-833) $)) (-15 -3948 ((-653 (-1189)) $)) (-15 -3304 ($ (-833) (-653 (-1189))))))) (T -834)) -((-2166 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-834)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-834)))) (-3304 (*1 *1 *2 *3) (-12 (-5 *2 (-833)) (-5 *3 (-653 (-1189))) (-5 *1 (-834))))) -(-13 (-1112) (-10 -8 (-15 -2166 ((-833) $)) (-15 -3948 ((-653 (-1189)) $)) (-15 -3304 ($ (-833) (-653 (-1189)))))) -((-2808 (((-1285) (-831) (-323 |#1|) (-112)) 23) (((-1285) (-831) (-323 |#1|)) 89) (((-1171) (-323 |#1|) (-112)) 88) (((-1171) (-323 |#1|)) 87))) -(((-835 |#1|) (-10 -7 (-15 -2808 ((-1171) (-323 |#1|))) (-15 -2808 ((-1171) (-323 |#1|) (-112))) (-15 -2808 ((-1285) (-831) (-323 |#1|))) (-15 -2808 ((-1285) (-831) (-323 |#1|) (-112)))) (-13 (-837) (-1061))) (T -835)) -((-2808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-831)) (-5 *4 (-323 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *6)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-323 *5)) (-4 *5 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-837) (-1061))) (-5 *2 (-1171)) (-5 *1 (-835 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-13 (-837) (-1061))) (-5 *2 (-1171)) (-5 *1 (-835 *4))))) -(-10 -7 (-15 -2808 ((-1171) (-323 |#1|))) (-15 -2808 ((-1171) (-323 |#1|) (-112))) (-15 -2808 ((-1285) (-831) (-323 |#1|))) (-15 -2808 ((-1285) (-831) (-323 |#1|) (-112)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3964 ((|#1| $) 10)) (-4296 (($ |#1|) 9)) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) NIL)) (-4036 (((-780) $) NIL)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2565 (((-780) $) NIL)) (-2942 (((-871) $) 17) (($ (-573)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4317 ((|#2| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-836 |#1| |#2|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3964 (|#1| $)))) (-717 |#2|) (-1061)) (T -836)) -((-4296 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-836 *2 *3)) (-4 *2 (-717 *3)))) (-3964 (*1 *2 *1) (-12 (-4 *2 (-717 *3)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1061))))) -(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3964 (|#1| $)))) -((-2808 (((-1285) (-831) $ (-112)) 9) (((-1285) (-831) $) 8) (((-1171) $ (-112)) 7) (((-1171) $) 6))) -(((-837) (-141)) (T -837)) -((-2808 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *4 (-112)) (-5 *2 (-1285)))) (-2808 (*1 *2 *3 *1) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *2 (-1285)))) (-2808 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-112)) (-5 *2 (-1171)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-837)) (-5 *2 (-1171))))) -(-13 (-10 -8 (-15 -2808 ((-1171) $)) (-15 -2808 ((-1171) $ (-112))) (-15 -2808 ((-1285) (-831) $)) (-15 -2808 ((-1285) (-831) $ (-112))))) -((-3828 (((-319) (-1171) (-1171)) 12)) (-3275 (((-112) (-1171) (-1171)) 34)) (-3285 (((-112) (-1171)) 33)) (-3779 (((-52) (-1171)) 25)) (-2185 (((-52) (-1171)) 23)) (-3322 (((-52) (-831)) 17)) (-4236 (((-653 (-1171)) (-1171)) 28)) (-2892 (((-653 (-1171))) 27))) -(((-838) (-10 -7 (-15 -3322 ((-52) (-831))) (-15 -2185 ((-52) (-1171))) (-15 -3779 ((-52) (-1171))) (-15 -2892 ((-653 (-1171)))) (-15 -4236 ((-653 (-1171)) (-1171))) (-15 -3285 ((-112) (-1171))) (-15 -3275 ((-112) (-1171) (-1171))) (-15 -3828 ((-319) (-1171) (-1171))))) (T -838)) -((-3828 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-838)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838)))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)) (-5 *3 (-1171)))) (-2892 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-838))))) -(-10 -7 (-15 -3322 ((-52) (-831))) (-15 -2185 ((-52) (-1171))) (-15 -3779 ((-52) (-1171))) (-15 -2892 ((-653 (-1171)))) (-15 -4236 ((-653 (-1171)) (-1171))) (-15 -3285 ((-112) (-1171))) (-15 -3275 ((-112) (-1171) (-1171))) (-15 -3828 ((-319) (-1171) (-1171)))) -((-2848 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2180 (($ $ $) 73)) (-3319 (((-112) $ $) 74)) (-3450 (((-112) $ (-780)) 8)) (-1506 (($ (-653 |#1|)) 69) (($) 68)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 65)) (-2078 (((-112) $ (-780)) 9)) (-3659 ((|#1| $) 79)) (-4241 (($ $ $) 82)) (-1480 (($ $ $) 81)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 80)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 70)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-3631 (($ $ |#1|) 72) (($ $ $) 71)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18)) (-4280 (($ (-653 |#1|)) 67) (($) 66)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-839 |#1|) (-141) (-859)) (T -839)) -((-3659 (*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-859))))) -(-13 (-745 |t#1|) (-980 |t#1|) (-10 -8 (-15 -3659 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-704 |#1|) . T) ((-745 |#1|) . T) ((-980 |#1|) . T) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) -((-1490 (((-1285) (-1132) (-1132)) 48)) (-2882 (((-1285) (-830) (-52)) 45)) (-1712 (((-52) (-830)) 16))) -(((-840) (-10 -7 (-15 -1712 ((-52) (-830))) (-15 -2882 ((-1285) (-830) (-52))) (-15 -1490 ((-1285) (-1132) (-1132))))) (T -840)) -((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-1285)) (-5 *1 (-840)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-52)) (-5 *2 (-1285)) (-5 *1 (-840)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-840))))) -(-10 -7 (-15 -1712 ((-52) (-830))) (-15 -2882 ((-1285) (-830) (-52))) (-15 -1490 ((-1285) (-1132) (-1132)))) -((-1776 (((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)) 12) (((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|)) 13))) -(((-841 |#1| |#2|) (-10 -7 (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|))) (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)))) (-1112) (-1112)) (T -841)) -((-1776 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-841 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-842 *6)) (-5 *1 (-841 *5 *6))))) -(-10 -7 (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|))) (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 15)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 9)) (-2232 (((-3 $ "failed") $) 42 (|has| |#1| (-857)))) (-3810 (((-3 (-416 (-573)) "failed") $) 52 (|has| |#1| (-554)))) (-2551 (((-112) $) 46 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 49 (|has| |#1| (-554)))) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-1959 (((-112) $) NIL (|has| |#1| (-857)))) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-1743 (($) 13)) (-4154 (((-112) $) 12)) (-3965 (((-1132) $) NIL)) (-3854 (((-112) $) 11)) (-2942 (((-871) $) 18) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 8) (($ (-573)) NIL (-2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))))) (-1545 (((-780)) 36 (|has| |#1| (-857)) CONST)) (-3507 (((-112) $ $) 54)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) 23 (|has| |#1| (-21)) CONST)) (-2144 (($) 33 (|has| |#1| (-857)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) 21)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) 45 (|has| |#1| (-857)))) (-3093 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3077 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-931)) NIL (|has| |#1| (-857))) (($ $ (-780)) NIL (|has| |#1| (-857)))) (* (($ $ $) 39 (|has| |#1| (-857))) (($ (-573) $) 27 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-21))))) -(((-842 |#1|) (-13 (-1112) (-420 |#1|) (-10 -8 (-15 -1743 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) (-1112)) (T -842)) -((-1743 (*1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1112)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112))))) -(-13 (-1112) (-420 |#1|) (-10 -8 (-15 -1743 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) -((-1667 (((-112) $ |#2|) 14)) (-2942 (((-871) $) 11))) -(((-843 |#1| |#2|) (-10 -8 (-15 -1667 ((-112) |#1| |#2|)) (-15 -2942 ((-871) |#1|))) (-844 |#2|) (-1112)) (T -843)) -NIL -(-10 -8 (-15 -1667 ((-112) |#1| |#2|)) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-2031 ((|#1| $) 16)) (-3180 (((-1171) $) 10)) (-1667 (((-112) $ |#1|) 14)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4010 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) -(((-844 |#1|) (-141) (-1112)) (T -844)) -((-2031 (*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1112)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-55)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(-13 (-1112) (-10 -8 (-15 -2031 (|t#1| $)) (-15 -4010 ((-55) $)) (-15 -1667 ((-112) $ |t#1|)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-115) $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4316 ((|#1| (-115) |#1|) NIL)) (-1959 (((-112) $) NIL)) (-1769 (($ |#1| (-369 (-115))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3627 (($ $ (-1 |#1| |#1|)) NIL)) (-3630 (($ $ (-1 |#1| |#1|)) NIL)) (-2198 ((|#1| $ |#1|) NIL)) (-3078 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ (-115) (-573)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-845 |#1|) (-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#1| |#1|))) (-15 -3627 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#1| (-115) |#1|)) (-15 -1769 ($ |#1| (-369 (-115)))))) (-1061)) (T -845)) -((-4372 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-4372 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-3078 (*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-5 *1 (-845 *4)) (-4 *4 (-1061)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-845 *3)) (-4 *3 (-1061)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1061)))) (-1769 (*1 *1 *2 *3) (-12 (-5 *3 (-369 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) -(-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#1| |#1|))) (-15 -3627 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#1| (-115) |#1|)) (-15 -1769 ($ |#1| (-369 (-115)))))) -((-4170 (((-216 (-511)) (-1171)) 9))) -(((-846) (-10 -7 (-15 -4170 ((-216 (-511)) (-1171))))) (T -846)) -((-4170 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-216 (-511))) (-5 *1 (-846))))) -(-10 -7 (-15 -4170 ((-216 (-511)) (-1171)))) -((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 10)) (-2031 (((-515) $) 9)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-2955 (($ (-515) (-1130)) 8)) (-2942 (((-871) $) 25)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 20)) (-2981 (((-112) $ $) 12))) -(((-847) (-13 (-844 (-515)) (-10 -8 (-15 -3139 ((-1130) $)) (-15 -2955 ($ (-515) (-1130)))))) (T -847)) -((-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-847)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-847))))) -(-13 (-844 (-515)) (-10 -8 (-15 -3139 ((-1130) $)) (-15 -2955 ($ (-515) (-1130))))) -((-2848 (((-112) $ $) 7)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 15) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 14)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 17) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 16)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-848) (-141)) (T -848)) -((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-3752 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-1047)))) (-3752 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *2 (-1047))))) -(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -3752 ((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -3752 ((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2711 (((-1047) (-653 (-323 (-387))) (-653 (-387))) 166) (((-1047) (-323 (-387)) (-653 (-387))) 164) (((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387)))) 162) (((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387)))) 160) (((-1047) (-850)) 125) (((-1047) (-850) (-1075)) 124)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075)) 85) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850)) 87)) (-2961 (((-1047) (-653 (-323 (-387))) (-653 (-387))) 167) (((-1047) (-850)) 150))) -(((-849) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075))) (-15 -2711 ((-1047) (-850) (-1075))) (-15 -2711 ((-1047) (-850))) (-15 -2961 ((-1047) (-850))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)))) (-15 -2711 ((-1047) (-653 (-323 (-387))) (-653 (-387)))) (-15 -2961 ((-1047) (-653 (-323 (-387))) (-653 (-387)))))) (T -849)) -((-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) (-5 *6 (-653 (-323 (-387)))) (-5 *3 (-323 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-849)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-849))))) -(-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075))) (-15 -2711 ((-1047) (-850) (-1075))) (-15 -2711 ((-1047) (-850))) (-15 -2961 ((-1047) (-850))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)))) (-15 -2711 ((-1047) (-653 (-323 (-387))) (-653 (-387)))) (-15 -2961 ((-1047) (-653 (-323 (-387))) (-653 (-387))))) -((-2848 (((-112) $ $) NIL)) (-2205 (((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 14) (($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-850) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -2942 ($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2942 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))) (-15 -2205 ((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $))))) (T -850)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *1 (-850)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *1 (-850)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *1 (-850)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *1 (-850))))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -2942 ($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2942 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))) (-15 -2205 ((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $)))) -((-1776 (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)) 13) (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)) 14))) -(((-851 |#1| |#2|) (-10 -7 (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|))) (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)))) (-1112) (-1112)) (T -851)) -((-1776 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-852 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-851 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6))))) -(-10 -7 (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|))) (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-1428 (((-1132) $) 31)) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 18)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 9)) (-2232 (((-3 $ "failed") $) 58 (|has| |#1| (-857)))) (-3810 (((-3 (-416 (-573)) "failed") $) 65 (|has| |#1| (-554)))) (-2551 (((-112) $) 60 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 63 (|has| |#1| (-554)))) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-2305 (($) 14)) (-1959 (((-112) $) NIL (|has| |#1| (-857)))) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-2315 (($) 16)) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-4154 (((-112) $) 12)) (-3965 (((-1132) $) NIL)) (-3854 (((-112) $) 11)) (-2942 (((-871) $) 24) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 8) (($ (-573)) NIL (-2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))))) (-1545 (((-780)) 51 (|has| |#1| (-857)) CONST)) (-3507 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) 37 (|has| |#1| (-21)) CONST)) (-2144 (($) 48 (|has| |#1| (-857)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) 35)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) 59 (|has| |#1| (-857)))) (-3093 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3077 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-931)) NIL (|has| |#1| (-857))) (($ $ (-780)) NIL (|has| |#1| (-857)))) (* (($ $ $) 55 (|has| |#1| (-857))) (($ (-573) $) 42 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-21))))) -(((-852 |#1|) (-13 (-1112) (-420 |#1|) (-10 -8 (-15 -2305 ($)) (-15 -2315 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -1428 ((-1132) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) (-1112)) (T -852)) -((-2305 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112)))) (-2315 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112))))) -(-13 (-1112) (-420 |#1|) (-10 -8 (-15 -2305 ($)) (-15 -2315 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -1428 ((-1132) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-1486 (((-780)) 23)) (-2819 (($) 26)) (-3659 (($ $ $) 14) (($) 22 T CONST)) (-3751 (($ $ $) 15) (($) 21 T CONST)) (-3589 (((-931) $) 25)) (-3180 (((-1171) $) 10)) (-2575 (($ (-931)) 24)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) -(((-853) (-141)) (T -853)) -((-3659 (*1 *1) (-4 *1 (-853))) (-3751 (*1 *1) (-4 *1 (-853)))) -(-13 (-859) (-376) (-10 -8 (-15 -3659 ($) -1705) (-15 -3751 ($) -1705))) -(((-102) . T) ((-622 (-871)) . T) ((-376) . T) ((-859) . T) ((-1112) . T)) -((-2265 (((-112) (-1280 |#2|) (-1280 |#2|)) 19)) (-2353 (((-112) (-1280 |#2|) (-1280 |#2|)) 20)) (-1401 (((-112) (-1280 |#2|) (-1280 |#2|)) 16))) -(((-854 |#1| |#2|) (-10 -7 (-15 -1401 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2265 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2353 ((-112) (-1280 |#2|) (-1280 |#2|)))) (-780) (-801)) (T -854)) -((-2353 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780)))) (-2265 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780)))) (-1401 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) -(-10 -7 (-15 -1401 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2265 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2353 ((-112) (-1280 |#2|) (-1280 |#2|)))) -((-2848 (((-112) $ $) 7)) (-2579 (($) 24 T CONST)) (-2232 (((-3 $ "failed") $) 27)) (-1959 (((-112) $) 25)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-931)) 22) (($ $ (-780)) 26)) (* (($ $ $) 21))) -(((-855) (-141)) (T -855)) -NIL -(-13 (-866) (-735)) -(((-102) . T) ((-622 (-871)) . T) ((-735) . T) ((-866) . T) ((-859) . T) ((-1124) . T) ((-1112) . T)) -((-1983 (((-573) $) 21)) (-4152 (((-112) $) 10)) (-3339 (((-112) $) 12)) (-1660 (($ $) 23))) -(((-856 |#1|) (-10 -8 (-15 -1660 (|#1| |#1|)) (-15 -1983 ((-573) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -4152 ((-112) |#1|))) (-857)) (T -856)) -NIL -(-10 -8 (-15 -1660 (|#1| |#1|)) (-15 -1983 ((-573) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -4152 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-1983 (((-573) $) 37)) (-2579 (($) 24 T CONST)) (-2232 (((-3 $ "failed") $) 42)) (-4152 (((-112) $) 39)) (-1959 (((-112) $) 44)) (-3339 (((-112) $) 38)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 46)) (-1545 (((-780)) 47 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 (($ $) 36)) (-2132 (($) 23 T CONST)) (-2144 (($) 45 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3093 (($ $ $) 31) (($ $) 30)) (-3077 (($ $ $) 21)) (** (($ $ (-780)) 43) (($ $ (-931)) 40)) (* (($ (-931) $) 22) (($ (-780) $) 26) (($ (-573) $) 29) (($ $ $) 41))) -(((-857) (-141)) (T -857)) -((-4152 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-573)))) (-1660 (*1 *1 *1) (-4 *1 (-857)))) -(-13 (-800) (-1061) (-735) (-10 -8 (-15 -4152 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1983 ((-573) $)) (-15 -1660 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3659 (($ $ $) 12)) (-3751 (($ $ $) 11)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 15)) (-3015 (((-112) $ $) 13)) (-3027 (((-112) $ $) 16))) -(((-858 |#1|) (-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3015 ((-112) |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) (-859)) (T -858)) -NIL -(-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3015 ((-112) |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) -(((-859) (-141)) (T -859)) -((-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3751 (*1 *1 *1 *1) (-4 *1 (-859))) (-3659 (*1 *1 *1 *1) (-4 *1 (-859)))) -(-13 (-1112) (-10 -8 (-15 -3005 ((-112) $ $)) (-15 -3015 ((-112) $ $)) (-15 -3040 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -3751 ($ $ $)) (-15 -3659 ($ $ $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2843 (($ $ $) 49)) (-4151 (($ $ $) 48)) (-2674 (($ $ $) 46)) (-4376 (($ $ $) 55)) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 50)) (-2683 (((-3 $ "failed") $ $) 53)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3246 (($ $) 39)) (-2128 (($ $ $) 43)) (-3326 (($ $ $) 42)) (-2606 (($ $ $) 51)) (-4319 (($ $ $) 57)) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 45)) (-3541 (((-3 $ "failed") $ $) 52)) (-2837 (((-3 $ "failed") $ |#2|) 32)) (-3257 ((|#2| $) 36)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#2|) 13)) (-1920 (((-653 |#2|) $) 21)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-860 |#1| |#2|) (-10 -8 (-15 -2606 (|#1| |#1| |#1|)) (-15 -2860 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2742 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -2942 ((-871) |#1|))) (-861 |#2|) (-1061)) (T -860)) -NIL -(-10 -8 (-15 -2606 (|#1| |#1| |#1|)) (-15 -2860 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2742 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2843 (($ $ $) 50 (|has| |#1| (-371)))) (-4151 (($ $ $) 51 (|has| |#1| (-371)))) (-2674 (($ $ $) 53 (|has| |#1| (-371)))) (-4376 (($ $ $) 48 (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 47 (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) 49 (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 52 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) 80 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 77 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 74)) (-2205 (((-573) $) 79 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 76 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 75)) (-1391 (($ $) 69)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-461)))) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 67)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 62 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63 (|has| |#1| (-565)))) (-4036 (((-780) $) 71)) (-2128 (($ $ $) 57 (|has| |#1| (-371)))) (-3326 (($ $ $) 58 (|has| |#1| (-371)))) (-2606 (($ $ $) 46 (|has| |#1| (-371)))) (-4319 (($ $ $) 55 (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 54 (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) 56 (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 59 (|has| |#1| (-371)))) (-1369 ((|#1| $) 70)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-565)))) (-2565 (((-780) $) 72)) (-3257 ((|#1| $) 61 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 78 (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 73)) (-1920 (((-653 |#1|) $) 66)) (-4317 ((|#1| $ (-780)) 68)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2900 ((|#1| $ |#1| |#1|) 65)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-861 |#1|) (-141) (-1061)) (T -861)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-653 *3)))) (-2900 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-4005 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3007 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3326 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2128 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-3541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-4319 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2742 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-861 *3)))) (-2674 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2792 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-4151 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2843 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2683 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2860 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-861 *3)))) (-2606 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(-13 (-1061) (-111 |t#1| |t#1|) (-420 |t#1|) (-10 -8 (-15 -2565 ((-780) $)) (-15 -4036 ((-780) $)) (-15 -1369 (|t#1| $)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ (-780))) (-15 -4334 ($ |t#1| (-780))) (-15 -1920 ((-653 |t#1|) $)) (-15 -2900 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -2837 ((-3 $ "failed") $ |t#1|)) (-15 -4005 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -3007 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -3257 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -3326 ($ $ $)) (-15 -2128 ($ $ $)) (-15 -3541 ((-3 $ "failed") $ $)) (-15 -4319 ($ $ $)) (-15 -2742 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -2674 ($ $ $)) (-15 -2792 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4151 ($ $ $)) (-15 -2843 ($ $ $)) (-15 -2683 ((-3 $ "failed") $ $)) (-15 -4376 ($ $ $)) (-15 -2860 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -2606 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-420 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-3786 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2792 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-371)))) (-3007 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-565)))) (-3028 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-371)))) (-2900 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-862 |#1| |#2|) (-10 -7 (-15 -3786 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2900 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-565)) (PROGN (-15 -4005 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3007 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2792 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1061) (-861 |#1|)) (T -862)) -((-2792 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-3028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-3007 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-4005 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-2900 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1061)) (-5 *1 (-862 *2 *3)) (-4 *3 (-861 *2)))) (-3786 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1061)) (-5 *1 (-862 *5 *2)) (-4 *2 (-861 *5))))) -(-10 -7 (-15 -3786 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2900 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-565)) (PROGN (-15 -4005 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3007 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2792 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 34 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-3471 (((-871) $ (-871)) NIL)) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 30 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 28 (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 32 (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) 15)) (-2132 (($) NIL T CONST)) (-2144 (($) 23 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 19) (($ $ (-780)) 24)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-863 |#1| |#2| |#3|) (-13 (-861 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))))) (-1061) (-99 |#1|) (-1 |#1| |#1|)) (T -863)) -((-3471 (*1 *2 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-863 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-861 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#2| (-371)))) (-4151 (($ $ $) NIL (|has| |#2| (-371)))) (-2674 (($ $ $) NIL (|has| |#2| (-371)))) (-4376 (($ $ $) NIL (|has| |#2| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) 17)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#2| (-371)))) (-3326 (($ $ $) NIL (|has| |#2| (-371)))) (-2606 (($ $ $) NIL (|has| |#2| (-371)))) (-4319 (($ $ $) NIL (|has| |#2| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-2565 (((-780) $) NIL)) (-3257 ((|#2| $) NIL (|has| |#2| (-461)))) (-2942 (((-871) $) 24) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (($ (-1276 |#1|)) 19)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#2| $ |#2| |#2|) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) 13 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-864 |#1| |#2| |#3| |#4|) (-13 (-861 |#2|) (-625 (-1276 |#1|))) (-1189) (-1061) (-99 |#2|) (-1 |#2| |#2|)) (T -864)) -NIL -(-13 (-861 |#2|) (-625 (-1276 |#1|))) -((-2825 ((|#1| (-780) |#1|) 45 (|has| |#1| (-38 (-416 (-573)))))) (-3849 ((|#1| (-780) (-780) |#1|) 36) ((|#1| (-780) |#1|) 24)) (-4397 ((|#1| (-780) |#1|) 40)) (-3449 ((|#1| (-780) |#1|) 38)) (-3946 ((|#1| (-780) |#1|) 37))) -(((-865 |#1|) (-10 -7 (-15 -3946 (|#1| (-780) |#1|)) (-15 -3449 (|#1| (-780) |#1|)) (-15 -4397 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -2825 (|#1| (-780) |#1|)) |%noBranch|)) (-174)) (T -865)) -((-2825 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3849 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3849 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-4397 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3449 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3946 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -3946 (|#1| (-780) |#1|)) (-15 -3449 (|#1| (-780) |#1|)) (-15 -4397 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -2825 (|#1| (-780) |#1|)) |%noBranch|)) -((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-931)) 22)) (* (($ $ $) 21))) -(((-866) (-141)) (T -866)) -NIL -(-13 (-859) (-1124)) -(((-102) . T) ((-622 (-871)) . T) ((-859) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-3082 (((-573) $) 14)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-573)) 13)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11))) -(((-867) (-13 (-859) (-10 -8 (-15 -2942 ($ (-573))) (-15 -3082 ((-573) $))))) (T -867)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-867))))) -(-13 (-859) (-10 -8 (-15 -2942 ($ (-573))) (-15 -3082 ((-573) $)))) -((-3534 (((-700 (-1238)) $ (-1238)) 15)) (-4340 (((-700 (-558)) $ (-558)) 12)) (-1960 (((-780) $ (-129)) 30))) -(((-868 |#1|) (-10 -8 (-15 -1960 ((-780) |#1| (-129))) (-15 -3534 ((-700 (-1238)) |#1| (-1238))) (-15 -4340 ((-700 (-558)) |#1| (-558)))) (-869)) (T -868)) -NIL -(-10 -8 (-15 -1960 ((-780) |#1| (-129))) (-15 -3534 ((-700 (-1238)) |#1| (-1238))) (-15 -4340 ((-700 (-558)) |#1| (-558)))) -((-3534 (((-700 (-1238)) $ (-1238)) 8)) (-4340 (((-700 (-558)) $ (-558)) 9)) (-1960 (((-780) $ (-129)) 7)) (-2034 (((-700 (-130)) $ (-130)) 10)) (-1981 (($ $) 6))) -(((-869) (-141)) (T -869)) -((-2034 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-130))) (-5 *3 (-130)))) (-4340 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-558))) (-5 *3 (-558)))) (-3534 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-1238))) (-5 *3 (-1238)))) (-1960 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *3 (-129)) (-5 *2 (-780))))) -(-13 (-175) (-10 -8 (-15 -2034 ((-700 (-130)) $ (-130))) (-15 -4340 ((-700 (-558)) $ (-558))) (-15 -3534 ((-700 (-1238)) $ (-1238))) (-15 -1960 ((-780) $ (-129))))) +(-13 (-860) (-25)) +(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 25)) (-2599 (((-3 $ "failed") $ $) 27)) (-3063 (($) 24 T CONST)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3073 (($ $ $) 21)) (* (($ (-934) $) 22) (($ (-781) $) 26))) +(((-805) (-141)) (T -805)) +NIL +(-13 (-802) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1115) . T)) +((-1997 (((-112) $) 42)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-2222 (((-3 (-417 (-574)) "failed") $) 78)) (-4002 (((-112) $) 72)) (-2258 (((-417 (-574)) $) 76)) (-2681 ((|#2| $) 26)) (-1787 (($ (-1 |#2| |#2|) $) 23)) (-1327 (($ $) 58)) (-1846 (((-546) $) 67)) (-2190 (($ $) 21)) (-2950 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-3781 (((-781)) 10)) (-2366 ((|#2| $) 71)) (-2985 (((-112) $ $) 30)) (-3008 (((-112) $ $) 69)) (-3089 (($ $) 32) (($ $ $) NIL)) (-3073 (($ $ $) 31)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-806 |#1| |#2|) (-10 -8 (-15 -3008 ((-112) |#1| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806)) +((-3781 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4))))) +(-10 -8 (-15 -3008 ((-112) |#1| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-1497 (((-781)) 58 (|has| |#1| (-377)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2216 (((-574) $) 99 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 95)) (-2978 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 84)) (-2222 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-4002 (((-112) $) 73 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2834 (($) 61 (|has| |#1| (-377)))) (-2276 (((-112) $) 35)) (-1848 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2681 ((|#1| $) 76)) (-3632 (($ $ $) 67 (|has| |#1| (-860)))) (-2953 (($ $ $) 66 (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) 86)) (-3880 (((-934) $) 60 (|has| |#1| (-377)))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 70 (|has| |#1| (-372)))) (-2590 (($ (-934)) 59 (|has| |#1| (-377)))) (-3503 ((|#1| $) 81)) (-4334 ((|#1| $) 82)) (-3767 ((|#1| $) 83)) (-4013 ((|#1| $) 77)) (-1663 ((|#1| $) 78)) (-3927 ((|#1| $) 79)) (-1368 ((|#1| $) 80)) (-3939 (((-1135) $) 11)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 87 (|has| |#1| (-524 (-1192) |#1|)))) (-2209 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1846 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-2190 (($ $) 85)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1053 (-417 (-574)))))) (-3270 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2366 ((|#1| $) 74 (|has| |#1| (-1075)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-807 |#1|) (-141) (-174)) (T -807)) +((-2190 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1848 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2222 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1327 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) +(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -2190 ($ $)) (-15 -4222 (|t#1| $)) (-15 -3767 (|t#1| $)) (-15 -4334 (|t#1| $)) (-15 -3503 (|t#1| $)) (-15 -1368 (|t#1| $)) (-15 -3927 (|t#1| $)) (-15 -1663 (|t#1| $)) (-15 -4013 (|t#1| $)) (-15 -2681 (|t#1| $)) (-15 -1848 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -2366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1327 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) |has| |#1| (-294 |#1| |#1|))) +((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))) +(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-1014 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2216 ((|#1| $) NIL) (((-1014 |#1|) $) 33) (((-574) $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-574))) (|has| |#1| (-1053 (-574))))) (((-417 (-574)) $) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-2978 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 16)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4002 (((-112) $) NIL (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2834 (($) NIL (|has| |#1| (-377)))) (-2276 (((-112) $) NIL)) (-1848 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1014 |#1|) (-1014 |#1|)) 29)) (-2681 ((|#1| $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3503 ((|#1| $) 22)) (-4334 ((|#1| $) 20)) (-3767 ((|#1| $) 18)) (-4013 ((|#1| $) 26)) (-1663 ((|#1| $) 25)) (-3927 ((|#1| $) 24)) (-1368 ((|#1| $) 23)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2190 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1014 |#1|)) 30) (($ (-417 (-574))) NIL (-2832 (|has| (-1014 |#1|) (-1053 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2366 ((|#1| $) NIL (|has| |#1| (-1075)))) (-2143 (($) 8 T CONST)) (-2155 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1014 |#1|)) (-10 -8 (-15 -1848 ($ (-1014 |#1|) (-1014 |#1|))))) (-174)) (T -809)) +((-1848 (*1 *1 *2 *2) (-12 (-5 *2 (-1014 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) +(-13 (-807 |#1|) (-421 (-1014 |#1|)) (-10 -8 (-15 -1848 ($ (-1014 |#1|) (-1014 |#1|))))) +((-2863 (((-112) $ $) 7)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-1625 (((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2985 (((-112) $ $) 6))) +(((-810) (-141)) (T -810)) +((-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) (-1625 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1050))))) +(-13 (-1115) (-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1625 ((-1050) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2370 (((-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#3| |#2| (-1192)) 19))) +(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -2370 ((-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#3| |#2| (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972)) (-666 |#2|)) (T -811)) +((-2370 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1218) (-972))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3907 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -2370 ((-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#3| |#2| (-1192)))) +((-2613 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192)) 18) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192)) 24) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192)) 26) (((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192)) 37) (((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192)) 35))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192))) (-15 -2613 ((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192))) (-15 -2613 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -2613 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -812)) +((-2613 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-2613 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))))) (-2613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1192)) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3907 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1218) (-972))))) (-2613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3907 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-2613 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)))) (-2613 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)))) (-2613 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1192)) (-4 *6 (-13 (-29 *5) (-1218) (-972))) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1283 *6))) (-5 *1 (-812 *5 *6)))) (-2613 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1283 *7))))) +(-10 -7 (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-699 |#2|) (-1283 |#2|) (-1192))) (-15 -2613 ((-3 (-654 (-1283 |#2|)) "failed") (-699 |#2|) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#2|)) (|:| -3907 (-654 (-1283 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1192))) (-15 -2613 ((-3 (-2 (|:| |particular| |#2|) (|:| -3907 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1192))) (-15 -2613 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -2613 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) +((-3298 (($) 9)) (-4254 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1773 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-1948 (($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-2181 (($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-3527 (((-1288)) 11))) +(((-813) (-10 -8 (-15 -3298 ($)) (-15 -3527 ((-1288))) (-15 -1773 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2181 ($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -1948 ($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -4254 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813)) +((-4254 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-3527 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-813)))) (-3298 (*1 *1) (-5 *1 (-813)))) +(-10 -8 (-15 -3298 ($)) (-15 -3527 ((-1288))) (-15 -1773 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2181 ($ (-654 (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -1948 ($ (-2 (|:| -3666 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -4254 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3086 ((|#2| |#2| (-1192)) 17)) (-2686 ((|#2| |#2| (-1192)) 56)) (-2024 (((-1 |#2| |#2|) (-1192)) 11))) +(((-814 |#1| |#2|) (-10 -7 (-15 -3086 (|#2| |#2| (-1192))) (-15 -2686 (|#2| |#2| (-1192))) (-15 -2024 ((-1 |#2| |#2|) (-1192)))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1218) (-972))) (T -814)) +((-2024 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1218) (-972))))) (-2686 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972))))) (-3086 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972)))))) +(-10 -7 (-15 -3086 (|#2| |#2| (-1192))) (-15 -2686 (|#2| |#2| (-1192))) (-15 -2024 ((-1 |#2| |#2|) (-1192)))) +((-2613 (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1050) (-818) (-1078)) 120) (((-1050) (-818)) 121)) (-3942 (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078)) 80) (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818)) 82))) +(((-815) (-10 -7 (-15 -2613 ((-1050) (-818))) (-15 -2613 ((-1050) (-818) (-1078))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078))))) (T -815)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-815)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-815)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1050)) (-5 *1 (-815))))) +(-10 -7 (-15 -2613 ((-1050) (-818))) (-15 -2613 ((-1050) (-818) (-1078))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -2613 ((-1050) (-1283 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-818) (-1078)))) +((-3770 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3907 (-654 |#4|))) (-663 |#4|) |#4|) 33))) +(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3770 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3907 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816)) +((-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4))))) +(-10 -7 (-15 -3770 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3907 (-654 |#4|))) (-663 |#4|) |#4|))) +((-1809 (((-2 (|:| -4096 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-2997 (((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3|) 21)) (-3121 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1785 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105))) +(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -1785 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3| |#2|)) (-15 -3121 (|#2| |#3| |#1|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4| |#2|)) (-15 -3121 (|#2| |#4| |#1|)) (-15 -1809 ((-2 (|:| -4096 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-417 (-574)))) (-1259 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817)) +((-1809 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-2 (|:| -4096 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-3121 (*1 *2 *3 *4) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-2997 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2705 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2705 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-3121 (*1 *2 *3 *4) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-2997 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2705 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2705 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1785 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1259 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1259 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))) +(-10 -7 (-15 -1785 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -1785 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#3| |#2|)) (-15 -3121 (|#2| |#3| |#1|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4|)) (-15 -2997 ((-654 (-2 (|:| -3332 |#2|) (|:| -2705 |#2|))) |#4| |#2|)) (-15 -3121 (|#2| |#4| |#1|)) (-15 -1809 ((-2 (|:| -4096 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) +((-2863 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-818) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818))))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-1819 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-1928 (((-654 (-2 (|:| |poly| |#2|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-1624 (((-654 (-2 (|:| |deg| (-781)) (|:| -4096 |#2|))) |#3|) 122)) (-1863 ((|#2| |#3|) 42)) (-2764 (((-654 (-2 (|:| -1716 |#1|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-2022 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#2| |#3|)) (-15 -1624 ((-654 (-2 (|:| |deg| (-781)) (|:| -4096 |#2|))) |#3|)) (-15 -2764 ((-654 (-2 (|:| -1716 |#1|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -1928 ((-654 (-2 (|:| |poly| |#2|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -1819 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2022 (|#3| |#3| |#2|)) (-15 -2022 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1053 (-417 (-574)))) (-1259 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819)) +((-2022 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-2022 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-1259 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-1819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1188 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4096 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-1928 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4096 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-2764 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -1716 *5) (|:| -4096 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4096 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1863 (*1 *2 *3) (-12 (-4 *2 (-1259 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2)))))) +(-10 -7 (-15 -1863 (|#2| |#3|)) (-15 -1624 ((-654 (-2 (|:| |deg| (-781)) (|:| -4096 |#2|))) |#3|)) (-15 -2764 ((-654 (-2 (|:| -1716 |#1|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -1928 ((-654 (-2 (|:| |poly| |#2|) (|:| -4096 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -1819 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1188 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2022 (|#3| |#3| |#2|)) (-15 -2022 (|#3| |#3| (-417 |#2|)))) +((-2429 (((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-1982 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91))) +(((-820 |#1| |#2|) (-10 -7 (-15 -2429 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -2429 ((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -2429 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -2429 ((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1982 (|#2| (-663 (-417 |#2|)))) (-15 -1982 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -820)) +((-1982 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| -3907 (-654 (-417 *6))) (|:| -4226 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| -3907 (-654 (-417 *6))) (|:| -4226 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-820 *5 *6))))) +(-10 -7 (-15 -2429 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -2429 ((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -2429 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -3907 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -2429 ((-2 (|:| -3907 (-654 (-417 |#2|))) (|:| -4226 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1982 (|#2| (-663 (-417 |#2|)))) (-15 -1982 (|#2| (-664 |#2| (-417 |#2|))))) +((-2895 (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|) 49))) +(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2895 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1259 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821)) +((-2895 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1259 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -4226 (-699 *6)) (|:| |vec| (-1283 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) +(-10 -7 (-15 -2895 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) |#5| |#4|))) +((-1819 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-3195 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-1928 (((-654 (-2 (|:| |poly| |#2|) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96))) +(((-822 |#1| |#2|) (-10 -7 (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -1819 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1928 ((-654 (-2 (|:| |poly| |#2|) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))) (-1259 |#1|)) (T -822)) +((-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-1928 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4096 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-1819 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4096 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -1819 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1928 ((-654 (-2 (|:| |poly| |#2|) (|:| -4096 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -3195 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -3195 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) +((-1947 (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4096 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|)) 15)) (-3537 (((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3907 (-654 |#1|))) |#2| |#1|)) 116)) (-2613 (((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -3907 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed") |#2| |#1|)) 54))) +(((-823 |#1| |#2|) (-10 -7 (-15 -1947 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4096 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|))) (-15 -1947 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -3907 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3537 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3907 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823)) +((-3537 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3907 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1283 *6) "failed")) (|:| -3907 (-654 (-1283 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1283 *6)))) (-2613 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3907 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1283 *6)) (|:| -3907 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *6)))) (-1947 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -4226 (-699 *6)) (|:| |vec| (-1283 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *5)))) (-1947 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5)) (|:| -4096 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *6 (-666 *5))))) +(-10 -7 (-15 -1947 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)) (|:| -4096 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1283 |#1|))) (-15 -1947 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#1|))) (-699 |#2|) (-1283 |#1|))) (-15 -2613 ((-3 (-2 (|:| |particular| (-1283 |#1|)) (|:| -3907 (-699 |#1|))) "failed") (-699 |#1|) (-1283 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3907 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3537 ((-2 (|:| |particular| (-3 (-1283 |#1|) "failed")) (|:| -3907 (-654 (-1283 |#1|)))) (-699 |#2|) (-1283 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3907 (-654 |#1|))) |#2| |#1|)))) +((-3836 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-2262 (((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-4125 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46))) +(((-824 |#1| |#2|) (-10 -7 (-15 -3836 ((-699 |#1|) (-654 |#1|))) (-15 -3836 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -2262 ((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -4125 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824)) +((-4125 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-2262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1283 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))) +(-10 -7 (-15 -3836 ((-699 |#1|) (-654 |#1|))) (-15 -3836 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -2262 ((-3 (-1283 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -4125 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-1997 (((-112) $) NIL (|has| |#2| (-132)))) (-2365 (($ (-934)) NIL (|has| |#2| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) NIL (|has| |#2| (-803)))) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#2| (-377)))) (-2496 (((-574) $) NIL (|has| |#2| (-858)))) (-3134 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) ((|#2| $) NIL (|has| |#2| (-1115)))) (-4232 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1064)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1064))) (((-699 |#2|) (-1283 $)) NIL (|has| |#2| (-1064)))) (-2978 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2834 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ (-574)) NIL)) (-1348 (((-112) $) NIL (|has| |#2| (-858)))) (-1874 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (|has| |#2| (-736)))) (-3081 (((-112) $) NIL (|has| |#2| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-4187 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2464 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#2| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#2| (-1115)))) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#2| (-377)))) (-3939 (((-1135) $) NIL (|has| |#2| (-1115)))) (-2924 ((|#2| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-2546 ((|#2| $ $) NIL (|has| |#2| (-1064)))) (-4246 (($ (-1283 |#2|)) NIL)) (-2900 (((-135)) NIL (|has| |#2| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#2|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#2| (-1053 (-574))) (|has| |#2| (-1115))) (|has| |#2| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1053 (-417 (-574)))) (|has| |#2| (-1115)))) (($ |#2|) NIL (|has| |#2| (-1115))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3781 (((-781)) NIL (|has| |#2| (-1064)) CONST)) (-4259 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-2235 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#2| (-858)))) (-2143 (($) NIL (|has| |#2| (-132)) CONST)) (-2155 (($) NIL (|has| |#2| (-736)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#2| (-913 (-1192))) (|has| |#2| (-1064)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1064))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1064)))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2985 (((-112) $ $) NIL (|has| |#2| (-1115)))) (-3029 (((-112) $ $) NIL (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3008 (((-112) $ $) 11 (-2832 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $ $) NIL (|has| |#2| (-1064))) (($ $) NIL (|has| |#2| (-1064)))) (-3073 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-934)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1064))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-934) $) NIL (|has| |#2| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1283 |#2|) (-1283 |#2|))) (T -825)) +NIL +(-244 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2261 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1192)) NIL)) (-1724 (((-781) $) NIL) (((-781) $ (-1192)) NIL)) (-4349 (((-654 (-828 (-1192))) $) NIL)) (-4172 (((-1188 $) $ (-828 (-1192))) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1192)))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1841 (($ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-828 (-1192)) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL) (((-3 (-1140 |#1| (-1192)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-828 (-1192)) $) NIL) (((-1192) $) NIL) (((-1140 |#1| (-1192)) $) NIL)) (-3372 (($ $ $ (-828 (-1192))) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1192))) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-541 (-828 (-1192))) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1192)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1192)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ (-1192)) NIL) (((-781) $) NIL)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-828 (-1192))) NIL) (($ (-1188 $) (-828 (-1192))) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-828 (-1192))) NIL)) (-2682 (((-541 (-828 (-1192))) $) NIL) (((-781) $ (-828 (-1192))) NIL) (((-654 (-781)) $ (-654 (-828 (-1192)))) NIL)) (-3577 (($ (-1 (-541 (-828 (-1192))) (-541 (-828 (-1192)))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1352 (((-1 $ (-781)) (-1192)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1407 (((-3 (-828 (-1192)) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 (((-828 (-1192)) $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-2056 (((-112) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-828 (-1192))) (|:| -3843 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1192)) |#1|) NIL) (($ $ (-654 (-828 (-1192))) (-654 |#1|)) NIL) (($ $ (-828 (-1192)) $) NIL) (($ $ (-654 (-828 (-1192))) (-654 $)) NIL) (($ $ (-1192) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-3902 (($ $ (-828 (-1192))) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-828 (-1192))) NIL) (($ $ (-654 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1635 (((-654 (-1192)) $) NIL)) (-4144 (((-541 (-828 (-1192))) $) NIL) (((-781) $ (-828 (-1192))) NIL) (((-654 (-781)) $ (-654 (-828 (-1192)))) NIL) (((-781) $ (-1192)) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1192)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1192))) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1192))) NIL) (($ (-1192)) NIL) (($ (-1140 |#1| (-1192))) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-541 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-828 (-1192))) NIL) (($ $ (-654 (-828 (-1192)))) NIL) (($ $ (-828 (-1192)) (-781)) NIL) (($ $ (-654 (-828 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-826 |#1|) (-13 (-260 |#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) (-1053 (-1140 |#1| (-1192)))) (-1064)) (T -826)) +NIL +(-13 (-260 |#1| (-1192) (-828 (-1192)) (-541 (-828 (-1192)))) (-1053 (-1140 |#1| (-1192)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-4319 (($ $) NIL (|has| |#2| (-372)))) (-1731 (((-112) $) NIL (|has| |#2| (-372)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#2| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-372)))) (-1526 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#2| (-372)))) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-2941 (((-112) $) NIL (|has| |#2| (-372)))) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2844 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 20 (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#2| (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-3575 (((-781) $) NIL (|has| |#2| (-372)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-372)))) (-3878 (($ $) 13) (($ $ (-781)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) 15 (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372))))) +(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1115) (-913 |#1|) |#1|) (T -827)) +NIL +(-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1724 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3837 (((-781) $) 11)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1352 (($ |#1| (-781)) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-4259 (((-112) $ $) NIL)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-828 |#1|) (-273 |#1|) (-860)) (T -828)) +NIL +(-273 |#1|) +((-2863 (((-112) $ $) NIL)) (-1665 (((-654 |#1|) $) 38)) (-1497 (((-781) $) NIL)) (-3063 (($) NIL T CONST)) (-2596 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2934 (($ $) 42)) (-2978 (((-3 $ "failed") $) NIL)) (-2557 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2276 (((-112) $) NIL)) (-3757 ((|#1| $ (-574)) NIL)) (-3661 (((-781) $ (-574)) NIL)) (-1792 (($ $) 54)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-3028 (($ (-1 |#1| |#1|) $) NIL)) (-3826 (($ (-1 (-781) (-781)) $) NIL)) (-4365 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3074 (((-112) $ $) 51)) (-4108 (((-781) $) 34)) (-1938 (((-1174) $) NIL)) (-1480 (($ $ $) NIL)) (-1533 (($ $ $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 ((|#1| $) 41)) (-2679 (((-654 (-2 (|:| |gen| |#1|) (|:| -1619 (-781)))) $) NIL)) (-2696 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2839 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 20 T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 53)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2924 (|#1| $)) (-15 -2934 ($ $)) (-15 -1792 ($ $)) (-15 -3074 ((-112) $ $)) (-15 -4365 ((-3 $ "failed") $ |#1|)) (-15 -2596 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-781) $)) (-15 -1665 ((-654 |#1|) $)))) (-860)) (T -829)) +((-2924 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4365 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2596 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2839 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) +(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2924 (|#1| $)) (-15 -2934 ($ $)) (-15 -1792 ($ $)) (-15 -3074 ((-112) $ $)) (-15 -4365 ((-3 $ "failed") $ |#1|)) (-15 -2596 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-781) $)) (-15 -1665 ((-654 |#1|) $)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-2496 (((-574) $) 59)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-1348 (((-112) $) 57)) (-2276 (((-112) $) 35)) (-3081 (((-112) $) 58)) (-3632 (($ $ $) 56)) (-2953 (($ $ $) 55)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2366 (($ $) 60)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 53)) (-3017 (((-112) $ $) 52)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 54)) (-3008 (((-112) $ $) 51)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-830) (-141)) (T -830)) +NIL +(-13 (-566) (-858)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2847 (($ (-1135)) 7)) (-3996 (((-112) $ (-1174) (-1135)) 15)) (-3387 (((-832) $) 12)) (-3464 (((-832) $) 11)) (-2278 (((-1288) $) 9)) (-3895 (((-112) $ (-1135)) 16))) +(((-831) (-10 -8 (-15 -2847 ($ (-1135))) (-15 -2278 ((-1288) $)) (-15 -3464 ((-832) $)) (-15 -3387 ((-832) $)) (-15 -3996 ((-112) $ (-1174) (-1135))) (-15 -3895 ((-112) $ (-1135))))) (T -831)) +((-3895 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-831)))) (-3996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-831)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-831)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-831))))) +(-10 -8 (-15 -2847 ($ (-1135))) (-15 -2278 ((-1288) $)) (-15 -3464 ((-832) $)) (-15 -3387 ((-832) $)) (-15 -3996 ((-112) $ (-1174) (-1135))) (-15 -3895 ((-112) $ (-1135)))) +((-1414 (((-1288) $ (-833)) 12)) (-2044 (((-1288) $ (-1192)) 32)) (-3367 (((-1288) $ (-1174) (-1174)) 34)) (-1542 (((-1288) $ (-1174)) 33)) (-2032 (((-1288) $) 19)) (-1441 (((-1288) $ (-574)) 28)) (-3013 (((-1288) $ (-227)) 30)) (-1690 (((-1288) $) 18)) (-3196 (((-1288) $) 26)) (-3340 (((-1288) $) 25)) (-3377 (((-1288) $) 23)) (-4069 (((-1288) $) 24)) (-3540 (((-1288) $) 22)) (-2290 (((-1288) $) 21)) (-3466 (((-1288) $) 20)) (-1931 (((-1288) $) 16)) (-1432 (((-1288) $) 17)) (-3665 (((-1288) $) 15)) (-3219 (((-1288) $) 14)) (-2395 (((-1288) $) 13)) (-2352 (($ (-1174) (-833)) 9)) (-3076 (($ (-1174) (-1174) (-833)) 8)) (-2320 (((-1192) $) 51)) (-3032 (((-1192) $) 55)) (-2729 (((-2 (|:| |cd| (-1174)) (|:| -2041 (-1174))) $) 54)) (-3505 (((-1174) $) 52)) (-1491 (((-1288) $) 41)) (-3830 (((-574) $) 49)) (-1774 (((-227) $) 50)) (-3406 (((-1288) $) 40)) (-4379 (((-1288) $) 48)) (-1832 (((-1288) $) 47)) (-3835 (((-1288) $) 45)) (-2441 (((-1288) $) 46)) (-4185 (((-1288) $) 44)) (-4274 (((-1288) $) 43)) (-1638 (((-1288) $) 42)) (-1986 (((-1288) $) 38)) (-3075 (((-1288) $) 39)) (-2254 (((-1288) $) 37)) (-2444 (((-1288) $) 36)) (-3349 (((-1288) $) 35)) (-4297 (((-1288) $) 11))) +(((-832) (-10 -8 (-15 -3076 ($ (-1174) (-1174) (-833))) (-15 -2352 ($ (-1174) (-833))) (-15 -4297 ((-1288) $)) (-15 -1414 ((-1288) $ (-833))) (-15 -2395 ((-1288) $)) (-15 -3219 ((-1288) $)) (-15 -3665 ((-1288) $)) (-15 -1931 ((-1288) $)) (-15 -1432 ((-1288) $)) (-15 -1690 ((-1288) $)) (-15 -2032 ((-1288) $)) (-15 -3466 ((-1288) $)) (-15 -2290 ((-1288) $)) (-15 -3540 ((-1288) $)) (-15 -3377 ((-1288) $)) (-15 -4069 ((-1288) $)) (-15 -3340 ((-1288) $)) (-15 -3196 ((-1288) $)) (-15 -1441 ((-1288) $ (-574))) (-15 -3013 ((-1288) $ (-227))) (-15 -2044 ((-1288) $ (-1192))) (-15 -1542 ((-1288) $ (-1174))) (-15 -3367 ((-1288) $ (-1174) (-1174))) (-15 -3349 ((-1288) $)) (-15 -2444 ((-1288) $)) (-15 -2254 ((-1288) $)) (-15 -1986 ((-1288) $)) (-15 -3075 ((-1288) $)) (-15 -3406 ((-1288) $)) (-15 -1491 ((-1288) $)) (-15 -1638 ((-1288) $)) (-15 -4274 ((-1288) $)) (-15 -4185 ((-1288) $)) (-15 -3835 ((-1288) $)) (-15 -2441 ((-1288) $)) (-15 -1832 ((-1288) $)) (-15 -4379 ((-1288) $)) (-15 -3830 ((-574) $)) (-15 -1774 ((-227) $)) (-15 -2320 ((-1192) $)) (-15 -3505 ((-1174) $)) (-15 -2729 ((-2 (|:| |cd| (-1174)) (|:| -2041 (-1174))) $)) (-15 -3032 ((-1192) $)))) (T -832)) +((-3032 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1174)) (|:| -2041 (-1174)))) (-5 *1 (-832)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-832)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-1542 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-1441 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1288)) (-5 *1 (-832)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832)))) (-3076 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) +(-10 -8 (-15 -3076 ($ (-1174) (-1174) (-833))) (-15 -2352 ($ (-1174) (-833))) (-15 -4297 ((-1288) $)) (-15 -1414 ((-1288) $ (-833))) (-15 -2395 ((-1288) $)) (-15 -3219 ((-1288) $)) (-15 -3665 ((-1288) $)) (-15 -1931 ((-1288) $)) (-15 -1432 ((-1288) $)) (-15 -1690 ((-1288) $)) (-15 -2032 ((-1288) $)) (-15 -3466 ((-1288) $)) (-15 -2290 ((-1288) $)) (-15 -3540 ((-1288) $)) (-15 -3377 ((-1288) $)) (-15 -4069 ((-1288) $)) (-15 -3340 ((-1288) $)) (-15 -3196 ((-1288) $)) (-15 -1441 ((-1288) $ (-574))) (-15 -3013 ((-1288) $ (-227))) (-15 -2044 ((-1288) $ (-1192))) (-15 -1542 ((-1288) $ (-1174))) (-15 -3367 ((-1288) $ (-1174) (-1174))) (-15 -3349 ((-1288) $)) (-15 -2444 ((-1288) $)) (-15 -2254 ((-1288) $)) (-15 -1986 ((-1288) $)) (-15 -3075 ((-1288) $)) (-15 -3406 ((-1288) $)) (-15 -1491 ((-1288) $)) (-15 -1638 ((-1288) $)) (-15 -4274 ((-1288) $)) (-15 -4185 ((-1288) $)) (-15 -3835 ((-1288) $)) (-15 -2441 ((-1288) $)) (-15 -1832 ((-1288) $)) (-15 -4379 ((-1288) $)) (-15 -3830 ((-574) $)) (-15 -1774 ((-227) $)) (-15 -2320 ((-1192) $)) (-15 -3505 ((-1174) $)) (-15 -2729 ((-2 (|:| |cd| (-1174)) (|:| -2041 (-1174))) $)) (-15 -3032 ((-1192) $))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 13)) (-4259 (((-112) $ $) NIL)) (-2849 (($) 16)) (-3117 (($) 14)) (-1884 (($) 17)) (-1801 (($) 15)) (-2985 (((-112) $ $) 9))) +(((-833) (-13 (-1115) (-10 -8 (-15 -3117 ($)) (-15 -2849 ($)) (-15 -1884 ($)) (-15 -1801 ($))))) (T -833)) +((-3117 (*1 *1) (-5 *1 (-833))) (-2849 (*1 *1) (-5 *1 (-833))) (-1884 (*1 *1) (-5 *1 (-833))) (-1801 (*1 *1) (-5 *1 (-833)))) +(-13 (-1115) (-10 -8 (-15 -3117 ($)) (-15 -2849 ($)) (-15 -1884 ($)) (-15 -1801 ($)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 23) (($ (-1192)) 19)) (-4259 (((-112) $ $) NIL)) (-2360 (((-112) $) 10)) (-3549 (((-112) $) 9)) (-1356 (((-112) $) 11)) (-1920 (((-112) $) 8)) (-2985 (((-112) $ $) 21))) +(((-834) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -1920 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -1356 ((-112) $))))) (T -834)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-834)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -1920 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -1356 ((-112) $)))) +((-2863 (((-112) $ $) NIL)) (-3915 (($ (-834) (-654 (-1192))) 32)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3595 (((-834) $) 33)) (-3068 (((-654 (-1192)) $) 34)) (-2950 (((-872) $) 31)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-835) (-13 (-1115) (-10 -8 (-15 -3595 ((-834) $)) (-15 -3068 ((-654 (-1192)) $)) (-15 -3915 ($ (-834) (-654 (-1192))))))) (T -835)) +((-3595 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-835)))) (-3915 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1192))) (-5 *1 (-835))))) +(-13 (-1115) (-10 -8 (-15 -3595 ((-834) $)) (-15 -3068 ((-654 (-1192)) $)) (-15 -3915 ($ (-834) (-654 (-1192)))))) +((-1579 (((-1288) (-832) (-324 |#1|) (-112)) 23) (((-1288) (-832) (-324 |#1|)) 89) (((-1174) (-324 |#1|) (-112)) 88) (((-1174) (-324 |#1|)) 87))) +(((-836 |#1|) (-10 -7 (-15 -1579 ((-1174) (-324 |#1|))) (-15 -1579 ((-1174) (-324 |#1|) (-112))) (-15 -1579 ((-1288) (-832) (-324 |#1|))) (-15 -1579 ((-1288) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1064))) (T -836)) +((-1579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *6)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *5)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1064))) (-5 *2 (-1174)) (-5 *1 (-836 *5)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1064))) (-5 *2 (-1174)) (-5 *1 (-836 *4))))) +(-10 -7 (-15 -1579 ((-1174) (-324 |#1|))) (-15 -1579 ((-1174) (-324 |#1|) (-112))) (-15 -1579 ((-1288) (-832) (-324 |#1|))) (-15 -1579 ((-1288) (-832) (-324 |#1|) (-112)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-3229 ((|#1| $) 10)) (-4285 (($ |#1|) 9)) (-2276 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) NIL)) (-2682 (((-781) $) NIL)) (-1377 ((|#2| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-4144 (((-781) $) NIL)) (-2950 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3584 ((|#2| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -3229 (|#1| $)))) (-718 |#2|) (-1064)) (T -837)) +((-4285 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-3229 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1064))))) +(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -3229 (|#1| $)))) +((-1579 (((-1288) (-832) $ (-112)) 9) (((-1288) (-832) $) 8) (((-1174) $ (-112)) 7) (((-1174) $) 6))) +(((-838) (-141)) (T -838)) +((-1579 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1288)))) (-1579 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1288)))) (-1579 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1174)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1174))))) +(-13 (-10 -8 (-15 -1579 ((-1174) $)) (-15 -1579 ((-1174) $ (-112))) (-15 -1579 ((-1288) (-832) $)) (-15 -1579 ((-1288) (-832) $ (-112))))) +((-4316 (((-320) (-1174) (-1174)) 12)) (-3622 (((-112) (-1174) (-1174)) 34)) (-3716 (((-112) (-1174)) 33)) (-1960 (((-52) (-1174)) 25)) (-3783 (((-52) (-1174)) 23)) (-4094 (((-52) (-832)) 17)) (-4062 (((-654 (-1174)) (-1174)) 28)) (-4201 (((-654 (-1174))) 27))) +(((-839) (-10 -7 (-15 -4094 ((-52) (-832))) (-15 -3783 ((-52) (-1174))) (-15 -1960 ((-52) (-1174))) (-15 -4201 ((-654 (-1174)))) (-15 -4062 ((-654 (-1174)) (-1174))) (-15 -3716 ((-112) (-1174))) (-15 -3622 ((-112) (-1174) (-1174))) (-15 -4316 ((-320) (-1174) (-1174))))) (T -839)) +((-4316 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-839)))) (-3622 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839)))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)) (-5 *3 (-1174)))) (-4201 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) +(-10 -7 (-15 -4094 ((-52) (-832))) (-15 -3783 ((-52) (-1174))) (-15 -1960 ((-52) (-1174))) (-15 -4201 ((-654 (-1174)))) (-15 -4062 ((-654 (-1174)) (-1174))) (-15 -3716 ((-112) (-1174))) (-15 -3622 ((-112) (-1174) (-1174))) (-15 -4316 ((-320) (-1174) (-1174)))) +((-2863 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3728 (($ $ $) 73)) (-4065 (((-112) $ $) 74)) (-1750 (((-112) $ (-781)) 8)) (-1517 (($ (-654 |#1|)) 69) (($) 68)) (-1657 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3054 (($ $) 63)) (-2818 (($ $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ |#1| $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) 65)) (-2121 (((-112) $ (-781)) 9)) (-3632 ((|#1| $) 79)) (-4099 (($ $ $) 82)) (-4333 (($ $ $) 81)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2953 ((|#1| $) 80)) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22)) (-2627 (($ $ $) 70)) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3939 (((-1135) $) 21)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-1560 (((-654 (-2 (|:| -1918 |#1|) (|:| -3948 (-781)))) $) 62)) (-3062 (($ $ |#1|) 72) (($ $ $) 71)) (-2163 (($) 50) (($ (-654 |#1|)) 49)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 51)) (-2950 (((-872) $) 18)) (-4268 (($ (-654 |#1|)) 67) (($) 66)) (-4259 (((-112) $ $) 23)) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20)) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-840 |#1|) (-141) (-860)) (T -840)) +((-3632 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))) +(-13 (-746 |t#1|) (-983 |t#1|) (-10 -8 (-15 -3632 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-983 |#1|) . T) ((-1113 |#1|) . T) ((-1115) . T) ((-1233) . T)) +((-4419 (((-1288) (-1135) (-1135)) 48)) (-4105 (((-1288) (-831) (-52)) 45)) (-1666 (((-52) (-831)) 16))) +(((-841) (-10 -7 (-15 -1666 ((-52) (-831))) (-15 -4105 ((-1288) (-831) (-52))) (-15 -4419 ((-1288) (-1135) (-1135))))) (T -841)) +((-4419 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1288)) (-5 *1 (-841)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1288)) (-5 *1 (-841)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) +(-10 -7 (-15 -1666 ((-52) (-831))) (-15 -4105 ((-1288) (-831) (-52))) (-15 -4419 ((-1288) (-1135) (-1135)))) +((-1787 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13))) +(((-842 |#1| |#2|) (-10 -7 (-15 -1787 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1787 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1115) (-1115)) (T -842)) +((-1787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-842 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) +(-10 -7 (-15 -1787 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1787 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL (|has| |#1| (-21)))) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2496 (((-574) $) NIL (|has| |#1| (-858)))) (-3063 (($) NIL (|has| |#1| (-21)) CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 9)) (-2978 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-2222 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-4002 (((-112) $) 46 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-1348 (((-112) $) NIL (|has| |#1| (-858)))) (-2276 (((-112) $) NIL (|has| |#1| (-858)))) (-3081 (((-112) $) NIL (|has| |#1| (-858)))) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-2953 (($ $ $) NIL (|has| |#1| (-858)))) (-1938 (((-1174) $) NIL)) (-1755 (($) 13)) (-1370 (((-112) $) 12)) (-3939 (((-1135) $) NIL)) (-1460 (((-112) $) 11)) (-2950 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))))) (-3781 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-4259 (((-112) $ $) 54)) (-2366 (($ $) NIL (|has| |#1| (-858)))) (-2143 (($) 23 (|has| |#1| (-21)) CONST)) (-2155 (($) 33 (|has| |#1| (-858)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) 21)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3008 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3073 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-934)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-21))))) +(((-843 |#1|) (-13 (-1115) (-421 |#1|) (-10 -8 (-15 -1755 ($)) (-15 -1460 ((-112) $)) (-15 -1370 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1115)) (T -843)) +((-1755 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1115)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) (-4002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-2222 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115))))) +(-13 (-1115) (-421 |#1|) (-10 -8 (-15 -1755 ($)) (-15 -1460 ((-112) $)) (-15 -1370 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +((-2454 (((-112) $ |#2|) 14)) (-2950 (((-872) $) 11))) +(((-844 |#1| |#2|) (-10 -8 (-15 -2454 ((-112) |#1| |#2|)) (-15 -2950 ((-872) |#1|))) (-845 |#2|) (-1115)) (T -844)) +NIL +(-10 -8 (-15 -2454 ((-112) |#1| |#2|)) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-2041 ((|#1| $) 16)) (-1938 (((-1174) $) 10)) (-2454 (((-112) $ |#1|) 14)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2404 (((-55) $) 15)) (-2985 (((-112) $ $) 6))) +(((-845 |#1|) (-141) (-1115)) (T -845)) +((-2041 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1115)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-55)))) (-2454 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(-13 (-1115) (-10 -8 (-15 -2041 (|t#1| $)) (-15 -2404 ((-55) $)) (-15 -2454 ((-112) $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-115) $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-3571 ((|#1| (-115) |#1|) NIL)) (-2276 (((-112) $) NIL)) (-4107 (($ |#1| (-370 (-115))) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3018 (($ $ (-1 |#1| |#1|)) NIL)) (-3053 (($ $ (-1 |#1| |#1|)) NIL)) (-2209 ((|#1| $ |#1|) NIL)) (-3468 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2897 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-846 |#1|) (-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2897 ($ $)) (-15 -2897 ($ $ $)) (-15 -3468 (|#1| |#1|))) |%noBranch|) (-15 -3053 ($ $ (-1 |#1| |#1|))) (-15 -3018 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3571 (|#1| (-115) |#1|)) (-15 -4107 ($ |#1| (-370 (-115)))))) (-1064)) (T -846)) +((-2897 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-2897 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-3468 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3)))) (-3018 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1064)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1064)))) (-3571 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1064)))) (-4107 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) +(-13 (-1064) (-1053 |#1|) (-1053 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2897 ($ $)) (-15 -2897 ($ $ $)) (-15 -3468 (|#1| |#1|))) |%noBranch|) (-15 -3053 ($ $ (-1 |#1| |#1|))) (-15 -3018 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3571 (|#1| (-115) |#1|)) (-15 -4107 ($ |#1| (-370 (-115)))))) +((-1510 (((-216 (-512)) (-1174)) 9))) +(((-847) (-10 -7 (-15 -1510 ((-216 (-512)) (-1174))))) (T -847)) +((-1510 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) +(-10 -7 (-15 -1510 ((-216 (-512)) (-1174)))) +((-2863 (((-112) $ $) NIL)) (-3131 (((-1133) $) 10)) (-2041 (((-516) $) 9)) (-1938 (((-1174) $) NIL)) (-2454 (((-112) $ (-516)) NIL)) (-3939 (((-1135) $) NIL)) (-2962 (($ (-516) (-1133)) 8)) (-2950 (((-872) $) 25)) (-4259 (((-112) $ $) NIL)) (-2404 (((-55) $) 20)) (-2985 (((-112) $ $) 12))) +(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3131 ((-1133) $)) (-15 -2962 ($ (-516) (-1133)))))) (T -848)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-848)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-848))))) +(-13 (-845 (-516)) (-10 -8 (-15 -3131 ((-1133) $)) (-15 -2962 ($ (-516) (-1133))))) +((-2863 (((-112) $ $) 7)) (-2963 (((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 15) (((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-849) (-141)) (T -849)) +((-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) (-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) (-2963 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *2 (-1050)))) (-2963 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1050))))) +(-13 (-1115) (-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2963 ((-1050) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2963 ((-1050) (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2726 (((-1050) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1050) (-324 (-388)) (-654 (-388))) 164) (((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1050) (-851)) 125) (((-1050) (-851) (-1078)) 124)) (-3942 (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078)) 85) (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851)) 87)) (-2381 (((-1050) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1050) (-851)) 150))) +(((-850) (-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078))) (-15 -2726 ((-1050) (-851) (-1078))) (-15 -2726 ((-1050) (-851))) (-15 -2381 ((-1050) (-851))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)))) (-15 -2726 ((-1050) (-654 (-324 (-388))) (-654 (-388)))) (-15 -2381 ((-1050) (-654 (-324 (-388))) (-654 (-388)))))) (T -850)) +((-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-850)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-850)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-850))))) +(-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-851) (-1078))) (-15 -2726 ((-1050) (-851) (-1078))) (-15 -2726 ((-1050) (-851))) (-15 -2381 ((-1050) (-851))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2726 ((-1050) (-324 (-388)) (-654 (-388)))) (-15 -2726 ((-1050) (-654 (-324 (-388))) (-654 (-388)))) (-15 -2381 ((-1050) (-654 (-324 (-388))) (-654 (-388))))) +((-2863 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $) 21)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-851) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2950 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2950 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $))))) (T -851)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) (-5 *1 (-851)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))))) (-5 *1 (-851))))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2950 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) (-15 -2950 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227)))))) $)))) +((-1787 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) +(((-852 |#1| |#2|) (-10 -7 (-15 -1787 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1787 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1115) (-1115)) (T -852)) +((-1787 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-852 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) +(-10 -7 (-15 -1787 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1787 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL (|has| |#1| (-21)))) (-4287 (((-1135) $) 31)) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2496 (((-574) $) NIL (|has| |#1| (-858)))) (-3063 (($) NIL (|has| |#1| (-21)) CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 9)) (-2978 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-2222 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-4002 (((-112) $) 60 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-1348 (((-112) $) NIL (|has| |#1| (-858)))) (-2321 (($) 14)) (-2276 (((-112) $) NIL (|has| |#1| (-858)))) (-3081 (((-112) $) NIL (|has| |#1| (-858)))) (-2328 (($) 16)) (-3632 (($ $ $) NIL (|has| |#1| (-858)))) (-2953 (($ $ $) NIL (|has| |#1| (-858)))) (-1938 (((-1174) $) NIL)) (-1370 (((-112) $) 12)) (-3939 (((-1135) $) NIL)) (-1460 (((-112) $) 11)) (-2950 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2832 (|has| |#1| (-858)) (|has| |#1| (-1053 (-574)))))) (-3781 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-4259 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-858)))) (-2143 (($) 37 (|has| |#1| (-21)) CONST)) (-2155 (($) 48 (|has| |#1| (-858)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2985 (((-112) $ $) 35)) (-3029 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3008 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3089 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3073 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-934)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-934) $) NIL (|has| |#1| (-21))))) +(((-853 |#1|) (-13 (-1115) (-421 |#1|) (-10 -8 (-15 -2321 ($)) (-15 -2328 ($)) (-15 -1460 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -4287 ((-1135) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1115)) (T -853)) +((-2321 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115)))) (-2328 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-853 *3)) (-4 *3 (-1115)))) (-4002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) (-2222 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115))))) +(-13 (-1115) (-421 |#1|) (-10 -8 (-15 -2321 ($)) (-15 -2328 ($)) (-15 -1460 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -4287 ((-1135) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-1497 (((-781)) 23)) (-2834 (($) 26)) (-3632 (($ $ $) 14) (($) 22 T CONST)) (-2953 (($ $ $) 15) (($) 21 T CONST)) (-3880 (((-934) $) 25)) (-1938 (((-1174) $) 10)) (-2590 (($ (-934)) 24)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19))) +(((-854) (-141)) (T -854)) +((-3632 (*1 *1) (-4 *1 (-854))) (-2953 (*1 *1) (-4 *1 (-854)))) +(-13 (-860) (-377) (-10 -8 (-15 -3632 ($) -1716) (-15 -2953 ($) -1716))) +(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1115) . T)) +((-3261 (((-112) (-1283 |#2|) (-1283 |#2|)) 19)) (-2779 (((-112) (-1283 |#2|) (-1283 |#2|)) 20)) (-2542 (((-112) (-1283 |#2|) (-1283 |#2|)) 16))) +(((-855 |#1| |#2|) (-10 -7 (-15 -2542 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -3261 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -2779 ((-112) (-1283 |#2|) (-1283 |#2|)))) (-781) (-802)) (T -855)) +((-2779 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3261 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-2542 (*1 *2 *3 *3) (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(-10 -7 (-15 -2542 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -3261 ((-112) (-1283 |#2|) (-1283 |#2|))) (-15 -2779 ((-112) (-1283 |#2|) (-1283 |#2|)))) +((-2863 (((-112) $ $) 7)) (-3063 (($) 24 T CONST)) (-2978 (((-3 $ "failed") $) 27)) (-2276 (((-112) $) 25)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2155 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (** (($ $ (-934)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21))) +(((-856) (-141)) (T -856)) +NIL +(-13 (-867) (-736)) +(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1127) . T) ((-1115) . T)) +((-2496 (((-574) $) 21)) (-1348 (((-112) $) 10)) (-3081 (((-112) $) 12)) (-2366 (($ $) 23))) +(((-857 |#1|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2496 ((-574) |#1|)) (-15 -3081 ((-112) |#1|)) (-15 -1348 ((-112) |#1|))) (-858)) (T -857)) +NIL +(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2496 ((-574) |#1|)) (-15 -3081 ((-112) |#1|)) (-15 -1348 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 25)) (-2599 (((-3 $ "failed") $ $) 27)) (-2496 (((-574) $) 37)) (-3063 (($) 24 T CONST)) (-2978 (((-3 $ "failed") $) 42)) (-1348 (((-112) $) 39)) (-2276 (((-112) $) 44)) (-3081 (((-112) $) 38)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 46)) (-3781 (((-781)) 47 T CONST)) (-4259 (((-112) $ $) 9)) (-2366 (($ $) 36)) (-2143 (($) 23 T CONST)) (-2155 (($) 45 T CONST)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (-3089 (($ $ $) 31) (($ $) 30)) (-3073 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-934)) 40)) (* (($ (-934) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41))) +(((-858) (-141)) (T -858)) +((-1348 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-2366 (*1 *1 *1) (-4 *1 (-858)))) +(-13 (-801) (-1064) (-736) (-10 -8 (-15 -1348 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -2496 ((-574) $)) (-15 -2366 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-3632 (($ $ $) 12)) (-2953 (($ $ $) 11)) (-4259 (((-112) $ $) 9)) (-3040 (((-112) $ $) 15)) (-3017 (((-112) $ $) 13)) (-3029 (((-112) $ $) 16))) +(((-859 |#1|) (-10 -8 (-15 -3632 (|#1| |#1| |#1|)) (-15 -2953 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|))) (-860)) (T -859)) +NIL +(-10 -8 (-15 -3632 (|#1| |#1| |#1|)) (-15 -2953 (|#1| |#1| |#1|)) (-15 -3029 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19))) +(((-860) (-141)) (T -860)) +((-3008 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3017 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-2953 (*1 *1 *1 *1) (-4 *1 (-860))) (-3632 (*1 *1 *1 *1) (-4 *1 (-860)))) +(-13 (-1115) (-10 -8 (-15 -3008 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3040 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -2953 ($ $ $)) (-15 -3632 ($ $ $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3785 (($ $ $) 49)) (-1334 (($ $ $) 48)) (-2723 (($ $ $) 46)) (-2942 (($ $ $) 55)) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 50)) (-2796 (((-3 $ "failed") $ $) 53)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1420 (($ $) 39)) (-1351 (($ $ $) 43)) (-2945 (($ $ $) 42)) (-3357 (($ $ $) 51)) (-3602 (($ $ $) 57)) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 45)) (-1496 (((-3 $ "failed") $ $) 52)) (-2852 (((-3 $ "failed") $ |#2|) 32)) (-1514 ((|#2| $) 36)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-3133 (((-654 |#2|) $) 21)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-861 |#1| |#2|) (-10 -8 (-15 -3357 (|#1| |#1| |#1|)) (-15 -3926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2796 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|)) (-15 -2147 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -1496 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3133 ((-654 |#2|) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -2950 ((-872) |#1|))) (-862 |#2|) (-1064)) (T -861)) +NIL +(-10 -8 (-15 -3357 (|#1| |#1| |#1|)) (-15 -3926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2796 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|)) (-15 -2147 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2974 |#1|)) |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -1496 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3133 ((-654 |#2|) |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-3785 (($ $ $) 50 (|has| |#1| (-372)))) (-1334 (($ $ $) 51 (|has| |#1| (-372)))) (-2723 (($ $ $) 53 (|has| |#1| (-372)))) (-2942 (($ $ $) 48 (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 47 (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 52 (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 75)) (-1401 (($ $) 69)) (-2978 (((-3 $ "failed") $) 37)) (-1420 (($ $) 60 (|has| |#1| (-462)))) (-2276 (((-112) $) 35)) (-4327 (($ |#1| (-781)) 67)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 62 (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63 (|has| |#1| (-566)))) (-2682 (((-781) $) 71)) (-1351 (($ $ $) 57 (|has| |#1| (-372)))) (-2945 (($ $ $) 58 (|has| |#1| (-372)))) (-3357 (($ $ $) 46 (|has| |#1| (-372)))) (-3602 (($ $ $) 55 (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 54 (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 59 (|has| |#1| (-372)))) (-1377 ((|#1| $) 70)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-4144 (((-781) $) 72)) (-1514 ((|#1| $) 61 (|has| |#1| (-462)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) 73)) (-3133 (((-654 |#1|) $) 66)) (-3584 ((|#1| $ (-781)) 68)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2911 ((|#1| $ |#1| |#1|) 65)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-862 |#1|) (-141) (-1064)) (T -862)) +((-4144 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-1401 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-4327 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-654 *3)))) (-2911 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-3615 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) (-2842 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-1420 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) (-2945 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1351 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1496 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3602 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2147 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) (-4 *1 (-862 *3)))) (-2723 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-1461 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) (-1334 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2796 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-2942 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) (-4 *1 (-862 *3)))) (-3357 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(-13 (-1064) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -4144 ((-781) $)) (-15 -2682 ((-781) $)) (-15 -1377 (|t#1| $)) (-15 -1401 ($ $)) (-15 -3584 (|t#1| $ (-781))) (-15 -4327 ($ |t#1| (-781))) (-15 -3133 ((-654 |t#1|) $)) (-15 -2911 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2852 ((-3 $ "failed") $ |t#1|)) (-15 -3615 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2842 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1514 (|t#1| $)) (-15 -1420 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2938 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2945 ($ $ $)) (-15 -1351 ($ $ $)) (-15 -1496 ((-3 $ "failed") $ $)) (-15 -3602 ($ $ $)) (-15 -2147 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $)) (-15 -2723 ($ $ $)) (-15 -1461 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -1334 ($ $ $)) (-15 -3785 ($ $ $)) (-15 -2796 ((-3 $ "failed") $ $)) (-15 -2942 ($ $ $)) (-15 -3926 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $)) (-15 -3357 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1053 #0#) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-3761 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1461 (((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-2842 (((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-2938 (((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2911 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-863 |#1| |#2|) (-10 -7 (-15 -3761 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2911 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -3615 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2842 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2938 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1461 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1064) (-862 |#1|)) (T -863)) +((-1461 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2938 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2842 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-3615 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2911 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1064)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3761 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1064)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) +(-10 -7 (-15 -3761 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2911 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -3615 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2842 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2938 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1461 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3785 (($ $ $) NIL (|has| |#1| (-372)))) (-1334 (($ $ $) NIL (|has| |#1| (-372)))) (-2723 (($ $ $) NIL (|has| |#1| (-372)))) (-2942 (($ $ $) NIL (|has| |#1| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2796 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 34 (|has| |#1| (-372)))) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-1977 (((-872) $ (-872)) NIL)) (-2276 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) NIL)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 30 (|has| |#1| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 28 (|has| |#1| (-566)))) (-2682 (((-781) $) NIL)) (-1351 (($ $ $) NIL (|has| |#1| (-372)))) (-2945 (($ $ $) NIL (|has| |#1| (-372)))) (-3357 (($ $ $) NIL (|has| |#1| (-372)))) (-3602 (($ $ $) NIL (|has| |#1| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 32 (|has| |#1| (-372)))) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4144 (((-781) $) NIL)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1053 (-417 (-574))))) (($ |#1|) NIL)) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2911 ((|#1| $ |#1| |#1|) 15)) (-2143 (($) NIL T CONST)) (-2155 (($) 23 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) 19) (($ $ (-781)) 24)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-872))))) (-1064) (-99 |#1|) (-1 |#1| |#1|)) (T -864)) +((-1977 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-862 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-872))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-3785 (($ $ $) NIL (|has| |#2| (-372)))) (-1334 (($ $ $) NIL (|has| |#2| (-372)))) (-2723 (($ $ $) NIL (|has| |#2| (-372)))) (-2942 (($ $ $) NIL (|has| |#2| (-372)))) (-3926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#2| (-372)))) (-2796 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-1461 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-372)))) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#2| (-462)))) (-2276 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) 17)) (-2842 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-566)))) (-3615 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-566)))) (-2682 (((-781) $) NIL)) (-1351 (($ $ $) NIL (|has| |#2| (-372)))) (-2945 (($ $ $) NIL (|has| |#2| (-372)))) (-3357 (($ $ $) NIL (|has| |#2| (-372)))) (-3602 (($ $ $) NIL (|has| |#2| (-372)))) (-2147 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#2| (-372)))) (-1496 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2938 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-372)))) (-1377 ((|#2| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-4144 (((-781) $) NIL)) (-1514 ((|#2| $) NIL (|has| |#2| (-462)))) (-2950 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (($ (-1279 |#1|)) 19)) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-781)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2911 ((|#2| $ |#2| |#2|) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) 13 T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1279 |#1|))) (-1192) (-1064) (-99 |#2|) (-1 |#2| |#2|)) (T -865)) +NIL +(-13 (-862 |#2|) (-626 (-1279 |#1|))) +((-3635 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-1412 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-1913 ((|#1| (-781) |#1|) 40)) (-1744 ((|#1| (-781) |#1|) 38)) (-3047 ((|#1| (-781) |#1|) 37))) +(((-866 |#1|) (-10 -7 (-15 -3047 (|#1| (-781) |#1|)) (-15 -1744 (|#1| (-781) |#1|)) (-15 -1913 (|#1| (-781) |#1|)) (-15 -1412 (|#1| (-781) |#1|)) (-15 -1412 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3635 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866)) +((-3635 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1412 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1412 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1913 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1744 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3047 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3047 (|#1| (-781) |#1|)) (-15 -1744 (|#1| (-781) |#1|)) (-15 -1913 (|#1| (-781) |#1|)) (-15 -1412 (|#1| (-781) |#1|)) (-15 -1412 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3635 (|#1| (-781) |#1|)) |%noBranch|)) +((-2863 (((-112) $ $) 7)) (-3632 (($ $ $) 14)) (-2953 (($ $ $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3017 (((-112) $ $) 18)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 16)) (-3008 (((-112) $ $) 19)) (** (($ $ (-934)) 22)) (* (($ $ $) 21))) +(((-867) (-141)) (T -867)) +NIL +(-13 (-860) (-1127)) +(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-3078 (((-574) $) 14)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 20) (($ (-574)) 13)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 9)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 11))) +(((-868) (-13 (-860) (-10 -8 (-15 -2950 ($ (-574))) (-15 -3078 ((-574) $))))) (T -868)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))) +(-13 (-860) (-10 -8 (-15 -2950 ($ (-574))) (-15 -3078 ((-574) $)))) +((-1424 (((-701 (-1241)) $ (-1241)) 15)) (-2559 (((-701 (-559)) $ (-559)) 12)) (-2285 (((-781) $ (-129)) 30))) +(((-869 |#1|) (-10 -8 (-15 -2285 ((-781) |#1| (-129))) (-15 -1424 ((-701 (-1241)) |#1| (-1241))) (-15 -2559 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869)) +NIL +(-10 -8 (-15 -2285 ((-781) |#1| (-129))) (-15 -1424 ((-701 (-1241)) |#1| (-1241))) (-15 -2559 ((-701 (-559)) |#1| (-559)))) +((-1424 (((-701 (-1241)) $ (-1241)) 8)) (-2559 (((-701 (-559)) $ (-559)) 9)) (-2285 (((-781) $ (-129)) 7)) (-1727 (((-701 (-130)) $ (-130)) 10)) (-2474 (($ $) 6))) +(((-870) (-141)) (T -870)) +((-1727 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-1424 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1241))) (-5 *3 (-1241)))) (-2285 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) +(-13 (-175) (-10 -8 (-15 -1727 ((-701 (-130)) $ (-130))) (-15 -2559 ((-701 (-559)) $ (-559))) (-15 -1424 ((-701 (-1241)) $ (-1241))) (-15 -2285 ((-781) $ (-129))))) (((-175) . T)) -((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) NIL)) (-2034 (((-700 (-130)) $ (-130)) 22)) (-4294 (($ (-397)) 12) (($ (-1171)) 14)) (-3549 (((-112) $) 19)) (-2942 (((-871) $) 26)) (-1981 (($ $) 23))) -(((-870) (-13 (-869) (-622 (-871)) (-10 -8 (-15 -4294 ($ (-397))) (-15 -4294 ($ (-1171))) (-15 -3549 ((-112) $))))) (T -870)) -((-4294 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-870)))) (-4294 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-870)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870))))) -(-13 (-869) (-622 (-871)) (-10 -8 (-15 -4294 ($ (-397))) (-15 -4294 ($ (-1171))) (-15 -3549 ((-112) $)))) -((-2848 (((-112) $ $) NIL) (($ $ $) 85)) (-2979 (($ $ $) 125)) (-3013 (((-573) $) 31) (((-573)) 36)) (-2561 (($ (-573)) 53)) (-1793 (($ $ $) 54) (($ (-653 $)) 84)) (-2241 (($ $ (-653 $)) 82)) (-3866 (((-573) $) 34)) (-3650 (($ $ $) 73)) (-3559 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2316 (((-573) $) 33)) (-3539 (($ $ $) 72)) (-3248 (($ $) 114)) (-4400 (($ $ $) 129)) (-2355 (($ (-653 $)) 61)) (-4146 (($ $ (-653 $)) 79)) (-3776 (($ (-573) (-573)) 55)) (-1504 (($ $) 126) (($ $ $) 127)) (-3903 (($ $ (-573)) 43) (($ $) 46)) (-2784 (($ $ $) 97)) (-2719 (($ $ $) 132)) (-1889 (($ $) 115)) (-2796 (($ $ $) 98)) (-1772 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1794 (((-1285) $) 10)) (-4383 (($ $) 118) (($ $ (-780)) 122)) (-2045 (($ $ $) 75)) (-3763 (($ $ $) 74)) (-4214 (($ $ (-653 $)) 110)) (-4222 (($ $ $) 113)) (-4408 (($ (-653 $)) 59)) (-2449 (($ $) 70) (($ (-653 $)) 71)) (-3029 (($ $ $) 123)) (-2709 (($ $) 116)) (-3075 (($ $ $) 128)) (-3471 (($ (-573)) 21) (($ (-1189)) 23) (($ (-1171)) 30) (($ (-227)) 25)) (-2097 (($ $ $) 101)) (-2075 (($ $) 102)) (-4221 (((-1285) (-1171)) 15)) (-2168 (($ (-1171)) 14)) (-2913 (($ (-653 (-653 $))) 58)) (-3890 (($ $ (-573)) 42) (($ $) 45)) (-3180 (((-1171) $) NIL)) (-1897 (($ $ $) 131)) (-3090 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3799 (((-112) $) 108)) (-3174 (($ $ (-653 $)) 111) (($ $ $ $) 112)) (-2926 (($ (-573)) 39)) (-1839 (((-573) $) 32) (((-573)) 35)) (-2917 (($ $ $) 40) (($ (-653 $)) 83)) (-3965 (((-1132) $) NIL)) (-2837 (($ $ $) 99)) (-3508 (($) 13)) (-2198 (($ $ (-653 $)) 109)) (-1578 (((-1171) (-1171)) 8)) (-2658 (($ $) 117) (($ $ (-780)) 121)) (-2823 (($ $ $) 96)) (-3904 (($ $ (-780)) 139)) (-3107 (($ (-653 $)) 60)) (-2942 (((-871) $) 19)) (-3358 (($ $ (-573)) 41) (($ $) 44)) (-1505 (($ $) 68) (($ (-653 $)) 69)) (-4280 (($ $) 66) (($ (-653 $)) 67)) (-2029 (($ $) 124)) (-4000 (($ (-653 $)) 65)) (-1677 (($ $ $) 105)) (-3507 (((-112) $ $) NIL)) (-2435 (($ $ $) 130)) (-2086 (($ $ $) 100)) (-4277 (($ $ $) 103) (($ $) 104)) (-3040 (($ $ $) 89)) (-3015 (($ $ $) 87)) (-2981 (((-112) $ $) 16) (($ $ $) 17)) (-3027 (($ $ $) 88)) (-3005 (($ $ $) 86)) (-3103 (($ $ $) 94)) (-3093 (($ $ $) 91) (($ $) 92)) (-3077 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-871) (-13 (-1112) (-10 -8 (-15 -1794 ((-1285) $)) (-15 -2168 ($ (-1171))) (-15 -4221 ((-1285) (-1171))) (-15 -3471 ($ (-573))) (-15 -3471 ($ (-1189))) (-15 -3471 ($ (-1171))) (-15 -3471 ($ (-227))) (-15 -3508 ($)) (-15 -1578 ((-1171) (-1171))) (-15 -3013 ((-573) $)) (-15 -1839 ((-573) $)) (-15 -3013 ((-573))) (-15 -1839 ((-573))) (-15 -2316 ((-573) $)) (-15 -3866 ((-573) $)) (-15 -2926 ($ (-573))) (-15 -2561 ($ (-573))) (-15 -3776 ($ (-573) (-573))) (-15 -3890 ($ $ (-573))) (-15 -3903 ($ $ (-573))) (-15 -3358 ($ $ (-573))) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -3358 ($ $)) (-15 -2917 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2917 ($ (-653 $))) (-15 -1793 ($ (-653 $))) (-15 -4214 ($ $ (-653 $))) (-15 -3174 ($ $ (-653 $))) (-15 -3174 ($ $ $ $)) (-15 -4222 ($ $ $)) (-15 -3799 ((-112) $)) (-15 -2198 ($ $ (-653 $))) (-15 -3248 ($ $)) (-15 -1897 ($ $ $)) (-15 -2029 ($ $)) (-15 -2913 ($ (-653 (-653 $)))) (-15 -2979 ($ $ $)) (-15 -1504 ($ $)) (-15 -1504 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -4400 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2719 ($ $ $)) (-15 -3904 ($ $ (-780))) (-15 -1677 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3763 ($ $ $)) (-15 -2045 ($ $ $)) (-15 -4146 ($ $ (-653 $))) (-15 -2241 ($ $ (-653 $))) (-15 -1889 ($ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ (-780))) (-15 -4383 ($ $)) (-15 -4383 ($ $ (-780))) (-15 -2709 ($ $)) (-15 -3029 ($ $ $)) (-15 -3559 ($ $)) (-15 -3559 ($ $ $)) (-15 -3559 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $ $ $)) (-15 -4280 ($ $)) (-15 -4280 ($ (-653 $))) (-15 -1505 ($ $)) (-15 -1505 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -4408 ($ (-653 $))) (-15 -3107 ($ (-653 $))) (-15 -2355 ($ (-653 $))) (-15 -4000 ($ (-653 $))) (-15 -2981 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2823 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2075 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $))))) (T -871)) -((-1794 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-871)))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-871)))) (-3508 (*1 *1) (-5 *1 (-871))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3013 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-1839 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3776 (*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3358 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3890 (*1 *1 *1) (-5 *1 (-871))) (-3903 (*1 *1 *1) (-5 *1 (-871))) (-3358 (*1 *1 *1) (-5 *1 (-871))) (-2917 (*1 *1 *1 *1) (-5 *1 (-871))) (-1793 (*1 *1 *1 *1) (-5 *1 (-871))) (-2917 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3174 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-4222 (*1 *1 *1 *1) (-5 *1 (-871))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3248 (*1 *1 *1) (-5 *1 (-871))) (-1897 (*1 *1 *1 *1) (-5 *1 (-871))) (-2029 (*1 *1 *1) (-5 *1 (-871))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-871)))) (-2979 (*1 *1 *1 *1) (-5 *1 (-871))) (-1504 (*1 *1 *1) (-5 *1 (-871))) (-1504 (*1 *1 *1 *1) (-5 *1 (-871))) (-3075 (*1 *1 *1 *1) (-5 *1 (-871))) (-4400 (*1 *1 *1 *1) (-5 *1 (-871))) (-2435 (*1 *1 *1 *1) (-5 *1 (-871))) (-2719 (*1 *1 *1 *1) (-5 *1 (-871))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-1677 (*1 *1 *1 *1) (-5 *1 (-871))) (-3539 (*1 *1 *1 *1) (-5 *1 (-871))) (-3650 (*1 *1 *1 *1) (-5 *1 (-871))) (-3763 (*1 *1 *1 *1) (-5 *1 (-871))) (-2045 (*1 *1 *1 *1) (-5 *1 (-871))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1889 (*1 *1 *1) (-5 *1 (-871))) (-2658 (*1 *1 *1) (-5 *1 (-871))) (-2658 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-4383 (*1 *1 *1) (-5 *1 (-871))) (-4383 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-2709 (*1 *1 *1) (-5 *1 (-871))) (-3029 (*1 *1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-4280 (*1 *1 *1) (-5 *1 (-871))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1505 (*1 *1 *1) (-5 *1 (-871))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2449 (*1 *1 *1) (-5 *1 (-871))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4408 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2981 (*1 *1 *1 *1) (-5 *1 (-871))) (-2848 (*1 *1 *1 *1) (-5 *1 (-871))) (-3005 (*1 *1 *1 *1) (-5 *1 (-871))) (-3015 (*1 *1 *1 *1) (-5 *1 (-871))) (-3027 (*1 *1 *1 *1) (-5 *1 (-871))) (-3040 (*1 *1 *1 *1) (-5 *1 (-871))) (-3077 (*1 *1 *1 *1) (-5 *1 (-871))) (-3093 (*1 *1 *1 *1) (-5 *1 (-871))) (-3093 (*1 *1 *1) (-5 *1 (-871))) (* (*1 *1 *1 *1) (-5 *1 (-871))) (-3103 (*1 *1 *1 *1) (-5 *1 (-871))) (** (*1 *1 *1 *1) (-5 *1 (-871))) (-2823 (*1 *1 *1 *1) (-5 *1 (-871))) (-2784 (*1 *1 *1 *1) (-5 *1 (-871))) (-2796 (*1 *1 *1 *1) (-5 *1 (-871))) (-2837 (*1 *1 *1 *1) (-5 *1 (-871))) (-2086 (*1 *1 *1 *1) (-5 *1 (-871))) (-2097 (*1 *1 *1 *1) (-5 *1 (-871))) (-2075 (*1 *1 *1) (-5 *1 (-871))) (-4277 (*1 *1 *1 *1) (-5 *1 (-871))) (-4277 (*1 *1 *1) (-5 *1 (-871)))) -(-13 (-1112) (-10 -8 (-15 -1794 ((-1285) $)) (-15 -2168 ($ (-1171))) (-15 -4221 ((-1285) (-1171))) (-15 -3471 ($ (-573))) (-15 -3471 ($ (-1189))) (-15 -3471 ($ (-1171))) (-15 -3471 ($ (-227))) (-15 -3508 ($)) (-15 -1578 ((-1171) (-1171))) (-15 -3013 ((-573) $)) (-15 -1839 ((-573) $)) (-15 -3013 ((-573))) (-15 -1839 ((-573))) (-15 -2316 ((-573) $)) (-15 -3866 ((-573) $)) (-15 -2926 ($ (-573))) (-15 -2561 ($ (-573))) (-15 -3776 ($ (-573) (-573))) (-15 -3890 ($ $ (-573))) (-15 -3903 ($ $ (-573))) (-15 -3358 ($ $ (-573))) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -3358 ($ $)) (-15 -2917 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2917 ($ (-653 $))) (-15 -1793 ($ (-653 $))) (-15 -4214 ($ $ (-653 $))) (-15 -3174 ($ $ (-653 $))) (-15 -3174 ($ $ $ $)) (-15 -4222 ($ $ $)) (-15 -3799 ((-112) $)) (-15 -2198 ($ $ (-653 $))) (-15 -3248 ($ $)) (-15 -1897 ($ $ $)) (-15 -2029 ($ $)) (-15 -2913 ($ (-653 (-653 $)))) (-15 -2979 ($ $ $)) (-15 -1504 ($ $)) (-15 -1504 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -4400 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2719 ($ $ $)) (-15 -3904 ($ $ (-780))) (-15 -1677 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3763 ($ $ $)) (-15 -2045 ($ $ $)) (-15 -4146 ($ $ (-653 $))) (-15 -2241 ($ $ (-653 $))) (-15 -1889 ($ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ (-780))) (-15 -4383 ($ $)) (-15 -4383 ($ $ (-780))) (-15 -2709 ($ $)) (-15 -3029 ($ $ $)) (-15 -3559 ($ $)) (-15 -3559 ($ $ $)) (-15 -3559 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $ $ $)) (-15 -4280 ($ $)) (-15 -4280 ($ (-653 $))) (-15 -1505 ($ $)) (-15 -1505 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -4408 ($ (-653 $))) (-15 -3107 ($ (-653 $))) (-15 -2355 ($ (-653 $))) (-15 -4000 ($ (-653 $))) (-15 -2981 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2823 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2075 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $)))) -((-2368 (((-1285) (-653 (-52))) 23)) (-3247 (((-1285) (-1171) (-871)) 13) (((-1285) (-871)) 8) (((-1285) (-1171)) 10))) -(((-872) (-10 -7 (-15 -3247 ((-1285) (-1171))) (-15 -3247 ((-1285) (-871))) (-15 -3247 ((-1285) (-1171) (-871))) (-15 -2368 ((-1285) (-653 (-52)))))) (T -872)) -((-2368 (*1 *2 *3) (-12 (-5 *3 (-653 (-52))) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-872))))) -(-10 -7 (-15 -3247 ((-1285) (-1171))) (-15 -3247 ((-1285) (-871))) (-15 -3247 ((-1285) (-1171) (-871))) (-15 -2368 ((-1285) (-653 (-52))))) -((-2848 (((-112) $ $) NIL)) (-1487 (((-3 $ "failed") (-1189)) 36)) (-1486 (((-780)) 32)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) 29)) (-3180 (((-1171) $) 43)) (-2575 (($ (-931)) 28)) (-3965 (((-1132) $) NIL)) (-1835 (((-1189) $) 13) (((-545) $) 19) (((-902 (-387)) $) 26) (((-902 (-573)) $) 22)) (-2942 (((-871) $) 16)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 40)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 38))) -(((-873 |#1|) (-13 (-853) (-623 (-1189)) (-623 (-545)) (-623 (-902 (-387))) (-623 (-902 (-573))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1189))))) (-653 (-1189))) (T -873)) -((-1487 (*1 *1 *2) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-873 *3)) (-14 *3 (-653 *2))))) -(-13 (-853) (-623 (-1189)) (-623 (-545)) (-623 (-902 (-387))) (-623 (-902 (-573))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1189))))) -((-2848 (((-112) $ $) NIL)) (-2031 (((-515) $) 9)) (-3214 (((-653 (-448)) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16))) -(((-874) (-13 (-1112) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3214 ((-653 (-448)) $))))) (T -874)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-874)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-653 (-448))) (-5 *1 (-874))))) -(-13 (-1112) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3214 ((-653 (-448)) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-962 |#1|)) NIL) (((-962 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1545 (((-780)) NIL T CONST)) (-4291 (((-1285) (-780)) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-875 |#1| |#2| |#3| |#4|) (-13 (-1061) (-499 (-962 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) (-1061) (-653 (-1189)) (-653 (-780)) (-780)) (T -875)) -((-3103 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-875 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-780))) (-14 *5 (-780)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *4 (-1061)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 *3)) (-14 *7 *3)))) -(-13 (-1061) (-499 (-962 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) -((-3570 (((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|) 38)) (-4324 (((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|) 29))) -(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|)) (-15 -3570 ((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|))) (-371) (-1271 |#1|) (-1256 |#1|)) (T -876)) -((-3570 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-176 *6)) (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-416 *6)) (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5))))) -(-10 -7 (-15 -4324 ((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|)) (-15 -3570 ((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|))) -((-4324 (((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)) 30) (((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) 28))) -(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)))) (-371) (-1189) |#1|) (T -877)) -((-4324 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) (-5 *1 (-877 *5 *6 *7)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) (-5 *1 (-877 *5 *6 *7))))) -(-10 -7 (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $ (-573)) 68)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-1504 (($ (-1185 (-573)) (-573)) 67)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-1970 (($ $) 70)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2534 (((-780) $) 75)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3621 (((-573)) 72)) (-4054 (((-573) $) 71)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2212 (($ $ (-573)) 74)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3006 (((-1169 (-573)) $) 76)) (-4101 (($ $) 73)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-3550 (((-573) $ (-573)) 69)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-878 |#1|) (-141) (-573)) (T -878)) -((-3006 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-1169 (-573))))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-780)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4101 (*1 *1 *1) (-4 *1 (-878 *2))) (-3621 (*1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-1970 (*1 *1 *1) (-4 *1 (-878 *2))) (-3550 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4228 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-1504 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *3 (-573)) (-4 *1 (-878 *4))))) -(-13 (-314) (-148) (-10 -8 (-15 -3006 ((-1169 (-573)) $)) (-15 -2534 ((-780) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)) (-15 -3621 ((-573))) (-15 -4054 ((-573) $)) (-15 -1970 ($ $)) (-15 -3550 ((-573) $ (-573))) (-15 -4228 ($ $ (-573))) (-15 -1504 ($ (-1185 (-573)) (-573))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1970 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) NIL)) (-4054 (((-573) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-1169 (-573)) $) NIL)) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) -(((-879 |#1|) (-878 |#1|) (-573)) (T -879)) -NIL -(-878 |#1|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-879 |#1|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-879 |#1|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-573))))) (-2205 (((-879 |#1|) $) NIL) (((-1189) $) NIL (|has| (-879 |#1|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-879 |#1|) (-1050 (-573)))) (((-573) $) NIL (|has| (-879 |#1|) (-1050 (-573))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-879 |#1|))) (|:| |vec| (-1280 (-879 |#1|)))) (-698 $) (-1280 $)) NIL) (((-698 (-879 |#1|)) (-698 $)) NIL) (((-698 (-879 |#1|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-879 |#1|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-879 |#1|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-879 |#1|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-879 |#1|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-879 |#1|) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-879 |#1|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-879 |#1|) (-859)))) (-3751 (($ $ $) NIL (|has| (-879 |#1|) (-859)))) (-1776 (($ (-1 (-879 |#1|) (-879 |#1|)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-879 |#1|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-879 |#1|) (-314)))) (-3733 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-879 |#1|)) (-653 (-879 |#1|))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-879 |#1|) (-879 |#1|)) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-301 (-879 |#1|))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-653 (-301 (-879 |#1|)))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-653 (-1189)) (-653 (-879 |#1|))) NIL (|has| (-879 |#1|) (-523 (-1189) (-879 |#1|)))) (($ $ (-1189) (-879 |#1|)) NIL (|has| (-879 |#1|) (-523 (-1189) (-879 |#1|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-879 |#1|)) NIL (|has| (-879 |#1|) (-293 (-879 |#1|) (-879 |#1|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-879 |#1|) (-238))) (($ $) NIL (|has| (-879 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1 (-879 |#1|) (-879 |#1|)) (-780)) NIL) (($ $ (-1 (-879 |#1|) (-879 |#1|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-879 |#1|) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-879 |#1|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-879 |#1|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-879 |#1|) (-623 (-545)))) (((-387) $) NIL (|has| (-879 |#1|) (-1034))) (((-227) $) NIL (|has| (-879 |#1|) (-1034)))) (-1468 (((-176 (-416 (-573))) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-879 |#1|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-879 |#1|)) NIL) (($ (-1189)) NIL (|has| (-879 |#1|) (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-879 |#1|) (-919))) (|has| (-879 |#1|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) NIL)) (-1660 (($ $) NIL (|has| (-879 |#1|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-879 |#1|) (-238))) (($ $) NIL (|has| (-879 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1 (-879 |#1|) (-879 |#1|)) (-780)) NIL) (($ $ (-1 (-879 |#1|) (-879 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3103 (($ $ $) NIL) (($ (-879 |#1|) (-879 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-879 |#1|) $) NIL) (($ $ (-879 |#1|)) NIL))) -(((-880 |#1|) (-13 (-1004 (-879 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573)) (T -880)) -((-3550 (*1 *2 *1 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-880 *4)) (-14 *4 *3) (-5 *3 (-573)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-880 *3)) (-14 *3 (-573)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-14 *2 (-573)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-880 *3)) (-14 *3 *2)))) -(-13 (-1004 (-879 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#2| $) NIL (|has| |#2| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#2| (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| |#2| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573))))) (-2205 ((|#2| $) NIL) (((-1189) $) NIL (|has| |#2| (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-573)))) (((-573) $) NIL (|has| |#2| (-1050 (-573))))) (-2230 (($ $) 35) (($ (-573) $) 38)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 64)) (-2819 (($) NIL (|has| |#2| (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| |#2| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#2| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#2| (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 ((|#2| $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#2| (-1164)))) (-3339 (((-112) $) NIL (|has| |#2| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#2| (-859)))) (-3751 (($ $ $) NIL (|has| |#2| (-859)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 60)) (-3816 (($) NIL (|has| |#2| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| |#2| (-314)))) (-3733 ((|#2| $) NIL (|has| |#2| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 |#2|) (-653 |#2|)) NIL (|has| |#2| (-316 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-316 |#2|))) (($ $ (-301 |#2|)) NIL (|has| |#2| (-316 |#2|))) (($ $ (-653 (-301 |#2|))) NIL (|has| |#2| (-316 |#2|))) (($ $ (-653 (-1189)) (-653 |#2|)) NIL (|has| |#2| (-523 (-1189) |#2|))) (($ $ (-1189) |#2|) NIL (|has| |#2| (-523 (-1189) |#2|)))) (-2163 (((-780) $) NIL)) (-2198 (($ $ |#2|) NIL (|has| |#2| (-293 |#2| |#2|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#2| (-238))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2662 (($ $) NIL)) (-2975 ((|#2| $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| |#2| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#2| (-623 (-902 (-387))))) (((-545) $) NIL (|has| |#2| (-623 (-545)))) (((-387) $) NIL (|has| |#2| (-1034))) (((-227) $) NIL (|has| |#2| (-1034)))) (-1468 (((-176 (-416 (-573))) $) 78)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) 106) (($ (-573)) 20) (($ $) NIL) (($ (-416 (-573))) 25) (($ |#2|) 19) (($ (-1189)) NIL (|has| |#2| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 ((|#2| $) NIL (|has| |#2| (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) 71)) (-1660 (($ $) NIL (|has| |#2| (-829)))) (-2132 (($) 15 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#2| (-238))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#2| (-859)))) (-2981 (((-112) $ $) 46)) (-3027 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3103 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3093 (($ $) 50) (($ $ $) 52)) (-3077 (($ $ $) 48)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 61)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 53) (($ $ $) 55) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-881 |#1| |#2|) (-13 (-1004 |#2|) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573) (-878 |#1|)) (T -881)) -((-3550 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-416 (-573))) (-5 *1 (-881 *4 *5)) (-5 *3 (-573)) (-4 *5 (-878 *4)))) (-1468 (*1 *2 *1) (-12 (-14 *3 (-573)) (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3)))) (-2230 (*1 *1 *1) (-12 (-14 *2 (-573)) (-5 *1 (-881 *2 *3)) (-4 *3 (-878 *2)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-14 *3 *2) (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3))))) -(-13 (-1004 |#2|) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) -((-2848 (((-112) $ $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2392 ((|#2| $) 12)) (-2608 (($ |#1| |#2|) 9)) (-3180 (((-1171) $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-3965 (((-1132) $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#1| $) 11)) (-2955 (($ |#1| |#2|) 10)) (-2942 (((-871) $) 18 (-2817 (-12 (|has| |#1| (-622 (-871))) (|has| |#2| (-622 (-871)))) (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112)))))) (-3507 (((-112) $ $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2981 (((-112) $ $) 23 (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112)))))) -(((-882 |#1| |#2|) (-13 (-1230) (-10 -8 (IF (|has| |#1| (-622 (-871))) (IF (|has| |#2| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1112)) (IF (|has| |#2| (-1112)) (-6 (-1112)) |%noBranch|) |%noBranch|) (-15 -2608 ($ |#1| |#2|)) (-15 -2955 ($ |#1| |#2|)) (-15 -2914 (|#1| $)) (-15 -2392 (|#2| $)))) (-1230) (-1230)) (T -882)) -((-2608 (*1 *1 *2 *3) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) (-2914 (*1 *2 *1) (-12 (-4 *2 (-1230)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1230)))) (-2392 (*1 *2 *1) (-12 (-4 *2 (-1230)) (-5 *1 (-882 *3 *2)) (-4 *3 (-1230))))) -(-13 (-1230) (-10 -8 (IF (|has| |#1| (-622 (-871))) (IF (|has| |#2| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1112)) (IF (|has| |#2| (-1112)) (-6 (-1112)) |%noBranch|) |%noBranch|) (-15 -2608 ($ |#1| |#2|)) (-15 -2955 ($ |#1| |#2|)) (-15 -2914 (|#1| $)) (-15 -2392 (|#2| $)))) -((-2848 (((-112) $ $) NIL)) (-2451 (((-573) $) 16)) (-3493 (($ (-158)) 13)) (-1858 (($ (-158)) 14)) (-3180 (((-1171) $) NIL)) (-2065 (((-158) $) 15)) (-3965 (((-1132) $) NIL)) (-4131 (($ (-158)) 11)) (-4382 (($ (-158)) 10)) (-2942 (((-871) $) 24) (($ (-158)) 17)) (-2619 (($ (-158)) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-883) (-13 (-1112) (-10 -8 (-15 -4382 ($ (-158))) (-15 -4131 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3493 ($ (-158))) (-15 -1858 ($ (-158))) (-15 -2065 ((-158) $)) (-15 -2451 ((-573) $)) (-15 -2942 ($ (-158)))))) (T -883)) -((-4382 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-883)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) -(-13 (-1112) (-10 -8 (-15 -4382 ($ (-158))) (-15 -4131 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3493 ($ (-158))) (-15 -1858 ($ (-158))) (-15 -2065 ((-158) $)) (-15 -2451 ((-573) $)) (-15 -2942 ($ (-158))))) -((-2942 (((-323 (-573)) (-416 (-962 (-48)))) 23) (((-323 (-573)) (-962 (-48))) 18))) -(((-884) (-10 -7 (-15 -2942 ((-323 (-573)) (-962 (-48)))) (-15 -2942 ((-323 (-573)) (-416 (-962 (-48))))))) (T -884)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 (-48)))) (-5 *2 (-323 (-573))) (-5 *1 (-884)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-962 (-48))) (-5 *2 (-323 (-573))) (-5 *1 (-884))))) -(-10 -7 (-15 -2942 ((-323 (-573)) (-962 (-48)))) (-15 -2942 ((-323 (-573)) (-416 (-962 (-48)))))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2121 (((-112) $ (|[\|\|]| (-515))) 9) (((-112) $ (|[\|\|]| (-1171))) 13)) (-3507 (((-112) $ $) NIL)) (-1331 (((-515) $) 10) (((-1171) $) 14)) (-2981 (((-112) $ $) 15))) -(((-885) (-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $))))) (T -885)) -((-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-885)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-885)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-885)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-885))))) -(-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $)))) -((-1776 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 15))) -(((-886 |#1| |#2|) (-10 -7 (-15 -1776 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-1230) (-1230)) (T -886)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6))))) -(-10 -7 (-15 -1776 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) -((-2195 (($ |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) -(((-887 |#1|) (-10 -8 (-15 -2195 ($ |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -887)) -((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-887 *2)) (-4 *2 (-1230)))) (-2195 (*1 *1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1230))))) -(-10 -8 (-15 -2195 ($ |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) -((-1776 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15))) -(((-888 |#1| |#2|) (-10 -7 (-15 -1776 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1230) (-1230)) (T -888)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) -(-10 -7 (-15 -1776 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) -((-2195 (($ |#1| |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) -(((-889 |#1|) (-10 -8 (-15 -2195 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -889)) -((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-889 *2)) (-4 *2 (-1230)))) (-2195 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1230))))) -(-10 -8 (-15 -2195 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) -((-2958 (((-653 (-1194)) (-1171)) 9))) -(((-890) (-10 -7 (-15 -2958 ((-653 (-1194)) (-1171))))) (T -890)) -((-2958 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-890))))) -(-10 -7 (-15 -2958 ((-653 (-1194)) (-1171)))) -((-1776 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) -(((-891 |#1| |#2|) (-10 -7 (-15 -1776 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1230) (-1230)) (T -891)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -1776 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-2927 (($ |#1| |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) -(((-892 |#1|) (-10 -8 (-15 -2927 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -892)) -((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-892 *2)) (-4 *2 (-1230)))) (-2927 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1230))))) -(-10 -8 (-15 -2927 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) -((-3743 (((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573)))) 41)) (-3083 (((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573))) 31)) (-3888 (((-1169 (-653 (-573))) (-653 (-573))) 53) (((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573))) 50)) (-1321 (((-1169 (-653 (-573))) (-573)) 55)) (-3698 (((-1169 (-653 (-931))) (-1169 (-653 (-931)))) 22)) (-3204 (((-653 (-931)) (-653 (-931))) 18))) -(((-893) (-10 -7 (-15 -3204 ((-653 (-931)) (-653 (-931)))) (-15 -3698 ((-1169 (-653 (-931))) (-1169 (-653 (-931))))) (-15 -3083 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3743 ((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573))))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)))) (-15 -1321 ((-1169 (-653 (-573))) (-573))))) (T -893)) -((-1321 (*1 *2 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-573)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3888 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3743 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *3 (-653 (-573))) (-5 *1 (-893)))) (-3083 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1169 (-653 (-931)))) (-5 *1 (-893)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-893))))) -(-10 -7 (-15 -3204 ((-653 (-931)) (-653 (-931)))) (-15 -3698 ((-1169 (-653 (-931))) (-1169 (-653 (-931))))) (-15 -3083 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3743 ((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573))))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)))) (-15 -1321 ((-1169 (-653 (-573))) (-573)))) -((-1835 (((-902 (-387)) $) 9 (|has| |#1| (-623 (-902 (-387))))) (((-902 (-573)) $) 8 (|has| |#1| (-623 (-902 (-573))))))) -(((-894 |#1|) (-141) (-1230)) (T -894)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-623 (-902 (-573)))) (-6 (-623 (-902 (-573)))) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-387)))) (-6 (-623 (-902 (-387)))) |%noBranch|))) -(((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573))))) -((-2848 (((-112) $ $) NIL)) (-3789 (($) 14)) (-3721 (($ (-899 |#1| |#2|) (-899 |#1| |#3|)) 28)) (-3652 (((-899 |#1| |#3|) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1826 (((-112) $) 22)) (-3600 (($) 19)) (-2942 (((-871) $) 31)) (-3507 (((-112) $ $) NIL)) (-2885 (((-899 |#1| |#2|) $) 15)) (-2981 (((-112) $ $) 26))) -(((-895 |#1| |#2| |#3|) (-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -3721 ($ (-899 |#1| |#2|) (-899 |#1| |#3|))) (-15 -2885 ((-899 |#1| |#2|) $)) (-15 -3652 ((-899 |#1| |#3|) $)))) (-1112) (-1112) (-675 |#2|)) (T -895)) -((-1826 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4)))) (-3600 (*1 *1) (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) (-4 *4 (-675 *3)))) (-3789 (*1 *1) (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) (-4 *4 (-675 *3)))) (-3721 (*1 *1 *2 *3) (-12 (-5 *2 (-899 *4 *5)) (-5 *3 (-899 *4 *6)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-675 *5)) (-5 *1 (-895 *4 *5 *6)))) (-2885 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *4)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4)))) (-3652 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *5)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4))))) -(-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -3721 ($ (-899 |#1| |#2|) (-899 |#1| |#3|))) (-15 -2885 ((-899 |#1| |#2|) $)) (-15 -3652 ((-899 |#1| |#3|) $)))) -((-2848 (((-112) $ $) 7)) (-1352 (((-899 |#1| $) $ (-902 |#1|) (-899 |#1| $)) 14)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-896 |#1|) (-141) (-1112)) (T -896)) -((-1352 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-899 *4 *1)) (-5 *3 (-902 *4)) (-4 *1 (-896 *4)) (-4 *4 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -1352 ((-899 |t#1| $) $ (-902 |t#1|) (-899 |t#1| $))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-1667 (((-112) (-653 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4417 (((-899 |#1| |#2|) |#2| |#3|) 45 (-12 (-2075 (|has| |#2| (-1050 (-1189)))) (-2075 (|has| |#2| (-1061))))) (((-653 (-301 (-962 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1061)) (-2075 (|has| |#2| (-1050 (-1189)))))) (((-653 (-301 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1050 (-1189)))) (((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|) 21))) -(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-653 |#2|) |#3|)) (-15 -4417 ((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|)) (IF (|has| |#2| (-1050 (-1189))) (-15 -4417 ((-653 (-301 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1061)) (-15 -4417 ((-653 (-301 (-962 |#2|))) |#2| |#3|)) (-15 -4417 ((-899 |#1| |#2|) |#2| |#3|))))) (-1112) (-896 |#1|) (-623 (-902 |#1|))) (T -897)) -((-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-899 *5 *3)) (-5 *1 (-897 *5 *3 *4)) (-2075 (-4 *3 (-1050 (-1189)))) (-2075 (-4 *3 (-1061))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 (-962 *3)))) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1061)) (-2075 (-4 *3 (-1050 (-1189)))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 *3))) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1050 (-1189))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-5 *2 (-895 *5 *6 (-653 *6))) (-5 *1 (-897 *5 *6 *4)) (-5 *3 (-653 *6)) (-4 *4 (-623 (-902 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-4 *6 (-896 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6 *4)) (-4 *4 (-623 (-902 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5)))))) -(-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-653 |#2|) |#3|)) (-15 -4417 ((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|)) (IF (|has| |#2| (-1050 (-1189))) (-15 -4417 ((-653 (-301 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1061)) (-15 -4417 ((-653 (-301 (-962 |#2|))) |#2| |#3|)) (-15 -4417 ((-899 |#1| |#2|) |#2| |#3|))))) -((-1776 (((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)) 22))) -(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)))) (-1112) (-1112) (-1112)) (T -898)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-899 *5 *6)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-899 *5 *7)) (-5 *1 (-898 *5 *6 *7))))) -(-10 -7 (-15 -1776 ((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)))) -((-2848 (((-112) $ $) NIL)) (-4357 (($ $ $) 40)) (-3694 (((-3 (-112) "failed") $ (-902 |#1|)) 37)) (-3789 (($) 12)) (-3180 (((-1171) $) NIL)) (-4086 (($ (-902 |#1|) |#2| $) 20)) (-3965 (((-1132) $) NIL)) (-4125 (((-3 |#2| "failed") (-902 |#1|) $) 51)) (-1826 (((-112) $) 15)) (-3600 (($) 13)) (-4292 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $) 25)) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|)))) 23)) (-2942 (((-871) $) 45)) (-3507 (((-112) $ $) NIL)) (-1601 (($ (-902 |#1|) |#2| $ |#2|) 49)) (-1886 (($ (-902 |#1|) |#2| $) 48)) (-2981 (((-112) $ $) 42))) -(((-899 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -4357 ($ $ $)) (-15 -4125 ((-3 |#2| "failed") (-902 |#1|) $)) (-15 -1886 ($ (-902 |#1|) |#2| $)) (-15 -4086 ($ (-902 |#1|) |#2| $)) (-15 -1601 ($ (-902 |#1|) |#2| $ |#2|)) (-15 -4292 ((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))))) (-15 -3694 ((-3 (-112) "failed") $ (-902 |#1|))))) (-1112) (-1112)) (T -899)) -((-1826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-3600 (*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3789 (*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-4357 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-4125 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) (-5 *1 (-899 *4 *2)))) (-1886 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-4086 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-1601 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) (-4 *4 (-1112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)))) (-3694 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -4357 ($ $ $)) (-15 -4125 ((-3 |#2| "failed") (-902 |#1|) $)) (-15 -1886 ($ (-902 |#1|) |#2| $)) (-15 -4086 ($ (-902 |#1|) |#2| $)) (-15 -1601 ($ (-902 |#1|) |#2| $ |#2|)) (-15 -4292 ((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))))) (-15 -3694 ((-3 (-112) "failed") $ (-902 |#1|))))) -((-2570 (((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|))) 32) (((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|))) 46) (((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|)) 35)) (-3694 (((-112) (-653 |#2|) (-902 |#1|)) 42) (((-112) |#2| (-902 |#1|)) 36)) (-2514 (((-1 (-112) |#2|) (-902 |#1|)) 16)) (-2681 (((-653 |#2|) (-902 |#1|)) 24)) (-4035 (((-902 |#1|) (-902 |#1|) |#2|) 20))) -(((-900 |#1| |#2|) (-10 -7 (-15 -2570 ((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|)))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|)))) (-15 -2514 ((-1 (-112) |#2|) (-902 |#1|))) (-15 -3694 ((-112) |#2| (-902 |#1|))) (-15 -3694 ((-112) (-653 |#2|) (-902 |#1|))) (-15 -4035 ((-902 |#1|) (-902 |#1|) |#2|)) (-15 -2681 ((-653 |#2|) (-902 |#1|)))) (-1112) (-1230)) (T -900)) -((-2681 (*1 *2 *3) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-653 *5)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1230)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3)) (-4 *3 (-1230)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) (-2570 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-902 *5)) (-5 *3 (-653 (-1189))) (-5 *4 (-1 (-112) (-653 *6))) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-900 *5 *6)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-5 *3 (-653 (-1 (-112) *5))) (-4 *4 (-1112)) (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1112)) (-4 *5 (-1230)) (-5 *1 (-900 *4 *5))))) -(-10 -7 (-15 -2570 ((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|)))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|)))) (-15 -2514 ((-1 (-112) |#2|) (-902 |#1|))) (-15 -3694 ((-112) |#2| (-902 |#1|))) (-15 -3694 ((-112) (-653 |#2|) (-902 |#1|))) (-15 -4035 ((-902 |#1|) (-902 |#1|) |#2|)) (-15 -2681 ((-653 |#2|) (-902 |#1|)))) -((-1776 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 19))) -(((-901 |#1| |#2|) (-10 -7 (-15 -1776 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1112) (-1112)) (T -901)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6))))) -(-10 -7 (-15 -1776 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) -((-2848 (((-112) $ $) NIL)) (-2320 (($ $ (-653 (-52))) 74)) (-4354 (((-653 $) $) 139)) (-2911 (((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $) 30)) (-2146 (((-112) $) 35)) (-4195 (($ $ (-653 (-1189)) (-52)) 31)) (-4006 (($ $ (-653 (-52))) 73)) (-1695 (((-3 |#1| "failed") $) 71) (((-3 (-1189) "failed") $) 164)) (-2205 ((|#1| $) 68) (((-1189) $) NIL)) (-2407 (($ $) 126)) (-2935 (((-112) $) 55)) (-3700 (((-653 (-52)) $) 50)) (-3426 (($ (-1189) (-112) (-112) (-112)) 75)) (-2972 (((-3 (-653 $) "failed") (-653 $)) 82)) (-4102 (((-112) $) 58)) (-1832 (((-112) $) 57)) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) 41)) (-1779 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $) 97)) (-2586 (((-3 (-653 $) "failed") $) 40)) (-1861 (((-3 (-653 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $) 107)) (-4110 (((-3 (-653 $) "failed") $) 42)) (-2573 (((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $) 45)) (-2098 (((-112) $) 34)) (-3965 (((-1132) $) NIL)) (-3683 (((-112) $) 28)) (-4411 (((-112) $) 52)) (-4100 (((-653 (-52)) $) 130)) (-2549 (((-112) $) 56)) (-2198 (($ (-115) (-653 $)) 104)) (-4302 (((-780) $) 33)) (-3166 (($ $) 72)) (-1835 (($ (-653 $)) 69)) (-4044 (((-112) $) 32)) (-2942 (((-871) $) 63) (($ |#1|) 23) (($ (-1189)) 76)) (-3507 (((-112) $ $) NIL)) (-4035 (($ $ (-52)) 129)) (-2132 (($) 103 T CONST)) (-2144 (($) 83 T CONST)) (-2981 (((-112) $ $) 93)) (-3103 (($ $ $) 117)) (-3077 (($ $ $) 121)) (** (($ $ (-780)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-902 |#1|) (-13 (-1112) (-1050 |#1|) (-1050 (-1189)) (-10 -8 (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -1861 ((-3 (-653 $) "failed") $ (-115))) (-15 -1861 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4110 ((-3 (-653 $) "failed") $)) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4302 ((-780) $)) (-15 -1835 ($ (-653 $))) (-15 -3166 ($ $)) (-15 -2098 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -4044 ((-112) $)) (-15 -2549 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3700 ((-653 (-52)) $)) (-15 -4006 ($ $ (-653 (-52)))) (-15 -2320 ($ $ (-653 (-52)))) (-15 -3426 ($ (-1189) (-112) (-112) (-112))) (-15 -4195 ($ $ (-653 (-1189)) (-52))) (-15 -2911 ((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $)) (-15 -3683 ((-112) $)) (-15 -2407 ($ $)) (-15 -4035 ($ $ (-52))) (-15 -4100 ((-653 (-52)) $)) (-15 -4354 ((-653 $) $)) (-15 -2972 ((-3 (-653 $) "failed") (-653 $))))) (-1112)) (T -902)) -((-2132 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2144 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2586 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4082 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1861 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-902 *4))) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-1861 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 (-902 *3))))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2573 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-780)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1779 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-902 *3)) (|:| |den| (-902 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4110 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1951 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-902 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2198 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 (-902 *4))) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-3103 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4006 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3426 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-112)) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-4195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-52)) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2972 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(-13 (-1112) (-1050 |#1|) (-1050 (-1189)) (-10 -8 (-15 (-2132) ($) -1705) (-15 (-2144) ($) -1705) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -1861 ((-3 (-653 $) "failed") $ (-115))) (-15 -1861 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4110 ((-3 (-653 $) "failed") $)) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4302 ((-780) $)) (-15 -1835 ($ (-653 $))) (-15 -3166 ($ $)) (-15 -2098 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -4044 ((-112) $)) (-15 -2549 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3700 ((-653 (-52)) $)) (-15 -4006 ($ $ (-653 (-52)))) (-15 -2320 ($ $ (-653 (-52)))) (-15 -3426 ($ (-1189) (-112) (-112) (-112))) (-15 -4195 ($ $ (-653 (-1189)) (-52))) (-15 -2911 ((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $)) (-15 -3683 ((-112) $)) (-15 -2407 ($ $)) (-15 -4035 ($ $ (-52))) (-15 -4100 ((-653 (-52)) $)) (-15 -4354 ((-653 $) $)) (-15 -2972 ((-3 (-653 $) "failed") (-653 $))))) -((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 19)) (-1407 (((-112) $) 49)) (-1695 (((-3 (-681 |#1|) "failed") $) 56)) (-2205 (((-681 |#1|) $) 54)) (-2925 (($ $) 23)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-4134 (((-780) $) 61)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-681 |#1|) $) 21)) (-2942 (((-871) $) 47) (($ (-681 |#1|)) 26) (((-828 |#1|) $) 36) (($ |#1|) 25)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 9 T CONST)) (-3256 (((-653 (-681 |#1|)) $) 28)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 12)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 67))) -(((-903 |#1|) (-13 (-859) (-1050 (-681 |#1|)) (-10 -8 (-15 1 ($) -1705) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ($ |#1|)) (-15 -2914 ((-681 |#1|) $)) (-15 -4134 ((-780) $)) (-15 -3256 ((-653 (-681 |#1|)) $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -903)) -((-2144 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-2942 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-681 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-653 (-681 *3))) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859))))) -(-13 (-859) (-1050 (-681 |#1|)) (-10 -8 (-15 (-2144) ($) -1705) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ($ |#1|)) (-15 -2914 ((-681 |#1|) $)) (-15 -4134 ((-780) $)) (-15 -3256 ((-653 (-681 |#1|)) $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -1653 ((-653 |#1|) $)))) -((-2066 ((|#1| |#1| |#1|) 19))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2066 (|#1| |#1| |#1|))) (-1256 |#2|) (-1061)) (T -904)) -((-2066 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-904 *2 *3)) (-4 *2 (-1256 *3))))) -(-10 -7 (-15 -2066 (|#1| |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 14)) (-2981 (((-112) $ $) 6))) -(((-905) (-141)) (T -905)) -((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-905)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-4308 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *3 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-1047))))) -(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -4308 ((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3080 ((|#1| |#1| (-780)) 27)) (-2412 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2478 (((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780)) 30) (((-653 |#1|) |#1|) 38))) -(((-906 |#1| |#2|) (-10 -7 (-15 -2478 ((-653 |#1|) |#1|)) (-15 -2478 ((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780))) (-15 -2412 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3080 (|#1| |#1| (-780)))) (-1256 |#2|) (-371)) (T -906)) -((-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-5 *1 (-906 *2 *4)) (-4 *2 (-1256 *4)))) (-2412 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-371)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1256 *3)))) (-2478 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-780)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-906 *3 *5)) (-4 *3 (-1256 *5)))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-906 *3 *4)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -2478 ((-653 |#1|) |#1|)) (-15 -2478 ((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780))) (-15 -2412 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3080 (|#1| |#1| (-780)))) -((-1994 (((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171)) 104) (((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227)) 100) (((-1047) (-908) (-1075)) 92) (((-1047) (-908)) 93)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075)) 62) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908)) 64))) -(((-907) (-10 -7 (-15 -1994 ((-1047) (-908))) (-15 -1994 ((-1047) (-908) (-1075))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075))))) (T -907)) -((-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-907)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) (-5 *8 (-227)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-1047)) (-5 *1 (-907))))) -(-10 -7 (-15 -1994 ((-1047) (-908))) (-15 -1994 ((-1047) (-908) (-1075))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075)))) -((-2848 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $) 19)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21) (($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-908) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -2205 ((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $))))) (T -908)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *1 (-908)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *1 (-908))))) -(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -2205 ((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $)))) -((-3904 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) 10) (($ $ |#2| (-780)) 12) (($ $ (-653 |#2|) (-653 (-780))) 15)) (-3609 (($ $ |#2|) 16) (($ $ (-653 |#2|)) 18) (($ $ |#2| (-780)) 19) (($ $ (-653 |#2|) (-653 (-780))) 21))) -(((-909 |#1| |#2|) (-10 -8 (-15 -3609 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3609 (|#1| |#1| |#2| (-780))) (-15 -3609 (|#1| |#1| (-653 |#2|))) (-15 -3609 (|#1| |#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#2| (-780))) (-15 -3904 (|#1| |#1| (-653 |#2|))) (-15 -3904 (|#1| |#1| |#2|))) (-910 |#2|) (-1112)) (T -909)) -NIL -(-10 -8 (-15 -3609 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3609 (|#1| |#1| |#2| (-780))) (-15 -3609 (|#1| |#1| (-653 |#2|))) (-15 -3609 (|#1| |#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#2| (-780))) (-15 -3904 (|#1| |#1| (-653 |#2|))) (-15 -3904 (|#1| |#1| |#2|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ |#1|) 46) (($ $ (-653 |#1|)) 45) (($ $ |#1| (-780)) 44) (($ $ (-653 |#1|) (-653 (-780))) 43)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#1|) 42) (($ $ (-653 |#1|)) 41) (($ $ |#1| (-780)) 40) (($ $ (-653 |#1|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-910 |#1|) (-141) (-1112)) (T -910)) -((-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) (-4 *4 (-1112)))) (-3609 (*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) (-4 *4 (-1112))))) -(-13 (-1061) (-10 -8 (-15 -3904 ($ $ |t#1|)) (-15 -3904 ($ $ (-653 |t#1|))) (-15 -3904 ($ $ |t#1| (-780))) (-15 -3904 ($ $ (-653 |t#1|) (-653 (-780)))) (-15 -3609 ($ $ |t#1|)) (-15 -3609 ($ $ (-653 |t#1|))) (-15 -3609 ($ $ |t#1| (-780))) (-15 -3609 ($ $ (-653 |t#1|) (-653 (-780)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 26)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2357 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3837 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 25)) (-3800 (($ |#1|) 12) (($ $ $) 17)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 23)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 20)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1216 |#1|) $) 9) (((-871) $) 29 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 21 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-911 |#1|) (-13 (-120 |#1|) (-622 (-1216 |#1|)) (-10 -8 (-15 -3800 ($ |#1|)) (-15 -3800 ($ $ $)))) (-1112)) (T -911)) -((-3800 (*1 *1 *2) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112)))) (-3800 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112))))) -(-13 (-120 |#1|) (-622 (-1216 |#1|)) (-10 -8 (-15 -3800 ($ |#1|)) (-15 -3800 ($ $ $)))) -((-4327 ((|#2| (-1154 |#1| |#2|)) 48))) -(((-912 |#1| |#2|) (-10 -7 (-15 -4327 (|#2| (-1154 |#1| |#2|)))) (-931) (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) (T -912)) -((-4327 (*1 *2 *3) (-12 (-5 *3 (-1154 *4 *2)) (-14 *4 (-931)) (-4 *2 (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) (-5 *1 (-912 *4 *2))))) -(-10 -7 (-15 -4327 (|#2| (-1154 |#1| |#2|)))) -((-2848 (((-112) $ $) 7)) (-2755 (((-1114 |#1|) $) 35)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-2912 (((-1114 |#1|) $ |#1|) 34)) (-1959 (((-112) $) 18)) (-3659 (($ $ $) 32 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3751 (($ $ $) 31 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 25)) (-3965 (((-1132) $) 11)) (-2198 ((|#1| $ |#1|) 38)) (-3640 (($ (-653 (-653 |#1|))) 36)) (-2295 (($ (-653 |#1|)) 37)) (-3204 (($ $ $) 22)) (-4380 (($ $ $) 21)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) 29 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3015 (((-112) $ $) 28 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 30 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3005 (((-112) $ $) 33)) (-3103 (($ $ $) 24)) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ $ (-573)) 23)) (* (($ $ $) 15))) -(((-913 |#1|) (-141) (-1112)) (T -913)) -((-2295 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-913 *3)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-4 *1 (-913 *3)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(-13 (-482) (-293 |t#1| |t#1|) (-10 -8 (-15 -2295 ($ (-653 |t#1|))) (-15 -3640 ($ (-653 (-653 |t#1|)))) (-15 -2755 ((-1114 |t#1|) $)) (-15 -2912 ((-1114 |t#1|) $ |t#1|)) (-15 -3005 ((-112) $ $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-859)) |%noBranch|))) -(((-102) . T) ((-622 (-871)) . T) ((-293 |#1| |#1|) . T) ((-482) . T) ((-735) . T) ((-859) -2817 (|has| |#1| (-859)) (|has| |#1| (-376))) ((-1124) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1950 (((-653 (-653 (-780))) $) 160)) (-3467 (((-653 (-780)) (-915 |#1|) $) 188)) (-1659 (((-653 (-780)) (-915 |#1|) $) 189)) (-2755 (((-1114 |#1|) $) 152)) (-1384 (((-653 (-915 |#1|)) $) 149)) (-2819 (((-915 |#1|) $ (-573)) 154) (((-915 |#1|) $) 155)) (-4273 (($ (-653 (-915 |#1|))) 162)) (-2534 (((-780) $) 156)) (-2778 (((-1114 (-1114 |#1|)) $) 186)) (-2912 (((-1114 |#1|) $ |#1|) 177) (((-1114 (-1114 |#1|)) $ (-1114 |#1|)) 197) (((-1114 (-653 |#1|)) $ (-653 |#1|)) 200)) (-1547 (((-112) (-915 |#1|) $) 137)) (-3180 (((-1171) $) NIL)) (-1908 (((-1285) $) 142) (((-1285) $ (-573) (-573)) 201)) (-3965 (((-1132) $) NIL)) (-4387 (((-653 (-915 |#1|)) $) 143)) (-2198 (((-915 |#1|) $ (-780)) 150)) (-2565 (((-780) $) 157)) (-2942 (((-871) $) 174) (((-653 (-915 |#1|)) $) 28) (($ (-653 (-915 |#1|))) 161)) (-3507 (((-112) $ $) NIL)) (-2629 (((-653 |#1|) $) 159)) (-2981 (((-112) $ $) 194)) (-3027 (((-112) $ $) 192)) (-3005 (((-112) $ $) 191))) -(((-914 |#1|) (-13 (-1112) (-10 -8 (-15 -2942 ((-653 (-915 |#1|)) $)) (-15 -4387 ((-653 (-915 |#1|)) $)) (-15 -2198 ((-915 |#1|) $ (-780))) (-15 -2819 ((-915 |#1|) $ (-573))) (-15 -2819 ((-915 |#1|) $)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $)) (-15 -2629 ((-653 |#1|) $)) (-15 -1384 ((-653 (-915 |#1|)) $)) (-15 -1950 ((-653 (-653 (-780))) $)) (-15 -2942 ($ (-653 (-915 |#1|)))) (-15 -4273 ($ (-653 (-915 |#1|)))) (-15 -2912 ((-1114 |#1|) $ |#1|)) (-15 -2778 ((-1114 (-1114 |#1|)) $)) (-15 -2912 ((-1114 (-1114 |#1|)) $ (-1114 |#1|))) (-15 -2912 ((-1114 (-653 |#1|)) $ (-653 |#1|))) (-15 -1547 ((-112) (-915 |#1|) $)) (-15 -3467 ((-653 (-780)) (-915 |#1|) $)) (-15 -1659 ((-653 (-780)) (-915 |#1|) $)) (-15 -2755 ((-1114 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -1908 ((-1285) $)) (-15 -1908 ((-1285) $ (-573) (-573))))) (-1112)) (T -914)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) (-4 *4 (-1112)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) (-4 *4 (-1112)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-915 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-780)))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1114 (-1114 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-1114 *4))) (-5 *1 (-914 *4)) (-5 *3 (-1114 *4)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-653 *4))) (-5 *1 (-914 *4)) (-5 *3 (-653 *4)))) (-1547 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-914 *4)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) (-5 *1 (-914 *4)))) (-1659 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) (-5 *1 (-914 *4)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-3027 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1908 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-914 *4)) (-4 *4 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -2942 ((-653 (-915 |#1|)) $)) (-15 -4387 ((-653 (-915 |#1|)) $)) (-15 -2198 ((-915 |#1|) $ (-780))) (-15 -2819 ((-915 |#1|) $ (-573))) (-15 -2819 ((-915 |#1|) $)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $)) (-15 -2629 ((-653 |#1|) $)) (-15 -1384 ((-653 (-915 |#1|)) $)) (-15 -1950 ((-653 (-653 (-780))) $)) (-15 -2942 ($ (-653 (-915 |#1|)))) (-15 -4273 ($ (-653 (-915 |#1|)))) (-15 -2912 ((-1114 |#1|) $ |#1|)) (-15 -2778 ((-1114 (-1114 |#1|)) $)) (-15 -2912 ((-1114 (-1114 |#1|)) $ (-1114 |#1|))) (-15 -2912 ((-1114 (-653 |#1|)) $ (-653 |#1|))) (-15 -1547 ((-112) (-915 |#1|) $)) (-15 -3467 ((-653 (-780)) (-915 |#1|) $)) (-15 -1659 ((-653 (-780)) (-915 |#1|) $)) (-15 -2755 ((-1114 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -1908 ((-1285) $)) (-15 -1908 ((-1285) $ (-573) (-573))))) -((-2848 (((-112) $ $) NIL)) (-2755 (((-1114 |#1|) $) 60)) (-2770 (((-653 $) (-653 $)) 103)) (-1983 (((-573) $) 83)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-2534 (((-780) $) 80)) (-2912 (((-1114 |#1|) $ |#1|) 70)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) 88)) (-1843 (((-780) $) 84)) (-3659 (($ $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3751 (($ $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3668 (((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $) 55)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 130)) (-3965 (((-1132) $) NIL)) (-2797 (((-1114 |#1|) $) 136 (|has| |#1| (-376)))) (-2270 (((-112) $) 81)) (-2198 ((|#1| $ |#1|) 68)) (-2565 (((-780) $) 62)) (-3640 (($ (-653 (-653 |#1|))) 118)) (-2433 (((-983) $) 74)) (-2295 (($ (-653 |#1|)) 32)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-3610 (($ (-653 (-653 |#1|))) 57)) (-1686 (($ (-653 (-653 |#1|))) 123)) (-3543 (($ (-653 |#1|)) 132)) (-2942 (((-871) $) 117) (($ (-653 (-653 |#1|))) 91) (($ (-653 |#1|)) 92)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 24 T CONST)) (-3040 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-2981 (((-112) $ $) 66)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3005 (((-112) $ $) 90)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 33))) -(((-915 |#1|) (-13 (-913 |#1|) (-10 -8 (-15 -3668 ((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $)) (-15 -3610 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 |#1|))) (-15 -1686 ($ (-653 (-653 |#1|)))) (-15 -2565 ((-780) $)) (-15 -2433 ((-983) $)) (-15 -2534 ((-780) $)) (-15 -1843 ((-780) $)) (-15 -1983 ((-573) $)) (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2770 ((-653 $) (-653 $))) (IF (|has| |#1| (-376)) (-15 -2797 ((-1114 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3543 ($ (-653 |#1|))) (IF (|has| |#1| (-376)) (-15 -3543 ($ (-653 |#1|))) |%noBranch|)))) (-1112)) (T -915)) -((-3668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-653 *3)) (|:| |image| (-653 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-1686 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-915 *3)) (-4 *3 (-376)) (-4 *3 (-1112)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) -(-13 (-913 |#1|) (-10 -8 (-15 -3668 ((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $)) (-15 -3610 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 |#1|))) (-15 -1686 ($ (-653 (-653 |#1|)))) (-15 -2565 ((-780) $)) (-15 -2433 ((-983) $)) (-15 -2534 ((-780) $)) (-15 -1843 ((-780) $)) (-15 -1983 ((-573) $)) (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2770 ((-653 $) (-653 $))) (IF (|has| |#1| (-376)) (-15 -2797 ((-1114 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3543 ($ (-653 |#1|))) (IF (|has| |#1| (-376)) (-15 -3543 ($ (-653 |#1|))) |%noBranch|)))) -((-2767 (((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|)) 160)) (-1673 ((|#1|) 97)) (-1434 (((-427 (-1185 |#4|)) (-1185 |#4|)) 169)) (-1865 (((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)) 84)) (-3099 (((-427 (-1185 |#4|)) (-1185 |#4|)) 179)) (-1790 (((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|) 113))) -(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|))) (-15 -3099 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1434 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1673 (|#1|)) (-15 -1790 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|)) (-15 -1865 ((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)))) (-919) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -916)) -((-1865 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *7)) (-4 *7 (-859)) (-4 *5 (-919)) (-4 *6 (-802)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-427 (-1185 *8))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-1185 *8)))) (-1790 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) (-4 *7 (-959 *5 *6 *4)) (-4 *5 (-919)) (-4 *6 (-802)) (-4 *4 (-859)) (-5 *1 (-916 *5 *6 *4 *7)))) (-1673 (*1 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-2767 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-916 *4 *5 *6 *7))))) -(-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|))) (-15 -3099 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1434 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1673 (|#1|)) (-15 -1790 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|)) (-15 -1865 ((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)))) -((-2767 (((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)) 39)) (-1673 ((|#1|) 72)) (-1434 (((-427 (-1185 |#2|)) (-1185 |#2|)) 121)) (-1865 (((-427 (-1185 |#2|)) (-1185 |#2|)) 105)) (-3099 (((-427 (-1185 |#2|)) (-1185 |#2|)) 132))) -(((-917 |#1| |#2|) (-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|))) (-15 -3099 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1434 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1673 (|#1|)) (-15 -1865 ((-427 (-1185 |#2|)) (-1185 |#2|)))) (-919) (-1256 |#1|)) (T -917)) -((-1865 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-1673 (*1 *2) (-12 (-4 *2 (-919)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1256 *2)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-2767 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-919)) (-5 *1 (-917 *4 *5))))) -(-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|))) (-15 -3099 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1434 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1673 (|#1|)) (-15 -1865 ((-427 (-1185 |#2|)) (-1185 |#2|)))) -((-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 42)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 18)) (-4279 (((-3 $ "failed") $) 36))) -(((-918 |#1|) (-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) (-919)) (T -918)) -NIL -(-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 66)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 63)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2696 (((-112) $) 59)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2963 (((-427 (-1185 $)) (-1185 $)) 64)) (-1655 (((-427 (-1185 $)) (-1185 $)) 65)) (-4218 (((-427 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 62 (|has| $ (-146)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-4279 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-919) (-141)) (T -919)) -((-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-919)))) (-1600 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-2963 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *1))) (-5 *3 (-1185 *1)) (-4 *1 (-919)))) (-1443 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-146)) (-4 *1 (-919)) (-5 *2 (-1280 *1)))) (-4279 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-919))))) -(-13 (-1234) (-10 -8 (-15 -1600 ((-427 (-1185 $)) (-1185 $))) (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -2963 ((-427 (-1185 $)) (-1185 $))) (-15 -2888 ((-1185 $) (-1185 $) (-1185 $))) (-15 -3711 ((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $))) (IF (|has| $ (-146)) (PROGN (-15 -1443 ((-3 (-1280 $) "failed") (-698 $))) (-15 -4279 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) NIL)) (-2205 (($ $) NIL)) (-2854 (($ (-1280 $)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL)) (-1708 (((-112) $) NIL)) (-2104 (($ $) NIL) (($ $ (-780)) NIL)) (-2696 (((-112) $) NIL)) (-2534 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| $ (-376)))) (-3514 (((-112) $) NIL (|has| $ (-376)))) (-3421 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 $) $ (-931)) NIL (|has| $ (-376))) (((-1185 $) $) NIL)) (-3589 (((-931) $) NIL)) (-2991 (((-1185 $) $) NIL (|has| $ (-376)))) (-2700 (((-3 (-1185 $) "failed") $ $) NIL (|has| $ (-376))) (((-1185 $) $) NIL (|has| $ (-376)))) (-2840 (($ $ (-1185 $)) NIL (|has| $ (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) NIL)) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| $ (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL)) (-4218 (((-427 $) $) NIL)) (-3216 (((-931)) NIL) (((-842 (-931))) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL) (((-780) $) NIL)) (-2365 (((-135)) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2565 (((-931) $) NIL) (((-842 (-931)) $) NIL)) (-2984 (((-1185 $)) NIL)) (-2510 (($) NIL)) (-4232 (($) NIL (|has| $ (-376)))) (-2123 (((-698 $) (-1280 $)) NIL) (((-1280 $) $) NIL)) (-1835 (((-573) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $) (-931)) NIL) (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $ (-780)) NIL (|has| $ (-376))) (($ $) NIL (|has| $ (-376)))) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-920 |#1|) (-13 (-357) (-336 $) (-623 (-573))) (-931)) (T -920)) -NIL -(-13 (-357) (-336 $) (-623 (-573))) -((-1381 (((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)) 77)) (-1906 (((-112) (-344 |#2| |#3| |#4| |#5|)) 17)) (-2534 (((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|)) 15))) -(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|))) (-15 -1906 ((-112) (-344 |#2| |#3| |#4| |#5|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)))) (-13 (-565) (-1050 (-573))) (-439 |#1|) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -921)) -((-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *8))) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-2534 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-780)) (-5 *1 (-921 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|))) (-15 -1906 ((-112) (-344 |#2| |#3| |#4| |#5|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)))) -((-1381 (((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)) 64)) (-1906 (((-112) (-344 (-416 (-573)) |#1| |#2| |#3|)) 16)) (-2534 (((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)) 14))) -(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1906 ((-112) (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)))) (-1256 (-416 (-573))) (-1256 (-416 |#1|)) (-350 (-416 (-573)) |#1| |#2|)) (T -922)) -((-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *6))) (-5 *1 (-922 *4 *5 *6)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6)))) (-2534 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-780)) (-5 *1 (-922 *4 *5 *6))))) -(-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1906 ((-112) (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)))) -((-3518 ((|#2| |#2|) 26)) (-1603 (((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) 15)) (-1531 (((-931) (-573)) 38)) (-4008 (((-573) |#2|) 45)) (-3198 (((-573) |#2|) 21) (((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|) 20))) -(((-923 |#1| |#2|) (-10 -7 (-15 -1531 ((-931) (-573))) (-15 -3198 ((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|)) (-15 -3198 ((-573) |#2|)) (-15 -1603 ((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))))) (-15 -4008 ((-573) |#2|)) (-15 -3518 (|#2| |#2|))) (-1256 (-416 (-573))) (-1256 (-416 |#1|))) (T -923)) -((-3518 (*1 *2 *2) (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *1 (-923 *3 *2)) (-4 *2 (-1256 (-416 *3))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4))))) (-3198 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-3198 (*1 *2 *3) (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *2 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))) (-5 *1 (-923 *3 *4)) (-4 *4 (-1256 (-416 *3))))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-1256 (-416 *3))) (-5 *2 (-931)) (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4)))))) -(-10 -7 (-15 -1531 ((-931) (-573))) (-15 -3198 ((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|)) (-15 -3198 ((-573) |#2|)) (-15 -1603 ((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))))) (-15 -4008 ((-573) |#2|)) (-15 -3518 (|#2| |#2|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#1| $) 100)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 94)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3802 (($ |#1| (-427 |#1|)) 92)) (-2677 (((-1185 |#1|) |#1| |#1|) 53)) (-3016 (($ $) 61)) (-1959 (((-112) $) NIL)) (-3920 (((-573) $) 97)) (-3804 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-1944 ((|#1| $) 96)) (-1987 (((-427 |#1|) $) 95)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 93)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3367 (($ $) 50)) (-2942 (((-871) $) 124) (($ (-573)) 73) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 41) (((-416 |#1|) $) 78) (($ (-416 (-427 |#1|))) 86)) (-1545 (((-780)) 71 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 26 T CONST)) (-2144 (($) 15 T CONST)) (-2981 (((-112) $ $) 87)) (-3103 (($ $ $) NIL)) (-3093 (($ $) 108) (($ $ $) NIL)) (-3077 (($ $ $) 49)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 110) (($ $ $) 48) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-924 |#1|) (-13 (-371) (-38 |#1|) (-10 -8 (-15 -2942 ((-416 |#1|) $)) (-15 -2942 ($ (-416 (-427 |#1|)))) (-15 -3367 ($ $)) (-15 -1987 ((-427 |#1|) $)) (-15 -1944 (|#1| $)) (-15 -3804 ($ $ (-573))) (-15 -3920 ((-573) $)) (-15 -2677 ((-1185 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3802 ($ |#1| (-427 |#1|))) (-15 -3770 (|#1| $)))) (-314)) (T -924)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-416 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 (-427 *3))) (-4 *3 (-314)) (-5 *1 (-924 *3)))) (-3367 (*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-427 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-1944 (*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-2677 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *3 (-427 *2)) (-4 *2 (-314)) (-5 *1 (-924 *2)))) (-3770 (*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) -(-13 (-371) (-38 |#1|) (-10 -8 (-15 -2942 ((-416 |#1|) $)) (-15 -2942 ($ (-416 (-427 |#1|)))) (-15 -3367 ($ $)) (-15 -1987 ((-427 |#1|) $)) (-15 -1944 (|#1| $)) (-15 -3804 ($ $ (-573))) (-15 -3920 ((-573) $)) (-15 -2677 ((-1185 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3802 ($ |#1| (-427 |#1|))) (-15 -3770 (|#1| $)))) -((-3802 (((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)) 17) (((-52) (-416 (-962 |#1|)) (-1189)) 18))) -(((-925 |#1|) (-10 -7 (-15 -3802 ((-52) (-416 (-962 |#1|)) (-1189))) (-15 -3802 ((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)))) (-13 (-314) (-148))) (T -925)) -((-3802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-427 (-962 *6))) (-5 *5 (-1189)) (-5 *3 (-962 *6)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *6)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *5))))) -(-10 -7 (-15 -3802 ((-52) (-416 (-962 |#1|)) (-1189))) (-15 -3802 ((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)))) -((-1829 ((|#4| (-653 |#4|)) 147) (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2872 (((-1185 |#4|) (-653 (-1185 |#4|))) 140) (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 61) ((|#4| (-653 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2872 (|#4| |#4| |#4|)) (-15 -2872 (|#4| (-653 |#4|))) (-15 -2872 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -2872 ((-1185 |#4|) (-653 (-1185 |#4|)))) (-15 -1829 (|#4| |#4| |#4|)) (-15 -1829 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1829 (|#4| (-653 |#4|)))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -926)) -((-1829 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) (-1829 (*1 *2 *2 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 (-1185 *7))) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-1185 *7)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2872 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4))))) -(-10 -7 (-15 -2872 (|#4| |#4| |#4|)) (-15 -2872 (|#4| (-653 |#4|))) (-15 -2872 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -2872 ((-1185 |#4|) (-653 (-1185 |#4|)))) (-15 -1829 (|#4| |#4| |#4|)) (-15 -1829 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1829 (|#4| (-653 |#4|)))) -((-1523 (((-914 (-573)) (-983)) 38) (((-914 (-573)) (-653 (-573))) 34)) (-3105 (((-914 (-573)) (-653 (-573))) 67) (((-914 (-573)) (-931)) 68)) (-3011 (((-914 (-573))) 39)) (-1623 (((-914 (-573))) 53) (((-914 (-573)) (-653 (-573))) 52)) (-2572 (((-914 (-573))) 51) (((-914 (-573)) (-653 (-573))) 50)) (-3144 (((-914 (-573))) 49) (((-914 (-573)) (-653 (-573))) 48)) (-2806 (((-914 (-573))) 47) (((-914 (-573)) (-653 (-573))) 46)) (-3303 (((-914 (-573))) 45) (((-914 (-573)) (-653 (-573))) 44)) (-1796 (((-914 (-573))) 55) (((-914 (-573)) (-653 (-573))) 54)) (-3351 (((-914 (-573)) (-653 (-573))) 72) (((-914 (-573)) (-931)) 74)) (-2739 (((-914 (-573)) (-653 (-573))) 69) (((-914 (-573)) (-931)) 70)) (-3901 (((-914 (-573)) (-653 (-573))) 65) (((-914 (-573)) (-931)) 66)) (-1887 (((-914 (-573)) (-653 (-931))) 57))) -(((-927) (-10 -7 (-15 -3105 ((-914 (-573)) (-931))) (-15 -3105 ((-914 (-573)) (-653 (-573)))) (-15 -3901 ((-914 (-573)) (-931))) (-15 -3901 ((-914 (-573)) (-653 (-573)))) (-15 -1887 ((-914 (-573)) (-653 (-931)))) (-15 -2739 ((-914 (-573)) (-931))) (-15 -2739 ((-914 (-573)) (-653 (-573)))) (-15 -3351 ((-914 (-573)) (-931))) (-15 -3351 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)))) (-15 -2806 ((-914 (-573)) (-653 (-573)))) (-15 -2806 ((-914 (-573)))) (-15 -3144 ((-914 (-573)) (-653 (-573)))) (-15 -3144 ((-914 (-573)))) (-15 -2572 ((-914 (-573)) (-653 (-573)))) (-15 -2572 ((-914 (-573)))) (-15 -1623 ((-914 (-573)) (-653 (-573)))) (-15 -1623 ((-914 (-573)))) (-15 -1796 ((-914 (-573)) (-653 (-573)))) (-15 -1796 ((-914 (-573)))) (-15 -3011 ((-914 (-573)))) (-15 -1523 ((-914 (-573)) (-653 (-573)))) (-15 -1523 ((-914 (-573)) (-983))))) (T -927)) -((-1523 (*1 *2 *3) (-12 (-5 *3 (-983)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3011 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1796 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1623 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2572 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3144 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2806 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3303 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(-10 -7 (-15 -3105 ((-914 (-573)) (-931))) (-15 -3105 ((-914 (-573)) (-653 (-573)))) (-15 -3901 ((-914 (-573)) (-931))) (-15 -3901 ((-914 (-573)) (-653 (-573)))) (-15 -1887 ((-914 (-573)) (-653 (-931)))) (-15 -2739 ((-914 (-573)) (-931))) (-15 -2739 ((-914 (-573)) (-653 (-573)))) (-15 -3351 ((-914 (-573)) (-931))) (-15 -3351 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)))) (-15 -2806 ((-914 (-573)) (-653 (-573)))) (-15 -2806 ((-914 (-573)))) (-15 -3144 ((-914 (-573)) (-653 (-573)))) (-15 -3144 ((-914 (-573)))) (-15 -2572 ((-914 (-573)) (-653 (-573)))) (-15 -2572 ((-914 (-573)))) (-15 -1623 ((-914 (-573)) (-653 (-573)))) (-15 -1623 ((-914 (-573)))) (-15 -1796 ((-914 (-573)) (-653 (-573)))) (-15 -1796 ((-914 (-573)))) (-15 -3011 ((-914 (-573)))) (-15 -1523 ((-914 (-573)) (-653 (-573)))) (-15 -1523 ((-914 (-573)) (-983)))) -((-2306 (((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))) 14)) (-1461 (((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))) 13))) -(((-928 |#1|) (-10 -7 (-15 -1461 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2306 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))))) (-461)) (T -928)) -((-2306 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-928 *4)))) (-1461 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-928 *4))))) -(-10 -7 (-15 -1461 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2306 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))))) -((-2942 (((-323 |#1|) (-486)) 16))) -(((-929 |#1|) (-10 -7 (-15 -2942 ((-323 |#1|) (-486)))) (-565)) (T -929)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-323 *4)) (-5 *1 (-929 *4)) (-4 *4 (-565))))) -(-10 -7 (-15 -2942 ((-323 |#1|) (-486)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-930) (-141)) (T -930)) -((-2713 (*1 *2 *3) (-12 (-4 *1 (-930)) (-5 *2 (-2 (|:| -1857 (-653 *1)) (|:| -2969 *1))) (-5 *3 (-653 *1)))) (-3014 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-930))))) -(-13 (-461) (-10 -8 (-15 -2713 ((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $))) (-15 -3014 ((-3 (-653 $) "failed") (-653 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2872 (($ $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ $ $) NIL))) -(((-931) (-13 (-803) (-735) (-10 -8 (-15 -2872 ($ $ $)) (-6 (-4457 "*"))))) (T -931)) -((-2872 (*1 *1 *1 *1) (-5 *1 (-931)))) -(-13 (-803) (-735) (-10 -8 (-15 -2872 ($ $ $)) (-6 (-4457 "*")))) +((-1424 (((-701 (-1241)) $ (-1241)) NIL)) (-2559 (((-701 (-559)) $ (-559)) NIL)) (-2285 (((-781) $ (-129)) NIL)) (-1727 (((-701 (-130)) $ (-130)) 22)) (-3390 (($ (-398)) 12) (($ (-1174)) 14)) (-1582 (((-112) $) 19)) (-2950 (((-872) $) 26)) (-2474 (($ $) 23))) +(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -3390 ($ (-398))) (-15 -3390 ($ (-1174))) (-15 -1582 ((-112) $))))) (T -871)) +((-3390 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-871)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) +(-13 (-870) (-623 (-872)) (-10 -8 (-15 -3390 ($ (-398))) (-15 -3390 ($ (-1174))) (-15 -1582 ((-112) $)))) +((-2863 (((-112) $ $) NIL) (($ $ $) 85)) (-2564 (($ $ $) 125)) (-3015 (((-574) $) 31) (((-574)) 36)) (-4097 (($ (-574)) 53)) (-4328 (($ $ $) 54) (($ (-654 $)) 84)) (-3046 (($ $ (-654 $)) 82)) (-1566 (((-574) $) 34)) (-3624 (($ $ $) 73)) (-3534 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2417 (((-574) $) 33)) (-1477 (($ $ $) 72)) (-3231 (($ $) 114)) (-1942 (($ $ $) 129)) (-2802 (($ (-654 $)) 61)) (-4121 (($ $ (-654 $)) 79)) (-1940 (($ (-574) (-574)) 55)) (-1446 (($ $) 126) (($ $ $) 127)) (-3877 (($ $ (-574)) 43) (($ $) 46)) (-2800 (($ $ $) 97)) (-1912 (($ $ $) 132)) (-4010 (($ $) 115)) (-2811 (($ $ $) 98)) (-4141 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1805 (((-1288) $) 10)) (-3020 (($ $) 118) (($ $ (-781)) 122)) (-1825 (($ $ $) 75)) (-1817 (($ $ $) 74)) (-4196 (($ $ (-654 $)) 110)) (-3930 (($ $ $) 113)) (-2005 (($ (-654 $)) 59)) (-4248 (($ $) 70) (($ (-654 $)) 71)) (-2948 (($ $ $) 123)) (-1816 (($ $) 116)) (-3447 (($ $ $) 128)) (-1977 (($ (-574)) 21) (($ (-1192)) 23) (($ (-1174)) 30) (($ (-227)) 25)) (-2108 (($ $ $) 101)) (-2086 (($ $) 102)) (-3921 (((-1288) (-1174)) 15)) (-2179 (($ (-1174)) 14)) (-2923 (($ (-654 (-654 $))) 58)) (-3864 (($ $ (-574)) 42) (($ $) 45)) (-1938 (((-1174) $) NIL)) (-1908 (($ $ $) 131)) (-3086 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3773 (((-112) $) 108)) (-1881 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-3329 (($ (-574)) 39)) (-1849 (((-574) $) 32) (((-574)) 35)) (-3250 (($ $ $) 40) (($ (-654 $)) 83)) (-3939 (((-1135) $) NIL)) (-2852 (($ $ $) 99)) (-4272 (($) 13)) (-2209 (($ $ (-654 $)) 109)) (-2875 (((-1174) (-1174)) 8)) (-2546 (($ $) 117) (($ $ (-781)) 121)) (-2839 (($ $ $) 96)) (-3878 (($ $ (-781)) 139)) (-2423 (($ (-654 $)) 60)) (-2950 (((-872) $) 19)) (-3332 (($ $ (-574)) 41) (($ $) 44)) (-1457 (($ $) 68) (($ (-654 $)) 69)) (-4268 (($ $) 66) (($ (-654 $)) 67)) (-2081 (($ $) 124)) (-3579 (($ (-654 $)) 65)) (-2561 (($ $ $) 105)) (-4259 (((-112) $ $) NIL)) (-2240 (($ $ $) 130)) (-2097 (($ $ $) 100)) (-4264 (($ $ $) 103) (($ $) 104)) (-3040 (($ $ $) 89)) (-3017 (($ $ $) 87)) (-2985 (((-112) $ $) 16) (($ $ $) 17)) (-3029 (($ $ $) 88)) (-3008 (($ $ $) 86)) (-3102 (($ $ $) 94)) (-3089 (($ $ $) 91) (($ $) 92)) (-3073 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-872) (-13 (-1115) (-10 -8 (-15 -1805 ((-1288) $)) (-15 -2179 ($ (-1174))) (-15 -3921 ((-1288) (-1174))) (-15 -1977 ($ (-574))) (-15 -1977 ($ (-1192))) (-15 -1977 ($ (-1174))) (-15 -1977 ($ (-227))) (-15 -4272 ($)) (-15 -2875 ((-1174) (-1174))) (-15 -3015 ((-574) $)) (-15 -1849 ((-574) $)) (-15 -3015 ((-574))) (-15 -1849 ((-574))) (-15 -2417 ((-574) $)) (-15 -1566 ((-574) $)) (-15 -3329 ($ (-574))) (-15 -4097 ($ (-574))) (-15 -1940 ($ (-574) (-574))) (-15 -3864 ($ $ (-574))) (-15 -3877 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -3332 ($ $)) (-15 -3250 ($ $ $)) (-15 -4328 ($ $ $)) (-15 -3250 ($ (-654 $))) (-15 -4328 ($ (-654 $))) (-15 -4196 ($ $ (-654 $))) (-15 -1881 ($ $ (-654 $))) (-15 -1881 ($ $ $ $)) (-15 -3930 ($ $ $)) (-15 -3773 ((-112) $)) (-15 -2209 ($ $ (-654 $))) (-15 -3231 ($ $)) (-15 -1908 ($ $ $)) (-15 -2081 ($ $)) (-15 -2923 ($ (-654 (-654 $)))) (-15 -2564 ($ $ $)) (-15 -1446 ($ $)) (-15 -1446 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -2240 ($ $ $)) (-15 -1912 ($ $ $)) (-15 -3878 ($ $ (-781))) (-15 -2561 ($ $ $)) (-15 -1477 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -1817 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -4121 ($ $ (-654 $))) (-15 -3046 ($ $ (-654 $))) (-15 -4010 ($ $)) (-15 -2546 ($ $)) (-15 -2546 ($ $ (-781))) (-15 -3020 ($ $)) (-15 -3020 ($ $ (-781))) (-15 -1816 ($ $)) (-15 -2948 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -4141 ($ $)) (-15 -4141 ($ $ $)) (-15 -4141 ($ $ $ $)) (-15 -3086 ($ $)) (-15 -3086 ($ $ $)) (-15 -3086 ($ $ $ $)) (-15 -4268 ($ $)) (-15 -4268 ($ (-654 $))) (-15 -1457 ($ $)) (-15 -1457 ($ (-654 $))) (-15 -4248 ($ $)) (-15 -4248 ($ (-654 $))) (-15 -2005 ($ (-654 $))) (-15 -2423 ($ (-654 $))) (-15 -2802 ($ (-654 $))) (-15 -3579 ($ (-654 $))) (-15 -2985 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3008 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3102 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -2086 ($ $)) (-15 -4264 ($ $ $)) (-15 -4264 ($ $))))) (T -872)) +((-1805 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-872)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-872)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-872)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-4272 (*1 *1) (-5 *1 (-872))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3015 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1849 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1940 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3864 (*1 *1 *1) (-5 *1 (-872))) (-3877 (*1 *1 *1) (-5 *1 (-872))) (-3332 (*1 *1 *1) (-5 *1 (-872))) (-3250 (*1 *1 *1 *1) (-5 *1 (-872))) (-4328 (*1 *1 *1 *1) (-5 *1 (-872))) (-3250 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4328 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1881 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3930 (*1 *1 *1 *1) (-5 *1 (-872))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3231 (*1 *1 *1) (-5 *1 (-872))) (-1908 (*1 *1 *1 *1) (-5 *1 (-872))) (-2081 (*1 *1 *1) (-5 *1 (-872))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-2564 (*1 *1 *1 *1) (-5 *1 (-872))) (-1446 (*1 *1 *1) (-5 *1 (-872))) (-1446 (*1 *1 *1 *1) (-5 *1 (-872))) (-3447 (*1 *1 *1 *1) (-5 *1 (-872))) (-1942 (*1 *1 *1 *1) (-5 *1 (-872))) (-2240 (*1 *1 *1 *1) (-5 *1 (-872))) (-1912 (*1 *1 *1 *1) (-5 *1 (-872))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2561 (*1 *1 *1 *1) (-5 *1 (-872))) (-1477 (*1 *1 *1 *1) (-5 *1 (-872))) (-3624 (*1 *1 *1 *1) (-5 *1 (-872))) (-1817 (*1 *1 *1 *1) (-5 *1 (-872))) (-1825 (*1 *1 *1 *1) (-5 *1 (-872))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4010 (*1 *1 *1) (-5 *1 (-872))) (-2546 (*1 *1 *1) (-5 *1 (-872))) (-2546 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3020 (*1 *1 *1) (-5 *1 (-872))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-1816 (*1 *1 *1) (-5 *1 (-872))) (-2948 (*1 *1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1 *1) (-5 *1 (-872))) (-3534 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4141 (*1 *1 *1) (-5 *1 (-872))) (-4141 (*1 *1 *1 *1) (-5 *1 (-872))) (-4141 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1 *1) (-5 *1 (-872))) (-3086 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4268 (*1 *1 *1) (-5 *1 (-872))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1457 (*1 *1 *1) (-5 *1 (-872))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4248 (*1 *1 *1) (-5 *1 (-872))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3579 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2985 (*1 *1 *1 *1) (-5 *1 (-872))) (-2863 (*1 *1 *1 *1) (-5 *1 (-872))) (-3008 (*1 *1 *1 *1) (-5 *1 (-872))) (-3017 (*1 *1 *1 *1) (-5 *1 (-872))) (-3029 (*1 *1 *1 *1) (-5 *1 (-872))) (-3040 (*1 *1 *1 *1) (-5 *1 (-872))) (-3073 (*1 *1 *1 *1) (-5 *1 (-872))) (-3089 (*1 *1 *1 *1) (-5 *1 (-872))) (-3089 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3102 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2839 (*1 *1 *1 *1) (-5 *1 (-872))) (-2800 (*1 *1 *1 *1) (-5 *1 (-872))) (-2811 (*1 *1 *1 *1) (-5 *1 (-872))) (-2852 (*1 *1 *1 *1) (-5 *1 (-872))) (-2097 (*1 *1 *1 *1) (-5 *1 (-872))) (-2108 (*1 *1 *1 *1) (-5 *1 (-872))) (-2086 (*1 *1 *1) (-5 *1 (-872))) (-4264 (*1 *1 *1 *1) (-5 *1 (-872))) (-4264 (*1 *1 *1) (-5 *1 (-872)))) +(-13 (-1115) (-10 -8 (-15 -1805 ((-1288) $)) (-15 -2179 ($ (-1174))) (-15 -3921 ((-1288) (-1174))) (-15 -1977 ($ (-574))) (-15 -1977 ($ (-1192))) (-15 -1977 ($ (-1174))) (-15 -1977 ($ (-227))) (-15 -4272 ($)) (-15 -2875 ((-1174) (-1174))) (-15 -3015 ((-574) $)) (-15 -1849 ((-574) $)) (-15 -3015 ((-574))) (-15 -1849 ((-574))) (-15 -2417 ((-574) $)) (-15 -1566 ((-574) $)) (-15 -3329 ($ (-574))) (-15 -4097 ($ (-574))) (-15 -1940 ($ (-574) (-574))) (-15 -3864 ($ $ (-574))) (-15 -3877 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3864 ($ $)) (-15 -3877 ($ $)) (-15 -3332 ($ $)) (-15 -3250 ($ $ $)) (-15 -4328 ($ $ $)) (-15 -3250 ($ (-654 $))) (-15 -4328 ($ (-654 $))) (-15 -4196 ($ $ (-654 $))) (-15 -1881 ($ $ (-654 $))) (-15 -1881 ($ $ $ $)) (-15 -3930 ($ $ $)) (-15 -3773 ((-112) $)) (-15 -2209 ($ $ (-654 $))) (-15 -3231 ($ $)) (-15 -1908 ($ $ $)) (-15 -2081 ($ $)) (-15 -2923 ($ (-654 (-654 $)))) (-15 -2564 ($ $ $)) (-15 -1446 ($ $)) (-15 -1446 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -2240 ($ $ $)) (-15 -1912 ($ $ $)) (-15 -3878 ($ $ (-781))) (-15 -2561 ($ $ $)) (-15 -1477 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -1817 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -4121 ($ $ (-654 $))) (-15 -3046 ($ $ (-654 $))) (-15 -4010 ($ $)) (-15 -2546 ($ $)) (-15 -2546 ($ $ (-781))) (-15 -3020 ($ $)) (-15 -3020 ($ $ (-781))) (-15 -1816 ($ $)) (-15 -2948 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -4141 ($ $)) (-15 -4141 ($ $ $)) (-15 -4141 ($ $ $ $)) (-15 -3086 ($ $)) (-15 -3086 ($ $ $)) (-15 -3086 ($ $ $ $)) (-15 -4268 ($ $)) (-15 -4268 ($ (-654 $))) (-15 -1457 ($ $)) (-15 -1457 ($ (-654 $))) (-15 -4248 ($ $)) (-15 -4248 ($ (-654 $))) (-15 -2005 ($ (-654 $))) (-15 -2423 ($ (-654 $))) (-15 -2802 ($ (-654 $))) (-15 -3579 ($ (-654 $))) (-15 -2985 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3008 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -3029 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $)) (-15 * ($ $ $)) (-15 -3102 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -2086 ($ $)) (-15 -4264 ($ $ $)) (-15 -4264 ($ $)))) +((-2383 (((-1288) (-654 (-52))) 23)) (-3230 (((-1288) (-1174) (-872)) 13) (((-1288) (-872)) 8) (((-1288) (-1174)) 10))) +(((-873) (-10 -7 (-15 -3230 ((-1288) (-1174))) (-15 -3230 ((-1288) (-872))) (-15 -3230 ((-1288) (-1174) (-872))) (-15 -2383 ((-1288) (-654 (-52)))))) (T -873)) +((-2383 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-873))))) +(-10 -7 (-15 -3230 ((-1288) (-1174))) (-15 -3230 ((-1288) (-872))) (-15 -3230 ((-1288) (-1174) (-872))) (-15 -2383 ((-1288) (-654 (-52))))) +((-2863 (((-112) $ $) NIL)) (-1498 (((-3 $ "failed") (-1192)) 36)) (-1497 (((-781)) 32)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) 29)) (-1938 (((-1174) $) 43)) (-2590 (($ (-934)) 28)) (-3939 (((-1135) $) NIL)) (-1846 (((-1192) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2950 (((-872) $) 16)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 40)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 38))) +(((-874 |#1|) (-13 (-854) (-624 (-1192)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1192))))) (-654 (-1192))) (T -874)) +((-1498 (*1 *1 *2) (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))) +(-13 (-854) (-624 (-1192)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1192))))) +((-2863 (((-112) $ $) NIL)) (-2041 (((-516) $) 9)) (-4187 (((-654 (-449)) $) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 16))) +(((-875) (-13 (-1115) (-10 -8 (-15 -2041 ((-516) $)) (-15 -4187 ((-654 (-449)) $))))) (T -875)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) +(-13 (-1115) (-10 -8 (-15 -2041 ((-516) $)) (-15 -4187 ((-654 (-449)) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-965 |#1|)) NIL) (((-965 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3781 (((-781)) NIL T CONST)) (-3369 (((-1288) (-781)) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-876 |#1| |#2| |#3| |#4|) (-13 (-1064) (-500 (-965 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3102 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3369 ((-1288) (-781))))) (-1064) (-654 (-1192)) (-654 (-781)) (-781)) (T -876)) +((-3102 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1064)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 *3)) (-14 *7 *3)))) +(-13 (-1064) (-500 (-965 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3102 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3369 ((-1288) (-781))))) +((-3689 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-3639 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29))) +(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -3639 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3689 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1274 |#1|) (-1259 |#1|)) (T -877)) +((-3689 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5)))) (-3639 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5))))) +(-10 -7 (-15 -3639 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3689 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) +((-3639 (((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) 28))) +(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -3639 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (-15 -3639 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)))) (-372) (-1192) |#1|) (T -878)) +((-3639 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-3639 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) (-5 *1 (-878 *5 *6 *7))))) +(-10 -7 (-15 -3639 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (-15 -3639 ((-3 (-417 (-1256 |#2| |#1|)) "failed") (-781) (-781) (-1275 |#1| |#2| |#3|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-4211 (($ $ (-574)) 68)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-1446 (($ (-1188 (-574)) (-574)) 67)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2353 (($ $) 70)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-3837 (((-781) $) 75)) (-2276 (((-112) $) 35)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-4154 (((-574)) 72)) (-2880 (((-574) $) 71)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-4016 (($ $ (-574)) 74)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-2829 (((-1172 (-574)) $) 76)) (-2073 (($ $) 73)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-3524 (((-574) $ (-574)) 69)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-879 |#1|) (-141) (-574)) (T -879)) +((-2829 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1172 (-574))))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-2073 (*1 *1 *1) (-4 *1 (-879 *2))) (-4154 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-2353 (*1 *1 *1) (-4 *1 (-879 *2))) (-3524 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) +(-13 (-315) (-148) (-10 -8 (-15 -2829 ((-1172 (-574)) $)) (-15 -3837 ((-781) $)) (-15 -4016 ($ $ (-574))) (-15 -2073 ($ $)) (-15 -4154 ((-574))) (-15 -2880 ((-574) $)) (-15 -2353 ($ $)) (-15 -3524 ((-574) $ (-574))) (-15 -4211 ($ $ (-574))) (-15 -1446 ($ (-1188 (-574)) (-574))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-574)) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-1446 (($ (-1188 (-574)) (-574)) NIL)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2353 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-3837 (((-781) $) NIL)) (-2276 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4154 (((-574)) NIL)) (-2880 (((-574) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4016 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2829 (((-1172 (-574)) $) NIL)) (-2073 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-574) $ (-574)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) +(((-880 |#1|) (-879 |#1|) (-574)) (T -880)) +NIL +(-879 |#1|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1053 (-574))))) (-2216 (((-880 |#1|) $) NIL) (((-1192) $) NIL (|has| (-880 |#1|) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1053 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1053 (-574))))) (-2957 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-880 |#1|))) (|:| |vec| (-1283 (-880 |#1|)))) (-699 $) (-1283 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-880 |#1|) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-880 |#1|) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1167)))) (-3081 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-2953 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1787 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-880 |#1|) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-2787 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-880 |#1|) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1192)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1192) (-880 |#1|)))) (($ $ (-1192) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1192) (-880 |#1|))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-880 |#1|) $) NIL)) (-1846 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1037))) (((-227) $) NIL (|has| (-880 |#1|) (-1037)))) (-4197 (((-176 (-417 (-574))) $) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1192)) NIL (|has| (-880 |#1|) (-1053 (-1192))))) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-922))) (|has| (-880 |#1|) (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) NIL)) (-2366 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1192)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-880 |#1|) (-913 (-1192)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3102 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL))) +(((-881 |#1|) (-13 (-1007 (-880 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) (-574)) (T -881)) +((-3524 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))) +(-13 (-1007 (-880 |#1|)) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 ((|#2| $) NIL (|has| |#2| (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| |#2| (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (|has| |#2| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574))))) (-2216 ((|#2| $) NIL) (((-1192) $) NIL (|has| |#2| (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-574)))) (((-574) $) NIL (|has| |#2| (-1053 (-574))))) (-2957 (($ $) 35) (($ (-574) $) 38)) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) 64)) (-2834 (($) NIL (|has| |#2| (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) NIL (|has| |#2| (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 ((|#2| $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#2| (-1167)))) (-3081 (((-112) $) NIL (|has| |#2| (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| |#2| (-860)))) (-2953 (($ $ $) NIL (|has| |#2| (-860)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 60)) (-3791 (($) NIL (|has| |#2| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| |#2| (-315)))) (-2787 ((|#2| $) NIL (|has| |#2| (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1192)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1192) |#2|))) (($ $ (-1192) |#2|) NIL (|has| |#2| (-524 (-1192) |#2|)))) (-3575 (((-781) $) NIL)) (-2209 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2593 (($ $) NIL)) (-2981 ((|#2| $) NIL)) (-1846 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1037))) (((-227) $) NIL (|has| |#2| (-1037)))) (-4197 (((-176 (-417 (-574))) $) 78)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-2950 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1192)) NIL (|has| |#2| (-1053 (-1192))))) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-2251 ((|#2| $) NIL (|has| |#2| (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ (-574)) 71)) (-2366 (($ $) NIL (|has| |#2| (-830)))) (-2143 (($) 15 T CONST)) (-2155 (($) 17 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2985 (((-112) $ $) 46)) (-3029 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3102 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3089 (($ $) 50) (($ $ $) 52)) (-3073 (($ $ $) 48)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-882 |#1| |#2|) (-13 (-1007 |#2|) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882)) +((-3524 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-4197 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-2957 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) +(-13 (-1007 |#2|) (-10 -8 (-15 -3524 ((-417 (-574)) $ (-574))) (-15 -4197 ((-176 (-417 (-574))) $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)))) +((-2863 (((-112) $ $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2407 ((|#2| $) 12)) (-2623 (($ |#1| |#2|) 9)) (-1938 (((-1174) $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-3939 (((-1135) $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#1| $) 11)) (-2962 (($ |#1| |#2|) 10)) (-2950 (((-872) $) 18 (-2832 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115)))))) (-4259 (((-112) $ $) NIL (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115))))) (-2985 (((-112) $ $) 23 (-12 (|has| |#1| (-1115)) (|has| |#2| (-1115)))))) +(((-883 |#1| |#2|) (-13 (-1233) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1115)) (IF (|has| |#2| (-1115)) (-6 (-1115)) |%noBranch|) |%noBranch|) (-15 -2623 ($ |#1| |#2|)) (-15 -2962 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2407 (|#2| $)))) (-1233) (-1233)) (T -883)) +((-2623 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) (-2924 (*1 *2 *1) (-12 (-4 *2 (-1233)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1233)))) (-2407 (*1 *2 *1) (-12 (-4 *2 (-1233)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1233))))) +(-13 (-1233) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1115)) (IF (|has| |#2| (-1115)) (-6 (-1115)) |%noBranch|) |%noBranch|) (-15 -2623 ($ |#1| |#2|)) (-15 -2962 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2407 (|#2| $)))) +((-2863 (((-112) $ $) NIL)) (-4271 (((-574) $) 16)) (-2217 (($ (-158)) 13)) (-3722 (($ (-158)) 14)) (-1938 (((-1174) $) NIL)) (-2014 (((-158) $) 15)) (-3939 (((-1135) $) NIL)) (-4106 (($ (-158)) 11)) (-3010 (($ (-158)) 10)) (-2950 (((-872) $) 24) (($ (-158)) 17)) (-2635 (($ (-158)) 12)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-884) (-13 (-1115) (-10 -8 (-15 -3010 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -2217 ($ (-158))) (-15 -3722 ($ (-158))) (-15 -2014 ((-158) $)) (-15 -4271 ((-574) $)) (-15 -2950 ($ (-158)))))) (T -884)) +((-3010 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(-13 (-1115) (-10 -8 (-15 -3010 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -2217 ($ (-158))) (-15 -3722 ($ (-158))) (-15 -2014 ((-158) $)) (-15 -4271 ((-574) $)) (-15 -2950 ($ (-158))))) +((-2950 (((-324 (-574)) (-417 (-965 (-48)))) 23) (((-324 (-574)) (-965 (-48))) 18))) +(((-885) (-10 -7 (-15 -2950 ((-324 (-574)) (-965 (-48)))) (-15 -2950 ((-324 (-574)) (-417 (-965 (-48))))))) (T -885)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-965 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))) +(-10 -7 (-15 -2950 ((-324 (-574)) (-965 (-48)))) (-15 -2950 ((-324 (-574)) (-417 (-965 (-48)))))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2132 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1174))) 13)) (-4259 (((-112) $ $) NIL)) (-1337 (((-516) $) 10) (((-1174) $) 14)) (-2985 (((-112) $ $) 15))) +(((-886) (-13 (-1098) (-1278) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $))))) (T -886)) +((-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-886))))) +(-13 (-1098) (-1278) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $)))) +((-1787 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15))) +(((-887 |#1| |#2|) (-10 -7 (-15 -1787 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1233) (-1233)) (T -887)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) +(-10 -7 (-15 -1787 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-3874 (($ |#1| |#1|) 8)) (-1835 ((|#1| $ (-781)) 15))) +(((-888 |#1|) (-10 -8 (-15 -3874 ($ |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) (-1233)) (T -888)) +((-1835 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1233)))) (-3874 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1233))))) +(-10 -8 (-15 -3874 ($ |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) +((-1787 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) +(((-889 |#1| |#2|) (-10 -7 (-15 -1787 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1233) (-1233)) (T -889)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) +(-10 -7 (-15 -1787 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) +((-3874 (($ |#1| |#1| |#1|) 8)) (-1835 ((|#1| $ (-781)) 15))) +(((-890 |#1|) (-10 -8 (-15 -3874 ($ |#1| |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) (-1233)) (T -890)) +((-1835 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1233)))) (-3874 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1233))))) +(-10 -8 (-15 -3874 ($ |#1| |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) +((-3616 (((-654 (-1197)) (-1174)) 9))) +(((-891) (-10 -7 (-15 -3616 ((-654 (-1197)) (-1174))))) (T -891)) +((-3616 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-891))))) +(-10 -7 (-15 -3616 ((-654 (-1197)) (-1174)))) +((-1787 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) +(((-892 |#1| |#2|) (-10 -7 (-15 -1787 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1233) (-1233)) (T -892)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) +(-10 -7 (-15 -1787 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) +((-3341 (($ |#1| |#1| |#1|) 8)) (-1835 ((|#1| $ (-781)) 15))) +(((-893 |#1|) (-10 -8 (-15 -3341 ($ |#1| |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) (-1233)) (T -893)) +((-1835 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1233)))) (-3341 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1233))))) +(-10 -8 (-15 -3341 ($ |#1| |#1| |#1|)) (-15 -1835 (|#1| $ (-781)))) +((-2872 (((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574)))) 41)) (-3510 (((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-3706 (((-1172 (-654 (-574))) (-654 (-574))) 53) (((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-1558 (((-1172 (-654 (-574))) (-574)) 55)) (-2450 (((-1172 (-654 (-934))) (-1172 (-654 (-934)))) 22)) (-2190 (((-654 (-934)) (-654 (-934))) 18))) +(((-894) (-10 -7 (-15 -2190 ((-654 (-934)) (-654 (-934)))) (-15 -2450 ((-1172 (-654 (-934))) (-1172 (-654 (-934))))) (-15 -3510 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -2872 ((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574))))) (-15 -3706 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3706 ((-1172 (-654 (-574))) (-654 (-574)))) (-15 -1558 ((-1172 (-654 (-574))) (-574))))) (T -894)) +((-1558 (*1 *2 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3706 (*1 *2 *3 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-2872 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-3510 (*1 *2 *3 *3) (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-1172 (-654 (-934)))) (-5 *1 (-894)))) (-2190 (*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-894))))) +(-10 -7 (-15 -2190 ((-654 (-934)) (-654 (-934)))) (-15 -2450 ((-1172 (-654 (-934))) (-1172 (-654 (-934))))) (-15 -3510 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -2872 ((-1172 (-654 (-574))) (-654 (-574)) (-1172 (-654 (-574))))) (-15 -3706 ((-1172 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3706 ((-1172 (-654 (-574))) (-654 (-574)))) (-15 -1558 ((-1172 (-654 (-574))) (-574)))) +((-1846 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574))))))) +(((-895 |#1|) (-141) (-1233)) (T -895)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|))) +(((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574))))) +((-2863 (((-112) $ $) NIL)) (-3763 (($) 14)) (-2687 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3626 (((-900 |#1| |#3|) $) 16)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1507 (((-112) $) 22)) (-3573 (($) 19)) (-2950 (((-872) $) 31)) (-4259 (((-112) $ $) NIL)) (-4129 (((-900 |#1| |#2|) $) 15)) (-2985 (((-112) $ $) 26))) +(((-896 |#1| |#2| |#3|) (-13 (-1115) (-10 -8 (-15 -1507 ((-112) $)) (-15 -3573 ($)) (-15 -3763 ($)) (-15 -2687 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -4129 ((-900 |#1| |#2|) $)) (-15 -3626 ((-900 |#1| |#3|) $)))) (-1115) (-1115) (-676 |#2|)) (T -896)) +((-1507 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4)))) (-3573 (*1 *1) (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) (-4 *4 (-676 *3)))) (-3763 (*1 *1) (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) (-4 *4 (-676 *3)))) (-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-4129 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4)))) (-3626 (*1 *2 *1) (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1115)) (-4 *5 (-676 *4))))) +(-13 (-1115) (-10 -8 (-15 -1507 ((-112) $)) (-15 -3573 ($)) (-15 -3763 ($)) (-15 -2687 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -4129 ((-900 |#1| |#2|) $)) (-15 -3626 ((-900 |#1| |#3|) $)))) +((-2863 (((-112) $ $) 7)) (-1793 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-897 |#1|) (-141) (-1115)) (T -897)) +((-1793 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -1793 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2454 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2092 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2086 (|has| |#2| (-1053 (-1192)))) (-2086 (|has| |#2| (-1064))))) (((-654 (-302 (-965 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1064)) (-2086 (|has| |#2| (-1053 (-1192)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1053 (-1192)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21))) +(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -2454 ((-112) |#2| |#3|)) (-15 -2454 ((-112) (-654 |#2|) |#3|)) (-15 -2092 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1053 (-1192))) (-15 -2092 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1064)) (-15 -2092 ((-654 (-302 (-965 |#2|))) |#2| |#3|)) (-15 -2092 ((-900 |#1| |#2|) |#2| |#3|))))) (-1115) (-897 |#1|) (-624 (-903 |#1|))) (T -898)) +((-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2086 (-4 *3 (-1053 (-1192)))) (-2086 (-4 *3 (-1064))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 (-965 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1064)) (-2086 (-4 *3 (-1053 (-1192)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1053 (-1192))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-2454 (*1 *2 *3 *4) (-12 (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) +(-10 -7 (-15 -2454 ((-112) |#2| |#3|)) (-15 -2454 ((-112) (-654 |#2|) |#3|)) (-15 -2092 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1053 (-1192))) (-15 -2092 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1064)) (-15 -2092 ((-654 (-302 (-965 |#2|))) |#2| |#3|)) (-15 -2092 ((-900 |#1| |#2|) |#2| |#3|))))) +((-1787 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22))) +(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1115) (-1115) (-1115)) (T -899)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7))))) +(-10 -7 (-15 -1787 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) +((-2863 (((-112) $ $) NIL)) (-4353 (($ $ $) 40)) (-2396 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3763 (($) 12)) (-1938 (((-1174) $) NIL)) (-1936 (($ (-903 |#1|) |#2| $) 20)) (-3939 (((-1135) $) NIL)) (-2322 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-1507 (((-112) $) 15)) (-3573 (($) 13)) (-4281 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|))) $) 25)) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|)))) 23)) (-2950 (((-872) $) 45)) (-4259 (((-112) $ $) NIL)) (-3079 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-3979 (($ (-903 |#1|) |#2| $) 48)) (-2985 (((-112) $ $) 42))) +(((-900 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -1507 ((-112) $)) (-15 -3573 ($)) (-15 -3763 ($)) (-15 -4353 ($ $ $)) (-15 -2322 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3979 ($ (-903 |#1|) |#2| $)) (-15 -1936 ($ (-903 |#1|) |#2| $)) (-15 -3079 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4281 ((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|))))) (-15 -2396 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1115) (-1115)) (T -900)) +((-1507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3573 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3763 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-4353 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-2322 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) (-5 *1 (-900 *4 *2)))) (-3979 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-1936 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-3079 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1115)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 *4)))) (-4 *4 (-1115)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)))) (-2396 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -1507 ((-112) $)) (-15 -3573 ($)) (-15 -3763 ($)) (-15 -4353 ($ $ $)) (-15 -2322 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3979 ($ (-903 |#1|) |#2| $)) (-15 -1936 ($ (-903 |#1|) |#2| $)) (-15 -3079 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4281 ((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|))) $)) (-15 -2962 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 |#2|))))) (-15 -2396 ((-3 (-112) "failed") $ (-903 |#1|))))) +((-2585 (((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-2396 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2529 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-2786 (((-654 |#2|) (-903 |#1|)) 24)) (-2673 (((-903 |#1|) (-903 |#1|) |#2|) 20))) +(((-901 |#1| |#2|) (-10 -7 (-15 -2585 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|)))) (-15 -2529 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -2396 ((-112) |#2| (-903 |#1|))) (-15 -2396 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -2673 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2786 ((-654 |#2|) (-903 |#1|)))) (-1115) (-1233)) (T -901)) +((-2786 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) (-2673 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1233)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1233)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) (-2585 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1192))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-901 *5 *6)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1115)) (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1115)) (-4 *5 (-1233)) (-5 *1 (-901 *4 *5))))) +(-10 -7 (-15 -2585 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2585 ((-903 |#1|) (-903 |#1|) (-654 (-1192)) (-1 (-112) (-654 |#2|)))) (-15 -2529 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -2396 ((-112) |#2| (-903 |#1|))) (-15 -2396 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -2673 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -2786 ((-654 |#2|) (-903 |#1|)))) +((-1787 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19))) +(((-902 |#1| |#2|) (-10 -7 (-15 -1787 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1115) (-1115)) (T -902)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) +(-10 -7 (-15 -1787 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) +((-2863 (((-112) $ $) NIL)) (-2456 (($ $ (-654 (-52))) 74)) (-4349 (((-654 $) $) 139)) (-3207 (((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $) 30)) (-1503 (((-112) $) 35)) (-3669 (($ $ (-654 (-1192)) (-52)) 31)) (-2361 (($ $ (-654 (-52))) 73)) (-1706 (((-3 |#1| "failed") $) 71) (((-3 (-1192) "failed") $) 164)) (-2216 ((|#1| $) 68) (((-1192) $) NIL)) (-1998 (($ $) 126)) (-3414 (((-112) $) 55)) (-2476 (((-654 (-52)) $) 50)) (-2738 (($ (-1192) (-112) (-112) (-112)) 75)) (-2492 (((-3 (-654 $) "failed") (-654 $)) 82)) (-2084 (((-112) $) 58)) (-1570 (((-112) $) 57)) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) 41)) (-1791 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3469 (((-3 (-2 (|:| |val| $) (|:| -3843 $)) "failed") $) 97)) (-3145 (((-3 (-654 $) "failed") $) 40)) (-3752 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-2178 (((-3 (-654 $) "failed") $) 42)) (-3019 (((-3 (-2 (|:| |val| $) (|:| -3843 (-781))) "failed") $) 45)) (-4209 (((-112) $) 34)) (-3939 (((-1135) $) NIL)) (-3582 (((-112) $) 28)) (-2037 (((-112) $) 52)) (-2064 (((-654 (-52)) $) 130)) (-3981 (((-112) $) 56)) (-2209 (($ (-115) (-654 $)) 104)) (-4292 (((-781) $) 33)) (-3156 (($ $) 72)) (-1846 (($ (-654 $)) 69)) (-2772 (((-112) $) 32)) (-2950 (((-872) $) 63) (($ |#1|) 23) (($ (-1192)) 76)) (-4259 (((-112) $ $) NIL)) (-2673 (($ $ (-52)) 129)) (-2143 (($) 103 T CONST)) (-2155 (($) 83 T CONST)) (-2985 (((-112) $ $) 93)) (-3102 (($ $ $) 117)) (-3073 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-903 |#1|) (-13 (-1115) (-1053 |#1|) (-1053 (-1192)) (-10 -8 (-15 0 ($) -1716) (-15 1 ($) -1716) (-15 -3145 ((-3 (-654 $) "failed") $)) (-15 -1898 ((-3 (-654 $) "failed") $)) (-15 -3752 ((-3 (-654 $) "failed") $ (-115))) (-15 -3752 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3019 ((-3 (-2 (|:| |val| $) (|:| -3843 (-781))) "failed") $)) (-15 -1791 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2178 ((-3 (-654 $) "failed") $)) (-15 -3469 ((-3 (-2 (|:| |val| $) (|:| -3843 $)) "failed") $)) (-15 -2209 ($ (-115) (-654 $))) (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3102 ($ $ $)) (-15 -4292 ((-781) $)) (-15 -1846 ($ (-654 $))) (-15 -3156 ($ $)) (-15 -4209 ((-112) $)) (-15 -3414 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -2772 ((-112) $)) (-15 -3981 ((-112) $)) (-15 -1570 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -2037 ((-112) $)) (-15 -2476 ((-654 (-52)) $)) (-15 -2361 ($ $ (-654 (-52)))) (-15 -2456 ($ $ (-654 (-52)))) (-15 -2738 ($ (-1192) (-112) (-112) (-112))) (-15 -3669 ($ $ (-654 (-1192)) (-52))) (-15 -3207 ((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $)) (-15 -3582 ((-112) $)) (-15 -1998 ($ $)) (-15 -2673 ($ $ (-52))) (-15 -2064 ((-654 (-52)) $)) (-15 -4349 ((-654 $) $)) (-15 -2492 ((-3 (-654 $) "failed") (-654 $))))) (-1115)) (T -903)) +((-2143 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-2155 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1898 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3752 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3752 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3019 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3843 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1791 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2178 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3469 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3843 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2209 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-3102 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2361 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2738 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1115)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) (-2492 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(-13 (-1115) (-1053 |#1|) (-1053 (-1192)) (-10 -8 (-15 (-2143) ($) -1716) (-15 (-2155) ($) -1716) (-15 -3145 ((-3 (-654 $) "failed") $)) (-15 -1898 ((-3 (-654 $) "failed") $)) (-15 -3752 ((-3 (-654 $) "failed") $ (-115))) (-15 -3752 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -3019 ((-3 (-2 (|:| |val| $) (|:| -3843 (-781))) "failed") $)) (-15 -1791 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2178 ((-3 (-654 $) "failed") $)) (-15 -3469 ((-3 (-2 (|:| |val| $) (|:| -3843 $)) "failed") $)) (-15 -2209 ($ (-115) (-654 $))) (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3102 ($ $ $)) (-15 -4292 ((-781) $)) (-15 -1846 ($ (-654 $))) (-15 -3156 ($ $)) (-15 -4209 ((-112) $)) (-15 -3414 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -2772 ((-112) $)) (-15 -3981 ((-112) $)) (-15 -1570 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -2037 ((-112) $)) (-15 -2476 ((-654 (-52)) $)) (-15 -2361 ($ $ (-654 (-52)))) (-15 -2456 ($ $ (-654 (-52)))) (-15 -2738 ($ (-1192) (-112) (-112) (-112))) (-15 -3669 ($ $ (-654 (-1192)) (-52))) (-15 -3207 ((-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52))) $)) (-15 -3582 ((-112) $)) (-15 -1998 ($ $)) (-15 -2673 ($ $ (-52))) (-15 -2064 ((-654 (-52)) $)) (-15 -4349 ((-654 $) $)) (-15 -2492 ((-3 (-654 $) "failed") (-654 $))))) +((-2863 (((-112) $ $) NIL)) (-1665 (((-654 |#1|) $) 19)) (-3717 (((-112) $) 49)) (-1706 (((-3 (-682 |#1|) "failed") $) 56)) (-2216 (((-682 |#1|) $) 54)) (-2934 (($ $) 23)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-4108 (((-781) $) 61)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-682 |#1|) $) 21)) (-2950 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 9 T CONST)) (-1502 (((-654 (-682 |#1|)) $) 28)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 12)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 67))) +(((-904 |#1|) (-13 (-860) (-1053 (-682 |#1|)) (-10 -8 (-15 1 ($) -1716) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ($ |#1|)) (-15 -2924 ((-682 |#1|) $)) (-15 -4108 ((-781) $)) (-15 -1502 ((-654 (-682 |#1|)) $)) (-15 -2934 ($ $)) (-15 -3717 ((-112) $)) (-15 -1665 ((-654 |#1|) $)))) (-860)) (T -904)) +((-2155 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2950 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) +(-13 (-860) (-1053 (-682 |#1|)) (-10 -8 (-15 (-2155) ($) -1716) (-15 -2950 ((-829 |#1|) $)) (-15 -2950 ($ |#1|)) (-15 -2924 ((-682 |#1|) $)) (-15 -4108 ((-781) $)) (-15 -1502 ((-654 (-682 |#1|)) $)) (-15 -2934 ($ $)) (-15 -3717 ((-112) $)) (-15 -1665 ((-654 |#1|) $)))) +((-2025 ((|#1| |#1| |#1|) 19))) +(((-905 |#1| |#2|) (-10 -7 (-15 -2025 (|#1| |#1| |#1|))) (-1259 |#2|) (-1064)) (T -905)) +((-2025 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -2025 (|#1| |#1| |#1|))) +((-3583 ((|#2| $ |#3|) 10))) +(((-906 |#1| |#2| |#3|) (-10 -8 (-15 -3583 (|#2| |#1| |#3|))) (-907 |#2| |#3|) (-1233) (-1233)) (T -906)) +NIL +(-10 -8 (-15 -3583 (|#2| |#1| |#3|))) +((-3878 ((|#1| $ |#2|) 7)) (-3583 ((|#1| $ |#2|) 6))) +(((-907 |#1| |#2|) (-141) (-1233) (-1233)) (T -907)) +((-3878 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) (-3583 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -3878 (|t#1| $ |t#2|)) (-15 -3583 (|t#1| $ |t#2|)))) +(((-1233) . T)) +((-2863 (((-112) $ $) 7)) (-3942 (((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3504 (((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 14)) (-2985 (((-112) $ $) 6))) +(((-908) (-141)) (T -908)) +((-3942 (*1 *2 *3 *4) (-12 (-4 *1 (-908)) (-5 *3 (-1078)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) (-3504 (*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *2 (-1050))))) +(-13 (-1115) (-10 -7 (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| |explanations| (-1174))) (-1078) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -3504 ((-1050) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3489 ((|#1| |#1| (-781)) 27)) (-2040 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1425 (((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38))) +(((-909 |#1| |#2|) (-10 -7 (-15 -1425 ((-654 |#1|) |#1|)) (-15 -1425 ((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2040 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3489 (|#1| |#1| (-781)))) (-1259 |#2|) (-372)) (T -909)) +((-3489 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) (-4 *2 (-1259 *4)))) (-2040 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1259 *3)))) (-1425 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-909 *3 *5)) (-4 *3 (-1259 *5)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -1425 ((-654 |#1|) |#1|)) (-15 -1425 ((-3 (-2 (|:| -3864 |#1|) (|:| -3877 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2040 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3489 (|#1| |#1| (-781)))) +((-2613 (((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174)) 104) (((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227)) 100) (((-1050) (-911) (-1078)) 92) (((-1050) (-911)) 93)) (-3942 (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078)) 62) (((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911)) 64))) +(((-910) (-10 -7 (-15 -2613 ((-1050) (-911))) (-15 -2613 ((-1050) (-911) (-1078))) (-15 -2613 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227))) (-15 -2613 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078))))) (T -910)) +((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-910)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174))))) (-5 *1 (-910)))) (-2613 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2613 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-910)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1050)) (-5 *1 (-910))))) +(-10 -7 (-15 -2613 ((-1050) (-911))) (-15 -2613 ((-1050) (-911) (-1078))) (-15 -2613 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174) (-227))) (-15 -2613 ((-1050) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1174))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911))) (-15 -3942 ((-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) (|:| |explanations| (-654 (-1174)))) (-911) (-1078)))) +((-2863 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $) 19)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) 18)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-911) (-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $))))) (T -911)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *1 (-911)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) (-5 *1 (-911))))) +(-13 (-1115) (-10 -8 (-15 -2950 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227))) $)))) +((-3878 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3583 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21))) +(((-912 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3583 (|#1| |#1| |#2| (-781))) (-15 -3583 (|#1| |#1| (-654 |#2|))) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#2| (-781))) (-15 -3878 (|#1| |#1| (-654 |#2|))) (-15 -3878 (|#1| |#1| |#2|))) (-913 |#2|) (-1115)) (T -912)) +NIL +(-10 -8 (-15 -3583 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3583 (|#1| |#1| |#2| (-781))) (-15 -3583 (|#1| |#1| (-654 |#2|))) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3878 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3878 (|#1| |#1| |#2| (-781))) (-15 -3878 (|#1| |#1| (-654 |#2|))) (-15 -3878 (|#1| |#1| |#2|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3878 (($ $ |#1|) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1| (-781)) 44) (($ $ (-654 |#1|) (-654 (-781))) 43)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ |#1|) 42) (($ $ (-654 |#1|)) 41) (($ $ |#1| (-781)) 40) (($ $ (-654 |#1|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-913 |#1|) (-141) (-1115)) (T -913)) +((-3878 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) (-4 *4 (-1115)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) (-4 *4 (-1115))))) +(-13 (-1064) (-10 -8 (-15 -3878 ($ $ |t#1|)) (-15 -3878 ($ $ (-654 |t#1|))) (-15 -3878 ($ $ |t#1| (-781))) (-15 -3878 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3583 ($ $ |t#1|)) (-15 -3583 ($ $ (-654 |t#1|))) (-15 -3583 ($ $ |t#1| (-781))) (-15 -3583 ($ $ (-654 |t#1|) (-654 (-781)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 26)) (-1750 (((-112) $ (-781)) NIL)) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-2826 (($ $ $) NIL (|has| $ (-6 -4459)))) (-4399 (($ $ $) NIL (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) (($ $ "left" $) NIL (|has| $ (-6 -4459))) (($ $ "right" $) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-3877 (($ $) 25)) (-3774 (($ |#1|) 12) (($ $ $) 17)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-3864 (($ $) 23)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) 20)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1219 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 21 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-914 |#1|) (-13 (-120 |#1|) (-623 (-1219 |#1|)) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3774 ($ $ $)))) (-1115)) (T -914)) +((-3774 (*1 *1 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115)))) (-3774 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115))))) +(-13 (-120 |#1|) (-623 (-1219 |#1|)) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3774 ($ $ $)))) +((-2413 ((|#2| (-1157 |#1| |#2|)) 48))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2413 (|#2| (-1157 |#1| |#2|)))) (-934) (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) (T -915)) +((-2413 (*1 *2 *3) (-12 (-5 *3 (-1157 *4 *2)) (-14 *4 (-934)) (-4 *2 (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) (-5 *1 (-915 *4 *2))))) +(-10 -7 (-15 -2413 (|#2| (-1157 |#1| |#2|)))) +((-2863 (((-112) $ $) 7)) (-2286 (((-1117 |#1|) $) 35)) (-3063 (($) 19 T CONST)) (-2978 (((-3 $ "failed") $) 16)) (-3217 (((-1117 |#1|) $ |#1|) 34)) (-2276 (((-112) $) 18)) (-3632 (($ $ $) 32 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2953 (($ $ $) 31 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 25)) (-3939 (((-1135) $) 11)) (-2209 ((|#1| $ |#1|) 38)) (-3168 (($ (-654 (-654 |#1|))) 36)) (-3517 (($ (-654 |#1|)) 37)) (-2190 (($ $ $) 22)) (-2987 (($ $ $) 21)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-3040 (((-112) $ $) 29 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3017 (((-112) $ $) 28 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 30 (-2832 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3008 (((-112) $ $) 33)) (-3102 (($ $ $) 24)) (** (($ $ (-934)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) +(((-916 |#1|) (-141) (-1115)) (T -916)) +((-3517 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-916 *3)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-4 *1 (-916 *3)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) (-3217 (*1 *2 *1 *3) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) (-3008 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -3517 ($ (-654 |t#1|))) (-15 -3168 ($ (-654 (-654 |t#1|)))) (-15 -2286 ((-1117 |t#1|) $)) (-15 -3217 ((-1117 |t#1|) $ |t#1|)) (-15 -3008 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2832 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1127) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-3457 (((-654 (-654 (-781))) $) 160)) (-1935 (((-654 (-781)) (-918 |#1|) $) 188)) (-2356 (((-654 (-781)) (-918 |#1|) $) 189)) (-2286 (((-1117 |#1|) $) 152)) (-3975 (((-654 (-918 |#1|)) $) 149)) (-2834 (((-918 |#1|) $ (-574)) 154) (((-918 |#1|) $) 155)) (-3213 (($ (-654 (-918 |#1|))) 162)) (-3837 (((-781) $) 156)) (-4435 (((-1117 (-1117 |#1|)) $) 186)) (-3217 (((-1117 |#1|) $ |#1|) 177) (((-1117 (-1117 |#1|)) $ (-1117 |#1|)) 197) (((-1117 (-654 |#1|)) $ (-654 |#1|)) 200)) (-3801 (((-112) (-918 |#1|) $) 137)) (-1938 (((-1174) $) NIL)) (-2994 (((-1288) $) 142) (((-1288) $ (-574) (-574)) 201)) (-3939 (((-1135) $) NIL)) (-1802 (((-654 (-918 |#1|)) $) 143)) (-2209 (((-918 |#1|) $ (-781)) 150)) (-4144 (((-781) $) 157)) (-2950 (((-872) $) 174) (((-654 (-918 |#1|)) $) 28) (($ (-654 (-918 |#1|))) 161)) (-4259 (((-112) $ $) NIL)) (-2644 (((-654 |#1|) $) 159)) (-2985 (((-112) $ $) 194)) (-3029 (((-112) $ $) 192)) (-3008 (((-112) $ $) 191))) +(((-917 |#1|) (-13 (-1115) (-10 -8 (-15 -2950 ((-654 (-918 |#1|)) $)) (-15 -1802 ((-654 (-918 |#1|)) $)) (-15 -2209 ((-918 |#1|) $ (-781))) (-15 -2834 ((-918 |#1|) $ (-574))) (-15 -2834 ((-918 |#1|) $)) (-15 -3837 ((-781) $)) (-15 -4144 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -3975 ((-654 (-918 |#1|)) $)) (-15 -3457 ((-654 (-654 (-781))) $)) (-15 -2950 ($ (-654 (-918 |#1|)))) (-15 -3213 ($ (-654 (-918 |#1|)))) (-15 -3217 ((-1117 |#1|) $ |#1|)) (-15 -4435 ((-1117 (-1117 |#1|)) $)) (-15 -3217 ((-1117 (-1117 |#1|)) $ (-1117 |#1|))) (-15 -3217 ((-1117 (-654 |#1|)) $ (-654 |#1|))) (-15 -3801 ((-112) (-918 |#1|) $)) (-15 -1935 ((-654 (-781)) (-918 |#1|) $)) (-15 -2356 ((-654 (-781)) (-918 |#1|) $)) (-15 -2286 ((-1117 |#1|) $)) (-15 -3008 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -2994 ((-1288) $)) (-15 -2994 ((-1288) $ (-574) (-574))))) (-1115)) (T -917)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) (-4 *4 (-1115)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) (-4 *4 (-1115)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-918 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) (-3217 (*1 *2 *1 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3217 (*1 *2 *1 *3) (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-917 *4)) (-5 *3 (-1117 *4)))) (-3217 (*1 *2 *1 *3) (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-654 *4))) (-5 *1 (-917 *4)) (-5 *3 (-654 *4)))) (-3801 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-917 *4)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) (-5 *1 (-917 *4)))) (-2356 (*1 *2 *3 *1) (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) (-5 *1 (-917 *4)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3008 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-3029 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) (-2994 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-917 *4)) (-4 *4 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -2950 ((-654 (-918 |#1|)) $)) (-15 -1802 ((-654 (-918 |#1|)) $)) (-15 -2209 ((-918 |#1|) $ (-781))) (-15 -2834 ((-918 |#1|) $ (-574))) (-15 -2834 ((-918 |#1|) $)) (-15 -3837 ((-781) $)) (-15 -4144 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -3975 ((-654 (-918 |#1|)) $)) (-15 -3457 ((-654 (-654 (-781))) $)) (-15 -2950 ($ (-654 (-918 |#1|)))) (-15 -3213 ($ (-654 (-918 |#1|)))) (-15 -3217 ((-1117 |#1|) $ |#1|)) (-15 -4435 ((-1117 (-1117 |#1|)) $)) (-15 -3217 ((-1117 (-1117 |#1|)) $ (-1117 |#1|))) (-15 -3217 ((-1117 (-654 |#1|)) $ (-654 |#1|))) (-15 -3801 ((-112) (-918 |#1|) $)) (-15 -1935 ((-654 (-781)) (-918 |#1|) $)) (-15 -2356 ((-654 (-781)) (-918 |#1|) $)) (-15 -2286 ((-1117 |#1|) $)) (-15 -3008 ((-112) $ $)) (-15 -3029 ((-112) $ $)) (-15 -2994 ((-1288) $)) (-15 -2994 ((-1288) $ (-574) (-574))))) +((-2863 (((-112) $ $) NIL)) (-2286 (((-1117 |#1|) $) 60)) (-2785 (((-654 $) (-654 $)) 103)) (-2496 (((-574) $) 83)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-3837 (((-781) $) 80)) (-3217 (((-1117 |#1|) $ |#1|) 70)) (-2276 (((-112) $) NIL)) (-3127 (((-112) $) 88)) (-3591 (((-781) $) 84)) (-3632 (($ $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2953 (($ $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3439 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 130)) (-3939 (((-1135) $) NIL)) (-1493 (((-1117 |#1|) $) 136 (|has| |#1| (-377)))) (-3304 (((-112) $) 81)) (-2209 ((|#1| $ |#1|) 68)) (-4144 (((-781) $) 62)) (-3168 (($ (-654 (-654 |#1|))) 118)) (-2218 (((-986) $) 74)) (-3517 (($ (-654 |#1|)) 32)) (-2190 (($ $ $) NIL)) (-2987 (($ $ $) NIL)) (-4040 (($ (-654 (-654 |#1|))) 57)) (-2669 (($ (-654 (-654 |#1|))) 123)) (-1520 (($ (-654 |#1|)) 132)) (-2950 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-4259 (((-112) $ $) NIL)) (-2155 (($) 24 T CONST)) (-3040 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2985 (((-112) $ $) 66)) (-3029 (((-112) $ $) NIL (-2832 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3008 (((-112) $ $) 90)) (-3102 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33))) +(((-918 |#1|) (-13 (-916 |#1|) (-10 -8 (-15 -3439 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -4040 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 |#1|))) (-15 -2669 ($ (-654 (-654 |#1|)))) (-15 -4144 ((-781) $)) (-15 -2218 ((-986) $)) (-15 -3837 ((-781) $)) (-15 -3591 ((-781) $)) (-15 -2496 ((-574) $)) (-15 -3304 ((-112) $)) (-15 -3127 ((-112) $)) (-15 -2785 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -1493 ((-1117 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1520 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -1520 ($ (-654 |#1|))) |%noBranch|)))) (-1115)) (T -918)) +((-3439 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-2669 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-918 *3)) (-4 *3 (-377)) (-4 *3 (-1115)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) +(-13 (-916 |#1|) (-10 -8 (-15 -3439 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -4040 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 (-654 |#1|)))) (-15 -2950 ($ (-654 |#1|))) (-15 -2669 ($ (-654 (-654 |#1|)))) (-15 -4144 ((-781) $)) (-15 -2218 ((-986) $)) (-15 -3837 ((-781) $)) (-15 -3591 ((-781) $)) (-15 -2496 ((-574) $)) (-15 -3304 ((-112) $)) (-15 -3127 ((-112) $)) (-15 -2785 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -1493 ((-1117 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1520 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -1520 ($ (-654 |#1|))) |%noBranch|)))) +((-4325 (((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|)) 160)) (-2524 ((|#1|) 97)) (-4355 (((-428 (-1188 |#4|)) (-1188 |#4|)) 169)) (-3786 (((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)) 84)) (-2362 (((-428 (-1188 |#4|)) (-1188 |#4|)) 179)) (-4295 (((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|) 113))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|))) (-15 -2362 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -4355 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2524 (|#1|)) (-15 -4295 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|)) (-15 -3786 ((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)))) (-922) (-803) (-860) (-962 |#1| |#2| |#3|)) (T -919)) +((-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-922)) (-4 *6 (-803)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-428 (-1188 *8))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-1188 *8)))) (-4295 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) (-4 *7 (-962 *5 *6 *4)) (-4 *5 (-922)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-919 *5 *6 *4 *7)))) (-2524 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) (-4355 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-2362 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) (-4325 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-919 *4 *5 *6 *7))))) +(-10 -7 (-15 -4325 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|))) (-15 -2362 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -4355 ((-428 (-1188 |#4|)) (-1188 |#4|))) (-15 -2524 (|#1|)) (-15 -4295 ((-3 (-654 (-1188 |#4|)) "failed") (-654 (-1188 |#4|)) (-1188 |#4|) |#3|)) (-15 -3786 ((-428 (-1188 |#4|)) (-654 |#3|) (-1188 |#4|)))) +((-4325 (((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|)) 39)) (-2524 ((|#1|) 72)) (-4355 (((-428 (-1188 |#2|)) (-1188 |#2|)) 121)) (-3786 (((-428 (-1188 |#2|)) (-1188 |#2|)) 105)) (-2362 (((-428 (-1188 |#2|)) (-1188 |#2|)) 132))) +(((-920 |#1| |#2|) (-10 -7 (-15 -4325 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|))) (-15 -2362 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -4355 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2524 (|#1|)) (-15 -3786 ((-428 (-1188 |#2|)) (-1188 |#2|)))) (-922) (-1259 |#1|)) (T -920)) +((-3786 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-2524 (*1 *2) (-12 (-4 *2 (-922)) (-5 *1 (-920 *2 *3)) (-4 *3 (-1259 *2)))) (-4355 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-2362 (*1 *2 *3) (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5)))) (-4325 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-922)) (-5 *1 (-920 *4 *5))))) +(-10 -7 (-15 -4325 ((-3 (-654 (-1188 |#2|)) "failed") (-654 (-1188 |#2|)) (-1188 |#2|))) (-15 -2362 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -4355 ((-428 (-1188 |#2|)) (-1188 |#2|))) (-15 -2524 (|#1|)) (-15 -3786 ((-428 (-1188 |#2|)) (-1188 |#2|)))) +((-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 42)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 18)) (-3270 (((-3 $ "failed") $) 36))) +(((-921 |#1|) (-10 -8 (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) (-922)) (T -921)) +NIL +(-10 -8 (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 66)) (-3313 (($ $) 57)) (-2153 (((-428 $) $) 58)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 63)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2941 (((-112) $) 59)) (-2276 (((-112) $) 35)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2406 (((-428 (-1188 $)) (-1188 $)) 64)) (-2318 (((-428 (-1188 $)) (-1188 $)) 65)) (-4200 (((-428 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3270 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-922) (-141)) (T -922)) +((-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-922)))) (-3065 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-2318 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-2406 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1)))) (-2580 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1188 *1))) (-5 *3 (-1188 *1)) (-4 *1 (-922)))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-922)) (-5 *2 (-1283 *1)))) (-3270 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-922))))) +(-13 (-1237) (-10 -8 (-15 -3065 ((-428 (-1188 $)) (-1188 $))) (-15 -2318 ((-428 (-1188 $)) (-1188 $))) (-15 -2406 ((-428 (-1188 $)) (-1188 $))) (-15 -4161 ((-1188 $) (-1188 $) (-1188 $))) (-15 -2580 ((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $))) (IF (|has| $ (-146)) (PROGN (-15 -1318 ((-3 (-1283 $) "failed") (-699 $))) (-15 -3270 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4308 (((-112) $) NIL)) (-2519 (((-781)) NIL)) (-1646 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-3334 (((-1205 (-934) (-781)) (-574)) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 $ "failed") $) NIL)) (-2216 (($ $) NIL)) (-3875 (($ (-1283 $)) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2776 (($) NIL)) (-1627 (((-112) $) NIL)) (-4278 (($ $) NIL) (($ $ (-781)) NIL)) (-2941 (((-112) $) NIL)) (-3837 (((-843 (-934)) $) NIL) (((-934) $) NIL)) (-2276 (((-112) $) NIL)) (-1888 (($) NIL (|has| $ (-377)))) (-4340 (((-112) $) NIL (|has| $ (-377)))) (-2681 (($ $ (-934)) NIL (|has| $ (-377))) (($ $) NIL)) (-4217 (((-3 $ "failed") $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3525 (((-1188 $) $ (-934)) NIL (|has| $ (-377))) (((-1188 $) $) NIL)) (-3880 (((-934) $) NIL)) (-2695 (((-1188 $) $) NIL (|has| $ (-377)))) (-1729 (((-3 (-1188 $) "failed") $ $) NIL (|has| $ (-377))) (((-1188 $) $) NIL (|has| $ (-377)))) (-3749 (($ $ (-1188 $)) NIL (|has| $ (-377)))) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) NIL)) (-4370 (((-112) $) NIL)) (-3939 (((-1135) $) NIL)) (-2974 (($) NIL (|has| $ (-377)))) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL)) (-4200 (((-428 $) $) NIL)) (-4210 (((-934)) NIL) (((-843 (-934))) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3411 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2900 (((-135)) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-4144 (((-934) $) NIL) (((-843 (-934)) $) NIL)) (-2611 (((-1188 $)) NIL)) (-3627 (($) NIL)) (-4022 (($) NIL (|has| $ (-377)))) (-4421 (((-699 $) (-1283 $)) NIL) (((-1283 $) $) NIL)) (-1846 (((-574) $) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3270 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $) (-934)) NIL) (((-1283 $)) NIL)) (-3676 (((-112) $ $) NIL)) (-2488 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3337 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-923 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-934)) (T -923)) +NIL +(-13 (-358) (-337 $) (-624 (-574))) +((-1968 (((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-2983 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-3837 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15))) +(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3837 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -2983 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1968 ((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1053 (-574))) (-440 |#1|) (-1259 |#2|) (-1259 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -924)) +((-1968 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-2 (|:| -3837 (-781)) (|:| -2721 *8))) (-5 *1 (-924 *4 *5 *6 *7 *8)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7 *8)))) (-3837 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-781)) (-5 *1 (-924 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3837 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -2983 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1968 ((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) +((-1968 (((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-2983 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-3837 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14))) +(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -3837 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2983 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1968 ((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1259 (-417 (-574))) (-1259 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -925)) +((-1968 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -3837 (-781)) (|:| -2721 *6))) (-5 *1 (-925 *4 *5 *6)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6)))) (-3837 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6))))) +(-10 -7 (-15 -3837 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -2983 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1968 ((-3 (-2 (|:| -3837 (-781)) (|:| -2721 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) +((-4382 ((|#2| |#2|) 26)) (-3093 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-3631 (((-934) (-574)) 38)) (-2382 (((-574) |#2|) 45)) (-2120 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3631 ((-934) (-574))) (-15 -2120 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -2120 ((-574) |#2|)) (-15 -3093 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2382 ((-574) |#2|)) (-15 -4382 (|#2| |#2|))) (-1259 (-417 (-574))) (-1259 (-417 |#1|))) (T -926)) +((-4382 (*1 *2 *2) (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *1 (-926 *3 *2)) (-4 *2 (-1259 (-417 *3))))) (-2382 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) (-4 *3 (-1259 (-417 *4))))) (-2120 (*1 *2 *3) (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-926 *3 *4)) (-4 *4 (-1259 (-417 *3))))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1259 (-417 *3))) (-5 *2 (-934)) (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4)))))) +(-10 -7 (-15 -3631 ((-934) (-574))) (-15 -2120 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -2120 ((-574) |#2|)) (-15 -3093 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2382 ((-574) |#2|)) (-15 -4382 (|#2| |#2|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 ((|#1| $) 100)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $) 94)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-2159 (($ |#1| (-428 |#1|)) 92)) (-2745 (((-1188 |#1|) |#1| |#1|) 53)) (-2925 (($ $) 61)) (-2276 (((-112) $) NIL)) (-3966 (((-574) $) 97)) (-2184 (($ $ (-574)) 99)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3396 ((|#1| $) 96)) (-2533 (((-428 |#1|) $) 95)) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 93)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3371 (($ $) 50)) (-2950 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-3781 (((-781)) 71 T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) 26 T CONST)) (-2155 (($) 15 T CONST)) (-2985 (((-112) $ $) 87)) (-3102 (($ $ $) NIL)) (-3089 (($ $) 108) (($ $ $) NIL)) (-3073 (($ $ $) 49)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-927 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2950 ((-417 |#1|) $)) (-15 -2950 ($ (-417 (-428 |#1|)))) (-15 -3371 ($ $)) (-15 -2533 ((-428 |#1|) $)) (-15 -3396 (|#1| $)) (-15 -2184 ($ $ (-574))) (-15 -3966 ((-574) $)) (-15 -2745 ((-1188 |#1|) |#1| |#1|)) (-15 -2925 ($ $)) (-15 -2159 ($ |#1| (-428 |#1|))) (-15 -1882 (|#1| $)))) (-315)) (T -927)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-927 *3)))) (-3371 (*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-3396 (*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2745 (*1 *2 *3 *3) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) (-2159 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-927 *2)))) (-1882 (*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) +(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2950 ((-417 |#1|) $)) (-15 -2950 ($ (-417 (-428 |#1|)))) (-15 -3371 ($ $)) (-15 -2533 ((-428 |#1|) $)) (-15 -3396 (|#1| $)) (-15 -2184 ($ $ (-574))) (-15 -3966 ((-574) $)) (-15 -2745 ((-1188 |#1|) |#1| |#1|)) (-15 -2925 ($ $)) (-15 -2159 ($ |#1| (-428 |#1|))) (-15 -1882 (|#1| $)))) +((-2159 (((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)) 17) (((-52) (-417 (-965 |#1|)) (-1192)) 18))) +(((-928 |#1|) (-10 -7 (-15 -2159 ((-52) (-417 (-965 |#1|)) (-1192))) (-15 -2159 ((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)))) (-13 (-315) (-148))) (T -928)) +((-2159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-965 *6))) (-5 *5 (-1192)) (-5 *3 (-965 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *6)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *5))))) +(-10 -7 (-15 -2159 ((-52) (-417 (-965 |#1|)) (-1192))) (-15 -2159 ((-52) (-965 |#1|) (-428 (-965 |#1|)) (-1192)))) +((-1539 ((|#4| (-654 |#4|)) 147) (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2886 (((-1188 |#4|) (-654 (-1188 |#4|))) 140) (((-1188 |#4|) (-1188 |#4|) (-1188 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2886 (|#4| |#4| |#4|)) (-15 -2886 (|#4| (-654 |#4|))) (-15 -2886 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2886 ((-1188 |#4|) (-654 (-1188 |#4|)))) (-15 -1539 (|#4| |#4| |#4|)) (-15 -1539 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -1539 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-962 |#3| |#1| |#2|)) (T -929)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-1539 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) (-1539 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 (-1188 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1188 *7)) (-5 *1 (-929 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2886 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4))))) +(-10 -7 (-15 -2886 (|#4| |#4| |#4|)) (-15 -2886 (|#4| (-654 |#4|))) (-15 -2886 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -2886 ((-1188 |#4|) (-654 (-1188 |#4|)))) (-15 -1539 (|#4| |#4| |#4|)) (-15 -1539 ((-1188 |#4|) (-1188 |#4|) (-1188 |#4|))) (-15 -1539 (|#4| (-654 |#4|)))) +((-3553 (((-917 (-574)) (-986)) 38) (((-917 (-574)) (-654 (-574))) 34)) (-2397 (((-917 (-574)) (-654 (-574))) 67) (((-917 (-574)) (-934)) 68)) (-2892 (((-917 (-574))) 39)) (-3271 (((-917 (-574))) 53) (((-917 (-574)) (-654 (-574))) 52)) (-3009 (((-917 (-574))) 51) (((-917 (-574)) (-654 (-574))) 50)) (-2821 (((-917 (-574))) 49) (((-917 (-574)) (-654 (-574))) 48)) (-1567 (((-917 (-574))) 47) (((-917 (-574)) (-654 (-574))) 46)) (-3905 (((-917 (-574))) 45) (((-917 (-574)) (-654 (-574))) 44)) (-4339 (((-917 (-574))) 55) (((-917 (-574)) (-654 (-574))) 54)) (-3216 (((-917 (-574)) (-654 (-574))) 72) (((-917 (-574)) (-934)) 74)) (-2112 (((-917 (-574)) (-654 (-574))) 69) (((-917 (-574)) (-934)) 70)) (-3803 (((-917 (-574)) (-654 (-574))) 65) (((-917 (-574)) (-934)) 66)) (-3990 (((-917 (-574)) (-654 (-934))) 57))) +(((-930) (-10 -7 (-15 -2397 ((-917 (-574)) (-934))) (-15 -2397 ((-917 (-574)) (-654 (-574)))) (-15 -3803 ((-917 (-574)) (-934))) (-15 -3803 ((-917 (-574)) (-654 (-574)))) (-15 -3990 ((-917 (-574)) (-654 (-934)))) (-15 -2112 ((-917 (-574)) (-934))) (-15 -2112 ((-917 (-574)) (-654 (-574)))) (-15 -3216 ((-917 (-574)) (-934))) (-15 -3216 ((-917 (-574)) (-654 (-574)))) (-15 -3905 ((-917 (-574)) (-654 (-574)))) (-15 -3905 ((-917 (-574)))) (-15 -1567 ((-917 (-574)) (-654 (-574)))) (-15 -1567 ((-917 (-574)))) (-15 -2821 ((-917 (-574)) (-654 (-574)))) (-15 -2821 ((-917 (-574)))) (-15 -3009 ((-917 (-574)) (-654 (-574)))) (-15 -3009 ((-917 (-574)))) (-15 -3271 ((-917 (-574)) (-654 (-574)))) (-15 -3271 ((-917 (-574)))) (-15 -4339 ((-917 (-574)) (-654 (-574)))) (-15 -4339 ((-917 (-574)))) (-15 -2892 ((-917 (-574)))) (-15 -3553 ((-917 (-574)) (-654 (-574)))) (-15 -3553 ((-917 (-574)) (-986))))) (T -930)) +((-3553 (*1 *2 *3) (-12 (-5 *3 (-986)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2892 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-4339 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3271 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3009 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2821 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-1567 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3905 (*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(-10 -7 (-15 -2397 ((-917 (-574)) (-934))) (-15 -2397 ((-917 (-574)) (-654 (-574)))) (-15 -3803 ((-917 (-574)) (-934))) (-15 -3803 ((-917 (-574)) (-654 (-574)))) (-15 -3990 ((-917 (-574)) (-654 (-934)))) (-15 -2112 ((-917 (-574)) (-934))) (-15 -2112 ((-917 (-574)) (-654 (-574)))) (-15 -3216 ((-917 (-574)) (-934))) (-15 -3216 ((-917 (-574)) (-654 (-574)))) (-15 -3905 ((-917 (-574)) (-654 (-574)))) (-15 -3905 ((-917 (-574)))) (-15 -1567 ((-917 (-574)) (-654 (-574)))) (-15 -1567 ((-917 (-574)))) (-15 -2821 ((-917 (-574)) (-654 (-574)))) (-15 -2821 ((-917 (-574)))) (-15 -3009 ((-917 (-574)) (-654 (-574)))) (-15 -3009 ((-917 (-574)))) (-15 -3271 ((-917 (-574)) (-654 (-574)))) (-15 -3271 ((-917 (-574)))) (-15 -4339 ((-917 (-574)) (-654 (-574)))) (-15 -4339 ((-917 (-574)))) (-15 -2892 ((-917 (-574)))) (-15 -3553 ((-917 (-574)) (-654 (-574)))) (-15 -3553 ((-917 (-574)) (-986)))) +((-2330 (((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))) 14)) (-4136 (((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))) 13))) +(((-931 |#1|) (-10 -7 (-15 -4136 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2330 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))))) (-462)) (T -931)) +((-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-931 *4)))) (-4136 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) (-5 *1 (-931 *4))))) +(-10 -7 (-15 -4136 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2330 ((-654 (-965 |#1|)) (-654 (-965 |#1|)) (-654 (-1192))))) +((-2950 (((-324 |#1|) (-487)) 16))) +(((-932 |#1|) (-10 -7 (-15 -2950 ((-324 |#1|) (-487)))) (-566)) (T -932)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-932 *4)) (-4 *4 (-566))))) +(-10 -7 (-15 -2950 ((-324 |#1|) (-487)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2276 (((-112) $) 35)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-933) (-141)) (T -933)) +((-1850 (*1 *2 *3) (-12 (-4 *1 (-933)) (-5 *2 (-2 (|:| -1868 (-654 *1)) (|:| -2974 *1))) (-5 *3 (-654 *1)))) (-2912 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-933))))) +(-13 (-462) (-10 -8 (-15 -1850 ((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $))) (-15 -2912 ((-3 (-654 $) "failed") (-654 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2886 (($ $ $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2155 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ $ $) NIL))) +(((-934) (-13 (-804) (-736) (-10 -8 (-15 -2886 ($ $ $)) (-6 (-4460 "*"))))) (T -934)) +((-2886 (*1 *1 *1 *1) (-5 *1 (-934)))) +(-13 (-804) (-736) (-10 -8 (-15 -2886 ($ $ $)) (-6 (-4460 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-1433 ((|#2| (-653 |#1|) (-653 |#1|)) 28))) -(((-932 |#1| |#2|) (-10 -7 (-15 -1433 (|#2| (-653 |#1|) (-653 |#1|)))) (-371) (-1256 |#1|)) (T -932)) -((-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-4 *2 (-1256 *4)) (-5 *1 (-932 *4 *2))))) -(-10 -7 (-15 -1433 (|#2| (-653 |#1|) (-653 |#1|)))) -((-2844 (((-1185 |#2|) (-653 |#2|) (-653 |#2|)) 17) (((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|)) 13))) -(((-933 |#1| |#2|) (-10 -7 (-15 -2844 ((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|))) (-15 -2844 ((-1185 |#2|) (-653 |#2|) (-653 |#2|)))) (-1189) (-371)) (T -933)) -((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-371)) (-5 *2 (-1185 *5)) (-5 *1 (-933 *4 *5)) (-14 *4 (-1189)))) (-2844 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1253 *4 *5)) (-5 *3 (-653 *5)) (-14 *4 (-1189)) (-4 *5 (-371)) (-5 *1 (-933 *4 *5))))) -(-10 -7 (-15 -2844 ((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|))) (-15 -2844 ((-1185 |#2|) (-653 |#2|) (-653 |#2|)))) -((-1314 (((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171)) 174)) (-3688 ((|#4| |#4|) 193)) (-4332 (((-653 (-416 (-962 |#1|))) (-653 (-1189))) 146)) (-2937 (((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573)) 88)) (-2994 (((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|)) 69)) (-2964 (((-698 |#4|) (-698 |#4|) (-653 |#4|)) 65)) (-4363 (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171)) 186)) (-4130 (((-573) (-698 |#4|) (-931) (-1171)) 166) (((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171)) 165) (((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171)) 164) (((-573) (-698 |#4|) (-1171)) 154) (((-573) (-698 |#4|) (-653 (-1189)) (-1171)) 153) (((-573) (-698 |#4|) (-653 |#4|) (-1171)) 152) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931)) 151) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931)) 150) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931)) 149) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|)) 148) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189))) 147) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|)) 143)) (-2111 ((|#4| (-962 |#1|)) 80)) (-3475 (((-112) (-653 |#4|) (-653 (-653 |#4|))) 190)) (-3932 (((-653 (-653 (-573))) (-573) (-573)) 159)) (-3563 (((-653 (-653 |#4|)) (-653 (-653 |#4|))) 106)) (-4136 (((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|))))) 100)) (-4073 (((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|))))) 99)) (-3787 (((-112) (-653 (-962 |#1|))) 19) (((-112) (-653 |#4|)) 15)) (-2138 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|)) 84)) (-1496 (((-653 |#4|) |#4|) 57)) (-3850 (((-653 (-416 (-962 |#1|))) (-653 |#4|)) 142) (((-698 (-416 (-962 |#1|))) (-698 |#4|)) 66) (((-416 (-962 |#1|)) |#4|) 139)) (-3870 (((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573)) 112)) (-3678 (((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780)) 98)) (-1936 (((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780)) 121)) (-1827 (((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) 56))) -(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-931) (-1171))) (-15 -1314 ((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -4363 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -3870 ((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573))) (-15 -3850 ((-416 (-962 |#1|)) |#4|)) (-15 -3850 ((-698 (-416 (-962 |#1|))) (-698 |#4|))) (-15 -3850 ((-653 (-416 (-962 |#1|))) (-653 |#4|))) (-15 -4332 ((-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2111 (|#4| (-962 |#1|))) (-15 -2138 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|))) (-15 -3678 ((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780))) (-15 -2994 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|))) (-15 -1827 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-15 -1496 ((-653 |#4|) |#4|)) (-15 -4073 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -4136 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -3563 ((-653 (-653 |#4|)) (-653 (-653 |#4|)))) (-15 -3932 ((-653 (-653 (-573))) (-573) (-573))) (-15 -3475 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -1936 ((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780))) (-15 -2964 ((-698 |#4|) (-698 |#4|) (-653 |#4|))) (-15 -2937 ((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573))) (-15 -3688 (|#4| |#4|)) (-15 -3787 ((-112) (-653 |#4|))) (-15 -3787 ((-112) (-653 (-962 |#1|))))) (-13 (-314) (-148)) (-13 (-859) (-623 (-1189))) (-802) (-959 |#1| |#3| |#2|)) (T -934)) -((-3787 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-959 *3 *5 *4)))) (-2937 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-5 *4 (-698 *12)) (-5 *5 (-653 (-416 (-962 *9)))) (-5 *6 (-653 (-653 *12))) (-5 *7 (-780)) (-5 *8 (-573)) (-4 *9 (-13 (-314) (-148))) (-4 *12 (-959 *9 *11 *10)) (-4 *10 (-13 (-859) (-623 (-1189)))) (-4 *11 (-802)) (-5 *2 (-2 (|:| |eqzro| (-653 *12)) (|:| |neqzro| (-653 *12)) (|:| |wcond| (-653 (-962 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *9)))) (|:| -3914 (-653 (-1280 (-416 (-962 *9))))))))) (-5 *1 (-934 *9 *10 *11 *12)))) (-2964 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *7)) (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-780)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-653 (-573)))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *6 *5)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-653 (-653 *6))) (-4 *6 (-959 *3 *5 *4)) (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *6)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *7))))) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) (-5 *1 (-934 *4 *5 *6 *7)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *7))))) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) (-5 *1 (-934 *4 *5 *6 *7)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 *3)) (-5 *1 (-934 *4 *5 *6 *3)) (-4 *3 (-959 *4 *6 *5)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1423 (-698 (-416 (-962 *4)))) (|:| |vec| (-653 (-416 (-962 *4)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-2994 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) (-5 *3 (-653 *7)) (-4 *4 (-13 (-314) (-148))) (-4 *7 (-959 *4 *6 *5)) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *8))))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-780)))) (-2138 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-4 *7 (-959 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-653 *7)) (|:| |n0| (-653 *7)))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-314) (-148))) (-4 *2 (-959 *4 *6 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-698 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-416 (-962 *4))) (-5 *1 (-934 *4 *5 *6 *3)) (-4 *3 (-959 *4 *6 *5)))) (-3870 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-698 *11)) (-5 *4 (-653 (-416 (-962 *8)))) (-5 *5 (-780)) (-5 *6 (-1171)) (-4 *8 (-13 (-314) (-148))) (-4 *11 (-959 *8 *10 *9)) (-4 *9 (-13 (-859) (-623 (-1189)))) (-4 *10 (-802)) (-5 *2 (-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 *11)) (|:| |neqzro| (-653 *11)) (|:| |wcond| (-653 (-962 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *8)))) (|:| -3914 (-653 (-1280 (-416 (-962 *8)))))))))) (|:| |rgsz| (-573)))) (-5 *1 (-934 *8 *9 *10 *11)) (-5 *7 (-573)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) (|:| |wcond| (-653 (-962 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-1314 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *4 (-1171)) (-4 *5 (-13 (-314) (-148))) (-4 *8 (-959 *5 *7 *6)) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-931)) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *7 *8 *9 *10)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 *10)) (-5 *5 (-931)) (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *7 *8 *9 *10)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-1171)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 *9)) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-931)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) (-5 *1 (-934 *6 *7 *8 *9)) (-5 *4 (-653 *9)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) (|:| |wcond| (-653 (-962 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) (-5 *1 (-934 *4 *5 *6 *7)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-653 (-1189))) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) -(-10 -7 (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-931) (-1171))) (-15 -1314 ((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -4363 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -3870 ((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573))) (-15 -3850 ((-416 (-962 |#1|)) |#4|)) (-15 -3850 ((-698 (-416 (-962 |#1|))) (-698 |#4|))) (-15 -3850 ((-653 (-416 (-962 |#1|))) (-653 |#4|))) (-15 -4332 ((-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2111 (|#4| (-962 |#1|))) (-15 -2138 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|))) (-15 -3678 ((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780))) (-15 -2994 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|))) (-15 -1827 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-15 -1496 ((-653 |#4|) |#4|)) (-15 -4073 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -4136 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -3563 ((-653 (-653 |#4|)) (-653 (-653 |#4|)))) (-15 -3932 ((-653 (-653 (-573))) (-573) (-573))) (-15 -3475 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -1936 ((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780))) (-15 -2964 ((-698 |#4|) (-698 |#4|) (-653 |#4|))) (-15 -2937 ((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573))) (-15 -3688 (|#4| |#4|)) (-15 -3787 ((-112) (-653 |#4|))) (-15 -3787 ((-112) (-653 (-962 |#1|))))) -((-3807 (((-937) |#1| (-1189)) 17) (((-937) |#1| (-1189) (-1106 (-227))) 21)) (-4313 (((-937) |#1| |#1| (-1189) (-1106 (-227))) 19) (((-937) |#1| (-1189) (-1106 (-227))) 15))) -(((-935 |#1|) (-10 -7 (-15 -4313 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -4313 ((-937) |#1| |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189)))) (-623 (-545))) (T -935)) -((-3807 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-3807 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-4313 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545)))))) -(-10 -7 (-15 -4313 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -4313 ((-937) |#1| |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189)))) -((-3058 (($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 121)) (-2436 (((-1106 (-227)) $) 64)) (-2423 (((-1106 (-227)) $) 63)) (-2410 (((-1106 (-227)) $) 62)) (-2998 (((-653 (-653 (-227))) $) 69)) (-1798 (((-1106 (-227)) $) 65)) (-4042 (((-573) (-573)) 57)) (-1449 (((-573) (-573)) 52)) (-4385 (((-573) (-573)) 55)) (-3506 (((-112) (-112)) 59)) (-2479 (((-573)) 56)) (-4143 (($ $ (-1106 (-227))) 124) (($ $) 125)) (-2341 (($ (-1 (-953 (-227)) (-227)) (-1106 (-227))) 131) (($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 132)) (-4313 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 135) (($ $ (-1106 (-227))) 127)) (-4403 (((-573)) 60)) (-2059 (((-573)) 50)) (-1515 (((-573)) 53)) (-3054 (((-653 (-653 (-953 (-227)))) $) 151)) (-1378 (((-112) (-112)) 61)) (-2942 (((-871) $) 149)) (-2583 (((-112)) 58))) -(((-936) (-13 (-986) (-10 -8 (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2998 ((-653 (-653 (-227))) $)) (-15 -2059 ((-573))) (-15 -1449 ((-573) (-573))) (-15 -1515 ((-573))) (-15 -4385 ((-573) (-573))) (-15 -2479 ((-573))) (-15 -4042 ((-573) (-573))) (-15 -2583 ((-112))) (-15 -3506 ((-112) (-112))) (-15 -4403 ((-573))) (-15 -1378 ((-112) (-112)))))) (T -936)) -((-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-2341 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-3058 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-4143 (*1 *1 *1) (-5 *1 (-936))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-936)))) (-2059 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1515 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-4385 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-2479 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-2583 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-4403 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) -(-13 (-986) (-10 -8 (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2998 ((-653 (-653 (-227))) $)) (-15 -2059 ((-573))) (-15 -1449 ((-573) (-573))) (-15 -1515 ((-573))) (-15 -4385 ((-573) (-573))) (-15 -2479 ((-573))) (-15 -4042 ((-573) (-573))) (-15 -2583 ((-112))) (-15 -3506 ((-112) (-112))) (-15 -4403 ((-573))) (-15 -1378 ((-112) (-112))))) -((-3058 (($ $ (-1106 (-227))) 122) (($ $ (-1106 (-227)) (-1106 (-227))) 123)) (-2423 (((-1106 (-227)) $) 73)) (-2410 (((-1106 (-227)) $) 72)) (-1798 (((-1106 (-227)) $) 74)) (-1654 (((-573) (-573)) 66)) (-3634 (((-573) (-573)) 61)) (-2348 (((-573) (-573)) 64)) (-2550 (((-112) (-112)) 68)) (-1627 (((-573)) 65)) (-4143 (($ $ (-1106 (-227))) 126) (($ $) 127)) (-2341 (($ (-1 (-953 (-227)) (-227)) (-1106 (-227))) 141) (($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 142)) (-3807 (($ (-1 (-227) (-227)) (-1106 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-4313 (($ (-1 (-227) (-227)) (-1106 (-227))) 137) (($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227))) 138) (($ (-653 (-1 (-227) (-227))) (-1106 (-227))) 146) (($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 140) (($ $ (-1106 (-227))) 128)) (-2741 (((-112) $) 69)) (-3225 (((-573)) 70)) (-2070 (((-573)) 59)) (-2026 (((-573)) 62)) (-3054 (((-653 (-653 (-953 (-227)))) $) 35)) (-3598 (((-112) (-112)) 71)) (-2942 (((-871) $) 167)) (-2715 (((-112)) 67))) -(((-937) (-13 (-965) (-10 -8 (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -2741 ((-112) $)) (-15 -3058 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2070 ((-573))) (-15 -3634 ((-573) (-573))) (-15 -2026 ((-573))) (-15 -2348 ((-573) (-573))) (-15 -1627 ((-573))) (-15 -1654 ((-573) (-573))) (-15 -2715 ((-112))) (-15 -2550 ((-112) (-112))) (-15 -3225 ((-573))) (-15 -3598 ((-112) (-112)))))) (T -937)) -((-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-2341 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-3807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-3058 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-4143 (*1 *1 *1) (-5 *1 (-937))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-2070 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2026 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-1627 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2715 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3225 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(-13 (-965) (-10 -8 (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -2741 ((-112) $)) (-15 -3058 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2070 ((-573))) (-15 -3634 ((-573) (-573))) (-15 -2026 ((-573))) (-15 -2348 ((-573) (-573))) (-15 -1627 ((-573))) (-15 -1654 ((-573) (-573))) (-15 -2715 ((-112))) (-15 -2550 ((-112) (-112))) (-15 -3225 ((-573))) (-15 -3598 ((-112) (-112))))) -((-1482 (((-653 (-1106 (-227))) (-653 (-653 (-953 (-227))))) 34))) -(((-938) (-10 -7 (-15 -1482 ((-653 (-1106 (-227))) (-653 (-653 (-953 (-227)))))))) (T -938)) -((-1482 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-1106 (-227)))) (-5 *1 (-938))))) -(-10 -7 (-15 -1482 ((-653 (-1106 (-227))) (-653 (-653 (-953 (-227))))))) -((-3104 ((|#2| |#2|) 28)) (-2486 ((|#2| |#2|) 29)) (-1705 ((|#2| |#2|) 27)) (-2112 ((|#2| |#2| (-515)) 26))) -(((-939 |#1| |#2|) (-10 -7 (-15 -2112 (|#2| |#2| (-515))) (-15 -1705 (|#2| |#2|)) (-15 -3104 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) (-1112) (-439 |#1|)) (T -939)) -((-2486 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-2112 (*1 *2 *2 *3) (-12 (-5 *3 (-515)) (-4 *4 (-1112)) (-5 *1 (-939 *4 *2)) (-4 *2 (-439 *4))))) -(-10 -7 (-15 -2112 (|#2| |#2| (-515))) (-15 -1705 (|#2| |#2|)) (-15 -3104 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) -((-3104 (((-323 (-573)) (-1189)) 16)) (-2486 (((-323 (-573)) (-1189)) 14)) (-1705 (((-323 (-573)) (-1189)) 12)) (-2112 (((-323 (-573)) (-1189) (-515)) 19))) -(((-940) (-10 -7 (-15 -2112 ((-323 (-573)) (-1189) (-515))) (-15 -1705 ((-323 (-573)) (-1189))) (-15 -3104 ((-323 (-573)) (-1189))) (-15 -2486 ((-323 (-573)) (-1189))))) (T -940)) -((-2486 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-515)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) -(-10 -7 (-15 -2112 ((-323 (-573)) (-1189) (-515))) (-15 -1705 ((-323 (-573)) (-1189))) (-15 -3104 ((-323 (-573)) (-1189))) (-15 -2486 ((-323 (-573)) (-1189)))) -((-1352 (((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)) 25)) (-3764 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3764 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1352 ((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-896 |#1|) (-13 (-1112) (-1050 |#2|))) (T -941)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-13 (-1112) (-1050 *3))) (-4 *3 (-896 *5)) (-5 *1 (-941 *5 *3 *6)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1112) (-1050 *5))) (-4 *5 (-896 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-941 *4 *5 *6))))) -(-10 -7 (-15 -3764 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1352 ((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)))) -((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 30))) -(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-13 (-565) (-896 |#1|)) (-13 (-439 |#2|) (-623 (-902 |#1|)) (-896 |#1|) (-1050 (-621 $)))) (T -942)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-13 (-439 *6) (-623 *4) (-896 *5) (-1050 (-621 $)))) (-5 *4 (-902 *5)) (-4 *6 (-13 (-565) (-896 *5))) (-5 *1 (-942 *5 *6 *3))))) -(-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) -((-1352 (((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)) 13))) -(((-943 |#1|) (-10 -7 (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)))) (-554)) (T -943)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 (-573) *3)) (-5 *4 (-902 (-573))) (-4 *3 (-554)) (-5 *1 (-943 *3))))) -(-10 -7 (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)))) -((-1352 (((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)) 57))) -(((-944 |#1| |#2|) (-10 -7 (-15 -1352 ((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)))) (-1112) (-13 (-1112) (-1050 (-621 $)) (-623 (-902 |#1|)) (-896 |#1|))) (T -944)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6)) (-5 *3 (-621 *6)) (-4 *5 (-1112)) (-4 *6 (-13 (-1112) (-1050 (-621 $)) (-623 *4) (-896 *5))) (-5 *4 (-902 *5)) (-5 *1 (-944 *5 *6))))) -(-10 -7 (-15 -1352 ((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)))) -((-1352 (((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)) 17))) -(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)))) (-1112) (-896 |#1|) (-675 |#2|)) (T -945)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-4 *3 (-675 *6)) (-5 *1 (-945 *5 *6 *3))))) -(-10 -7 (-15 -1352 ((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)))) -((-1352 (((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|)) 17 (|has| |#3| (-896 |#1|))) (((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|))) 16))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|)))) (IF (|has| |#3| (-896 |#1|)) (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|))) |%noBranch|)) (-1112) (-802) (-859) (-13 (-1061) (-896 |#1|)) (-13 (-959 |#4| |#2| |#3|) (-623 (-902 |#1|)))) (T -946)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-13 (-959 *8 *6 *7) (-623 *4))) (-5 *4 (-902 *5)) (-4 *7 (-896 *5)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-13 (-1061) (-896 *5))) (-5 *1 (-946 *5 *6 *7 *8 *3)))) (-1352 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-899 *6 *3) *8 (-902 *6) (-899 *6 *3))) (-4 *8 (-859)) (-5 *2 (-899 *6 *3)) (-5 *4 (-902 *6)) (-4 *6 (-1112)) (-4 *3 (-13 (-959 *9 *7 *8) (-623 *4))) (-4 *7 (-802)) (-4 *9 (-13 (-1061) (-896 *6))) (-5 *1 (-946 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|)))) (IF (|has| |#3| (-896 |#1|)) (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|))) |%noBranch|)) -((-2570 ((|#2| |#2| (-653 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -2570 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2570 (|#2| |#2| (-653 (-1 (-112) |#3|))))) (-1112) (-439 |#1|) (-1230)) (T -947)) -((-2570 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-4 *4 (-1112)) (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1230)) (-4 *4 (-1112)) (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4))))) -(-10 -7 (-15 -2570 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2570 (|#2| |#2| (-653 (-1 (-112) |#3|))))) -((-2570 (((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))) 18) (((-323 (-573)) (-1189) (-1 (-112) |#1|)) 15))) -(((-948 |#1|) (-10 -7 (-15 -2570 ((-323 (-573)) (-1189) (-1 (-112) |#1|))) (-15 -2570 ((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))))) (-1230)) (T -948)) -((-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1230)) (-5 *2 (-323 (-573))) (-5 *1 (-948 *5))))) -(-10 -7 (-15 -2570 ((-323 (-573)) (-1189) (-1 (-112) |#1|))) (-15 -2570 ((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))))) -((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 25))) -(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-13 (-565) (-896 |#1|) (-623 (-902 |#1|))) (-1004 |#2|)) (T -949)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-1004 *6)) (-4 *6 (-13 (-565) (-896 *5) (-623 *4))) (-5 *4 (-902 *5)) (-5 *1 (-949 *5 *6 *3))))) -(-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) -((-1352 (((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))) 18))) -(((-950 |#1|) (-10 -7 (-15 -1352 ((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))))) (-1112)) (T -950)) -((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 (-1189))) (-5 *3 (-1189)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *1 (-950 *5))))) -(-10 -7 (-15 -1352 ((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))))) -((-3977 (((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) 34)) (-1352 (((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) 33))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-15 -3977 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))))) (-1112) (-1061) (-13 (-1061) (-623 (-902 |#1|)) (-1050 |#2|))) (T -951)) -((-3977 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-902 *6))) (-5 *5 (-1 (-899 *6 *8) *8 (-902 *6) (-899 *6 *8))) (-4 *6 (-1112)) (-4 *8 (-13 (-1061) (-623 (-902 *6)) (-1050 *7))) (-5 *2 (-899 *6 *8)) (-4 *7 (-1061)) (-5 *1 (-951 *6 *7 *8)))) (-1352 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-653 (-902 *7))) (-5 *5 (-1 *9 (-653 *9))) (-5 *6 (-1 (-899 *7 *9) *9 (-902 *7) (-899 *7 *9))) (-4 *7 (-1112)) (-4 *9 (-13 (-1061) (-623 (-902 *7)) (-1050 *8))) (-5 *2 (-899 *7 *9)) (-5 *3 (-653 *9)) (-4 *8 (-1061)) (-5 *1 (-951 *7 *8 *9))))) -(-10 -7 (-15 -1352 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-15 -3977 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))))) -((-3127 (((-1185 (-416 (-573))) (-573)) 79)) (-3235 (((-1185 (-573)) (-573)) 82)) (-4126 (((-1185 (-573)) (-573)) 76)) (-1697 (((-573) (-1185 (-573))) 72)) (-1866 (((-1185 (-416 (-573))) (-573)) 65)) (-3172 (((-1185 (-573)) (-573)) 49)) (-3449 (((-1185 (-573)) (-573)) 84)) (-3946 (((-1185 (-573)) (-573)) 83)) (-1669 (((-1185 (-416 (-573))) (-573)) 67))) -(((-952) (-10 -7 (-15 -1669 ((-1185 (-416 (-573))) (-573))) (-15 -3946 ((-1185 (-573)) (-573))) (-15 -3449 ((-1185 (-573)) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -1866 ((-1185 (-416 (-573))) (-573))) (-15 -1697 ((-573) (-1185 (-573)))) (-15 -4126 ((-1185 (-573)) (-573))) (-15 -3235 ((-1185 (-573)) (-573))) (-15 -3127 ((-1185 (-416 (-573))) (-573))))) (T -952)) -((-3127 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3235 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-4126 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-573)) (-5 *1 (-952)))) (-1866 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-1669 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) -(-10 -7 (-15 -1669 ((-1185 (-416 (-573))) (-573))) (-15 -3946 ((-1185 (-573)) (-573))) (-15 -3449 ((-1185 (-573)) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -1866 ((-1185 (-416 (-573))) (-573))) (-15 -1697 ((-573) (-1185 (-573)))) (-15 -4126 ((-1185 (-573)) (-573))) (-15 -3235 ((-1185 (-573)) (-573))) (-15 -3127 ((-1185 (-416 (-573))) (-573)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-3590 (($ (-653 |#1|)) 9)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-2212 (($ $ (-653 |#1|)) 25)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 18) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2365 (((-931) $) 13)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) 23)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545)))) (($ (-653 |#1|)) 14)) (-2955 (($ (-653 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) 11 (|has| $ (-6 -4455))))) -(((-953 |#1|) (-992 |#1|) (-1061)) (T -953)) -NIL -(-992 |#1|) -((-3175 (((-490 |#1| |#2|) (-962 |#2|)) 22)) (-2179 (((-252 |#1| |#2|) (-962 |#2|)) 35)) (-1649 (((-962 |#2|) (-490 |#1| |#2|)) 27)) (-2622 (((-252 |#1| |#2|) (-490 |#1| |#2|)) 57)) (-2113 (((-962 |#2|) (-252 |#1| |#2|)) 32)) (-3586 (((-490 |#1| |#2|) (-252 |#1| |#2|)) 48))) -(((-954 |#1| |#2|) (-10 -7 (-15 -3586 ((-490 |#1| |#2|) (-252 |#1| |#2|))) (-15 -2622 ((-252 |#1| |#2|) (-490 |#1| |#2|))) (-15 -3175 ((-490 |#1| |#2|) (-962 |#2|))) (-15 -1649 ((-962 |#2|) (-490 |#1| |#2|))) (-15 -2113 ((-962 |#2|) (-252 |#1| |#2|))) (-15 -2179 ((-252 |#1| |#2|) (-962 |#2|)))) (-653 (-1189)) (-1061)) (T -954)) -((-2179 (*1 *2 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189))))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189))))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5))))) -(-10 -7 (-15 -3586 ((-490 |#1| |#2|) (-252 |#1| |#2|))) (-15 -2622 ((-252 |#1| |#2|) (-490 |#1| |#2|))) (-15 -3175 ((-490 |#1| |#2|) (-962 |#2|))) (-15 -1649 ((-962 |#2|) (-490 |#1| |#2|))) (-15 -2113 ((-962 |#2|) (-252 |#1| |#2|))) (-15 -2179 ((-252 |#1| |#2|) (-962 |#2|)))) -((-3329 (((-653 |#2|) |#2| |#2|) 10)) (-2973 (((-780) (-653 |#1|)) 48 (|has| |#1| (-857)))) (-4014 (((-653 |#2|) |#2|) 11)) (-2095 (((-780) (-653 |#1|) (-573) (-573)) 52 (|has| |#1| (-857)))) (-3646 ((|#1| |#2|) 38 (|has| |#1| (-857))))) -(((-955 |#1| |#2|) (-10 -7 (-15 -3329 ((-653 |#2|) |#2| |#2|)) (-15 -4014 ((-653 |#2|) |#2|)) (IF (|has| |#1| (-857)) (PROGN (-15 -3646 (|#1| |#2|)) (-15 -2973 ((-780) (-653 |#1|))) (-15 -2095 ((-780) (-653 |#1|) (-573) (-573)))) |%noBranch|)) (-371) (-1256 |#1|)) (T -955)) -((-2095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-573)) (-4 *5 (-857)) (-4 *5 (-371)) (-5 *2 (-780)) (-5 *1 (-955 *5 *6)) (-4 *6 (-1256 *5)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-857)) (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-955 *4 *5)) (-4 *5 (-1256 *4)))) (-3646 (*1 *2 *3) (-12 (-4 *2 (-371)) (-4 *2 (-857)) (-5 *1 (-955 *2 *3)) (-4 *3 (-1256 *2)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) (-4 *3 (-1256 *4)))) (-3329 (*1 *2 *3 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -3329 ((-653 |#2|) |#2| |#2|)) (-15 -4014 ((-653 |#2|) |#2|)) (IF (|has| |#1| (-857)) (PROGN (-15 -3646 (|#1| |#2|)) (-15 -2973 ((-780) (-653 |#1|))) (-15 -2095 ((-780) (-653 |#1|) (-573) (-573)))) |%noBranch|)) -((-1776 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 19))) -(((-956 |#1| |#2|) (-10 -7 (-15 -1776 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1061) (-1061)) (T -956)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-962 *6)) (-5 *1 (-956 *5 *6))))) -(-10 -7 (-15 -1776 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) -((-4193 (((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)) 18))) -(((-957 |#1| |#2|) (-10 -7 (-15 -4193 ((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)))) (-1189) (-1061)) (T -957)) -((-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1276 *5)) (-14 *5 (-1189)) (-4 *6 (-1061)) (-5 *2 (-1253 *5 (-962 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-962 *6))))) -(-10 -7 (-15 -4193 ((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)))) -((-2769 (((-780) $) 88) (((-780) $ (-653 |#4|)) 93)) (-4285 (($ $) 203)) (-2427 (((-427 $) $) 195)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 141)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL) ((|#4| $) 73)) (-2277 (($ $ $ |#4|) 95)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 131) (((-698 |#2|) (-698 $)) 121) (((-698 |#2|) (-1280 $)) NIL)) (-3246 (($ $) 210) (($ $ |#4|) 213)) (-1379 (((-653 $) $) 77)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 229) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 222)) (-2518 (((-653 $) $) 34)) (-4334 (($ |#2| |#3|) NIL) (($ $ |#4| (-780)) NIL) (($ $ (-653 |#4|) (-653 (-780))) 71)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#4|) 192)) (-4082 (((-3 (-653 $) "failed") $) 52)) (-2586 (((-3 (-653 $) "failed") $) 39)) (-2573 (((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") $) 57)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 134)) (-2963 (((-427 (-1185 $)) (-1185 $)) 147)) (-1655 (((-427 (-1185 $)) (-1185 $)) 145)) (-4218 (((-427 $) $) 165)) (-2645 (($ $ (-653 (-301 $))) 24) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-653 |#4|) (-653 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-653 |#4|) (-653 $)) NIL)) (-3592 (($ $ |#4|) 97)) (-1835 (((-902 (-387)) $) 243) (((-902 (-573)) $) 236) (((-545) $) 251)) (-3257 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 184)) (-4317 ((|#2| $ |#3|) NIL) (($ $ |#4| (-780)) 62) (($ $ (-653 |#4|) (-653 (-780))) 69)) (-4279 (((-3 $ "failed") $) 186)) (-3507 (((-112) $ $) 216))) -(((-958 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -3257 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2277 (|#1| |#1| |#1| |#4|)) (-15 -1379 ((-653 |#1|) |#1|)) (-15 -2769 ((-780) |#1| (-653 |#4|))) (-15 -2769 ((-780) |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -4334 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4334 (|#1| |#1| |#4| (-780))) (-15 -2424 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-653 |#1|) |#1|)) (-15 -4317 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4317 (|#1| |#1| |#4| (-780))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -4334 (|#1| |#2| |#3|)) (-15 -4317 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) (-959 |#2| |#3| |#4|) (-1061) (-802) (-859)) (T -958)) -NIL -(-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -3257 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2277 (|#1| |#1| |#1| |#4|)) (-15 -1379 ((-653 |#1|) |#1|)) (-15 -2769 ((-780) |#1| (-653 |#4|))) (-15 -2769 ((-780) |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -4334 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4334 (|#1| |#1| |#4| (-780))) (-15 -2424 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-653 |#1|) |#1|)) (-15 -4317 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4317 (|#1| |#1| |#4| (-780))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -4334 (|#1| |#2| |#3|)) (-15 -4317 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141)) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| |#2| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#2|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-4036 ((|#2| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-1382 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-1453 (((-3 |#3| "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142)) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43)) (-2565 ((|#2| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-565))) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#2|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-959 |#1| |#2| |#3|) (-141) (-1061) (-802) (-859)) (T -959)) -((-3246 (*1 *1 *1) (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2565 (*1 *2 *1 *3) (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-780)))) (-2565 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *2 (-859)))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-1185 *3)))) (-1453 (*1 *2 *1) (|partial| -12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4036 (*1 *2 *1 *3) (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-780)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) (-2424 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-959 *4 *5 *3)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *4)) (-4 *4 (-1061)) (-4 *1 (-959 *4 *5 *3)) (-4 *5 (-802)) (-4 *3 (-859)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)))) (-2586 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-4082 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-2573 (*1 *2 *1) (|partial| -12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-780)))))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-780)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *5)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-2277 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-174)))) (-3592 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-174)))) (-3257 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-461)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-461)))) (-4285 (*1 *1 *1) (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2427 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-427 *1)) (-4 *1 (-959 *3 *4 *5))))) -(-13 (-910 |t#3|) (-333 |t#1| |t#2|) (-316 $) (-523 |t#3| |t#1|) (-523 |t#3| $) (-1050 |t#3|) (-385 |t#1|) (-10 -8 (-15 -2565 ((-780) $ |t#3|)) (-15 -2565 ((-653 (-780)) $ (-653 |t#3|))) (-15 -4317 ($ $ |t#3| (-780))) (-15 -4317 ($ $ (-653 |t#3|) (-653 (-780)))) (-15 -2518 ((-653 $) $)) (-15 -4193 ((-1185 $) $ |t#3|)) (-15 -4193 ((-1185 |t#1|) $)) (-15 -1453 ((-3 |t#3| "failed") $)) (-15 -4036 ((-780) $ |t#3|)) (-15 -4036 ((-653 (-780)) $ (-653 |t#3|))) (-15 -2424 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |t#3|)) (-15 -4334 ($ $ |t#3| (-780))) (-15 -4334 ($ $ (-653 |t#3|) (-653 (-780)))) (-15 -4344 ($ (-1185 |t#1|) |t#3|)) (-15 -4344 ($ (-1185 $) |t#3|)) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |var| |t#3|) (|:| -3907 (-780))) "failed") $)) (-15 -2769 ((-780) $)) (-15 -2769 ((-780) $ (-653 |t#3|))) (-15 -4354 ((-653 |t#3|) $)) (-15 -1379 ((-653 $) $)) (IF (|has| |t#1| (-623 (-545))) (IF (|has| |t#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-573)))) (IF (|has| |t#3| (-623 (-902 (-573)))) (-6 (-623 (-902 (-573)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-387)))) (IF (|has| |t#3| (-623 (-902 (-387)))) (-6 (-623 (-902 (-387)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-896 (-573))) (IF (|has| |t#3| (-896 (-573))) (-6 (-896 (-573))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-896 (-387))) (IF (|has| |t#3| (-896 (-387))) (-6 (-896 (-387))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2277 ($ $ $ |t#3|)) (-15 -3592 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-6 (-461)) (-15 -3257 ($ $ |t#3|)) (-15 -3246 ($ $)) (-15 -3246 ($ $ |t#3|)) (-15 -2427 ((-427 $) $)) (-15 -4285 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) |has| |#1| (-919))) -((-4354 (((-653 |#2|) |#5|) 40)) (-4193 (((-1185 |#5|) |#5| |#2| (-1185 |#5|)) 23) (((-416 (-1185 |#5|)) |#5| |#2|) 16)) (-4344 ((|#5| (-416 (-1185 |#5|)) |#2|) 30)) (-1453 (((-3 |#2| "failed") |#5|) 71)) (-4082 (((-3 (-653 |#5|) "failed") |#5|) 65)) (-1951 (((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|) 53)) (-2586 (((-3 (-653 |#5|) "failed") |#5|) 67)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|) 57))) -(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4354 ((-653 |#2|) |#5|)) (-15 -1453 ((-3 |#2| "failed") |#5|)) (-15 -4193 ((-416 (-1185 |#5|)) |#5| |#2|)) (-15 -4344 (|#5| (-416 (-1185 |#5|)) |#2|)) (-15 -4193 ((-1185 |#5|) |#5| |#2| (-1185 |#5|))) (-15 -2586 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -4082 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -2573 ((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|)) (-15 -1951 ((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -960)) -((-1951 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3907 (-573)))) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-2573 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-573)))) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-4082 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-2586 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-4193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) (-4 *7 (-959 *6 *5 *4)) (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-5 *1 (-960 *5 *4 *6 *7 *3)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-1185 *2))) (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-4 *2 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) (-5 *1 (-960 *5 *4 *6 *7 *2)) (-4 *7 (-959 *6 *5 *4)))) (-4193 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-416 (-1185 *3))) (-5 *1 (-960 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-1453 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-1061)) (-4 *6 (-959 *5 *4 *2)) (-4 *2 (-859)) (-5 *1 (-960 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *6)) (-15 -2965 (*6 $)) (-15 -2975 (*6 $))))))) (-4354 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *5)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) -(-10 -7 (-15 -4354 ((-653 |#2|) |#5|)) (-15 -1453 ((-3 |#2| "failed") |#5|)) (-15 -4193 ((-416 (-1185 |#5|)) |#5| |#2|)) (-15 -4344 (|#5| (-416 (-1185 |#5|)) |#2|)) (-15 -4193 ((-1185 |#5|) |#5| |#2| (-1185 |#5|))) (-15 -2586 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -4082 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -2573 ((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|)) (-15 -1951 ((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|))) -((-1776 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-961 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) (T -961)) -((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *6 (-802)) (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) (-5 *1 (-961 *6 *7 *8 *5 *2)) (-4 *5 (-959 *8 *6 *7))))) -(-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) 16)) (-4193 (((-1185 $) $ (-1189)) 21) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1189))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 8) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1189) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1189) $) NIL)) (-2277 (($ $ $ (-1189)) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1189)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-1189)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1189) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1189) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-1189)) NIL) (($ (-1185 $) (-1189)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1189)) NIL)) (-4036 (((-540 (-1189)) $) NIL) (((-780) $ (-1189)) NIL) (((-653 (-780)) $ (-653 (-1189))) NIL)) (-1382 (($ (-1 (-540 (-1189)) (-540 (-1189))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1453 (((-3 (-1189) "failed") $) 19)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1189)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $ (-1189)) 29 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1189) |#1|) NIL) (($ $ (-653 (-1189)) (-653 |#1|)) NIL) (($ $ (-1189) $) NIL) (($ $ (-653 (-1189)) (-653 $)) NIL)) (-3592 (($ $ (-1189)) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2565 (((-540 (-1189)) $) NIL) (((-780) $ (-1189)) NIL) (((-653 (-780)) $ (-653 (-1189))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1189) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1189) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1189) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1189)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 25) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1189)) 27) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-962 |#1|) (-13 (-959 |#1| (-540 (-1189)) (-1189)) (-10 -8 (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1189))) |%noBranch|))) (-1061)) (T -962)) -((-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-962 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061))))) -(-13 (-959 |#1| (-540 (-1189)) (-1189)) (-10 -8 (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1189))) |%noBranch|))) -((-2627 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780)) 49)) (-4002 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780)) 44)) (-3021 (((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)) 65)) (-3701 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780)) 74 (|has| |#3| (-461))))) -(((-963 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2627 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780))) (-15 -4002 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780))) (IF (|has| |#3| (-461)) (-15 -3701 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780))) |%noBranch|) (-15 -3021 ((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -963)) -((-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *3 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| (-653 *3)))) (-5 *1 (-963 *5 *6 *7 *3 *8)) (-5 *4 (-780)) (-4 *8 (-13 (-371) (-10 -8 (-15 -2942 ($ *3)) (-15 -2965 (*3 $)) (-15 -2975 (*3 $))))))) (-3701 (*1 *2 *3 *4) (-12 (-4 *7 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *3))) (-5 *1 (-963 *5 *6 *7 *8 *3)) (-5 *4 (-780)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $))))))) (-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-573))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *9) (|:| |radicand| *9))) (-5 *1 (-963 *5 *6 *7 *8 *9)) (-5 *4 (-780)) (-4 *9 (-13 (-371) (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $))))))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-565)) (-4 *7 (-959 *3 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *8) (|:| |radicand| *8))) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-5 *4 (-780)) (-4 *8 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) -(-10 -7 (-15 -2627 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780))) (-15 -4002 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780))) (IF (|has| |#3| (-461)) (-15 -3701 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780))) |%noBranch|) (-15 -3021 ((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)))) -((-2848 (((-112) $ $) NIL)) (-2117 (($ (-1132)) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (((-1132) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-964) (-13 (-1112) (-622 (-1132)) (-10 -8 (-15 -2117 ($ (-1132)))))) (T -964)) -((-2117 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-964))))) -(-13 (-1112) (-622 (-1132)) (-10 -8 (-15 -2117 ($ (-1132))))) -((-2423 (((-1106 (-227)) $) 8)) (-2410 (((-1106 (-227)) $) 9)) (-3054 (((-653 (-653 (-953 (-227)))) $) 10)) (-2942 (((-871) $) 6))) -(((-965) (-141)) (T -965)) -((-3054 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-653 (-653 (-953 (-227))))))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227)))))) -(-13 (-622 (-871)) (-10 -8 (-15 -3054 ((-653 (-653 (-953 (-227)))) $)) (-15 -2410 ((-1106 (-227)) $)) (-15 -2423 ((-1106 (-227)) $)))) -(((-622 (-871)) . T)) -((-1422 (((-3 (-698 |#1|) "failed") |#2| (-931)) 18))) -(((-966 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-698 |#1|) "failed") |#2| (-931)))) (-565) (-665 |#1|)) (T -966)) -((-1422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-931)) (-4 *5 (-565)) (-5 *2 (-698 *5)) (-5 *1 (-966 *5 *3)) (-4 *3 (-665 *5))))) -(-10 -7 (-15 -1422 ((-3 (-698 |#1|) "failed") |#2| (-931)))) -((-3094 (((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|) 18)) (-1776 (((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)) 13))) -(((-967 |#1| |#2|) (-10 -7 (-15 -3094 ((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -1776 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) (-1230) (-1230)) (T -967)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-968 *6)) (-5 *1 (-967 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-967 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-968 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-968 *5)) (-5 *1 (-967 *6 *5))))) -(-10 -7 (-15 -3094 ((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -1776 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) 19 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 18 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 16)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 15)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 11 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 20 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 17) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 21)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 14)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 8 (|has| $ (-6 -4455))))) -(((-968 |#1|) (-19 |#1|) (-1230)) (T -968)) +((-4343 ((|#2| (-654 |#1|) (-654 |#1|)) 28))) +(((-935 |#1| |#2|) (-10 -7 (-15 -4343 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1259 |#1|)) (T -935)) +((-4343 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1259 *4)) (-5 *1 (-935 *4 *2))))) +(-10 -7 (-15 -4343 (|#2| (-654 |#1|) (-654 |#1|)))) +((-3795 (((-1188 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13))) +(((-936 |#1| |#2|) (-10 -7 (-15 -3795 ((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3795 ((-1188 |#2|) (-654 |#2|) (-654 |#2|)))) (-1192) (-372)) (T -936)) +((-3795 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1188 *5)) (-5 *1 (-936 *4 *5)) (-14 *4 (-1192)))) (-3795 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1192)) (-4 *5 (-372)) (-5 *1 (-936 *4 *5))))) +(-10 -7 (-15 -3795 ((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3795 ((-1188 |#2|) (-654 |#2|) (-654 |#2|)))) +((-1492 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174)) 174)) (-2355 ((|#4| |#4|) 193)) (-2477 (((-654 (-417 (-965 |#1|))) (-654 (-1192))) 146)) (-3435 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-2731 (((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|)) 69)) (-2416 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-2788 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174)) 186)) (-4273 (((-574) (-699 |#4|) (-934) (-1174)) 166) (((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174)) 164) (((-574) (-699 |#4|) (-1174)) 154) (((-574) (-699 |#4|) (-654 (-1192)) (-1174)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1174)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-4346 ((|#4| (-965 |#1|)) 80)) (-2020 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-4085 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-3619 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-4321 (((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-1811 (((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-2026 (((-112) (-654 (-965 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-1447 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-1372 (((-654 |#4|) |#4|) 57)) (-1422 (((-654 (-417 (-965 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-965 |#1|))) (-699 |#4|)) 66) (((-417 (-965 |#1|)) |#4|) 139)) (-1614 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574)) 112)) (-3531 (((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-3308 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-1518 (((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4226 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56))) +(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934))) (-15 -4273 ((-574) (-699 |#4|) (-654 |#4|) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 (-1192)) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-934) (-1174))) (-15 -1492 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -2788 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -1614 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574))) (-15 -1422 ((-417 (-965 |#1|)) |#4|)) (-15 -1422 ((-699 (-417 (-965 |#1|))) (-699 |#4|))) (-15 -1422 ((-654 (-417 (-965 |#1|))) (-654 |#4|))) (-15 -2477 ((-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -4346 (|#4| (-965 |#1|))) (-15 -1447 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3531 ((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2731 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|))) (-15 -1518 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4226 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1372 ((-654 |#4|) |#4|)) (-15 -1811 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -4321 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3619 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -4085 ((-654 (-654 (-574))) (-574) (-574))) (-15 -2020 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3308 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2416 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -3435 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -2355 (|#4| |#4|)) (-15 -2026 ((-112) (-654 |#4|))) (-15 -2026 ((-112) (-654 (-965 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1192))) (-803) (-962 |#1| |#3| |#2|)) (T -937)) +((-2026 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *2)) (-4 *2 (-962 *3 *5 *4)))) (-3435 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-965 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-962 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1192)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-965 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *9)))) (|:| -3907 (-654 (-1283 (-417 (-965 *9))))))))) (-5 *1 (-937 *9 *10 *11 *12)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *5 *6 *7 *8)))) (-4085 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *6 *5)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-962 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *6)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-937 *4 *5 *6 *7)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-937 *4 *5 *6 *7)))) (-1372 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-937 *4 *5 *6 *3)) (-4 *3 (-962 *4 *6 *5)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4226 (-699 (-417 (-965 *4)))) (|:| |vec| (-654 (-417 (-965 *4)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -3907 (-654 (-1283 (-417 (-965 *4))))))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-2731 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -3907 (-654 (-1283 (-417 (-965 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-962 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-781)))) (-1447 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-4 *7 (-962 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-962 *4 *6 *5)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)))) (-1422 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-417 (-965 *4))) (-5 *1 (-937 *4 *5 *6 *3)) (-4 *3 (-962 *4 *6 *5)))) (-1614 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-965 *8)))) (-5 *5 (-781)) (-5 *6 (-1174)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-962 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1192)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-965 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *8)))) (|:| -3907 (-654 (-1283 (-417 (-965 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-937 *8 *9 *10 *11)) (-5 *7 (-574)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -3907 (-654 (-1283 (-417 (-965 *4)))))))))) (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *4 (-1174)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-962 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-934)) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-4273 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *7 *8 *9 *10)))) (-4273 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-934)) (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *7 *8 *9 *10)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1174)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1174)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *6 *7 *8 *9)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-934)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) (|:| -3907 (-654 (-1283 (-417 (-965 *6)))))))))) (-5 *1 (-937 *6 *7 *8 *9)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) (|:| -3907 (-654 (-1283 (-417 (-965 *6)))))))))) (-5 *1 (-937 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) (|:| -3907 (-654 (-1283 (-417 (-965 *4)))))))))) (-5 *1 (-937 *4 *5 *6 *7)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1192))) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(-10 -7 (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-934))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-654 (-1192)) (-934))) (-15 -4273 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-699 |#4|) (-934))) (-15 -4273 ((-574) (-699 |#4|) (-654 |#4|) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 (-1192)) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 |#4|) (-934) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-654 (-1192)) (-934) (-1174))) (-15 -4273 ((-574) (-699 |#4|) (-934) (-1174))) (-15 -1492 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -2788 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|))))))))) (-1174))) (-15 -1614 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-781) (-1174) (-574))) (-15 -1422 ((-417 (-965 |#1|)) |#4|)) (-15 -1422 ((-699 (-417 (-965 |#1|))) (-699 |#4|))) (-15 -1422 ((-654 (-417 (-965 |#1|))) (-654 |#4|))) (-15 -2477 ((-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -4346 (|#4| (-965 |#1|))) (-15 -1447 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3531 ((-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2731 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-654 |#4|))) (-15 -1518 ((-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))) (-2 (|:| -4226 (-699 (-417 (-965 |#1|)))) (|:| |vec| (-654 (-417 (-965 |#1|)))) (|:| -3557 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1372 ((-654 |#4|) |#4|)) (-15 -1811 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -4321 ((-781) (-654 (-2 (|:| -3557 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3619 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -4085 ((-654 (-654 (-574))) (-574) (-574))) (-15 -2020 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3308 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2416 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -3435 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1283 (-417 (-965 |#1|)))) (|:| -3907 (-654 (-1283 (-417 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-965 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -2355 (|#4| |#4|)) (-15 -2026 ((-112) (-654 |#4|))) (-15 -2026 ((-112) (-654 (-965 |#1|))))) +((-2203 (((-940) |#1| (-1192)) 17) (((-940) |#1| (-1192) (-1109 (-227))) 21)) (-3543 (((-940) |#1| |#1| (-1192) (-1109 (-227))) 19) (((-940) |#1| (-1192) (-1109 (-227))) 15))) +(((-938 |#1|) (-10 -7 (-15 -3543 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -3543 ((-940) |#1| |#1| (-1192) (-1109 (-227)))) (-15 -2203 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -2203 ((-940) |#1| (-1192)))) (-624 (-546))) (T -938)) +((-2203 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-2203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-3543 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) (-3543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) (-5 *1 (-938 *3)) (-4 *3 (-624 (-546)))))) +(-10 -7 (-15 -3543 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -3543 ((-940) |#1| |#1| (-1192) (-1109 (-227)))) (-15 -2203 ((-940) |#1| (-1192) (-1109 (-227)))) (-15 -2203 ((-940) |#1| (-1192)))) +((-3267 (($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 121)) (-2451 (((-1109 (-227)) $) 64)) (-2438 (((-1109 (-227)) $) 63)) (-2425 (((-1109 (-227)) $) 62)) (-2771 (((-654 (-654 (-227))) $) 69)) (-4361 (((-1109 (-227)) $) 65)) (-2752 (((-574) (-574)) 57)) (-1382 (((-574) (-574)) 52)) (-3043 (((-574) (-574)) 55)) (-4249 (((-112) (-112)) 59)) (-1434 (((-574)) 56)) (-4385 (($ $ (-1109 (-227))) 124) (($ $) 125)) (-2671 (($ (-1 (-956 (-227)) (-227)) (-1109 (-227))) 131) (($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 132)) (-3543 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 135) (($ $ (-1109 (-227))) 127)) (-1962 (((-574)) 60)) (-1959 (((-574)) 50)) (-1554 (((-574)) 53)) (-3220 (((-654 (-654 (-956 (-227)))) $) 151)) (-1957 (((-112) (-112)) 61)) (-2950 (((-872) $) 149)) (-3114 (((-112)) 58))) +(((-939) (-13 (-989) (-10 -8 (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ $ (-1109 (-227)))) (-15 -3267 ($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4385 ($ $ (-1109 (-227)))) (-15 -4385 ($ $)) (-15 -4361 ((-1109 (-227)) $)) (-15 -2771 ((-654 (-654 (-227))) $)) (-15 -1959 ((-574))) (-15 -1382 ((-574) (-574))) (-15 -1554 ((-574))) (-15 -3043 ((-574) (-574))) (-15 -1434 ((-574))) (-15 -2752 ((-574) (-574))) (-15 -3114 ((-112))) (-15 -4249 ((-112) (-112))) (-15 -1962 ((-574))) (-15 -1957 ((-112) (-112)))))) (T -939)) +((-2671 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-2671 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-3543 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-3543 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-939)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-3267 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-4385 (*1 *1 *1) (-5 *1 (-939))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-939)))) (-1959 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1554 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1434 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-3114 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939)))) (-1962 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) +(-13 (-989) (-10 -8 (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ $ (-1109 (-227)))) (-15 -3267 ($ $ (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -4385 ($ $ (-1109 (-227)))) (-15 -4385 ($ $)) (-15 -4361 ((-1109 (-227)) $)) (-15 -2771 ((-654 (-654 (-227))) $)) (-15 -1959 ((-574))) (-15 -1382 ((-574) (-574))) (-15 -1554 ((-574))) (-15 -3043 ((-574) (-574))) (-15 -1434 ((-574))) (-15 -2752 ((-574) (-574))) (-15 -3114 ((-112))) (-15 -4249 ((-112) (-112))) (-15 -1962 ((-574))) (-15 -1957 ((-112) (-112))))) +((-3267 (($ $ (-1109 (-227))) 122) (($ $ (-1109 (-227)) (-1109 (-227))) 123)) (-2438 (((-1109 (-227)) $) 73)) (-2425 (((-1109 (-227)) $) 72)) (-4361 (((-1109 (-227)) $) 74)) (-2310 (((-574) (-574)) 66)) (-3103 (((-574) (-574)) 61)) (-2739 (((-574) (-574)) 64)) (-3992 (((-112) (-112)) 68)) (-3314 (((-574)) 65)) (-4385 (($ $ (-1109 (-227))) 126) (($ $) 127)) (-2671 (($ (-1 (-956 (-227)) (-227)) (-1109 (-227))) 141) (($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 142)) (-2203 (($ (-1 (-227) (-227)) (-1109 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3543 (($ (-1 (-227) (-227)) (-1109 (-227))) 137) (($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1109 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227))) 140) (($ $ (-1109 (-227))) 128)) (-2135 (((-112) $) 69)) (-4314 (((-574)) 70)) (-2066 (((-574)) 59)) (-1677 (((-574)) 62)) (-3220 (((-654 (-654 (-956 (-227)))) $) 35)) (-3572 (((-112) (-112)) 71)) (-2950 (((-872) $) 167)) (-1872 (((-112)) 67))) +(((-940) (-13 (-968) (-10 -8 (-15 -3543 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)))) (-15 -3543 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2203 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -2203 ($ (-1 (-227) (-227)))) (-15 -3543 ($ $ (-1109 (-227)))) (-15 -2135 ((-112) $)) (-15 -3267 ($ $ (-1109 (-227)))) (-15 -3267 ($ $ (-1109 (-227)) (-1109 (-227)))) (-15 -4385 ($ $ (-1109 (-227)))) (-15 -4385 ($ $)) (-15 -4361 ((-1109 (-227)) $)) (-15 -2066 ((-574))) (-15 -3103 ((-574) (-574))) (-15 -1677 ((-574))) (-15 -2739 ((-574) (-574))) (-15 -3314 ((-574))) (-15 -2310 ((-574) (-574))) (-15 -1872 ((-112))) (-15 -3992 ((-112) (-112))) (-15 -4314 ((-574))) (-15 -3572 ((-112) (-112)))))) (T -940)) +((-3543 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2671 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2671 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2203 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) (-5 *1 (-940)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-940)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-3267 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-4385 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-4385 (*1 *1 *1) (-5 *1 (-940))) (-4361 (*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) (-2066 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-1677 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3314 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-1872 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-4314 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(-13 (-968) (-10 -8 (-15 -3543 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)))) (-15 -3543 ($ (-654 (-1 (-227) (-227))) (-1109 (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)))) (-15 -3543 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)))) (-15 -2671 ($ (-1 (-956 (-227)) (-227)) (-1109 (-227)) (-1109 (-227)) (-1109 (-227)))) (-15 -2203 ($ (-1 (-227) (-227)) (-1109 (-227)))) (-15 -2203 ($ (-1 (-227) (-227)))) (-15 -3543 ($ $ (-1109 (-227)))) (-15 -2135 ((-112) $)) (-15 -3267 ($ $ (-1109 (-227)))) (-15 -3267 ($ $ (-1109 (-227)) (-1109 (-227)))) (-15 -4385 ($ $ (-1109 (-227)))) (-15 -4385 ($ $)) (-15 -4361 ((-1109 (-227)) $)) (-15 -2066 ((-574))) (-15 -3103 ((-574) (-574))) (-15 -1677 ((-574))) (-15 -2739 ((-574) (-574))) (-15 -3314 ((-574))) (-15 -2310 ((-574) (-574))) (-15 -1872 ((-112))) (-15 -3992 ((-112) (-112))) (-15 -4314 ((-574))) (-15 -3572 ((-112) (-112))))) +((-4356 (((-654 (-1109 (-227))) (-654 (-654 (-956 (-227))))) 34))) +(((-941) (-10 -7 (-15 -4356 ((-654 (-1109 (-227))) (-654 (-654 (-956 (-227)))))))) (T -941)) +((-4356 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-1109 (-227)))) (-5 *1 (-941))))) +(-10 -7 (-15 -4356 ((-654 (-1109 (-227))) (-654 (-654 (-956 (-227))))))) +((-3099 ((|#2| |#2|) 28)) (-2500 ((|#2| |#2|) 29)) (-1716 ((|#2| |#2|) 27)) (-2122 ((|#2| |#2| (-516)) 26))) +(((-942 |#1| |#2|) (-10 -7 (-15 -2122 (|#2| |#2| (-516))) (-15 -1716 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -2500 (|#2| |#2|))) (-1115) (-440 |#1|)) (T -942)) +((-2500 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-3099 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-1716 (*1 *2 *2) (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) (-2122 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1115)) (-5 *1 (-942 *4 *2)) (-4 *2 (-440 *4))))) +(-10 -7 (-15 -2122 (|#2| |#2| (-516))) (-15 -1716 (|#2| |#2|)) (-15 -3099 (|#2| |#2|)) (-15 -2500 (|#2| |#2|))) +((-3099 (((-324 (-574)) (-1192)) 16)) (-2500 (((-324 (-574)) (-1192)) 14)) (-1716 (((-324 (-574)) (-1192)) 12)) (-2122 (((-324 (-574)) (-1192) (-516)) 19))) +(((-943) (-10 -7 (-15 -2122 ((-324 (-574)) (-1192) (-516))) (-15 -1716 ((-324 (-574)) (-1192))) (-15 -3099 ((-324 (-574)) (-1192))) (-15 -2500 ((-324 (-574)) (-1192))))) (T -943)) +((-2500 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) +(-10 -7 (-15 -2122 ((-324 (-574)) (-1192) (-516))) (-15 -1716 ((-324 (-574)) (-1192))) (-15 -3099 ((-324 (-574)) (-1192))) (-15 -2500 ((-324 (-574)) (-1192)))) +((-1793 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-1827 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -1827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1793 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-897 |#1|) (-13 (-1115) (-1053 |#2|))) (T -944)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-13 (-1115) (-1053 *3))) (-4 *3 (-897 *5)) (-5 *1 (-944 *5 *3 *6)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1115) (-1053 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-944 *4 *5 *6))))) +(-10 -7 (-15 -1827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1793 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) +((-1793 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30))) +(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1053 (-622 $)))) (T -945)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1053 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-945 *5 *6 *3))))) +(-10 -7 (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) +((-1793 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13))) +(((-946 |#1|) (-10 -7 (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -946)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-946 *3))))) +(-10 -7 (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) +((-1793 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57))) +(((-947 |#1| |#2|) (-10 -7 (-15 -1793 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1115) (-13 (-1115) (-1053 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -947)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1115)) (-4 *6 (-13 (-1115) (-1053 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-947 *5 *6))))) +(-10 -7 (-15 -1793 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) +((-1793 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17))) +(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1115) (-897 |#1|) (-676 |#2|)) (T -948)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-948 *5 *6 *3))))) +(-10 -7 (-15 -1793 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) +((-1793 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1793 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -1793 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1115) (-803) (-860) (-13 (-1064) (-897 |#1|)) (-13 (-962 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -949)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-13 (-962 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1064) (-897 *5))) (-5 *1 (-949 *5 *6 *7 *8 *3)))) (-1793 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1115)) (-4 *3 (-13 (-962 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1064) (-897 *6))) (-5 *1 (-949 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1793 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -1793 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) +((-2585 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -2585 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2585 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1115) (-440 |#1|) (-1233)) (T -950)) +((-2585 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-4 *4 (-1115)) (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2585 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1233)) (-4 *4 (-1115)) (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4))))) +(-10 -7 (-15 -2585 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2585 (|#2| |#2| (-654 (-1 (-112) |#3|))))) +((-2585 (((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1192) (-1 (-112) |#1|)) 15))) +(((-951 |#1|) (-10 -7 (-15 -2585 ((-324 (-574)) (-1192) (-1 (-112) |#1|))) (-15 -2585 ((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))))) (-1233)) (T -951)) +((-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1233)) (-5 *2 (-324 (-574))) (-5 *1 (-951 *5))))) +(-10 -7 (-15 -2585 ((-324 (-574)) (-1192) (-1 (-112) |#1|))) (-15 -2585 ((-324 (-574)) (-1192) (-654 (-1 (-112) |#1|))))) +((-1793 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25))) +(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1115) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1007 |#2|)) (T -952)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-1007 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-952 *5 *6 *3))))) +(-10 -7 (-15 -1793 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) +((-1793 (((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))) 18))) +(((-953 |#1|) (-10 -7 (-15 -1793 ((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))))) (-1115)) (T -953)) +((-1793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1192))) (-5 *3 (-1192)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *1 (-953 *5))))) +(-10 -7 (-15 -1793 ((-900 |#1| (-1192)) (-1192) (-903 |#1|) (-900 |#1| (-1192))))) +((-3351 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-1793 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -3351 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1115) (-1064) (-13 (-1064) (-624 (-903 |#1|)) (-1053 |#2|))) (T -954)) +((-3351 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1115)) (-4 *8 (-13 (-1064) (-624 (-903 *6)) (-1053 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1064)) (-5 *1 (-954 *6 *7 *8)))) (-1793 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1115)) (-4 *9 (-13 (-1064) (-624 (-903 *7)) (-1053 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1064)) (-5 *1 (-954 *7 *8 *9))))) +(-10 -7 (-15 -1793 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -3351 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) +((-2653 (((-1188 (-417 (-574))) (-574)) 79)) (-4420 (((-1188 (-574)) (-574)) 82)) (-2332 (((-1188 (-574)) (-574)) 76)) (-2768 (((-574) (-1188 (-574))) 72)) (-3796 (((-1188 (-417 (-574))) (-574)) 65)) (-1859 (((-1188 (-574)) (-574)) 49)) (-1744 (((-1188 (-574)) (-574)) 84)) (-3047 (((-1188 (-574)) (-574)) 83)) (-2478 (((-1188 (-417 (-574))) (-574)) 67))) +(((-955) (-10 -7 (-15 -2478 ((-1188 (-417 (-574))) (-574))) (-15 -3047 ((-1188 (-574)) (-574))) (-15 -1744 ((-1188 (-574)) (-574))) (-15 -1859 ((-1188 (-574)) (-574))) (-15 -3796 ((-1188 (-417 (-574))) (-574))) (-15 -2768 ((-574) (-1188 (-574)))) (-15 -2332 ((-1188 (-574)) (-574))) (-15 -4420 ((-1188 (-574)) (-574))) (-15 -2653 ((-1188 (-417 (-574))) (-574))))) (T -955)) +((-2653 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574)))) (-4420 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-2332 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-574)) (-5 *1 (-955)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-1744 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) (-2478 (*1 *2 *3) (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) +(-10 -7 (-15 -2478 ((-1188 (-417 (-574))) (-574))) (-15 -3047 ((-1188 (-574)) (-574))) (-15 -1744 ((-1188 (-574)) (-574))) (-15 -1859 ((-1188 (-574)) (-574))) (-15 -3796 ((-1188 (-417 (-574))) (-574))) (-15 -2768 ((-574) (-1188 (-574)))) (-15 -2332 ((-1188 (-574)) (-574))) (-15 -4420 ((-1188 (-574)) (-574))) (-15 -2653 ((-1188 (-417 (-574))) (-574)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781)) NIL (|has| |#1| (-23)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-3563 (($ (-654 |#1|)) 9)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1697 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-2713 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-4016 (($ $ (-654 |#1|)) 25)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1250 (-574))) NIL)) (-2546 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-2900 (((-934) $) 13)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4018 (($ $ $) 23)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2962 (($ (-654 |#1|)) NIL)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3073 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) 11 (|has| $ (-6 -4458))))) +(((-956 |#1|) (-995 |#1|) (-1064)) (T -956)) +NIL +(-995 |#1|) +((-1890 (((-491 |#1| |#2|) (-965 |#2|)) 22)) (-3718 (((-253 |#1| |#2|) (-965 |#2|)) 35)) (-2270 (((-965 |#2|) (-491 |#1| |#2|)) 27)) (-3481 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-4357 (((-965 |#2|) (-253 |#1| |#2|)) 32)) (-3847 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-957 |#1| |#2|) (-10 -7 (-15 -3847 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3481 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -1890 ((-491 |#1| |#2|) (-965 |#2|))) (-15 -2270 ((-965 |#2|) (-491 |#1| |#2|))) (-15 -4357 ((-965 |#2|) (-253 |#1| |#2|))) (-15 -3718 ((-253 |#1| |#2|) (-965 |#2|)))) (-654 (-1192)) (-1064)) (T -957)) +((-3718 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192))))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5))))) +(-10 -7 (-15 -3847 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3481 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -1890 ((-491 |#1| |#2|) (-965 |#2|))) (-15 -2270 ((-965 |#2|) (-491 |#1| |#2|))) (-15 -4357 ((-965 |#2|) (-253 |#1| |#2|))) (-15 -3718 ((-253 |#1| |#2|) (-965 |#2|)))) +((-2977 (((-654 |#2|) |#2| |#2|) 10)) (-2505 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-2459 (((-654 |#2|) |#2|) 11)) (-4188 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-3235 ((|#1| |#2|) 38 (|has| |#1| (-858))))) +(((-958 |#1| |#2|) (-10 -7 (-15 -2977 ((-654 |#2|) |#2| |#2|)) (-15 -2459 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -3235 (|#1| |#2|)) (-15 -2505 ((-781) (-654 |#1|))) (-15 -4188 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1259 |#1|)) (T -958)) +((-4188 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-958 *5 *6)) (-4 *6 (-1259 *5)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-958 *4 *5)) (-4 *5 (-1259 *4)))) (-3235 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-958 *2 *3)) (-4 *3 (-1259 *2)))) (-2459 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) (-4 *3 (-1259 *4)))) (-2977 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -2977 ((-654 |#2|) |#2| |#2|)) (-15 -2459 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -3235 (|#1| |#2|)) (-15 -2505 ((-781) (-654 |#1|))) (-15 -4188 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) +((-1787 (((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)) 19))) +(((-959 |#1| |#2|) (-10 -7 (-15 -1787 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) (-1064) (-1064)) (T -959)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-965 *6)) (-5 *1 (-959 *5 *6))))) +(-10 -7 (-15 -1787 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) +((-4172 (((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)) 18))) +(((-960 |#1| |#2|) (-10 -7 (-15 -4172 ((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)))) (-1192) (-1064)) (T -960)) +((-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 *5)) (-14 *5 (-1192)) (-4 *6 (-1064)) (-5 *2 (-1256 *5 (-965 *6))) (-5 *1 (-960 *5 *6)) (-5 *3 (-965 *6))))) +(-10 -7 (-15 -4172 ((-1256 |#1| (-965 |#2|)) (-965 |#2|) (-1279 |#1|)))) +((-4347 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-3313 (($ $) 203)) (-2153 (((-428 $) $) 195)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 141)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-3372 (($ $ $ |#4|) 95)) (-4232 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1283 $)) NIL)) (-1420 (($ $) 210) (($ $ |#4|) 213)) (-1388 (((-654 $) $) 77)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-3700 (((-654 $) $) 34)) (-4327 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#4|) 192)) (-1898 (((-3 (-654 $) "failed") $) 52)) (-3145 (((-3 (-654 $) "failed") $) 39)) (-3019 (((-3 (-2 (|:| |var| |#4|) (|:| -3843 (-781))) "failed") $) 57)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 134)) (-2406 (((-428 (-1188 $)) (-1188 $)) 147)) (-2318 (((-428 (-1188 $)) (-1188 $)) 145)) (-4200 (((-428 $) $) 165)) (-2660 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-3902 (($ $ |#4|) 97)) (-1846 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-1514 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 184)) (-3584 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-3270 (((-3 $ "failed") $) 186)) (-4259 (((-112) $ $) 216))) +(((-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1318 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -1420 (|#1| |#1| |#4|)) (-15 -1514 (|#1| |#1| |#4|)) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3372 (|#1| |#1| |#1| |#4|)) (-15 -1388 ((-654 |#1|) |#1|)) (-15 -4347 ((-781) |#1| (-654 |#4|))) (-15 -4347 ((-781) |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| |#4|) (|:| -3843 (-781))) "failed") |#1|)) (-15 -1898 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4327 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4327 (|#1| |#1| |#4| (-781))) (-15 -2141 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3700 ((-654 |#1|) |#1|)) (-15 -3584 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3584 (|#1| |#1| |#4| (-781))) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4327 (|#1| |#2| |#3|)) (-15 -3584 (|#2| |#1| |#3|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|))) (-962 |#2| |#3| |#4|) (-1064) (-803) (-860)) (T -961)) +NIL +(-10 -8 (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1318 ((-3 (-1283 |#1|) "failed") (-699 |#1|))) (-15 -1420 (|#1| |#1| |#4|)) (-15 -1514 (|#1| |#1| |#4|)) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3372 (|#1| |#1| |#1| |#4|)) (-15 -1388 ((-654 |#1|) |#1|)) (-15 -4347 ((-781) |#1| (-654 |#4|))) (-15 -4347 ((-781) |#1|)) (-15 -3019 ((-3 (-2 (|:| |var| |#4|) (|:| -3843 (-781))) "failed") |#1|)) (-15 -1898 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4327 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4327 (|#1| |#1| |#4| (-781))) (-15 -2141 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3700 ((-654 |#1|) |#1|)) (-15 -3584 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3584 (|#1| |#1| |#4| (-781))) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#4| |#1|)) (-15 -2660 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2660 (|#1| |#1| |#4| |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4327 (|#1| |#2| |#3|)) (-15 -3584 (|#2| |#1| |#3|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -4259 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 112)) (-4172 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-4319 (($ $) 90 (|has| |#1| (-566)))) (-1731 (((-112) $) 92 (|has| |#1| (-566)))) (-4347 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3313 (($ $) 100 (|has| |#1| (-462)))) (-2153 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141)) (-3372 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1401 (($ $) 158)) (-4232 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-2978 (((-3 $ "failed") $) 37)) (-1420 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-2941 (((-112) $) 98 (|has| |#1| (-922)))) (-2680 (($ $ |#1| |#2| $) 176)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2276 (((-112) $) 35)) (-1901 (((-781) $) 173)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-3700 (((-654 $) $) 128)) (-3513 (((-112) $) 156)) (-4327 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#3|) 122)) (-2682 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3577 (($ (-1 |#2| |#2|) $) 175)) (-1787 (($ (-1 |#1| |#1|) $) 155)) (-1407 (((-3 |#3| "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-2844 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-1938 (((-1174) $) 10)) (-1898 (((-3 (-654 $) "failed") $) 116)) (-3145 (((-3 (-654 $) "failed") $) 117)) (-3019 (((-3 (-2 (|:| |var| |#3|) (|:| -3843 (-781))) "failed") $) 115)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-3902 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-4144 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-1846 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2097 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-566))) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3133 (((-654 |#1|) $) 172)) (-3584 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3270 (((-3 $ "failed") $) 81 (-2832 (-2097 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 32 T CONST)) (-3702 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-962 |#1| |#2| |#3|) (-141) (-1064) (-803) (-860)) (T -962)) +((-1420 (*1 *1 *1) (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4144 (*1 *2 *1 *3) (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *2 (-860)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) (-3700 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1188 *3)))) (-1407 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2682 (*1 *2 *1 *3) (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-2682 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-2141 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-962 *4 *5 *3)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *4)) (-4 *4 (-1064)) (-4 *1 (-962 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-1898 (*1 *2 *1) (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-3019 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3843 (-781)))))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-4347 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1388 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) (-3372 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-3902 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1514 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-962 *3 *4 *5))))) +(-13 (-913 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1053 |t#3|) (-386 |t#1|) (-10 -8 (-15 -4144 ((-781) $ |t#3|)) (-15 -4144 ((-654 (-781)) $ (-654 |t#3|))) (-15 -3584 ($ $ |t#3| (-781))) (-15 -3584 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -3700 ((-654 $) $)) (-15 -4172 ((-1188 $) $ |t#3|)) (-15 -4172 ((-1188 |t#1|) $)) (-15 -1407 ((-3 |t#3| "failed") $)) (-15 -2682 ((-781) $ |t#3|)) (-15 -2682 ((-654 (-781)) $ (-654 |t#3|))) (-15 -2141 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |t#3|)) (-15 -4327 ($ $ |t#3| (-781))) (-15 -4327 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4338 ($ (-1188 |t#1|) |t#3|)) (-15 -4338 ($ (-1188 $) |t#3|)) (-15 -3145 ((-3 (-654 $) "failed") $)) (-15 -1898 ((-3 (-654 $) "failed") $)) (-15 -3019 ((-3 (-2 (|:| |var| |t#3|) (|:| -3843 (-781))) "failed") $)) (-15 -4347 ((-781) $)) (-15 -4347 ((-781) $ (-654 |t#3|))) (-15 -4349 ((-654 |t#3|) $)) (-15 -1388 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3372 ($ $ $ |t#3|)) (-15 -3902 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -1514 ($ $ |t#3|)) (-15 -1420 ($ $)) (-15 -1420 ($ $ |t#3|)) (-15 -2153 ((-428 $) $)) (-15 -3313 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#1| (-922)) (-6 (-922)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) |has| |#1| (-922))) +((-4349 (((-654 |#2|) |#5|) 40)) (-4172 (((-1188 |#5|) |#5| |#2| (-1188 |#5|)) 23) (((-417 (-1188 |#5|)) |#5| |#2|) 16)) (-4338 ((|#5| (-417 (-1188 |#5|)) |#2|) 30)) (-1407 (((-3 |#2| "failed") |#5|) 71)) (-1898 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-3469 (((-3 (-2 (|:| |val| |#5|) (|:| -3843 (-574))) "failed") |#5|) 53)) (-3145 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-3019 (((-3 (-2 (|:| |var| |#2|) (|:| -3843 (-574))) "failed") |#5|) 57))) +(((-963 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4349 ((-654 |#2|) |#5|)) (-15 -1407 ((-3 |#2| "failed") |#5|)) (-15 -4172 ((-417 (-1188 |#5|)) |#5| |#2|)) (-15 -4338 (|#5| (-417 (-1188 |#5|)) |#2|)) (-15 -4172 ((-1188 |#5|) |#5| |#2| (-1188 |#5|))) (-15 -3145 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1898 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3019 ((-3 (-2 (|:| |var| |#2|) (|:| -3843 (-574))) "failed") |#5|)) (-15 -3469 ((-3 (-2 (|:| |val| |#5|) (|:| -3843 (-574))) "failed") |#5|))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -963)) +((-3469 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3843 (-574)))) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-3019 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3843 (-574)))) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-1898 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-3145 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-4172 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) (-4 *7 (-962 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-5 *1 (-963 *5 *4 *6 *7 *3)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1188 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) (-5 *1 (-963 *5 *4 *6 *7 *2)) (-4 *7 (-962 *6 *5 *4)))) (-4172 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-417 (-1188 *3))) (-5 *1 (-963 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) (-1407 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1064)) (-4 *6 (-962 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-963 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *6)) (-15 -2970 (*6 $)) (-15 -2981 (*6 $))))))) (-4349 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -4349 ((-654 |#2|) |#5|)) (-15 -1407 ((-3 |#2| "failed") |#5|)) (-15 -4172 ((-417 (-1188 |#5|)) |#5| |#2|)) (-15 -4338 (|#5| (-417 (-1188 |#5|)) |#2|)) (-15 -4172 ((-1188 |#5|) |#5| |#2| (-1188 |#5|))) (-15 -3145 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1898 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -3019 ((-3 (-2 (|:| |var| |#2|) (|:| -3843 (-574))) "failed") |#5|)) (-15 -3469 ((-3 (-2 (|:| |val| |#5|) (|:| -3843 (-574))) "failed") |#5|))) +((-1787 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1787 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1064) (-962 |#3| |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -964)) +((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *6 (-803)) (-4 *2 (-13 (-1115) (-10 -8 (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-964 *6 *7 *8 *5 *2)) (-4 *5 (-962 *8 *6 *7))))) +(-10 -7 (-15 -1787 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) 16)) (-4172 (((-1188 $) $ (-1192)) 21) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1192))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1192) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1192) $) NIL)) (-3372 (($ $ $ (-1192)) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1192)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-541 (-1192)) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1192) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1192) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-1192)) NIL) (($ (-1188 $) (-1192)) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1192)) NIL)) (-2682 (((-541 (-1192)) $) NIL) (((-781) $ (-1192)) NIL) (((-654 (-781)) $ (-654 (-1192))) NIL)) (-3577 (($ (-1 (-541 (-1192)) (-541 (-1192))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1407 (((-3 (-1192) "failed") $) 19)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1192)) (|:| -3843 (-781))) "failed") $) NIL)) (-3302 (($ $ (-1192)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1192) |#1|) NIL) (($ $ (-654 (-1192)) (-654 |#1|)) NIL) (($ $ (-1192) $) NIL) (($ $ (-654 (-1192)) (-654 $)) NIL)) (-3902 (($ $ (-1192)) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-4144 (((-541 (-1192)) $) NIL) (((-781) $ (-1192)) NIL) (((-654 (-781)) $ (-654 (-1192))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1192) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1192) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1192) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1192)) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1192)) 27) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-965 |#1|) (-13 (-962 |#1| (-541 (-1192)) (-1192)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1192))) |%noBranch|))) (-1064)) (T -965)) +((-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064))))) +(-13 (-962 |#1| (-541 (-1192)) (-1192)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1192))) |%noBranch|))) +((-3521 (((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-3598 (((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-2980 (((-2 (|:| -3843 (-781)) (|:| -1868 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-2487 (((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462))))) +(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3521 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -3598 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -2487 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -2980 ((-2 (|:| -3843 (-781)) (|:| -1868 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-962 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2950 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2981 (|#4| $))))) (T -966)) +((-2980 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-966 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2950 ($ *3)) (-15 -2970 (*3 $)) (-15 -2981 (*3 $))))))) (-2487 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| *3))) (-5 *1 (-966 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $))))))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *9) (|:| |radicand| *9))) (-5 *1 (-966 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $))))))) (-3521 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-962 *3 *5 *6)) (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *8) (|:| |radicand| *8))) (-5 *1 (-966 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) +(-10 -7 (-15 -3521 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -3598 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -2487 ((-2 (|:| -3843 (-781)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -2980 ((-2 (|:| -3843 (-781)) (|:| -1868 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) +((-2863 (((-112) $ $) NIL)) (-2127 (($ (-1135)) 8)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (((-1135) $) 12)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 11))) +(((-967) (-13 (-1115) (-623 (-1135)) (-10 -8 (-15 -2127 ($ (-1135)))))) (T -967)) +((-2127 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-967))))) +(-13 (-1115) (-623 (-1135)) (-10 -8 (-15 -2127 ($ (-1135))))) +((-2438 (((-1109 (-227)) $) 8)) (-2425 (((-1109 (-227)) $) 9)) (-3220 (((-654 (-654 (-956 (-227)))) $) 10)) (-2950 (((-872) $) 6))) +(((-968) (-141)) (T -968)) +((-3220 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-654 (-654 (-956 (-227))))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227)))))) +(-13 (-623 (-872)) (-10 -8 (-15 -3220 ((-654 (-654 (-956 (-227)))) $)) (-15 -2425 ((-1109 (-227)) $)) (-15 -2438 ((-1109 (-227)) $)))) +(((-623 (-872)) . T)) +((-4215 (((-3 (-699 |#1|) "failed") |#2| (-934)) 18))) +(((-969 |#1| |#2|) (-10 -7 (-15 -4215 ((-3 (-699 |#1|) "failed") |#2| (-934)))) (-566) (-666 |#1|)) (T -969)) +((-4215 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-934)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-969 *5 *3)) (-4 *3 (-666 *5))))) +(-10 -7 (-15 -4215 ((-3 (-699 |#1|) "failed") |#2| (-934)))) +((-2316 (((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|) 16)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|) 18)) (-1787 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 13))) +(((-970 |#1| |#2|) (-10 -7 (-15 -2316 ((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -1787 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1233) (-1233)) (T -970)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-971 *6)) (-5 *1 (-970 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-970 *5 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-971 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-971 *5)) (-5 *1 (-970 *6 *5))))) +(-10 -7 (-15 -2316 ((-971 |#2|) (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-971 |#1|) |#2|)) (-15 -1787 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 16)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) |#1|) 15)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) 11 (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) 20 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1250 (-574))) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) 21)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 14)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2876 (((-781) $) 8 (|has| $ (-6 -4458))))) +(((-971 |#1|) (-19 |#1|) (-1233)) (T -971)) NIL (-19 |#1|) -((-3376 (($ $ (-1104 $)) 7) (($ $ (-1189)) 6))) -(((-969) (-141)) (T -969)) -((-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-969)))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-1189))))) -(-13 (-10 -8 (-15 -3376 ($ $ (-1189))) (-15 -3376 ($ $ (-1104 $))))) -((-3731 (((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)) 26) (((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189))) 27) (((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189)) 49))) -(((-970 |#1|) (-10 -7 (-15 -3731 ((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)))) (-13 (-371) (-148))) (T -970)) -((-3731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-5 *5 (-1189)) (-4 *6 (-13 (-371) (-148))) (-5 *2 (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *6))) (|:| |prim| (-1185 *6)))) (-5 *1 (-970 *6)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-371) (-148))) (-5 *2 (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *5))) (|:| |prim| (-1185 *5)))) (-5 *1 (-970 *5)))) (-3731 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-1189)) (-4 *5 (-13 (-371) (-148))) (-5 *2 (-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 *5)))) (-5 *1 (-970 *5))))) -(-10 -7 (-15 -3731 ((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)))) -((-2508 (((-653 |#1|) |#1| |#1|) 47)) (-2696 (((-112) |#1|) 44)) (-3389 ((|#1| |#1|) 79)) (-1809 ((|#1| |#1|) 78))) -(((-971 |#1|) (-10 -7 (-15 -2696 ((-112) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -2508 ((-653 |#1|) |#1| |#1|))) (-554)) (T -971)) -((-2508 (*1 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-5 *1 (-971 *3)) (-4 *3 (-554)))) (-3389 (*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554)))) (-1809 (*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554)))) (-2696 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-971 *3)) (-4 *3 (-554))))) -(-10 -7 (-15 -2696 ((-112) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -2508 ((-653 |#1|) |#1| |#1|))) -((-1794 (((-1285) (-871)) 9))) -(((-972) (-10 -7 (-15 -1794 ((-1285) (-871))))) (T -972)) -((-1794 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-972))))) -(-10 -7 (-15 -1794 ((-1285) (-871)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 78 (|has| |#1| (-565)))) (-2456 (($ $) 79 (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 34)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) 31)) (-2232 (((-3 $ "failed") $) 42)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-2343 (($ $ |#1| |#2| $) 62)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 17)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-4036 ((|#2| $) 24)) (-1382 (($ (-1 |#2| |#2|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ $) 28)) (-1369 ((|#1| $) 26)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 51)) (-1348 ((|#1| $) NIL)) (-2826 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-565))))) (-2837 (((-3 $ "failed") $ $) 91 (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-565)))) (-2565 ((|#2| $) 22)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) 46) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 41) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ |#2|) 37)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 15 T CONST)) (-1538 (($ $ $ (-780)) 74 (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) 84 (|has| |#1| (-565)))) (-2132 (($) 27 T CONST)) (-2144 (($) 12 T CONST)) (-2981 (((-112) $ $) 83)) (-3103 (($ $ |#1|) 92 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 69) (($ $ (-780)) 67)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-973 |#1| |#2|) (-13 (-333 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| |#2| (-132)) (-15 -2826 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061) (-801)) (T -973)) -((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-132)) (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *2 (-801))))) -(-13 (-333 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| |#2| (-132)) (-15 -2826 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (-3280 (($ $ $) 65 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (-2983 (((-3 $ "failed") $ $) 52 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (-1486 (((-780)) 36 (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-2307 ((|#2| $) 22)) (-3961 ((|#1| $) 21)) (-2579 (($) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) CONST)) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-2819 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-3659 (($ $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-1403 (($ |#1| |#2|) 20)) (-3589 (((-931) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 39 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-2575 (($ (-931)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-3965 (((-1132) $) NIL)) (-3204 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-4380 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-2942 (((-871) $) 14)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 42 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) CONST)) (-2144 (($) 25 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-2981 (((-112) $ $) 19)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3005 (((-112) $ $) 69 (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3103 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-3093 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3077 (($ $ $) 45 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (** (($ $ (-573)) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482)))) (($ $ (-780)) 32 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (* (($ (-573) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-780) $) 48 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (($ (-931) $) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (($ $ $) 28 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))))) -(((-974 |#1| |#2|) (-13 (-1112) (-10 -8 (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-482)) (IF (|has| |#2| (-482)) (-6 (-482)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-802)) (IF (|has| |#2| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-859)) (IF (|has| |#2| (-859)) (-6 (-859)) |%noBranch|) |%noBranch|) (-15 -1403 ($ |#1| |#2|)) (-15 -3961 (|#1| $)) (-15 -2307 (|#2| $)))) (-1112) (-1112)) (T -974)) -((-1403 (*1 *1 *2 *3) (-12 (-5 *1 (-974 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3961 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1112)))) (-2307 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-974 *3 *2)) (-4 *3 (-1112))))) -(-13 (-1112) (-10 -8 (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-482)) (IF (|has| |#2| (-482)) (-6 (-482)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-802)) (IF (|has| |#2| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-859)) (IF (|has| |#2| (-859)) (-6 (-859)) |%noBranch|) |%noBranch|) (-15 -1403 ($ |#1| |#2|)) (-15 -3961 (|#1| $)) (-15 -2307 (|#2| $)))) -((-3082 (((-1116) $) 12)) (-1395 (($ (-515) (-1116)) 14)) (-2031 (((-515) $) 9)) (-2942 (((-871) $) 24))) -(((-975) (-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3082 ((-1116) $)) (-15 -1395 ($ (-515) (-1116)))))) (T -975)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-975)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-975)))) (-1395 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-975))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3082 ((-1116) $)) (-15 -1395 ($ (-515) (-1116))))) -((-2848 (((-112) $ $) NIL)) (-1561 (($) NIL T CONST)) (-2097 (($ $ $) 30)) (-2075 (($ $) 24)) (-3180 (((-1171) $) NIL)) (-1406 (((-700 (-882 $ $)) $) 55)) (-4091 (((-700 $) $) 45)) (-2693 (((-700 (-882 $ $)) $) 56)) (-3605 (((-700 (-882 $ $)) $) 57)) (-3233 (((-700 |#1|) $) 36)) (-4048 (((-700 (-882 $ $)) $) 54)) (-2546 (($ $ $) 31)) (-3965 (((-1132) $) NIL)) (-2883 (($) NIL T CONST)) (-3391 (($ $ $) 32)) (-3900 (($ $ $) 29)) (-4336 (($ $ $) 27)) (-2942 (((-871) $) 59) (($ |#1|) 12)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 28)) (-2981 (((-112) $ $) NIL))) -(((-976 |#1|) (-13 (-979) (-625 |#1|) (-10 -8 (-15 -3233 ((-700 |#1|) $)) (-15 -4091 ((-700 $) $)) (-15 -4048 ((-700 (-882 $ $)) $)) (-15 -1406 ((-700 (-882 $ $)) $)) (-15 -2693 ((-700 (-882 $ $)) $)) (-15 -3605 ((-700 (-882 $ $)) $)) (-15 -4336 ($ $ $)) (-15 -3900 ($ $ $)))) (-1112)) (T -976)) -((-3233 (*1 *2 *1) (-12 (-5 *2 (-700 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-700 (-976 *3))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4336 (*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112)))) (-3900 (*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) -(-13 (-979) (-625 |#1|) (-10 -8 (-15 -3233 ((-700 |#1|) $)) (-15 -4091 ((-700 $) $)) (-15 -4048 ((-700 (-882 $ $)) $)) (-15 -1406 ((-700 (-882 $ $)) $)) (-15 -2693 ((-700 (-882 $ $)) $)) (-15 -3605 ((-700 (-882 $ $)) $)) (-15 -4336 ($ $ $)) (-15 -3900 ($ $ $)))) -((-1953 (((-976 |#1|) (-976 |#1|)) 46)) (-4337 (((-976 |#1|) (-976 |#1|)) 22)) (-2885 (((-1114 |#1|) (-976 |#1|)) 41))) -(((-977 |#1|) (-13 (-1230) (-10 -7 (-15 -4337 ((-976 |#1|) (-976 |#1|))) (-15 -2885 ((-1114 |#1|) (-976 |#1|))) (-15 -1953 ((-976 |#1|) (-976 |#1|))))) (-1112)) (T -977)) -((-4337 (*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-1112)) (-5 *2 (-1114 *4)) (-5 *1 (-977 *4)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3))))) -(-13 (-1230) (-10 -7 (-15 -4337 ((-976 |#1|) (-976 |#1|))) (-15 -2885 ((-1114 |#1|) (-976 |#1|))) (-15 -1953 ((-976 |#1|) (-976 |#1|))))) -((-1776 (((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)) 29))) -(((-978 |#1| |#2|) (-13 (-1230) (-10 -7 (-15 -1776 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|))))) (-1112) (-1112)) (T -978)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-976 *6)) (-5 *1 (-978 *5 *6))))) -(-13 (-1230) (-10 -7 (-15 -1776 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|))))) -((-2848 (((-112) $ $) 15)) (-1561 (($) 14 T CONST)) (-2097 (($ $ $) 6)) (-2075 (($ $) 8)) (-3180 (((-1171) $) 19)) (-2546 (($ $ $) 12)) (-3965 (((-1132) $) 18)) (-2883 (($) 13 T CONST)) (-3391 (($ $ $) 11)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) 20)) (-2086 (($ $ $) 7)) (-2981 (((-112) $ $) 16))) -(((-979) (-141)) (T -979)) -((-1561 (*1 *1) (-4 *1 (-979))) (-2883 (*1 *1) (-4 *1 (-979))) (-2546 (*1 *1 *1 *1) (-4 *1 (-979))) (-3391 (*1 *1 *1 *1) (-4 *1 (-979)))) -(-13 (-113) (-1112) (-10 -8 (-15 -1561 ($) -1705) (-15 -2883 ($) -1705) (-15 -2546 ($ $ $)) (-15 -3391 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-622 (-871)) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-4241 (($ $ $) 44)) (-1480 (($ $ $) 45)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 46)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-980 |#1|) (-141) (-859)) (T -980)) -((-3751 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -3751 (|t#1| $)) (-15 -1480 ($ $ $)) (-15 -4241 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-3812 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 105)) (-4183 ((|#2| |#2| |#2|) 103)) (-3062 (((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 107)) (-1650 (((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 109)) (-3633 (((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|) 131 (|has| |#1| (-461)))) (-3405 (((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 56)) (-2962 (((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 80)) (-1978 (((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 82)) (-2480 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2664 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 89)) (-2056 (((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|) 121)) (-3792 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 92)) (-4157 (((-653 (-780)) |#2| |#2|) 102)) (-3645 ((|#1| |#2| |#2|) 50)) (-2344 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|) 129 (|has| |#1| (-461)))) (-1543 ((|#1| |#2| |#2|) 127 (|has| |#1| (-461)))) (-3221 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 54)) (-3177 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 79)) (-2277 ((|#1| |#2| |#2|) 76)) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|) 41)) (-3478 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3323 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2395 ((|#2| |#2| |#2|) 93)) (-2824 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 87)) (-1671 ((|#2| |#2| |#2| (-780)) 85)) (-2872 ((|#2| |#2| |#2|) 135 (|has| |#1| (-461)))) (-2837 (((-1280 |#2|) (-1280 |#2|) |#1|) 22)) (-1405 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|) 46)) (-2041 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|) 119)) (-3592 ((|#1| |#2|) 116)) (-3602 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 91)) (-3160 ((|#2| |#2| |#2| (-780)) 90)) (-2601 (((-653 |#2|) |#2| |#2|) 99)) (-1439 ((|#2| |#2| |#1| |#1| (-780)) 62)) (-3438 ((|#1| |#1| |#1| (-780)) 61)) (* (((-1280 |#2|) |#1| (-1280 |#2|)) 17))) -(((-981 |#1| |#2|) (-10 -7 (-15 -2277 (|#1| |#2| |#2|)) (-15 -3177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -2962 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1978 ((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| (-780))) (-15 -2824 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3160 (|#2| |#2| |#2| (-780))) (-15 -3602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3792 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2395 (|#2| |#2| |#2|)) (-15 -3323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3592 (|#1| |#2|)) (-15 -2041 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2056 ((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2601 ((-653 |#2|) |#2| |#2|)) (-15 -4157 ((-653 (-780)) |#2| |#2|)) (IF (|has| |#1| (-461)) (PROGN (-15 -1543 (|#1| |#2| |#2|)) (-15 -2344 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -3633 ((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -2872 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1280 |#2|) |#1| (-1280 |#2|))) (-15 -2837 ((-1280 |#2|) (-1280 |#2|) |#1|)) (-15 -1368 ((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -1405 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -3438 (|#1| |#1| |#1| (-780))) (-15 -1439 (|#2| |#2| |#1| |#1| (-780))) (-15 -3478 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3645 (|#1| |#2| |#2|)) (-15 -3221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|))) (-565) (-1256 |#1|)) (T -981)) -((-3405 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3221 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-3478 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-1439 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *2 (-565)) (-5 *1 (-981 *2 *4)) (-4 *4 (-1256 *2)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-1368 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -1857 *4) (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2837 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) (-5 *1 (-981 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) (-5 *1 (-981 *3 *4)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-461)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3633 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2344 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-1543 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-4 *2 (-461)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-4157 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-780))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2601 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3592 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3592 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3592 (*1 *2 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-1650 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3062 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3812 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-2480 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3323 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2395 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3792 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-3160 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) (-4 *2 (-1256 *4)))) (-2664 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-2824 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-1671 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) (-4 *2 (-1256 *4)))) (-1978 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2277 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2))))) -(-10 -7 (-15 -2277 (|#1| |#2| |#2|)) (-15 -3177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -2962 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1978 ((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| (-780))) (-15 -2824 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3160 (|#2| |#2| |#2| (-780))) (-15 -3602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3792 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2395 (|#2| |#2| |#2|)) (-15 -3323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3592 (|#1| |#2|)) (-15 -2041 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2056 ((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2601 ((-653 |#2|) |#2| |#2|)) (-15 -4157 ((-653 (-780)) |#2| |#2|)) (IF (|has| |#1| (-461)) (PROGN (-15 -1543 (|#1| |#2| |#2|)) (-15 -2344 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -3633 ((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -2872 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1280 |#2|) |#1| (-1280 |#2|))) (-15 -2837 ((-1280 |#2|) (-1280 |#2|) |#1|)) (-15 -1368 ((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -1405 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -3438 (|#1| |#1| |#1| (-780))) (-15 -1439 (|#2| |#2| |#1| |#1| (-780))) (-15 -3478 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3645 (|#1| |#2| |#2|)) (-15 -3221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|))) -((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-982) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -982)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-982)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-982))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 40)) (-2983 (((-3 $ "failed") $ $) 54)) (-2579 (($) NIL T CONST)) (-3201 (((-653 (-882 (-931) (-931))) $) 67)) (-3744 (((-931) $) 94)) (-1863 (((-653 (-931)) $) 17)) (-2008 (((-1169 $) (-780)) 39)) (-2603 (($ (-653 (-931))) 16)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3204 (($ $) 70)) (-2942 (((-871) $) 90) (((-653 (-931)) $) 11)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 8 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 44)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 42)) (-3077 (($ $ $) 46)) (* (($ (-931) $) NIL) (($ (-780) $) 49)) (-2862 (((-780) $) 22))) -(((-983) (-13 (-804) (-622 (-653 (-931))) (-10 -8 (-15 -2603 ($ (-653 (-931)))) (-15 -1863 ((-653 (-931)) $)) (-15 -2862 ((-780) $)) (-15 -2008 ((-1169 $) (-780))) (-15 -3201 ((-653 (-882 (-931) (-931))) $)) (-15 -3744 ((-931) $)) (-15 -3204 ($ $))))) (T -983)) -((-2603 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-983)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1169 (-983))) (-5 *1 (-983)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-931) (-931)))) (-5 *1 (-983)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-983)))) (-3204 (*1 *1 *1) (-5 *1 (-983)))) -(-13 (-804) (-622 (-653 (-931))) (-10 -8 (-15 -2603 ($ (-653 (-931)))) (-15 -1863 ((-653 (-931)) $)) (-15 -2862 ((-780) $)) (-15 -2008 ((-1169 $) (-780))) (-15 -3201 ((-653 (-882 (-931) (-931))) $)) (-15 -3744 ((-931) $)) (-15 -3204 ($ $)))) -((-3103 (($ $ |#2|) 31)) (-3093 (($ $) 23) (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-416 (-573)) $) 27) (($ $ (-416 (-573))) 29))) -(((-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-985 |#2| |#3| |#4|) (-1061) (-801) (-859)) (T -984)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 86)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1488 (((-112) $) 85)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-653 |#3|) (-653 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-985 |#1| |#2| |#3|) (-141) (-1061) (-801) (-859)) (T -985)) -((-1369 (*1 *2 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *3 (-801)) (-4 *4 (-859)) (-4 *2 (-1061)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *4 (-859)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *2 *4)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *2 (-801)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-985 *4 *3 *2)) (-4 *4 (-1061)) (-4 *3 (-801)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 *5)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-801)) (-4 *6 (-859)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *5 (-859)) (-5 *2 (-653 *5)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *4 (-859))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4334 ($ $ |t#3| |t#2|)) (-15 -4334 ($ $ (-653 |t#3|) (-653 |t#2|))) (-15 -1358 ($ $)) (-15 -1369 (|t#1| $)) (-15 -2565 (|t#2| $)) (-15 -4354 ((-653 |t#3|) $)) (-15 -1488 ((-112) $)) (-15 -4101 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2436 (((-1106 (-227)) $) 8)) (-2423 (((-1106 (-227)) $) 9)) (-2410 (((-1106 (-227)) $) 10)) (-3054 (((-653 (-653 (-953 (-227)))) $) 11)) (-2942 (((-871) $) 6))) -(((-986) (-141)) (T -986)) -((-3054 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-653 (-653 (-953 (-227))))))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227))))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227))))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) -(-13 (-622 (-871)) (-10 -8 (-15 -3054 ((-653 (-653 (-953 (-227)))) $)) (-15 -2410 ((-1106 (-227)) $)) (-15 -2423 ((-1106 (-227)) $)) (-15 -2436 ((-1106 (-227)) $)))) -(((-622 (-871)) . T)) -((-4354 (((-653 |#4|) $) 23)) (-2577 (((-112) $) 55)) (-2020 (((-112) $) 54)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#4|) 42)) (-2194 (((-112) $) 56)) (-1849 (((-112) $ $) 62)) (-2838 (((-112) $ $) 65)) (-3145 (((-112) $) 60)) (-2346 (((-653 |#5|) (-653 |#5|) $) 98)) (-2475 (((-653 |#5|) (-653 |#5|) $) 95)) (-3132 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1937 (((-653 |#4|) $) 27)) (-1689 (((-112) |#4| $) 34)) (-3582 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4409 (($ $ |#4|) 39)) (-3496 (($ $ |#4|) 38)) (-1456 (($ $ |#4|) 40)) (-2981 (((-112) $ $) 46))) -(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2020 ((-112) |#1|)) (-15 -2346 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -2475 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -3132 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3582 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2838 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -3145 ((-112) |#1|)) (-15 -2577 ((-112) |#1|)) (-15 -2770 ((-2 (|:| |under| |#1|) (|:| -3733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -1689 ((-112) |#4| |#1|)) (-15 -1937 ((-653 |#4|) |#1|)) (-15 -4354 ((-653 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-988 |#2| |#3| |#4| |#5|) (-1061) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -987)) -NIL -(-10 -8 (-15 -2020 ((-112) |#1|)) (-15 -2346 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -2475 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -3132 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3582 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2838 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -3145 ((-112) |#1|)) (-15 -2577 ((-112) |#1|)) (-15 -2770 ((-2 (|:| |under| |#1|) (|:| -3733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -1689 ((-112) |#4| |#1|)) (-15 -1937 ((-653 |#4|) |#1|)) (-15 -4354 ((-653 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455)))) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455)))) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-3965 (((-1132) $) 11)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-988 |#1| |#2| |#3| |#4|) (-141) (-1061) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -988)) -((-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-1077 *3 *4 *2)) (-4 *2 (-859)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-1689 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *3 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) (-3496 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-1456 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-4409 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-2770 (*1 *2 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3733 *1) (|:| |upper| *1))) (-4 *1 (-988 *4 *5 *3 *6)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-2838 (*1 *2 *1 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-3582 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3132 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2475 (*1 *2 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)))) (-2346 (*1 *2 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112))))) -(-13 (-1112) (-152 |t#4|) (-622 (-653 |t#4|)) (-10 -8 (-6 -4455) (-15 -1695 ((-3 $ "failed") (-653 |t#4|))) (-15 -2205 ($ (-653 |t#4|))) (-15 -3338 (|t#3| $)) (-15 -4354 ((-653 |t#3|) $)) (-15 -1937 ((-653 |t#3|) $)) (-15 -1689 ((-112) |t#3| $)) (-15 -3496 ($ $ |t#3|)) (-15 -1456 ($ $ |t#3|)) (-15 -4409 ($ $ |t#3|)) (-15 -2770 ((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |t#3|)) (-15 -2577 ((-112) $)) (IF (|has| |t#1| (-565)) (PROGN (-15 -3145 ((-112) $)) (-15 -1849 ((-112) $ $)) (-15 -2838 ((-112) $ $)) (-15 -2194 ((-112) $)) (-15 -3582 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3132 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2475 ((-653 |t#4|) (-653 |t#4|) $)) (-15 -2346 ((-653 |t#4|) (-653 |t#4|) $)) (-15 -2020 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-1112) . T) ((-1230) . T)) -((-2472 (((-653 |#4|) |#4| |#4|) 136)) (-1777 (((-653 |#4|) (-653 |#4|) (-112)) 125 (|has| |#1| (-461))) (((-653 |#4|) (-653 |#4|)) 126 (|has| |#1| (-461)))) (-3515 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 44)) (-3032 (((-112) |#4|) 43)) (-3624 (((-653 |#4|) |#4|) 121 (|has| |#1| (-461)))) (-3017 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|)) 24)) (-2918 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|)) 30)) (-2447 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|)) 31)) (-3281 (((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|)) 90)) (-1738 (((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3829 (((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2724 (((-653 |#4|) (-653 |#4|)) 128)) (-3240 (((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112)) 59) (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 61)) (-3862 ((|#4| |#4| (-653 |#4|)) 60)) (-3269 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 132 (|has| |#1| (-461)))) (-3797 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 135 (|has| |#1| (-461)))) (-2141 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 134 (|has| |#1| (-461)))) (-4342 (((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|))) 105) (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 107) (((-653 |#4|) (-653 |#4|) |#4|) 140) (((-653 |#4|) |#4| |#4|) 137) (((-653 |#4|) (-653 |#4|)) 106)) (-1864 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-3547 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 52)) (-4017 (((-112) (-653 |#4|)) 79)) (-3294 (((-112) (-653 |#4|) (-653 (-653 |#4|))) 67)) (-3305 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 37)) (-2498 (((-112) |#4|) 36)) (-1412 (((-653 |#4|) (-653 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-4158 (((-653 |#4|) (-653 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-1923 (((-653 |#4|) (-653 |#4|)) 83)) (-3243 (((-653 |#4|) (-653 |#4|)) 97)) (-3317 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-3025 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 50)) (-1579 (((-112) |#4|) 45))) -(((-989 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4342 ((-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) |#4| |#4|)) (-15 -2724 ((-653 |#4|) (-653 |#4|))) (-15 -2472 ((-653 |#4|) |#4| |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|)))) (-15 -3317 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -3294 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -4017 ((-112) (-653 |#4|))) (-15 -3017 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -2447 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -3547 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3032 ((-112) |#4|)) (-15 -3515 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -2498 ((-112) |#4|)) (-15 -3305 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -1579 ((-112) |#4|)) (-15 -3025 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112))) (-15 -3862 (|#4| |#4| (-653 |#4|))) (-15 -1923 ((-653 |#4|) (-653 |#4|))) (-15 -3281 ((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|))) (-15 -3243 ((-653 |#4|) (-653 |#4|))) (-15 -1738 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3829 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3624 ((-653 |#4|) |#4|)) (-15 -1777 ((-653 |#4|) (-653 |#4|))) (-15 -1777 ((-653 |#4|) (-653 |#4|) (-112))) (-15 -3269 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -2141 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3797 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (PROGN (-15 -4158 ((-653 |#4|) (-653 |#4|))) (-15 -1412 ((-653 |#4|) (-653 |#4|))) (-15 -1864 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) |%noBranch|)) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -989)) -((-1864 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4158 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-2141 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3624 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3829 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-989 *5 *6 *7 *8)))) (-1738 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-653 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *1 (-989 *6 *7 *8 *9)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3281 (*1 *2 *3) (|partial| -12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-485 *4 *5 *6 *7)) (|:| -2001 (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3862 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *2)))) (-3240 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7)))) (-4342 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-653 *7) (-653 *7))) (-5 *2 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-4342 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4342 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4342 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) -(-10 -7 (-15 -4342 ((-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) |#4| |#4|)) (-15 -2724 ((-653 |#4|) (-653 |#4|))) (-15 -2472 ((-653 |#4|) |#4| |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|)))) (-15 -3317 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -3294 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -4017 ((-112) (-653 |#4|))) (-15 -3017 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -2447 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -3547 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3032 ((-112) |#4|)) (-15 -3515 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -2498 ((-112) |#4|)) (-15 -3305 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -1579 ((-112) |#4|)) (-15 -3025 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112))) (-15 -3862 (|#4| |#4| (-653 |#4|))) (-15 -1923 ((-653 |#4|) (-653 |#4|))) (-15 -3281 ((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|))) (-15 -3243 ((-653 |#4|) (-653 |#4|))) (-15 -1738 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3829 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3624 ((-653 |#4|) |#4|)) (-15 -1777 ((-653 |#4|) (-653 |#4|))) (-15 -1777 ((-653 |#4|) (-653 |#4|) (-112))) (-15 -3269 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -2141 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3797 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (PROGN (-15 -4158 ((-653 |#4|) (-653 |#4|))) (-15 -1412 ((-653 |#4|) (-653 |#4|))) (-15 -1864 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) |%noBranch|)) -((-3636 (((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3873 (((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)) 46)) (-4300 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-990 |#1|) (-10 -7 (-15 -3636 ((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4300 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3873 ((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)))) (-371)) (T -990)) -((-3873 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5))))) (-5 *1 (-990 *5)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)))) (-4300 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-698 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-5 *1 (-990 *5)))) (-3636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-371)) (-5 *2 (-2 (|:| R (-698 *6)) (|:| A (-698 *6)) (|:| |Ainv| (-698 *6)))) (-5 *1 (-990 *6)) (-5 *3 (-698 *6))))) -(-10 -7 (-15 -3636 ((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4300 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3873 ((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)))) -((-2427 (((-427 |#4|) |#4|) 56))) -(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2427 ((-427 |#4|) |#4|))) (-859) (-802) (-461) (-959 |#3| |#2| |#1|)) (T -991)) -((-2427 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-461)) (-5 *2 (-427 *3)) (-5 *1 (-991 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) -(-10 -7 (-15 -2427 ((-427 |#4|) |#4|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780)) 115 (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-3590 (($ (-653 |#1|)) 121)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) 108 (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3155 ((|#1| $) 105 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-2673 (((-112) $ (-780)) 10)) (-4134 ((|#1| $) 106 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-2212 (($ $ (-653 |#1|)) 119)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2658 ((|#1| $ $) 109 (|has| |#1| (-1061)))) (-2365 (((-931) $) 120)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3925 (($ $ $) 107)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545)))) (($ (-653 |#1|)) 122)) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-3093 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3077 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-573) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-735))) (($ $ |#1|) 110 (|has| |#1| (-735)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-992 |#1|) (-141) (-1061)) (T -992)) -((-3590 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-992 *3)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1061)) (-5 *2 (-931)))) (-3925 (*1 *1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1061)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-992 *3)) (-4 *3 (-1061))))) -(-13 (-1278 |t#1|) (-627 (-653 |t#1|)) (-10 -8 (-15 -3590 ($ (-653 |t#1|))) (-15 -2365 ((-931) $)) (-15 -3925 ($ $ $)) (-15 -2212 ($ $ (-653 |t#1|))))) -(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-627 (-653 |#1|)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T) ((-1278 |#1|) . T)) -((-1776 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 17))) -(((-993 |#1| |#2|) (-10 -7 (-15 -1776 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1061) (-1061)) (T -993)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-953 *6)) (-5 *1 (-993 *5 *6))))) -(-10 -7 (-15 -1776 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) -((-3419 ((|#1| (-953 |#1|)) 14)) (-3853 ((|#1| (-953 |#1|)) 13)) (-3108 ((|#1| (-953 |#1|)) 12)) (-3070 ((|#1| (-953 |#1|)) 16)) (-2451 ((|#1| (-953 |#1|)) 24)) (-4117 ((|#1| (-953 |#1|)) 15)) (-3223 ((|#1| (-953 |#1|)) 17)) (-2065 ((|#1| (-953 |#1|)) 23)) (-1805 ((|#1| (-953 |#1|)) 22))) -(((-994 |#1|) (-10 -7 (-15 -3108 (|#1| (-953 |#1|))) (-15 -3853 (|#1| (-953 |#1|))) (-15 -3419 (|#1| (-953 |#1|))) (-15 -4117 (|#1| (-953 |#1|))) (-15 -3070 (|#1| (-953 |#1|))) (-15 -3223 (|#1| (-953 |#1|))) (-15 -1805 (|#1| (-953 |#1|))) (-15 -2065 (|#1| (-953 |#1|))) (-15 -2451 (|#1| (-953 |#1|)))) (-1061)) (T -994)) -((-2451 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(-10 -7 (-15 -3108 (|#1| (-953 |#1|))) (-15 -3853 (|#1| (-953 |#1|))) (-15 -3419 (|#1| (-953 |#1|))) (-15 -4117 (|#1| (-953 |#1|))) (-15 -3070 (|#1| (-953 |#1|))) (-15 -3223 (|#1| (-953 |#1|))) (-15 -1805 (|#1| (-953 |#1|))) (-15 -2065 (|#1| (-953 |#1|))) (-15 -2451 (|#1| (-953 |#1|)))) -((-4196 (((-3 |#1| "failed") |#1|) 18)) (-3206 (((-3 |#1| "failed") |#1|) 6)) (-3266 (((-3 |#1| "failed") |#1|) 16)) (-3134 (((-3 |#1| "failed") |#1|) 4)) (-2481 (((-3 |#1| "failed") |#1|) 20)) (-4182 (((-3 |#1| "failed") |#1|) 8)) (-4341 (((-3 |#1| "failed") |#1| (-780)) 1)) (-2511 (((-3 |#1| "failed") |#1|) 3)) (-4430 (((-3 |#1| "failed") |#1|) 2)) (-3026 (((-3 |#1| "failed") |#1|) 21)) (-3868 (((-3 |#1| "failed") |#1|) 9)) (-3171 (((-3 |#1| "failed") |#1|) 19)) (-4367 (((-3 |#1| "failed") |#1|) 7)) (-3526 (((-3 |#1| "failed") |#1|) 17)) (-1782 (((-3 |#1| "failed") |#1|) 5)) (-2416 (((-3 |#1| "failed") |#1|) 24)) (-3835 (((-3 |#1| "failed") |#1|) 12)) (-3196 (((-3 |#1| "failed") |#1|) 22)) (-2599 (((-3 |#1| "failed") |#1|) 10)) (-3994 (((-3 |#1| "failed") |#1|) 26)) (-3297 (((-3 |#1| "failed") |#1|) 14)) (-2775 (((-3 |#1| "failed") |#1|) 27)) (-3581 (((-3 |#1| "failed") |#1|) 15)) (-3162 (((-3 |#1| "failed") |#1|) 25)) (-1702 (((-3 |#1| "failed") |#1|) 13)) (-4132 (((-3 |#1| "failed") |#1|) 23)) (-4189 (((-3 |#1| "failed") |#1|) 11))) -(((-995 |#1|) (-141) (-1215)) (T -995)) -((-2775 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3162 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2416 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4132 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3196 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3026 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2481 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3171 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4196 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3526 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3266 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3581 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-1702 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3835 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4189 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2599 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3868 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4182 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4367 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3206 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-1782 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3134 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2511 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4430 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4341 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(-13 (-10 -7 (-15 -4341 ((-3 |t#1| "failed") |t#1| (-780))) (-15 -4430 ((-3 |t#1| "failed") |t#1|)) (-15 -2511 ((-3 |t#1| "failed") |t#1|)) (-15 -3134 ((-3 |t#1| "failed") |t#1|)) (-15 -1782 ((-3 |t#1| "failed") |t#1|)) (-15 -3206 ((-3 |t#1| "failed") |t#1|)) (-15 -4367 ((-3 |t#1| "failed") |t#1|)) (-15 -4182 ((-3 |t#1| "failed") |t#1|)) (-15 -3868 ((-3 |t#1| "failed") |t#1|)) (-15 -2599 ((-3 |t#1| "failed") |t#1|)) (-15 -4189 ((-3 |t#1| "failed") |t#1|)) (-15 -3835 ((-3 |t#1| "failed") |t#1|)) (-15 -1702 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3581 ((-3 |t#1| "failed") |t#1|)) (-15 -3266 ((-3 |t#1| "failed") |t#1|)) (-15 -3526 ((-3 |t#1| "failed") |t#1|)) (-15 -4196 ((-3 |t#1| "failed") |t#1|)) (-15 -3171 ((-3 |t#1| "failed") |t#1|)) (-15 -2481 ((-3 |t#1| "failed") |t#1|)) (-15 -3026 ((-3 |t#1| "failed") |t#1|)) (-15 -3196 ((-3 |t#1| "failed") |t#1|)) (-15 -4132 ((-3 |t#1| "failed") |t#1|)) (-15 -2416 ((-3 |t#1| "failed") |t#1|)) (-15 -3162 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -2775 ((-3 |t#1| "failed") |t#1|)))) -((-1519 ((|#4| |#4| (-653 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4120 ((|#4| |#4| (-653 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1776 ((|#4| (-1 |#4| (-962 |#1|)) |#4|) 31))) -(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| |#4| |#3|)) (-15 -4120 (|#4| |#4| (-653 |#3|))) (-15 -1519 (|#4| |#4| |#3|)) (-15 -1519 (|#4| |#4| (-653 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-962 |#1|)) |#4|))) (-1061) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-959 (-962 |#1|) |#2| |#3|)) (T -996)) -((-1776 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-962 *4))) (-4 *4 (-1061)) (-4 *2 (-959 (-962 *4) *5 *6)) (-4 *5 (-802)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *6 *2)))) (-1519 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) (-4 *2 (-959 (-962 *4) *5 *6)))) (-1519 (*1 *2 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) (-4120 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) (-4 *2 (-959 (-962 *4) *5 *6)))) (-4120 (*1 *2 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3))))) -(-10 -7 (-15 -4120 (|#4| |#4| |#3|)) (-15 -4120 (|#4| |#4| (-653 |#3|))) (-15 -1519 (|#4| |#4| |#3|)) (-15 -1519 (|#4| |#4| (-653 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-962 |#1|)) |#4|))) -((-1736 ((|#2| |#3|) 35)) (-3574 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|) 79)) (-3529 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) 100))) -(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|)) (-15 -1736 (|#2| |#3|))) (-357) (-1256 |#1|) (-1256 |#2|) (-733 |#2| |#3|)) (T -997)) -((-1736 (*1 *2 *3) (-12 (-4 *3 (-1256 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-997 *4 *2 *3 *5)) (-4 *4 (-357)) (-4 *5 (-733 *2 *3)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-997 *4 *3 *5 *6)) (-4 *6 (-733 *3 *5)))) (-3529 (*1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-698 *4)))) (-5 *1 (-997 *3 *4 *5 *6)) (-4 *6 (-733 *4 *5))))) -(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|)) (-15 -1736 (|#2| |#3|))) -((-1396 (((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))) 82))) -(((-998 |#1| |#2|) (-10 -7 (-15 -1396 ((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))))) (-653 (-1189)) (-780)) (T -998)) -((-1396 (*1 *2 *2) (-12 (-5 *2 (-999 (-416 (-573)) (-873 *3) (-245 *4 (-780)) (-252 *3 (-416 (-573))))) (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-998 *3 *4))))) -(-10 -7 (-15 -1396 ((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))))) -((-2848 (((-112) $ $) NIL)) (-2390 (((-3 (-112) "failed") $) 71)) (-1953 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-3057 (($ $ (-3 (-112) "failed")) 72)) (-2288 (($ (-653 |#4|) |#4|) 25)) (-3180 (((-1171) $) NIL)) (-3373 (($ $) 69)) (-3965 (((-1132) $) NIL)) (-3811 (((-112) $) 70)) (-3508 (($) 30)) (-2377 ((|#4| $) 74)) (-4350 (((-653 |#4|) $) 73)) (-2942 (((-871) $) 68)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-999 |#1| |#2| |#3| |#4|) (-13 (-1112) (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2288 ($ (-653 |#4|) |#4|)) (-15 -2390 ((-3 (-112) "failed") $)) (-15 -3057 ($ $ (-3 (-112) "failed"))) (-15 -3811 ((-112) $)) (-15 -4350 ((-653 |#4|) $)) (-15 -2377 (|#4| $)) (-15 -3373 ($ $)) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (-15 -1953 ($ $)) |%noBranch|) |%noBranch|))) (-461) (-859) (-802) (-959 |#1| |#3| |#2|)) (T -999)) -((-3508 (*1 *1) (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-959 *4 *6 *5)) (-4 *4 (-461)) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *1 (-999 *4 *5 *6 *3)))) (-2390 (*1 *2 *1) (|partial| -12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-3811 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-4350 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-653 *6)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-2377 (*1 *2 *1) (-12 (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-999 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)))) (-3373 (*1 *1 *1) (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) (-1953 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-314)) (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3))))) -(-13 (-1112) (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2288 ($ (-653 |#4|) |#4|)) (-15 -2390 ((-3 (-112) "failed") $)) (-15 -3057 ($ $ (-3 (-112) "failed"))) (-15 -3811 ((-112) $)) (-15 -4350 ((-653 |#4|) $)) (-15 -2377 (|#4| $)) (-15 -3373 ($ $)) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (-15 -1953 ($ $)) |%noBranch|) |%noBranch|))) -((-2671 (((-112) |#5| |#5|) 44)) (-2223 (((-112) |#5| |#5|) 59)) (-2476 (((-112) |#5| (-653 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3874 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-1688 (((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 70)) (-4435 (((-1285)) 32)) (-3902 (((-1285) (-1171) (-1171) (-1171)) 28)) (-2707 (((-653 |#5|) (-653 |#5|)) 100)) (-3295 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) 92)) (-1410 (((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112)) 122)) (-4181 (((-112) |#5| |#5|) 53)) (-2243 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2186 (((-112) (-653 |#4|) (-653 |#4|)) 64)) (-1728 (((-112) (-653 |#4|) (-653 |#4|)) 66)) (-2614 (((-112) (-653 |#4|) (-653 |#4|)) 67)) (-2119 (((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3049 (((-653 |#5|) (-653 |#5|)) 49))) -(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1000)) -((-2119 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) (-5 *1 (-1000 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) (-4 *4 (-1083 *6 *7 *8 *9)))) (-1410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) (-5 *1 (-1000 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1000 *5 *6 *7 *8 *3)))) (-2476 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-1728 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2186 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-2671 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4435 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3902 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1487 (((-1189) $) 15)) (-3082 (((-1171) $) 16)) (-2691 (($ (-1189) (-1171)) 14)) (-2942 (((-871) $) 13))) -(((-1001) (-13 (-622 (-871)) (-10 -8 (-15 -2691 ($ (-1189) (-1171))) (-15 -1487 ((-1189) $)) (-15 -3082 ((-1171) $))))) (T -1001)) -((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-1001)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1001)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1001))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2691 ($ (-1189) (-1171))) (-15 -1487 ((-1189) $)) (-15 -3082 ((-1171) $)))) -((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-565) (-565) (-1004 |#1|) (-1004 |#2|)) (T -1002)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-4 *2 (-1004 *6)) (-5 *1 (-1002 *5 *6 *4 *2)) (-4 *4 (-1004 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) -((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1189) "failed") $) 66) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) 96)) (-2205 ((|#2| $) NIL) (((-1189) $) 61) (((-416 (-573)) $) NIL) (((-573) $) 93)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 115) (((-698 |#2|) (-698 $)) 28) (((-698 |#2|) (-1280 $)) NIL)) (-2819 (($) 99)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 76) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 85)) (-3041 (($ $) 10)) (-1470 (((-3 $ "failed") $) 20)) (-1776 (($ (-1 |#2| |#2|) $) 22)) (-3816 (($) 16)) (-2408 (($ $) 55)) (-3904 (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2662 (($ $) 12)) (-1835 (((-902 (-573)) $) 71) (((-902 (-387)) $) 80) (((-545) $) 40) (((-387) $) 44) (((-227) $) 48)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 91) (($ |#2|) NIL) (($ (-1189)) 58)) (-1545 (((-780)) 31)) (-3005 (((-112) $ $) 51))) -(((-1003 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2819 (|#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1004 |#2|) (-565)) (T -1003)) -((-1545 (*1 *2) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-1003 *3 *4)) (-4 *3 (-1004 *4))))) -(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2819 (|#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 ((|#1| $) 148 (|has| |#1| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 139 (|has| |#1| (-919)))) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 142 (|has| |#1| (-919)))) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 129 (|has| |#1| (-829)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 188) (((-3 (-1189) "failed") $) 137 (|has| |#1| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 120 (|has| |#1| (-1050 (-573)))) (((-3 (-573) "failed") $) 118 (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 189) (((-1189) $) 138 (|has| |#1| (-1050 (-1189)))) (((-416 (-573)) $) 121 (|has| |#1| (-1050 (-573)))) (((-573) $) 119 (|has| |#1| (-1050 (-573))))) (-2784 (($ $ $) 61)) (-2759 (((-698 (-573)) (-1280 $)) 163 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 162 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 161 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 160) (((-698 |#1|) (-698 $)) 159) (((-698 |#1|) (-1280 $)) 158)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 146 (|has| |#1| (-554)))) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-4152 (((-112) $) 131 (|has| |#1| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 155 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 154 (|has| |#1| (-896 (-387))))) (-1959 (((-112) $) 35)) (-3041 (($ $) 150)) (-2965 ((|#1| $) 152)) (-1470 (((-3 $ "failed") $) 117 (|has| |#1| (-1164)))) (-3339 (((-112) $) 130 (|has| |#1| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 127 (|has| |#1| (-859)))) (-3751 (($ $ $) 126 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 180)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 116 (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 147 (|has| |#1| (-314)))) (-3733 ((|#1| $) 144 (|has| |#1| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 141 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 140 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 186 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 184 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 183 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 182 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 181 (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) 64)) (-2198 (($ $ |#1|) 187 (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3904 (($ $ (-780)) 178 (|has| |#1| (-238))) (($ $) 176 (|has| |#1| (-238))) (($ $ (-1189)) 175 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 174 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 173 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 172 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-2662 (($ $) 149)) (-2975 ((|#1| $) 151)) (-1835 (((-902 (-573)) $) 157 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 156 (|has| |#1| (-623 (-902 (-387))))) (((-545) $) 134 (|has| |#1| (-623 (-545)))) (((-387) $) 133 (|has| |#1| (-1034))) (((-227) $) 132 (|has| |#1| (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 143 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 192) (($ (-1189)) 136 (|has| |#1| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) 135 (-2817 (|has| |#1| (-146)) (-2086 (|has| $ (-146)) (|has| |#1| (-919)))))) (-1545 (((-780)) 32 T CONST)) (-2437 ((|#1| $) 145 (|has| |#1| (-554)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 128 (|has| |#1| (-829)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 179 (|has| |#1| (-238))) (($ $) 177 (|has| |#1| (-238))) (($ $ (-1189)) 171 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 170 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 169 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 168 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3040 (((-112) $ $) 124 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 123 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 125 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 122 (|has| |#1| (-859)))) (-3103 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190))) -(((-1004 |#1|) (-141) (-565)) (T -1004)) -((-3103 (*1 *1 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2662 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) (-2408 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) (-2819 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-554)) (-4 *2 (-565)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554))))) -(-13 (-371) (-38 |t#1|) (-1050 |t#1|) (-346 |t#1|) (-233 |t#1|) (-385 |t#1|) (-894 |t#1|) (-409 |t#1|) (-10 -8 (-15 -3103 ($ |t#1| |t#1|)) (-15 -2965 (|t#1| $)) (-15 -2975 (|t#1| $)) (-15 -3041 ($ $)) (-15 -2662 ($ $)) (IF (|has| |t#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |t#1| (-1050 (-573))) (PROGN (-6 (-1050 (-573))) (-6 (-1050 (-416 (-573))))) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-829)) (-6 (-829)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1050 (-1189))) (-6 (-1050 (-1189))) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-15 -3770 (|t#1| $)) (-15 -2408 ($ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2819 ($)) (-15 -2437 (|t#1| $)) (-15 -3733 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 #1=(-1189)) |has| |#1| (-1050 (-1189))) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) |has| |#1| (-1034)) ((-623 (-387)) |has| |#1| (-1034)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-248) . T) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) . T) ((-314) . T) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-371) . T) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-409 |#1|) . T) ((-461) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 #2=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-648 #2#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-800) |has| |#1| (-829)) ((-801) |has| |#1| (-829)) ((-803) |has| |#1| (-829)) ((-804) |has| |#1| (-829)) ((-829) |has| |#1| (-829)) ((-857) |has| |#1| (-829)) ((-859) -2817 (|has| |#1| (-859)) (|has| |#1| (-829))) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-919) |has| |#1| (-919)) ((-930) . T) ((-1034) |has| |#1| (-1034)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-573))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #1#) |has| |#1| (-1050 (-1189))) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-1164)) ((-1230) . T) ((-1234) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-3814 (($ (-1154 |#1| |#2|)) 11)) (-2913 (((-1154 |#1| |#2|) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#2| $ (-245 |#1| |#2|)) 16)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL))) -(((-1005 |#1| |#2|) (-13 (-21) (-293 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3814 ($ (-1154 |#1| |#2|))) (-15 -2913 ((-1154 |#1| |#2|) $)))) (-931) (-371)) (T -1005)) -((-3814 (*1 *1 *2) (-12 (-5 *2 (-1154 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371)) (-5 *1 (-1005 *3 *4)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1154 *3 *4)) (-5 *1 (-1005 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371))))) -(-13 (-21) (-293 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3814 ($ (-1154 |#1| |#2|))) (-15 -2913 ((-1154 |#1| |#2|) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1006) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $))))) (T -1006)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1006))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-3147 (($ $) 47)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-4134 (((-780) $) 46)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3897 ((|#1| $) 45)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3203 ((|#1| |#1| $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2548 ((|#1| $) 48)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-2411 ((|#1| $) 44)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1007 |#1|) (-141) (-1230)) (T -1007)) -((-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-3147 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -3203 (|t#1| |t#1| $)) (-15 -2548 (|t#1| $)) (-15 -3147 ($ $)) (-15 -4134 ((-780) $)) (-15 -3897 (|t#1| $)) (-15 -2411 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-1748 (((-112) $) 43)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 44)) (-3810 (((-3 (-416 (-573)) "failed") $) 78)) (-2551 (((-112) $) 72)) (-4434 (((-416 (-573)) $) 76)) (-1959 (((-112) $) 42)) (-3421 ((|#2| $) 22)) (-1776 (($ (-1 |#2| |#2|) $) 19)) (-1323 (($ $) 58)) (-3904 (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1835 (((-545) $) 67)) (-3204 (($ $) 17)) (-2942 (((-871) $) 53) (($ (-573)) 39) (($ |#2|) 37) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 10)) (-1660 ((|#2| $) 71)) (-2981 (((-112) $ $) 26)) (-3005 (((-112) $ $) 69)) (-3093 (($ $) 30) (($ $ $) 29)) (-3077 (($ $ $) 27)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) -(((-1008 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 -1323 (|#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -1959 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1009 |#2|) (-174)) (T -1008)) -((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-1008 *3 *4)) (-4 *3 (-1009 *4))))) -(-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 -1323 (|#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -1959 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 130 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 128 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 125)) (-2205 (((-573) $) 129 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 127 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 126)) (-2759 (((-698 (-573)) (-1280 $)) 100 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 99 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 98 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 97) (((-698 |#1|) (-698 $)) 96) (((-698 |#1|) (-1280 $)) 95)) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 88)) (-3810 (((-3 (-416 (-573)) "failed") $) 84 (|has| |#1| (-554)))) (-2551 (((-112) $) 86 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 85 (|has| |#1| (-554)))) (-1520 (($ |#1| |#1| |#1| |#1|) 89)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 90)) (-3659 (($ $ $) 77 (|has| |#1| (-859)))) (-3751 (($ $ $) 76 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 101)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 81 (|has| |#1| (-371)))) (-4231 ((|#1| $) 91)) (-3875 ((|#1| $) 92)) (-1881 ((|#1| $) 93)) (-3965 (((-1132) $) 11)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 107 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 105 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 104 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 103 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 102 (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) 108 (|has| |#1| (-293 |#1| |#1|)))) (-3904 (($ $ (-780)) 123 (|has| |#1| (-238))) (($ $) 121 (|has| |#1| (-238))) (($ $ (-1189)) 120 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 119 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 118 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 117 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1835 (((-545) $) 82 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 94)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 71 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 ((|#1| $) 87 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 124 (|has| |#1| (-238))) (($ $) 122 (|has| |#1| (-238))) (($ $ (-1189)) 116 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 115 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 114 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 113 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3040 (((-112) $ $) 74 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 73 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 75 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 72 (|has| |#1| (-859)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 80 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-416 (-573))) 79 (|has| |#1| (-371))) (($ (-416 (-573)) $) 78 (|has| |#1| (-371))))) -(((-1009 |#1|) (-141) (-174)) (T -1009)) -((-3204 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1520 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573)))))) -(-13 (-38 |t#1|) (-420 |t#1|) (-233 |t#1|) (-346 |t#1|) (-385 |t#1|) (-10 -8 (-15 -3204 ($ $)) (-15 -1881 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -4231 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -1520 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4238 (|t#1| $)) (IF (|has| |t#1| (-297)) (-6 (-297)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-371)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-371)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-248) |has| |#1| (-371)) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-655 #0#) |has| |#1| (-371)) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-371)) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-371)) ((-649 |#1|) . T) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-371)) ((-726 |#1|) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-371)) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-1068 #0#) |has| |#1| (-371)) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) -2817 (|has| |#1| (-293 |#1| |#1|)) (|has| |#1| (-238)))) -((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-1009 |#2|) (-174) (-1009 |#4|) (-174)) (T -1010)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1009 *6)) (-5 *1 (-1010 *4 *5 *2 *6)) (-4 *4 (-1009 *5))))) -(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 12)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-1520 (($ |#1| |#1| |#1| |#1|) 16)) (-1959 (((-112) $) NIL)) (-3421 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-4231 ((|#1| $) 15)) (-3875 ((|#1| $) 14)) (-1881 ((|#1| $) 13)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 ((|#1| $) NIL (|has| |#1| (-1072)))) (-2132 (($) 8 T CONST)) (-2144 (($) 10 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))))) -(((-1011 |#1|) (-1009 |#1|) (-174)) (T -1011)) -NIL -(-1009 |#1|) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-3147 (($ $) 23)) (-3950 (($ (-653 |#1|)) 33)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-4134 (((-780) $) 26)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 28)) (-3181 (($ |#1| $) 17)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3897 ((|#1| $) 27)) (-3815 ((|#1| $) 22)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3203 ((|#1| |#1| $) 16)) (-3811 (((-112) $) 18)) (-3508 (($) NIL)) (-2548 ((|#1| $) 21)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-2411 ((|#1| $) 30)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1012 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3950 ($ (-653 |#1|))))) (-1112)) (T -1012)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1012 *3))))) -(-13 (-1007 |#1|) (-10 -8 (-15 -3950 ($ (-653 |#1|))))) -((-4228 (($ $) 12)) (-4325 (($ $ (-573)) 13))) -(((-1013 |#1|) (-10 -8 (-15 -4228 (|#1| |#1|)) (-15 -4325 (|#1| |#1| (-573)))) (-1014)) (T -1013)) -NIL -(-10 -8 (-15 -4228 (|#1| |#1|)) (-15 -4325 (|#1| |#1| (-573)))) -((-4228 (($ $) 6)) (-4325 (($ $ (-573)) 7)) (** (($ $ (-416 (-573))) 8))) -(((-1014) (-141)) (T -1014)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-416 (-573))))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-573)))) (-4228 (*1 *1 *1) (-4 *1 (-1014)))) -(-13 (-10 -8 (-15 -4228 ($ $)) (-15 -4325 ($ $ (-573))) (-15 ** ($ $ (-416 (-573)))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| (-416 |#2|) (-371)))) (-2456 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) NIL) (((-698 (-416 |#2|))) NIL)) (-1635 (((-416 |#2|) $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) NIL (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) NIL)) (-3454 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) NIL)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) NIL) (($ (-1280 (-416 |#2|))) 79) (($ (-1280 |#2|) |#2|) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) NIL) (((-698 (-416 |#2|)) (-698 $)) NIL) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1869 (((-1280 $) (-1280 $)) NIL)) (-2867 (($ |#3|) 73) (((-3 $ "failed") (-416 |#3|)) NIL (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2989 (((-653 (-653 |#1|))) NIL (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) NIL)) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) NIL)) (-1819 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2796 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-416 |#2|) (-371)))) (-3246 (($ $) NIL)) (-3731 (($) NIL (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) NIL (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) NIL (|has| (-416 |#2|) (-357))) (($ $) NIL (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) NIL (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) NIL (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) NIL)) (-2033 (((-780)) NIL)) (-4109 (((-1280 $) (-1280 $)) NIL)) (-3421 (((-416 |#2|) $) NIL)) (-2201 (((-653 (-962 |#1|)) (-1189)) NIL (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) NIL (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) NIL (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) NIL)) (-3644 (((-698 (-416 |#2|))) 57)) (-3456 (((-698 (-416 |#2|))) 56)) (-1323 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 80)) (-4192 (((-698 (-416 |#2|))) 55)) (-3707 (((-698 (-416 |#2|))) 54)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 86)) (-3051 (((-1280 $)) 51)) (-3529 (((-1280 $)) 50)) (-3432 (((-112) $) NIL)) (-2588 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) 70)) (-3965 (((-1132) $) NIL)) (-2717 (((-780)) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) NIL (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) NIL)) (-4027 (((-3 |#2| "failed")) 68)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) NIL) (((-416 |#2|)) 47)) (-1637 (((-780) $) NIL (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) NIL (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 58)) (-2510 (($) NIL (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 |#2|)) $) 81) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1835 (((-1280 (-416 |#2|)) $) NIL) (($ (-1280 (-416 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 |#2|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-371)))) (($ $) NIL (|has| (-416 |#2|) (-371)))) (-4279 (($ $) NIL (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-2919 (((-112)) 65)) (-3289 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3331 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 |#2|)) NIL) (($ (-416 |#2|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) NIL (|has| (-416 |#2|) (-371))))) -(((-1015 |#1| |#2| |#3| |#4| |#5|) (-350 |#1| |#2| |#3|) (-1234) (-1256 |#1|) (-1256 (-416 |#2|)) (-416 |#2|) (-780)) (T -1015)) -NIL -(-350 |#1| |#2| |#3|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3378 (((-653 (-573)) $) 73)) (-3860 (($ (-653 (-573))) 81)) (-3770 (((-573) $) 48 (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 60) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 57 (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) 60 (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2177 (((-653 (-573)) $) 79)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) 45)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) 50)) (-3552 (((-1169 (-573)) $) 78)) (-1609 (($ (-653 (-573)) (-653 (-573))) 82)) (-3733 (((-573) $) 64 (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) 15 (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) 47)) (-2276 (((-653 (-573)) $) 80)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) 107) (($ (-573)) 51) (($ $) NIL) (($ (-416 (-573))) 27) (($ (-573)) 51) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) 25)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) 13 T CONST)) (-2437 (((-573) $) 62 (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) 14 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) 21)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) 40 (|has| (-573) (-859)))) (-3103 (($ $ $) 36) (($ (-573) (-573)) 38)) (-3093 (($ $) 23) (($ $ $) 30)) (-3077 (($ $ $) 28)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 32) (($ $ $) 34) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) 32) (($ $ (-573)) NIL))) -(((-1016 |#1|) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -3378 ((-653 (-573)) $)) (-15 -3552 ((-1169 (-573)) $)) (-15 -2177 ((-653 (-573)) $)) (-15 -2276 ((-653 (-573)) $)) (-15 -3860 ($ (-653 (-573)))) (-15 -1609 ($ (-653 (-573)) (-653 (-573)))))) (-573)) (T -1016)) -((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-1609 (*1 *1 *2 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(-13 (-1004 (-573)) (-622 (-416 (-573))) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -3378 ((-653 (-573)) $)) (-15 -3552 ((-1169 (-573)) $)) (-15 -2177 ((-653 (-573)) $)) (-15 -2276 ((-653 (-573)) $)) (-15 -3860 ($ (-653 (-573)))) (-15 -1609 ($ (-653 (-573)) (-653 (-573)))))) -((-3461 (((-52) (-416 (-573)) (-573)) 9))) -(((-1017) (-10 -7 (-15 -3461 ((-52) (-416 (-573)) (-573))))) (T -1017)) -((-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-573))) (-5 *4 (-573)) (-5 *2 (-52)) (-5 *1 (-1017))))) -(-10 -7 (-15 -3461 ((-52) (-416 (-573)) (-573)))) -((-1486 (((-573)) 23)) (-4124 (((-573)) 28)) (-2231 (((-1285) (-573)) 26)) (-2751 (((-573) (-573)) 29) (((-573)) 22))) -(((-1018) (-10 -7 (-15 -2751 ((-573))) (-15 -1486 ((-573))) (-15 -2751 ((-573) (-573))) (-15 -2231 ((-1285) (-573))) (-15 -4124 ((-573))))) (T -1018)) -((-4124 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1018)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-1486 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-2751 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) -(-10 -7 (-15 -2751 ((-573))) (-15 -1486 ((-573))) (-15 -2751 ((-573) (-573))) (-15 -2231 ((-1285) (-573))) (-15 -4124 ((-573)))) -((-2513 (((-427 |#1|) |#1|) 43)) (-4218 (((-427 |#1|) |#1|) 41))) -(((-1019 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|))) (-1256 (-416 (-573)))) (T -1019)) -((-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1256 (-416 (-573)))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1256 (-416 (-573))))))) -(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|))) -((-3810 (((-3 (-416 (-573)) "failed") |#1|) 15)) (-2551 (((-112) |#1|) 14)) (-4434 (((-416 (-573)) |#1|) 10))) -(((-1020 |#1|) (-10 -7 (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|))) (-1050 (-416 (-573)))) (T -1020)) -((-3810 (*1 *2 *3) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2)))) (-2551 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1020 *3)) (-4 *3 (-1050 (-416 (-573)))))) (-4434 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2))))) -(-10 -7 (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|))) -((-3142 ((|#2| $ "value" |#2|) 12)) (-2198 ((|#2| $ "value") 10)) (-1716 (((-112) $ $) 18))) -(((-1021 |#1| |#2|) (-10 -8 (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2198 (|#2| |#1| "value"))) (-1022 |#2|) (-1230)) (T -1021)) -NIL -(-10 -8 (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2198 (|#2| |#1| "value"))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1022 |#1|) (-141) (-1230)) (T -1022)) -((-1811 (*1 *2 *1) (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) (-3113 (*1 *2 *1) (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-1501 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-573)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-3208 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *1)) (|has| *1 (-6 -4456)) (-4 *1 (-1022 *3)) (-4 *3 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-2367 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230))))) -(-13 (-498 |t#1|) (-10 -8 (-15 -1811 ((-653 $) $)) (-15 -3113 ((-653 $) $)) (-15 -2880 ((-112) $)) (-15 -3082 (|t#1| $)) (-15 -2198 (|t#1| $ "value")) (-15 -1628 ((-112) $)) (-15 -3505 ((-653 |t#1|) $)) (-15 -1501 ((-573) $ $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -1716 ((-112) $ $)) (-15 -3208 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2720 ($ $ (-653 $))) (-15 -3142 (|t#1| $ "value" |t#1|)) (-15 -2367 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-4228 (($ $) 9) (($ $ (-931)) 49) (($ (-416 (-573))) 13) (($ (-573)) 15)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) 24) (((-3 $ "failed") (-1185 $) (-931)) 32)) (-4325 (($ $ (-573)) 58)) (-1545 (((-780)) 18)) (-1536 (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 (-416 (-573)))) 63) (((-653 $) (-1185 (-573))) 68) (((-653 $) (-962 $)) 72) (((-653 $) (-962 (-416 (-573)))) 76) (((-653 $) (-962 (-573))) 80)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) 53))) -(((-1023 |#1|) (-10 -8 (-15 -4228 (|#1| (-573))) (-15 -4228 (|#1| (-416 (-573)))) (-15 -4228 (|#1| |#1| (-931))) (-15 -1536 ((-653 |#1|) (-962 (-573)))) (-15 -1536 ((-653 |#1|) (-962 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-962 |#1|))) (-15 -1536 ((-653 |#1|) (-1185 (-573)))) (-15 -1536 ((-653 |#1|) (-1185 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-1185 |#1|))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931) (-871))) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -4325 (|#1| |#1| (-573))) (-15 -4228 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -1545 ((-780))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) (-1024)) (T -1023)) -((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1023 *3)) (-4 *3 (-1024))))) -(-10 -8 (-15 -4228 (|#1| (-573))) (-15 -4228 (|#1| (-416 (-573)))) (-15 -4228 (|#1| |#1| (-931))) (-15 -1536 ((-653 |#1|) (-962 (-573)))) (-15 -1536 ((-653 |#1|) (-962 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-962 |#1|))) (-15 -1536 ((-653 |#1|) (-1185 (-573)))) (-15 -1536 ((-653 |#1|) (-1185 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-1185 |#1|))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931) (-871))) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -4325 (|#1| |#1| (-573))) (-15 -4228 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -1545 ((-780))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 102)) (-2456 (($ $) 103)) (-1345 (((-112) $) 105)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 122)) (-2427 (((-427 $) $) 123)) (-4228 (($ $) 86) (($ $ (-931)) 72) (($ (-416 (-573))) 71) (($ (-573)) 70)) (-2800 (((-112) $ $) 113)) (-1983 (((-573) $) 139)) (-2579 (($) 18 T CONST)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) 80) (((-3 $ "failed") (-1185 $) (-931)) 79)) (-1695 (((-3 (-573) "failed") $) 99 (|has| (-416 (-573)) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 97 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-3 (-416 (-573)) "failed") $) 94)) (-2205 (((-573) $) 98 (|has| (-416 (-573)) (-1050 (-573)))) (((-416 (-573)) $) 96 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-416 (-573)) $) 95)) (-1877 (($ $ (-871)) 69)) (-2667 (($ $ (-871)) 68)) (-2784 (($ $ $) 117)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 116)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 111)) (-2696 (((-112) $) 124)) (-4152 (((-112) $) 137)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 85)) (-3339 (((-112) $) 138)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 120)) (-3659 (($ $ $) 136)) (-3751 (($ $ $) 135)) (-1859 (((-3 (-1185 $) "failed") $) 81)) (-1663 (((-3 (-871) "failed") $) 83)) (-2916 (((-3 (-1185 $) "failed") $) 82)) (-2829 (($ (-653 $)) 109) (($ $ $) 108)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 125)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 110)) (-2872 (($ (-653 $)) 107) (($ $ $) 106)) (-4218 (((-427 $) $) 121)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 118)) (-2837 (((-3 $ "failed") $ $) 101)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 112)) (-2163 (((-780) $) 114)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 115)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 129) (($ $) 100) (($ (-416 (-573))) 93) (($ (-573)) 92) (($ (-416 (-573))) 89)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 104)) (-3550 (((-416 (-573)) $ $) 67)) (-1536 (((-653 $) (-1185 $)) 78) (((-653 $) (-1185 (-416 (-573)))) 77) (((-653 $) (-1185 (-573))) 76) (((-653 $) (-962 $)) 75) (((-653 $) (-962 (-416 (-573)))) 74) (((-653 $) (-962 (-573))) 73)) (-1660 (($ $) 140)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 133)) (-3015 (((-112) $ $) 132)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 134)) (-3005 (((-112) $ $) 131)) (-3103 (($ $ $) 130)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 126) (($ $ (-416 (-573))) 84)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-416 (-573)) $) 128) (($ $ (-416 (-573))) 127) (($ (-573) $) 91) (($ $ (-573)) 90) (($ (-416 (-573)) $) 88) (($ $ (-416 (-573))) 87))) -(((-1024) (-141)) (T -1024)) -((-4228 (*1 *1 *1) (-4 *1 (-1024))) (-1663 (*1 *2 *1) (|partial| -12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-2916 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024)))) (-1859 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024)))) (-1732 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-5 *4 (-871)) (-4 *1 (-1024)))) (-1732 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-4228 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-931)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1024)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1024)))) (-1877 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-3550 (*1 *2 *1 *1) (-12 (-4 *1 (-1024)) (-5 *2 (-416 (-573)))))) -(-13 (-148) (-857) (-174) (-371) (-420 (-416 (-573))) (-38 (-573)) (-38 (-416 (-573))) (-1014) (-10 -8 (-15 -1663 ((-3 (-871) "failed") $)) (-15 -2916 ((-3 (-1185 $) "failed") $)) (-15 -1859 ((-3 (-1185 $) "failed") $)) (-15 -1732 ((-3 $ "failed") (-1185 $) (-931) (-871))) (-15 -1732 ((-3 $ "failed") (-1185 $) (-931))) (-15 -1536 ((-653 $) (-1185 $))) (-15 -1536 ((-653 $) (-1185 (-416 (-573))))) (-15 -1536 ((-653 $) (-1185 (-573)))) (-15 -1536 ((-653 $) (-962 $))) (-15 -1536 ((-653 $) (-962 (-416 (-573))))) (-15 -1536 ((-653 $) (-962 (-573)))) (-15 -4228 ($ $ (-931))) (-15 -4228 ($ $)) (-15 -4228 ($ (-416 (-573)))) (-15 -4228 ($ (-573))) (-15 -1877 ($ $ (-871))) (-15 -2667 ($ $ (-871))) (-15 -3550 ((-416 (-573)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 #1=(-573)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-420 (-416 (-573))) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 #1#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 #1#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-930) . T) ((-1014) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) |has| (-416 (-573)) (-1050 (-573))) ((-1063 #0#) . T) ((-1063 #1#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 #1#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-3905 (((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1025 |#1| |#2|) (-10 -7 (-15 -3905 ((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-27) (-439 |#1|))) (T -1025)) -((-3905 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1189)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-653 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1215) (-27) (-439 *8))) (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112)))) (-5 *1 (-1025 *8 *4))))) -(-10 -7 (-15 -3905 ((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2354 (((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -2354 ((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-27) (-439 |#1|))) (T -1026)) -((-2354 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1189)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-653 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1215) (-27) (-439 *8))) (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) (-5 *2 (-653 *4)) (-5 *1 (-1026 *8 *4))))) -(-10 -7 (-15 -2354 ((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1814 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)) 38)) (-2846 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|)) 69)) (-1568 (((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|)) 74))) -(((-1027 |#1| |#2|) (-10 -7 (-15 -2846 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -1568 ((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|))) (-15 -1814 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -1027)) -((-1814 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 *4))) (-5 *4 (-573)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1027 *6 *3)))) (-1568 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |ans| (-416 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-416 *5)))) (-2846 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |c| (-416 *6)) (|:| -2142 *6))) (-5 *1 (-1027 *5 *6)) (-5 *3 (-416 *6))))) -(-10 -7 (-15 -2846 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -1568 ((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|))) (-15 -1814 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)))) -((-4194 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|)) 22)) (-3494 (((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)) 34))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -4194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -1028)) -((-3494 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-416 *5))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-416 *5)))) (-4194 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |h| *6) (|:| |c1| (-416 *6)) (|:| |c2| (-416 *6)) (|:| -2142 *6))) (-5 *1 (-1028 *5 *6)) (-5 *3 (-416 *6))))) -(-10 -7 (-15 -4194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)))) -((-1883 (((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573))))) 34)) (-2863 (((-1 |#1|) (-1114 |#1|)) 42)) (-2239 (((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)) 31))) -(((-1029 |#1|) (-10 -7 (-15 -2863 ((-1 |#1|) (-1114 |#1|))) (-15 -1883 ((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573)))))) (-15 -2239 ((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)))) (-1112)) (T -1029)) -((-2239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1280 *6)) (-5 *4 (-1280 (-573))) (-5 *5 (-573)) (-4 *6 (-1112)) (-5 *2 (-1 *6)) (-5 *1 (-1029 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3082 *4) (|:| -3447 (-573))))) (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1114 *4)) (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4))))) -(-10 -7 (-15 -2863 ((-1 |#1|) (-1114 |#1|))) (-15 -1883 ((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573)))))) (-15 -2239 ((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)))) -((-2534 (((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1030 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-13 (-376) (-371))) (T -1030)) -((-2534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-344 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-4 *4 (-1256 (-416 *7))) (-4 *8 (-350 *6 *7 *4)) (-4 *9 (-13 (-376) (-371))) (-5 *2 (-780)) (-5 *1 (-1030 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2848 (((-112) $ $) NIL)) (-4173 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1031) (-13 (-1095) (-10 -8 (-15 -4173 ((-1147) $)) (-15 -2043 ((-1147) $))))) (T -1031)) -((-4173 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031))))) -(-13 (-1095) (-10 -8 (-15 -4173 ((-1147) $)) (-15 -2043 ((-1147) $)))) -((-4143 (((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 32) (((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 29)) (-1583 (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 34) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573))) 30) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 33) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|) 28)) (-1418 (((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) 20)) (-4167 (((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 17))) -(((-1032 |#1|) (-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -4167 ((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1418 ((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))))) (-1256 (-573))) (T -1032)) -((-1418 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *2 (-653 (-416 (-573)))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573))))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *2 (-416 (-573))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573))))) (-4143 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) (-4143 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *4 (-416 (-573))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-416 (-573))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1583 (*1 *2 *3) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573)))))) -(-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -4167 ((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1418 ((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))))) -((-4143 (((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 35) (((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 32)) (-1583 (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 30) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573))) 26) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 28) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|) 24))) -(((-1033 |#1|) (-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1256 (-416 (-573)))) (T -1033)) -((-4143 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) (-4143 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *4 (-416 (-573))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *5)) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *4) (|:| -3903 *4)))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))) (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1583 (*1 *2 *3) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573))))))) -(-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) -((-1835 (((-227) $) 6) (((-387) $) 9))) -(((-1034) (-141)) (T -1034)) -NIL -(-13 (-623 (-227)) (-623 (-387))) -(((-623 (-227)) . T) ((-623 (-387)) . T)) -((-1994 (((-653 (-387)) (-962 (-573)) (-387)) 28) (((-653 (-387)) (-962 (-416 (-573))) (-387)) 27)) (-2676 (((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387)) 37))) -(((-1035) (-10 -7 (-15 -1994 ((-653 (-387)) (-962 (-416 (-573))) (-387))) (-15 -1994 ((-653 (-387)) (-962 (-573)) (-387))) (-15 -2676 ((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387))))) (T -1035)) -((-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-387)))) (-5 *1 (-1035)) (-5 *5 (-387)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) (-5 *4 (-387)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) (-5 *4 (-387))))) -(-10 -7 (-15 -1994 ((-653 (-387)) (-962 (-416 (-573))) (-387))) (-15 -1994 ((-653 (-387)) (-962 (-573)) (-387))) (-15 -2676 ((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 75)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL) (($ $ (-931)) NIL) (($ (-416 (-573))) NIL) (($ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) 70)) (-2579 (($) NIL T CONST)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) NIL) (((-3 $ "failed") (-1185 $) (-931)) 55)) (-1695 (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-573) "failed") $) NIL (-2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))))) (-2205 (((-416 (-573)) $) 17 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-416 (-573)) $) 17) ((|#1| $) 117) (((-573) $) NIL (-2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))))) (-1877 (($ $ (-871)) 47)) (-2667 (($ $ (-871)) 48)) (-2784 (($ $ $) NIL)) (-4050 (((-416 (-573)) $ $) 21)) (-2232 (((-3 $ "failed") $) 88)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) 66)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3339 (((-112) $) 69)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1859 (((-3 (-1185 $) "failed") $) 83)) (-1663 (((-3 (-871) "failed") $) 82)) (-2916 (((-3 (-1185 $) "failed") $) 80)) (-1499 (((-3 (-1073 $ (-1185 $)) "failed") $) 78)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 89)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) 87) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ $) 63) (($ (-416 (-573))) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 119)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ $) 27)) (-1536 (((-653 $) (-1185 $)) 61) (((-653 $) (-1185 (-416 (-573)))) NIL) (((-653 $) (-1185 (-573))) NIL) (((-653 $) (-962 $)) NIL) (((-653 $) (-962 (-416 (-573)))) NIL) (((-653 $) (-962 (-573))) NIL)) (-1582 (($ (-1073 $ (-1185 $)) (-871)) 46)) (-1660 (($ $) 22)) (-2132 (($) 32 T CONST)) (-2144 (($) 39 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 76)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 24)) (-3103 (($ $ $) 37)) (-3093 (($ $) 38) (($ $ $) 74)) (-3077 (($ $ $) 112)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 98) (($ $ $) 104) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ (-573) $) 98) (($ $ (-573)) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1036 |#1|) (-13 (-1024) (-420 |#1|) (-38 |#1|) (-10 -8 (-15 -1582 ($ (-1073 $ (-1185 $)) (-871))) (-15 -1499 ((-3 (-1073 $ (-1185 $)) "failed") $)) (-15 -4050 ((-416 (-573)) $ $)))) (-13 (-857) (-371) (-1034))) (T -1036)) -((-1582 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-1036 *4) (-1185 (-1036 *4)))) (-5 *3 (-871)) (-5 *1 (-1036 *4)) (-4 *4 (-13 (-857) (-371) (-1034))))) (-1499 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 (-1036 *3) (-1185 (-1036 *3)))) (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034))))) (-4050 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034)))))) -(-13 (-1024) (-420 |#1|) (-38 |#1|) (-10 -8 (-15 -1582 ($ (-1073 $ (-1185 $)) (-871))) (-15 -1499 ((-3 (-1073 $ (-1185 $)) "failed") $)) (-15 -4050 ((-416 (-573)) $ $)))) -((-1991 (((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -1991 (|#2| |#2| |#1|)) (-15 -1991 ((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)))) (-371) (-665 |#1|)) (T -1037)) -((-1991 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-653 *5)))) (-5 *1 (-1037 *5 *3)) (-5 *4 (-653 *5)) (-4 *3 (-665 *5)))) (-1991 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-665 *3))))) -(-10 -7 (-15 -1991 (|#2| |#2| |#1|)) (-15 -1991 ((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1614 ((|#1| $ |#1|) 14)) (-3142 ((|#1| $ |#1|) 12)) (-3463 (($ |#1|) 10)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2198 ((|#1| $) 11)) (-4087 ((|#1| $) 13)) (-2942 (((-871) $) 21 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 9))) -(((-1038 |#1|) (-13 (-1230) (-10 -8 (-15 -3463 ($ |#1|)) (-15 -2198 (|#1| $)) (-15 -3142 (|#1| $ |#1|)) (-15 -4087 (|#1| $)) (-15 -1614 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1038)) -((-3463 (*1 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-4087 (*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-1614 (*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1230))))) -(-13 (-1230) (-10 -8 (-15 -3463 ($ |#1|)) (-15 -2198 (|#1| $)) (-15 -3142 (|#1| $ |#1|)) (-15 -4087 (|#1| $)) (-15 -1614 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 118) (((-653 $) (-653 |#4|) (-112)) 119) (((-653 $) (-653 |#4|) (-112) (-112)) 117) (((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 112)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 66)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) 69)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-3060 (((-112) |#4| $) NIL)) (-2714 (((-112) |#4| $) NIL)) (-3491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3191 (((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112)) 133)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) NIL)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 110)) (-3359 (((-3 |#4| "failed") $) 42)) (-1692 (((-653 $) |#4| $) 93)) (-1675 (((-3 (-112) (-653 $)) |#4| $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3716 (((-653 $) |#4| $) 115) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 116) (((-653 $) |#4| (-653 $)) NIL)) (-2313 (((-653 $) (-653 |#4|) (-112) (-112) (-112)) 128)) (-1844 (($ |#4| $) 82) (($ (-653 |#4|) $) 83) (((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 59)) (-2212 (($ $ |#4|) NIL) (((-653 $) |#4| $) 95) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 89)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-3402 (((-653 $) |#4| $) 92) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-3746 (((-112) |#4| $) NIL)) (-4333 (((-112) |#3| $) 65)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1039 |#1| |#2| |#3| |#4|) (-13 (-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1039)) -((-1844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *3))) (-5 *1 (-1039 *5 *6 *7 *3)) (-4 *3 (-1077 *5 *6 *7)))) (-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-3527 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-653 *8)) (|:| |towers| (-653 (-1039 *5 *6 *7 *8))))) (-5 *1 (-1039 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) -(-13 (-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) -((-3703 (((-653 (-698 |#1|)) (-653 (-698 |#1|))) 70) (((-698 |#1|) (-698 |#1|)) 69) (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|))) 68) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 65)) (-3301 (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931)) 63) (((-698 |#1|) (-698 |#1|) (-931)) 62)) (-4059 (((-653 (-698 (-573))) (-653 (-653 (-573)))) 81) (((-653 (-698 (-573))) (-653 (-915 (-573))) (-573)) 80) (((-698 (-573)) (-653 (-573))) 77) (((-698 (-573)) (-915 (-573)) (-573)) 75)) (-4396 (((-698 (-962 |#1|)) (-780)) 95)) (-1711 (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931)) 49 (|has| |#1| (-6 (-4457 "*")))) (((-698 |#1|) (-698 |#1|) (-931)) 47 (|has| |#1| (-6 (-4457 "*")))))) -(((-1040 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-698 |#1|) (-698 |#1|) (-931))) |%noBranch|) (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) |%noBranch|) (-15 -4396 ((-698 (-962 |#1|)) (-780))) (-15 -3301 ((-698 |#1|) (-698 |#1|) (-931))) (-15 -3301 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) (-15 -3703 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -3703 ((-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -4059 ((-698 (-573)) (-915 (-573)) (-573))) (-15 -4059 ((-698 (-573)) (-653 (-573)))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-915 (-573))) (-573))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-653 (-573)))))) (-1061)) (T -1040)) -((-4059 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-573)))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-915 (-573)))) (-5 *4 (-573)) (-5 *2 (-653 (-698 *4))) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-915 (-573))) (-5 *4 (-573)) (-5 *2 (-698 *4)) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-698 (-962 *4))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-1711 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-1711 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-698 |#1|) (-698 |#1|) (-931))) |%noBranch|) (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) |%noBranch|) (-15 -4396 ((-698 (-962 |#1|)) (-780))) (-15 -3301 ((-698 |#1|) (-698 |#1|) (-931))) (-15 -3301 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) (-15 -3703 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -3703 ((-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -4059 ((-698 (-573)) (-915 (-573)) (-573))) (-15 -4059 ((-698 (-573)) (-653 (-573)))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-915 (-573))) (-573))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-653 (-573)))))) -((-4268 (((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)) 70 (|has| |#1| (-314)))) (-3834 (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))) 110 (|has| |#1| (-371))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|)) 117 (|has| |#1| (-371)))) (-3185 (((-1280 |#1|) (-653 (-1280 |#1|)) (-573)) 135 (-12 (|has| |#1| (-371)) (|has| |#1| (-376))))) (-4424 (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931)) 123 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112)) 122 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|))) 121 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573)) 120 (-12 (|has| |#1| (-371)) (|has| |#1| (-376))))) (-2939 (((-112) (-653 (-698 |#1|))) 103 (|has| |#1| (-371))) (((-112) (-653 (-698 |#1|)) (-573)) 106 (|has| |#1| (-371)))) (-2206 (((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|)) 67 (|has| |#1| (-314)))) (-2263 (((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|)) 47)) (-2430 (((-698 |#1|) (-1280 (-1280 |#1|))) 40)) (-1971 (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573)) 94 (|has| |#1| (-371))) (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|))) 93 (|has| |#1| (-371))) (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573)) 101 (|has| |#1| (-371))))) -(((-1041 |#1|) (-10 -7 (-15 -2430 ((-698 |#1|) (-1280 (-1280 |#1|)))) (-15 -2263 ((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-314)) (PROGN (-15 -2206 ((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -4268 ((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))))) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#1| (-371)) (PROGN (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931))) (-15 -3185 ((-1280 |#1|) (-653 (-1280 |#1|)) (-573)))) |%noBranch|) |%noBranch|)) (-1061)) (T -1041)) -((-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1280 *5))) (-5 *4 (-573)) (-5 *2 (-1280 *5)) (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *4 (-376)) (-4 *4 (-1061)) (-5 *2 (-653 (-653 (-698 *4)))) (-5 *1 (-1041 *4)) (-5 *3 (-653 (-698 *4))))) (-4424 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-573)) (-4 *6 (-371)) (-4 *6 (-376)) (-4 *6 (-1061)) (-5 *2 (-653 (-653 (-698 *6)))) (-5 *1 (-1041 *6)) (-5 *3 (-653 (-698 *6))))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 (-1280 *5))) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *4)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *5)))) (-1971 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-1061)))) (-1971 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4)) (-4 *4 (-371)) (-4 *4 (-1061)))) (-1971 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-653 (-698 *6))) (-5 *4 (-112)) (-5 *5 (-573)) (-5 *2 (-698 *6)) (-5 *1 (-1041 *6)) (-4 *6 (-371)) (-4 *6 (-1061)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-1280 *5)) (-4 *5 (-314)) (-4 *5 (-1061)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5)))) (-2206 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-4 *5 (-314)) (-4 *5 (-1061)) (-5 *2 (-1280 (-1280 *5))) (-5 *1 (-1041 *5)) (-5 *4 (-1280 *5)))) (-2263 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1041 *4)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1280 (-1280 *4))) (-4 *4 (-1061)) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4))))) -(-10 -7 (-15 -2430 ((-698 |#1|) (-1280 (-1280 |#1|)))) (-15 -2263 ((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-314)) (PROGN (-15 -2206 ((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -4268 ((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))))) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#1| (-371)) (PROGN (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931))) (-15 -3185 ((-1280 |#1|) (-653 (-1280 |#1|)) (-573)))) |%noBranch|) |%noBranch|)) -((-1699 ((|#1| (-931) |#1|) 18))) -(((-1042 |#1|) (-10 -7 (-15 -1699 (|#1| (-931) |#1|))) (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $))))) (T -1042)) -((-1699 (*1 *2 *3 *2) (-12 (-5 *3 (-931)) (-5 *1 (-1042 *2)) (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)))))))) -(-10 -7 (-15 -1699 (|#1| (-931) |#1|))) -((-2600 (((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573))))) 67)) (-2527 (((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573))))) 52)) (-1619 (((-653 (-323 (-573))) (-698 (-416 (-962 (-573))))) 45)) (-1985 (((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573))))) 85)) (-2009 (((-698 (-323 (-573))) (-698 (-323 (-573)))) 38)) (-4185 (((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573))))) 74)) (-1884 (((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573))))) 82))) -(((-1043) (-10 -7 (-15 -2600 ((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573)))))) (-15 -2527 ((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573)))))) (-15 -1619 ((-653 (-323 (-573))) (-698 (-416 (-962 (-573)))))) (-15 -1884 ((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573)))))) (-15 -2009 ((-698 (-323 (-573))) (-698 (-323 (-573))))) (-15 -4185 ((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573)))))) (-15 -1985 ((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573)))))))) (T -1043)) -((-1985 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043)))) (-1884 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-323 (-573)))) (-5 *1 (-1043)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *4 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)) (-5 *3 (-323 (-573))))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573)))))))) (-5 *1 (-1043))))) -(-10 -7 (-15 -2600 ((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573)))))) (-15 -2527 ((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573)))))) (-15 -1619 ((-653 (-323 (-573))) (-698 (-416 (-962 (-573)))))) (-15 -1884 ((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573)))))) (-15 -2009 ((-698 (-323 (-573))) (-698 (-323 (-573))))) (-15 -4185 ((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573)))))) (-15 -1985 ((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573))))))) -((-2444 ((|#1| |#1| (-931)) 18))) -(((-1044 |#1|) (-10 -7 (-15 -2444 (|#1| |#1| (-931)))) (-13 (-1112) (-10 -8 (-15 * ($ $ $))))) (T -1044)) -((-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-931)) (-5 *1 (-1044 *2)) (-4 *2 (-13 (-1112) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2444 (|#1| |#1| (-931)))) -((-2942 ((|#1| (-319)) 11) (((-1285) |#1|) 9))) -(((-1045 |#1|) (-10 -7 (-15 -2942 ((-1285) |#1|)) (-15 -2942 (|#1| (-319)))) (-1230)) (T -1045)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-319)) (-5 *1 (-1045 *2)) (-4 *2 (-1230)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1285)) (-5 *1 (-1045 *3)) (-4 *3 (-1230))))) -(-10 -7 (-15 -2942 ((-1285) |#1|)) (-15 -2942 (|#1| (-319)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ |#4|) 25)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-2853 ((|#4| $) 27)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 46) (($ (-573)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1545 (((-780)) 43 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 23 T CONST)) (-2981 (((-112) $ $) 40)) (-3093 (($ $) 31) (($ $ $) NIL)) (-3077 (($ $ $) 29)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1046 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2867 ($ |#4|)) (-15 -2942 ($ |#4|)) (-15 -2853 (|#4| $)))) (-371) (-802) (-859) (-959 |#1| |#2| |#3|) (-653 |#4|)) (T -1046)) -((-2867 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) (-14 *6 (-653 *2)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) (-14 *6 (-653 *2)))) (-2853 (*1 *2 *1) (-12 (-4 *2 (-959 *3 *4 *5)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-14 *6 (-653 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2867 ($ |#4|)) (-15 -2942 ($ |#4|)) (-15 -2853 (|#4| $)))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1189) (-1189)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-2990 (((-112) (-112)) 43)) (-3092 (((-112) (-112)) 42)) (-3142 (((-52) $ (-1189) (-52)) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1189) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1189) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-52) $ (-1189) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1189)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1189) $) NIL (|has| (-1189) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1189) $) NIL (|has| (-1189) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1189)) $) 37)) (-4201 (((-112) (-1189) $) NIL)) (-2487 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1977 (((-653 (-1189)) $) NIL)) (-2560 (((-112) (-1189) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2914 (((-52) $) NIL (|has| (-1189) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1189)) 39) (((-52) $ (-1189) (-52)) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-2942 (((-871) $) 41 (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1047) (-13 (-1206 (-1189) (-52)) (-10 -7 (-15 -2990 ((-112) (-112))) (-15 -3092 ((-112) (-112))) (-6 -4455)))) (T -1047)) -((-2990 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) -(-13 (-1206 (-1189) (-52)) (-10 -7 (-15 -2990 ((-112) (-112))) (-15 -3092 ((-112) (-112))) (-6 -4455))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1048) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $))))) (T -1048)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1048))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)))) -((-2205 ((|#2| $) 10))) -(((-1049 |#1| |#2|) (-10 -8 (-15 -2205 (|#2| |#1|))) (-1050 |#2|) (-1230)) (T -1049)) -NIL -(-10 -8 (-15 -2205 (|#2| |#1|))) -((-1695 (((-3 |#1| "failed") $) 9)) (-2205 ((|#1| $) 8)) (-2942 (($ |#1|) 6))) -(((-1050 |#1|) (-141) (-1230)) (T -1050)) -((-1695 (*1 *2 *1) (|partial| -12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1230))))) -(-13 (-625 |t#1|) (-10 -8 (-15 -1695 ((-3 |t#1| "failed") $)) (-15 -2205 (|t#1| $)))) -(((-625 |#1|) . T)) -((-2735 (((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))) 38))) -(((-1051 |#1| |#2|) (-10 -7 (-15 -2735 ((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))))) (-565) (-13 (-565) (-1050 |#1|))) (T -1051)) -((-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-13 (-565) (-1050 *5))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *6)))))) (-5 *1 (-1051 *5 *6))))) -(-10 -7 (-15 -2735 ((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))))) -((-1853 (((-387)) 17)) (-2863 (((-1 (-387)) (-387) (-387)) 22)) (-2142 (((-1 (-387)) (-780)) 48)) (-3138 (((-387)) 37)) (-1359 (((-1 (-387)) (-387) (-387)) 38)) (-1625 (((-387)) 29)) (-3502 (((-1 (-387)) (-387)) 30)) (-1956 (((-387) (-780)) 43)) (-4106 (((-1 (-387)) (-780)) 44)) (-1385 (((-1 (-387)) (-780) (-780)) 47)) (-1503 (((-1 (-387)) (-780) (-780)) 45))) -(((-1052) (-10 -7 (-15 -1853 ((-387))) (-15 -3138 ((-387))) (-15 -1625 ((-387))) (-15 -1956 ((-387) (-780))) (-15 -2863 ((-1 (-387)) (-387) (-387))) (-15 -1359 ((-1 (-387)) (-387) (-387))) (-15 -3502 ((-1 (-387)) (-387))) (-15 -4106 ((-1 (-387)) (-780))) (-15 -1503 ((-1 (-387)) (-780) (-780))) (-15 -1385 ((-1 (-387)) (-780) (-780))) (-15 -2142 ((-1 (-387)) (-780))))) (T -1052)) -((-2142 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-1385 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-3502 (*1 *2 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-1359 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-2863 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-387)) (-5 *1 (-1052)))) (-1625 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052)))) (-3138 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052)))) (-1853 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) -(-10 -7 (-15 -1853 ((-387))) (-15 -3138 ((-387))) (-15 -1625 ((-387))) (-15 -1956 ((-387) (-780))) (-15 -2863 ((-1 (-387)) (-387) (-387))) (-15 -1359 ((-1 (-387)) (-387) (-387))) (-15 -3502 ((-1 (-387)) (-387))) (-15 -4106 ((-1 (-387)) (-780))) (-15 -1503 ((-1 (-387)) (-780) (-780))) (-15 -1385 ((-1 (-387)) (-780) (-780))) (-15 -2142 ((-1 (-387)) (-780)))) -((-4218 (((-427 |#1|) |#1|) 33))) -(((-1053 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|))) (-1256 (-416 (-962 (-573))))) (T -1053)) -((-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1053 *3)) (-4 *3 (-1256 (-416 (-962 (-573)))))))) -(-10 -7 (-15 -4218 ((-427 |#1|) |#1|))) -((-3218 (((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))) 14))) -(((-1054 |#1|) (-10 -7 (-15 -3218 ((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))))) (-314)) (T -1054)) -((-3218 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-314)) (-5 *2 (-416 (-427 (-962 *4)))) (-5 *1 (-1054 *4))))) -(-10 -7 (-15 -3218 ((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))))) -((-4354 (((-653 (-1189)) (-416 (-962 |#1|))) 17)) (-4193 (((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189)) 24)) (-4344 (((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189)) 26)) (-1453 (((-3 (-1189) "failed") (-416 (-962 |#1|))) 20)) (-2645 (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|))))) 32) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 33) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|)))) 28) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))) 29)) (-2942 (((-416 (-962 |#1|)) |#1|) 11))) -(((-1055 |#1|) (-10 -7 (-15 -4354 ((-653 (-1189)) (-416 (-962 |#1|)))) (-15 -1453 ((-3 (-1189) "failed") (-416 (-962 |#1|)))) (-15 -4193 ((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -4344 ((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2942 ((-416 (-962 |#1|)) |#1|))) (-565)) (T -1055)) -((-2942 (*1 *2 *3) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-565)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-5 *2 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-5 *2 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-2645 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-5 *4 (-653 (-416 (-962 *5)))) (-5 *2 (-416 (-962 *5))) (-4 *5 (-565)) (-5 *1 (-1055 *5)))) (-2645 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-1185 (-416 (-962 *5))))) (-5 *4 (-1189)) (-5 *2 (-416 (-962 *5))) (-5 *1 (-1055 *5)) (-4 *5 (-565)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-416 (-1185 (-416 (-962 *5))))) (-5 *1 (-1055 *5)) (-5 *3 (-416 (-962 *5))))) (-1453 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-1189)) (-5 *1 (-1055 *4)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-1189))) (-5 *1 (-1055 *4))))) -(-10 -7 (-15 -4354 ((-653 (-1189)) (-416 (-962 |#1|)))) (-15 -1453 ((-3 (-1189) "failed") (-416 (-962 |#1|)))) (-15 -4193 ((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -4344 ((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2942 ((-416 (-962 |#1|)) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2579 (($) 18 T CONST)) (-1821 ((|#1| $) 23)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3018 ((|#1| $) 22)) (-2540 ((|#1|) 20 T CONST)) (-2942 (((-871) $) 12)) (-3749 ((|#1| $) 21)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) -(((-1056 |#1|) (-141) (-23)) (T -1056)) -((-1821 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-2540 (*1 *2) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1821 (|t#1| $)) (-15 -3018 (|t#1| $)) (-15 -3749 (|t#1| $)) (-15 -2540 (|t#1|) -1705))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2364 (($) 25 T CONST)) (-2579 (($) 18 T CONST)) (-1821 ((|#1| $) 23)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3018 ((|#1| $) 22)) (-2540 ((|#1|) 20 T CONST)) (-2942 (((-871) $) 12)) (-3749 ((|#1| $) 21)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) -(((-1057 |#1|) (-141) (-23)) (T -1057)) -((-2364 (*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) -(-13 (-1056 |t#1|) (-10 -8 (-15 -2364 ($) -1705))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1056 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 (-789 |#1| (-873 |#2|)))))) (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-3527 (((-653 $) (-653 (-789 |#1| (-873 |#2|)))) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112)) NIL)) (-4354 (((-653 (-873 |#2|)) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1554 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-4285 (((-653 (-2 (|:| |val| (-789 |#1| (-873 |#2|))) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ (-873 |#2|)) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 (-789 |#1| (-873 |#2|)) "failed") $ (-873 |#2|)) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-2346 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-2205 (($ (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3760 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-3334 (($ (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-789 |#1| (-873 |#2|))) (|:| |den| |#1|)) (-789 |#1| (-873 |#2|)) $) NIL (|has| |#1| (-565)))) (-4310 (((-112) (-789 |#1| (-873 |#2|)) $ (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-3117 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2867 (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $ (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $ (-789 |#1| (-873 |#2|))) NIL (|has| $ (-6 -4455))) (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-2660 (((-2 (|:| -1380 (-653 (-789 |#1| (-873 |#2|)))) (|:| -1674 (-653 (-789 |#1| (-873 |#2|))))) $) NIL)) (-3060 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-2714 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-3491 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1863 (((-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-4022 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-3338 (((-873 |#2|) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-2446 (($ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL)) (-1937 (((-653 (-873 |#2|)) $) NIL)) (-1689 (((-112) (-873 |#2|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 (-789 |#1| (-873 |#2|)) (-653 $)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2395 (((-653 (-2 (|:| |val| (-789 |#1| (-873 |#2|))) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3359 (((-3 (-789 |#1| (-873 |#2|)) "failed") $) NIL)) (-1692 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL)) (-1675 (((-3 (-112) (-653 $)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-3716 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL)) (-1844 (($ (-789 |#1| (-873 |#2|)) $) NIL) (($ (-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-2870 (((-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-3161 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-3430 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| (-789 |#1| (-873 |#2|))) (|:| |den| |#1|)) (-789 |#1| (-873 |#2|)) $) NIL (|has| |#1| (-565)))) (-1973 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1448 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 (-789 |#1| (-873 |#2|)) "failed") $) NIL)) (-2036 (((-3 (-789 |#1| (-873 |#2|)) "failed") (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL)) (-2865 (((-3 $ "failed") $ (-789 |#1| (-873 |#2|))) NIL)) (-2212 (($ $ (-789 |#1| (-873 |#2|))) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL)) (-1575 (((-112) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|)))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-301 (-789 |#1| (-873 |#2|)))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-653 (-301 (-789 |#1| (-873 |#2|))))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2565 (((-780) $) NIL)) (-3974 (((-780) (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (((-780) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-789 |#1| (-873 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-4409 (($ $ (-873 |#2|)) NIL)) (-3496 (($ $ (-873 |#2|)) NIL)) (-1388 (($ $) NIL)) (-1456 (($ $ (-873 |#2|)) NIL)) (-2942 (((-871) $) NIL) (((-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-3922 (((-780) $) NIL (|has| (-873 |#2|) (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 (-789 |#1| (-873 |#2|))))) "failed") (-653 (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 (-789 |#1| (-873 |#2|))))) "failed") (-653 (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-3039 (((-112) $ (-1 (-112) (-789 |#1| (-873 |#2|)) (-653 (-789 |#1| (-873 |#2|))))) NIL)) (-3402 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 (-873 |#2|)) $) NIL)) (-3746 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-4333 (((-112) (-873 |#2|) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1058 |#1| |#2|) (-13 (-1083 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) (-10 -8 (-15 -3527 ((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112))))) (-461) (-653 (-1189))) (T -1058)) -((-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1058 *5 *6))))) -(-13 (-1083 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) (-10 -8 (-15 -3527 ((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112))))) -((-2863 (((-1 (-573)) (-1106 (-573))) 32)) (-3620 (((-573) (-573) (-573) (-573) (-573)) 29)) (-2686 (((-1 (-573)) |RationalNumber|) NIL)) (-4247 (((-1 (-573)) |RationalNumber|) NIL)) (-1677 (((-1 (-573)) (-573) |RationalNumber|) NIL))) -(((-1059) (-10 -7 (-15 -2863 ((-1 (-573)) (-1106 (-573)))) (-15 -1677 ((-1 (-573)) (-573) |RationalNumber|)) (-15 -2686 ((-1 (-573)) |RationalNumber|)) (-15 -4247 ((-1 (-573)) |RationalNumber|)) (-15 -3620 ((-573) (-573) (-573) (-573) (-573))))) (T -1059)) -((-3620 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1059)))) (-4247 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)))) (-2686 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)) (-5 *3 (-573)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1106 (-573))) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) -(-10 -7 (-15 -2863 ((-1 (-573)) (-1106 (-573)))) (-15 -1677 ((-1 (-573)) (-573) |RationalNumber|)) (-15 -2686 ((-1 (-573)) |RationalNumber|)) (-15 -4247 ((-1 (-573)) |RationalNumber|)) (-15 -3620 ((-573) (-573) (-573) (-573) (-573)))) -((-2942 (((-871) $) NIL) (($ (-573)) 10))) -(((-1060 |#1|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1061)) (T -1060)) -NIL -(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-1061) (-141)) (T -1061)) -((-1545 (*1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-780))))) -(-13 (-1070) (-735) (-657 $) (-625 (-573)) (-10 -7 (-15 -1545 ((-780)) -1705) (-6 -4452))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2844 (((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)) 54))) -(((-1062 |#1| |#2|) (-10 -7 (-15 -2844 ((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)))) (-1189) (-371)) (T -1062)) -((-2844 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-780)) (-4 *6 (-371)) (-5 *2 (-416 (-962 *6))) (-5 *1 (-1062 *5 *6)) (-14 *5 (-1189))))) -(-10 -7 (-15 -2844 ((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1063 |#1|) (-141) (-1070)) (T -1063)) -((-2132 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070))))) -(-13 (-1112) (-10 -8 (-15 (-2132) ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2932 (((-112) $) 38)) (-1916 (((-112) $) 17)) (-2188 (((-780) $) 13)) (-2197 (((-780) $) 14)) (-2530 (((-112) $) 30)) (-1494 (((-112) $) 40))) -(((-1064 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2197 ((-780) |#1|)) (-15 -2188 ((-780) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|))) (-1065 |#2| |#3| |#4| |#5| |#6|) (-780) (-780) (-1061) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1064)) -NIL -(-10 -8 (-15 -2197 ((-780) |#1|)) (-15 -2188 ((-780) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2932 (((-112) $) 56)) (-2983 (((-3 $ "failed") $ $) 20)) (-1916 (((-112) $) 58)) (-3450 (((-112) $ (-780)) 66)) (-2579 (($) 18 T CONST)) (-2801 (($ $) 39 (|has| |#3| (-314)))) (-3229 ((|#4| $ (-573)) 44)) (-3583 (((-780) $) 38 (|has| |#3| (-565)))) (-2384 ((|#3| $ (-573) (-573)) 46)) (-1863 (((-653 |#3|) $) 73 (|has| $ (-6 -4455)))) (-2928 (((-780) $) 37 (|has| |#3| (-565)))) (-4209 (((-653 |#5|) $) 36 (|has| |#3| (-565)))) (-2188 (((-780) $) 50)) (-2197 (((-780) $) 49)) (-2078 (((-112) $ (-780)) 65)) (-1319 (((-573) $) 54)) (-4011 (((-573) $) 52)) (-3214 (((-653 |#3|) $) 74 (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 53)) (-2326 (((-573) $) 51)) (-2913 (($ (-653 (-653 |#3|))) 59)) (-2446 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1612 (((-653 (-653 |#3|)) $) 48)) (-2673 (((-112) $ (-780)) 64)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-565)))) (-1575 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#3|) (-653 |#3|)) 80 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) 78 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 (-301 |#3|))) 77 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) 60)) (-3811 (((-112) $) 63)) (-3508 (($) 62)) (-2198 ((|#3| $ (-573) (-573)) 47) ((|#3| $ (-573) (-573) |#3|) 45)) (-2530 (((-112) $) 57)) (-3974 (((-780) |#3| $) 75 (-12 (|has| |#3| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4455)))) (-3166 (($ $) 61)) (-1921 ((|#5| $ (-573)) 43)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 55)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#3|) 40 (|has| |#3| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2862 (((-780) $) 67 (|has| $ (-6 -4455))))) -(((-1065 |#1| |#2| |#3| |#4| |#5|) (-141) (-780) (-780) (-1061) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1065)) -((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *5))) (-4 *5 (-1061)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-653 (-653 *5))))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) (-2384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) (-2198 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *2 (-1061)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-3229 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *2 *7)) (-4 *6 (-1061)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *7 *2)) (-4 *6 (-1061)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-565)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-371)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-314)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-780)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-780)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-653 *7))))) -(-13 (-111 |t#3| |t#3|) (-498 |t#3|) (-10 -8 (-6 -4455) (IF (|has| |t#3| (-174)) (-6 (-726 |t#3|)) |%noBranch|) (-15 -2913 ($ (-653 (-653 |t#3|)))) (-15 -1916 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -2932 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -1319 ((-573) $)) (-15 -3124 ((-573) $)) (-15 -4011 ((-573) $)) (-15 -2326 ((-573) $)) (-15 -2188 ((-780) $)) (-15 -2197 ((-780) $)) (-15 -1612 ((-653 (-653 |t#3|)) $)) (-15 -2198 (|t#3| $ (-573) (-573))) (-15 -2384 (|t#3| $ (-573) (-573))) (-15 -2198 (|t#3| $ (-573) (-573) |t#3|)) (-15 -3229 (|t#4| $ (-573))) (-15 -1921 (|t#5| $ (-573))) (-15 -1776 ($ (-1 |t#3| |t#3|) $)) (-15 -1776 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-371)) (-15 -3103 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-314)) (-15 -2801 ($ $)) |%noBranch|) (IF (|has| |t#3| (-565)) (PROGN (-15 -3583 ((-780) $)) (-15 -2928 ((-780) $)) (-15 -4209 ((-653 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-622 (-871)) . T) ((-316 |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))) ((-498 |#3|) . T) ((-523 |#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))) ((-655 (-573)) . T) ((-655 |#3|) . T) ((-657 |#3|) . T) ((-649 |#3|) |has| |#3| (-174)) ((-726 |#3|) |has| |#3| (-174)) ((-1063 |#3|) . T) ((-1068 |#3|) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 47 (|has| |#3| (-314)))) (-3229 (((-245 |#2| |#3|) $ (-573)) 36)) (-3758 (($ (-698 |#3|)) 45)) (-3583 (((-780) $) 49 (|has| |#3| (-565)))) (-2384 ((|#3| $ (-573) (-573)) NIL)) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-2928 (((-780) $) 51 (|has| |#3| (-565)))) (-4209 (((-653 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-565)))) (-2188 (((-780) $) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#3|))) 31)) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1612 (((-653 (-653 |#3|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-565)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) (-573)) NIL) ((|#3| $ (-573) (-573) |#3|) NIL)) (-2365 (((-135)) 59 (|has| |#3| (-371)))) (-2530 (((-112) $) NIL)) (-3974 (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112)))) (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 65 (|has| |#3| (-623 (-545))))) (-1921 (((-245 |#1| |#3|) $ (-573)) 40)) (-2942 (((-871) $) 19) (((-698 |#3|) $) 42)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1066 |#1| |#2| |#3|) (-13 (-1065 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-622 (-698 |#3|)) (-10 -8 (IF (|has| |#3| (-371)) (-6 (-1287 |#3|)) |%noBranch|) (IF (|has| |#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (-15 -3758 ($ (-698 |#3|))))) (-780) (-780) (-1061)) (T -1066)) -((-3758 (*1 *1 *2) (-12 (-5 *2 (-698 *5)) (-4 *5 (-1061)) (-5 *1 (-1066 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780))))) -(-13 (-1065 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-622 (-698 |#3|)) (-10 -8 (IF (|has| |#3| (-371)) (-6 (-1287 |#3|)) |%noBranch|) (IF (|has| |#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (-15 -3758 ($ (-698 |#3|))))) -((-2867 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1776 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1067 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2867 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-780) (-780) (-1061) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1065 |#1| |#2| |#3| |#4| |#5|) (-1061) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1065 |#1| |#2| |#7| |#8| |#9|)) (T -1067)) -((-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1061)) (-4 *2 (-1061)) (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *12 (-1065 *5 *6 *2 *10 *11)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1061)) (-4 *10 (-1061)) (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1065 *5 *6 *10 *11 *12)) (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2867 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ |#1|) 27))) -(((-1068 |#1|) (-141) (-1070)) (T -1068)) -NIL -(-13 (-21) (-1063 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1063 |#1|) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1487 (((-1189) $) 11)) (-3241 ((|#1| $) 12)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2691 (($ (-1189) |#1|) 10)) (-2942 (((-871) $) 22 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1112))))) -(((-1069 |#1| |#2|) (-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) |#1|)) (-15 -1487 ((-1189) $)) (-15 -3241 (|#1| $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1105 |#2|) (-1230)) (T -1069)) -((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-4 *4 (-1230)) (-5 *1 (-1069 *3 *4)) (-4 *3 (-1105 *4)))) (-1487 (*1 *2 *1) (-12 (-4 *4 (-1230)) (-5 *2 (-1189)) (-5 *1 (-1069 *3 *4)) (-4 *3 (-1105 *4)))) (-3241 (*1 *2 *1) (-12 (-4 *2 (-1105 *3)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1230))))) -(-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) |#1|)) (-15 -1487 ((-1189) $)) (-15 -3241 (|#1| $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-1070) (-141)) (T -1070)) -NIL -(-13 (-21) (-1124)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1124) . T) ((-1112) . T)) -((-1442 (($ $) 17)) (-2350 (($ $) 25)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 55)) (-3421 (($ $) 27)) (-2408 (($ $) 12)) (-3733 (($ $) 43)) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-902 (-387)) $) 36)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 31) (($ (-573)) NIL) (($ (-416 (-573))) 31)) (-1545 (((-780)) 9)) (-2437 (($ $) 45))) -(((-1071 |#1|) (-10 -8 (-15 -2350 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1072)) (T -1071)) -((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1071 *3)) (-4 *3 (-1072))))) -(-10 -8 (-15 -2350 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 (((-573) $) 97)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1442 (($ $) 95)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 105)) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 122)) (-2579 (($) 18 T CONST)) (-2350 (($ $) 94)) (-1695 (((-3 (-573) "failed") $) 110) (((-3 (-416 (-573)) "failed") $) 107)) (-2205 (((-573) $) 111) (((-416 (-573)) $) 108)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-4152 (((-112) $) 120)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 101)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 104)) (-3421 (($ $) 100)) (-3339 (((-112) $) 121)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 119)) (-3751 (($ $ $) 118)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 96)) (-3733 (($ $) 98)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1835 (((-387) $) 113) (((-227) $) 112) (((-902 (-387)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-573)) 109) (($ (-416 (-573))) 106)) (-1545 (((-780)) 32 T CONST)) (-2437 (($ $) 99)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 123)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3015 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) -(((-1072) (-141)) (T -1072)) -((-1660 (*1 *1 *1) (-4 *1 (-1072))) (-3421 (*1 *1 *1) (-4 *1 (-1072))) (-2437 (*1 *1 *1) (-4 *1 (-1072))) (-3733 (*1 *1 *1) (-4 *1 (-1072))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-573)))) (-2408 (*1 *1 *1) (-4 *1 (-1072))) (-1442 (*1 *1 *1) (-4 *1 (-1072))) (-2350 (*1 *1 *1) (-4 *1 (-1072)))) -(-13 (-371) (-857) (-1034) (-1050 (-573)) (-1050 (-416 (-573))) (-1014) (-623 (-902 (-387))) (-896 (-387)) (-148) (-10 -8 (-15 -3421 ($ $)) (-15 -2437 ($ $)) (-15 -3733 ($ $)) (-15 -3770 ((-573) $)) (-15 -2408 ($ $)) (-15 -1442 ($ $)) (-15 -2350 ($ $)) (-15 -1660 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-902 (-387))) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-896 (-387)) . T) ((-930) . T) ((-1014) . T) ((-1034) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) |#2| $) 26)) (-1486 ((|#1| $) 10)) (-1983 (((-573) |#2| $) 116)) (-1732 (((-3 $ "failed") |#2| (-931)) 75)) (-3903 ((|#1| $) 31)) (-4050 ((|#1| |#2| $ |#1|) 40)) (-4143 (($ $) 28)) (-2232 (((-3 |#2| "failed") |#2| $) 111)) (-4152 (((-112) |#2| $) NIL)) (-3339 (((-112) |#2| $) NIL)) (-3714 (((-112) |#2| $) 27)) (-1961 ((|#1| $) 117)) (-3890 ((|#1| $) 30)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2984 ((|#2| $) 102)) (-2942 (((-871) $) 92)) (-3507 (((-112) $ $) NIL)) (-3550 ((|#1| |#2| $ |#1|) 41)) (-1536 (((-653 $) |#2|) 77)) (-2981 (((-112) $ $) 97))) -(((-1073 |#1| |#2|) (-13 (-1080 |#1| |#2|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -3903 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -1961 (|#1| $)) (-15 -4143 ($ $)) (-15 -3714 ((-112) |#2| $)) (-15 -4050 (|#1| |#2| $ |#1|)))) (-13 (-857) (-371)) (-1256 |#1|)) (T -1073)) -((-4050 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3890 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3903 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-1486 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-1961 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-4143 (*1 *1 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3714 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-857) (-371))) (-5 *2 (-112)) (-5 *1 (-1073 *4 *3)) (-4 *3 (-1256 *4))))) -(-13 (-1080 |#1| |#2|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -3903 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -1961 (|#1| $)) (-15 -4143 ($ $)) (-15 -3714 ((-112) |#2| $)) (-15 -4050 (|#1| |#2| $ |#1|)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) NIL)) (-2579 (($) NIL T CONST)) (-2387 (($ (-1189)) 10) (($ (-573)) 7)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) NIL) (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) NIL)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4134 (($ $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) NIL)) (-3166 (($ $) NIL)) (-1835 (((-573) $) 16) (((-545) $) NIL) (((-902 (-573)) $) NIL) (((-387) $) NIL) (((-227) $) NIL) (($ (-1189)) 9)) (-2942 (((-871) $) 23) (($ (-573)) 6) (($ $) NIL) (($ (-573)) 6)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3093 (($ $) 22) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-573) $) NIL))) -(((-1074) (-13 (-554) (-627 (-1189)) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2387 ($ (-1189))) (-15 -2387 ($ (-573)))))) (T -1074)) -((-2387 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1074)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1074))))) -(-13 (-554) (-627 (-1189)) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2387 ($ (-1189))) (-15 -2387 ($ (-573))))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1189) (-1189)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-1791 (($) 9)) (-3142 (((-52) $ (-1189) (-52)) NIL)) (-3830 (($ $) 32)) (-2035 (($ $) 30)) (-2879 (($ $) 29)) (-2278 (($ $) 31)) (-3774 (($ $) 35)) (-2062 (($ $) 36)) (-3345 (($ $) 28)) (-2140 (($ $) 33)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) 27 (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1189) $) 43)) (-2579 (($) NIL T CONST)) (-3045 (($) 7)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) 53 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1189) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-3048 (((-3 (-1171) "failed") $ (-1171) (-573)) 72)) (-2457 (((-52) $ (-1189) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1189)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1189) $) NIL (|has| (-1189) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) 38 (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1189) $) NIL (|has| (-1189) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1189)) $) NIL)) (-4201 (((-112) (-1189) $) NIL)) (-2487 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) 46)) (-1977 (((-653 (-1189)) $) NIL)) (-2560 (((-112) (-1189) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1631 (((-387) $ (-1189)) 52)) (-4364 (((-653 (-1171)) $ (-1171)) 74)) (-2914 (((-52) $) NIL (|has| (-1189) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1189)) NIL) (((-52) $ (-1189) (-52)) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-2757 (($ $ (-1189)) 54)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) 40)) (-4156 (($ $ $) 41)) (-2942 (((-871) $) NIL (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-622 (-871)))))) (-1462 (($ $ (-1189) (-387)) 50)) (-2878 (($ $ (-1189) (-387)) 51)) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1075) (-13 (-1206 (-1189) (-52)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3045 ($)) (-15 -3345 ($ $)) (-15 -2879 ($ $)) (-15 -2035 ($ $)) (-15 -2278 ($ $)) (-15 -2140 ($ $)) (-15 -3830 ($ $)) (-15 -3774 ($ $)) (-15 -2062 ($ $)) (-15 -1462 ($ $ (-1189) (-387))) (-15 -2878 ($ $ (-1189) (-387))) (-15 -1631 ((-387) $ (-1189))) (-15 -4364 ((-653 (-1171)) $ (-1171))) (-15 -2757 ($ $ (-1189))) (-15 -1791 ($)) (-15 -3048 ((-3 (-1171) "failed") $ (-1171) (-573))) (-6 -4455)))) (T -1075)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1075))) (-3045 (*1 *1) (-5 *1 (-1075))) (-3345 (*1 *1 *1) (-5 *1 (-1075))) (-2879 (*1 *1 *1) (-5 *1 (-1075))) (-2035 (*1 *1 *1) (-5 *1 (-1075))) (-2278 (*1 *1 *1) (-5 *1 (-1075))) (-2140 (*1 *1 *1) (-5 *1 (-1075))) (-3830 (*1 *1 *1) (-5 *1 (-1075))) (-3774 (*1 *1 *1) (-5 *1 (-1075))) (-2062 (*1 *1 *1) (-5 *1 (-1075))) (-1462 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-387)) (-5 *1 (-1075)))) (-4364 (*1 *2 *1 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1075)) (-5 *3 (-1171)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1075)))) (-1791 (*1 *1) (-5 *1 (-1075))) (-3048 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-1075))))) -(-13 (-1206 (-1189) (-52)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3045 ($)) (-15 -3345 ($ $)) (-15 -2879 ($ $)) (-15 -2035 ($ $)) (-15 -2278 ($ $)) (-15 -2140 ($ $)) (-15 -3830 ($ $)) (-15 -3774 ($ $)) (-15 -2062 ($ $)) (-15 -1462 ($ $ (-1189) (-387))) (-15 -2878 ($ $ (-1189) (-387))) (-15 -1631 ((-387) $ (-1189))) (-15 -4364 ((-653 (-1171)) $ (-1171))) (-15 -2757 ($ $ (-1189))) (-15 -1791 ($)) (-15 -3048 ((-3 (-1171) "failed") $ (-1171) (-573))) (-6 -4455))) -((-1969 (($ $) 46)) (-2218 (((-112) $ $) 82)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-962 (-416 (-573)))) 251) (((-3 $ "failed") (-962 (-573))) 250) (((-3 $ "failed") (-962 |#2|)) 253)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL) ((|#4| $) NIL) (($ (-962 (-416 (-573)))) 239) (($ (-962 (-573))) 235) (($ (-962 |#2|)) 255)) (-1391 (($ $) NIL) (($ $ |#4|) 44)) (-4310 (((-112) $ $) 131) (((-112) $ (-653 $)) 135)) (-4421 (((-112) $) 60)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 125)) (-3128 (($ $) 160)) (-3342 (($ $) 156)) (-4235 (($ $) 155)) (-2450 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4176 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4022 (((-112) $ $) 143) (((-112) $ (-653 $)) 144)) (-3338 ((|#4| $) 32)) (-2018 (($ $ $) 128)) (-2093 (((-112) $) 59)) (-3726 (((-780) $) 35)) (-3232 (($ $) 174)) (-1972 (($ $) 171)) (-2933 (((-653 $) $) 72)) (-2311 (($ $) 62)) (-2116 (($ $) 167)) (-2118 (((-653 $) $) 69)) (-2923 (($ $) 64)) (-1369 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 130)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 126) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#4|) 127)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) 121) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#4|) 123)) (-4335 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1841 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3565 (((-653 $) $) 54)) (-3161 (((-112) $ $) 140) (((-112) $ (-653 $)) 141)) (-3430 (($ $ $) 116)) (-3816 (($ $) 37)) (-2614 (((-112) $ $) 80)) (-1973 (((-112) $ $) 136) (((-112) $ (-653 $)) 138)) (-1448 (($ $ $) 112)) (-2030 (($ $) 41)) (-2872 ((|#2| |#2| $) 164) (($ (-653 $)) NIL) (($ $ $) NIL)) (-3333 (($ $ |#2|) NIL) (($ $ $) 153)) (-1467 (($ $ |#2|) 148) (($ $ $) 151)) (-3671 (($ $) 49)) (-3346 (($ $) 55)) (-1835 (((-902 (-387)) $) NIL) (((-902 (-573)) $) NIL) (((-545) $) NIL) (($ (-962 (-416 (-573)))) 241) (($ (-962 (-573))) 237) (($ (-962 |#2|)) 252) (((-1171) $) 279) (((-962 |#2|) $) 184)) (-2942 (((-871) $) 29) (($ (-573)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-962 |#2|) $) 185) (($ (-416 (-573))) NIL) (($ $) NIL)) (-3251 (((-3 (-112) "failed") $ $) 79))) -(((-1076 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 ((-962 |#2|) |#1|)) (-15 -1835 ((-962 |#2|) |#1|)) (-15 -1835 ((-1171) |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -2116 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2872 (|#2| |#2| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -1467 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -1835 (|#1| (-962 |#2|))) (-15 -2205 (|#1| (-962 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-962 |#2|))) (-15 -1835 (|#1| (-962 (-573)))) (-15 -2205 (|#1| (-962 (-573)))) (-15 -1695 ((-3 |#1| "failed") (-962 (-573)))) (-15 -1835 (|#1| (-962 (-416 (-573))))) (-15 -2205 (|#1| (-962 (-416 (-573))))) (-15 -1695 ((-3 |#1| "failed") (-962 (-416 (-573))))) (-15 -3430 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|)) (-15 -3459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2488 (-780))) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#1|)) (-15 -1368 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -4335 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1| |#4|)) (-15 -2450 (|#1| |#1| |#1| |#4|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -4022 ((-112) |#1| (-653 |#1|))) (-15 -4022 ((-112) |#1| |#1|)) (-15 -3161 ((-112) |#1| (-653 |#1|))) (-15 -3161 ((-112) |#1| |#1|)) (-15 -1973 ((-112) |#1| (-653 |#1|))) (-15 -1973 ((-112) |#1| |#1|)) (-15 -4310 ((-112) |#1| (-653 |#1|))) (-15 -4310 ((-112) |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -2614 ((-112) |#1| |#1|)) (-15 -3251 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2933 ((-653 |#1|) |#1|)) (-15 -2118 ((-653 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2093 ((-112) |#1|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -1369 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1|)) (-15 -3565 ((-653 |#1|) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3726 ((-780) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -1369 (|#2| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1077 |#2| |#3| |#4|) (-1061) (-802) (-859)) (T -1076)) -NIL -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 ((-962 |#2|) |#1|)) (-15 -1835 ((-962 |#2|) |#1|)) (-15 -1835 ((-1171) |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -2116 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2872 (|#2| |#2| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -1467 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -1835 (|#1| (-962 |#2|))) (-15 -2205 (|#1| (-962 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-962 |#2|))) (-15 -1835 (|#1| (-962 (-573)))) (-15 -2205 (|#1| (-962 (-573)))) (-15 -1695 ((-3 |#1| "failed") (-962 (-573)))) (-15 -1835 (|#1| (-962 (-416 (-573))))) (-15 -2205 (|#1| (-962 (-416 (-573))))) (-15 -1695 ((-3 |#1| "failed") (-962 (-416 (-573))))) (-15 -3430 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|)) (-15 -3459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2488 (-780))) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#1|)) (-15 -1368 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -4335 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1| |#4|)) (-15 -2450 (|#1| |#1| |#1| |#4|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -4022 ((-112) |#1| (-653 |#1|))) (-15 -4022 ((-112) |#1| |#1|)) (-15 -3161 ((-112) |#1| (-653 |#1|))) (-15 -3161 ((-112) |#1| |#1|)) (-15 -1973 ((-112) |#1| (-653 |#1|))) (-15 -1973 ((-112) |#1| |#1|)) (-15 -4310 ((-112) |#1| (-653 |#1|))) (-15 -4310 ((-112) |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -2614 ((-112) |#1| |#1|)) (-15 -3251 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2933 ((-653 |#1|) |#1|)) (-15 -2118 ((-653 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2093 ((-112) |#1|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -1369 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1|)) (-15 -3565 ((-653 |#1|) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3726 ((-780) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -1369 (|#2| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-1969 (($ $) 275)) (-2218 (((-112) $ $) 261)) (-2983 (((-3 $ "failed") $ $) 20)) (-4183 (($ $ $) 220 (|has| |#1| (-565)))) (-2698 (((-653 $) $ $) 215 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-962 (-416 (-573)))) 235 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (((-3 $ "failed") (-962 (-573))) 232 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (((-3 $ "failed") (-962 |#1|)) 229 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573)))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-554))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-1004 (-573)))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))))) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141) (($ (-962 (-416 (-573)))) 234 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (($ (-962 (-573))) 231 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (($ (-962 |#1|)) 228 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573)))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-554))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-1004 (-573)))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))))) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-565)))) (-1391 (($ $) 158) (($ $ |#3|) 270)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-4310 (((-112) $ $) 260) (((-112) $ (-653 $)) 259)) (-2232 (((-3 $ "failed") $) 37)) (-4421 (((-112) $) 268)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 240)) (-3128 (($ $) 209 (|has| |#1| (-461)))) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-3342 (($ $) 225 (|has| |#1| (-565)))) (-4235 (($ $) 226 (|has| |#1| (-565)))) (-2450 (($ $ $) 252) (($ $ $ |#3|) 250)) (-4176 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2343 (($ $ |#1| |#2| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4022 (((-112) $ $) 254) (((-112) $ (-653 $)) 253)) (-3558 (($ $ $ $ $) 211 (|has| |#1| (-565)))) (-3338 ((|#3| $) 279)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#2|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2018 (($ $ $) 239)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-2093 (((-112) $) 269)) (-4036 ((|#2| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-3726 (((-780) $) 278)) (-1382 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-1453 (((-3 |#3| "failed") $) 125)) (-3232 (($ $) 206 (|has| |#1| (-461)))) (-1972 (($ $) 207 (|has| |#1| (-461)))) (-2933 (((-653 $) $) 264)) (-2311 (($ $) 267)) (-2116 (($ $) 208 (|has| |#1| (-461)))) (-2118 (((-653 $) $) 265)) (-2923 (($ $) 266)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152) (($ $ |#3|) 271)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 238)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 242) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 241)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) 244) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#3|) 243)) (-4335 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1841 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3180 (((-1171) $) 10)) (-2395 (($ $ $) 214 (|has| |#1| (-565)))) (-3565 (((-653 $) $) 273)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-3161 (((-112) $ $) 256) (((-112) $ (-653 $)) 255)) (-3430 (($ $ $) 236)) (-3816 (($ $) 277)) (-2614 (((-112) $ $) 262)) (-1973 (((-112) $ $) 258) (((-112) $ (-653 $)) 257)) (-1448 (($ $ $) 237)) (-2030 (($ $) 276)) (-3965 (((-1132) $) 11)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-565)))) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 ((|#1| |#1| $) 210 (|has| |#1| (-461))) (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-3333 (($ $ |#1|) 223 (|has| |#1| (-565))) (($ $ $) 221 (|has| |#1| (-565)))) (-1467 (($ $ |#1|) 224 (|has| |#1| (-565))) (($ $ $) 222 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142)) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43)) (-2565 ((|#2| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131)) (-3671 (($ $) 274)) (-3346 (($ $) 272)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545))))) (($ (-962 (-416 (-573)))) 233 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (($ (-962 (-573))) 230 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (($ (-962 |#1|)) 227 (|has| |#3| (-623 (-1189)))) (((-1171) $) 205 (-12 (|has| |#1| (-1050 (-573))) (|has| |#3| (-623 (-1189))))) (((-962 |#1|) $) 204 (|has| |#3| (-623 (-1189))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-962 |#1|) $) 203 (|has| |#3| (-623 (-1189)))) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#2|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-3251 (((-3 (-112) "failed") $ $) 263)) (-2144 (($) 34 T CONST)) (-2389 (($ $ $ $ (-780)) 212 (|has| |#1| (-565)))) (-3306 (($ $ $ (-780)) 213 (|has| |#1| (-565)))) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1077 |#1| |#2| |#3|) (-141) (-1061) (-802) (-859)) (T -1077)) -((-3338 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-780)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3565 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1369 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-1391 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2923 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-2933 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-3251 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2614 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2218 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4310 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-3161 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-4022 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-2450 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-4176 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2450 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4176 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4335 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-4335 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-1841 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-3882 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-3882 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) (-4 *1 (-1077 *4 *5 *3)))) (-1941 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-1941 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *4 *5 *3)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-2018 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3459 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2488 (-780)))) (-4 *1 (-1077 *3 *4 *5)))) (-1448 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3430 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-1695 (*1 *1 *2) (|partial| -2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-2205 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1835 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1695 (*1 *1 *2) (|partial| -2817 (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))))) (-2205 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *5 (-623 (-1189))) (-4 *4 (-802)) (-4 *5 (-859)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-1467 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3333 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-1467 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3333 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2694 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-1873 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef2| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-2277 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2698 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-2395 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565)))) (-2389 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565)))) (-3558 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2872 (*1 *2 *2 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2116 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-1972 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461))))) -(-13 (-959 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3338 (|t#3| $)) (-15 -3726 ((-780) $)) (-15 -3816 ($ $)) (-15 -2030 ($ $)) (-15 -1969 ($ $)) (-15 -3671 ($ $)) (-15 -3565 ((-653 $) $)) (-15 -3346 ($ $)) (-15 -1369 ($ $ |t#3|)) (-15 -1391 ($ $ |t#3|)) (-15 -2093 ((-112) $)) (-15 -4421 ((-112) $)) (-15 -2311 ($ $)) (-15 -2923 ($ $)) (-15 -2118 ((-653 $) $)) (-15 -2933 ((-653 $) $)) (-15 -3251 ((-3 (-112) "failed") $ $)) (-15 -2614 ((-112) $ $)) (-15 -2218 ((-112) $ $)) (-15 -4310 ((-112) $ $)) (-15 -4310 ((-112) $ (-653 $))) (-15 -1973 ((-112) $ $)) (-15 -1973 ((-112) $ (-653 $))) (-15 -3161 ((-112) $ $)) (-15 -3161 ((-112) $ (-653 $))) (-15 -4022 ((-112) $ $)) (-15 -4022 ((-112) $ (-653 $))) (-15 -2450 ($ $ $)) (-15 -4176 ($ $ $)) (-15 -2450 ($ $ $ |t#3|)) (-15 -4176 ($ $ $ |t#3|)) (-15 -4335 ($ $ $)) (-15 -1841 ($ $ $)) (-15 -4335 ($ $ $ |t#3|)) (-15 -1841 ($ $ $ |t#3|)) (-15 -3882 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $)) (-15 -3882 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |t#3|)) (-15 -1941 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -1941 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |t#3|)) (-15 -1368 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $)) (-15 -1448 ($ $ $)) (-15 -3430 ($ $ $)) (IF (|has| |t#3| (-623 (-1189))) (PROGN (-6 (-622 (-962 |t#1|))) (-6 (-623 (-962 |t#1|))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1695 ((-3 $ "failed") (-962 (-416 (-573))))) (-15 -2205 ($ (-962 (-416 (-573))))) (-15 -1835 ($ (-962 (-416 (-573))))) (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1835 ($ (-962 (-573)))) (IF (|has| |t#1| (-1004 (-573))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-573))) (IF (|has| |t#1| (-38 (-416 (-573)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1835 ($ (-962 (-573)))) (IF (|has| |t#1| (-554)) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-573))) |%noBranch| (IF (|has| |t#1| (-38 (-416 (-573)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|)))))) (-15 -1835 ($ (-962 |t#1|))) (IF (|has| |t#1| (-1050 (-573))) (-6 (-623 (-1171))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -4235 ($ $)) (-15 -3342 ($ $)) (-15 -1467 ($ $ |t#1|)) (-15 -3333 ($ $ |t#1|)) (-15 -1467 ($ $ $)) (-15 -3333 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2277 ($ $ $)) (-15 -2698 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -3306 ($ $ $ (-780))) (-15 -2389 ($ $ $ $ (-780))) (-15 -3558 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -2872 (|t#1| |t#1| $)) (-15 -3128 ($ $)) (-15 -2116 ($ $)) (-15 -1972 ($ $)) (-15 -3232 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-622 (-962 |#1|)) |has| |#3| (-623 (-1189))) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-623 (-962 |#1|)) |has| |#3| (-623 (-1189))) ((-623 (-1171)) -12 (|has| |#1| (-1050 (-573))) (|has| |#3| (-623 (-1189)))) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-959 |#1| |#2| |#3|) . T) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) |has| |#1| (-919))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1498 (((-653 (-1147)) $) 18)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 20)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1078) (-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $))))) (T -1078)) -((-1498 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1078)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1078))))) -(-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $)))) -((-1748 (((-112) |#3| $) 15)) (-1732 (((-3 $ "failed") |#3| (-931)) 29)) (-2232 (((-3 |#3| "failed") |#3| $) 45)) (-4152 (((-112) |#3| $) 19)) (-3339 (((-112) |#3| $) 17))) -(((-1079 |#1| |#2| |#3|) (-10 -8 (-15 -1732 ((-3 |#1| "failed") |#3| (-931))) (-15 -2232 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4152 ((-112) |#3| |#1|)) (-15 -3339 ((-112) |#3| |#1|)) (-15 -1748 ((-112) |#3| |#1|))) (-1080 |#2| |#3|) (-13 (-857) (-371)) (-1256 |#2|)) (T -1079)) -NIL -(-10 -8 (-15 -1732 ((-3 |#1| "failed") |#3| (-931))) (-15 -2232 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4152 ((-112) |#3| |#1|)) (-15 -3339 ((-112) |#3| |#1|)) (-15 -1748 ((-112) |#3| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) |#2| $) 22)) (-1983 (((-573) |#2| $) 23)) (-1732 (((-3 $ "failed") |#2| (-931)) 16)) (-4050 ((|#1| |#2| $ |#1|) 14)) (-2232 (((-3 |#2| "failed") |#2| $) 19)) (-4152 (((-112) |#2| $) 20)) (-3339 (((-112) |#2| $) 21)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2984 ((|#2| $) 18)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3550 ((|#1| |#2| $ |#1|) 15)) (-1536 (((-653 $) |#2|) 17)) (-2981 (((-112) $ $) 6))) -(((-1080 |#1| |#2|) (-141) (-13 (-857) (-371)) (-1256 |t#1|)) (T -1080)) -((-1983 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-573)))) (-1748 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-3339 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-4152 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-2232 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) (-4 *2 (-1256 *3)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) (-4 *2 (-1256 *3)))) (-1536 (*1 *2 *3) (-12 (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-653 *1)) (-4 *1 (-1080 *4 *3)))) (-1732 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-931)) (-4 *4 (-13 (-857) (-371))) (-4 *1 (-1080 *4 *2)) (-4 *2 (-1256 *4)))) (-3550 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) (-4 *3 (-1256 *2)))) (-4050 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) (-4 *3 (-1256 *2))))) -(-13 (-1112) (-10 -8 (-15 -1983 ((-573) |t#2| $)) (-15 -1748 ((-112) |t#2| $)) (-15 -3339 ((-112) |t#2| $)) (-15 -4152 ((-112) |t#2| $)) (-15 -2232 ((-3 |t#2| "failed") |t#2| $)) (-15 -2984 (|t#2| $)) (-15 -1536 ((-653 $) |t#2|)) (-15 -1732 ((-3 $ "failed") |t#2| (-931))) (-15 -3550 (|t#1| |t#2| $ |t#1|)) (-15 -4050 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-3987 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780)) 114)) (-2594 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 63)) (-3669 (((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)) 99)) (-2358 (((-780) (-653 |#4|) (-653 |#5|)) 30)) (-3384 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 65) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112)) 67)) (-2478 (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112)) 87)) (-1835 (((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 92)) (-3330 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112)) 62)) (-1800 (((-780) (-653 |#4|) (-653 |#5|)) 21))) -(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1081)) -((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) (-5 *1 (-1081 *4 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-653 *11)) (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-780)) (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) (-4 *11 (-1083 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-5 *1 (-1081 *7 *8 *9 *10 *11)))) (-2478 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *7 *8 *9 *3 *4)) (-4 *4 (-1083 *7 *8 *9 *3)))) (-2594 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) -((-3060 (((-112) |#5| $) 26)) (-2714 (((-112) |#5| $) 29)) (-3491 (((-112) |#5| $) 18) (((-112) $) 52)) (-3716 (((-653 $) |#5| $) NIL) (((-653 $) (-653 |#5|) $) 94) (((-653 $) (-653 |#5|) (-653 $)) 92) (((-653 $) |#5| (-653 $)) 95)) (-2212 (($ $ |#5|) NIL) (((-653 $) |#5| $) NIL) (((-653 $) |#5| (-653 $)) 73) (((-653 $) (-653 |#5|) $) 75) (((-653 $) (-653 |#5|) (-653 $)) 77)) (-3402 (((-653 $) |#5| $) NIL) (((-653 $) |#5| (-653 $)) 64) (((-653 $) (-653 |#5|) $) 69) (((-653 $) (-653 |#5|) (-653 $)) 71)) (-3746 (((-112) |#5| $) 32))) -(((-1082 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2212 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -2212 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -2212 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -2212 ((-653 |#1|) |#5| |#1|)) (-15 -3402 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3402 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3402 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3402 ((-653 |#1|) |#5| |#1|)) (-15 -3716 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3716 ((-653 |#1|) |#5| |#1|)) (-15 -2714 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#1|)) (-15 -3746 ((-112) |#5| |#1|)) (-15 -3060 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#5| |#1|)) (-15 -2212 (|#1| |#1| |#5|))) (-1083 |#2| |#3| |#4| |#5|) (-461) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -1082)) -NIL -(-10 -8 (-15 -2212 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -2212 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -2212 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -2212 ((-653 |#1|) |#5| |#1|)) (-15 -3402 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3402 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3402 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3402 ((-653 |#1|) |#5| |#1|)) (-15 -3716 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3716 ((-653 |#1|) |#5| |#1|)) (-15 -2714 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#1|)) (-15 -3746 ((-112) |#5| |#1|)) (-15 -3060 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#5| |#1|)) (-15 -2212 (|#1| |#1| |#5|))) -((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-1083 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1083)) -((-3491 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3746 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-2714 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1675 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 (-112) (-653 *1))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1692 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-4092 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 *3 (-653 *1))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-2395 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-4285 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3716 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3716 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-3402 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3402 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-3402 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-1844 (*1 *1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1844 (*1 *1 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)))) (-2212 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-2212 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *5 *6 *7 *8))))) -(-13 (-1223 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3491 ((-112) |t#4| $)) (-15 -3060 ((-112) |t#4| $)) (-15 -3746 ((-112) |t#4| $)) (-15 -3491 ((-112) $)) (-15 -2714 ((-112) |t#4| $)) (-15 -1675 ((-3 (-112) (-653 $)) |t#4| $)) (-15 -3190 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |t#4| $)) (-15 -3190 ((-112) |t#4| $)) (-15 -1692 ((-653 $) |t#4| $)) (-15 -4092 ((-3 |t#4| (-653 $)) |t#4| |t#4| $)) (-15 -2395 ((-653 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| |t#4| $)) (-15 -4285 ((-653 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| $)) (-15 -3716 ((-653 $) |t#4| $)) (-15 -3716 ((-653 $) (-653 |t#4|) $)) (-15 -3716 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -3716 ((-653 $) |t#4| (-653 $))) (-15 -3402 ((-653 $) |t#4| $)) (-15 -3402 ((-653 $) |t#4| (-653 $))) (-15 -3402 ((-653 $) (-653 |t#4|) $)) (-15 -3402 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -1844 ($ |t#4| $)) (-15 -1844 ($ (-653 |t#4|) $)) (-15 -2212 ((-653 $) |t#4| $)) (-15 -2212 ((-653 $) |t#4| (-653 $))) (-15 -2212 ((-653 $) (-653 |t#4|) $)) (-15 -2212 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -3527 ((-653 $) (-653 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) -((-1524 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 86)) (-2922 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 127)) (-4373 (((-653 |#5|) |#4| |#5|) 74)) (-2463 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3273 (((-1285)) 36)) (-3790 (((-1285)) 25)) (-2528 (((-1285) (-1171) (-1171) (-1171)) 32)) (-3067 (((-1285) (-1171) (-1171) (-1171)) 21)) (-3153 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 107)) (-1372 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 118) (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2839 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 113))) -(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3153 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2839 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2463 ((-112) |#4| |#5|)) (-15 -2463 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4373 ((-653 |#5|) |#4| |#5|)) (-15 -1524 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1084)) -((-1524 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4373 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2922 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2839 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-1372 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1084 *6 *7 *4 *8 *9)))) (-1372 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3153 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-2528 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3790 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3067 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3153 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2839 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2463 ((-112) |#4| |#5|)) (-15 -2463 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4373 ((-653 |#5|) |#4| |#5|)) (-15 -1524 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) -((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1085) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -1085)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1085)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-1085))))) -(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) -((-4122 (((-112) $ $) 7))) -(((-1086) (-13 (-1230) (-10 -8 (-15 -4122 ((-112) $ $))))) (T -1086)) -((-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1086))))) -(-13 (-1230) (-10 -8 (-15 -4122 ((-112) $ $)))) -((-2848 (((-112) $ $) NIL)) (-2031 (((-1189) $) 8)) (-3180 (((-1171) $) 17)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) -(((-1087 |#1|) (-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) (-1189)) (T -1087)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1087 *3)) (-14 *3 *2)))) -(-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) -((-2848 (((-112) $ $) NIL)) (-2570 (($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|))) 34)) (-3841 (($ |#3| |#3|) 23) (($ |#3| |#3| (-653 (-1189))) 21)) (-1808 ((|#3| $) 13)) (-1695 (((-3 (-301 |#3|) "failed") $) 60)) (-2205 (((-301 |#3|) $) NIL)) (-3499 (((-653 (-1189)) $) 16)) (-2120 (((-902 |#1|) $) 11)) (-1795 ((|#3| $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-931)) 41)) (-2942 (((-871) $) 89) (($ (-301 |#3|)) 22)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38))) -(((-1088 |#1| |#2| |#3|) (-13 (-1112) (-293 |#3| |#3|) (-1050 (-301 |#3|)) (-10 -8 (-15 -3841 ($ |#3| |#3|)) (-15 -3841 ($ |#3| |#3| (-653 (-1189)))) (-15 -2570 ($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|)))) (-15 -2120 ((-902 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1808 (|#3| $)) (-15 -2198 (|#3| $ |#3| (-931))) (-15 -3499 ((-653 (-1189)) $)))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -1088)) -((-3841 (*1 *1 *2 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))))) (-3841 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-2570 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1 (-112) (-653 *6))) (-4 *6 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *6)))) (-2120 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 *2))) (-5 *2 (-902 *3)) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 *2))))) (-1795 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) (-1808 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) (-2198 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-3499 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *2 (-653 (-1189))) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) -(-13 (-1112) (-293 |#3| |#3|) (-1050 (-301 |#3|)) (-10 -8 (-15 -3841 ($ |#3| |#3|)) (-15 -3841 ($ |#3| |#3| (-653 (-1189)))) (-15 -2570 ($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|)))) (-15 -2120 ((-902 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1808 (|#3| $)) (-15 -2198 (|#3| $ |#3| (-931))) (-15 -3499 ((-653 (-1189)) $)))) -((-2848 (((-112) $ $) NIL)) (-2533 (($ (-653 (-1088 |#1| |#2| |#3|))) 14)) (-1995 (((-653 (-1088 |#1| |#2| |#3|)) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-931)) 27)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) -(((-1089 |#1| |#2| |#3|) (-13 (-1112) (-293 |#3| |#3|) (-10 -8 (-15 -2533 ($ (-653 (-1088 |#1| |#2| |#3|)))) (-15 -1995 ((-653 (-1088 |#1| |#2| |#3|)) $)) (-15 -2198 (|#3| $ |#3| (-931))))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -1089)) -((-2533 (*1 *1 *2) (-12 (-5 *2 (-653 (-1088 *3 *4 *5))) (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1089 *3 *4 *5)))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *2 (-653 (-1088 *3 *4 *5))) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))))) (-2198 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4))))))) -(-13 (-1112) (-293 |#3| |#3|) (-10 -8 (-15 -2533 ($ (-653 (-1088 |#1| |#2| |#3|)))) (-15 -1995 ((-653 (-1088 |#1| |#2| |#3|)) $)) (-15 -2198 (|#3| $ |#3| (-931))))) -((-2199 (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)) 88) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|))) 92) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112)) 90))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)))) (-13 (-314) (-148)) (-653 (-1189))) (T -1090)) -((-2199 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))))) (-2199 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-653 (-962 *4))) (-14 *5 (-653 (-1189))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189)))))) -(-10 -7 (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)))) -((-4218 (((-427 |#3|) |#3|) 18))) -(((-1091 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) (-1256 (-416 (-573))) (-13 (-371) (-148) (-733 (-416 (-573)) |#1|)) (-1256 |#2|)) (T -1091)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-13 (-371) (-148) (-733 (-416 (-573)) *4))) (-5 *2 (-427 *3)) (-5 *1 (-1091 *4 *5 *3)) (-4 *3 (-1256 *5))))) -(-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 136)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-371)))) (-2456 (($ $) NIL (|has| |#1| (-371)))) (-1345 (((-112) $) NIL (|has| |#1| (-371)))) (-2114 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) 121)) (-1635 ((|#1| $) 125)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-1486 (((-780)) 43 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) 46)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-357)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1720 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 113) (((-698 |#1|) (-698 $)) 108) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ |#2|) 65) (((-3 $ "failed") (-416 |#2|)) NIL (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-3583 (((-931)) 84)) (-2819 (($) 47 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3731 (($) NIL (|has| |#1| (-357)))) (-1708 (((-112) $) NIL (|has| |#1| (-357)))) (-2104 (($ $ (-780)) NIL (|has| |#1| (-357))) (($ $) NIL (|has| |#1| (-357)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-2534 (((-931) $) NIL (|has| |#1| (-357))) (((-842 (-931)) $) NIL (|has| |#1| (-357)))) (-1959 (((-112) $) NIL)) (-3421 ((|#1| $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2297 ((|#2| $) 91 (|has| |#1| (-371)))) (-3589 (((-931) $) 145 (|has| |#1| (-376)))) (-2853 ((|#2| $) 62)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-3816 (($) NIL (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 135 (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-2969 (($) 127)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-357)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3592 ((|#1| (-1280 $)) NIL) ((|#1|) 117)) (-1637 (((-780) $) NIL (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) NIL (|has| |#1| (-357)))) (-3904 (($ $ (-780)) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1 |#1| |#1|) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2984 ((|#2|) 81)) (-2510 (($) NIL (|has| |#1| (-357)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 96) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) 75) (((-698 |#1|) (-1280 $)) 92)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-357)))) (-2942 (((-871) $) 61) (($ (-573)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-371))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (($ $) NIL (|has| |#1| (-357))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2517 ((|#2| $) 89)) (-1545 (((-780)) 83 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 88)) (-2516 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2132 (($) 32 T CONST)) (-2144 (($) 19 T CONST)) (-3609 (($ $ (-780)) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1 |#1| |#1|) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2981 (((-112) $ $) 67)) (-3103 (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) 71) (($ $ $) NIL)) (-3077 (($ $ $) 69)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))))) -(((-1092 |#1| |#2| |#3|) (-733 |#1| |#2|) (-174) (-1256 |#1|) |#2|) (T -1092)) -NIL -(-733 |#1| |#2|) -((-4218 (((-427 |#3|) |#3|) 19))) -(((-1093 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) (-1256 (-416 (-962 (-573)))) (-13 (-371) (-148) (-733 (-416 (-962 (-573))) |#1|)) (-1256 |#2|)) (T -1093)) -((-4218 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 (-962 (-573))))) (-4 *5 (-13 (-371) (-148) (-733 (-416 (-962 (-573))) *4))) (-5 *2 (-427 *3)) (-5 *1 (-1093 *4 *5 *3)) (-4 *3 (-1256 *5))))) -(-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) -((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) 16)) (-3751 (($ $ $) 17)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2971 (($) 6)) (-1835 (((-1189) $) 20)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9))) -(((-1094) (-13 (-859) (-623 (-1189)) (-10 -8 (-15 -2971 ($))))) (T -1094)) -((-2971 (*1 *1) (-5 *1 (-1094)))) -(-13 (-859) (-623 (-1189)) (-10 -8 (-15 -2971 ($)))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1095) (-141)) (T -1095)) +((-3452 (($ $ (-1107 $)) 7) (($ $ (-1192)) 6))) +(((-972) (-141)) (T -972)) +((-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-972)))) (-3452 (*1 *1 *1 *2) (-12 (-4 *1 (-972)) (-5 *2 (-1192))))) +(-13 (-10 -8 (-15 -3452 ($ $ (-1192))) (-15 -3452 ($ $ (-1107 $))))) +((-2776 (((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)) 26) (((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192)) 49))) +(((-973 |#1|) (-10 -7 (-15 -2776 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192))) (-15 -2776 ((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2776 ((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)))) (-13 (-372) (-148))) (T -973)) +((-2776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-5 *5 (-1192)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 *6))) (|:| |prim| (-1188 *6)))) (-5 *1 (-973 *6)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 *5))) (|:| |prim| (-1188 *5)))) (-5 *1 (-973 *5)))) (-2776 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-1192)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 *5)))) (-5 *1 (-973 *5))))) +(-10 -7 (-15 -2776 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1188 |#1|))) (-965 |#1|) (-1192) (-965 |#1|) (-1192))) (-15 -2776 ((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)))) (-15 -2776 ((-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 |#1|))) (|:| |prim| (-1188 |#1|))) (-654 (-965 |#1|)) (-654 (-1192)) (-1192)))) +((-3610 (((-654 |#1|) |#1| |#1|) 47)) (-2941 (((-112) |#1|) 44)) (-2313 ((|#1| |#1|) 79)) (-1330 ((|#1| |#1|) 78))) +(((-974 |#1|) (-10 -7 (-15 -2941 ((-112) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3610 ((-654 |#1|) |#1| |#1|))) (-555)) (T -974)) +((-3610 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-974 *3)) (-4 *3 (-555)))) (-2313 (*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555)))) (-1330 (*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555)))) (-2941 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-974 *3)) (-4 *3 (-555))))) +(-10 -7 (-15 -2941 ((-112) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3610 ((-654 |#1|) |#1| |#1|))) +((-1805 (((-1288) (-872)) 9))) +(((-975) (-10 -7 (-15 -1805 ((-1288) (-872))))) (T -975)) +((-1805 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-975))))) +(-10 -7 (-15 -1805 ((-1288) (-872)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-4319 (($ $) 79 (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) 31)) (-2978 (((-3 $ "failed") $) 42)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-2680 (($ $ |#1| |#2| $) 62)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) 17)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| |#2|) NIL)) (-2682 ((|#2| $) 24)) (-3577 (($ (-1 |#2| |#2|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $) 28)) (-1377 ((|#1| $) 26)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 51)) (-1354 ((|#1| $) NIL)) (-3645 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2852 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-4144 ((|#2| $) 22)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ |#2|) 37)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) 15 T CONST)) (-3702 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2143 (($) 27 T CONST)) (-2155 (($) 12 T CONST)) (-2985 (((-112) $ $) 83)) (-3102 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) 69) (($ $ (-781)) 67)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-976 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -3645 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064) (-802)) (T -976)) +((-3645 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-976 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *2 (-802))))) +(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -3645 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-3672 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-2599 (((-3 $ "failed") $ $) 52 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1497 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-2340 ((|#2| $) 22)) (-3208 ((|#1| $) 21)) (-3063 (($) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2978 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2834 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-2276 (((-112) $) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3632 (($ $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2953 (($ $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2565 (($ |#1| |#2|) 20)) (-3880 (((-934) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2590 (($ (-934)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3939 (((-1135) $) NIL)) (-2190 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2987 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2950 (((-872) $) 14)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 42 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2155 (($) 25 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3040 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3017 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2985 (((-112) $ $) 19)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3008 (((-112) $ $) 69 (-2832 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3102 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3089 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3073 (($ $ $) 45 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-934)) NIL (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-934) $) NIL (-2832 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2832 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))))) +(((-977 |#1| |#2|) (-13 (-1115) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2565 ($ |#1| |#2|)) (-15 -3208 (|#1| $)) (-15 -2340 (|#2| $)))) (-1115) (-1115)) (T -977)) +((-2565 (*1 *1 *2 *3) (-12 (-5 *1 (-977 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3208 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1115)))) (-2340 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-977 *3 *2)) (-4 *3 (-1115))))) +(-13 (-1115) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2565 ($ |#1| |#2|)) (-15 -3208 (|#1| $)) (-15 -2340 (|#2| $)))) +((-3078 (((-1119) $) 12)) (-1588 (($ (-516) (-1119)) 14)) (-2041 (((-516) $) 9)) (-2950 (((-872) $) 24))) +(((-978) (-13 (-623 (-872)) (-10 -8 (-15 -2041 ((-516) $)) (-15 -3078 ((-1119) $)) (-15 -1588 ($ (-516) (-1119)))))) (T -978)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-978)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-978)))) (-1588 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-978))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2041 ((-516) $)) (-15 -3078 ((-1119) $)) (-15 -1588 ($ (-516) (-1119))))) +((-2863 (((-112) $ $) NIL)) (-1572 (($) NIL T CONST)) (-2108 (($ $ $) 30)) (-2086 (($ $) 24)) (-1938 (((-1174) $) NIL)) (-2709 (((-701 (-883 $ $)) $) 55)) (-1967 (((-701 $) $) 45)) (-2905 (((-701 (-883 $ $)) $) 56)) (-4001 (((-701 (-883 $ $)) $) 57)) (-4397 (((-701 |#1|) $) 36)) (-2816 (((-701 (-883 $ $)) $) 54)) (-3951 (($ $ $) 31)) (-3939 (((-1135) $) NIL)) (-2896 (($) NIL T CONST)) (-2331 (($ $ $) 32)) (-3794 (($ $ $) 29)) (-2511 (($ $ $) 27)) (-2950 (((-872) $) 59) (($ |#1|) 12)) (-4259 (((-112) $ $) NIL)) (-2097 (($ $ $) 28)) (-2985 (((-112) $ $) NIL))) +(((-979 |#1|) (-13 (-982) (-626 |#1|) (-10 -8 (-15 -4397 ((-701 |#1|) $)) (-15 -1967 ((-701 $) $)) (-15 -2816 ((-701 (-883 $ $)) $)) (-15 -2709 ((-701 (-883 $ $)) $)) (-15 -2905 ((-701 (-883 $ $)) $)) (-15 -4001 ((-701 (-883 $ $)) $)) (-15 -2511 ($ $ $)) (-15 -3794 ($ $ $)))) (-1115)) (T -979)) +((-4397 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-701 (-979 *3))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) (-4 *3 (-1115)))) (-2511 (*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115)))) (-3794 (*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) +(-13 (-982) (-626 |#1|) (-10 -8 (-15 -4397 ((-701 |#1|) $)) (-15 -1967 ((-701 $) $)) (-15 -2816 ((-701 (-883 $ $)) $)) (-15 -2709 ((-701 (-883 $ $)) $)) (-15 -2905 ((-701 (-883 $ $)) $)) (-15 -4001 ((-701 (-883 $ $)) $)) (-15 -2511 ($ $ $)) (-15 -3794 ($ $ $)))) +((-3480 (((-979 |#1|) (-979 |#1|)) 46)) (-2523 (((-979 |#1|) (-979 |#1|)) 22)) (-4129 (((-1117 |#1|) (-979 |#1|)) 41))) +(((-980 |#1|) (-13 (-1233) (-10 -7 (-15 -2523 ((-979 |#1|) (-979 |#1|))) (-15 -4129 ((-1117 |#1|) (-979 |#1|))) (-15 -3480 ((-979 |#1|) (-979 |#1|))))) (-1115)) (T -980)) +((-2523 (*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-979 *4)) (-4 *4 (-1115)) (-5 *2 (-1117 *4)) (-5 *1 (-980 *4)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3))))) +(-13 (-1233) (-10 -7 (-15 -2523 ((-979 |#1|) (-979 |#1|))) (-15 -4129 ((-1117 |#1|) (-979 |#1|))) (-15 -3480 ((-979 |#1|) (-979 |#1|))))) +((-1787 (((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|)) 29))) +(((-981 |#1| |#2|) (-13 (-1233) (-10 -7 (-15 -1787 ((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|))))) (-1115) (-1115)) (T -981)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-979 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *2 (-979 *6)) (-5 *1 (-981 *5 *6))))) +(-13 (-1233) (-10 -7 (-15 -1787 ((-979 |#2|) (-1 |#2| |#1|) (-979 |#1|))))) +((-2863 (((-112) $ $) 15)) (-1572 (($) 14 T CONST)) (-2108 (($ $ $) 6)) (-2086 (($ $) 8)) (-1938 (((-1174) $) 19)) (-3951 (($ $ $) 12)) (-3939 (((-1135) $) 18)) (-2896 (($) 13 T CONST)) (-2331 (($ $ $) 11)) (-2950 (((-872) $) 17)) (-4259 (((-112) $ $) 20)) (-2097 (($ $ $) 7)) (-2985 (((-112) $ $) 16))) +(((-982) (-141)) (T -982)) +((-1572 (*1 *1) (-4 *1 (-982))) (-2896 (*1 *1) (-4 *1 (-982))) (-3951 (*1 *1 *1 *1) (-4 *1 (-982))) (-2331 (*1 *1 *1 *1) (-4 *1 (-982)))) +(-13 (-113) (-1115) (-10 -8 (-15 -1572 ($) -1716) (-15 -2896 ($) -1716) (-15 -3951 ($ $ $)) (-15 -2331 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4099 (($ $ $) 44)) (-4333 (($ $ $) 45)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2953 ((|#1| $) 46)) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-983 |#1|) (-141) (-860)) (T -983)) +((-2953 (*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -2953 (|t#1| $)) (-15 -4333 ($ $ $)) (-15 -4099 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-2244 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 105)) (-1641 ((|#2| |#2| |#2|) 103)) (-3309 (((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 107)) (-2280 (((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|) 109)) (-3090 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-2491 (((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 56)) (-2393 (((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 80)) (-2449 (((-2 (|:| |coef1| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 82)) (-1444 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2614 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-1929 (((-2 (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|) 121)) (-2067 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-1393 (((-654 (-781)) |#2| |#2|) 102)) (-3221 ((|#1| |#2| |#2|) 50)) (-2693 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-3758 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-4265 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 54)) (-1909 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|) 79)) (-3372 ((|#1| |#2| |#2|) 76)) (-3276 (((-2 (|:| -1868 |#1|) (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|) 41)) (-2052 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-4103 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1897 ((|#2| |#2| |#2|) 93)) (-1699 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-2501 ((|#2| |#2| |#2| (-781)) 85)) (-2886 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2852 (((-1283 |#2|) (-1283 |#2|) |#1|) 22)) (-2696 (((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|) 46)) (-1789 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|) 119)) (-3902 ((|#1| |#2|) 116)) (-3969 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-1736 ((|#2| |#2| |#2| (-781)) 90)) (-3299 (((-654 |#2|) |#2| |#2|) 99)) (-4407 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-2878 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1283 |#2|) |#1| (-1283 |#2|)) 17))) +(((-984 |#1| |#2|) (-10 -7 (-15 -3372 (|#1| |#2| |#2|)) (-15 -1909 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2393 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2449 ((-2 (|:| |coef1| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2501 (|#2| |#2| |#2| (-781))) (-15 -1699 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2614 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1736 (|#2| |#2| |#2| (-781))) (-15 -3969 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2067 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1897 (|#2| |#2| |#2|)) (-15 -4103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1444 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -2244 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -3309 ((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2280 ((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -3902 (|#1| |#2|)) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|)) (-15 -1929 ((-2 (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|)) (-15 -3299 ((-654 |#2|) |#2| |#2|)) (-15 -1393 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -3758 (|#1| |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -3090 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2886 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1283 |#2|) |#1| (-1283 |#2|))) (-15 -2852 ((-1283 |#2|) (-1283 |#2|) |#1|)) (-15 -3276 ((-2 (|:| -1868 |#1|) (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|)) (-15 -2696 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|)) (-15 -2878 (|#1| |#1| |#1| (-781))) (-15 -4407 (|#2| |#2| |#1| |#1| (-781))) (-15 -2052 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3221 (|#1| |#2| |#2|)) (-15 -4265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2491 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|))) (-566) (-1259 |#1|)) (T -984)) +((-2491 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-4265 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3221 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-2052 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-4407 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-2878 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-984 *2 *4)) (-4 *4 (-1259 *2)))) (-2696 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1868 *4) (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) (-5 *1 (-984 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) (-5 *1 (-984 *3 *4)))) (-2886 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-3090 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2693 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-1393 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3902 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3902 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3902 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) (-2280 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3309 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2244 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2886 *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1641 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-1444 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-4103 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1897 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) (-2067 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-3969 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-1736 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) (-4 *2 (-1259 *4)))) (-2614 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-1699 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5)))) (-2501 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) (-4 *2 (-1259 *4)))) (-2449 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3372 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-2393 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-1909 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4))) (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2))))) +(-10 -7 (-15 -3372 (|#1| |#2| |#2|)) (-15 -1909 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2393 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2449 ((-2 (|:| |coef1| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2501 (|#2| |#2| |#2| (-781))) (-15 -1699 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2614 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1736 (|#2| |#2| |#2| (-781))) (-15 -3969 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2067 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -1897 (|#2| |#2| |#2|)) (-15 -4103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1444 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -2244 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -3309 ((-2 (|:| |coef2| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -2280 ((-2 (|:| |coef1| |#2|) (|:| -2886 |#2|)) |#2| |#2|)) (-15 -3902 (|#1| |#2|)) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|)) (-15 -1929 ((-2 (|:| |coef2| |#2|) (|:| -3902 |#1|)) |#2|)) (-15 -3299 ((-654 |#2|) |#2| |#2|)) (-15 -1393 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -3758 (|#1| |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -3090 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2886 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1283 |#2|) |#1| (-1283 |#2|))) (-15 -2852 ((-1283 |#2|) (-1283 |#2|) |#1|)) (-15 -3276 ((-2 (|:| -1868 |#1|) (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|)) (-15 -2696 ((-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) |#2| |#2|)) (-15 -2878 (|#1| |#1| |#1| (-781))) (-15 -4407 (|#2| |#2| |#1| |#1| (-781))) (-15 -2052 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3221 (|#1| |#2| |#2|)) (-15 -4265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|)) (-15 -2491 ((-2 (|:| |coef2| |#2|) (|:| -3372 |#1|)) |#2| |#2|))) +((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-985) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -985)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-985)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-985))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 40)) (-2599 (((-3 $ "failed") $ $) 54)) (-3063 (($) NIL T CONST)) (-2156 (((-654 (-883 (-934) (-934))) $) 67)) (-2885 (((-934) $) 94)) (-1874 (((-654 (-934)) $) 17)) (-2732 (((-1172 $) (-781)) 39)) (-3323 (($ (-654 (-934))) 16)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2190 (($ $) 70)) (-2950 (((-872) $) 90) (((-654 (-934)) $) 11)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 8 T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 44)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 42)) (-3073 (($ $ $) 46)) (* (($ (-934) $) NIL) (($ (-781) $) 49)) (-2876 (((-781) $) 22))) +(((-986) (-13 (-805) (-623 (-654 (-934))) (-10 -8 (-15 -3323 ($ (-654 (-934)))) (-15 -1874 ((-654 (-934)) $)) (-15 -2876 ((-781) $)) (-15 -2732 ((-1172 $) (-781))) (-15 -2156 ((-654 (-883 (-934) (-934))) $)) (-15 -2885 ((-934) $)) (-15 -2190 ($ $))))) (T -986)) +((-3323 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-986)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1172 (-986))) (-5 *1 (-986)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-934) (-934)))) (-5 *1 (-986)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-986)))) (-2190 (*1 *1 *1) (-5 *1 (-986)))) +(-13 (-805) (-623 (-654 (-934))) (-10 -8 (-15 -3323 ($ (-654 (-934)))) (-15 -1874 ((-654 (-934)) $)) (-15 -2876 ((-781) $)) (-15 -2732 ((-1172 $) (-781))) (-15 -2156 ((-654 (-883 (-934) (-934))) $)) (-15 -2885 ((-934) $)) (-15 -2190 ($ $)))) +((-3102 (($ $ |#2|) 31)) (-3089 (($ $) 23) (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29))) +(((-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3102 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) (-988 |#2| |#3| |#4|) (-1064) (-802) (-860)) (T -987)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3102 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-934) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 86)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-4396 (((-112) $) 85)) (-2276 (((-112) $) 35)) (-3513 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4144 ((|#2| $) 76)) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3584 ((|#1| $ |#2|) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-988 |#1| |#2| |#3|) (-141) (-1064) (-802) (-860)) (T -988)) +((-1377 (*1 *2 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1064)))) (-1365 (*1 *1 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *4 (-860)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *2 *4)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-988 *4 *3 *2)) (-4 *4 (-1064)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-988 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-4396 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2073 (*1 *1 *1) (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) (-4 *4 (-860))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4327 ($ $ |t#3| |t#2|)) (-15 -4327 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1365 ($ $)) (-15 -1377 (|t#1| $)) (-15 -4144 (|t#2| $)) (-15 -4349 ((-654 |t#3|) $)) (-15 -4396 ((-112) $)) (-15 -2073 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2451 (((-1109 (-227)) $) 8)) (-2438 (((-1109 (-227)) $) 9)) (-2425 (((-1109 (-227)) $) 10)) (-3220 (((-654 (-654 (-956 (-227)))) $) 11)) (-2950 (((-872) $) 6))) +(((-989) (-141)) (T -989)) +((-3220 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-654 (-654 (-956 (-227))))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227))))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227))))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) +(-13 (-623 (-872)) (-10 -8 (-15 -3220 ((-654 (-654 (-956 (-227)))) $)) (-15 -2425 ((-1109 (-227)) $)) (-15 -2438 ((-1109 (-227)) $)) (-15 -2451 ((-1109 (-227)) $)))) +(((-623 (-872)) . T)) +((-4349 (((-654 |#4|) $) 23)) (-3042 (((-112) $) 55)) (-2857 (((-112) $) 54)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#4|) 42)) (-3860 (((-112) $) 56)) (-3636 (((-112) $ $) 62)) (-3730 (((-112) $ $) 65)) (-2831 (((-112) $) 60)) (-2717 (((-654 |#5|) (-654 |#5|) $) 98)) (-1392 (((-654 |#5|) (-654 |#5|) $) 95)) (-2711 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3320 (((-654 |#4|) $) 27)) (-2704 (((-112) |#4| $) 34)) (-3817 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2018 (($ $ |#4|) 39)) (-2250 (($ $ |#4|) 38)) (-4091 (($ $ |#4|) 40)) (-2985 (((-112) $ $) 46))) +(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2857 ((-112) |#1|)) (-15 -2717 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1392 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2711 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3817 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3730 ((-112) |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -2831 ((-112) |#1|)) (-15 -3042 ((-112) |#1|)) (-15 -2785 ((-2 (|:| |under| |#1|) (|:| -2787 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2018 (|#1| |#1| |#4|)) (-15 -4091 (|#1| |#1| |#4|)) (-15 -2250 (|#1| |#1| |#4|)) (-15 -2704 ((-112) |#4| |#1|)) (-15 -3320 ((-654 |#4|) |#1|)) (-15 -4349 ((-654 |#4|) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-991 |#2| |#3| |#4| |#5|) (-1064) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -990)) +NIL +(-10 -8 (-15 -2857 ((-112) |#1|)) (-15 -2717 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1392 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2711 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3817 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3730 ((-112) |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -2831 ((-112) |#1|)) (-15 -3042 ((-112) |#1|)) (-15 -2785 ((-2 (|:| |under| |#1|) (|:| -2787 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2018 (|#1| |#1| |#4|)) (-15 -4091 (|#1| |#1| |#4|)) (-15 -2250 (|#1| |#1| |#4|)) (-15 -2704 ((-112) |#4| |#1|)) (-15 -3320 ((-654 |#4|) |#1|)) (-15 -4349 ((-654 |#4|) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458)))) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458)))) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3939 (((-1135) $) 11)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4259 (((-112) $ $) 9)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-991 |#1| |#2| |#3| |#4|) (-141) (-1064) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -991)) +((-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-1080 *3 *4 *2)) (-4 *2 (-860)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2704 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *3 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) (-2250 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-4091 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-2018 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2)))) (-2785 (*1 *2 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2787 *1) (|:| |upper| *1))) (-4 *1 (-991 *4 *5 *3 *6)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3636 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3817 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2711 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1392 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)))) (-2717 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112))))) +(-13 (-1115) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4458) (-15 -1706 ((-3 $ "failed") (-654 |t#4|))) (-15 -2216 ($ (-654 |t#4|))) (-15 -3066 (|t#3| $)) (-15 -4349 ((-654 |t#3|) $)) (-15 -3320 ((-654 |t#3|) $)) (-15 -2704 ((-112) |t#3| $)) (-15 -2250 ($ $ |t#3|)) (-15 -4091 ($ $ |t#3|)) (-15 -2018 ($ $ |t#3|)) (-15 -2785 ((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |t#3|)) (-15 -3042 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -2831 ((-112) $)) (-15 -3636 ((-112) $ $)) (-15 -3730 ((-112) $ $)) (-15 -3860 ((-112) $)) (-15 -3817 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2711 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1392 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -2717 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -2857 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-1115) . T) ((-1233) . T)) +((-1357 (((-654 |#4|) |#4| |#4|) 136)) (-4173 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-4352 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-2984 (((-112) |#4|) 43)) (-2986 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-2935 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-3263 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-4224 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-3683 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-1914 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4326 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-1961 (((-654 |#4|) (-654 |#4|)) 128)) (-1362 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-1537 ((|#4| |#4| (-654 |#4|)) 60)) (-3561 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-2123 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-1471 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-2582 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-3775 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1561 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-2482 (((-112) (-654 |#4|)) 79)) (-3813 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-3924 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-1595 (((-112) |#4|) 36)) (-3072 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1406 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3165 (((-654 |#4|) (-654 |#4|)) 83)) (-1385 (((-654 |#4|) (-654 |#4|)) 97)) (-4046 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2915 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-2888 (((-112) |#4|) 45))) +(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2582 ((-654 |#4|) (-654 |#4|))) (-15 -2582 ((-654 |#4|) |#4| |#4|)) (-15 -1961 ((-654 |#4|) (-654 |#4|))) (-15 -1357 ((-654 |#4|) |#4| |#4|)) (-15 -2582 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2582 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2582 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -4046 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3813 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2482 ((-112) (-654 |#4|))) (-15 -2935 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3263 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4224 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1561 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2984 ((-112) |#4|)) (-15 -4352 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1595 ((-112) |#4|)) (-15 -3924 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2888 ((-112) |#4|)) (-15 -2915 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1362 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1362 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -1537 (|#4| |#4| (-654 |#4|))) (-15 -3165 ((-654 |#4|) (-654 |#4|))) (-15 -3683 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1385 ((-654 |#4|) (-654 |#4|))) (-15 -1914 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4326 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2986 ((-654 |#4|) |#4|)) (-15 -4173 ((-654 |#4|) (-654 |#4|))) (-15 -4173 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3561 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1471 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2123 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1406 ((-654 |#4|) (-654 |#4|))) (-15 -3072 ((-654 |#4|) (-654 |#4|))) (-15 -3775 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -992)) +((-3775 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2123 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-1471 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3561 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-4173 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2986 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-4326 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-992 *5 *6 *7 *8)))) (-1914 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-992 *6 *7 *8 *9)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-3683 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2012 (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *2)))) (-1362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-1362 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2915 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-3924 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-4352 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2984 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-1561 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *5 *6 *7 *8)))) (-4046 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *4 *5 *6 *7)))) (-2582 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7)))) (-2582 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *3)))) (-1357 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) (-2582 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) +(-10 -7 (-15 -2582 ((-654 |#4|) (-654 |#4|))) (-15 -2582 ((-654 |#4|) |#4| |#4|)) (-15 -1961 ((-654 |#4|) (-654 |#4|))) (-15 -1357 ((-654 |#4|) |#4| |#4|)) (-15 -2582 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -2582 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2582 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -4046 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3813 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -2482 ((-112) (-654 |#4|))) (-15 -2935 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3263 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4224 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1561 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2984 ((-112) |#4|)) (-15 -4352 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1595 ((-112) |#4|)) (-15 -3924 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2888 ((-112) |#4|)) (-15 -2915 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1362 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1362 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -1537 (|#4| |#4| (-654 |#4|))) (-15 -3165 ((-654 |#4|) (-654 |#4|))) (-15 -3683 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1385 ((-654 |#4|) (-654 |#4|))) (-15 -1914 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4326 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2986 ((-654 |#4|) |#4|)) (-15 -4173 ((-654 |#4|) (-654 |#4|))) (-15 -4173 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3561 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1471 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -2123 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1406 ((-654 |#4|) (-654 |#4|))) (-15 -3072 ((-654 |#4|) (-654 |#4|))) (-15 -3775 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) +((-3124 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1643 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)) 46)) (-3430 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-993 |#1|) (-10 -7 (-15 -3124 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3430 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1643 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)))) (-372)) (T -993)) +((-1643 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5))))) (-5 *1 (-993 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)))) (-3430 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-993 *5)))) (-3124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-993 *6)) (-5 *3 (-699 *6))))) +(-10 -7 (-15 -3124 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3430 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1643 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1283 |#1|)))) (-699 |#1|) (-1283 |#1|)))) +((-2153 (((-428 |#4|) |#4|) 56))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2153 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-962 |#3| |#2| |#1|)) (T -994)) +((-2153 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) +(-10 -7 (-15 -2153 ((-428 |#4|) |#4|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2227 (($ (-781)) 115 (|has| |#1| (-23)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-3563 (($ (-654 |#1|)) 121)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1697 ((|#1| $) 105 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-2713 (((-112) $ (-781)) 10)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4016 (($ $ (-654 |#1|)) 119)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2546 ((|#1| $ $) 109 (|has| |#1| (-1064)))) (-2900 (((-934) $) 120)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-4018 (($ $ $) 107)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3073 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-995 |#1|) (-141) (-1064)) (T -995)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-995 *3)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1064)) (-5 *2 (-934)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1064)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-995 *3)) (-4 *3 (-1064))))) +(-13 (-1281 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3563 ($ (-654 |t#1|))) (-15 -2900 ((-934) $)) (-15 -4018 ($ $ $)) (-15 -4016 ($ $ (-654 |t#1|))))) +(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T) ((-1281 |#1|) . T)) +((-1787 (((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)) 17))) +(((-996 |#1| |#2|) (-10 -7 (-15 -1787 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) (-1064) (-1064)) (T -996)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-956 *6)) (-5 *1 (-996 *5 *6))))) +(-10 -7 (-15 -1787 ((-956 |#2|) (-1 |#2| |#1|) (-956 |#1|)))) +((-2659 ((|#1| (-956 |#1|)) 14)) (-1450 ((|#1| (-956 |#1|)) 13)) (-2436 ((|#1| (-956 |#1|)) 12)) (-3397 ((|#1| (-956 |#1|)) 16)) (-4271 ((|#1| (-956 |#1|)) 24)) (-2252 ((|#1| (-956 |#1|)) 15)) (-4291 ((|#1| (-956 |#1|)) 17)) (-2014 ((|#1| (-956 |#1|)) 23)) (-4414 ((|#1| (-956 |#1|)) 22))) +(((-997 |#1|) (-10 -7 (-15 -2436 (|#1| (-956 |#1|))) (-15 -1450 (|#1| (-956 |#1|))) (-15 -2659 (|#1| (-956 |#1|))) (-15 -2252 (|#1| (-956 |#1|))) (-15 -3397 (|#1| (-956 |#1|))) (-15 -4291 (|#1| (-956 |#1|))) (-15 -4414 (|#1| (-956 |#1|))) (-15 -2014 (|#1| (-956 |#1|))) (-15 -4271 (|#1| (-956 |#1|)))) (-1064)) (T -997)) +((-4271 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(-10 -7 (-15 -2436 (|#1| (-956 |#1|))) (-15 -1450 (|#1| (-956 |#1|))) (-15 -2659 (|#1| (-956 |#1|))) (-15 -2252 (|#1| (-956 |#1|))) (-15 -3397 (|#1| (-956 |#1|))) (-15 -4291 (|#1| (-956 |#1|))) (-15 -4414 (|#1| (-956 |#1|))) (-15 -2014 (|#1| (-956 |#1|))) (-15 -4271 (|#1| (-956 |#1|)))) +((-3678 (((-3 |#1| "failed") |#1|) 18)) (-2211 (((-3 |#1| "failed") |#1|) 6)) (-1611 (((-3 |#1| "failed") |#1|) 16)) (-2733 (((-3 |#1| "failed") |#1|) 4)) (-1454 (((-3 |#1| "failed") |#1|) 20)) (-1631 (((-3 |#1| "failed") |#1|) 8)) (-2570 (((-3 |#1| "failed") |#1| (-781)) 1)) (-3637 (((-3 |#1| "failed") |#1|) 3)) (-2214 (((-3 |#1| "failed") |#1|) 2)) (-2927 (((-3 |#1| "failed") |#1|) 21)) (-1590 (((-3 |#1| "failed") |#1|) 9)) (-1847 (((-3 |#1| "failed") |#1|) 19)) (-2837 (((-3 |#1| "failed") |#1|) 7)) (-1332 (((-3 |#1| "failed") |#1|) 17)) (-4212 (((-3 |#1| "failed") |#1|) 5)) (-2072 (((-3 |#1| "failed") |#1|) 24)) (-4380 (((-3 |#1| "failed") |#1|) 12)) (-2098 (((-3 |#1| "failed") |#1|) 22)) (-3280 (((-3 |#1| "failed") |#1|) 10)) (-3519 (((-3 |#1| "failed") |#1|) 26)) (-3842 (((-3 |#1| "failed") |#1|) 14)) (-4400 (((-3 |#1| "failed") |#1|) 27)) (-3807 (((-3 |#1| "failed") |#1|) 15)) (-1757 (((-3 |#1| "failed") |#1|) 25)) (-2812 (((-3 |#1| "failed") |#1|) 13)) (-4286 (((-3 |#1| "failed") |#1|) 23)) (-1695 (((-3 |#1| "failed") |#1|) 11))) +(((-998 |#1|) (-141) (-1218)) (T -998)) +((-4400 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3519 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1757 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2072 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-4286 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2098 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2927 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1454 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1847 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3678 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1332 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1611 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3807 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3842 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2812 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-4380 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1695 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3280 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1590 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-1631 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2837 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2211 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-4212 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2733 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-3637 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2214 (*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218)))) (-2570 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(-13 (-10 -7 (-15 -2570 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -2214 ((-3 |t#1| "failed") |t#1|)) (-15 -3637 ((-3 |t#1| "failed") |t#1|)) (-15 -2733 ((-3 |t#1| "failed") |t#1|)) (-15 -4212 ((-3 |t#1| "failed") |t#1|)) (-15 -2211 ((-3 |t#1| "failed") |t#1|)) (-15 -2837 ((-3 |t#1| "failed") |t#1|)) (-15 -1631 ((-3 |t#1| "failed") |t#1|)) (-15 -1590 ((-3 |t#1| "failed") |t#1|)) (-15 -3280 ((-3 |t#1| "failed") |t#1|)) (-15 -1695 ((-3 |t#1| "failed") |t#1|)) (-15 -4380 ((-3 |t#1| "failed") |t#1|)) (-15 -2812 ((-3 |t#1| "failed") |t#1|)) (-15 -3842 ((-3 |t#1| "failed") |t#1|)) (-15 -3807 ((-3 |t#1| "failed") |t#1|)) (-15 -1611 ((-3 |t#1| "failed") |t#1|)) (-15 -1332 ((-3 |t#1| "failed") |t#1|)) (-15 -3678 ((-3 |t#1| "failed") |t#1|)) (-15 -1847 ((-3 |t#1| "failed") |t#1|)) (-15 -1454 ((-3 |t#1| "failed") |t#1|)) (-15 -2927 ((-3 |t#1| "failed") |t#1|)) (-15 -2098 ((-3 |t#1| "failed") |t#1|)) (-15 -4286 ((-3 |t#1| "failed") |t#1|)) (-15 -2072 ((-3 |t#1| "failed") |t#1|)) (-15 -1757 ((-3 |t#1| "failed") |t#1|)) (-15 -3519 ((-3 |t#1| "failed") |t#1|)) (-15 -4400 ((-3 |t#1| "failed") |t#1|)))) +((-3523 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2282 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1787 ((|#4| (-1 |#4| (-965 |#1|)) |#4|) 31))) +(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2282 (|#4| |#4| |#3|)) (-15 -2282 (|#4| |#4| (-654 |#3|))) (-15 -3523 (|#4| |#4| |#3|)) (-15 -3523 (|#4| |#4| (-654 |#3|))) (-15 -1787 (|#4| (-1 |#4| (-965 |#1|)) |#4|))) (-1064) (-803) (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192))))) (-962 (-965 |#1|) |#2| |#3|)) (T -999)) +((-1787 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1064)) (-4 *2 (-962 (-965 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *6 *2)))) (-3523 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) (-4 *2 (-962 (-965 *4) *5 *6)))) (-3523 (*1 *2 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) (-2282 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) (-4 *2 (-962 (-965 *4) *5 *6)))) (-2282 (*1 *2 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)) (-15 -1498 ((-3 $ "failed") (-1192)))))) (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3))))) +(-10 -7 (-15 -2282 (|#4| |#4| |#3|)) (-15 -2282 (|#4| |#4| (-654 |#3|))) (-15 -3523 (|#4| |#4| |#3|)) (-15 -3523 (|#4| |#4| (-654 |#3|))) (-15 -1787 (|#4| (-1 |#4| (-965 |#1|)) |#4|))) +((-1895 ((|#2| |#3|) 35)) (-3734 (((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-1369 (((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100))) +(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -1895 (|#2| |#3|))) (-358) (-1259 |#1|) (-1259 |#2|) (-734 |#2| |#3|)) (T -1000)) +((-1895 (*1 *2 *3) (-12 (-4 *3 (-1259 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-1000 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1000 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-1369 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -3907 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))) +(-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -1895 (|#2| |#3|))) +((-1602 (((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82))) +(((-1001 |#1| |#2|) (-10 -7 (-15 -1602 ((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1192)) (-781)) (T -1001)) +((-1602 (*1 *2 *2) (-12 (-5 *2 (-1002 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-1001 *3 *4))))) +(-10 -7 (-15 -1602 ((-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1002 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) +((-2863 (((-112) $ $) NIL)) (-1866 (((-3 (-112) "failed") $) 71)) (-3480 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3254 (($ $ (-3 (-112) "failed")) 72)) (-3453 (($ (-654 |#4|) |#4|) 25)) (-1938 (((-1174) $) NIL)) (-3423 (($ $) 69)) (-3939 (((-1135) $) NIL)) (-2234 (((-112) $) 70)) (-4272 (($) 30)) (-1752 ((|#4| $) 74)) (-2668 (((-654 |#4|) $) 73)) (-2950 (((-872) $) 68)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1002 |#1| |#2| |#3| |#4|) (-13 (-1115) (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3453 ($ (-654 |#4|) |#4|)) (-15 -1866 ((-3 (-112) "failed") $)) (-15 -3254 ($ $ (-3 (-112) "failed"))) (-15 -2234 ((-112) $)) (-15 -2668 ((-654 |#4|) $)) (-15 -1752 (|#4| $)) (-15 -3423 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -3480 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-962 |#1| |#3| |#2|)) (T -1002)) +((-4272 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) (-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-962 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1002 *4 *5 *6 *3)))) (-1866 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-2234 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-2668 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) (-1752 (*1 *2 *1) (-12 (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-1002 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-3423 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) (-3480 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3))))) +(-13 (-1115) (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3453 ($ (-654 |#4|) |#4|)) (-15 -1866 ((-3 (-112) "failed") $)) (-15 -3254 ($ $ (-3 (-112) "failed"))) (-15 -2234 ((-112) $)) (-15 -2668 ((-654 |#4|) $)) (-15 -1752 (|#4| $)) (-15 -3423 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -3480 ($ $)) |%noBranch|) |%noBranch|))) +((-2688 (((-112) |#5| |#5|) 44)) (-4104 (((-112) |#5| |#5|) 59)) (-1405 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1655 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2691 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) 70)) (-2269 (((-1288)) 32)) (-3814 (((-1288) (-1174) (-1174) (-1174)) 28)) (-1803 (((-654 |#5|) (-654 |#5|)) 100)) (-3821 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) 92)) (-3052 (((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-1620 (((-112) |#5| |#5|) 53)) (-3067 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3793 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1820 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-3419 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-4398 (((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3166 (((-654 |#5|) (-654 |#5|)) 49))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3814 ((-1288) (-1174) (-1174) (-1174))) (-15 -2269 ((-1288))) (-15 -2688 ((-112) |#5| |#5|)) (-15 -3166 ((-654 |#5|) (-654 |#5|))) (-15 -1620 ((-112) |#5| |#5|)) (-15 -4104 ((-112) |#5| |#5|)) (-15 -1655 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3793 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1820 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3419 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3067 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1405 ((-112) |#5| |#5|)) (-15 -1405 ((-112) |#5| (-654 |#5|))) (-15 -1803 ((-654 |#5|) (-654 |#5|))) (-15 -2691 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3821 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-15 -3052 ((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -4398 ((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1003)) +((-4398 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| -4096 (-654 *9)) (|:| -4067 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1003 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1086 *6 *7 *8 *9)))) (-3052 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4096 (-654 *9)) (|:| -4067 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1003 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4067 *7)))) (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-2691 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1003 *5 *6 *7 *8 *3)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3067 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3419 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1820 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-3793 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1655 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-4104 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-1620 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) (-2688 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2269 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3814 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(-10 -7 (-15 -3814 ((-1288) (-1174) (-1174) (-1174))) (-15 -2269 ((-1288))) (-15 -2688 ((-112) |#5| |#5|)) (-15 -3166 ((-654 |#5|) (-654 |#5|))) (-15 -1620 ((-112) |#5| |#5|)) (-15 -4104 ((-112) |#5| |#5|)) (-15 -1655 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3793 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1820 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3419 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3067 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1405 ((-112) |#5| |#5|)) (-15 -1405 ((-112) |#5| (-654 |#5|))) (-15 -1803 ((-654 |#5|) (-654 |#5|))) (-15 -2691 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3821 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-15 -3052 ((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -4398 ((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1498 (((-1192) $) 15)) (-3078 (((-1174) $) 16)) (-2705 (($ (-1192) (-1174)) 14)) (-2950 (((-872) $) 13))) +(((-1004) (-13 (-623 (-872)) (-10 -8 (-15 -2705 ($ (-1192) (-1174))) (-15 -1498 ((-1192) $)) (-15 -3078 ((-1174) $))))) (T -1004)) +((-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-1004)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1004)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1004))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2705 ($ (-1192) (-1174))) (-15 -1498 ((-1192) $)) (-15 -3078 ((-1174) $)))) +((-1787 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1007 |#1|) (-1007 |#2|)) (T -1005)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1007 *6)) (-5 *1 (-1005 *5 *6 *4 *2)) (-4 *4 (-1007 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) +((-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-1192) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2216 ((|#2| $) NIL) (((-1192) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-4232 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1283 $)) NIL)) (-2834 (($) 99)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-3071 (($ $) 10)) (-4217 (((-3 $ "failed") $) 20)) (-1787 (($ (-1 |#2| |#2|) $) 22)) (-3791 (($) 16)) (-2010 (($ $) 55)) (-3878 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2593 (($ $) 12)) (-1846 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1192)) 58)) (-3781 (((-781)) 31)) (-3008 (((-112) $ $) 51))) +(((-1006 |#1| |#2|) (-10 -8 (-15 -3008 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2834 (|#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1007 |#2|) (-566)) (T -1006)) +((-3781 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1006 *3 *4)) (-4 *3 (-1007 *4))))) +(-10 -8 (-15 -3008 ((-112) |#1| |#1|)) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2950 (|#1| (-1192))) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -2834 (|#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1793 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -4232 ((-699 |#2|) (-1283 |#1|))) (-15 -4232 ((-699 |#2|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1882 ((|#1| $) 148 (|has| |#1| (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 139 (|has| |#1| (-922)))) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 142 (|has| |#1| (-922)))) (-1526 (((-112) $ $) 65)) (-2496 (((-574) $) 129 (|has| |#1| (-830)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 188) (((-3 (-1192) "failed") $) 137 (|has| |#1| (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 120 (|has| |#1| (-1053 (-574)))) (((-3 (-574) "failed") $) 118 (|has| |#1| (-1053 (-574))))) (-2216 ((|#1| $) 189) (((-1192) $) 138 (|has| |#1| (-1053 (-1192)))) (((-417 (-574)) $) 121 (|has| |#1| (-1053 (-574)))) (((-574) $) 119 (|has| |#1| (-1053 (-574))))) (-2800 (($ $ $) 61)) (-4232 (((-699 (-574)) (-1283 $)) 163 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 161 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 160) (((-699 |#1|) (-699 $)) 159) (((-699 |#1|) (-1283 $)) 158)) (-2978 (((-3 $ "failed") $) 37)) (-2834 (($) 146 (|has| |#1| (-555)))) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-1348 (((-112) $) 131 (|has| |#1| (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 155 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 154 (|has| |#1| (-897 (-388))))) (-2276 (((-112) $) 35)) (-3071 (($ $) 150)) (-2970 ((|#1| $) 152)) (-4217 (((-3 $ "failed") $) 117 (|has| |#1| (-1167)))) (-3081 (((-112) $) 130 (|has| |#1| (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 127 (|has| |#1| (-860)))) (-2953 (($ $ $) 126 (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) 180)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3791 (($) 116 (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2010 (($ $) 147 (|has| |#1| (-315)))) (-2787 ((|#1| $) 144 (|has| |#1| (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 141 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 140 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 186 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 183 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 182 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 181 (|has| |#1| (-524 (-1192) |#1|)))) (-3575 (((-781) $) 64)) (-2209 (($ $ |#1|) 187 (|has| |#1| (-294 |#1| |#1|)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-3878 (($ $ (-781)) 178 (|has| |#1| (-239))) (($ $) 176 (|has| |#1| (-239))) (($ $ (-1192)) 175 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 174 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 173 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 172 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-2593 (($ $) 149)) (-2981 ((|#1| $) 151)) (-1846 (((-903 (-574)) $) 157 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 156 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 134 (|has| |#1| (-624 (-546)))) (((-388) $) 133 (|has| |#1| (-1037))) (((-227) $) 132 (|has| |#1| (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 143 (-2097 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 192) (($ (-1192)) 136 (|has| |#1| (-1053 (-1192))))) (-3270 (((-3 $ "failed") $) 135 (-2832 (|has| |#1| (-146)) (-2097 (|has| $ (-146)) (|has| |#1| (-922)))))) (-3781 (((-781)) 32 T CONST)) (-2251 ((|#1| $) 145 (|has| |#1| (-555)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2366 (($ $) 128 (|has| |#1| (-830)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-781)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-1192)) 171 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 170 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 169 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 168 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3040 (((-112) $ $) 124 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 123 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 122 (|has| |#1| (-860)))) (-3102 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190))) +(((-1007 |#1|) (-141) (-566)) (T -1007)) +((-3102 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-3071 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2010 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2834 (*1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555))))) +(-13 (-372) (-38 |t#1|) (-1053 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3102 ($ |t#1| |t#1|)) (-15 -2970 (|t#1| $)) (-15 -2981 (|t#1| $)) (-15 -3071 ($ $)) (-15 -2593 ($ $)) (IF (|has| |t#1| (-1167)) (-6 (-1167)) |%noBranch|) (IF (|has| |t#1| (-1053 (-574))) (PROGN (-6 (-1053 (-574))) (-6 (-1053 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-6 (-1037)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1053 (-1192))) (-6 (-1053 (-1192))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -1882 (|t#1| $)) (-15 -2010 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2834 ($)) (-15 -2251 (|t#1| $)) (-15 -2787 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-922)) (-6 (-922)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1192)) |has| |#1| (-1053 (-1192))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1037)) ((-624 (-388)) |has| |#1| (-1037)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2832 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-922) |has| |#1| (-922)) ((-933) . T) ((-1037) |has| |#1| (-1037)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-574))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #1#) |has| |#1| (-1053 (-1192))) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-1167)) ((-1233) . T) ((-1237) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2267 (($ (-1157 |#1| |#2|)) 11)) (-2923 (((-1157 |#1| |#2|) $) 12)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2209 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL))) +(((-1008 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2267 ($ (-1157 |#1| |#2|))) (-15 -2923 ((-1157 |#1| |#2|) $)))) (-934) (-372)) (T -1008)) +((-2267 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372)) (-5 *1 (-1008 *3 *4)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-5 *1 (-1008 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372))))) +(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2267 ($ (-1157 |#1| |#2|))) (-15 -2923 ((-1157 |#1| |#2|) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1009) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $))))) (T -1009)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1009))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-2858 (($ $) 47)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-4108 (((-781) $) 46)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-3772 ((|#1| $) 45)) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2182 ((|#1| |#1| $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-3970 ((|#1| $) 48)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2030 ((|#1| $) 44)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1010 |#1|) (-141) (-1233)) (T -1010)) +((-2182 (*1 *2 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-2858 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -2182 (|t#1| |t#1| $)) (-15 -3970 (|t#1| $)) (-15 -2858 ($ $)) (-15 -4108 ((-781) $)) (-15 -3772 (|t#1| $)) (-15 -2030 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-1997 (((-112) $) 43)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-2222 (((-3 (-417 (-574)) "failed") $) 78)) (-4002 (((-112) $) 72)) (-2258 (((-417 (-574)) $) 76)) (-2276 (((-112) $) 42)) (-2681 ((|#2| $) 22)) (-1787 (($ (-1 |#2| |#2|) $) 19)) (-1327 (($ $) 58)) (-3878 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1846 (((-546) $) 67)) (-2190 (($ $) 17)) (-2950 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-3781 (((-781)) 10)) (-2366 ((|#2| $) 71)) (-2985 (((-112) $ $) 26)) (-3008 (((-112) $ $) 69)) (-3089 (($ $) 30) (($ $ $) 29)) (-3073 (($ $ $) 27)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) +(((-1011 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -3008 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1327 (|#1| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2276 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-1012 |#2|) (-174)) (T -1011)) +((-3781 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1011 *3 *4)) (-4 *3 (-1012 *4))))) +(-10 -8 (-15 -2950 (|#1| (-417 (-574)))) (-15 -3008 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1327 (|#1| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2681 (|#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2276 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -1997 ((-112) |#1|)) (-15 * (|#1| (-934) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1706 (((-3 (-574) "failed") $) 130 (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 128 (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) 125)) (-2216 (((-574) $) 129 (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) 127 (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) 126)) (-4232 (((-699 (-574)) (-1283 $)) 100 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 98 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 97) (((-699 |#1|) (-699 $)) 96) (((-699 |#1|) (-1283 $)) 95)) (-2978 (((-3 $ "failed") $) 37)) (-4222 ((|#1| $) 88)) (-2222 (((-3 (-417 (-574)) "failed") $) 84 (|has| |#1| (-555)))) (-4002 (((-112) $) 86 (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) 85 (|has| |#1| (-555)))) (-3533 (($ |#1| |#1| |#1| |#1|) 89)) (-2276 (((-112) $) 35)) (-2681 ((|#1| $) 90)) (-3632 (($ $ $) 77 (|has| |#1| (-860)))) (-2953 (($ $ $) 76 (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) 101)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 81 (|has| |#1| (-372)))) (-4013 ((|#1| $) 91)) (-1663 ((|#1| $) 92)) (-3927 ((|#1| $) 93)) (-3939 (((-1135) $) 11)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 107 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 104 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) 103 (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) 102 (|has| |#1| (-524 (-1192) |#1|)))) (-2209 (($ $ |#1|) 108 (|has| |#1| (-294 |#1| |#1|)))) (-3878 (($ $ (-781)) 123 (|has| |#1| (-239))) (($ $) 121 (|has| |#1| (-239))) (($ $ (-1192)) 120 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 119 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 118 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 117 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1846 (((-546) $) 82 (|has| |#1| (-624 (-546))))) (-2190 (($ $) 94)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 71 (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2366 ((|#1| $) 87 (|has| |#1| (-1075)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-781)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-1192)) 116 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 115 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 114 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 113 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3040 (((-112) $ $) 74 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 73 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 72 (|has| |#1| (-860)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 80 (|has| |#1| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 79 (|has| |#1| (-372))) (($ (-417 (-574)) $) 78 (|has| |#1| (-372))))) +(((-1012 |#1|) (-141) (-174)) (T -1012)) +((-2190 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-3533 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-2222 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) +(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2190 ($ $)) (-15 -3927 (|t#1| $)) (-15 -1663 (|t#1| $)) (-15 -4013 (|t#1| $)) (-15 -2681 (|t#1| $)) (-15 -3533 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4222 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1075)) (-15 -2366 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4002 ((-112) $)) (-15 -2258 ((-417 (-574)) $)) (-15 -2222 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1192) |#1|) |has| |#1| (-524 (-1192) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1066 #0#) |has| |#1| (-372)) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1071 #0#) |has| |#1| (-372)) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) -2832 (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239)))) +((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1013 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-1012 |#2|) (-174) (-1012 |#4|) (-174)) (T -1013)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1012 *6)) (-5 *1 (-1013 *4 *5 *2 *6)) (-4 *4 (-1012 *5))))) +(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4222 ((|#1| $) 12)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4002 (((-112) $) NIL (|has| |#1| (-555)))) (-2258 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3533 (($ |#1| |#1| |#1| |#1|) 16)) (-2276 (((-112) $) NIL)) (-2681 ((|#1| $) NIL)) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-4013 ((|#1| $) 15)) (-1663 ((|#1| $) 14)) (-3927 ((|#1| $) 13)) (-3939 (((-1135) $) NIL)) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1192) |#1|))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-524 (-1192) |#1|)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3878 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2190 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2366 ((|#1| $) NIL (|has| |#1| (-1075)))) (-2143 (($) 8 T CONST)) (-2155 (($) 10 T CONST)) (-3583 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))))) +(((-1014 |#1|) (-1012 |#1|) (-174)) (T -1014)) +NIL +(-1012 |#1|) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-2858 (($ $) 23)) (-3097 (($ (-654 |#1|)) 33)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-4108 (((-781) $) 26)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) 28)) (-1948 (($ |#1| $) 17)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-3772 ((|#1| $) 27)) (-2277 ((|#1| $) 22)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2182 ((|#1| |#1| $) 16)) (-2234 (((-112) $) 18)) (-4272 (($) NIL)) (-3970 ((|#1| $) 21)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) NIL)) (-2030 ((|#1| $) 30)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1015 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -3097 ($ (-654 |#1|))))) (-1115)) (T -1015)) +((-3097 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1015 *3))))) +(-13 (-1010 |#1|) (-10 -8 (-15 -3097 ($ (-654 |#1|))))) +((-4211 (($ $) 12)) (-3649 (($ $ (-574)) 13))) +(((-1016 |#1|) (-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-574)))) (-1017)) (T -1016)) +NIL +(-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -3649 (|#1| |#1| (-574)))) +((-4211 (($ $) 6)) (-3649 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8))) +(((-1017) (-141)) (T -1017)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-417 (-574))))) (-3649 (*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-574)))) (-4211 (*1 *1 *1) (-4 *1 (-1017)))) +(-13 (-10 -8 (-15 -4211 ($ $)) (-15 -3649 ($ $ (-574))) (-15 ** ($ $ (-417 (-574)))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3386 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-4319 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-1731 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-4368 (((-699 (-417 |#2|)) (-1283 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1646 (((-417 |#2|) $) NIL)) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2153 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1526 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1497 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4092 (((-112)) NIL)) (-1795 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1053 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3875 (($ (-1283 (-417 |#2|)) (-1283 $)) NIL) (($ (-1283 (-417 |#2|))) 79) (($ (-1283 |#2|) |#2|) NIL)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2800 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1732 (((-699 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-417 |#2|))) (|:| |vec| (-1283 (-417 |#2|)))) (-699 $) (-1283 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-3816 (((-1283 $) (-1283 $)) NIL)) (-2881 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-2978 (((-3 $ "failed") $) NIL)) (-2672 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-3896 (((-112) |#1| |#1|) NIL)) (-3557 (((-934)) NIL)) (-2834 (($) NIL (|has| (-417 |#2|) (-377)))) (-1645 (((-112)) NIL)) (-1442 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2811 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1420 (($ $) NIL)) (-2776 (($) NIL (|has| (-417 |#2|) (-358)))) (-1627 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-4278 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-2941 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3837 (((-934) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-934)) $) NIL (|has| (-417 |#2|) (-358)))) (-2276 (((-112) $) NIL)) (-1717 (((-781)) NIL)) (-2165 (((-1283 $) (-1283 $)) NIL)) (-2681 (((-417 |#2|) $) NIL)) (-3914 (((-654 (-965 |#1|)) (-1192)) NIL (|has| |#1| (-372)))) (-4217 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3525 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3880 (((-934) $) NIL (|has| (-417 |#2|) (-377)))) (-2868 ((|#3| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1938 (((-1174) $) NIL)) (-3211 (((-699 (-417 |#2|))) 57)) (-1822 (((-699 (-417 |#2|))) 56)) (-1327 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-4167 (($ (-1283 |#2|) |#2|) 80)) (-1726 (((-699 (-417 |#2|))) 55)) (-2545 (((-699 (-417 |#2|))) 54)) (-3723 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-1651 (((-2 (|:| |num| (-1283 |#2|)) (|:| |den| |#2|)) $) 86)) (-3187 (((-1283 $)) 51)) (-1369 (((-1283 $)) 50)) (-2801 (((-112) $) NIL)) (-3167 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3791 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2590 (($ (-934)) NIL (|has| (-417 |#2|) (-377)))) (-2632 (((-3 |#2| "failed")) 70)) (-3939 (((-1135) $) NIL)) (-1892 (((-781)) NIL)) (-2974 (($) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| (-417 |#2|) (-372)))) (-2886 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4200 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3575 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2209 ((|#1| $ |#1| |#1|) NIL)) (-2588 (((-3 |#2| "failed")) 68)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-3902 (((-417 |#2|) (-1283 $)) NIL) (((-417 |#2|)) 47)) (-3411 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3878 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3450 (((-699 (-417 |#2|)) (-1283 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2611 ((|#3|) 58)) (-3627 (($) NIL (|has| (-417 |#2|) (-358)))) (-4421 (((-1283 (-417 |#2|)) $ (-1283 $)) NIL) (((-699 (-417 |#2|)) (-1283 $) (-1283 $)) NIL) (((-1283 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1283 $)) NIL)) (-1846 (((-1283 (-417 |#2|)) $) NIL) (($ (-1283 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-1605 (((-1283 $) (-1283 $)) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-417 |#2|) (-1053 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3270 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-3688 ((|#3| $) NIL)) (-3781 (((-781)) NIL T CONST)) (-3274 (((-112)) 65)) (-3756 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) NIL)) (-3676 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-3085 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2999 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-913 (-1192))))) (($ $) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1237) (-1259 |#1|) (-1259 (-417 |#2|)) (-417 |#2|) (-781)) (T -1018)) +NIL +(-351 |#1| |#2| |#3|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3475 (((-654 (-574)) $) 73)) (-1515 (($ (-654 (-574))) 81)) (-1882 (((-574) $) 48 (|has| (-574) (-315)))) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL (|has| (-574) (-830)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) 60) (((-3 (-1192) "failed") $) NIL (|has| (-574) (-1053 (-1192)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1053 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1053 (-574))))) (-2216 (((-574) $) NIL) (((-1192) $) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) NIL (|has| (-574) (-1053 (-574)))) (((-574) $) NIL (|has| (-574) (-1053 (-574))))) (-2800 (($ $ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2834 (($) NIL (|has| (-574) (-555)))) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3693 (((-654 (-574)) $) 79)) (-1348 (((-112) $) NIL (|has| (-574) (-830)))) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL)) (-2970 (((-574) $) 45)) (-4217 (((-3 $ "failed") $) NIL (|has| (-574) (-1167)))) (-3081 (((-112) $) NIL (|has| (-574) (-830)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-574) (-860)))) (-1787 (($ (-1 (-574) (-574)) $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL)) (-3791 (($) NIL (|has| (-574) (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2010 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-1606 (((-1172 (-574)) $) 78)) (-3138 (($ (-654 (-574)) (-654 (-574))) 82)) (-2787 (((-574) $) 64 (|has| (-574) (-555)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| (-574) (-922)))) (-4200 (((-428 $) $) NIL)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2660 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1192)) (-654 (-574))) NIL (|has| (-574) (-524 (-1192) (-574)))) (($ $ (-1192) (-574)) NIL (|has| (-574) (-524 (-1192) (-574))))) (-3575 (((-781) $) NIL)) (-2209 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) 15 (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-2593 (($ $) NIL)) (-2981 (((-574) $) 47)) (-3361 (((-654 (-574)) $) 80)) (-1846 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1037))) (((-227) $) NIL (|has| (-574) (-1037)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-922))))) (-2950 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1192)) NIL (|has| (-574) (-1053 (-1192)))) (((-417 (-574)) $) 25)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-574) (-922))) (|has| (-574) (-146))))) (-3781 (((-781)) 13 T CONST)) (-2251 (((-574) $) 62 (|has| (-574) (-555)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2366 (($ $) NIL (|has| (-574) (-830)))) (-2143 (($) 14 T CONST)) (-2155 (($) 17 T CONST)) (-3583 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-1192)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| (-574) (-913 (-1192)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2985 (((-112) $ $) 21)) (-3029 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3008 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3102 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3089 (($ $) 23) (($ $ $) 30)) (-3073 (($ $ $) 28)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL))) +(((-1019 |#1|) (-13 (-1007 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3475 ((-654 (-574)) $)) (-15 -1606 ((-1172 (-574)) $)) (-15 -3693 ((-654 (-574)) $)) (-15 -3361 ((-654 (-574)) $)) (-15 -1515 ($ (-654 (-574)))) (-15 -3138 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1019)) +((-2010 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) (-3138 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) +(-13 (-1007 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -2010 ((-417 (-574)) $)) (-15 -3475 ((-654 (-574)) $)) (-15 -1606 ((-1172 (-574)) $)) (-15 -3693 ((-654 (-574)) $)) (-15 -3361 ((-654 (-574)) $)) (-15 -1515 ($ (-654 (-574)))) (-15 -3138 ($ (-654 (-574)) (-654 (-574)))))) +((-1876 (((-52) (-417 (-574)) (-574)) 9))) +(((-1020) (-10 -7 (-15 -1876 ((-52) (-417 (-574)) (-574))))) (T -1020)) +((-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1020))))) +(-10 -7 (-15 -1876 ((-52) (-417 (-574)) (-574)))) +((-1497 (((-574)) 23)) (-2314 (((-574)) 28)) (-2968 (((-1288) (-574)) 26)) (-2245 (((-574) (-574)) 29) (((-574)) 22))) +(((-1021) (-10 -7 (-15 -2245 ((-574))) (-15 -1497 ((-574))) (-15 -2245 ((-574) (-574))) (-15 -2968 ((-1288) (-574))) (-15 -2314 ((-574))))) (T -1021)) +((-2314 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1021)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-1497 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) (-2245 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) +(-10 -7 (-15 -2245 ((-574))) (-15 -1497 ((-574))) (-15 -2245 ((-574) (-574))) (-15 -2968 ((-1288) (-574))) (-15 -2314 ((-574)))) +((-3657 (((-428 |#1|) |#1|) 43)) (-4200 (((-428 |#1|) |#1|) 41))) +(((-1022 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1|))) (-1259 (-417 (-574)))) (T -1022)) +((-3657 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) (-4 *3 (-1259 (-417 (-574)))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) (-4 *3 (-1259 (-417 (-574))))))) +(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1|))) +((-2222 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-4002 (((-112) |#1|) 14)) (-2258 (((-417 (-574)) |#1|) 10))) +(((-1023 |#1|) (-10 -7 (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|))) (-1053 (-417 (-574)))) (T -1023)) +((-2222 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1053 (-417 (-574)))))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2))))) +(-10 -7 (-15 -2258 ((-417 (-574)) |#1|)) (-15 -4002 ((-112) |#1|)) (-15 -2222 ((-3 (-417 (-574)) "failed") |#1|))) +((-3134 ((|#2| $ "value" |#2|) 12)) (-2209 ((|#2| $ "value") 10)) (-1692 (((-112) $ $) 18))) +(((-1024 |#1| |#2|) (-10 -8 (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1692 ((-112) |#1| |#1|)) (-15 -2209 (|#2| |#1| "value"))) (-1025 |#2|) (-1233)) (T -1024)) +NIL +(-10 -8 (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1692 ((-112) |#1| |#1|)) (-15 -2209 (|#2| |#1| "value"))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-3063 (($) 7 T CONST)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48)) (-1418 (((-574) $ $) 45)) (-3325 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1025 |#1|) (-141) (-1233)) (T -1025)) +((-1355 (*1 *2 *1) (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) (-2495 (*1 *2 *1) (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3)))) (-1418 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-574)))) (-1692 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-2232 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4459)) (-4 *1 (-1025 *3)) (-4 *3 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) (-2922 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -1355 ((-654 $) $)) (-15 -2495 ((-654 $) $)) (-15 -4086 ((-112) $)) (-15 -3078 (|t#1| $)) (-15 -2209 (|t#1| $ "value")) (-15 -3325 ((-112) $)) (-15 -3482 ((-654 |t#1|) $)) (-15 -1418 ((-574) $ $)) (IF (|has| |t#1| (-1115)) (PROGN (-15 -1692 ((-112) $ $)) (-15 -2232 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -1921 ($ $ (-654 $))) (-15 -3134 (|t#1| $ "value" |t#1|)) (-15 -2922 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-4211 (($ $) 9) (($ $ (-934)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-1853 (((-3 $ "failed") (-1188 $) (-934) (-872)) 24) (((-3 $ "failed") (-1188 $) (-934)) 32)) (-3649 (($ $ (-574)) 58)) (-3781 (((-781)) 18)) (-3681 (((-654 $) (-1188 $)) NIL) (((-654 $) (-1188 (-417 (-574)))) 63) (((-654 $) (-1188 (-574))) 68) (((-654 $) (-965 $)) 72) (((-654 $) (-965 (-417 (-574)))) 76) (((-654 $) (-965 (-574))) 80)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53))) +(((-1026 |#1|) (-10 -8 (-15 -4211 (|#1| (-574))) (-15 -4211 (|#1| (-417 (-574)))) (-15 -4211 (|#1| |#1| (-934))) (-15 -3681 ((-654 |#1|) (-965 (-574)))) (-15 -3681 ((-654 |#1|) (-965 (-417 (-574))))) (-15 -3681 ((-654 |#1|) (-965 |#1|))) (-15 -3681 ((-654 |#1|) (-1188 (-574)))) (-15 -3681 ((-654 |#1|) (-1188 (-417 (-574))))) (-15 -3681 ((-654 |#1|) (-1188 |#1|))) (-15 -1853 ((-3 |#1| "failed") (-1188 |#1|) (-934))) (-15 -1853 ((-3 |#1| "failed") (-1188 |#1|) (-934) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3649 (|#1| |#1| (-574))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3781 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) (-1027)) (T -1026)) +((-3781 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1026 *3)) (-4 *3 (-1027))))) +(-10 -8 (-15 -4211 (|#1| (-574))) (-15 -4211 (|#1| (-417 (-574)))) (-15 -4211 (|#1| |#1| (-934))) (-15 -3681 ((-654 |#1|) (-965 (-574)))) (-15 -3681 ((-654 |#1|) (-965 (-417 (-574))))) (-15 -3681 ((-654 |#1|) (-965 |#1|))) (-15 -3681 ((-654 |#1|) (-1188 (-574)))) (-15 -3681 ((-654 |#1|) (-1188 (-417 (-574))))) (-15 -3681 ((-654 |#1|) (-1188 |#1|))) (-15 -1853 ((-3 |#1| "failed") (-1188 |#1|) (-934))) (-15 -1853 ((-3 |#1| "failed") (-1188 |#1|) (-934) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3649 (|#1| |#1| (-574))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3781 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 102)) (-4319 (($ $) 103)) (-1731 (((-112) $) 105)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 122)) (-2153 (((-428 $) $) 123)) (-4211 (($ $) 86) (($ $ (-934)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-1526 (((-112) $ $) 113)) (-2496 (((-574) $) 139)) (-3063 (($) 18 T CONST)) (-1853 (((-3 $ "failed") (-1188 $) (-934) (-872)) 80) (((-3 $ "failed") (-1188 $) (-934)) 79)) (-1706 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2216 (((-574) $) 98 (|has| (-417 (-574)) (-1053 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-417 (-574)) $) 95)) (-3900 (($ $ (-872)) 69)) (-2655 (($ $ (-872)) 68)) (-2800 (($ $ $) 117)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 116)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 111)) (-2941 (((-112) $) 124)) (-1348 (((-112) $) 137)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 85)) (-3081 (((-112) $) 138)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3632 (($ $ $) 136)) (-2953 (($ $ $) 135)) (-3732 (((-3 (-1188 $) "failed") $) 81)) (-2402 (((-3 (-872) "failed") $) 83)) (-3241 (((-3 (-1188 $) "failed") $) 82)) (-2844 (($ (-654 $)) 109) (($ $ $) 108)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 125)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 110)) (-2886 (($ (-654 $)) 107) (($ $ $) 106)) (-4200 (((-428 $) $) 121)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 118)) (-2852 (((-3 $ "failed") $ $) 101)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-3575 (((-781) $) 114)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 115)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 104)) (-3524 (((-417 (-574)) $ $) 67)) (-3681 (((-654 $) (-1188 $)) 78) (((-654 $) (-1188 (-417 (-574)))) 77) (((-654 $) (-1188 (-574))) 76) (((-654 $) (-965 $)) 75) (((-654 $) (-965 (-417 (-574)))) 74) (((-654 $) (-965 (-574))) 73)) (-2366 (($ $) 140)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 133)) (-3017 (((-112) $ $) 132)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 134)) (-3008 (((-112) $ $) 131)) (-3102 (($ $ $) 130)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87))) +(((-1027) (-141)) (T -1027)) +((-4211 (*1 *1 *1) (-4 *1 (-1027))) (-2402 (*1 *2 *1) (|partial| -12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-3241 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027)))) (-3732 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027)))) (-1853 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-5 *4 (-872)) (-4 *1 (-1027)))) (-1853 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-4 *1 (-1027)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-1188 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-934)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1027)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1027)))) (-3900 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-2655 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872)))) (-3524 (*1 *2 *1 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-417 (-574)))))) +(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1017) (-10 -8 (-15 -2402 ((-3 (-872) "failed") $)) (-15 -3241 ((-3 (-1188 $) "failed") $)) (-15 -3732 ((-3 (-1188 $) "failed") $)) (-15 -1853 ((-3 $ "failed") (-1188 $) (-934) (-872))) (-15 -1853 ((-3 $ "failed") (-1188 $) (-934))) (-15 -3681 ((-654 $) (-1188 $))) (-15 -3681 ((-654 $) (-1188 (-417 (-574))))) (-15 -3681 ((-654 $) (-1188 (-574)))) (-15 -3681 ((-654 $) (-965 $))) (-15 -3681 ((-654 $) (-965 (-417 (-574))))) (-15 -3681 ((-654 $) (-965 (-574)))) (-15 -4211 ($ $ (-934))) (-15 -4211 ($ $)) (-15 -4211 ($ (-417 (-574)))) (-15 -4211 ($ (-574))) (-15 -3900 ($ $ (-872))) (-15 -2655 ($ $ (-872))) (-15 -3524 ((-417 (-574)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-933) . T) ((-1017) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) |has| (-417 (-574)) (-1053 (-574))) ((-1066 #0#) . T) ((-1066 #1#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 #1#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-3824 (((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1028 |#1| |#2|) (-10 -7 (-15 -3824 ((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-27) (-440 |#1|))) (T -1028)) +((-3824 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1192)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1218) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112)))) (-5 *1 (-1028 *8 *4))))) +(-10 -7 (-15 -3824 ((-2 (|:| |ans| |#2|) (|:| -3877 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2790 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -2790 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1053 (-574)) (-649 (-574))) (-13 (-1218) (-27) (-440 |#1|))) (T -1029)) +((-2790 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1192)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1218) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1029 *8 *4))))) +(-10 -7 (-15 -2790 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1192) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1527 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1390 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4096 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-3812 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-3984 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -3812 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3984 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1390 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4096 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -1030)) +((-1390 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4096 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1030 *6 *3)))) (-3984 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-417 *5)))) (-3812 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2152 *6))) (-5 *1 (-1030 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -3812 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3984 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -1390 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4096 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) +((-1735 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-2228 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -1735 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2228 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1053 (-574))) (-1259 |#1|)) (T -1031)) +((-2228 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5)))) (-1735 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2152 *6))) (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) +(-10 -7 (-15 -1735 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2152 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -2228 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) +((-3949 (((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -1724 (-574))))) 34)) (-3946 (((-1 |#1|) (-1117 |#1|)) 42)) (-3022 (((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)) 31))) +(((-1032 |#1|) (-10 -7 (-15 -3946 ((-1 |#1|) (-1117 |#1|))) (-15 -3949 ((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -1724 (-574)))))) (-15 -3022 ((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)))) (-1115)) (T -1032)) +((-3022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1283 *6)) (-5 *4 (-1283 (-574))) (-5 *5 (-574)) (-4 *6 (-1115)) (-5 *2 (-1 *6)) (-5 *1 (-1032 *6)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3078 *4) (|:| -1724 (-574))))) (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4))))) +(-10 -7 (-15 -3946 ((-1 |#1|) (-1117 |#1|))) (-15 -3949 ((-1 |#1|) (-654 (-2 (|:| -3078 |#1|) (|:| -1724 (-574)))))) (-15 -3022 ((-1 |#1|) (-1283 |#1|) (-1283 (-574)) (-574)))) +((-3837 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1033 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3837 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1259 |#1|) (-1259 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1033)) +((-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-4 *4 (-1259 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1033 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3837 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2863 (((-112) $ $) NIL)) (-4151 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 11)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1034) (-13 (-1098) (-10 -8 (-15 -4151 ((-1150) $)) (-15 -2053 ((-1150) $))))) (T -1034)) +((-4151 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034))))) +(-13 (-1098) (-10 -8 (-15 -4151 ((-1150) $)) (-15 -2053 ((-1150) $)))) +((-4385 (((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 32) (((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 29)) (-2908 (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 33) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|) 28)) (-4174 (((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) 20)) (-1478 (((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 17))) +(((-1035 |#1|) (-10 -7 (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1478 ((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -4174 ((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))))) (-1259 (-574))) (T -1035)) +((-4174 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574))))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574))))) (-4385 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) (-4385 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) (-2908 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) (-2908 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-417 (-574))))) (-2908 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574)))))) +(-10 -7 (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -1478 ((-417 (-574)) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -4174 ((-654 (-417 (-574))) (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))))) +((-4385 (((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 35) (((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 32)) (-2908 (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) 28) (((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|) 24))) +(((-1036 |#1|) (-10 -7 (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-1259 (-417 (-574)))) (T -1036)) +((-4385 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) (-4385 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) (-2908 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *5)) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) (-2908 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3864 *4) (|:| -3877 *4)))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))) (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) (-2908 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574))))))) +(-10 -7 (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1|)) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -2908 ((-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-417 (-574)))) (-15 -4385 ((-3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) "failed") |#1| (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))) (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) +((-1846 (((-227) $) 6) (((-388) $) 9))) +(((-1037) (-141)) (T -1037)) +NIL +(-13 (-624 (-227)) (-624 (-388))) +(((-624 (-227)) . T) ((-624 (-388)) . T)) +((-2613 (((-654 (-388)) (-965 (-574)) (-388)) 28) (((-654 (-388)) (-965 (-417 (-574))) (-388)) 27)) (-2735 (((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388)) 37))) +(((-1038) (-10 -7 (-15 -2613 ((-654 (-388)) (-965 (-417 (-574))) (-388))) (-15 -2613 ((-654 (-388)) (-965 (-574)) (-388))) (-15 -2735 ((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388))))) (T -1038)) +((-2735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1038)) (-5 *5 (-388)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) (-5 *4 (-388)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) (-5 *4 (-388))))) +(-10 -7 (-15 -2613 ((-654 (-388)) (-965 (-417 (-574))) (-388))) (-15 -2613 ((-654 (-388)) (-965 (-574)) (-388))) (-15 -2735 ((-654 (-654 (-388))) (-654 (-965 (-574))) (-654 (-1192)) (-388)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 75)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-4211 (($ $) NIL) (($ $ (-934)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) 70)) (-3063 (($) NIL T CONST)) (-1853 (((-3 $ "failed") (-1188 $) (-934) (-872)) NIL) (((-3 $ "failed") (-1188 $) (-934)) 55)) (-1706 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))))) (-2216 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1053 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2832 (|has| (-417 (-574)) (-1053 (-574))) (|has| |#1| (-1053 (-574)))))) (-3900 (($ $ (-872)) 47)) (-2655 (($ $ (-872)) 48)) (-2800 (($ $ $) NIL)) (-2843 (((-417 (-574)) $ $) 21)) (-2978 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-1348 (((-112) $) 66)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL)) (-3081 (((-112) $) 69)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-3732 (((-3 (-1188 $) "failed") $) 83)) (-2402 (((-3 (-872) "failed") $) 82)) (-3241 (((-3 (-1188 $) "failed") $) 80)) (-1396 (((-3 (-1076 $ (-1188 $)) "failed") $) 78)) (-2844 (($ (-654 $)) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 89)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2950 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-3524 (((-417 (-574)) $ $) 27)) (-3681 (((-654 $) (-1188 $)) 61) (((-654 $) (-1188 (-417 (-574)))) NIL) (((-654 $) (-1188 (-574))) NIL) (((-654 $) (-965 $)) NIL) (((-654 $) (-965 (-417 (-574)))) NIL) (((-654 $) (-965 (-574))) NIL)) (-2898 (($ (-1076 $ (-1188 $)) (-872)) 46)) (-2366 (($ $) 22)) (-2143 (($) 32 T CONST)) (-2155 (($) 39 T CONST)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 76)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 24)) (-3102 (($ $ $) 37)) (-3089 (($ $) 38) (($ $ $) 74)) (-3073 (($ $ $) 112)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1039 |#1|) (-13 (-1027) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2898 ($ (-1076 $ (-1188 $)) (-872))) (-15 -1396 ((-3 (-1076 $ (-1188 $)) "failed") $)) (-15 -2843 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1037))) (T -1039)) +((-2898 (*1 *1 *2 *3) (-12 (-5 *2 (-1076 (-1039 *4) (-1188 (-1039 *4)))) (-5 *3 (-872)) (-5 *1 (-1039 *4)) (-4 *4 (-13 (-858) (-372) (-1037))))) (-1396 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076 (-1039 *3) (-1188 (-1039 *3)))) (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037))))) (-2843 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037)))))) +(-13 (-1027) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2898 ($ (-1076 $ (-1188 $)) (-872))) (-15 -1396 ((-3 (-1076 $ (-1188 $)) "failed") $)) (-15 -2843 ((-417 (-574)) $ $)))) +((-2578 (((-2 (|:| -4096 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1040 |#1| |#2|) (-10 -7 (-15 -2578 (|#2| |#2| |#1|)) (-15 -2578 ((-2 (|:| -4096 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1040)) +((-2578 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4096 *3) (|:| -4285 (-654 *5)))) (-5 *1 (-1040 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-2578 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1040 *3 *2)) (-4 *2 (-666 *3))))) +(-10 -7 (-15 -2578 (|#2| |#2| |#1|)) (-15 -2578 ((-2 (|:| -4096 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3181 ((|#1| $ |#1|) 14)) (-3134 ((|#1| $ |#1|) 12)) (-1896 (($ |#1|) 10)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2209 ((|#1| $) 11)) (-1946 ((|#1| $) 13)) (-2950 (((-872) $) 21 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 9))) +(((-1041 |#1|) (-13 (-1233) (-10 -8 (-15 -1896 ($ |#1|)) (-15 -2209 (|#1| $)) (-15 -3134 (|#1| $ |#1|)) (-15 -1946 (|#1| $)) (-15 -3181 (|#1| $ |#1|)) (-15 -2985 ((-112) $ $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1041)) +((-1896 (*1 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-2209 (*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-1946 (*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-3181 (*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1041 *3)) (-4 *3 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -1896 ($ |#1|)) (-15 -2209 (|#1| $)) (-15 -3134 (|#1| $ |#1|)) (-15 -1946 (|#1| $)) (-15 -3181 (|#1| $ |#1|)) (-15 -2985 ((-112) $ $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1346 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4349 (((-654 |#3|) $) NIL)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3871 ((|#4| |#4| $) NIL)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 112)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 66)) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) 29 (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2717 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1779 ((|#4| |#4| $) 69)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2544 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) NIL)) (-3288 (((-112) |#4| $) NIL)) (-1861 (((-112) |#4| $) NIL)) (-2196 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2045 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1874 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2464 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-3320 (((-654 |#3|) $) NIL)) (-2704 (((-112) |#3| $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 110)) (-3333 (((-3 |#4| "failed") $) 42)) (-2737 (((-654 $) |#4| $) 93)) (-2538 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2627 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-2405 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-3599 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4009 (((-654 |#4|) $) NIL)) (-1746 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2780 ((|#4| |#4| $) NIL)) (-3419 (((-112) $ $) NIL)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1371 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3967 (((-3 $ "failed") $ |#4|) 59)) (-4016 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 14)) (-4144 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1846 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-2018 (($ $ |#3|) 52)) (-2250 (($ $ |#3|) 54)) (-2293 (($ $) NIL)) (-4091 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3988 (((-781) $) NIL (|has| |#3| (-377)))) (-4259 (((-112) $ $) NIL)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2457 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) NIL)) (-2906 (((-112) |#4| $) NIL)) (-2488 (((-112) |#3| $) 65)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1042 |#1| |#2| |#3| |#4|) (-13 (-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3599 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2405 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2045 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1042)) +((-3599 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *3))) (-5 *1 (-1042 *5 *6 *7 *3)) (-4 *3 (-1080 *5 *6 *7)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-2405 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) (-2045 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1042 *5 *6 *7 *8))))) (-5 *1 (-1042 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(-13 (-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3599 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2405 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2045 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) +((-2509 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-3887 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934)) 63) (((-699 |#1|) (-699 |#1|) (-934)) 62)) (-2936 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-918 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-918 (-574)) (-574)) 75)) (-1903 (((-699 (-965 |#1|)) (-781)) 95)) (-1656 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934)) 49 (|has| |#1| (-6 (-4460 "*")))) (((-699 |#1|) (-699 |#1|) (-934)) 47 (|has| |#1| (-6 (-4460 "*")))))) +(((-1043 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -1656 ((-699 |#1|) (-699 |#1|) (-934))) |%noBranch|) (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -1656 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) |%noBranch|) (-15 -1903 ((-699 (-965 |#1|)) (-781))) (-15 -3887 ((-699 |#1|) (-699 |#1|) (-934))) (-15 -3887 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) (-15 -2509 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2509 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2509 ((-699 |#1|) (-699 |#1|))) (-15 -2509 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2936 ((-699 (-574)) (-918 (-574)) (-574))) (-15 -2936 ((-699 (-574)) (-654 (-574)))) (-15 -2936 ((-654 (-699 (-574))) (-654 (-918 (-574))) (-574))) (-15 -2936 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1064)) (T -1043)) +((-2936 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-918 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-918 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) (-3887 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-3887 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-965 *4))) (-5 *1 (-1043 *4)) (-4 *4 (-1064)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -1656 ((-699 |#1|) (-699 |#1|) (-934))) |%noBranch|) (IF (|has| |#1| (-6 (-4460 "*"))) (-15 -1656 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) |%noBranch|) (-15 -1903 ((-699 (-965 |#1|)) (-781))) (-15 -3887 ((-699 |#1|) (-699 |#1|) (-934))) (-15 -3887 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-934))) (-15 -2509 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2509 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2509 ((-699 |#1|) (-699 |#1|))) (-15 -2509 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2936 ((-699 (-574)) (-918 (-574)) (-574))) (-15 -2936 ((-699 (-574)) (-654 (-574)))) (-15 -2936 ((-654 (-699 (-574))) (-654 (-918 (-574))) (-574))) (-15 -2936 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) +((-3159 (((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)) 70 (|has| |#1| (-315)))) (-4369 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|)) 117 (|has| |#1| (-372)))) (-1991 (((-1283 |#1|) (-654 (-1283 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-2148 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-3455 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-3956 (((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|)) 67 (|has| |#1| (-315)))) (-3249 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-2187 (((-699 |#1|) (-1283 (-1283 |#1|))) 40)) (-2363 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372))))) +(((-1044 |#1|) (-10 -7 (-15 -2187 ((-699 |#1|) (-1283 (-1283 |#1|)))) (-15 -3249 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3956 ((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -3159 ((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -3455 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -3455 ((-112) (-654 (-699 |#1|)))) (-15 -4369 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -4369 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934))) (-15 -1991 ((-1283 |#1|) (-654 (-1283 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1064)) (T -1044)) +((-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1283 *5))) (-5 *4 (-574)) (-5 *2 (-1283 *5)) (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-2148 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1064)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-654 (-699 *4))))) (-2148 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1064)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1044 *6)) (-5 *3 (-654 (-699 *6))))) (-4369 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 (-1283 *5))) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-4369 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-654 (-699 *5))))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *4)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *5)))) (-2363 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-1064)))) (-2363 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4)) (-4 *4 (-372)) (-4 *4 (-1064)))) (-2363 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1044 *6)) (-4 *6 (-372)) (-4 *6 (-1064)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1283 *5)) (-4 *5 (-315)) (-4 *5 (-1064)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1064)) (-5 *2 (-1283 (-1283 *5))) (-5 *1 (-1044 *5)) (-5 *4 (-1283 *5)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1044 *4)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1283 (-1283 *4))) (-4 *4 (-1064)) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4))))) +(-10 -7 (-15 -2187 ((-699 |#1|) (-1283 (-1283 |#1|)))) (-15 -3249 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3956 ((-1283 (-1283 |#1|)) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -3159 ((-699 |#1|) (-654 (-699 |#1|)) (-1283 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2363 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -3455 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -3455 ((-112) (-654 (-699 |#1|)))) (-15 -4369 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 |#1|))) (-15 -4369 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1283 (-1283 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2148 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-934))) (-15 -1991 ((-1283 |#1|) (-654 (-1283 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) +((-1710 ((|#1| (-934) |#1|) 18))) +(((-1045 |#1|) (-10 -7 (-15 -1710 (|#1| (-934) |#1|))) (-13 (-1115) (-10 -8 (-15 -3073 ($ $ $))))) (T -1045)) +((-1710 (*1 *2 *3 *2) (-12 (-5 *3 (-934)) (-5 *1 (-1045 *2)) (-4 *2 (-13 (-1115) (-10 -8 (-15 -3073 ($ $ $)))))))) +(-10 -7 (-15 -1710 (|#1| (-934) |#1|))) +((-3290 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574))))) 67)) (-3777 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574))))) 52)) (-3226 (((-654 (-324 (-574))) (-699 (-417 (-965 (-574))))) 45)) (-2508 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574))))) 85)) (-2743 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-1659 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-3959 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574))))) 82))) +(((-1046) (-10 -7 (-15 -3290 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574)))))) (-15 -3777 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574)))))) (-15 -3226 ((-654 (-324 (-574))) (-699 (-417 (-965 (-574)))))) (-15 -3959 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574)))))) (-15 -2743 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -1659 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2508 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574)))))))) (T -1046)) +((-2508 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046)))) (-3959 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1046)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)) (-5 *3 (-324 (-574))))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1046))))) +(-10 -7 (-15 -3290 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-965 (-574)))))) (-15 -3777 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-965 (-574)))))) (-15 -3226 ((-654 (-324 (-574))) (-699 (-417 (-965 (-574)))))) (-15 -3959 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-965 (-574)))))) (-15 -2743 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -1659 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2508 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-965 (-574))))))) +((-4205 ((|#1| |#1| (-934)) 18))) +(((-1047 |#1|) (-10 -7 (-15 -4205 (|#1| |#1| (-934)))) (-13 (-1115) (-10 -8 (-15 * ($ $ $))))) (T -1047)) +((-4205 (*1 *2 *2 *3) (-12 (-5 *3 (-934)) (-5 *1 (-1047 *2)) (-4 *2 (-13 (-1115) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -4205 (|#1| |#1| (-934)))) +((-2950 ((|#1| (-320)) 11) (((-1288) |#1|) 9))) +(((-1048 |#1|) (-10 -7 (-15 -2950 ((-1288) |#1|)) (-15 -2950 (|#1| (-320)))) (-1233)) (T -1048)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1048 *2)) (-4 *2 (-1233)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1288)) (-5 *1 (-1048 *3)) (-4 *3 (-1233))))) +(-10 -7 (-15 -2950 ((-1288) |#1|)) (-15 -2950 (|#1| (-320)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2881 (($ |#4|) 25)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-2868 ((|#4| $) 27)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3781 (((-781)) 43 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 23 T CONST)) (-2985 (((-112) $ $) 40)) (-3089 (($ $) 31) (($ $ $) NIL)) (-3073 (($ $ $) 29)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2881 ($ |#4|)) (-15 -2950 ($ |#4|)) (-15 -2868 (|#4| $)))) (-372) (-803) (-860) (-962 |#1| |#2| |#3|) (-654 |#4|)) (T -1049)) +((-2881 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-962 *3 *4 *5)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2881 ($ |#4|)) (-15 -2950 ($ |#4|)) (-15 -2868 (|#4| $)))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2057 (((-1288) $ (-1192) (-1192)) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-2683 (((-112) (-112)) 43)) (-2305 (((-112) (-112)) 42)) (-3134 (((-52) $ (-1192) (-52)) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 (-52) "failed") (-1192) $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-3245 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1192) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2473 (((-52) $ (-1192) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1192)) NIL)) (-1874 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-1192) $) NIL (|has| (-1192) (-860)))) (-4187 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-1965 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-1773 (((-654 (-1192)) $) 37)) (-3735 (((-112) (-1192) $) NIL)) (-1494 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL)) (-1948 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL)) (-2435 (((-654 (-1192)) $) NIL)) (-4088 (((-112) (-1192) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-2924 (((-52) $) NIL (|has| (-1192) (-860)))) (-1745 (((-3 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL)) (-2485 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-3670 (((-654 (-52)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 (((-52) $ (-1192)) 39) (((-52) $ (-1192) (-52)) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2950 (((-872) $) 41 (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1050) (-13 (-1209 (-1192) (-52)) (-10 -7 (-15 -2683 ((-112) (-112))) (-15 -2305 ((-112) (-112))) (-6 -4458)))) (T -1050)) +((-2683 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) +(-13 (-1209 (-1192) (-52)) (-10 -7 (-15 -2683 ((-112) (-112))) (-15 -2305 ((-112) (-112))) (-6 -4458))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1051) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $))))) (T -1051)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1051))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)))) +((-2216 ((|#2| $) 10))) +(((-1052 |#1| |#2|) (-10 -8 (-15 -2216 (|#2| |#1|))) (-1053 |#2|) (-1233)) (T -1052)) +NIL +(-10 -8 (-15 -2216 (|#2| |#1|))) +((-1706 (((-3 |#1| "failed") $) 9)) (-2216 ((|#1| $) 8)) (-2950 (($ |#1|) 6))) +(((-1053 |#1|) (-141) (-1233)) (T -1053)) +((-1706 (*1 *2 *1) (|partial| -12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1233))))) +(-13 (-626 |t#1|) (-10 -8 (-15 -1706 ((-3 |t#1| "failed") $)) (-15 -2216 (|t#1| $)))) +(((-626 |#1|) . T)) +((-2068 (((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))) 38))) +(((-1054 |#1| |#2|) (-10 -7 (-15 -2068 ((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))))) (-566) (-13 (-566) (-1053 |#1|))) (T -1054)) +((-2068 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-13 (-566) (-1053 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *6)))))) (-5 *1 (-1054 *5 *6))))) +(-10 -7 (-15 -2068 ((-654 (-654 (-302 (-417 (-965 |#2|))))) (-654 (-965 |#2|)) (-654 (-1192))))) +((-3675 (((-388)) 17)) (-3946 (((-1 (-388)) (-388) (-388)) 22)) (-2152 (((-1 (-388)) (-781)) 48)) (-2774 (((-388)) 37)) (-1366 (((-1 (-388)) (-388) (-388)) 38)) (-3292 (((-388)) 29)) (-4214 (((-1 (-388)) (-388)) 30)) (-3511 (((-388) (-781)) 43)) (-2130 (((-1 (-388)) (-781)) 44)) (-1395 (((-1 (-388)) (-781) (-781)) 47)) (-1437 (((-1 (-388)) (-781) (-781)) 45))) +(((-1055) (-10 -7 (-15 -3675 ((-388))) (-15 -2774 ((-388))) (-15 -3292 ((-388))) (-15 -3511 ((-388) (-781))) (-15 -3946 ((-1 (-388)) (-388) (-388))) (-15 -1366 ((-1 (-388)) (-388) (-388))) (-15 -4214 ((-1 (-388)) (-388))) (-15 -2130 ((-1 (-388)) (-781))) (-15 -1437 ((-1 (-388)) (-781) (-781))) (-15 -1395 ((-1 (-388)) (-781) (-781))) (-15 -2152 ((-1 (-388)) (-781))))) (T -1055)) +((-2152 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-1395 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) (-4214 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-1366 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-3946 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1055)))) (-3292 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055)))) (-2774 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055)))) (-3675 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) +(-10 -7 (-15 -3675 ((-388))) (-15 -2774 ((-388))) (-15 -3292 ((-388))) (-15 -3511 ((-388) (-781))) (-15 -3946 ((-1 (-388)) (-388) (-388))) (-15 -1366 ((-1 (-388)) (-388) (-388))) (-15 -4214 ((-1 (-388)) (-388))) (-15 -2130 ((-1 (-388)) (-781))) (-15 -1437 ((-1 (-388)) (-781) (-781))) (-15 -1395 ((-1 (-388)) (-781) (-781))) (-15 -2152 ((-1 (-388)) (-781)))) +((-4200 (((-428 |#1|) |#1|) 33))) +(((-1056 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|))) (-1259 (-417 (-965 (-574))))) (T -1056)) +((-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1259 (-417 (-965 (-574)))))))) +(-10 -7 (-15 -4200 ((-428 |#1|) |#1|))) +((-4230 (((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))) 14))) +(((-1057 |#1|) (-10 -7 (-15 -4230 ((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))))) (-315)) (T -1057)) +((-4230 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-965 *4)))) (-5 *1 (-1057 *4))))) +(-10 -7 (-15 -4230 ((-417 (-428 (-965 |#1|))) (-417 (-965 |#1|))))) +((-4349 (((-654 (-1192)) (-417 (-965 |#1|))) 17)) (-4172 (((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192)) 24)) (-4338 (((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192)) 26)) (-1407 (((-3 (-1192) "failed") (-417 (-965 |#1|))) 20)) (-2660 (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|))))) 32) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|)))) 33) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|)))) 28) (((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|))) 29)) (-2950 (((-417 (-965 |#1|)) |#1|) 11))) +(((-1058 |#1|) (-10 -7 (-15 -4349 ((-654 (-1192)) (-417 (-965 |#1|)))) (-15 -1407 ((-3 (-1192) "failed") (-417 (-965 |#1|)))) (-15 -4172 ((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -4338 ((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2950 ((-417 (-965 |#1|)) |#1|))) (-566)) (T -1058)) +((-2950 (*1 *2 *3) (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-566)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-5 *2 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-5 *2 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-2660 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-5 *4 (-654 (-417 (-965 *5)))) (-5 *2 (-417 (-965 *5))) (-4 *5 (-566)) (-5 *1 (-1058 *5)))) (-2660 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-1058 *4)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1188 (-417 (-965 *5))))) (-5 *4 (-1192)) (-5 *2 (-417 (-965 *5))) (-5 *1 (-1058 *5)) (-4 *5 (-566)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-417 (-1188 (-417 (-965 *5))))) (-5 *1 (-1058 *5)) (-5 *3 (-417 (-965 *5))))) (-1407 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-1192)) (-5 *1 (-1058 *4)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1192))) (-5 *1 (-1058 *4))))) +(-10 -7 (-15 -4349 ((-654 (-1192)) (-417 (-965 |#1|)))) (-15 -1407 ((-3 (-1192) "failed") (-417 (-965 |#1|)))) (-15 -4172 ((-417 (-1188 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -4338 ((-417 (-965 |#1|)) (-417 (-1188 (-417 (-965 |#1|)))) (-1192))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-1192)) (-654 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-302 (-417 (-965 |#1|))))) (-15 -2660 ((-417 (-965 |#1|)) (-417 (-965 |#1|)) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2950 ((-417 (-965 |#1|)) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3063 (($) 18 T CONST)) (-1464 ((|#1| $) 23)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2947 ((|#1| $) 22)) (-3901 ((|#1|) 20 T CONST)) (-2950 (((-872) $) 12)) (-2929 ((|#1| $) 21)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) +(((-1059 |#1|) (-141) (-23)) (T -1059)) +((-1464 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23)))) (-3901 (*1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -1464 (|t#1| $)) (-15 -2947 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -3901 (|t#1|) -1716))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2890 (($) 25 T CONST)) (-3063 (($) 18 T CONST)) (-1464 ((|#1| $) 23)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2947 ((|#1| $) 22)) (-3901 ((|#1|) 20 T CONST)) (-2950 (((-872) $) 12)) (-2929 ((|#1| $) 21)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16))) +(((-1060 |#1|) (-141) (-23)) (T -1060)) +((-2890 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) +(-13 (-1059 |t#1|) (-10 -8 (-15 -2890 ($) -1716))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1059 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-1346 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4349 (((-654 (-874 |#2|)) $) NIL)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-3228 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3871 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3313 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4067 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) NIL (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-3461 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2717 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1392 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2216 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2934 (((-3 $ "failed") $) NIL)) (-1779 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-3310 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-3514 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2544 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2881 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4458))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2569 (((-2 (|:| -1389 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1686 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-3288 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1861 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2196 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1874 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2541 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3066 (((-874 |#2|) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-2464 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-3320 (((-654 (-874 |#2|)) $) NIL)) (-2704 (((-112) (-874 |#2|) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1979 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-1897 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4067 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3333 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2737 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-2538 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2627 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-3599 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4009 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-1746 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-2780 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3419 (((-112) $ $) NIL)) (-3817 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-2385 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1371 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-1745 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-3967 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-4016 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-4043 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-4144 (((-781) $) NIL)) (-3948 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-790 |#1| (-874 |#2|)) (-1115)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2018 (($ $ (-874 |#2|)) NIL)) (-2250 (($ $ (-874 |#2|)) NIL)) (-2293 (($ $) NIL)) (-4091 (($ $ (-874 |#2|)) NIL)) (-2950 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-3988 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-4259 (((-112) $ $) NIL)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3060 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-2457 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2235 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2797 (((-654 (-874 |#2|)) $) NIL)) (-2906 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2488 (((-112) (-874 |#2|) $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1061 |#1| |#2|) (-13 (-1086 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1346 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1192))) (T -1061)) +((-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1061 *5 *6))))) +(-13 (-1086 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -1346 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) +((-3946 (((-1 (-574)) (-1109 (-574))) 32)) (-4143 (((-574) (-574) (-574) (-574) (-574)) 29)) (-2835 (((-1 (-574)) |RationalNumber|) NIL)) (-4166 (((-1 (-574)) |RationalNumber|) NIL)) (-2561 (((-1 (-574)) (-574) |RationalNumber|) NIL))) +(((-1062) (-10 -7 (-15 -3946 ((-1 (-574)) (-1109 (-574)))) (-15 -2561 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2835 ((-1 (-574)) |RationalNumber|)) (-15 -4166 ((-1 (-574)) |RationalNumber|)) (-15 -4143 ((-574) (-574) (-574) (-574) (-574))))) (T -1062)) +((-4143 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1062)))) (-4166 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)))) (-2835 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)))) (-2561 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)) (-5 *3 (-574)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1109 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) +(-10 -7 (-15 -3946 ((-1 (-574)) (-1109 (-574)))) (-15 -2561 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2835 ((-1 (-574)) |RationalNumber|)) (-15 -4166 ((-1 (-574)) |RationalNumber|)) (-15 -4143 ((-574) (-574) (-574) (-574) (-574)))) +((-2950 (((-872) $) NIL) (($ (-574)) 10))) +(((-1063 |#1|) (-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1064)) (T -1063)) +NIL +(-10 -8 (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1064) (-141)) (T -1064)) +((-3781 (*1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-781))))) +(-13 (-1073) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -3781 ((-781)) -1716) (-6 -4455))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-3795 (((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54))) +(((-1065 |#1| |#2|) (-10 -7 (-15 -3795 ((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1192) (-372)) (T -1065)) +((-3795 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-965 *6))) (-5 *1 (-1065 *5 *6)) (-14 *5 (-1192))))) +(-10 -7 (-15 -3795 ((-417 (-965 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 15)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2985 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1066 |#1|) (-141) (-1073)) (T -1066)) +((-2143 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1073)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1073))))) +(-13 (-1115) (-10 -8 (-15 (-2143) ($) -1716) (-15 -1997 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3385 (((-112) $) 38)) (-3087 (((-112) $) 17)) (-2199 (((-781) $) 13)) (-2208 (((-781) $) 14)) (-3808 (((-112) $) 30)) (-1349 (((-112) $) 40))) +(((-1067 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2208 ((-781) |#1|)) (-15 -2199 ((-781) |#1|)) (-15 -1349 ((-112) |#1|)) (-15 -3385 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -3087 ((-112) |#1|))) (-1068 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1064) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1067)) +NIL +(-10 -8 (-15 -2208 ((-781) |#1|)) (-15 -2199 ((-781) |#1|)) (-15 -1349 ((-112) |#1|)) (-15 -3385 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -3087 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3385 (((-112) $) 56)) (-2599 (((-3 $ "failed") $ $) 20)) (-3087 (((-112) $) 58)) (-1750 (((-112) $ (-781)) 66)) (-3063 (($) 18 T CONST)) (-1538 (($ $) 39 (|has| |#3| (-315)))) (-4358 ((|#4| $ (-574)) 44)) (-3557 (((-781) $) 38 (|has| |#3| (-566)))) (-2399 ((|#3| $ (-574) (-574)) 46)) (-1874 (((-654 |#3|) $) 73 (|has| $ (-6 -4458)))) (-3352 (((-781) $) 37 (|has| |#3| (-566)))) (-3819 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2199 (((-781) $) 50)) (-2208 (((-781) $) 49)) (-2121 (((-112) $ (-781)) 65)) (-1536 (((-574) $) 54)) (-2419 (((-574) $) 52)) (-4187 (((-654 |#3|) $) 74 (|has| $ (-6 -4458)))) (-3801 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1115)) (|has| $ (-6 -4458))))) (-2612 (((-574) $) 53)) (-2514 (((-574) $) 51)) (-2923 (($ (-654 (-654 |#3|))) 59)) (-2464 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3160 (((-654 (-654 |#3|)) $) 48)) (-2713 (((-112) $ (-781)) 64)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-4043 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-3968 (((-112) $ $) 60)) (-2234 (((-112) $) 63)) (-4272 (($) 62)) (-2209 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-3808 (((-112) $) 57)) (-3948 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4458)))) (-3156 (($ $) 61)) (-3144 ((|#5| $ (-574)) 43)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2235 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4458)))) (-1349 (((-112) $) 55)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2876 (((-781) $) 67 (|has| $ (-6 -4458))))) +(((-1068 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1064) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1068)) +((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1064)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) (-2399 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) (-2209 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *2 (-1064)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-4358 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *2 *7)) (-4 *6 (-1064)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-3144 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *7 *2)) (-4 *6 (-1064)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-1538 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7))))) +(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4458) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2923 ($ (-654 (-654 |t#3|)))) (-15 -3087 ((-112) $)) (-15 -3808 ((-112) $)) (-15 -3385 ((-112) $)) (-15 -1349 ((-112) $)) (-15 -1536 ((-574) $)) (-15 -2612 ((-574) $)) (-15 -2419 ((-574) $)) (-15 -2514 ((-574) $)) (-15 -2199 ((-781) $)) (-15 -2208 ((-781) $)) (-15 -3160 ((-654 (-654 |t#3|)) $)) (-15 -2209 (|t#3| $ (-574) (-574))) (-15 -2399 (|t#3| $ (-574) (-574))) (-15 -2209 (|t#3| $ (-574) (-574) |t#3|)) (-15 -4358 (|t#4| $ (-574))) (-15 -3144 (|t#5| $ (-574))) (-15 -1787 ($ (-1 |t#3| |t#3|) $)) (-15 -1787 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2852 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3102 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -1538 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3557 ((-781) $)) (-15 -3352 ((-781) $)) (-15 -3819 ((-654 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1066 |#3|) . T) ((-1071 |#3|) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3385 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3087 (((-112) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-1538 (($ $) 47 (|has| |#3| (-315)))) (-4358 (((-246 |#2| |#3|) $ (-574)) 36)) (-1759 (($ (-699 |#3|)) 45)) (-3557 (((-781) $) 49 (|has| |#3| (-566)))) (-2399 ((|#3| $ (-574) (-574)) NIL)) (-1874 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3352 (((-781) $) 51 (|has| |#3| (-566)))) (-3819 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2199 (((-781) $) NIL)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#3|))) 31)) (-2464 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3160 (((-654 (-654 |#3|)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-4043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-2900 (((-135)) 59 (|has| |#3| (-372)))) (-3808 (((-112) $) NIL)) (-3948 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-3144 (((-246 |#1| |#3|) $ (-574)) 40)) (-2950 (((-872) $) 19) (((-699 |#3|) $) 42)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2143 (($) 16 T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1069 |#1| |#2| |#3|) (-13 (-1068 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1290 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1759 ($ (-699 |#3|))))) (-781) (-781) (-1064)) (T -1069)) +((-1759 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1064)) (-5 *1 (-1069 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781))))) +(-13 (-1068 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1290 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1759 ($ (-699 |#3|))))) +((-2881 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1787 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1070 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1787 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2881 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1064) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1068 |#1| |#2| |#3| |#4| |#5|) (-1064) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1068 |#1| |#2| |#7| |#8| |#9|)) (T -1070)) +((-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1064)) (-4 *2 (-1064)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *12 (-1068 *5 *6 *2 *10 *11)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1064)) (-4 *10 (-1064)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1068 *5 *6 *10 *11 *12)) (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) +(-10 -7 (-15 -1787 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2881 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27))) +(((-1071 |#1|) (-141) (-1073)) (T -1071)) +NIL +(-13 (-21) (-1066 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1066 |#1|) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-1498 (((-1192) $) 11)) (-3224 ((|#1| $) 12)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2705 (($ (-1192) |#1|) 10)) (-2950 (((-872) $) 22 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 17 (|has| |#1| (-1115))))) +(((-1072 |#1| |#2|) (-13 (-1233) (-10 -8 (-15 -2705 ($ (-1192) |#1|)) (-15 -1498 ((-1192) $)) (-15 -3224 (|#1| $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1108 |#2|) (-1233)) (T -1072)) +((-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-4 *4 (-1233)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1108 *4)))) (-1498 (*1 *2 *1) (-12 (-4 *4 (-1233)) (-5 *2 (-1192)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1108 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *2 (-1108 *3)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -2705 ($ (-1192) |#1|)) (-15 -1498 ((-1192) $)) (-15 -3224 (|#1| $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1073) (-141)) (T -1073)) +NIL +(-13 (-21) (-1127)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1127) . T) ((-1115) . T)) +((-4430 (($ $) 17)) (-2760 (($ $) 25)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-2681 (($ $) 27)) (-2010 (($ $) 12)) (-2787 (($ $) 43)) (-1846 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-3781 (((-781)) 9)) (-2251 (($ $) 45))) +(((-1074 |#1|) (-10 -8 (-15 -2760 (|#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2681 (|#1| |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1075)) (T -1074)) +((-3781 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1074 *3)) (-4 *3 (-1075))))) +(-10 -8 (-15 -2760 (|#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -2681 (|#1| |#1|)) (-15 -1793 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-388) |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| |#1|)) (-15 -3781 ((-781))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1882 (((-574) $) 97)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4430 (($ $) 95)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-4211 (($ $) 105)) (-1526 (((-112) $ $) 65)) (-2496 (((-574) $) 122)) (-3063 (($) 18 T CONST)) (-2760 (($ $) 94)) (-1706 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-2941 (((-112) $) 79)) (-1348 (((-112) $) 120)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 104)) (-2681 (($ $) 100)) (-3081 (((-112) $) 121)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3632 (($ $ $) 119)) (-2953 (($ $ $) 118)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-2010 (($ $) 96)) (-2787 (($ $) 98)) (-4200 (((-428 $) $) 82)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-1846 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-3781 (((-781)) 32 T CONST)) (-2251 (($ $) 99)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2366 (($ $) 123)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3017 (((-112) $ $) 115)) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 117)) (-3008 (((-112) $ $) 114)) (-3102 (($ $ $) 73)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +(((-1075) (-141)) (T -1075)) +((-2366 (*1 *1 *1) (-4 *1 (-1075))) (-2681 (*1 *1 *1) (-4 *1 (-1075))) (-2251 (*1 *1 *1) (-4 *1 (-1075))) (-2787 (*1 *1 *1) (-4 *1 (-1075))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-1075)) (-5 *2 (-574)))) (-2010 (*1 *1 *1) (-4 *1 (-1075))) (-4430 (*1 *1 *1) (-4 *1 (-1075))) (-2760 (*1 *1 *1) (-4 *1 (-1075)))) +(-13 (-372) (-858) (-1037) (-1053 (-574)) (-1053 (-417 (-574))) (-1017) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -2681 ($ $)) (-15 -2251 ($ $)) (-15 -2787 ($ $)) (-15 -1882 ((-574) $)) (-15 -2010 ($ $)) (-15 -4430 ($ $)) (-15 -2760 ($ $)) (-15 -2366 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-933) . T) ((-1017) . T) ((-1037) . T) ((-1053 (-417 (-574))) . T) ((-1053 (-574)) . T) ((-1066 #0#) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) |#2| $) 26)) (-1497 ((|#1| $) 10)) (-2496 (((-574) |#2| $) 116)) (-1853 (((-3 $ "failed") |#2| (-934)) 75)) (-3877 ((|#1| $) 31)) (-2843 ((|#1| |#2| $ |#1|) 40)) (-4385 (($ $) 28)) (-2978 (((-3 |#2| "failed") |#2| $) 111)) (-1348 (((-112) |#2| $) NIL)) (-3081 (((-112) |#2| $) NIL)) (-2604 (((-112) |#2| $) 27)) (-2295 ((|#1| $) 117)) (-3864 ((|#1| $) 30)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2611 ((|#2| $) 102)) (-2950 (((-872) $) 92)) (-4259 (((-112) $ $) NIL)) (-3524 ((|#1| |#2| $ |#1|) 41)) (-3681 (((-654 $) |#2|) 77)) (-2985 (((-112) $ $) 97))) +(((-1076 |#1| |#2|) (-13 (-1083 |#1| |#2|) (-10 -8 (-15 -3864 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -1497 (|#1| $)) (-15 -2295 (|#1| $)) (-15 -4385 ($ $)) (-15 -2604 ((-112) |#2| $)) (-15 -2843 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1259 |#1|)) (T -1076)) +((-2843 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-3864 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-3877 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-2295 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-4385 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1259 *2)))) (-2604 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1076 *4 *3)) (-4 *3 (-1259 *4))))) +(-13 (-1083 |#1| |#2|) (-10 -8 (-15 -3864 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -1497 (|#1| $)) (-15 -2295 (|#1| $)) (-15 -4385 ($ $)) (-15 -2604 ((-112) |#2| $)) (-15 -2843 (|#1| |#2| $ |#1|)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4393 (($ $ $ $) NIL)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-2496 (((-574) $) NIL)) (-3931 (($ $ $) NIL)) (-3063 (($) NIL T CONST)) (-1843 (($ (-1192)) 10) (($ (-574)) 7)) (-1706 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2800 (($ $ $) NIL)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL)) (-4002 (((-112) $) NIL)) (-2258 (((-417 (-574)) $) NIL)) (-2834 (($) NIL) (($ $) NIL)) (-2811 (($ $ $) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3202 (($ $ $ $) NIL)) (-4194 (($ $ $) NIL)) (-1348 (((-112) $) NIL)) (-2325 (($ $ $) NIL)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2276 (((-112) $) NIL)) (-3127 (((-112) $) NIL)) (-4217 (((-3 $ "failed") $) NIL)) (-3081 (((-112) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4351 (($ $ $ $) NIL)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-3780 (($ $) NIL)) (-4108 (($ $) NIL)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-3135 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-1615 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3125 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2309 (($ $) NIL)) (-3156 (($ $) NIL)) (-1846 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1192)) 9)) (-2950 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-3781 (((-781)) NIL T CONST)) (-1649 (((-112) $ $) NIL)) (-2561 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-3676 (((-112) $ $) NIL)) (-2255 (($ $ $ $) NIL)) (-2366 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL)) (-3089 (($ $) 22) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL))) +(((-1077) (-13 (-555) (-628 (-1192)) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -1843 ($ (-1192))) (-15 -1843 ($ (-574)))))) (T -1077)) +((-1843 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1077)))) (-1843 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1077))))) +(-13 (-555) (-628 (-1192)) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -1843 ($ (-1192))) (-15 -1843 ($ (-574))))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2057 (((-1288) $ (-1192) (-1192)) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-4306 (($) 9)) (-3134 (((-52) $ (-1192) (-52)) NIL)) (-4337 (($ $) 32)) (-1737 (($ $) 30)) (-4077 (($ $) 29)) (-3383 (($ $) 31)) (-1922 (($ $) 35)) (-1992 (($ $) 36)) (-3151 (($ $) 28)) (-1458 (($ $) 33)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) 27 (|has| $ (-6 -4458)))) (-2172 (((-3 (-52) "failed") (-1192) $) 43)) (-3063 (($) NIL T CONST)) (-3122 (($) 7)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-3245 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) 53 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-3 (-52) "failed") (-1192) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458)))) (-3155 (((-3 (-1174) "failed") $ (-1174) (-574)) 72)) (-2473 (((-52) $ (-1192) (-52)) NIL (|has| $ (-6 -4459)))) (-2399 (((-52) $ (-1192)) NIL)) (-1874 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-1192) $) NIL (|has| (-1192) (-860)))) (-4187 (((-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) 38 (|has| $ (-6 -4458))) (((-654 (-52)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-1965 (((-1192) $) NIL (|has| (-1192) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-1773 (((-654 (-1192)) $) NIL)) (-3735 (((-112) (-1192) $) NIL)) (-1494 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL)) (-1948 (($ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) 46)) (-2435 (((-654 (-1192)) $) NIL)) (-4088 (((-112) (-1192) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-3359 (((-388) $ (-1192)) 52)) (-2798 (((-654 (-1174)) $ (-1174)) 74)) (-2924 (((-52) $) NIL (|has| (-1192) (-860)))) (-1745 (((-3 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL)) (-2485 (($ $ (-52)) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-317 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115))))) (-3670 (((-654 (-52)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 (((-52) $ (-1192)) NIL) (((-52) $ (-1192) (-52)) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2308 (($ $ (-1192)) 54)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-52) (-1115)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) 40)) (-4131 (($ $ $) 41)) (-2950 (((-872) $) NIL (-2832 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-623 (-872)))))) (-4146 (($ $ (-1192) (-388)) 50)) (-4068 (($ $ (-1192) (-388)) 51)) (-4259 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 (-1192)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-52) (-1115)) (|has| (-2 (|:| -3666 (-1192)) (|:| -1918 (-52))) (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1078) (-13 (-1209 (-1192) (-52)) (-10 -8 (-15 -4131 ($ $ $)) (-15 -3122 ($)) (-15 -3151 ($ $)) (-15 -4077 ($ $)) (-15 -1737 ($ $)) (-15 -3383 ($ $)) (-15 -1458 ($ $)) (-15 -4337 ($ $)) (-15 -1922 ($ $)) (-15 -1992 ($ $)) (-15 -4146 ($ $ (-1192) (-388))) (-15 -4068 ($ $ (-1192) (-388))) (-15 -3359 ((-388) $ (-1192))) (-15 -2798 ((-654 (-1174)) $ (-1174))) (-15 -2308 ($ $ (-1192))) (-15 -4306 ($)) (-15 -3155 ((-3 (-1174) "failed") $ (-1174) (-574))) (-6 -4458)))) (T -1078)) +((-4131 (*1 *1 *1 *1) (-5 *1 (-1078))) (-3122 (*1 *1) (-5 *1 (-1078))) (-3151 (*1 *1 *1) (-5 *1 (-1078))) (-4077 (*1 *1 *1) (-5 *1 (-1078))) (-1737 (*1 *1 *1) (-5 *1 (-1078))) (-3383 (*1 *1 *1) (-5 *1 (-1078))) (-1458 (*1 *1 *1) (-5 *1 (-1078))) (-4337 (*1 *1 *1) (-5 *1 (-1078))) (-1922 (*1 *1 *1) (-5 *1 (-1078))) (-1992 (*1 *1 *1) (-5 *1 (-1078))) (-4146 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078)))) (-4068 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078)))) (-3359 (*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-388)) (-5 *1 (-1078)))) (-2798 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1078)) (-5 *3 (-1174)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1078)))) (-4306 (*1 *1) (-5 *1 (-1078))) (-3155 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-1078))))) +(-13 (-1209 (-1192) (-52)) (-10 -8 (-15 -4131 ($ $ $)) (-15 -3122 ($)) (-15 -3151 ($ $)) (-15 -4077 ($ $)) (-15 -1737 ($ $)) (-15 -3383 ($ $)) (-15 -1458 ($ $)) (-15 -4337 ($ $)) (-15 -1922 ($ $)) (-15 -1992 ($ $)) (-15 -4146 ($ $ (-1192) (-388))) (-15 -4068 ($ $ (-1192) (-388))) (-15 -3359 ((-388) $ (-1192))) (-15 -2798 ((-654 (-1174)) $ (-1174))) (-15 -2308 ($ $ (-1192))) (-15 -4306 ($)) (-15 -3155 ((-3 (-1174) "failed") $ (-1174) (-574))) (-6 -4458))) +((-1980 (($ $) 46)) (-4056 (((-112) $ $) 82)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-965 (-417 (-574)))) 251) (((-3 $ "failed") (-965 (-574))) 250) (((-3 $ "failed") (-965 |#2|)) 253)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-965 (-417 (-574)))) 239) (($ (-965 (-574))) 235) (($ (-965 |#2|)) 255)) (-1401 (($ $) NIL) (($ $ |#4|) 44)) (-3514 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-2137 (((-112) $) 60)) (-3276 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 125)) (-2665 (($ $) 160)) (-3118 (($ $) 156)) (-4053 (($ $) 155)) (-4258 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1562 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2541 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-3066 ((|#4| $) 32)) (-2833 (($ $ $) 128)) (-4169 (((-112) $) 59)) (-2724 (((-781) $) 35)) (-4387 (($ $) 174)) (-2372 (($ $) 171)) (-3394 (((-654 $) $) 72)) (-2379 (($ $) 62)) (-4378 (($ $) 167)) (-4388 (((-654 $) $) 69)) (-3318 (($ $) 64)) (-1377 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1855 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1509 (-781))) $ $) 130)) (-3365 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $) 126) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $ |#4|) 127)) (-3644 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $) 121) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $ |#4|) 123)) (-2499 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3568 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3638 (((-654 $) $) 54)) (-1746 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-2780 (($ $ $) 116)) (-3791 (($ $) 37)) (-3419 (((-112) $ $) 80)) (-2385 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-1371 (($ $ $) 112)) (-1708 (($ $) 41)) (-2886 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-3023 (($ $ |#2|) NIL) (($ $ $) 153)) (-4186 (($ $ |#2|) 148) (($ $ $) 151)) (-3459 (($ $) 49)) (-3161 (($ $) 55)) (-1846 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-965 (-417 (-574)))) 241) (($ (-965 (-574))) 237) (($ (-965 |#2|)) 252) (((-1174) $) 279) (((-965 |#2|) $) 184)) (-2950 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-965 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1448 (((-3 (-112) "failed") $ $) 79))) +(((-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 ((-965 |#2|) |#1|)) (-15 -1846 ((-965 |#2|) |#1|)) (-15 -1846 ((-1174) |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -2886 (|#2| |#2| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -4186 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#2|)) (-15 -4186 (|#1| |#1| |#2|)) (-15 -3118 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -1846 (|#1| (-965 |#2|))) (-15 -2216 (|#1| (-965 |#2|))) (-15 -1706 ((-3 |#1| "failed") (-965 |#2|))) (-15 -1846 (|#1| (-965 (-574)))) (-15 -2216 (|#1| (-965 (-574)))) (-15 -1706 ((-3 |#1| "failed") (-965 (-574)))) (-15 -1846 (|#1| (-965 (-417 (-574))))) (-15 -2216 (|#1| (-965 (-417 (-574))))) (-15 -1706 ((-3 |#1| "failed") (-965 (-417 (-574))))) (-15 -2780 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1855 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1509 (-781))) |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -3276 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3644 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3644 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1| |#4|)) (-15 -2499 (|#1| |#1| |#1| |#4|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -1562 (|#1| |#1| |#1| |#4|)) (-15 -4258 (|#1| |#1| |#1| |#4|)) (-15 -1562 (|#1| |#1| |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 -2541 ((-112) |#1| (-654 |#1|))) (-15 -2541 ((-112) |#1| |#1|)) (-15 -1746 ((-112) |#1| (-654 |#1|))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2385 ((-112) |#1| (-654 |#1|))) (-15 -2385 ((-112) |#1| |#1|)) (-15 -3514 ((-112) |#1| (-654 |#1|))) (-15 -3514 ((-112) |#1| |#1|)) (-15 -4056 ((-112) |#1| |#1|)) (-15 -3419 ((-112) |#1| |#1|)) (-15 -1448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3394 ((-654 |#1|) |#1|)) (-15 -4388 ((-654 |#1|) |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2137 ((-112) |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1401 (|#1| |#1| |#4|)) (-15 -1377 (|#1| |#1| |#4|)) (-15 -3161 (|#1| |#1|)) (-15 -3638 ((-654 |#1|) |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2724 ((-781) |#1|)) (-15 -3066 (|#4| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1377 (|#2| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1080 |#2| |#3| |#4|) (-1064) (-803) (-860)) (T -1079)) +NIL +(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -2886 (|#1| |#1| |#1|)) (-15 -2886 (|#1| (-654 |#1|))) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 ((-965 |#2|) |#1|)) (-15 -1846 ((-965 |#2|) |#1|)) (-15 -1846 ((-1174) |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -2886 (|#2| |#2| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -4186 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#2|)) (-15 -4186 (|#1| |#1| |#2|)) (-15 -3118 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -1846 (|#1| (-965 |#2|))) (-15 -2216 (|#1| (-965 |#2|))) (-15 -1706 ((-3 |#1| "failed") (-965 |#2|))) (-15 -1846 (|#1| (-965 (-574)))) (-15 -2216 (|#1| (-965 (-574)))) (-15 -1706 ((-3 |#1| "failed") (-965 (-574)))) (-15 -1846 (|#1| (-965 (-417 (-574))))) (-15 -2216 (|#1| (-965 (-417 (-574))))) (-15 -1706 ((-3 |#1| "failed") (-965 (-417 (-574))))) (-15 -2780 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1855 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1509 (-781))) |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -3276 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3365 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3644 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -2711 |#1|)) |#1| |#1| |#4|)) (-15 -3644 ((-2 (|:| -1868 |#1|) (|:| |gap| (-781)) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1| |#4|)) (-15 -2499 (|#1| |#1| |#1| |#4|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -1562 (|#1| |#1| |#1| |#4|)) (-15 -4258 (|#1| |#1| |#1| |#4|)) (-15 -1562 (|#1| |#1| |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 -2541 ((-112) |#1| (-654 |#1|))) (-15 -2541 ((-112) |#1| |#1|)) (-15 -1746 ((-112) |#1| (-654 |#1|))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2385 ((-112) |#1| (-654 |#1|))) (-15 -2385 ((-112) |#1| |#1|)) (-15 -3514 ((-112) |#1| (-654 |#1|))) (-15 -3514 ((-112) |#1| |#1|)) (-15 -4056 ((-112) |#1| |#1|)) (-15 -3419 ((-112) |#1| |#1|)) (-15 -1448 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3394 ((-654 |#1|) |#1|)) (-15 -4388 ((-654 |#1|) |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2137 ((-112) |#1|)) (-15 -4169 ((-112) |#1|)) (-15 -1401 (|#1| |#1| |#4|)) (-15 -1377 (|#1| |#1| |#4|)) (-15 -3161 (|#1| |#1|)) (-15 -3638 ((-654 |#1|) |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2724 ((-781) |#1|)) (-15 -3066 (|#4| |#1|)) (-15 -1846 ((-546) |#1|)) (-15 -1846 ((-903 (-574)) |#1|)) (-15 -1846 ((-903 (-388)) |#1|)) (-15 -2950 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1377 (|#2| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 |#3|) $) 112)) (-4172 (((-1188 $) $ |#3|) 127) (((-1188 |#1|) $) 126)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-4319 (($ $) 90 (|has| |#1| (-566)))) (-1731 (((-112) $) 92 (|has| |#1| (-566)))) (-4347 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1980 (($ $) 275)) (-4056 (((-112) $ $) 261)) (-2599 (((-3 $ "failed") $ $) 20)) (-1641 (($ $ $) 220 (|has| |#1| (-566)))) (-2964 (((-654 $) $ $) 215 (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3313 (($ $) 100 (|has| |#1| (-462)))) (-2153 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-965 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (((-3 $ "failed") (-965 (-574))) 232 (-2832 (-12 (-2086 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (((-3 $ "failed") (-965 |#1|)) 229 (-2832 (-12 (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1192)))) (-12 (-2086 (|has| |#1| (-555))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (-2086 (|has| |#1| (-1007 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))))) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) ((|#3| $) 141) (($ (-965 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (($ (-965 (-574))) 231 (-2832 (-12 (-2086 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (($ (-965 |#1|)) 228 (-2832 (-12 (-2086 (|has| |#1| (-38 (-417 (-574))))) (-2086 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1192)))) (-12 (-2086 (|has| |#1| (-555))) (-2086 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (-2086 (|has| |#1| (-1007 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))))) (-3372 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-566)))) (-1401 (($ $) 158) (($ $ |#3|) 270)) (-4232 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-3514 (((-112) $ $) 260) (((-112) $ (-654 $)) 259)) (-2978 (((-3 $ "failed") $) 37)) (-2137 (((-112) $) 268)) (-3276 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 240)) (-2665 (($ $) 209 (|has| |#1| (-462)))) (-1420 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-2941 (((-112) $) 98 (|has| |#1| (-922)))) (-3118 (($ $) 225 (|has| |#1| (-566)))) (-4053 (($ $) 226 (|has| |#1| (-566)))) (-4258 (($ $ $) 252) (($ $ $ |#3|) 250)) (-1562 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2680 (($ $ |#1| |#2| $) 176)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2276 (((-112) $) 35)) (-1901 (((-781) $) 173)) (-2541 (((-112) $ $) 254) (((-112) $ (-654 $)) 253)) (-1668 (($ $ $ $ $) 211 (|has| |#1| (-566)))) (-3066 ((|#3| $) 279)) (-4338 (($ (-1188 |#1|) |#3|) 119) (($ (-1188 $) |#3|) 118)) (-3700 (((-654 $) $) 128)) (-3513 (((-112) $) 156)) (-4327 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2833 (($ $ $) 239)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#3|) 122)) (-4169 (((-112) $) 269)) (-2682 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-2724 (((-781) $) 278)) (-3577 (($ (-1 |#2| |#2|) $) 175)) (-1787 (($ (-1 |#1| |#1|) $) 155)) (-1407 (((-3 |#3| "failed") $) 125)) (-4387 (($ $) 206 (|has| |#1| (-462)))) (-2372 (($ $) 207 (|has| |#1| (-462)))) (-3394 (((-654 $) $) 264)) (-2379 (($ $) 267)) (-4378 (($ $) 208 (|has| |#1| (-462)))) (-4388 (((-654 $) $) 265)) (-3318 (($ $) 266)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152) (($ $ |#3|) 271)) (-2844 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-1855 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1509 (-781))) $ $) 238)) (-3365 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $) 242) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $ |#3|) 241)) (-3644 (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $) 244) (((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $ |#3|) 243)) (-2499 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3568 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1938 (((-1174) $) 10)) (-1897 (($ $ $) 214 (|has| |#1| (-566)))) (-3638 (((-654 $) $) 273)) (-1898 (((-3 (-654 $) "failed") $) 116)) (-3145 (((-3 (-654 $) "failed") $) 117)) (-3019 (((-3 (-2 (|:| |var| |#3|) (|:| -3843 (-781))) "failed") $) 115)) (-1746 (((-112) $ $) 256) (((-112) $ (-654 $)) 255)) (-2780 (($ $ $) 236)) (-3791 (($ $) 277)) (-3419 (((-112) $ $) 262)) (-2385 (((-112) $ $) 258) (((-112) $ (-654 $)) 257)) (-1371 (($ $ $) 237)) (-1708 (($ $) 276)) (-3939 (((-1135) $) 11)) (-3855 (((-2 (|:| -2886 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-566)))) (-1583 (((-2 (|:| -2886 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-566)))) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 ((|#1| |#1| $) 210 (|has| |#1| (-462))) (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2917 (((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-566)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-3023 (($ $ |#1|) 223 (|has| |#1| (-566))) (($ $ $) 221 (|has| |#1| (-566)))) (-4186 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-3902 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3878 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-4144 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-3459 (($ $) 274)) (-3161 (($ $) 272)) (-1846 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-965 (-417 (-574)))) 233 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192))))) (($ (-965 (-574))) 230 (-2832 (-12 (-2086 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1192)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1192)))))) (($ (-965 |#1|)) 227 (|has| |#3| (-624 (-1192)))) (((-1174) $) 205 (-12 (|has| |#1| (-1053 (-574))) (|has| |#3| (-624 (-1192))))) (((-965 |#1|) $) 204 (|has| |#3| (-624 (-1192))))) (-1514 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2097 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-965 |#1|) $) 203 (|has| |#3| (-624 (-1192)))) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) 172)) (-3584 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3270 (((-3 $ "failed") $) 81 (-2832 (-2097 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 32 T CONST)) (-3702 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-1448 (((-3 (-112) "failed") $ $) 263)) (-2155 (($) 34 T CONST)) (-1854 (($ $ $ $ (-781)) 212 (|has| |#1| (-566)))) (-3934 (($ $ $ (-781)) 213 (|has| |#1| (-566)))) (-3583 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-1080 |#1| |#2| |#3|) (-141) (-1064) (-803) (-860)) (T -1080)) +((-3066 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1708 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3638 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1377 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2137 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3318 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4388 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-3394 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-1448 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3419 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4056 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2385 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2385 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-1746 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1746 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2541 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2541 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-4258 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1562 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4258 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1562 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2499 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3568 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2499 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3568 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3644 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -2711 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3644 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -2711 *1))) (-4 *1 (-1080 *4 *5 *3)))) (-3365 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3365 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1080 *4 *5 *3)))) (-3276 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1080 *3 *4 *5)))) (-2833 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1855 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1509 (-781)))) (-4 *1 (-1080 *3 *4 *5)))) (-1371 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2780 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1706 (*1 *1 *2) (|partial| -2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1846 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1706 (*1 *1 *2) (|partial| -2832 (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-2086 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-555))) (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2832 (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-2086 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-555))) (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-965 *3)) (-12 (-2086 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *5 (-624 (-1192))) (-4 *4 (-803)) (-4 *5 (-860)))) (-4053 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3118 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4186 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3023 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4186 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3023 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1641 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2917 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-1583 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3855 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2886 *1) (|:| |coef2| *1))) (-4 *1 (-1080 *3 *4 *5)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5)))) (-1897 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3934 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-1854 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-1668 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2665 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4378 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2372 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4387 (*1 *1 *1) (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462))))) +(-13 (-962 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3066 (|t#3| $)) (-15 -2724 ((-781) $)) (-15 -3791 ($ $)) (-15 -1708 ($ $)) (-15 -1980 ($ $)) (-15 -3459 ($ $)) (-15 -3638 ((-654 $) $)) (-15 -3161 ($ $)) (-15 -1377 ($ $ |t#3|)) (-15 -1401 ($ $ |t#3|)) (-15 -4169 ((-112) $)) (-15 -2137 ((-112) $)) (-15 -2379 ($ $)) (-15 -3318 ($ $)) (-15 -4388 ((-654 $) $)) (-15 -3394 ((-654 $) $)) (-15 -1448 ((-3 (-112) "failed") $ $)) (-15 -3419 ((-112) $ $)) (-15 -4056 ((-112) $ $)) (-15 -3514 ((-112) $ $)) (-15 -3514 ((-112) $ (-654 $))) (-15 -2385 ((-112) $ $)) (-15 -2385 ((-112) $ (-654 $))) (-15 -1746 ((-112) $ $)) (-15 -1746 ((-112) $ (-654 $))) (-15 -2541 ((-112) $ $)) (-15 -2541 ((-112) $ (-654 $))) (-15 -4258 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -4258 ($ $ $ |t#3|)) (-15 -1562 ($ $ $ |t#3|)) (-15 -2499 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -2499 ($ $ $ |t#3|)) (-15 -3568 ($ $ $ |t#3|)) (-15 -3644 ((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $)) (-15 -3644 ((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -2711 $)) $ $ |t#3|)) (-15 -3365 ((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -3365 ((-2 (|:| -1868 $) (|:| |gap| (-781)) (|:| -1670 $) (|:| -2711 $)) $ $ |t#3|)) (-15 -3276 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -2833 ($ $ $)) (-15 -1855 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1509 (-781))) $ $)) (-15 -1371 ($ $ $)) (-15 -2780 ($ $ $)) (IF (|has| |t#3| (-624 (-1192))) (PROGN (-6 (-623 (-965 |t#1|))) (-6 (-624 (-965 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1706 ((-3 $ "failed") (-965 (-417 (-574))))) (-15 -2216 ($ (-965 (-417 (-574))))) (-15 -1846 ($ (-965 (-417 (-574))))) (-15 -1706 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1846 ($ (-965 (-574)))) (IF (|has| |t#1| (-1007 (-574))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-965 (-574)))) (-15 -2216 ($ (-965 (-574)))) (-15 -1846 ($ (-965 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-965 |t#1|))) (-15 -2216 ($ (-965 |t#1|)))))) (-15 -1846 ($ (-965 |t#1|))) (IF (|has| |t#1| (-1053 (-574))) (-6 (-624 (-1174))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -4053 ($ $)) (-15 -3118 ($ $)) (-15 -4186 ($ $ |t#1|)) (-15 -3023 ($ $ |t#1|)) (-15 -4186 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -2917 ((-2 (|:| -2886 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1583 ((-2 (|:| -2886 $) (|:| |coef1| $)) $ $)) (-15 -3855 ((-2 (|:| -2886 $) (|:| |coef2| $)) $ $)) (-15 -3372 ($ $ $)) (-15 -2964 ((-654 $) $ $)) (-15 -1897 ($ $ $)) (-15 -3934 ($ $ $ (-781))) (-15 -1854 ($ $ $ $ (-781))) (-15 -1668 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2886 (|t#1| |t#1| $)) (-15 -2665 ($ $)) (-15 -4378 ($ $)) (-15 -2372 ($ $)) (-15 -4387 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-965 |#1|)) |has| |#3| (-624 (-1192))) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-965 |#1|)) |has| |#3| (-624 (-1192))) ((-624 (-1174)) -12 (|has| |#1| (-1053 (-574))) (|has| |#3| (-624 (-1192)))) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-913 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-962 |#1| |#2| |#3|) . T) ((-922) |has| |#1| (-922)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 |#1|) . T) ((-1053 |#3|) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) |has| |#1| (-922))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-1508 (((-654 (-1150)) $) 18)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 27) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-1150) $) 20)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1081) (-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2053 ((-1150) $))))) (T -1081)) +((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1081)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1081))))) +(-13 (-1098) (-10 -8 (-15 -1508 ((-654 (-1150)) $)) (-15 -2053 ((-1150) $)))) +((-1997 (((-112) |#3| $) 15)) (-1853 (((-3 $ "failed") |#3| (-934)) 29)) (-2978 (((-3 |#3| "failed") |#3| $) 45)) (-1348 (((-112) |#3| $) 19)) (-3081 (((-112) |#3| $) 17))) +(((-1082 |#1| |#2| |#3|) (-10 -8 (-15 -1853 ((-3 |#1| "failed") |#3| (-934))) (-15 -2978 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1348 ((-112) |#3| |#1|)) (-15 -3081 ((-112) |#3| |#1|)) (-15 -1997 ((-112) |#3| |#1|))) (-1083 |#2| |#3|) (-13 (-858) (-372)) (-1259 |#2|)) (T -1082)) +NIL +(-10 -8 (-15 -1853 ((-3 |#1| "failed") |#3| (-934))) (-15 -2978 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1348 ((-112) |#3| |#1|)) (-15 -3081 ((-112) |#3| |#1|)) (-15 -1997 ((-112) |#3| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) |#2| $) 22)) (-2496 (((-574) |#2| $) 23)) (-1853 (((-3 $ "failed") |#2| (-934)) 16)) (-2843 ((|#1| |#2| $ |#1|) 14)) (-2978 (((-3 |#2| "failed") |#2| $) 19)) (-1348 (((-112) |#2| $) 20)) (-3081 (((-112) |#2| $) 21)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2611 ((|#2| $) 18)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-3524 ((|#1| |#2| $ |#1|) 15)) (-3681 (((-654 $) |#2|) 17)) (-2985 (((-112) $ $) 6))) +(((-1083 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1259 |t#1|)) (T -1083)) +((-2496 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-574)))) (-1997 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-3081 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-1348 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-112)))) (-2978 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1259 *3)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1259 *3)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1083 *4 *3)))) (-1853 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-934)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1083 *4 *2)) (-4 *2 (-1259 *4)))) (-3524 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1259 *2)))) (-2843 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1259 *2))))) +(-13 (-1115) (-10 -8 (-15 -2496 ((-574) |t#2| $)) (-15 -1997 ((-112) |t#2| $)) (-15 -3081 ((-112) |t#2| $)) (-15 -1348 ((-112) |t#2| $)) (-15 -2978 ((-3 |t#2| "failed") |t#2| $)) (-15 -2611 (|t#2| $)) (-15 -3681 ((-654 $) |t#2|)) (-15 -1853 ((-3 $ "failed") |t#2| (-934))) (-15 -3524 (|t#1| |t#2| $ |t#1|)) (-15 -2843 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3445 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781)) 114)) (-3222 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781)) 63)) (-3643 (((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)) 99)) (-2840 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-3526 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-1425 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1846 (((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) 92)) (-2990 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-112)) 62)) (-4371 (((-781) (-654 |#4|) (-654 |#5|)) 21))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4371 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2840 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2990 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-112))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3445 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781))) (-15 -1846 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3643 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1084)) +((-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) (-5 *1 (-1084 *4 *5 *6 *7 *8)))) (-3445 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4067 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4067 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) (-4 *11 (-1086 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1084 *7 *8 *9 *10 *11)))) (-1425 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-1425 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *7 *8 *9 *3 *4)) (-4 *4 (-1086 *7 *8 *9 *3)))) (-3222 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3222 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-2990 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4371 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2840 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2990 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-112))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3445 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781))) (-15 -1846 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3643 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)))) +((-3288 (((-112) |#5| $) 26)) (-1861 (((-112) |#5| $) 29)) (-2196 (((-112) |#5| $) 18) (((-112) $) 52)) (-2627 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-4016 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-2457 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-2906 (((-112) |#5| $) 32))) +(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4016 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -4016 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -4016 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -4016 ((-654 |#1|) |#5| |#1|)) (-15 -2457 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2457 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2457 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2457 ((-654 |#1|) |#5| |#1|)) (-15 -2627 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2627 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2627 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2627 ((-654 |#1|) |#5| |#1|)) (-15 -1861 ((-112) |#5| |#1|)) (-15 -2196 ((-112) |#1|)) (-15 -2906 ((-112) |#5| |#1|)) (-15 -3288 ((-112) |#5| |#1|)) (-15 -2196 ((-112) |#5| |#1|)) (-15 -4016 (|#1| |#1| |#5|))) (-1086 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -1085)) +NIL +(-10 -8 (-15 -4016 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -4016 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -4016 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -4016 ((-654 |#1|) |#5| |#1|)) (-15 -2457 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2457 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2457 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2457 ((-654 |#1|) |#5| |#1|)) (-15 -2627 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2627 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2627 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2627 ((-654 |#1|) |#5| |#1|)) (-15 -1861 ((-112) |#5| |#1|)) (-15 -2196 ((-112) |#1|)) (-15 -2906 ((-112) |#5| |#1|)) (-15 -3288 ((-112) |#5| |#1|)) (-15 -2196 ((-112) |#5| |#1|)) (-15 -4016 (|#1| |#1| |#5|))) +((-2863 (((-112) $ $) 7)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) 86)) (-1346 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) 102) (((-112) $) 98)) (-3871 ((|#4| |#4| $) 93)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1779 ((|#4| |#4| $) 90)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2544 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) 106)) (-3288 (((-112) |#4| $) 137)) (-1861 (((-112) |#4| $) 134)) (-2196 (((-112) |#4| $) 138) (((-112) $) 135)) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2737 (((-654 $) |#4| $) 130)) (-2538 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2627 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3599 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4009 (((-654 |#4|) $) 108)) (-1746 (((-112) |#4| $) 100) (((-112) $) 96)) (-2780 ((|#4| |#4| $) 91)) (-3419 (((-112) $ $) 111)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) 101) (((-112) $) 97)) (-1371 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3967 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-4144 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-2293 (($ $) 89)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3988 (((-781) $) 77 (|has| |#3| (-377)))) (-4259 (((-112) $ $) 9)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2457 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) 82)) (-2906 (((-112) |#4| $) 136)) (-2488 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-1086 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1086)) +((-2196 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-3288 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2906 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-1861 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2538 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2034 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2034 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2737 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1979 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-1897 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-3313 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *1)))) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2627 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2627 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-2627 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-2627 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-2457 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-2457 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-2457 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-3599 (*1 *1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3599 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)))) (-4016 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)))) (-4016 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) (-4016 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1086 *5 *6 *7 *8))))) +(-13 (-1226 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2196 ((-112) |t#4| $)) (-15 -3288 ((-112) |t#4| $)) (-15 -2906 ((-112) |t#4| $)) (-15 -2196 ((-112) $)) (-15 -1861 ((-112) |t#4| $)) (-15 -2538 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -2034 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |t#4| $)) (-15 -2034 ((-112) |t#4| $)) (-15 -2737 ((-654 $) |t#4| $)) (-15 -1979 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -1897 ((-654 (-2 (|:| |val| |t#4|) (|:| -4067 $))) |t#4| |t#4| $)) (-15 -3313 ((-654 (-2 (|:| |val| |t#4|) (|:| -4067 $))) |t#4| $)) (-15 -2627 ((-654 $) |t#4| $)) (-15 -2627 ((-654 $) (-654 |t#4|) $)) (-15 -2627 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -2627 ((-654 $) |t#4| (-654 $))) (-15 -2457 ((-654 $) |t#4| $)) (-15 -2457 ((-654 $) |t#4| (-654 $))) (-15 -2457 ((-654 $) (-654 |t#4|) $)) (-15 -2457 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3599 ($ |t#4| $)) (-15 -3599 ($ (-654 |t#4|) $)) (-15 -4016 ((-654 $) |t#4| $)) (-15 -4016 ((-654 $) |t#4| (-654 $))) (-15 -4016 ((-654 $) (-654 |t#4|) $)) (-15 -4016 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1346 ((-654 $) (-654 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) +((-3562 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|) 86)) (-3306 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|) 127)) (-2907 (((-654 |#5|) |#4| |#5|) 74)) (-4383 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3605 (((-1288)) 36)) (-2047 (((-1288)) 25)) (-3787 (((-1288) (-1174) (-1174) (-1174)) 32)) (-3366 (((-1288) (-1174) (-1174) (-1174)) 21)) (-1678 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|) 107)) (-1639 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3740 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|) 113))) +(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-1288) (-1174) (-1174) (-1174))) (-15 -2047 ((-1288))) (-15 -3787 ((-1288) (-1174) (-1174) (-1174))) (-15 -3605 ((-1288))) (-15 -1678 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1639 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1639 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112))) (-15 -3740 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -3306 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -4383 ((-112) |#4| |#5|)) (-15 -4383 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -2907 ((-654 |#5|) |#4| |#5|)) (-15 -3562 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1087)) +((-3562 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2907 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-4383 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-4383 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3306 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3740 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4067 *9)))) (-5 *1 (-1087 *6 *7 *4 *8 *9)))) (-1639 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-1678 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3605 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3787 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2047 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3366 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(-10 -7 (-15 -3366 ((-1288) (-1174) (-1174) (-1174))) (-15 -2047 ((-1288))) (-15 -3787 ((-1288) (-1174) (-1174) (-1174))) (-15 -3605 ((-1288))) (-15 -1678 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1639 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1639 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112))) (-15 -3740 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -3306 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -4383 ((-112) |#4| |#5|)) (-15 -4383 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -2907 ((-654 |#5|) |#4| |#5|)) (-15 -3562 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|))) +((-2863 (((-112) $ $) NIL)) (-2349 (((-1232) $) 13)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3989 (((-1150) $) 10)) (-2950 (((-872) $) 20) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1088) (-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $))))) (T -1088)) +((-3989 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1088)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1088))))) +(-13 (-1098) (-10 -8 (-15 -3989 ((-1150) $)) (-15 -2349 ((-1232) $)))) +((-4096 (((-112) $ $) 7))) +(((-1089) (-13 (-1233) (-10 -8 (-15 -4096 ((-112) $ $))))) (T -1089)) +((-4096 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1089))))) +(-13 (-1233) (-10 -8 (-15 -4096 ((-112) $ $)))) +((-2863 (((-112) $ $) NIL)) (-2041 (((-1192) $) 8)) (-1938 (((-1174) $) 17)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 14))) +(((-1090 |#1|) (-13 (-1115) (-10 -8 (-15 -2041 ((-1192) $)))) (-1192)) (T -1090)) +((-2041 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1090 *3)) (-14 *3 *2)))) +(-13 (-1115) (-10 -8 (-15 -2041 ((-1192) $)))) +((-2863 (((-112) $ $) NIL)) (-2585 (($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|))) 34)) (-3815 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1192))) 21)) (-1818 ((|#3| $) 13)) (-1706 (((-3 (-302 |#3|) "failed") $) 60)) (-2216 (((-302 |#3|) $) NIL)) (-4183 (((-654 (-1192)) $) 16)) (-2131 (((-903 |#1|) $) 11)) (-1806 ((|#3| $) 12)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2209 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-934)) 41)) (-2950 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 38))) +(((-1091 |#1| |#2| |#3|) (-13 (-1115) (-294 |#3| |#3|) (-1053 (-302 |#3|)) (-10 -8 (-15 -3815 ($ |#3| |#3|)) (-15 -3815 ($ |#3| |#3| (-654 (-1192)))) (-15 -2585 ($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|)))) (-15 -2131 ((-903 |#1|) $)) (-15 -1806 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2209 (|#3| $ |#3| (-934))) (-15 -4183 ((-654 (-1192)) $)))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1091)) +((-3815 (*1 *1 *2 *2) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3815 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2585 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *6)))) (-2131 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1091 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1091 *3 *4 *2)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) (-2209 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1091 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-4183 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1192))) (-5 *1 (-1091 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(-13 (-1115) (-294 |#3| |#3|) (-1053 (-302 |#3|)) (-10 -8 (-15 -3815 ($ |#3| |#3|)) (-15 -3815 ($ |#3| |#3| (-654 (-1192)))) (-15 -2585 ($ $ (-654 (-1192)) (-1 (-112) (-654 |#3|)))) (-15 -2131 ((-903 |#1|) $)) (-15 -1806 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2209 (|#3| $ |#3| (-934))) (-15 -4183 ((-654 (-1192)) $)))) +((-2863 (((-112) $ $) NIL)) (-2549 (($ (-654 (-1091 |#1| |#2| |#3|))) 14)) (-2006 (((-654 (-1091 |#1| |#2| |#3|)) $) 21)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2209 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-934)) 27)) (-2950 (((-872) $) 17)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 20))) +(((-1092 |#1| |#2| |#3|) (-13 (-1115) (-294 |#3| |#3|) (-10 -8 (-15 -2549 ($ (-654 (-1091 |#1| |#2| |#3|)))) (-15 -2006 ((-654 (-1091 |#1| |#2| |#3|)) $)) (-15 -2209 (|#3| $ |#3| (-934))))) (-1115) (-13 (-1064) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1092)) +((-2549 (*1 *1 *2) (-12 (-5 *2 (-654 (-1091 *3 *4 *5))) (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *5)))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1091 *3 *4 *5))) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2209 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-934)) (-4 *4 (-1115)) (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) +(-13 (-1115) (-294 |#3| |#3|) (-10 -8 (-15 -2549 ($ (-654 (-1091 |#1| |#2| |#3|)))) (-15 -2006 ((-654 (-1091 |#1| |#2| |#3|)) $)) (-15 -2209 (|#3| $ |#3| (-934))))) +((-3897 (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|))) 92) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112)) 90))) +(((-1093 |#1| |#2|) (-10 -7 (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1192))) (T -1093)) +((-3897 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))))) (-3897 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) (-5 *1 (-1093 *4 *5)) (-5 *3 (-654 (-965 *4))) (-14 *5 (-654 (-1192))))) (-3897 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192)))))) +(-10 -7 (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -3897 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)))) +((-4200 (((-428 |#3|) |#3|) 18))) +(((-1094 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) (-1259 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1259 |#2|)) (T -1094)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1259 *5))))) +(-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 136)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-4319 (($ $) NIL (|has| |#1| (-372)))) (-1731 (((-112) $) NIL (|has| |#1| (-372)))) (-4368 (((-699 |#1|) (-1283 $)) NIL) (((-699 |#1|)) 121)) (-1646 ((|#1| $) 125)) (-3334 (((-1205 (-934) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1497 (((-781)) 43 (|has| |#1| (-377)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-3875 (($ (-1283 |#1|) (-1283 $)) NIL) (($ (-1283 |#1|)) 46)) (-3983 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1732 (((-699 |#1|) $ (-1283 $)) NIL) (((-699 |#1|) $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1283 $)) NIL)) (-2881 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-2978 (((-3 $ "failed") $) NIL)) (-3557 (((-934)) 84)) (-2834 (($) 47 (|has| |#1| (-377)))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2776 (($) NIL (|has| |#1| (-358)))) (-1627 (((-112) $) NIL (|has| |#1| (-358)))) (-4278 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-3837 (((-934) $) NIL (|has| |#1| (-358))) (((-843 (-934)) $) NIL (|has| |#1| (-358)))) (-2276 (((-112) $) NIL)) (-2681 ((|#1| $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3525 ((|#2| $) 91 (|has| |#1| (-372)))) (-3880 (((-934) $) 145 (|has| |#1| (-377)))) (-2868 ((|#2| $) 62)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3791 (($) NIL (|has| |#1| (-358)) CONST)) (-2590 (($ (-934)) 135 (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-2974 (($) 127)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3712 (((-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574))))) NIL (|has| |#1| (-358)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3902 ((|#1| (-1283 $)) NIL) ((|#1|) 117)) (-3411 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3878 (($ $ (-781)) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-3450 (((-699 |#1|) (-1283 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2611 ((|#2|) 81)) (-3627 (($) NIL (|has| |#1| (-358)))) (-4421 (((-1283 |#1|) $ (-1283 $)) 96) (((-699 |#1|) (-1283 $) (-1283 $)) NIL) (((-1283 |#1|) $) 75) (((-699 |#1|) (-1283 $)) 92)) (-1846 (((-1283 |#1|) $) NIL) (($ (-1283 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2950 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-372)) (|has| |#1| (-1053 (-417 (-574))))))) (-3270 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3688 ((|#2| $) 89)) (-3781 (((-781)) 83 T CONST)) (-4259 (((-112) $ $) NIL)) (-3907 (((-1283 $)) 88)) (-3676 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2143 (($) 32 T CONST)) (-2155 (($) 19 T CONST)) (-3583 (($ $ (-781)) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2832 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-913 (-1192))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2985 (((-112) $ $) 67)) (-3102 (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) 71) (($ $ $) NIL)) (-3073 (($ $ $) 69)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) +(((-1095 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1259 |#1|) |#2|) (T -1095)) +NIL +(-734 |#1| |#2|) +((-4200 (((-428 |#3|) |#3|) 19))) +(((-1096 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) (-1259 (-417 (-965 (-574)))) (-13 (-372) (-148) (-734 (-417 (-965 (-574))) |#1|)) (-1259 |#2|)) (T -1096)) +((-4200 (*1 *2 *3) (-12 (-4 *4 (-1259 (-417 (-965 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-965 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1259 *5))))) +(-10 -7 (-15 -4200 ((-428 |#3|) |#3|))) +((-2863 (((-112) $ $) NIL)) (-3632 (($ $ $) 16)) (-2953 (($ $ $) 17)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2483 (($) 6)) (-1846 (((-1192) $) 20)) (-2950 (((-872) $) 13)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 9))) +(((-1097) (-13 (-860) (-624 (-1192)) (-10 -8 (-15 -2483 ($))))) (T -1097)) +((-2483 (*1 *1) (-5 *1 (-1097)))) +(-13 (-860) (-624 (-1192)) (-10 -8 (-15 -2483 ($)))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-1098) (-141)) (T -1098)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) -((-2512 ((|#1| |#1| (-1 (-573) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3084 (((-1285)) 21)) (-1704 (((-653 |#1|)) 13))) -(((-1096 |#1|) (-10 -7 (-15 -3084 ((-1285))) (-15 -1704 ((-653 |#1|))) (-15 -2512 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2512 (|#1| |#1| (-1 (-573) |#1| |#1|)))) (-133)) (T -1096)) -((-2512 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-573) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) (-1704 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-133)))) (-3084 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -3084 ((-1285))) (-15 -1704 ((-653 |#1|))) (-15 -2512 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2512 (|#1| |#1| (-1 (-573) |#1| |#1|)))) -((-3042 (($ (-109) $) 20)) (-4155 (((-700 (-109)) (-515) $) 19)) (-3508 (($) 7)) (-4219 (($) 21)) (-2170 (($) 22)) (-1525 (((-653 (-177)) $) 10)) (-2942 (((-871) $) 25))) -(((-1097) (-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -1525 ((-653 (-177)) $)) (-15 -4155 ((-700 (-109)) (-515) $)) (-15 -3042 ($ (-109) $)) (-15 -4219 ($)) (-15 -2170 ($))))) (T -1097)) -((-3508 (*1 *1) (-5 *1 (-1097))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-653 (-177))) (-5 *1 (-1097)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-1097)))) (-3042 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1097)))) (-4219 (*1 *1) (-5 *1 (-1097))) (-2170 (*1 *1) (-5 *1 (-1097)))) -(-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -1525 ((-653 (-177)) $)) (-15 -4155 ((-700 (-109)) (-515) $)) (-15 -3042 ($ (-109) $)) (-15 -4219 ($)) (-15 -2170 ($)))) -((-3119 (((-1280 (-698 |#1|)) (-653 (-698 |#1|))) 45) (((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|))) 75) (((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|)))) 92)) (-2123 (((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))) 39))) -(((-1098 |#1|) (-10 -7 (-15 -3119 ((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|))))) (-15 -3119 ((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|)))) (-15 -3119 ((-1280 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -2123 ((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))))) (-371)) (T -1098)) -((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-698 *5))) (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-1280 *5)) (-5 *1 (-1098 *5)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-1098 *4)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) (-5 *2 (-1280 (-698 (-962 *5)))) (-5 *1 (-1098 *5)) (-5 *4 (-698 (-962 *5))))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) (-5 *2 (-1280 (-698 (-416 (-962 *5))))) (-5 *1 (-1098 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) -(-10 -7 (-15 -3119 ((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|))))) (-15 -3119 ((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|)))) (-15 -3119 ((-1280 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -2123 ((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ (-1189)) NIL)) (-3447 (((-780) $) NIL) (((-780) $ (-1189)) NIL)) (-4354 (((-653 (-1100 (-1189))) $) NIL)) (-4193 (((-1185 $) $ (-1100 (-1189))) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1100 (-1189)))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1100 (-1189)) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL) (((-3 (-1137 |#1| (-1189)) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1100 (-1189)) $) NIL) (((-1189) $) NIL) (((-1137 |#1| (-1189)) $) NIL)) (-2277 (($ $ $ (-1100 (-1189))) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1100 (-1189))) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-1100 (-1189))) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1100 (-1189)) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1100 (-1189)) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-1100 (-1189))) NIL) (($ (-1185 $) (-1100 (-1189))) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1100 (-1189))) NIL)) (-4036 (((-540 (-1100 (-1189))) $) NIL) (((-780) $ (-1100 (-1189))) NIL) (((-653 (-780)) $ (-653 (-1100 (-1189)))) NIL)) (-1382 (($ (-1 (-540 (-1100 (-1189))) (-540 (-1100 (-1189)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) (-1189)) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 (-1100 (-1189)) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 (((-1100 (-1189)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1100 (-1189))) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1100 (-1189)) |#1|) NIL) (($ $ (-653 (-1100 (-1189))) (-653 |#1|)) NIL) (($ $ (-1100 (-1189)) $) NIL) (($ $ (-653 (-1100 (-1189))) (-653 $)) NIL) (($ $ (-1189) $) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 $)) NIL (|has| |#1| (-238))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ (-1100 (-1189))) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1100 (-1189))) NIL) (($ $ (-653 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 (-1189)) $) NIL)) (-2565 (((-540 (-1100 (-1189))) $) NIL) (((-780) $ (-1100 (-1189))) NIL) (((-653 (-780)) $ (-653 (-1100 (-1189)))) NIL) (((-780) $ (-1189)) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1100 (-1189))) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1100 (-1189))) NIL) (($ (-1189)) NIL) (($ (-1137 |#1| (-1189))) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1100 (-1189))) NIL) (($ $ (-653 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1099 |#1|) (-13 (-259 |#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) (-1050 (-1137 |#1| (-1189)))) (-1061)) (T -1099)) -NIL -(-13 (-259 |#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) (-1050 (-1137 |#1| (-1189)))) -((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2534 (((-780) $) 11)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3844 (($ |#1| (-780)) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 16))) -(((-1100 |#1|) (-272 |#1|) (-859)) (T -1100)) -NIL -(-272 |#1|) -((-1776 (((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|)) 29 (|has| |#1| (-857))) (((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|)) 14))) -(((-1101 |#1| |#2|) (-10 -7 (-15 -1776 ((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) |%noBranch|)) (-1230) (-1230)) (T -1101)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-857)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-1101 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1106 *6)) (-5 *1 (-1101 *5 *6))))) -(-10 -7 (-15 -1776 ((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-1632 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1102) (-13 (-1095) (-10 -8 (-15 -1632 ((-653 (-1147)) $))))) (T -1102)) -((-1632 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1102))))) -(-13 (-1095) (-10 -8 (-15 -1632 ((-653 (-1147)) $)))) -((-1776 (((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)) 19))) -(((-1103 |#1| |#2|) (-10 -7 (-15 -1776 ((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)))) (-1230) (-1230)) (T -1103)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1104 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1104 *6)) (-5 *1 (-1103 *5 *6))))) -(-10 -7 (-15 -1776 ((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112)))) (-1487 (((-1189) $) NIL)) (-3241 (((-1106 |#1|) $) NIL)) (-3180 (((-1171) $) NIL (|has| (-1106 |#1|) (-1112)))) (-3965 (((-1132) $) NIL (|has| (-1106 |#1|) (-1112)))) (-2691 (($ (-1189) (-1106 |#1|)) NIL)) (-2942 (((-871) $) NIL (|has| (-1106 |#1|) (-1112)))) (-3507 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112)))) (-2981 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112))))) -(((-1104 |#1|) (-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) (-1106 |#1|))) (-15 -1487 ((-1189) $)) (-15 -3241 ((-1106 |#1|) $)) (IF (|has| (-1106 |#1|) (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1104)) -((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1106 *4)) (-4 *4 (-1230)) (-5 *1 (-1104 *4)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1106 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-1230))))) -(-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) (-1106 |#1|))) (-15 -1487 ((-1189) $)) (-15 -3241 ((-1106 |#1|) $)) (IF (|has| (-1106 |#1|) (-1112)) (-6 (-1112)) |%noBranch|))) -((-3241 (($ |#1| |#1|) 8)) (-4141 ((|#1| $) 11)) (-2815 ((|#1| $) 13)) (-1952 (((-573) $) 9)) (-4055 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-1835 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2732 (($ $ (-573)) 14))) -(((-1105 |#1|) (-141) (-1230)) (T -1105)) -((-4277 (*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-2732 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1105 *3)) (-4 *3 (-1230)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1230)) (-5 *2 (-573)))) (-3241 (*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) -(-13 (-627 |t#1|) (-10 -8 (-15 -4277 ($ |t#1| |t#1|)) (-15 -2732 ($ $ (-573))) (-15 -2815 (|t#1| $)) (-15 -1965 (|t#1| $)) (-15 -4141 (|t#1| $)) (-15 -4055 (|t#1| $)) (-15 -1952 ((-573) $)) (-15 -3241 ($ |t#1| |t#1|)))) -(((-627 |#1|) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3241 (($ |#1| |#1|) 16)) (-1776 (((-653 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-857)))) (-4141 ((|#1| $) 12)) (-2815 ((|#1| $) 11)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1952 (((-573) $) 15)) (-4055 ((|#1| $) 14)) (-1965 ((|#1| $) 13)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2127 (((-653 |#1|) $) 44 (|has| |#1| (-857))) (((-653 |#1|) (-653 $)) 43 (|has| |#1| (-857)))) (-1835 (($ |#1|) 29)) (-2942 (((-871) $) 28 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4277 (($ |#1| |#1|) 10)) (-2732 (($ $ (-573)) 17)) (-2981 (((-112) $ $) 22 (|has| |#1| (-1112))))) -(((-1106 |#1|) (-13 (-1105 |#1|) (-10 -7 (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-653 |#1|))) |%noBranch|))) (-1230)) (T -1106)) -NIL -(-13 (-1105 |#1|) (-10 -7 (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-653 |#1|))) |%noBranch|))) -((-3241 (($ |#1| |#1|) 8)) (-1776 ((|#2| (-1 |#1| |#1|) $) 16)) (-4141 ((|#1| $) 11)) (-2815 ((|#1| $) 13)) (-1952 (((-573) $) 9)) (-4055 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-2127 ((|#2| (-653 $)) 18) ((|#2| $) 17)) (-1835 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2732 (($ $ (-573)) 14))) -(((-1107 |#1| |#2|) (-141) (-857) (-1161 |t#1|)) (T -1107)) -((-2127 (*1 *2 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) (-4 *2 (-1161 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *2)) (-4 *3 (-857)) (-4 *2 (-1161 *3)))) (-1776 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) (-4 *2 (-1161 *4))))) -(-13 (-1105 |t#1|) (-10 -8 (-15 -2127 (|t#2| (-653 $))) (-15 -2127 (|t#2| $)) (-15 -1776 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-627 |#1|) . T) ((-1105 |#1|) . T)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-1147) $) 12)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1108) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)) (-15 -3359 ((-1147) $))))) (T -1108)) -((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1108)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1108))))) -(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)) (-15 -3359 ((-1147) $)))) -((-4357 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2180 (($ $ $) 10)) (-3631 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1109 |#1| |#2|) (-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|))) (-1110 |#2|) (-1112)) (T -1109)) -NIL -(-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-4357 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2180 (($ $ $) 21)) (-3319 (((-112) $ $) 20)) (-3450 (((-112) $ (-780)) 36)) (-1506 (($) 26) (($ (-653 |#1|)) 25)) (-2164 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4455)))) (-2579 (($) 37 T CONST)) (-2685 (($ $) 60 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 44 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 29)) (-2078 (((-112) $ (-780)) 35)) (-3214 (((-653 |#1|) $) 45 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 39)) (-2673 (((-112) $ (-780)) 34)) (-3180 (((-1171) $) 10)) (-3716 (($ $ $) 24)) (-3965 (((-1132) $) 11)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1575 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 51 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 49 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-301 |#1|))) 48 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 30)) (-3811 (((-112) $) 33)) (-3508 (($) 32)) (-3631 (($ $ $) 23) (($ $ |#1|) 22)) (-3974 (((-780) |#1| $) 46 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4455)))) (-3166 (($ $) 31)) (-1835 (((-545) $) 61 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 52)) (-2942 (((-871) $) 12)) (-4280 (($) 28) (($ (-653 |#1|)) 27)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 38 (|has| $ (-6 -4455))))) -(((-1110 |#1|) (-141) (-1112)) (T -1110)) -((-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-4280 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) (-1506 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3631 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3631 (*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-2180 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3319 (*1 *2 *1 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-4357 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4357 (*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4357 (*1 *1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(-13 (-1112) (-152 |t#1|) (-10 -8 (-6 -4445) (-15 -2897 ((-112) $ $)) (-15 -4280 ($)) (-15 -4280 ($ (-653 |t#1|))) (-15 -1506 ($)) (-15 -1506 ($ (-653 |t#1|))) (-15 -3716 ($ $ $)) (-15 -3631 ($ $ $)) (-15 -3631 ($ $ |t#1|)) (-15 -2180 ($ $ $)) (-15 -3319 ((-112) $ $)) (-15 -4357 ($ $ $)) (-15 -4357 ($ $ |t#1|)) (-15 -4357 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) . T) ((-1230) . T)) -((-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 8)) (-3507 (((-112) $ $) 12))) -(((-1111 |#1|) (-10 -8 (-15 -3507 ((-112) |#1| |#1|)) (-15 -3180 ((-1171) |#1|)) (-15 -3965 ((-1132) |#1|))) (-1112)) (T -1111)) -NIL -(-10 -8 (-15 -3507 ((-112) |#1| |#1|)) (-15 -3180 ((-1171) |#1|)) (-15 -3965 ((-1132) |#1|))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1112) (-141)) (T -1112)) -((-3965 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1132)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1171)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) -(-13 (-102) (-622 (-871)) (-10 -8 (-15 -3965 ((-1132) $)) (-15 -3180 ((-1171) $)) (-15 -3507 ((-112) $ $)))) -(((-102) . T) ((-622 (-871)) . T)) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 36)) (-2654 (($ (-653 (-931))) 70)) (-1690 (((-3 $ "failed") $ (-931) (-931)) 81)) (-2819 (($) 40)) (-1547 (((-112) (-931) $) 42)) (-3589 (((-931) $) 64)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 39)) (-4270 (((-3 $ "failed") $ (-931)) 77)) (-3965 (((-1132) $) NIL)) (-2293 (((-1280 $)) 47)) (-2099 (((-653 (-931)) $) 27)) (-2074 (((-780) $ (-931) (-931)) 78)) (-2942 (((-871) $) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 24))) -(((-1113 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4270 ((-3 $ "failed") $ (-931))) (-15 -1690 ((-3 $ "failed") $ (-931) (-931))) (-15 -2099 ((-653 (-931)) $)) (-15 -2654 ($ (-653 (-931)))) (-15 -2293 ((-1280 $))) (-15 -1547 ((-112) (-931) $)) (-15 -2074 ((-780) $ (-931) (-931))))) (-931) (-931)) (T -1113)) -((-4270 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1690 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2293 (*1 *2) (-12 (-5 *2 (-1280 (-1113 *3 *4))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-1547 (*1 *2 *3 *1) (-12 (-5 *3 (-931)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2074 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-780)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-376) (-10 -8 (-15 -4270 ((-3 $ "failed") $ (-931))) (-15 -1690 ((-3 $ "failed") $ (-931) (-931))) (-15 -2099 ((-653 (-931)) $)) (-15 -2654 ($ (-653 (-931)))) (-15 -2293 ((-1280 $))) (-15 -1547 ((-112) (-931) $)) (-15 -2074 ((-780) $ (-931) (-931))))) -((-2848 (((-112) $ $) NIL)) (-4393 (($) NIL (|has| |#1| (-376)))) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2180 (($ $ $) 81)) (-3319 (((-112) $ $) 82)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-1506 (($ (-653 |#1|)) NIL) (($) 13)) (-3557 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 74 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4455)))) (-2819 (($) NIL (|has| |#1| (-376)))) (-1863 (((-653 |#1|) $) 19 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3659 ((|#1| $) 55 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3751 ((|#1| $) 53 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 34)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 79)) (-2487 ((|#1| $) 25)) (-3181 (($ |#1| $) 69)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3815 ((|#1| $) 27)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 21)) (-3508 (($) 11)) (-3631 (($ $ |#1|) NIL) (($ $ $) 80)) (-2428 (($) NIL) (($ (-653 |#1|)) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 16)) (-1835 (((-545) $) 50 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 62)) (-3255 (($ $) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL)) (-3553 (((-780) $) NIL)) (-4280 (($ (-653 |#1|)) NIL) (($) 12)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 |#1|)) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 52)) (-2862 (((-780) $) 10 (|has| $ (-6 -4455))))) -(((-1114 |#1|) (-434 |#1|) (-1112)) (T -1114)) -NIL -(-434 |#1|) -((-2848 (((-112) $ $) 7)) (-2146 (((-112) $) 33)) (-4004 ((|#2| $) 28)) (-4203 (((-112) $) 34)) (-3248 ((|#1| $) 29)) (-3476 (((-112) $) 36)) (-2328 (((-112) $) 38)) (-2245 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3159 (((-112) $) 32)) (-4025 ((|#3| $) 27)) (-3965 (((-1132) $) 11)) (-2532 (((-112) $) 31)) (-2383 ((|#4| $) 26)) (-1444 ((|#5| $) 25)) (-4122 (((-112) $ $) 39)) (-2198 (($ $ (-573)) 41) (($ $ (-653 (-573))) 40)) (-4292 (((-653 $) $) 30)) (-1835 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-653 $)) 42)) (-2942 (((-871) $) 12)) (-4347 (($ $) 23)) (-4051 (($ $) 24)) (-3507 (((-112) $ $) 9)) (-2267 (((-112) $) 37)) (-2981 (((-112) $ $) 6)) (-2862 (((-573) $) 22))) -(((-1115 |#1| |#2| |#3| |#4| |#5|) (-141) (-1112) (-1112) (-1112) (-1112) (-1112)) (T -1115)) -((-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-4292 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-1115 *3 *4 *5 *6 *7)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *2)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4051 (*1 *1 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-4347 (*1 *1 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-573))))) -(-13 (-1112) (-627 |t#1|) (-627 |t#2|) (-627 |t#3|) (-627 |t#4|) (-627 |t#4|) (-627 |t#5|) (-627 (-653 $)) (-293 (-573) $) (-293 (-653 (-573)) $) (-10 -8 (-15 -4122 ((-112) $ $)) (-15 -2328 ((-112) $)) (-15 -2267 ((-112) $)) (-15 -3476 ((-112) $)) (-15 -2245 ((-112) $)) (-15 -4203 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2532 ((-112) $)) (-15 -4292 ((-653 $) $)) (-15 -3248 (|t#1| $)) (-15 -4004 (|t#2| $)) (-15 -4025 (|t#3| $)) (-15 -2383 (|t#4| $)) (-15 -1444 (|t#5| $)) (-15 -4051 ($ $)) (-15 -4347 ($ $)) (-15 -2862 ((-573) $)))) -(((-102) . T) ((-622 (-871)) . T) ((-627 (-653 $)) . T) ((-627 |#1|) . T) ((-627 |#2|) . T) ((-627 |#3|) . T) ((-627 |#4|) . T) ((-627 |#5|) . T) ((-293 (-573) $) . T) ((-293 (-653 (-573)) $) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-2146 (((-112) $) NIL)) (-4004 (((-1189) $) NIL)) (-4203 (((-112) $) NIL)) (-3248 (((-1171) $) NIL)) (-3476 (((-112) $) NIL)) (-2328 (((-112) $) NIL)) (-2245 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3159 (((-112) $) NIL)) (-4025 (((-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2532 (((-112) $) NIL)) (-2383 (((-227) $) NIL)) (-1444 (((-871) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2198 (($ $ (-573)) NIL) (($ $ (-653 (-573))) NIL)) (-4292 (((-653 $) $) NIL)) (-1835 (($ (-1171)) NIL) (($ (-1189)) NIL) (($ (-573)) NIL) (($ (-227)) NIL) (($ (-871)) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL)) (-4347 (($ $) NIL)) (-4051 (($ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-573) $) NIL))) -(((-1116) (-1115 (-1171) (-1189) (-573) (-227) (-871))) (T -1116)) -NIL -(-1115 (-1171) (-1189) (-573) (-227) (-871)) -((-2848 (((-112) $ $) NIL)) (-2146 (((-112) $) 45)) (-4004 ((|#2| $) 48)) (-4203 (((-112) $) 20)) (-3248 ((|#1| $) 21)) (-3476 (((-112) $) 42)) (-2328 (((-112) $) 14)) (-2245 (((-112) $) 44)) (-3180 (((-1171) $) NIL)) (-3159 (((-112) $) 46)) (-4025 ((|#3| $) 50)) (-3965 (((-1132) $) NIL)) (-2532 (((-112) $) 47)) (-2383 ((|#4| $) 49)) (-1444 ((|#5| $) 51)) (-4122 (((-112) $ $) 41)) (-2198 (($ $ (-573)) 62) (($ $ (-653 (-573))) 64)) (-4292 (((-653 $) $) 27)) (-1835 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-653 $)) 52)) (-2942 (((-871) $) 28)) (-4347 (($ $) 26)) (-4051 (($ $) 58)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) 23)) (-2981 (((-112) $ $) 40)) (-2862 (((-573) $) 60))) -(((-1117 |#1| |#2| |#3| |#4| |#5|) (-1115 |#1| |#2| |#3| |#4| |#5|) (-1112) (-1112) (-1112) (-1112) (-1112)) (T -1117)) -NIL -(-1115 |#1| |#2| |#3| |#4| |#5|) -((-3767 (((-1285) $) 22)) (-3740 (($ (-1189) (-443) |#2|) 11)) (-2942 (((-871) $) 16))) -(((-1118 |#1| |#2|) (-13 (-404) (-10 -8 (-15 -3740 ($ (-1189) (-443) |#2|)))) (-1112) (-439 |#1|)) (T -1118)) -((-3740 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-443)) (-4 *5 (-1112)) (-5 *1 (-1118 *5 *4)) (-4 *4 (-439 *5))))) -(-13 (-404) (-10 -8 (-15 -3740 ($ (-1189) (-443) |#2|)))) -((-2671 (((-112) |#5| |#5|) 44)) (-2223 (((-112) |#5| |#5|) 59)) (-2476 (((-112) |#5| (-653 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3874 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-1688 (((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 70)) (-4435 (((-1285)) 32)) (-3902 (((-1285) (-1171) (-1171) (-1171)) 28)) (-2707 (((-653 |#5|) (-653 |#5|)) 101)) (-3295 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) 93)) (-1410 (((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112)) 123)) (-4181 (((-112) |#5| |#5|) 53)) (-2243 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2186 (((-112) (-653 |#4|) (-653 |#4|)) 64)) (-1728 (((-112) (-653 |#4|) (-653 |#4|)) 66)) (-2614 (((-112) (-653 |#4|) (-653 |#4|)) 67)) (-2119 (((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3049 (((-653 |#5|) (-653 |#5|)) 49))) -(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1119)) -((-2119 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) (-5 *1 (-1119 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) (-4 *4 (-1083 *6 *7 *8 *9)))) (-1410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) (-5 *1 (-1119 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *8 *3)))) (-2476 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-1728 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2186 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-2671 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4435 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3902 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2301 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 108)) (-3566 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 80)) (-2567 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 102)) (-4314 (((-653 |#5|) |#4| |#5|) 124)) (-1492 (((-653 |#5|) |#4| |#5|) 131)) (-4085 (((-653 |#5|) |#4| |#5|) 132)) (-4322 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 109)) (-2415 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 130)) (-3264 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2812 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 92) (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4197 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 87)) (-3273 (((-1285)) 36)) (-3790 (((-1285)) 25)) (-2528 (((-1285) (-1171) (-1171) (-1171)) 32)) (-3067 (((-1285) (-1171) (-1171) (-1171)) 21))) -(((-1120 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3566 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4197 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2567 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3264 ((-112) |#4| |#5|)) (-15 -4322 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4314 ((-653 |#5|) |#4| |#5|)) (-15 -2415 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1492 ((-653 |#5|) |#4| |#5|)) (-15 -3264 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4085 ((-653 |#5|) |#4| |#5|)) (-15 -2301 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1120)) -((-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3264 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-1492 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4314 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4322 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3264 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4197 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1120 *6 *7 *4 *8 *9)))) (-2812 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3566 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-2528 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3790 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3067 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3566 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4197 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2567 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3264 ((-112) |#4| |#5|)) (-15 -4322 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4314 ((-653 |#5|) |#4| |#5|)) (-15 -2415 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1492 ((-653 |#5|) |#4| |#5|)) (-15 -3264 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4085 ((-653 |#5|) |#4| |#5|)) (-15 -2301 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) -((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-1121 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1121)) -NIL -(-13 (-1083 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) -((-4252 (((-653 (-573)) (-573) (-573) (-573)) 38)) (-2610 (((-653 (-573)) (-573) (-573) (-573)) 28)) (-2587 (((-653 (-573)) (-573) (-573) (-573)) 33)) (-2832 (((-573) (-573) (-573)) 21)) (-2085 (((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573)) 76) (((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573)) 71)) (-1846 (((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112)) 54)) (-2081 (((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573))) 75)) (-3492 (((-698 (-573)) (-653 (-931)) (-653 (-573))) 59)) (-4213 (((-653 (-698 (-573))) (-653 (-931))) 64)) (-3911 (((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573))) 79)) (-3129 (((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573))) 89))) -(((-1122) (-10 -7 (-15 -3129 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573)))) (-15 -3911 ((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -4213 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -3492 ((-698 (-573)) (-653 (-931)) (-653 (-573)))) (-15 -2081 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -1846 ((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112))) (-15 -2085 ((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573))) (-15 -2085 ((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573))) (-15 -2832 ((-573) (-573) (-573))) (-15 -2587 ((-653 (-573)) (-573) (-573) (-573))) (-15 -2610 ((-653 (-573)) (-573) (-573) (-573))) (-15 -4252 ((-653 (-573)) (-573) (-573) (-573))))) (T -1122)) -((-4252 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2610 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2587 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2832 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1122)))) (-2085 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-653 (-573))) (-5 *4 (-573)) (-5 *1 (-1122)))) (-2085 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-573)) (-5 *1 (-1122)))) (-1846 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-653 (-573))) (-5 *3 (-653 (-931))) (-5 *4 (-112)) (-5 *1 (-1122)))) (-2081 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-698 (-573))) (-5 *3 (-653 (-573))) (-5 *1 (-1122)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-1122)))) (-3911 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *3 (-698 (-573))) (-5 *1 (-1122)))) (-3129 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) -(-10 -7 (-15 -3129 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573)))) (-15 -3911 ((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -4213 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -3492 ((-698 (-573)) (-653 (-931)) (-653 (-573)))) (-15 -2081 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -1846 ((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112))) (-15 -2085 ((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573))) (-15 -2085 ((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573))) (-15 -2832 ((-573) (-573) (-573))) (-15 -2587 ((-653 (-573)) (-573) (-573) (-573))) (-15 -2610 ((-653 (-573)) (-573) (-573) (-573))) (-15 -4252 ((-653 (-573)) (-573) (-573) (-573)))) -((** (($ $ (-931)) 10))) -(((-1123 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-931)))) (-1124)) (T -1123)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-931)))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14)) (* (($ $ $) 15))) -(((-1124) (-141)) (T -1124)) -((* (*1 *1 *1 *1) (-4 *1 (-1124))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1124)) (-5 *2 (-931))))) -(-13 (-1112) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-931))))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-1748 (((-112) $) NIL (|has| |#3| (-132)))) (-3690 (($ (-931)) NIL (|has| |#3| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#3| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#3| (-376)))) (-1983 (((-573) $) NIL (|has| |#3| (-857)))) (-3142 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) ((|#3| $) NIL (|has| |#3| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-698 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-1280 $)) NIL (|has| |#3| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#3| (-735)))) (-2819 (($) NIL (|has| |#3| (-376)))) (-2457 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#3| $ (-573)) 12)) (-4152 (((-112) $) NIL (|has| |#3| (-857)))) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#3| (-735)))) (-3339 (((-112) $) NIL (|has| |#3| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#3| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#3| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#3| (-376)))) (-3965 (((-1132) $) NIL (|has| |#3| (-1112)))) (-2914 ((|#3| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#3|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-1535 (((-653 |#3|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) |#3|) NIL) ((|#3| $ (-573)) NIL)) (-2658 ((|#3| $ $) NIL (|has| |#3| (-1061)))) (-4260 (($ (-1280 |#3|)) NIL)) (-2365 (((-135)) NIL (|has| |#3| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061)))) (-3974 (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455))) (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#3|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) (($ |#3|) NIL (|has| |#3| (-1112))) (((-871) $) NIL (|has| |#3| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#3| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#3| (-857)))) (-2132 (($) NIL (|has| |#3| (-132)) CONST)) (-2144 (($) NIL (|has| |#3| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3005 (((-112) $ $) 24 (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $ $) NIL (|has| |#3| (-1061))) (($ $) NIL (|has| |#3| (-1061)))) (-3077 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-780)) NIL (|has| |#3| (-735))) (($ $ (-931)) NIL (|has| |#3| (-735)))) (* (($ (-573) $) NIL (|has| |#3| (-1061))) (($ $ $) NIL (|has| |#3| (-735))) (($ $ |#3|) NIL (|has| |#3| (-735))) (($ |#3| $) NIL (|has| |#3| (-735))) (($ (-780) $) NIL (|has| |#3| (-132))) (($ (-931) $) NIL (|has| |#3| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1125 |#1| |#2| |#3|) (-243 |#1| |#3|) (-780) (-780) (-802)) (T -1125)) -NIL -(-243 |#1| |#3|) -((-1386 (((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 50)) (-3076 (((-573) (-1253 |#2| |#1|)) 94 (|has| |#1| (-461)))) (-3043 (((-573) (-1253 |#2| |#1|)) 76)) (-4269 (((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 58)) (-3020 (((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 93 (|has| |#1| (-461)))) (-1559 (((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 61)) (-2689 (((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 75))) -(((-1126 |#1| |#2|) (-10 -7 (-15 -1386 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -4269 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -1559 ((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -2689 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3043 ((-573) (-1253 |#2| |#1|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3020 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3076 ((-573) (-1253 |#2| |#1|)))) |%noBranch|)) (-829) (-1189)) (T -1126)) -((-3076 (*1 *2 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-3020 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-2689 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 *4)) (-5 *1 (-1126 *4 *5)))) (-4269 (*1 *2 *3 *3) (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4)))) (-1386 (*1 *2 *3 *3) (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) -(-10 -7 (-15 -1386 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -4269 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -1559 ((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -2689 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3043 ((-573) (-1253 |#2| |#1|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3020 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3076 ((-573) (-1253 |#2| |#1|)))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-3363 (($ (-515) (-1130)) 13)) (-3139 (((-1130) $) 19)) (-2031 (((-515) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 26) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1127) (-13 (-1095) (-10 -8 (-15 -3363 ($ (-515) (-1130))) (-15 -2031 ((-515) $)) (-15 -3139 ((-1130) $))))) (T -1127)) -((-3363 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-1127)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1127)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-1127))))) -(-13 (-1095) (-10 -8 (-15 -3363 ($ (-515) (-1130))) (-15 -2031 ((-515) $)) (-15 -3139 ((-1130) $)))) -((-1983 (((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)) 19) (((-3 (-573) "failed") |#2| (-1189) (-852 |#2|)) 17) (((-3 (-573) "failed") |#2|) 60))) -(((-1128 |#1| |#2|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") |#2|)) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) (-852 |#2|))) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)))) (-13 (-565) (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|))) (T -1128)) -((-1983 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-1171)) (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *6 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))))) (-1983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *6 *3)))) (-1983 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) -(-10 -7 (-15 -1983 ((-3 (-573) "failed") |#2|)) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) (-852 |#2|))) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)))) -((-1983 (((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)) 38) (((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|)))) 33) (((-3 (-573) "failed") (-416 (-962 |#1|))) 14))) -(((-1129 |#1|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|))))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)))) (-461)) (T -1129)) -((-1983 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1189)) (-5 *5 (-1171)) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) (-1983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 (-416 (-962 *6)))) (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) (-1983 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *4))))) -(-10 -7 (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|))))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)))) -((-2848 (((-112) $ $) NIL)) (-2334 (((-1194) $) 12)) (-2285 (((-653 (-1194)) $) 14)) (-3139 (($ (-653 (-1194)) (-1194)) 10)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 29)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) -(((-1130) (-13 (-1112) (-10 -8 (-15 -3139 ($ (-653 (-1194)) (-1194))) (-15 -2334 ((-1194) $)) (-15 -2285 ((-653 (-1194)) $))))) (T -1130)) -((-3139 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1194))) (-5 *3 (-1194)) (-5 *1 (-1130)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1130)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1130))))) -(-13 (-1112) (-10 -8 (-15 -3139 ($ (-653 (-1194)) (-1194))) (-15 -2334 ((-1194) $)) (-15 -2285 ((-653 (-1194)) $)))) -((-1953 (((-323 (-573)) (-48)) 12))) -(((-1131) (-10 -7 (-15 -1953 ((-323 (-573)) (-48))))) (T -1131)) -((-1953 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-323 (-573))) (-5 *1 (-1131))))) -(-10 -7 (-15 -1953 ((-323 (-573)) (-48)))) -((-2848 (((-112) $ $) NIL)) (-2876 (($ $) 44)) (-1748 (((-112) $) 70)) (-2108 (($ $ $) 53)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 98)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) 81)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 83)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) 78)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) 64)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 92) (((-698 (-573)) (-698 $)) 32) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) 95) (($ $) 96)) (-2796 (($ $ $) 63)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) 93)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-2097 (($ $ $) 52)) (-1959 (((-112) $) 72)) (-2250 (((-112) $) 69)) (-2075 (($ $) 45)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) 82)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) 79)) (-3659 (($ $ $) 74) (($) 42 T CONST)) (-3751 (($ $ $) 73) (($) 41 T CONST)) (-3808 (($ $) NIL)) (-3589 (((-931) $) 88)) (-4134 (($ $) 77)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) 87)) (-1605 (($ $) 57)) (-3965 (((-1132) $) 76)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) 67) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 66)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) 58)) (-3166 (($ $) NIL)) (-1835 (((-573) $) 17) (((-545) $) NIL) (((-902 (-573)) $) NIL) (((-387) $) NIL) (((-227) $) NIL)) (-2942 (((-871) $) 35) (($ (-573)) 94) (($ $) NIL) (($ (-573)) 94)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) 40)) (-2516 (((-112) $ $) NIL)) (-2086 (($ $ $) 50)) (-3813 (($ $ $ $) 80)) (-1660 (($ $) 68)) (-2924 (($ $ $) 47)) (-2132 (($) 7 T CONST)) (-2244 (($ $ $) 51)) (-2144 (($) 39 T CONST)) (-2808 (((-1171) $) 26) (((-1171) $ (-112)) 27) (((-1285) (-831) $) 28) (((-1285) (-831) $ (-112)) 29)) (-2254 (($ $) 48)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2235 (($ $ $) 49)) (-3040 (((-112) $ $) 56)) (-3015 (((-112) $ $) 54)) (-2981 (((-112) $ $) 43)) (-3027 (((-112) $ $) 55)) (-3005 (((-112) $ $) 10)) (-2909 (($ $ $) 46)) (-3093 (($ $) 16) (($ $ $) 60)) (-3077 (($ $ $) 59)) (** (($ $ (-931)) NIL) (($ $ (-780)) 62)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 38) (($ $ $) 37) (($ (-573) $) 38))) -(((-1132) (-13 (-554) (-853) (-113) (-670) (-837) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2108 ($ $ $)) (-15 -2254 ($ $)) (-15 -2235 ($ $ $)) (-15 -2244 ($ $ $))))) (T -1132)) -((-2108 (*1 *1 *1 *1) (-5 *1 (-1132))) (-2254 (*1 *1 *1) (-5 *1 (-1132))) (-2235 (*1 *1 *1 *1) (-5 *1 (-1132))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1132)))) -(-13 (-554) (-853) (-113) (-670) (-837) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2108 ($ $ $)) (-15 -2254 ($ $)) (-15 -2235 ($ $ $)) (-15 -2244 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T)) +((-3647 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3080 (((-1288)) 21)) (-1715 (((-654 |#1|)) 13))) +(((-1099 |#1|) (-10 -7 (-15 -3080 ((-1288))) (-15 -1715 ((-654 |#1|))) (-15 -3647 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3647 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1099)) +((-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) (-1715 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-133)))) (-3080 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -3080 ((-1288))) (-15 -1715 ((-654 |#1|))) (-15 -3647 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3647 (|#1| |#1| (-1 (-574) |#1| |#1|)))) +((-3088 (($ (-109) $) 20)) (-1381 (((-701 (-109)) (-516) $) 19)) (-4272 (($) 7)) (-3903 (($) 21)) (-3623 (($) 22)) (-3574 (((-654 (-177)) $) 10)) (-2950 (((-872) $) 25))) +(((-1100) (-13 (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3574 ((-654 (-177)) $)) (-15 -1381 ((-701 (-109)) (-516) $)) (-15 -3088 ($ (-109) $)) (-15 -3903 ($)) (-15 -3623 ($))))) (T -1100)) +((-4272 (*1 *1) (-5 *1 (-1100))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1100)))) (-1381 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1100)))) (-3088 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1100)))) (-3903 (*1 *1) (-5 *1 (-1100))) (-3623 (*1 *1) (-5 *1 (-1100)))) +(-13 (-623 (-872)) (-10 -8 (-15 -4272 ($)) (-15 -3574 ((-654 (-177)) $)) (-15 -1381 ((-701 (-109)) (-516) $)) (-15 -3088 ($ (-109) $)) (-15 -3903 ($)) (-15 -3623 ($)))) +((-2555 (((-1283 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|))) 75) (((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|)))) 92)) (-4421 (((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39))) +(((-1101 |#1|) (-10 -7 (-15 -2555 ((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|))))) (-15 -2555 ((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|)))) (-15 -2555 ((-1283 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4421 ((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1101)) +((-4421 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1283 *5)) (-5 *1 (-1101 *5)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-1101 *4)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) (-5 *2 (-1283 (-699 (-965 *5)))) (-5 *1 (-1101 *5)) (-5 *4 (-699 (-965 *5))))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) (-5 *2 (-1283 (-699 (-417 (-965 *5))))) (-5 *1 (-1101 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) +(-10 -7 (-15 -2555 ((-1283 (-699 (-417 (-965 |#1|)))) (-654 (-1192)) (-699 (-417 (-965 |#1|))))) (-15 -2555 ((-1283 (-699 (-965 |#1|))) (-654 (-1192)) (-699 (-965 |#1|)))) (-15 -2555 ((-1283 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -4421 ((-1283 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2261 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1192)) NIL)) (-1724 (((-781) $) NIL) (((-781) $ (-1192)) NIL)) (-4349 (((-654 (-1103 (-1192))) $) NIL)) (-4172 (((-1188 $) $ (-1103 (-1192))) NIL) (((-1188 |#1|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1103 (-1192)))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-1841 (($ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1103 (-1192)) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL) (((-3 (-1140 |#1| (-1192)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1103 (-1192)) $) NIL) (((-1192) $) NIL) (((-1140 |#1| (-1192)) $) NIL)) (-3372 (($ $ $ (-1103 (-1192))) NIL (|has| |#1| (-174)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1103 (-1192))) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-541 (-1103 (-1192))) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1103 (-1192)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1103 (-1192)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ (-1192)) NIL) (((-781) $) NIL)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4338 (($ (-1188 |#1|) (-1103 (-1192))) NIL) (($ (-1188 $) (-1103 (-1192))) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-541 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1103 (-1192))) NIL)) (-2682 (((-541 (-1103 (-1192))) $) NIL) (((-781) $ (-1103 (-1192))) NIL) (((-654 (-781)) $ (-654 (-1103 (-1192)))) NIL)) (-3577 (($ (-1 (-541 (-1103 (-1192))) (-541 (-1103 (-1192)))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1352 (((-1 $ (-781)) (-1192)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-1407 (((-3 (-1103 (-1192)) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-3679 (((-1103 (-1192)) $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-2056 (((-112) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1103 (-1192))) (|:| -3843 (-781))) "failed") $) NIL)) (-2605 (($ $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1103 (-1192)) |#1|) NIL) (($ $ (-654 (-1103 (-1192))) (-654 |#1|)) NIL) (($ $ (-1103 (-1192)) $) NIL) (($ $ (-654 (-1103 (-1192))) (-654 $)) NIL) (($ $ (-1192) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1192)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-3902 (($ $ (-1103 (-1192))) NIL (|has| |#1| (-174)))) (-3878 (($ $ (-1103 (-1192))) NIL) (($ $ (-654 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1635 (((-654 (-1192)) $) NIL)) (-4144 (((-541 (-1103 (-1192))) $) NIL) (((-781) $ (-1103 (-1192))) NIL) (((-654 (-781)) $ (-654 (-1103 (-1192)))) NIL) (((-781) $ (-1192)) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1103 (-1192)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1103 (-1192))) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1103 (-1192))) NIL) (($ (-1192)) NIL) (($ (-1140 |#1| (-1192))) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-541 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1103 (-1192))) NIL) (($ $ (-654 (-1103 (-1192)))) NIL) (($ $ (-1103 (-1192)) (-781)) NIL) (($ $ (-654 (-1103 (-1192))) (-654 (-781))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1102 |#1|) (-13 (-260 |#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) (-1053 (-1140 |#1| (-1192)))) (-1064)) (T -1102)) +NIL +(-13 (-260 |#1| (-1192) (-1103 (-1192)) (-541 (-1103 (-1192)))) (-1053 (-1140 |#1| (-1192)))) +((-2863 (((-112) $ $) NIL)) (-1724 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3837 (((-781) $) 11)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1352 (($ |#1| (-781)) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3878 (($ $ (-781)) NIL) (($ $) NIL)) (-2950 (((-872) $) NIL) (($ |#1|) NIL)) (-4259 (((-112) $ $) NIL)) (-3583 (($ $ (-781)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 16))) +(((-1103 |#1|) (-273 |#1|) (-860)) (T -1103)) +NIL +(-273 |#1|) +((-1787 (((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 29 (|has| |#1| (-858))) (((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 14))) +(((-1104 |#1| |#2|) (-10 -7 (-15 -1787 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) (IF (|has| |#1| (-858)) (-15 -1787 ((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) |%noBranch|)) (-1233) (-1233)) (T -1104)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-858)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-1104 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1109 *6)) (-5 *1 (-1104 *5 *6))))) +(-10 -7 (-15 -1787 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) (IF (|has| |#1| (-858)) (-15 -1787 ((-654 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 16) (($ (-1197)) NIL) (((-1197) $) NIL)) (-3370 (((-654 (-1150)) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1105) (-13 (-1098) (-10 -8 (-15 -3370 ((-654 (-1150)) $))))) (T -1105)) +((-3370 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1105))))) +(-13 (-1098) (-10 -8 (-15 -3370 ((-654 (-1150)) $)))) +((-1787 (((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 19))) +(((-1106 |#1| |#2|) (-10 -7 (-15 -1787 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)))) (-1233) (-1233)) (T -1106)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1107 *6)) (-5 *1 (-1106 *5 *6))))) +(-10 -7 (-15 -1787 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115)))) (-1498 (((-1192) $) NIL)) (-3224 (((-1109 |#1|) $) NIL)) (-1938 (((-1174) $) NIL (|has| (-1109 |#1|) (-1115)))) (-3939 (((-1135) $) NIL (|has| (-1109 |#1|) (-1115)))) (-2705 (($ (-1192) (-1109 |#1|)) NIL)) (-2950 (((-872) $) NIL (|has| (-1109 |#1|) (-1115)))) (-4259 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115)))) (-2985 (((-112) $ $) NIL (|has| (-1109 |#1|) (-1115))))) +(((-1107 |#1|) (-13 (-1233) (-10 -8 (-15 -2705 ($ (-1192) (-1109 |#1|))) (-15 -1498 ((-1192) $)) (-15 -3224 ((-1109 |#1|) $)) (IF (|has| (-1109 |#1|) (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1107)) +((-2705 (*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1109 *4)) (-4 *4 (-1233)) (-5 *1 (-1107 *4)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-1233))))) +(-13 (-1233) (-10 -8 (-15 -2705 ($ (-1192) (-1109 |#1|))) (-15 -1498 ((-1192) $)) (-15 -3224 ((-1109 |#1|) $)) (IF (|has| (-1109 |#1|) (-1115)) (-6 (-1115)) |%noBranch|))) +((-3224 (($ |#1| |#1|) 8)) (-4375 ((|#1| $) 11)) (-2830 ((|#1| $) 13)) (-1964 (((-574) $) 9)) (-2893 ((|#1| $) 10)) (-1976 ((|#1| $) 12)) (-1846 (($ |#1|) 6)) (-4264 (($ |#1| |#1|) 15)) (-2747 (($ $ (-574)) 14))) +(((-1108 |#1|) (-141) (-1233)) (T -1108)) +((-4264 (*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1108 *3)) (-4 *3 (-1233)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1233)) (-5 *2 (-574)))) (-3224 (*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -4264 ($ |t#1| |t#1|)) (-15 -2747 ($ $ (-574))) (-15 -2830 (|t#1| $)) (-15 -1976 (|t#1| $)) (-15 -4375 (|t#1| $)) (-15 -2893 (|t#1| $)) (-15 -1964 ((-574) $)) (-15 -3224 ($ |t#1| |t#1|)))) +(((-628 |#1|) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3224 (($ |#1| |#1|) 16)) (-1787 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-4375 ((|#1| $) 12)) (-2830 ((|#1| $) 11)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1964 (((-574) $) 15)) (-2893 ((|#1| $) 14)) (-1976 ((|#1| $) 13)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2138 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1846 (($ |#1|) 29)) (-2950 (((-872) $) 28 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4264 (($ |#1| |#1|) 10)) (-2747 (($ $ (-574)) 17)) (-2985 (((-112) $ $) 22 (|has| |#1| (-1115))))) +(((-1109 |#1|) (-13 (-1108 |#1|) (-10 -7 (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-654 |#1|))) |%noBranch|))) (-1233)) (T -1109)) +NIL +(-13 (-1108 |#1|) (-10 -7 (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-654 |#1|))) |%noBranch|))) +((-3224 (($ |#1| |#1|) 8)) (-1787 ((|#2| (-1 |#1| |#1|) $) 16)) (-4375 ((|#1| $) 11)) (-2830 ((|#1| $) 13)) (-1964 (((-574) $) 9)) (-2893 ((|#1| $) 10)) (-1976 ((|#1| $) 12)) (-2138 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1846 (($ |#1|) 6)) (-4264 (($ |#1| |#1|) 15)) (-2747 (($ $ (-574)) 14))) +(((-1110 |#1| |#2|) (-141) (-858) (-1164 |t#1|)) (T -1110)) +((-2138 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1164 *4)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1164 *3)))) (-1787 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1164 *4))))) +(-13 (-1108 |t#1|) (-10 -8 (-15 -2138 (|t#2| (-654 $))) (-15 -2138 (|t#2| $)) (-15 -1787 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-628 |#1|) . T) ((-1108 |#1|) . T)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3333 (((-1150) $) 12)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 18) (($ (-1197)) NIL) (((-1197) $) NIL)) (-2053 (((-654 (-1150)) $) 10)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1111) (-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $)) (-15 -3333 ((-1150) $))))) (T -1111)) +((-2053 (*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1111)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1111))))) +(-13 (-1098) (-10 -8 (-15 -2053 ((-654 (-1150)) $)) (-15 -3333 ((-1150) $)))) +((-4353 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3728 (($ $ $) 10)) (-3062 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1112 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#2|)) (-15 -3062 (|#1| |#1| |#1|))) (-1113 |#2|) (-1115)) (T -1112)) +NIL +(-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -3728 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#2|)) (-15 -3062 (|#1| |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-4353 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3728 (($ $ $) 21)) (-4065 (((-112) $ $) 20)) (-1750 (((-112) $ (-781)) 36)) (-1517 (($) 26) (($ (-654 |#1|)) 25)) (-2175 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4458)))) (-3063 (($) 37 T CONST)) (-2818 (($ $) 60 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 59 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4458)))) (-1874 (((-654 |#1|) $) 44 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) 29)) (-2121 (((-112) $ (-781)) 35)) (-4187 (((-654 |#1|) $) 45 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 39)) (-2713 (((-112) $ (-781)) 34)) (-1938 (((-1174) $) 10)) (-2627 (($ $ $) 24)) (-3939 (((-1135) $) 11)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4043 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 30)) (-2234 (((-112) $) 33)) (-4272 (($) 32)) (-3062 (($ $ $) 23) (($ $ |#1|) 22)) (-3948 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4458)))) (-3156 (($ $) 31)) (-1846 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 52)) (-2950 (((-872) $) 12)) (-4268 (($) 28) (($ (-654 |#1|)) 27)) (-4259 (((-112) $ $) 9)) (-2235 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 38 (|has| $ (-6 -4458))))) +(((-1113 |#1|) (-141) (-1115)) (T -1113)) +((-3069 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-4268 (*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) (-1517 (*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) (-2627 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3062 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3062 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-3728 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4065 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4353 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) (-4353 (*1 *1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(-13 (-1115) (-152 |t#1|) (-10 -8 (-6 -4448) (-15 -3069 ((-112) $ $)) (-15 -4268 ($)) (-15 -4268 ($ (-654 |t#1|))) (-15 -1517 ($)) (-15 -1517 ($ (-654 |t#1|))) (-15 -2627 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -3062 ($ $ |t#1|)) (-15 -3728 ($ $ $)) (-15 -4065 ((-112) $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $ |t#1|)) (-15 -4353 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) . T) ((-1233) . T)) +((-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 8)) (-4259 (((-112) $ $) 12))) +(((-1114 |#1|) (-10 -8 (-15 -4259 ((-112) |#1| |#1|)) (-15 -1938 ((-1174) |#1|)) (-15 -3939 ((-1135) |#1|))) (-1115)) (T -1114)) +NIL +(-10 -8 (-15 -4259 ((-112) |#1| |#1|)) (-15 -1938 ((-1174) |#1|)) (-15 -3939 ((-1135) |#1|))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-1115) (-141)) (T -1115)) +((-3939 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1135)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1174)))) (-4259 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) +(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3939 ((-1135) $)) (-15 -1938 ((-1174) $)) (-15 -4259 ((-112) $ $)))) +(((-102) . T) ((-623 (-872)) . T)) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) 36)) (-2497 (($ (-654 (-934))) 70)) (-2715 (((-3 $ "failed") $ (-934) (-934)) 81)) (-2834 (($) 40)) (-3801 (((-112) (-934) $) 42)) (-3880 (((-934) $) 64)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) 39)) (-3180 (((-3 $ "failed") $ (-934)) 77)) (-3939 (((-1135) $) NIL)) (-3507 (((-1283 $)) 47)) (-4219 (((-654 (-934)) $) 27)) (-2085 (((-781) $ (-934) (-934)) 78)) (-2950 (((-872) $) 32)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 24))) +(((-1116 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -3180 ((-3 $ "failed") $ (-934))) (-15 -2715 ((-3 $ "failed") $ (-934) (-934))) (-15 -4219 ((-654 (-934)) $)) (-15 -2497 ($ (-654 (-934)))) (-15 -3507 ((-1283 $))) (-15 -3801 ((-112) (-934) $)) (-15 -2085 ((-781) $ (-934) (-934))))) (-934) (-934)) (T -1116)) +((-3180 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2715 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-2497 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-3507 (*1 *2) (-12 (-5 *2 (-1283 (-1116 *3 *4))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) (-3801 (*1 *2 *3 *1) (-12 (-5 *3 (-934)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-781)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-377) (-10 -8 (-15 -3180 ((-3 $ "failed") $ (-934))) (-15 -2715 ((-3 $ "failed") $ (-934) (-934))) (-15 -4219 ((-654 (-934)) $)) (-15 -2497 ($ (-654 (-934)))) (-15 -3507 ((-1283 $))) (-15 -3801 ((-112) (-934) $)) (-15 -2085 ((-781) $ (-934) (-934))))) +((-2863 (((-112) $ $) NIL)) (-1873 (($) NIL (|has| |#1| (-377)))) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3728 (($ $ $) 81)) (-4065 (((-112) $ $) 82)) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#1| (-377)))) (-1517 (($ (-654 |#1|)) NIL) (($) 13)) (-1657 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3245 (($ |#1| $) 74 (|has| $ (-6 -4458))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4458)))) (-2834 (($) NIL (|has| |#1| (-377)))) (-1874 (((-654 |#1|) $) 19 (|has| $ (-6 -4458)))) (-3069 (((-112) $ $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-3632 ((|#1| $) 55 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2953 ((|#1| $) 53 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 34)) (-3880 (((-934) $) NIL (|has| |#1| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-2627 (($ $ $) 79)) (-1494 ((|#1| $) 25)) (-1948 (($ |#1| $) 69)) (-2590 (($ (-934)) NIL (|has| |#1| (-377)))) (-3939 (((-1135) $) NIL)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2277 ((|#1| $) 27)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 21)) (-4272 (($) 11)) (-3062 (($ $ |#1|) NIL) (($ $ $) 80)) (-2163 (($) NIL) (($ (-654 |#1|)) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 16)) (-1846 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 62)) (-1488 (($ $) NIL (|has| |#1| (-377)))) (-2950 (((-872) $) NIL)) (-1617 (((-781) $) NIL)) (-4268 (($ (-654 |#1|)) NIL) (($) 12)) (-4259 (((-112) $ $) NIL)) (-2765 (($ (-654 |#1|)) NIL)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 52)) (-2876 (((-781) $) 10 (|has| $ (-6 -4458))))) +(((-1117 |#1|) (-435 |#1|) (-1115)) (T -1117)) +NIL +(-435 |#1|) +((-2863 (((-112) $ $) 7)) (-1503 (((-112) $) 33)) (-3978 ((|#2| $) 28)) (-3755 (((-112) $) 34)) (-3231 ((|#1| $) 29)) (-2031 (((-112) $) 36)) (-2539 (((-112) $) 38)) (-3082 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-1728 (((-112) $) 32)) (-3999 ((|#3| $) 27)) (-3939 (((-1135) $) 11)) (-3827 (((-112) $) 31)) (-2398 ((|#4| $) 26)) (-1455 ((|#5| $) 25)) (-4096 (((-112) $ $) 39)) (-2209 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4281 (((-654 $) $) 30)) (-1846 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2950 (((-872) $) 12)) (-2629 (($ $) 23)) (-2856 (($ $) 24)) (-4259 (((-112) $ $) 9)) (-3273 (((-112) $) 37)) (-2985 (((-112) $ $) 6)) (-2876 (((-574) $) 22))) +(((-1118 |#1| |#2| |#3| |#4| |#5|) (-141) (-1115) (-1115) (-1115) (-1115) (-1115)) (T -1118)) +((-4096 (*1 *2 *1 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112)))) (-4281 (*1 *2 *1) (-12 (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-1118 *3 *4 *5 *6 *7)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *2 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *2 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *2 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *2)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) (-2856 (*1 *1 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)))) (-2629 (*1 *1 *1) (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-574))))) +(-13 (-1115) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4096 ((-112) $ $)) (-15 -2539 ((-112) $)) (-15 -3273 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -3082 ((-112) $)) (-15 -3755 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -1728 ((-112) $)) (-15 -3827 ((-112) $)) (-15 -4281 ((-654 $) $)) (-15 -3231 (|t#1| $)) (-15 -3978 (|t#2| $)) (-15 -3999 (|t#3| $)) (-15 -2398 (|t#4| $)) (-15 -1455 (|t#5| $)) (-15 -2856 ($ $)) (-15 -2629 ($ $)) (-15 -2876 ((-574) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1503 (((-112) $) NIL)) (-3978 (((-1192) $) NIL)) (-3755 (((-112) $) NIL)) (-3231 (((-1174) $) NIL)) (-2031 (((-112) $) NIL)) (-2539 (((-112) $) NIL)) (-3082 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-1728 (((-112) $) NIL)) (-3999 (((-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-3827 (((-112) $) NIL)) (-2398 (((-227) $) NIL)) (-1455 (((-872) $) NIL)) (-4096 (((-112) $ $) NIL)) (-2209 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4281 (((-654 $) $) NIL)) (-1846 (($ (-1174)) NIL) (($ (-1192)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL)) (-2629 (($ $) NIL)) (-2856 (($ $) NIL)) (-4259 (((-112) $ $) NIL)) (-3273 (((-112) $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-574) $) NIL))) +(((-1119) (-1118 (-1174) (-1192) (-574) (-227) (-872))) (T -1119)) +NIL +(-1118 (-1174) (-1192) (-574) (-227) (-872)) +((-2863 (((-112) $ $) NIL)) (-1503 (((-112) $) 45)) (-3978 ((|#2| $) 48)) (-3755 (((-112) $) 20)) (-3231 ((|#1| $) 21)) (-2031 (((-112) $) 42)) (-2539 (((-112) $) 14)) (-3082 (((-112) $) 44)) (-1938 (((-1174) $) NIL)) (-1728 (((-112) $) 46)) (-3999 ((|#3| $) 50)) (-3939 (((-1135) $) NIL)) (-3827 (((-112) $) 47)) (-2398 ((|#4| $) 49)) (-1455 ((|#5| $) 51)) (-4096 (((-112) $ $) 41)) (-2209 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4281 (((-654 $) $) 27)) (-1846 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2950 (((-872) $) 28)) (-2629 (($ $) 26)) (-2856 (($ $) 58)) (-4259 (((-112) $ $) NIL)) (-3273 (((-112) $) 23)) (-2985 (((-112) $ $) 40)) (-2876 (((-574) $) 60))) +(((-1120 |#1| |#2| |#3| |#4| |#5|) (-1118 |#1| |#2| |#3| |#4| |#5|) (-1115) (-1115) (-1115) (-1115) (-1115)) (T -1120)) +NIL +(-1118 |#1| |#2| |#3| |#4| |#5|) +((-3741 (((-1288) $) 22)) (-3714 (($ (-1192) (-444) |#2|) 11)) (-2950 (((-872) $) 16))) +(((-1121 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3714 ($ (-1192) (-444) |#2|)))) (-1115) (-440 |#1|)) (T -1121)) +((-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1192)) (-5 *3 (-444)) (-4 *5 (-1115)) (-5 *1 (-1121 *5 *4)) (-4 *4 (-440 *5))))) +(-13 (-405) (-10 -8 (-15 -3714 ($ (-1192) (-444) |#2|)))) +((-2688 (((-112) |#5| |#5|) 44)) (-4104 (((-112) |#5| |#5|) 59)) (-1405 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1655 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2691 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) 70)) (-2269 (((-1288)) 32)) (-3814 (((-1288) (-1174) (-1174) (-1174)) 28)) (-1803 (((-654 |#5|) (-654 |#5|)) 101)) (-3821 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) 93)) (-3052 (((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-1620 (((-112) |#5| |#5|) 53)) (-3067 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3793 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-1820 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-3419 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-4398 (((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3166 (((-654 |#5|) (-654 |#5|)) 49))) +(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3814 ((-1288) (-1174) (-1174) (-1174))) (-15 -2269 ((-1288))) (-15 -2688 ((-112) |#5| |#5|)) (-15 -3166 ((-654 |#5|) (-654 |#5|))) (-15 -1620 ((-112) |#5| |#5|)) (-15 -4104 ((-112) |#5| |#5|)) (-15 -1655 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3793 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1820 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3419 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3067 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1405 ((-112) |#5| |#5|)) (-15 -1405 ((-112) |#5| (-654 |#5|))) (-15 -1803 ((-654 |#5|) (-654 |#5|))) (-15 -2691 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3821 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-15 -3052 ((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -4398 ((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1122)) +((-4398 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| -4096 (-654 *9)) (|:| -4067 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1122 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1086 *6 *7 *8 *9)))) (-3052 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4096 (-654 *9)) (|:| -4067 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1122 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4067 *7)))) (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-2691 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1122 *5 *6 *7 *8 *3)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3067 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3419 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1820 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-3793 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-1655 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-4104 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-1620 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-1122 *3 *4 *5 *6 *7)))) (-2688 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) (-2269 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3814 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(-10 -7 (-15 -3814 ((-1288) (-1174) (-1174) (-1174))) (-15 -2269 ((-1288))) (-15 -2688 ((-112) |#5| |#5|)) (-15 -3166 ((-654 |#5|) (-654 |#5|))) (-15 -1620 ((-112) |#5| |#5|)) (-15 -4104 ((-112) |#5| |#5|)) (-15 -1655 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3793 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1820 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3419 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3067 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1405 ((-112) |#5| |#5|)) (-15 -1405 ((-112) |#5| (-654 |#5|))) (-15 -1803 ((-654 |#5|) (-654 |#5|))) (-15 -2691 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3821 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-15 -3052 ((-654 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -4398 ((-3 (-2 (|:| -4096 (-654 |#4|)) (|:| -4067 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2303 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|) 108)) (-3648 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|) 80)) (-4155 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|) 102)) (-3552 (((-654 |#5|) |#4| |#5|) 124)) (-1321 (((-654 |#5|) |#4| |#5|) 131)) (-1927 (((-654 |#5|) |#4| |#5|) 132)) (-3620 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|) 109)) (-2062 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|) 130)) (-1587 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1626 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3690 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|) 87)) (-3605 (((-1288)) 36)) (-2047 (((-1288)) 25)) (-3787 (((-1288) (-1174) (-1174) (-1174)) 32)) (-3366 (((-1288) (-1174) (-1174) (-1174)) 21))) +(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-1288) (-1174) (-1174) (-1174))) (-15 -2047 ((-1288))) (-15 -3787 ((-1288) (-1174) (-1174) (-1174))) (-15 -3605 ((-1288))) (-15 -3648 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1626 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1626 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112))) (-15 -3690 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -4155 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1587 ((-112) |#4| |#5|)) (-15 -3620 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -3552 ((-654 |#5|) |#4| |#5|)) (-15 -2062 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -1321 ((-654 |#5|) |#4| |#5|)) (-15 -1587 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -1927 ((-654 |#5|) |#4| |#5|)) (-15 -2303 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1086 |#1| |#2| |#3| |#4|)) (T -1123)) +((-2303 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1927 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1321 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-2062 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3552 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-4155 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3690 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4067 *9)))) (-5 *1 (-1123 *6 *7 *4 *8 *9)))) (-1626 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) (-3648 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))) (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) (-3605 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3787 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) (-2047 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) (-3366 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(-10 -7 (-15 -3366 ((-1288) (-1174) (-1174) (-1174))) (-15 -2047 ((-1288))) (-15 -3787 ((-1288) (-1174) (-1174) (-1174))) (-15 -3605 ((-1288))) (-15 -3648 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1626 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1626 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) |#3| (-112))) (-15 -3690 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -4155 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#4| |#5|)) (-15 -1587 ((-112) |#4| |#5|)) (-15 -3620 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -3552 ((-654 |#5|) |#4| |#5|)) (-15 -2062 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -1321 ((-654 |#5|) |#4| |#5|)) (-15 -1587 ((-654 (-2 (|:| |val| (-112)) (|:| -4067 |#5|))) |#4| |#5|)) (-15 -1927 ((-654 |#5|) |#4| |#5|)) (-15 -2303 ((-654 (-2 (|:| |val| |#4|) (|:| -4067 |#5|))) |#4| |#5|))) +((-2863 (((-112) $ $) 7)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) 86)) (-1346 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) 102) (((-112) $) 98)) (-3871 ((|#4| |#4| $) 93)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1779 ((|#4| |#4| $) 90)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2544 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) 106)) (-3288 (((-112) |#4| $) 137)) (-1861 (((-112) |#4| $) 134)) (-2196 (((-112) |#4| $) 138) (((-112) $) 135)) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2737 (((-654 $) |#4| $) 130)) (-2538 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2627 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3599 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4009 (((-654 |#4|) $) 108)) (-1746 (((-112) |#4| $) 100) (((-112) $) 96)) (-2780 ((|#4| |#4| $) 91)) (-3419 (((-112) $ $) 111)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) 101) (((-112) $) 97)) (-1371 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3967 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-4144 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-2293 (($ $) 89)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3988 (((-781) $) 77 (|has| |#3| (-377)))) (-4259 (((-112) $ $) 9)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2457 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) 82)) (-2906 (((-112) |#4| $) 136)) (-2488 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-1124 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1124)) +NIL +(-13 (-1086 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) +((-4195 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-3389 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-3158 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-3685 (((-574) (-574) (-574)) 21)) (-2200 (((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574)) 76) (((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574)) 71)) (-3608 (((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112)) 54)) (-2157 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-2206 (((-699 (-574)) (-654 (-934)) (-654 (-574))) 59)) (-3858 (((-654 (-699 (-574))) (-654 (-934))) 64)) (-3876 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-2675 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89))) +(((-1125) (-10 -7 (-15 -2675 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3876 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3858 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2206 ((-699 (-574)) (-654 (-934)) (-654 (-574)))) (-15 -2157 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3608 ((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112))) (-15 -2200 ((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574))) (-15 -2200 ((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574))) (-15 -3685 ((-574) (-574) (-574))) (-15 -3158 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3389 ((-654 (-574)) (-574) (-574) (-574))) (-15 -4195 ((-654 (-574)) (-574) (-574) (-574))))) (T -1125)) +((-4195 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-3389 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-3158 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574)))) (-3685 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1125)))) (-2200 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1125)))) (-2200 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-574)) (-5 *1 (-1125)))) (-3608 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-934))) (-5 *4 (-112)) (-5 *1 (-1125)))) (-2157 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1125)))) (-2206 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1125)))) (-3876 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1125)))) (-2675 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) +(-10 -7 (-15 -2675 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3876 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3858 ((-654 (-699 (-574))) (-654 (-934)))) (-15 -2206 ((-699 (-574)) (-654 (-934)) (-654 (-574)))) (-15 -2157 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3608 ((-654 (-574)) (-654 (-934)) (-654 (-574)) (-112))) (-15 -2200 ((-1283 (-574)) (-1283 (-574)) (-1283 (-574)) (-574))) (-15 -2200 ((-1283 (-574)) (-654 (-574)) (-1283 (-574)) (-574))) (-15 -3685 ((-574) (-574) (-574))) (-15 -3158 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3389 ((-654 (-574)) (-574) (-574) (-574))) (-15 -4195 ((-654 (-574)) (-574) (-574) (-574)))) +((** (($ $ (-934)) 10))) +(((-1126 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-934)))) (-1127)) (T -1126)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-934)))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6)) (** (($ $ (-934)) 14)) (* (($ $ $) 15))) +(((-1127) (-141)) (T -1127)) +((* (*1 *1 *1 *1) (-4 *1 (-1127))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1127)) (-5 *2 (-934))))) +(-13 (-1115) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-934))))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-1997 (((-112) $) NIL (|has| |#3| (-132)))) (-2365 (($ (-934)) NIL (|has| |#3| (-1064)))) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3672 (($ $ $) NIL (|has| |#3| (-803)))) (-2599 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-1750 (((-112) $ (-781)) NIL)) (-1497 (((-781)) NIL (|has| |#3| (-377)))) (-2496 (((-574) $) NIL (|has| |#3| (-858)))) (-3134 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1115)))) (-2216 (((-574) $) NIL (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) ((|#3| $) NIL (|has| |#3| (-1115)))) (-4232 (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1064)))) (((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1064))) (((-699 |#3|) (-1283 $)) NIL (|has| |#3| (-1064)))) (-2978 (((-3 $ "failed") $) NIL (|has| |#3| (-736)))) (-2834 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#3| $ (-574)) 12)) (-1348 (((-112) $) NIL (|has| |#3| (-858)))) (-1874 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL (|has| |#3| (-736)))) (-3081 (((-112) $) NIL (|has| |#3| (-858)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-4187 (((-654 |#3|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2464 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#3| |#3|) $) NIL)) (-3880 (((-934) $) NIL (|has| |#3| (-377)))) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#3| (-1115)))) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-2590 (($ (-934)) NIL (|has| |#3| (-377)))) (-3939 (((-1135) $) NIL (|has| |#3| (-1115)))) (-2924 ((|#3| $) NIL (|has| (-574) (-860)))) (-2485 (($ $ |#3|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3670 (((-654 |#3|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-2546 ((|#3| $ $) NIL (|has| |#3| (-1064)))) (-4246 (($ (-1283 |#3|)) NIL)) (-2900 (((-135)) NIL (|has| |#3| (-372)))) (-3878 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064)))) (-3948 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#3| (-1115))))) (-3156 (($ $) NIL)) (-2950 (((-1283 |#3|) $) NIL) (($ (-574)) NIL (-2832 (-12 (|has| |#3| (-1053 (-574))) (|has| |#3| (-1115))) (|has| |#3| (-1064)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1053 (-417 (-574)))) (|has| |#3| (-1115)))) (($ |#3|) NIL (|has| |#3| (-1115))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-3781 (((-781)) NIL (|has| |#3| (-1064)) CONST)) (-4259 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-2235 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4458)))) (-2366 (($ $) NIL (|has| |#3| (-858)))) (-2143 (($) NIL (|has| |#3| (-132)) CONST)) (-2155 (($) NIL (|has| |#3| (-736)) CONST)) (-3583 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1064)))) (($ $ (-1192)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#3| (-913 (-1192))) (|has| |#3| (-1064)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1064))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1064)))) (-3040 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3017 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2985 (((-112) $ $) NIL (|has| |#3| (-1115)))) (-3029 (((-112) $ $) NIL (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3008 (((-112) $ $) 24 (-2832 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3102 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3089 (($ $ $) NIL (|has| |#3| (-1064))) (($ $) NIL (|has| |#3| (-1064)))) (-3073 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-736))) (($ $ (-934)) NIL (|has| |#3| (-736)))) (* (($ (-574) $) NIL (|has| |#3| (-1064))) (($ $ $) NIL (|has| |#3| (-736))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-934) $) NIL (|has| |#3| (-25)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1128 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1128)) +NIL +(-244 |#1| |#3|) +((-3986 (((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 50)) (-3458 (((-574) (-1256 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-3101 (((-574) (-1256 |#2| |#1|)) 76)) (-3169 (((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 58)) (-2971 (((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-3913 (((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 61)) (-2873 (((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 75))) +(((-1129 |#1| |#2|) (-10 -7 (-15 -3986 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3169 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3913 ((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2873 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3101 ((-574) (-1256 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2971 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3458 ((-574) (-1256 |#2| |#1|)))) |%noBranch|)) (-830) (-1192)) (T -1129)) +((-3458 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-2971 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-2873 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5)))) (-3913 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 *4)) (-5 *1 (-1129 *4 *5)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4)))) (-3986 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) +(-10 -7 (-15 -3986 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3169 ((-654 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3913 ((-654 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -2873 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3101 ((-574) (-1256 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -2971 ((-574) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3458 ((-574) (-1256 |#2| |#1|)))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-3326 (($ (-516) (-1133)) 13)) (-3131 (((-1133) $) 19)) (-2041 (((-516) $) 16)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 26) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1130) (-13 (-1098) (-10 -8 (-15 -3326 ($ (-516) (-1133))) (-15 -2041 ((-516) $)) (-15 -3131 ((-1133) $))))) (T -1130)) +((-3326 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-1130)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1130)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1130))))) +(-13 (-1098) (-10 -8 (-15 -3326 ($ (-516) (-1133))) (-15 -2041 ((-516) $)) (-15 -3131 ((-1133) $)))) +((-2496 (((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)) 19) (((-3 (-574) "failed") |#2| (-1192) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -2496 ((-3 (-574) "failed") |#2|)) (-15 -2496 ((-3 (-574) "failed") |#2| (-1192) (-853 |#2|))) (-15 -2496 ((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)))) (-13 (-566) (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|))) (T -1131)) +((-2496 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-1174)) (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *6 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *6 *3)))) (-2496 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1131 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) +(-10 -7 (-15 -2496 ((-3 (-574) "failed") |#2|)) (-15 -2496 ((-3 (-574) "failed") |#2| (-1192) (-853 |#2|))) (-15 -2496 ((-3 (-574) "failed") |#2| (-1192) |#2| (-1174)))) +((-2496 (((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)) 38) (((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-965 |#1|))) 14))) +(((-1132 |#1|) (-10 -7 (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)))) (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|))))) (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)))) (-462)) (T -1132)) +((-2496 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1192)) (-5 *5 (-1174)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 (-417 (-965 *6)))) (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) (-2496 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *4))))) +(-10 -7 (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)))) (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-853 (-417 (-965 |#1|))))) (-15 -2496 ((-3 (-574) "failed") (-417 (-965 |#1|)) (-1192) (-417 (-965 |#1|)) (-1174)))) +((-2863 (((-112) $ $) NIL)) (-2349 (((-1197) $) 12)) (-2300 (((-654 (-1197)) $) 14)) (-3131 (($ (-654 (-1197)) (-1197)) 10)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 29)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 17))) +(((-1133) (-13 (-1115) (-10 -8 (-15 -3131 ($ (-654 (-1197)) (-1197))) (-15 -2349 ((-1197) $)) (-15 -2300 ((-654 (-1197)) $))))) (T -1133)) +((-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1197))) (-5 *3 (-1197)) (-5 *1 (-1133)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1133)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1133))))) +(-13 (-1115) (-10 -8 (-15 -3131 ($ (-654 (-1197)) (-1197))) (-15 -2349 ((-1197) $)) (-15 -2300 ((-654 (-1197)) $)))) +((-3480 (((-324 (-574)) (-48)) 12))) +(((-1134) (-10 -7 (-15 -3480 ((-324 (-574)) (-48))))) (T -1134)) +((-3480 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1134))))) +(-10 -7 (-15 -3480 ((-324 (-574)) (-48)))) +((-2863 (((-112) $ $) NIL)) (-2889 (($ $) 44)) (-1997 (((-112) $) 70)) (-2119 (($ $ $) 53)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 98)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-4393 (($ $ $ $) 81)) (-3313 (($ $) NIL)) (-2153 (((-428 $) $) NIL)) (-1526 (((-112) $ $) NIL)) (-1497 (((-781)) 83)) (-2496 (((-574) $) NIL)) (-3931 (($ $ $) 78)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2800 (($ $ $) 64)) (-4232 (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2222 (((-3 (-417 (-574)) "failed") $) NIL)) (-4002 (((-112) $) NIL)) (-2258 (((-417 (-574)) $) NIL)) (-2834 (($) 95) (($ $) 96)) (-2811 (($ $ $) 63)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL)) (-2941 (((-112) $) NIL)) (-3202 (($ $ $ $) NIL)) (-4194 (($ $ $) 93)) (-1348 (((-112) $) NIL)) (-2325 (($ $ $) NIL)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2108 (($ $ $) 52)) (-2276 (((-112) $) 72)) (-3127 (((-112) $) 69)) (-2086 (($ $) 45)) (-4217 (((-3 $ "failed") $) NIL)) (-3081 (((-112) $) 82)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4351 (($ $ $ $) 79)) (-3632 (($ $ $) 74) (($) 42 T CONST)) (-2953 (($ $ $) 73) (($) 41 T CONST)) (-3780 (($ $) NIL)) (-3880 (((-934) $) 88)) (-4108 (($ $) 77)) (-2844 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1938 (((-1174) $) NIL)) (-3135 (($ $ $) NIL)) (-3791 (($) NIL T CONST)) (-2590 (($ (-934)) 87)) (-1615 (($ $) 57)) (-3939 (((-1135) $) 76)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL)) (-2886 (($ $ $) 67) (($ (-654 $)) NIL)) (-3125 (($ $) NIL)) (-4200 (((-428 $) $) NIL)) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3304 (((-112) $) NIL)) (-3575 (((-781) $) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 66)) (-3878 (($ $) NIL) (($ $ (-781)) NIL)) (-2309 (($ $) 58)) (-3156 (($ $) NIL)) (-1846 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2950 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-3781 (((-781)) NIL T CONST)) (-1649 (((-112) $ $) NIL)) (-2561 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-2644 (($) 40)) (-3676 (((-112) $ $) NIL)) (-2097 (($ $ $) 50)) (-2255 (($ $ $ $) 80)) (-2366 (($ $) 68)) (-2933 (($ $ $) 47)) (-2143 (($) 7 T CONST)) (-2259 (($ $ $) 51)) (-2155 (($) 39 T CONST)) (-1579 (((-1174) $) 26) (((-1174) $ (-112)) 27) (((-1288) (-832) $) 28) (((-1288) (-832) $ (-112)) 29)) (-2268 (($ $) 48)) (-3583 (($ $) NIL) (($ $ (-781)) NIL)) (-2248 (($ $ $) 49)) (-3040 (((-112) $ $) 56)) (-3017 (((-112) $ $) 54)) (-2985 (((-112) $ $) 43)) (-3029 (((-112) $ $) 55)) (-3008 (((-112) $ $) 10)) (-2921 (($ $ $) 46)) (-3089 (($ $) 16) (($ $ $) 60)) (-3073 (($ $ $) 59)) (** (($ $ (-934)) NIL) (($ $ (-781)) 62)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38))) +(((-1135) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -2119 ($ $ $)) (-15 -2268 ($ $)) (-15 -2248 ($ $ $)) (-15 -2259 ($ $ $))))) (T -1135)) +((-2119 (*1 *1 *1 *1) (-5 *1 (-1135))) (-2268 (*1 *1 *1) (-5 *1 (-1135))) (-2248 (*1 *1 *1 *1) (-5 *1 (-1135))) (-2259 (*1 *1 *1 *1) (-5 *1 (-1135)))) +(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4445) (-6 -4450) (-6 -4446) (-15 -2119 ($ $ $)) (-15 -2268 ($ $)) (-15 -2248 ($ $ $)) (-15 -2259 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2001 ((|#1| $) 45)) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-2948 ((|#1| |#1| $) 47)) (-3072 ((|#1| $) 46)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-4302 (((-780) $) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1133 |#1|) (-141) (-1230)) (T -1133)) -((-2948 (*1 *2 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -2948 (|t#1| |t#1| $)) (-15 -3072 (|t#1| $)) (-15 -2001 (|t#1| $)) (-15 -4302 ((-780) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-1635 ((|#3| $) 87)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#3| $) 47)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) 84) (((-698 |#3|) (-698 $)) 76) (((-698 |#3|) (-1280 $)) NIL)) (-3904 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-3856 ((|#3| $) 89)) (-3372 ((|#4| $) 43)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#3|) 25)) (** (($ $ (-931)) NIL) (($ $ (-780)) 24) (($ $ (-573)) 95))) -(((-1134 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 -3856 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -2942 ((-871) |#1|))) (-1135 |#2| |#3| |#4| |#5|) (-780) (-1061) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1134)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 -3856 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1635 ((|#2| $) 78)) (-2932 (((-112) $) 120)) (-2983 (((-3 $ "failed") $ $) 20)) (-1916 (((-112) $) 118)) (-3450 (((-112) $ (-780)) 110)) (-1681 (($ |#2|) 81)) (-2579 (($) 18 T CONST)) (-2801 (($ $) 137 (|has| |#2| (-314)))) (-3229 ((|#3| $ (-573)) 132)) (-1695 (((-3 (-573) "failed") $) 95 (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 92 (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) 89)) (-2205 (((-573) $) 94 (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) 91 (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) 90)) (-2759 (((-698 (-573)) (-1280 $)) 87 (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) 86 (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 85 (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 84) (((-698 |#2|) (-698 $)) 83) (((-698 |#2|) (-1280 $)) 82)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-780) $) 138 (|has| |#2| (-565)))) (-2384 ((|#2| $ (-573) (-573)) 130)) (-1863 (((-653 |#2|) $) 103 (|has| $ (-6 -4455)))) (-1959 (((-112) $) 35)) (-2928 (((-780) $) 139 (|has| |#2| (-565)))) (-4209 (((-653 |#4|) $) 140 (|has| |#2| (-565)))) (-2188 (((-780) $) 126)) (-2197 (((-780) $) 127)) (-2078 (((-112) $ (-780)) 111)) (-2431 ((|#2| $) 73 (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) 122)) (-4011 (((-573) $) 124)) (-3214 (((-653 |#2|) $) 102 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 123)) (-2326 (((-573) $) 125)) (-2913 (($ (-653 (-653 |#2|))) 117)) (-2446 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-1612 (((-653 (-653 |#2|)) $) 128)) (-2673 (((-112) $ (-780)) 112)) (-3180 (((-1171) $) 10)) (-3299 (((-3 $ "failed") $) 72 (|has| |#2| (-371)))) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 99 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 98 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 96 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 116)) (-3811 (((-112) $) 113)) (-3508 (($) 114)) (-2198 ((|#2| $ (-573) (-573) |#2|) 131) ((|#2| $ (-573) (-573)) 129)) (-3904 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-780)) 56) (($ $ (-653 (-1189)) (-653 (-780))) 49 (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) 48 (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) 47 (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) 46 (|has| |#2| (-910 (-1189)))) (($ $) 45 (|has| |#2| (-238))) (($ $ (-780)) 43 (|has| |#2| (-238)))) (-3856 ((|#2| $) 77)) (-1633 (($ (-653 |#2|)) 80)) (-2530 (((-112) $) 119)) (-3372 ((|#3| $) 79)) (-2529 ((|#2| $) 74 (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4455))) (((-780) |#2| $) 101 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 115)) (-1921 ((|#4| $ (-573)) 133)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 93 (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) 88)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 121)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-780)) 54) (($ $ (-653 (-1189)) (-653 (-780))) 53 (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) 52 (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) 51 (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) 50 (|has| |#2| (-910 (-1189)))) (($ $) 44 (|has| |#2| (-238))) (($ $ (-780)) 42 (|has| |#2| (-238)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 136 (|has| |#2| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 71 (|has| |#2| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2862 (((-780) $) 109 (|has| $ (-6 -4455))))) -(((-1135 |#1| |#2| |#3| |#4|) (-141) (-780) (-1061) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1135)) -((-1681 (*1 *1 *2) (-12 (-4 *2 (-1061)) (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *4)) (-4 *4 (-1061)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1061)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1061)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1135 *3 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-3299 (*1 *1 *1) (|partial| -12 (-4 *1 (-1135 *2 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-371)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-371))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1065 |t#1| |t#1| |t#2| |t#3| |t#4|) (-420 |t#2|) (-385 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-726 |t#2|)) |%noBranch|) (-15 -1681 ($ |t#2|)) (-15 -1633 ($ (-653 |t#2|))) (-15 -3372 (|t#3| $)) (-15 -1635 (|t#2| $)) (-15 -3856 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4457 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2529 (|t#2| $)) (-15 -2431 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-371)) (PROGN (-15 -3299 ((-3 $ "failed") $)) (-15 ** ($ $ (-573)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4457 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-235 $) |has| |#2| (-238)) ((-233 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) |has| |#2| (-238)) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-385 |#2|) . T) ((-420 |#2|) . T) ((-498 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 #1=(-573)) |has| |#2| (-648 (-573))) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-6 (-4457 "*")))) ((-648 #1#) |has| |#2| (-648 (-573))) ((-648 |#2|) . T) ((-726 |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-6 (-4457 "*")))) ((-735) . T) ((-910 (-1189)) |has| |#2| (-910 (-1189))) ((-1065 |#1| |#1| |#2| |#3| |#4|) . T) ((-1050 #0#) |has| |#2| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#2| (-1050 (-573))) ((-1050 |#2|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) -((-2207 ((|#4| |#4|) 81)) (-4126 ((|#4| |#4|) 76)) (-2684 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|) 91)) (-4358 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1892 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 (|#4| |#4|)) (-15 -1892 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2207 (|#4| |#4|)) (-15 -4358 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2684 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|))) (-314) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -1136)) -((-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-381 *5)) (-4 *4 (-381 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-1136 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-1892 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(-10 -7 (-15 -4126 (|#4| |#4|)) (-15 -1892 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2207 (|#4| |#4|)) (-15 -4358 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2684 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 18)) (-4354 (((-653 |#2|) $) 174)) (-4193 (((-1185 $) $ |#2|) 60) (((-1185 |#1|) $) 49)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 116 (|has| |#1| (-565)))) (-2456 (($ $) 118 (|has| |#1| (-565)))) (-1345 (((-112) $) 120 (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#2|)) 213)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 167) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#2| "failed") $) NIL)) (-2205 ((|#1| $) 165) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#2| $) NIL)) (-2277 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1391 (($ $) 217)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 90)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 |#2|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) 20)) (-3772 (((-780) $) 30)) (-4344 (($ (-1185 |#1|) |#2|) 54) (($ (-1185 $) |#2|) 71)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) 38)) (-4334 (($ |#1| (-540 |#2|)) 78) (($ $ |#2| (-780)) 58) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-4036 (((-540 |#2|) $) 205) (((-780) $ |#2|) 206) (((-653 (-780)) $ (-653 |#2|)) 207)) (-1382 (($ (-1 (-540 |#2|) (-540 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 128)) (-1453 (((-3 |#2| "failed") $) 177)) (-1358 (($ $) 216)) (-1369 ((|#1| $) 43)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 39)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 148 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 153 (|has| |#1| (-461))) (($ $ $) 138 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-653 |#2|) (-653 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-653 |#2|) (-653 $)) 194)) (-3592 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#2|) 215) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) 201) (((-780) $ |#2|) 196) (((-653 (-780)) $ (-653 |#2|)) 199)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#1| $) 134 (|has| |#1| (-461))) (($ $ |#2|) 137 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 159) (($ (-573)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 162)) (-4317 ((|#1| $ (-540 |#2|)) 80) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 87 T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) 123 (|has| |#1| (-565)))) (-2132 (($) 12 T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) 106)) (-3103 (($ $ |#1|) 132 (|has| |#1| (-371)))) (-3093 (($ $) 93) (($ $ $) 104)) (-3077 (($ $ $) 55)) (** (($ $ (-931)) 110) (($ $ (-780)) 109)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 96) (($ $ $) 72) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1137 |#1| |#2|) (-959 |#1| (-540 |#2|) |#2|) (-1061) (-859)) (T -1137)) -NIL -(-959 |#1| (-540 |#2|) |#2|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2363 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 128 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 124 (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4052 (((-962 |#1|) $ (-780)) NIL) (((-962 |#1|) $ (-780) (-780)) NIL)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ |#2|) NIL) (((-780) $ |#2| (-780)) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) NIL)) (-4334 (($ $ (-653 |#2|) (-653 (-540 |#2|))) NIL) (($ $ |#2| (-540 |#2|)) NIL) (($ |#1| (-540 |#2|)) NIL) (($ $ |#2| (-780)) 63) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 122 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $ |#2|) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-3131 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2212 (($ $ (-780)) 16)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) 120 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ |#2| $) 106) (($ $ (-653 |#2|) (-653 $)) 99) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL)) (-3904 (($ $ |#2|) 109) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) NIL)) (-1755 (((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|))) 87)) (-2401 (($ $) 158 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 126 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 18)) (-2942 (((-871) $) 198) (($ (-573)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#2|) 70) (($ |#3|) 68)) (-4317 ((|#1| $ (-540 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL) ((|#3| $ (-780)) 43)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 164 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 168 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) 170 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 166 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 162 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 52 T CONST)) (-2144 (($) 62 T CONST)) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) 200 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 66)) (** (($ $ (-931)) NIL) (($ $ (-780)) 77) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 112 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 65) (($ $ (-416 (-573))) 117 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 115 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1138 |#1| |#2| |#3|) (-13 (-749 |#1| |#2|) (-10 -8 (-15 -4317 (|#3| $ (-780))) (-15 -2942 ($ |#2|)) (-15 -2942 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1755 ((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |#2| |#1|)) (-15 -3131 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1061) (-859) (-959 |#1| (-540 |#2|) |#2|)) (T -1138)) -((-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *2 (-959 *4 (-540 *5) *5)) (-5 *1 (-1138 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) (-4 *2 (-959 *3 (-540 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) (-4 *2 (-959 *3 (-540 *4) *4)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1169 *7))) (-4 *6 (-859)) (-4 *7 (-959 *5 (-540 *6) *6)) (-4 *5 (-1061)) (-5 *2 (-1 (-1169 *7) *7)) (-5 *1 (-1138 *5 *6 *7)))) (-1626 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) (-3131 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1138 *4 *3 *5))) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *1 (-1138 *4 *3 *5)) (-4 *5 (-959 *4 (-540 *3) *3))))) -(-13 (-749 |#1| |#2|) (-10 -8 (-15 -4317 (|#3| $ (-780))) (-15 -2942 ($ |#2|)) (-15 -2942 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1755 ((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |#2| |#1|)) (-15 -3131 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-1139 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1139)) -NIL -(-13 (-1121 |t#1| |t#2| |t#3| |t#4|) (-793 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-793 |#1| |#2| |#3| |#4|) . T) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) -((-1994 (((-653 |#2|) |#1|) 15)) (-1754 (((-653 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-653 |#2|) |#1|) 61)) (-1876 (((-653 |#2|) |#2| |#2| |#2|) 45) (((-653 |#2|) |#1|) 59)) (-1460 ((|#2| |#1|) 54)) (-3149 (((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4033 (((-653 |#2|) |#2| |#2|) 42) (((-653 |#2|) |#1|) 58)) (-3252 (((-653 |#2|) |#2| |#2| |#2| |#2|) 46) (((-653 |#2|) |#1|) 60)) (-2417 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4069 ((|#2| |#2| |#2| |#2|) 51)) (-2695 ((|#2| |#2| |#2|) 50)) (-4171 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1140 |#1| |#2|) (-10 -7 (-15 -1994 ((-653 |#2|) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -3149 ((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-653 |#2|) |#1|)) (-15 -1876 ((-653 |#2|) |#1|)) (-15 -3252 ((-653 |#2|) |#1|)) (-15 -1754 ((-653 |#2|) |#1|)) (-15 -4033 ((-653 |#2|) |#2| |#2|)) (-15 -1876 ((-653 |#2|) |#2| |#2| |#2|)) (-15 -3252 ((-653 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1754 ((-653 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2695 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2|)) (-15 -4171 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2417 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1256 |#2|) (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (T -1140)) -((-2417 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-4171 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-4069 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-2695 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-1754 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-3252 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-1876 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-4033 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-3252 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-2 (|:| |solns| (-653 *5)) (|:| |maps| (-653 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1140 *3 *5)) (-4 *3 (-1256 *5)))) (-1460 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -1994 ((-653 |#2|) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -3149 ((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-653 |#2|) |#1|)) (-15 -1876 ((-653 |#2|) |#1|)) (-15 -3252 ((-653 |#2|) |#1|)) (-15 -1754 ((-653 |#2|) |#1|)) (-15 -4033 ((-653 |#2|) |#2| |#2|)) (-15 -1876 ((-653 |#2|) |#2| |#2| |#2|)) (-15 -3252 ((-653 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1754 ((-653 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2695 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2|)) (-15 -4171 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2417 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-2873 (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|))))) 118) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189))) 117) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|)))) 115) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 113) (((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|)))) 97) (((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189)) 98) (((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|))) 92) (((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189)) 82)) (-2253 (((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 111) (((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189)) 54)) (-1383 (((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)) 122) (((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189)) 121))) -(((-1141 |#1|) (-10 -7 (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2253 ((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -2253 ((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)))) (-13 (-314) (-148))) (T -1141)) -((-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-323 *5)))) (-5 *1 (-1141 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-323 *5))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 *5))))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1141 *5))))) -(-10 -7 (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2253 ((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -2253 ((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)))) -((-2929 (((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)) 36)) (-4165 (((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|)))) 48))) -(((-1142 |#1|) (-10 -7 (-15 -4165 ((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))))) (-15 -2929 ((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)))) (-565)) (T -1142)) -((-2929 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-416 (-1185 (-323 *5)))) (-5 *3 (-1280 (-323 *5))) (-5 *4 (-573)) (-4 *5 (-565)) (-5 *1 (-1142 *5)))) (-4165 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-416 (-1185 (-323 *3)))) (-4 *3 (-565)) (-5 *1 (-1142 *3))))) -(-10 -7 (-15 -4165 ((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))))) (-15 -2929 ((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)))) -((-1994 (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))) 244) (((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189)) 23) (((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189)) 29) (((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|))) 28) (((-653 (-301 (-323 |#1|))) (-323 |#1|)) 24))) -(((-1143 |#1|) (-10 -7 (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189))) (-15 -1994 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (T -1143)) -((-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1143 *5)) (-5 *3 (-653 (-301 (-323 *5)))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) (-5 *3 (-323 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) (-5 *3 (-301 (-323 *5))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-301 (-323 *4))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-323 *4))))) -(-10 -7 (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189))) (-15 -1994 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))))) -((-2526 ((|#2| |#2|) 28 (|has| |#1| (-859))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2763 ((|#2| |#2|) 27 (|has| |#1| (-859))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -2763 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2526 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-859)) (PROGN (-15 -2763 (|#2| |#2|)) (-15 -2526 (|#2| |#2|))) |%noBranch|)) (-1230) (-13 (-613 (-573) |#1|) (-10 -7 (-6 -4455) (-6 -4456)))) (T -1144)) -((-2526 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2526 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2763 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456))))))) -(-10 -7 (-15 -2763 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2526 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-859)) (PROGN (-15 -2763 (|#2| |#2|)) (-15 -2526 (|#2| |#2|))) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-2895 (((-1177 3 |#1|) $) 141)) (-2429 (((-112) $) 101)) (-2247 (($ $ (-653 (-953 |#1|))) 44) (($ $ (-653 (-653 |#1|))) 104) (($ (-653 (-953 |#1|))) 103) (((-653 (-953 |#1|)) $) 102)) (-2845 (((-112) $) 72)) (-3590 (($ $ (-953 |#1|)) 76) (($ $ (-653 |#1|)) 81) (($ $ (-780)) 83) (($ (-953 |#1|)) 77) (((-953 |#1|) $) 75)) (-2613 (((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $) 139)) (-3086 (((-780) $) 53)) (-2033 (((-780) $) 52)) (-3063 (($ $ (-780) (-953 |#1|)) 67)) (-4220 (((-112) $) 111)) (-1684 (($ $ (-653 (-653 (-953 |#1|))) (-653 (-173)) (-173)) 118) (($ $ (-653 (-653 (-653 |#1|))) (-653 (-173)) (-173)) 120) (($ $ (-653 (-653 (-953 |#1|))) (-112) (-112)) 115) (($ $ (-653 (-653 (-653 |#1|))) (-112) (-112)) 127) (($ (-653 (-653 (-953 |#1|)))) 116) (($ (-653 (-653 (-953 |#1|))) (-112) (-112)) 117) (((-653 (-653 (-953 |#1|))) $) 114)) (-1480 (($ (-653 $)) 56) (($ $ $) 57)) (-2869 (((-653 (-173)) $) 133)) (-2930 (((-653 (-953 |#1|)) $) 130)) (-2920 (((-653 (-653 (-173))) $) 132)) (-4058 (((-653 (-653 (-653 (-953 |#1|)))) $) NIL)) (-2729 (((-653 (-653 (-653 (-780)))) $) 131)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1879 (((-780) $ (-653 (-953 |#1|))) 65)) (-1592 (((-112) $) 84)) (-2195 (($ $ (-653 (-953 |#1|))) 86) (($ $ (-653 (-653 |#1|))) 92) (($ (-653 (-953 |#1|))) 87) (((-653 (-953 |#1|)) $) 85)) (-3479 (($) 48) (($ (-1177 3 |#1|)) 49)) (-3166 (($ $) 63)) (-4362 (((-653 $) $) 62)) (-2871 (($ (-653 $)) 59)) (-2259 (((-653 $) $) 61)) (-2942 (((-871) $) 146)) (-1615 (((-112) $) 94)) (-2370 (($ $ (-653 (-953 |#1|))) 96) (($ $ (-653 (-653 |#1|))) 99) (($ (-653 (-953 |#1|))) 97) (((-653 (-953 |#1|)) $) 95)) (-3579 (($ $) 140)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1145 |#1|) (-1146 |#1|) (-1061)) (T -1145)) -NIL -(-1146 |#1|) -((-2848 (((-112) $ $) 7)) (-2895 (((-1177 3 |#1|) $) 14)) (-2429 (((-112) $) 30)) (-2247 (($ $ (-653 (-953 |#1|))) 34) (($ $ (-653 (-653 |#1|))) 33) (($ (-653 (-953 |#1|))) 32) (((-653 (-953 |#1|)) $) 31)) (-2845 (((-112) $) 45)) (-3590 (($ $ (-953 |#1|)) 50) (($ $ (-653 |#1|)) 49) (($ $ (-780)) 48) (($ (-953 |#1|)) 47) (((-953 |#1|) $) 46)) (-2613 (((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $) 16)) (-3086 (((-780) $) 59)) (-2033 (((-780) $) 60)) (-3063 (($ $ (-780) (-953 |#1|)) 51)) (-4220 (((-112) $) 22)) (-1684 (($ $ (-653 (-653 (-953 |#1|))) (-653 (-173)) (-173)) 29) (($ $ (-653 (-653 (-653 |#1|))) (-653 (-173)) (-173)) 28) (($ $ (-653 (-653 (-953 |#1|))) (-112) (-112)) 27) (($ $ (-653 (-653 (-653 |#1|))) (-112) (-112)) 26) (($ (-653 (-653 (-953 |#1|)))) 25) (($ (-653 (-653 (-953 |#1|))) (-112) (-112)) 24) (((-653 (-653 (-953 |#1|))) $) 23)) (-1480 (($ (-653 $)) 58) (($ $ $) 57)) (-2869 (((-653 (-173)) $) 17)) (-2930 (((-653 (-953 |#1|)) $) 21)) (-2920 (((-653 (-653 (-173))) $) 18)) (-4058 (((-653 (-653 (-653 (-953 |#1|)))) $) 19)) (-2729 (((-653 (-653 (-653 (-780)))) $) 20)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-1879 (((-780) $ (-653 (-953 |#1|))) 52)) (-1592 (((-112) $) 40)) (-2195 (($ $ (-653 (-953 |#1|))) 44) (($ $ (-653 (-653 |#1|))) 43) (($ (-653 (-953 |#1|))) 42) (((-653 (-953 |#1|)) $) 41)) (-3479 (($) 62) (($ (-1177 3 |#1|)) 61)) (-3166 (($ $) 53)) (-4362 (((-653 $) $) 54)) (-2871 (($ (-653 $)) 56)) (-2259 (((-653 $) $) 55)) (-2942 (((-871) $) 12)) (-1615 (((-112) $) 35)) (-2370 (($ $ (-653 (-953 |#1|))) 39) (($ $ (-653 (-653 |#1|))) 38) (($ (-653 (-953 |#1|))) 37) (((-653 (-953 |#1|)) $) 36)) (-3579 (($ $) 15)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1146 |#1|) (-141) (-1061)) (T -1146)) -((-2942 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-871)))) (-3479 (*1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-1177 3 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-2871 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2259 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)))) (-4362 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-953 *4))) (-4 *1 (-1146 *4)) (-4 *4 (-1061)) (-5 *2 (-780)))) (-3063 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-953 *4)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-953 *3)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2195 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-1684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-653 (-953 *5)))) (-5 *3 (-653 (-173))) (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-653 (-173))) (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-112)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 *3)))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-1684 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *4 (-1061)) (-4 *1 (-1146 *4)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-953 *3)))))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-653 (-780))))))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-653 (-953 *3))))))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-173)))))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-173))))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780)))))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-1177 3 *3))))) -(-13 (-1112) (-10 -8 (-15 -3479 ($)) (-15 -3479 ($ (-1177 3 |t#1|))) (-15 -2033 ((-780) $)) (-15 -3086 ((-780) $)) (-15 -1480 ($ (-653 $))) (-15 -1480 ($ $ $)) (-15 -2871 ($ (-653 $))) (-15 -2259 ((-653 $) $)) (-15 -4362 ((-653 $) $)) (-15 -3166 ($ $)) (-15 -1879 ((-780) $ (-653 (-953 |t#1|)))) (-15 -3063 ($ $ (-780) (-953 |t#1|))) (-15 -3590 ($ $ (-953 |t#1|))) (-15 -3590 ($ $ (-653 |t#1|))) (-15 -3590 ($ $ (-780))) (-15 -3590 ($ (-953 |t#1|))) (-15 -3590 ((-953 |t#1|) $)) (-15 -2845 ((-112) $)) (-15 -2195 ($ $ (-653 (-953 |t#1|)))) (-15 -2195 ($ $ (-653 (-653 |t#1|)))) (-15 -2195 ($ (-653 (-953 |t#1|)))) (-15 -2195 ((-653 (-953 |t#1|)) $)) (-15 -1592 ((-112) $)) (-15 -2370 ($ $ (-653 (-953 |t#1|)))) (-15 -2370 ($ $ (-653 (-653 |t#1|)))) (-15 -2370 ($ (-653 (-953 |t#1|)))) (-15 -2370 ((-653 (-953 |t#1|)) $)) (-15 -1615 ((-112) $)) (-15 -2247 ($ $ (-653 (-953 |t#1|)))) (-15 -2247 ($ $ (-653 (-653 |t#1|)))) (-15 -2247 ($ (-653 (-953 |t#1|)))) (-15 -2247 ((-653 (-953 |t#1|)) $)) (-15 -2429 ((-112) $)) (-15 -1684 ($ $ (-653 (-653 (-953 |t#1|))) (-653 (-173)) (-173))) (-15 -1684 ($ $ (-653 (-653 (-653 |t#1|))) (-653 (-173)) (-173))) (-15 -1684 ($ $ (-653 (-653 (-953 |t#1|))) (-112) (-112))) (-15 -1684 ($ $ (-653 (-653 (-653 |t#1|))) (-112) (-112))) (-15 -1684 ($ (-653 (-653 (-953 |t#1|))))) (-15 -1684 ($ (-653 (-653 (-953 |t#1|))) (-112) (-112))) (-15 -1684 ((-653 (-653 (-953 |t#1|))) $)) (-15 -4220 ((-112) $)) (-15 -2930 ((-653 (-953 |t#1|)) $)) (-15 -2729 ((-653 (-653 (-653 (-780)))) $)) (-15 -4058 ((-653 (-653 (-653 (-953 |t#1|)))) $)) (-15 -2920 ((-653 (-653 (-173))) $)) (-15 -2869 ((-653 (-173)) $)) (-15 -2613 ((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $)) (-15 -3579 ($ $)) (-15 -2895 ((-1177 3 |t#1|) $)) (-15 -2942 ((-871) $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 184) (($ (-1194)) NIL) (((-1194) $) 7)) (-2121 (((-112) $ (|[\|\|]| (-533))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-685))) 27) (((-112) $ (|[\|\|]| (-1290))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-615))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1127))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-690))) 55) (((-112) $ (|[\|\|]| (-526))) 59) (((-112) $ (|[\|\|]| (-1078))) 63) (((-112) $ (|[\|\|]| (-1291))) 67) (((-112) $ (|[\|\|]| (-534))) 71) (((-112) $ (|[\|\|]| (-1163))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-680))) 83) (((-112) $ (|[\|\|]| (-318))) 87) (((-112) $ (|[\|\|]| (-1048))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-982))) 99) (((-112) $ (|[\|\|]| (-1085))) 103) (((-112) $ (|[\|\|]| (-1102))) 107) (((-112) $ (|[\|\|]| (-1108))) 111) (((-112) $ (|[\|\|]| (-635))) 115) (((-112) $ (|[\|\|]| (-1179))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-487))) 131) (((-112) $ (|[\|\|]| (-601))) 135) (((-112) $ (|[\|\|]| (-515))) 139) (((-112) $ (|[\|\|]| (-1171))) 143) (((-112) $ (|[\|\|]| (-573))) 147)) (-3507 (((-112) $ $) NIL)) (-1331 (((-533) $) 20) (((-220) $) 24) (((-685) $) 28) (((-1290) $) 32) (((-139) $) 36) (((-615) $) 40) (((-134) $) 44) (((-1127) $) 48) (((-96) $) 52) (((-690) $) 56) (((-526) $) 60) (((-1078) $) 64) (((-1291) $) 68) (((-534) $) 72) (((-1163) $) 76) (((-155) $) 80) (((-680) $) 84) (((-318) $) 88) (((-1048) $) 92) (((-182) $) 96) (((-982) $) 100) (((-1085) $) 104) (((-1102) $) 108) (((-1108) $) 112) (((-635) $) 116) (((-1179) $) 120) (((-157) $) 124) (((-138) $) 128) (((-487) $) 132) (((-601) $) 136) (((-515) $) 140) (((-1171) $) 144) (((-573) $) 148)) (-2981 (((-112) $ $) NIL))) -(((-1147) (-1149)) (T -1147)) -NIL -(-1149) -((-3735 (((-653 (-1194)) (-1171)) 9))) -(((-1148) (-10 -7 (-15 -3735 ((-653 (-1194)) (-1171))))) (T -1148)) -((-3735 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-1148))))) -(-10 -7 (-15 -3735 ((-653 (-1194)) (-1171)))) -((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-2121 (((-112) $ (|[\|\|]| (-533))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-685))) 81) (((-112) $ (|[\|\|]| (-1290))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-615))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1127))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-690))) 67) (((-112) $ (|[\|\|]| (-526))) 65) (((-112) $ (|[\|\|]| (-1078))) 63) (((-112) $ (|[\|\|]| (-1291))) 61) (((-112) $ (|[\|\|]| (-534))) 59) (((-112) $ (|[\|\|]| (-1163))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-680))) 53) (((-112) $ (|[\|\|]| (-318))) 51) (((-112) $ (|[\|\|]| (-1048))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-982))) 45) (((-112) $ (|[\|\|]| (-1085))) 43) (((-112) $ (|[\|\|]| (-1102))) 41) (((-112) $ (|[\|\|]| (-1108))) 39) (((-112) $ (|[\|\|]| (-635))) 37) (((-112) $ (|[\|\|]| (-1179))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-487))) 29) (((-112) $ (|[\|\|]| (-601))) 27) (((-112) $ (|[\|\|]| (-515))) 25) (((-112) $ (|[\|\|]| (-1171))) 23) (((-112) $ (|[\|\|]| (-573))) 21)) (-3507 (((-112) $ $) 9)) (-1331 (((-533) $) 84) (((-220) $) 82) (((-685) $) 80) (((-1290) $) 78) (((-139) $) 76) (((-615) $) 74) (((-134) $) 72) (((-1127) $) 70) (((-96) $) 68) (((-690) $) 66) (((-526) $) 64) (((-1078) $) 62) (((-1291) $) 60) (((-534) $) 58) (((-1163) $) 56) (((-155) $) 54) (((-680) $) 52) (((-318) $) 50) (((-1048) $) 48) (((-182) $) 46) (((-982) $) 44) (((-1085) $) 42) (((-1102) $) 40) (((-1108) $) 38) (((-635) $) 36) (((-1179) $) 34) (((-157) $) 32) (((-138) $) 30) (((-487) $) 28) (((-601) $) 26) (((-515) $) 24) (((-1171) $) 22) (((-573) $) 20)) (-2981 (((-112) $ $) 6))) -(((-1149) (-141)) (T -1149)) -((-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-533)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-220)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-685))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-685)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1290)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-139)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-615)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-134)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1127)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-96)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-690)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-526)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1078)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1291)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-534)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1163)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-155)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-680))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-680)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-318))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-318)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1048))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1048)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-182)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-982)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1085)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1102)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1108)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-635))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-635)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1179)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-157)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-138)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-487))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-487)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-601))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-601)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-515)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1171)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-573))))) -(-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-533)))) (-15 -1331 ((-533) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-220)))) (-15 -1331 ((-220) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-685)))) (-15 -1331 ((-685) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1290)))) (-15 -1331 ((-1290) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-139)))) (-15 -1331 ((-139) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-615)))) (-15 -1331 ((-615) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-134)))) (-15 -1331 ((-134) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1127)))) (-15 -1331 ((-1127) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-96)))) (-15 -1331 ((-96) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-690)))) (-15 -1331 ((-690) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-526)))) (-15 -1331 ((-526) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1078)))) (-15 -1331 ((-1078) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1291)))) (-15 -1331 ((-1291) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-534)))) (-15 -1331 ((-534) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1163)))) (-15 -1331 ((-1163) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-155)))) (-15 -1331 ((-155) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-680)))) (-15 -1331 ((-680) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-318)))) (-15 -1331 ((-318) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1048)))) (-15 -1331 ((-1048) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-182)))) (-15 -1331 ((-182) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-982)))) (-15 -1331 ((-982) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1085)))) (-15 -1331 ((-1085) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1102)))) (-15 -1331 ((-1102) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1108)))) (-15 -1331 ((-1108) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-635)))) (-15 -1331 ((-635) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1331 ((-1179) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-157)))) (-15 -1331 ((-157) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-138)))) (-15 -1331 ((-138) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-487)))) (-15 -1331 ((-487) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-601)))) (-15 -1331 ((-601) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -1331 ((-573) $)))) -(((-93) . T) ((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T) ((-1095) . T) ((-1275) . T)) -((-3615 (((-1285) (-653 (-871))) 22) (((-1285) (-871)) 21)) (-3941 (((-1285) (-653 (-871))) 20) (((-1285) (-871)) 19)) (-3767 (((-1285) (-653 (-871))) 18) (((-1285) (-871)) 10) (((-1285) (-1171) (-871)) 16))) -(((-1150) (-10 -7 (-15 -3767 ((-1285) (-1171) (-871))) (-15 -3767 ((-1285) (-871))) (-15 -3941 ((-1285) (-871))) (-15 -3615 ((-1285) (-871))) (-15 -3767 ((-1285) (-653 (-871)))) (-15 -3941 ((-1285) (-653 (-871)))) (-15 -3615 ((-1285) (-653 (-871)))))) (T -1150)) -((-3615 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150))))) -(-10 -7 (-15 -3767 ((-1285) (-1171) (-871))) (-15 -3767 ((-1285) (-871))) (-15 -3941 ((-1285) (-871))) (-15 -3615 ((-1285) (-871))) (-15 -3767 ((-1285) (-653 (-871)))) (-15 -3941 ((-1285) (-653 (-871)))) (-15 -3615 ((-1285) (-653 (-871))))) -((-1562 (($ $ $) 10)) (-3325 (($ $) 9)) (-1424 (($ $ $) 13)) (-4237 (($ $ $) 15)) (-3125 (($ $ $) 12)) (-2704 (($ $ $) 14)) (-3754 (($ $) 17)) (-1450 (($ $) 16)) (-1660 (($ $) 6)) (-1818 (($ $ $) 11) (($ $) 7)) (-1503 (($ $ $) 8))) -(((-1151) (-141)) (T -1151)) -((-3754 (*1 *1 *1) (-4 *1 (-1151))) (-1450 (*1 *1 *1) (-4 *1 (-1151))) (-4237 (*1 *1 *1 *1) (-4 *1 (-1151))) (-2704 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1424 (*1 *1 *1 *1) (-4 *1 (-1151))) (-3125 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1818 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1562 (*1 *1 *1 *1) (-4 *1 (-1151))) (-3325 (*1 *1 *1) (-4 *1 (-1151))) (-1503 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1818 (*1 *1 *1) (-4 *1 (-1151))) (-1660 (*1 *1 *1) (-4 *1 (-1151)))) -(-13 (-10 -8 (-15 -1660 ($ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -3325 ($ $)) (-15 -1562 ($ $ $)) (-15 -1818 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -1450 ($ $)) (-15 -3754 ($ $)))) -((-2848 (((-112) $ $) 44)) (-3082 ((|#1| $) 17)) (-1988 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2390 (((-112) $) 19)) (-2308 (($ $ |#1|) 30)) (-1347 (($ $ (-112)) 32)) (-2409 (($ $) 33)) (-3357 (($ $ |#2|) 31)) (-3180 (((-1171) $) NIL)) (-1778 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3965 (((-1132) $) NIL)) (-3811 (((-112) $) 16)) (-3508 (($) 13)) (-3166 (($ $) 29)) (-2955 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) 23) (((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) 26) (((-653 $) |#1| (-653 |#2|)) 28)) (-2264 ((|#2| $) 18)) (-2942 (((-871) $) 53)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 42))) -(((-1152 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -3082 (|#1| $)) (-15 -2264 (|#2| $)) (-15 -2390 ((-112) $)) (-15 -2955 ($ |#1| |#2| (-112))) (-15 -2955 ($ |#1| |#2|)) (-15 -2955 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2955 ((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2955 ((-653 $) |#1| (-653 |#2|))) (-15 -3166 ($ $)) (-15 -2308 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -1347 ($ $ (-112))) (-15 -2409 ($ $)) (-15 -1778 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1988 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1112) (-34)) (-13 (-1112) (-34))) (T -1152)) -((-3508 (*1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *2 *3)) (-4 *3 (-13 (-1112) (-34))))) (-2264 (*1 *2 *1) (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4))) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *4)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |val| *4) (|:| -4090 *5)))) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-653 (-1152 *4 *5))) (-5 *1 (-1152 *4 *5)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *5)) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-653 (-1152 *3 *5))) (-5 *1 (-1152 *3 *5)) (-4 *3 (-13 (-1112) (-34))))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2308 (*1 *1 *1 *2) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3357 (*1 *1 *1 *2) (-12 (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))) (-4 *2 (-13 (-1112) (-34))))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-1778 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))) (-1988 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34)))))) -(-13 (-1112) (-10 -8 (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -3082 (|#1| $)) (-15 -2264 (|#2| $)) (-15 -2390 ((-112) $)) (-15 -2955 ($ |#1| |#2| (-112))) (-15 -2955 ($ |#1| |#2|)) (-15 -2955 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2955 ((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2955 ((-653 $) |#1| (-653 |#2|))) (-15 -3166 ($ $)) (-15 -2308 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -1347 ($ $ (-112))) (-15 -2409 ($ $)) (-15 -1778 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1988 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2848 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3082 (((-1152 |#1| |#2|) $) 27)) (-3443 (($ $) 91)) (-3883 (((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1514 (($ $ $ (-653 (-1152 |#1| |#2|))) 108) (($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3450 (((-112) $ (-780)) NIL)) (-2367 (((-1152 |#1| |#2|) $ (-1152 |#1| |#2|)) 46 (|has| $ (-6 -4456)))) (-3142 (((-1152 |#1| |#2|) $ "value" (-1152 |#1| |#2|)) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 44 (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-4070 (((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $) 95)) (-2596 (($ (-1152 |#1| |#2|) $) 42)) (-3334 (($ (-1152 |#1| |#2|) $) 34)) (-1863 (((-653 (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 54)) (-2073 (((-112) (-1152 |#1| |#2|) $) 97)) (-3208 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 (-1152 |#1| |#2|)) $) 58 (|has| $ (-6 -4455)))) (-1547 (((-112) (-1152 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-1152 |#1| |#2|) (-1112))))) (-2446 (($ (-1 (-1152 |#1| |#2|) (-1152 |#1| |#2|)) $) 50 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-1152 |#1| |#2|) (-1152 |#1| |#2|)) $) 49)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 (-1152 |#1| |#2|)) $) 56)) (-2880 (((-112) $) 45)) (-3180 (((-1171) $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3965 (((-1132) $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3473 (((-3 $ "failed") $) 89)) (-1575 (((-112) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-1152 |#1| |#2|)))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-301 (-1152 |#1| |#2|))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-1152 |#1| |#2|) (-1152 |#1| |#2|)) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-653 (-1152 |#1| |#2|)) (-653 (-1152 |#1| |#2|))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112))))) (-1885 (((-112) $ $) 53)) (-3811 (((-112) $) 24)) (-3508 (($) 26)) (-2198 (((-1152 |#1| |#2|) $ "value") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455))) (((-780) (-1152 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-1152 |#1| |#2|) (-1112))))) (-3166 (($ $) 52)) (-2955 (($ (-1152 |#1| |#2|)) 10) (($ |#1| |#2| (-653 $)) 13) (($ |#1| |#2| (-653 (-1152 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-653 |#2|)) 18)) (-2669 (((-653 |#2|) $) 96)) (-2942 (((-871) $) 87 (|has| (-1152 |#1| |#2|) (-622 (-871))))) (-1811 (((-653 $) $) 31)) (-1716 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3507 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-1646 (((-112) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 70 (|has| (-1152 |#1| |#2|) (-1112)))) (-2862 (((-780) $) 64 (|has| $ (-6 -4455))))) -(((-1153 |#1| |#2|) (-13 (-1022 (-1152 |#1| |#2|)) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3473 ((-3 $ "failed") $)) (-15 -3443 ($ $)) (-15 -2955 ($ (-1152 |#1| |#2|))) (-15 -2955 ($ |#1| |#2| (-653 $))) (-15 -2955 ($ |#1| |#2| (-653 (-1152 |#1| |#2|)))) (-15 -2955 ($ |#1| |#2| |#1| (-653 |#2|))) (-15 -2669 ((-653 |#2|) $)) (-15 -4070 ((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2073 ((-112) (-1152 |#1| |#2|) $)) (-15 -3883 ((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3334 ($ (-1152 |#1| |#2|) $)) (-15 -2596 ($ (-1152 |#1| |#2|) $)) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)))) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1112) (-34)) (-13 (-1112) (-34))) (T -1153)) -((-3473 (*1 *1 *1) (|partial| -12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3443 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-653 (-1153 *2 *3))) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-653 (-1152 *2 *3))) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)))) (-2955 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-653 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2073 (*1 *2 *3 *1) (-12 (-5 *3 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)))) (-3883 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1152 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *5 *6)))) (-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-1514 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-653 (-1152 *3 *4))) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-1514 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1152 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *1 (-1153 *4 *5))))) -(-13 (-1022 (-1152 |#1| |#2|)) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3473 ((-3 $ "failed") $)) (-15 -3443 ($ $)) (-15 -2955 ($ (-1152 |#1| |#2|))) (-15 -2955 ($ |#1| |#2| (-653 $))) (-15 -2955 ($ |#1| |#2| (-653 (-1152 |#1| |#2|)))) (-15 -2955 ($ |#1| |#2| |#1| (-653 |#2|))) (-15 -2669 ((-653 |#2|) $)) (-15 -4070 ((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2073 ((-112) (-1152 |#1| |#2|) $)) (-15 -3883 ((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3334 ($ (-1152 |#1| |#2|) $)) (-15 -2596 ($ (-1152 |#1| |#2|) $)) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)))) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1724 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4261 (($ (-698 |#2|)) 56)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1681 (($ |#2|) 14)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 69 (|has| |#2| (-314)))) (-3229 (((-245 |#1| |#2|) $ (-573)) 42)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 83)) (-3583 (((-780) $) 71 (|has| |#2| (-565)))) (-2384 ((|#2| $ (-573) (-573)) NIL)) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL)) (-2928 (((-780) $) 73 (|has| |#2| (-565)))) (-4209 (((-653 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ |#2|) 25)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#2| $) 67 (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#2|))) 37)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1612 (((-653 (-653 |#2|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3299 (((-3 $ "failed") $) 80 (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) (-573) |#2|) NIL) ((|#2| $ (-573) (-573)) NIL)) (-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-3856 ((|#2| $) NIL)) (-1633 (($ (-653 |#2|)) 50)) (-2530 (((-112) $) NIL)) (-3372 (((-245 |#1| |#2|) $) NIL)) (-2529 ((|#2| $) 65 (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 89 (|has| |#2| (-623 (-545))))) (-1921 (((-245 |#1| |#2|) $ (-573)) 44)) (-2942 (((-871) $) 47) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (((-698 |#2|) $) 52)) (-1545 (((-780)) 23 T CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2132 (($) 16 T CONST)) (-2144 (($) 21 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) 63) (($ $ (-573)) 82 (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1154 |#1| |#2|) (-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-10 -8 (-15 -3789 ($ |#2|)) (-15 -1724 ($ $)) (-15 -4261 ($ (-698 |#2|))) (IF (|has| |#2| (-6 (-4457 "*"))) (-6 -4444) |%noBranch|) (IF (|has| |#2| (-6 (-4457 "*"))) (IF (|has| |#2| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) (-780) (-1061)) (T -1154)) -((-3789 (*1 *1 *2) (-12 (-5 *1 (-1154 *3 *2)) (-14 *3 (-780)) (-4 *2 (-1061)))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-780)) (-4 *3 (-1061)))) (-4261 (*1 *1 *2) (-12 (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-780))))) -(-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-10 -8 (-15 -3789 ($ |#2|)) (-15 -1724 ($ $)) (-15 -4261 ($ (-698 |#2|))) (IF (|has| |#2| (-6 (-4457 "*"))) (-6 -4444) |%noBranch|) (IF (|has| |#2| (-6 (-4457 "*"))) (IF (|has| |#2| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) -((-2391 (($ $) 19)) (-3952 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3732 (((-112) $ $) 24)) (-3878 (($ $) 17)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (($ $ $) 31)) (-2942 (($ (-145)) 29) (((-871) $) NIL))) -(((-1155 |#1|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| (-142))) (-15 -3952 (|#1| |#1| (-145))) (-15 -2942 (|#1| (-145))) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2198 ((-145) |#1| (-573))) (-15 -2198 ((-145) |#1| (-573) (-145)))) (-1156)) (T -1155)) -NIL -(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| (-142))) (-15 -3952 (|#1| |#1| (-145))) (-15 -2942 (|#1| (-145))) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2198 ((-145) |#1| (-573))) (-15 -2198 ((-145) |#1| (-573) (-145)))) -((-2848 (((-112) $ $) 19 (|has| (-145) (-1112)))) (-3315 (($ $) 123)) (-2391 (($ $) 124)) (-3952 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 121)) (-3689 (((-112) $ $ (-573)) 120)) (-3834 (((-653 $) $ (-145)) 113) (((-653 $) $ (-142)) 112)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| (-145) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 (((-145) $ (-573) (-145)) 53 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2616 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-3403 (($ $ (-1247 (-573)) $) 117)) (-2685 (($ $) 80 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-145) $) 79 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) 54 (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) 52)) (-3732 (((-112) $ $) 122)) (-1440 (((-573) (-1 (-112) (-145)) $) 100) (((-573) (-145) $) 99 (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 98 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 116) (((-573) (-142) $ (-573)) 115)) (-1863 (((-653 (-145)) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 118)) (-2682 (((-780) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2422 (($ $) 125)) (-3878 (($ $) 126)) (-2673 (((-112) $ (-780)) 10)) (-2630 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3180 (((-1171) $) 22 (|has| (-145) (-1112)))) (-1593 (($ (-145) $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| (-145) (-1112)))) (-2914 (((-145) $) 43 (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3112 (($ $ (-145)) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) 27 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) 26 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) 24 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 (((-145) $ (-573) (-145)) 51) (((-145) $ (-573)) 50) (($ $ (-1247 (-573))) 71) (($ $ $) 105)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4455))) (((-780) (-145) $) 29 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) 72)) (-4156 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (($ (-145)) 114) (((-871) $) 18 (|has| (-145) (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| (-145) (-1112)))) (-1646 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| (-145) (-859)))) (-3015 (((-112) $ $) 86 (|has| (-145) (-859)))) (-2981 (((-112) $ $) 20 (|has| (-145) (-1112)))) (-3027 (((-112) $ $) 88 (|has| (-145) (-859)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1156) (-141)) (T -1156)) -((-3878 (*1 *1 *1) (-4 *1 (-1156))) (-2422 (*1 *1 *1) (-4 *1 (-1156))) (-2391 (*1 *1 *1) (-4 *1 (-1156))) (-3315 (*1 *1 *1) (-4 *1 (-1156))) (-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112)))) (-3710 (*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112)))) (-3689 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-573)) (-5 *2 (-112)))) (-2682 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-780)))) (-1325 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1247 (-573))))) (-1440 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)) (-5 *3 (-142)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1156)))) (-3834 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) (-3834 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2198 (*1 *1 *1 *1) (-4 *1 (-1156)))) -(-13 (-19 (-145)) (-10 -8 (-15 -3878 ($ $)) (-15 -2422 ($ $)) (-15 -2391 ($ $)) (-15 -3315 ($ $)) (-15 -3732 ((-112) $ $)) (-15 -3710 ((-112) $ $)) (-15 -3689 ((-112) $ $ (-573))) (-15 -2682 ((-780) $ $ (-145))) (-15 -1325 ((-112) $ $ (-145))) (-15 -3403 ($ $ (-1247 (-573)) $)) (-15 -1440 ((-573) $ $ (-573))) (-15 -1440 ((-573) (-142) $ (-573))) (-15 -2942 ($ (-145))) (-15 -3834 ((-653 $) $ (-145))) (-15 -3834 ((-653 $) $ (-142))) (-15 -3952 ($ $ (-145))) (-15 -3952 ($ $ (-142))) (-15 -2630 ($ $ (-145))) (-15 -2630 ($ $ (-142))) (-15 -2616 ($ $ (-145))) (-15 -2616 ($ $ (-142))) (-15 -2198 ($ $ $)))) -(((-34) . T) ((-102) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859))) ((-622 (-871)) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859)) (|has| (-145) (-622 (-871)))) ((-152 #0=(-145)) . T) ((-623 (-545)) |has| (-145) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-660 #0#) . T) ((-19 #0#) . T) ((-859) |has| (-145) (-859)) ((-1112) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859))) ((-1230) . T)) -((-3987 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780)) 112)) (-2594 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 61)) (-3669 (((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)) 97)) (-2358 (((-780) (-653 |#4|) (-653 |#5|)) 30)) (-3384 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 63) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112)) 65)) (-2478 (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112)) 85)) (-1835 (((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 90)) (-3330 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 60)) (-1800 (((-780) (-653 |#4|) (-653 |#5|)) 21))) -(((-1157 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3| |#4|)) (T -1157)) -((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1121 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) (-5 *1 (-1157 *4 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-653 *11)) (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-780)) (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) (-4 *11 (-1121 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-5 *1 (-1157 *7 *8 *9 *10 *11)))) (-2478 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *7 *8 *9 *3 *4)) (-4 *4 (-1121 *7 *8 *9 *3)))) (-2594 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) (-3330 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) -((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 124) (((-653 $) (-653 |#4|) (-112)) 125) (((-653 $) (-653 |#4|) (-112) (-112)) 123) (((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 97)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 75)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) 78)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-3060 (((-112) |#4| $) NIL)) (-2714 (((-112) |#4| $) NIL)) (-3491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3191 (((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112)) 139)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) NIL)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 117)) (-3359 (((-3 |#4| "failed") $) 42)) (-1692 (((-653 $) |#4| $) 102)) (-1675 (((-3 (-112) (-653 $)) |#4| $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3716 (((-653 $) |#4| $) 121) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 122) (((-653 $) |#4| (-653 $)) NIL)) (-2313 (((-653 $) (-653 |#4|) (-112) (-112) (-112)) 134)) (-1844 (($ |#4| $) 88) (($ (-653 |#4|) $) 89) (((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 59)) (-2212 (($ $ |#4|) NIL) (((-653 $) |#4| $) 104) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 99)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-3402 (((-653 $) |#4| $) 66) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-3746 (((-112) |#4| $) NIL)) (-4333 (((-112) |#3| $) 74)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1158 |#1| |#2| |#3| |#4|) (-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1158)) -((-1844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *3))) (-5 *1 (-1158 *5 *6 *7 *3)) (-4 *3 (-1077 *5 *6 *7)))) (-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-3527 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-653 *8)) (|:| |towers| (-653 (-1158 *5 *6 *7 *8))))) (-5 *1 (-1158 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) -(-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2001 ((|#1| $) 37)) (-4088 (($ (-653 |#1|)) 45)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2948 ((|#1| |#1| $) 40)) (-3072 ((|#1| $) 35)) (-1863 (((-653 |#1|) $) 18 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 22)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 38)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 36)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 32)) (-3508 (($) 43)) (-4302 (((-780) $) 30)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 27)) (-2942 (((-871) $) 14 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1112)))) (-2862 (((-780) $) 31 (|has| $ (-6 -4455))))) -(((-1159 |#1|) (-13 (-1133 |#1|) (-10 -8 (-15 -4088 ($ (-653 |#1|))))) (-1230)) (T -1159)) -((-4088 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1159 *3))))) -(-13 (-1133 |#1|) (-10 -8 (-15 -4088 ($ (-653 |#1|))))) -((-3142 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1247 (-573)) |#2|) 53) ((|#2| $ (-573) |#2|) 50)) (-3435 (((-112) $) 12)) (-2446 (($ (-1 |#2| |#2|) $) 48)) (-2914 ((|#2| $) NIL) (($ $ (-780)) 17)) (-3112 (($ $ |#2|) 49)) (-1903 (((-112) $) 11)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1247 (-573))) 36) ((|#2| $ (-573)) 26) ((|#2| $ (-573) |#2|) NIL)) (-3996 (($ $ $) 56) (($ $ |#2|) NIL)) (-4156 (($ $ $) 38) (($ |#2| $) NIL) (($ (-653 $)) 45) (($ $ |#2|) NIL))) -(((-1160 |#1| |#2|) (-10 -8 (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| "last")) (-15 -2198 (|#1| |#1| "rest")) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|))) (-1161 |#2|) (-1230)) (T -1160)) -NIL -(-10 -8 (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| "last")) (-15 -2198 (|#1| |#1| "rest")) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4455)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4455))) (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-1903 (((-112) $) 86)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1161 |#1|) (-141) (-1230)) (T -1161)) -((-1903 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) -(-13 (-1268 |t#1|) (-660 |t#1|) (-10 -8 (-15 -1903 ((-112) $)) (-15 -3435 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T) ((-1268 |#1|) . T)) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1162 |#1| |#2| |#3|) (-1206 |#1| |#2|) (-1112) (-1112) |#2|) (T -1162)) -NIL -(-1206 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-4094 (((-700 (-1147)) $) 27)) (-4145 (((-1147) $) 15)) (-3613 (((-1147) $) 17)) (-3180 (((-1171) $) NIL)) (-1807 (((-515) $) 13)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 37) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1163) (-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3613 ((-1147) $)) (-15 -4094 ((-700 (-1147)) $)) (-15 -4145 ((-1147) $))))) (T -1163)) -((-1807 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1163)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-700 (-1147))) (-5 *1 (-1163)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) -(-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3613 ((-1147) $)) (-15 -4094 ((-700 (-1147)) $)) (-15 -4145 ((-1147) $)))) -((-2848 (((-112) $ $) 7)) (-1470 (((-3 $ "failed") $) 14)) (-3180 (((-1171) $) 10)) (-3816 (($) 15 T CONST)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1164) (-141)) (T -1164)) -((-3816 (*1 *1) (-4 *1 (-1164))) (-1470 (*1 *1 *1) (|partial| -4 *1 (-1164)))) -(-13 (-1112) (-10 -8 (-15 -3816 ($) -1705) (-15 -1470 ((-3 $ "failed") $)))) -(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) -((-4001 (((-1169 |#1|) (-1169 |#1|)) 17)) (-1719 (((-1169 |#1|) (-1169 |#1|)) 13)) (-2970 (((-1169 |#1|) (-1169 |#1|) (-573) (-573)) 20)) (-4190 (((-1169 |#1|) (-1169 |#1|)) 15))) -(((-1165 |#1|) (-10 -7 (-15 -1719 ((-1169 |#1|) (-1169 |#1|))) (-15 -4190 ((-1169 |#1|) (-1169 |#1|))) (-15 -4001 ((-1169 |#1|) (-1169 |#1|))) (-15 -2970 ((-1169 |#1|) (-1169 |#1|) (-573) (-573)))) (-13 (-565) (-148))) (T -1165)) -((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1165 *4)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3)))) (-4190 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3))))) -(-10 -7 (-15 -1719 ((-1169 |#1|) (-1169 |#1|))) (-15 -4190 ((-1169 |#1|) (-1169 |#1|))) (-15 -4001 ((-1169 |#1|) (-1169 |#1|))) (-15 -2970 ((-1169 |#1|) (-1169 |#1|) (-573) (-573)))) -((-4156 (((-1169 |#1|) (-1169 (-1169 |#1|))) 15))) -(((-1166 |#1|) (-10 -7 (-15 -4156 ((-1169 |#1|) (-1169 (-1169 |#1|))))) (-1230)) (T -1166)) -((-4156 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1166 *4)) (-4 *4 (-1230))))) -(-10 -7 (-15 -4156 ((-1169 |#1|) (-1169 (-1169 |#1|))))) -((-3094 (((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)) 25)) (-2867 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)) 26)) (-1776 (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 16))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -3094 ((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|))) (-15 -2867 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)))) (-1230) (-1230)) (T -1167)) -((-2867 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-1167 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1169 *6)) (-4 *6 (-1230)) (-4 *3 (-1230)) (-5 *2 (-1169 *3)) (-5 *1 (-1167 *6 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6))))) -(-10 -7 (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -3094 ((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|))) (-15 -2867 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)))) -((-1776 (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)) 21))) -(((-1168 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)))) (-1230) (-1230) (-1230)) (T -1168)) -((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-1169 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-1168 *6 *7 *8))))) -(-10 -7 (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) 67)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 128 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3569 (((-871) $) 56 (|has| |#1| (-1112)))) (-4164 (((-112)) 55 (|has| |#1| (-1112)))) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 115 (|has| $ (-6 -4456))) (($ $ (-573) $) 141)) (-2016 ((|#1| $ |#1|) 125 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 120 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4456))) (($ $ "rest" $) 124 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 112 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 77 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 80)) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2048 (($ $) 14)) (-2925 (($ $) 40) (($ $ (-780)) 111)) (-1591 (((-112) (-653 |#1|) $) 134 (|has| |#1| (-1112)))) (-2248 (($ (-653 |#1|)) 130)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) 79)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3247 (((-1285) (-573) $) 140 (|has| |#1| (-1112)))) (-2908 (((-780) $) 137)) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3942 (($ $) 113)) (-1722 (((-112) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) 96)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2092 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2723 ((|#1| $) 10)) (-2914 ((|#1| $) 39) (($ $ (-780)) 65)) (-3440 (((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $) 34)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2139 (($ (-1 (-112) |#1|) $) 145)) (-2151 (($ (-1 (-112) |#1|) $) 146)) (-3112 (($ $ |#1|) 90 (|has| $ (-6 -4456)))) (-2212 (($ $ (-573)) 45)) (-1903 (((-112) $) 94)) (-2578 (((-112) $) 12)) (-2687 (((-112) $) 136)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 30)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 20)) (-3508 (($) 60)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) 75) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) 64)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-4007 (($ (-1 $)) 63)) (-1628 (((-112) $) 91)) (-1992 (($ $) 92)) (-3839 (($ $) 116 (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 59)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 73)) (-2224 (($ |#1| $) 114)) (-3996 (($ $ $) 118 (|has| $ (-6 -4456))) (($ $ |#1|) 119 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 101) (($ |#1| $) 61) (($ (-653 $)) 106) (($ $ |#1|) 100)) (-4101 (($ $) 66)) (-2942 (($ (-653 |#1|)) 129) (((-871) $) 57 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 132 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1169 |#1|) (-13 (-683 |#1|) (-625 (-653 |#1|)) (-10 -8 (-6 -4456) (-15 -2248 ($ (-653 |#1|))) (IF (|has| |#1| (-1112)) (-15 -1591 ((-112) (-653 |#1|) $)) |%noBranch|) (-15 -3440 ((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $)) (-15 -4007 ($ (-1 $))) (-15 -2224 ($ |#1| $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3247 ((-1285) (-573) $)) (-15 -3569 ((-871) $)) (-15 -4164 ((-112)))) |%noBranch|) (-15 -2554 ($ $ (-573) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) (-1230)) (T -1169)) -((-2248 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-1591 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)) (-5 *1 (-1169 *4)))) (-3440 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780)))) (-5 *1 (-1169 *4)) (-4 *4 (-1230)) (-5 *3 (-780)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-1 (-1169 *3))) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) (-2224 (*1 *1 *2 *1) (-12 (-5 *1 (-1169 *2)) (-4 *2 (-1230)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1169 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)))) (-4164 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)))) (-2554 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) -(-13 (-683 |#1|) (-625 (-653 |#1|)) (-10 -8 (-6 -4456) (-15 -2248 ($ (-653 |#1|))) (IF (|has| |#1| (-1112)) (-15 -1591 ((-112) (-653 |#1|) $)) |%noBranch|) (-15 -3440 ((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $)) (-15 -4007 ($ (-1 $))) (-15 -2224 ($ |#1| $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3247 ((-1285) (-573) $)) (-15 -3569 ((-871) $)) (-15 -4164 ((-112)))) |%noBranch|) (-15 -2554 ($ $ (-573) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) -((-2848 (((-112) $ $) 19)) (-3315 (($ $) 123)) (-2391 (($ $) 124)) (-3952 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 121)) (-3689 (((-112) $ $ (-573)) 120)) (-3248 (($ (-573)) 130)) (-3834 (((-653 $) $ (-145)) 113) (((-653 $) $ (-142)) 112)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| (-145) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 (((-145) $ (-573) (-145)) 53 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2616 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-3403 (($ $ (-1247 (-573)) $) 117)) (-2685 (($ $) 80 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-145) $) 79 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) 54 (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) 52)) (-3732 (((-112) $ $) 122)) (-1440 (((-573) (-1 (-112) (-145)) $) 100) (((-573) (-145) $) 99 (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 98 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 116) (((-573) (-142) $ (-573)) 115)) (-1863 (((-653 (-145)) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 118)) (-2682 (((-780) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2422 (($ $) 125)) (-3878 (($ $) 126)) (-2673 (((-112) $ (-780)) 10)) (-2630 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3180 (((-1171) $) 22)) (-1593 (($ (-145) $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21)) (-2914 (((-145) $) 43 (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3112 (($ $ (-145)) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) 27 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) 26 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) 24 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 (((-145) $ (-573) (-145)) 51) (((-145) $ (-573)) 50) (($ $ (-1247 (-573))) 71) (($ $ $) 105)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4455))) (((-780) (-145) $) 29 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) 72)) (-4156 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (($ (-145)) 114) (((-871) $) 18)) (-3507 (((-112) $ $) 23)) (-1646 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 134) (((-1171) $ (-112)) 133) (((-1285) (-831) $) 132) (((-1285) (-831) $ (-112)) 131)) (-3040 (((-112) $ $) 87 (|has| (-145) (-859)))) (-3015 (((-112) $ $) 86 (|has| (-145) (-859)))) (-2981 (((-112) $ $) 20)) (-3027 (((-112) $ $) 88 (|has| (-145) (-859)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1170) (-141)) (T -1170)) -((-3248 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1170))))) -(-13 (-1156) (-1112) (-837) (-10 -8 (-15 -3248 ($ (-573))))) -(((-34) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 #0=(-145)) . T) ((-623 (-545)) |has| (-145) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-660 #0#) . T) ((-19 #0#) . T) ((-837) . T) ((-859) |has| (-145) (-859)) ((-1112) . T) ((-1156) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-3315 (($ $) NIL)) (-2391 (($ $) NIL)) (-3952 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) NIL)) (-3689 (((-112) $ $ (-573)) NIL)) (-3248 (($ (-573)) 8)) (-3834 (((-653 $) $ (-145)) NIL) (((-653 $) $ (-142)) NIL)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-859))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2616 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-3403 (($ $ (-1247 (-573)) $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3334 (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) NIL)) (-3732 (((-112) $ $) NIL)) (-1440 (((-573) (-1 (-112) (-145)) $) NIL) (((-573) (-145) $) NIL (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) NIL (|has| (-145) (-1112))) (((-573) $ $ (-573)) NIL) (((-573) (-142) $ (-573)) NIL)) (-1863 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) NIL)) (-2682 (((-780) $ $ (-145)) NIL)) (-2446 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2422 (($ $) NIL)) (-3878 (($ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-2630 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ (-145) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-145) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3112 (($ $ (-145)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (($ $ $) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) NIL)) (-4156 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (($ (-145)) NIL) (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 19) (((-1171) $ (-112)) 21) (((-1285) (-831) $) 22) (((-1285) (-831) $ (-112)) 23)) (-3040 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1171) (-1170)) (T -1171)) -NIL -(-1170) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-1171) |#1|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#1| "failed") (-1171) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#1| "failed") (-1171) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-1171) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-1171)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-1762 (((-653 (-1171)) $) NIL)) (-4201 (((-112) (-1171) $) NIL)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2914 ((|#1| $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-1171)) NIL) ((|#1| $ (-1171) |#1|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-622 (-871))) (|has| |#1| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1172 |#1|) (-13 (-1206 (-1171) |#1|) (-10 -7 (-6 -4455))) (-1112)) (T -1172)) -NIL -(-13 (-1206 (-1171) |#1|) (-10 -7 (-6 -4455))) -((-2080 (((-1169 |#1|) (-1169 |#1|)) 83)) (-2232 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 39)) (-4186 (((-1169 |#1|) (-416 (-573)) (-1169 |#1|)) 133 (|has| |#1| (-38 (-416 (-573)))))) (-2488 (((-1169 |#1|) |#1| (-1169 |#1|)) 139 (|has| |#1| (-371)))) (-2023 (((-1169 |#1|) (-1169 |#1|)) 97)) (-2190 (((-1169 (-573)) (-573)) 63)) (-1527 (((-1169 |#1|) (-1169 (-1169 |#1|))) 116 (|has| |#1| (-38 (-416 (-573)))))) (-3823 (((-1169 |#1|) (-573) (-573) (-1169 |#1|)) 102)) (-3831 (((-1169 |#1|) |#1| (-573)) 51)) (-2402 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 66)) (-2992 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 136 (|has| |#1| (-371)))) (-1893 (((-1169 |#1|) |#1| (-1 (-1169 |#1|))) 115 (|has| |#1| (-38 (-416 (-573)))))) (-2219 (((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|))) 137 (|has| |#1| (-371)))) (-1742 (((-1169 |#1|) (-1169 |#1|)) 96)) (-1901 (((-1169 |#1|) (-1169 |#1|)) 82)) (-2110 (((-1169 |#1|) (-573) (-573) (-1169 |#1|)) 103)) (-1626 (((-1169 |#1|) |#1| (-1169 |#1|)) 112 (|has| |#1| (-38 (-416 (-573)))))) (-3157 (((-1169 (-573)) (-573)) 62)) (-3090 (((-1169 |#1|) |#1|) 65)) (-1735 (((-1169 |#1|) (-1169 |#1|) (-573) (-573)) 99)) (-1351 (((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|)) 72)) (-2837 (((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|)) 37)) (-3616 (((-1169 |#1|) (-1169 |#1|)) 98)) (-2645 (((-1169 |#1|) (-1169 |#1|) |#1|) 77)) (-2200 (((-1169 |#1|) (-1169 |#1|)) 68)) (-2066 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 78)) (-2942 (((-1169 |#1|) |#1|) 73)) (-1882 (((-1169 |#1|) (-1169 (-1169 |#1|))) 88)) (-3103 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 38)) (-3093 (((-1169 |#1|) (-1169 |#1|)) 21) (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 23)) (-3077 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 17)) (* (((-1169 |#1|) (-1169 |#1|) |#1|) 29) (((-1169 |#1|) |#1| (-1169 |#1|)) 26) (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 27))) -(((-1173 |#1|) (-10 -7 (-15 -3077 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2837 ((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|))) (-15 -3103 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2232 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3831 ((-1169 |#1|) |#1| (-573))) (-15 -3157 ((-1169 (-573)) (-573))) (-15 -2190 ((-1169 (-573)) (-573))) (-15 -3090 ((-1169 |#1|) |#1|)) (-15 -2402 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2200 ((-1169 |#1|) (-1169 |#1|))) (-15 -1351 ((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|))) (-15 -2942 ((-1169 |#1|) |#1|)) (-15 -2645 ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2066 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1901 ((-1169 |#1|) (-1169 |#1|))) (-15 -2080 ((-1169 |#1|) (-1169 |#1|))) (-15 -1882 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -1742 ((-1169 |#1|) (-1169 |#1|))) (-15 -2023 ((-1169 |#1|) (-1169 |#1|))) (-15 -3616 ((-1169 |#1|) (-1169 |#1|))) (-15 -1735 ((-1169 |#1|) (-1169 |#1|) (-573) (-573))) (-15 -3823 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (-15 -2110 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 -1893 ((-1169 |#1|) |#1| (-1 (-1169 |#1|)))) (-15 -1527 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -4186 ((-1169 |#1|) (-416 (-573)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -2992 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2219 ((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|)))) (-15 -2488 ((-1169 |#1|) |#1| (-1169 |#1|)))) |%noBranch|)) (-1061)) (T -1173)) -((-2488 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-573))) (-5 *5 (-1 (-1169 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)))) (-2992 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-4186 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1061)) (-5 *3 (-416 (-573))) (-5 *1 (-1173 *4)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1169 *3))) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)))) (-1626 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2110 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-3823 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-1735 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1742 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1061)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1901 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2066 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-1351 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1 *4 (-573))) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2402 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) (-5 *3 (-573)))) (-3157 (*1 *2 *3) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) (-5 *3 (-573)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-2232 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2837 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3093 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) -(-10 -7 (-15 -3077 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2837 ((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|))) (-15 -3103 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2232 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3831 ((-1169 |#1|) |#1| (-573))) (-15 -3157 ((-1169 (-573)) (-573))) (-15 -2190 ((-1169 (-573)) (-573))) (-15 -3090 ((-1169 |#1|) |#1|)) (-15 -2402 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2200 ((-1169 |#1|) (-1169 |#1|))) (-15 -1351 ((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|))) (-15 -2942 ((-1169 |#1|) |#1|)) (-15 -2645 ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2066 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1901 ((-1169 |#1|) (-1169 |#1|))) (-15 -2080 ((-1169 |#1|) (-1169 |#1|))) (-15 -1882 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -1742 ((-1169 |#1|) (-1169 |#1|))) (-15 -2023 ((-1169 |#1|) (-1169 |#1|))) (-15 -3616 ((-1169 |#1|) (-1169 |#1|))) (-15 -1735 ((-1169 |#1|) (-1169 |#1|) (-573) (-573))) (-15 -3823 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (-15 -2110 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 -1893 ((-1169 |#1|) |#1| (-1 (-1169 |#1|)))) (-15 -1527 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -4186 ((-1169 |#1|) (-416 (-573)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -2992 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2219 ((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|)))) (-15 -2488 ((-1169 |#1|) |#1| (-1169 |#1|)))) |%noBranch|)) -((-2363 (((-1169 |#1|) (-1169 |#1|)) 60)) (-2246 (((-1169 |#1|) (-1169 |#1|)) 42)) (-2342 (((-1169 |#1|) (-1169 |#1|)) 56)) (-2225 (((-1169 |#1|) (-1169 |#1|)) 38)) (-2388 (((-1169 |#1|) (-1169 |#1|)) 63)) (-2266 (((-1169 |#1|) (-1169 |#1|)) 45)) (-3118 (((-1169 |#1|) (-1169 |#1|)) 34)) (-1608 (((-1169 |#1|) (-1169 |#1|)) 29)) (-2401 (((-1169 |#1|) (-1169 |#1|)) 64)) (-2274 (((-1169 |#1|) (-1169 |#1|)) 46)) (-2374 (((-1169 |#1|) (-1169 |#1|)) 61)) (-2255 (((-1169 |#1|) (-1169 |#1|)) 43)) (-2352 (((-1169 |#1|) (-1169 |#1|)) 58)) (-2236 (((-1169 |#1|) (-1169 |#1|)) 40)) (-2439 (((-1169 |#1|) (-1169 |#1|)) 68)) (-2304 (((-1169 |#1|) (-1169 |#1|)) 50)) (-2413 (((-1169 |#1|) (-1169 |#1|)) 66)) (-2286 (((-1169 |#1|) (-1169 |#1|)) 48)) (-2464 (((-1169 |#1|) (-1169 |#1|)) 71)) (-2324 (((-1169 |#1|) (-1169 |#1|)) 53)) (-2520 (((-1169 |#1|) (-1169 |#1|)) 72)) (-2333 (((-1169 |#1|) (-1169 |#1|)) 54)) (-2452 (((-1169 |#1|) (-1169 |#1|)) 70)) (-2314 (((-1169 |#1|) (-1169 |#1|)) 52)) (-2426 (((-1169 |#1|) (-1169 |#1|)) 69)) (-2296 (((-1169 |#1|) (-1169 |#1|)) 51)) (** (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 36))) -(((-1174 |#1|) (-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) (-38 (-416 (-573)))) (T -1174)) -((-2520 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3))))) -(-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) -((-2363 (((-1169 |#1|) (-1169 |#1|)) 102)) (-2246 (((-1169 |#1|) (-1169 |#1|)) 61)) (-2620 (((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|)) 98)) (-2342 (((-1169 |#1|) (-1169 |#1|)) 99)) (-3270 (((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|)) 54)) (-2225 (((-1169 |#1|) (-1169 |#1|)) 55)) (-2388 (((-1169 |#1|) (-1169 |#1|)) 104)) (-2266 (((-1169 |#1|) (-1169 |#1|)) 68)) (-3118 (((-1169 |#1|) (-1169 |#1|)) 40)) (-1608 (((-1169 |#1|) (-1169 |#1|)) 37)) (-2401 (((-1169 |#1|) (-1169 |#1|)) 105)) (-2274 (((-1169 |#1|) (-1169 |#1|)) 69)) (-2374 (((-1169 |#1|) (-1169 |#1|)) 103)) (-2255 (((-1169 |#1|) (-1169 |#1|)) 64)) (-2352 (((-1169 |#1|) (-1169 |#1|)) 100)) (-2236 (((-1169 |#1|) (-1169 |#1|)) 56)) (-2439 (((-1169 |#1|) (-1169 |#1|)) 113)) (-2304 (((-1169 |#1|) (-1169 |#1|)) 88)) (-2413 (((-1169 |#1|) (-1169 |#1|)) 107)) (-2286 (((-1169 |#1|) (-1169 |#1|)) 84)) (-2464 (((-1169 |#1|) (-1169 |#1|)) 117)) (-2324 (((-1169 |#1|) (-1169 |#1|)) 92)) (-2520 (((-1169 |#1|) (-1169 |#1|)) 119)) (-2333 (((-1169 |#1|) (-1169 |#1|)) 94)) (-2452 (((-1169 |#1|) (-1169 |#1|)) 115)) (-2314 (((-1169 |#1|) (-1169 |#1|)) 90)) (-2426 (((-1169 |#1|) (-1169 |#1|)) 109)) (-2296 (((-1169 |#1|) (-1169 |#1|)) 86)) (** (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 41))) -(((-1175 |#1|) (-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3270 ((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2620 ((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) (-38 (-416 (-573)))) (T -1175)) -((-2520 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-2 (|:| -2342 (-1169 *4)) (|:| -2352 (-1169 *4)))) (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-2 (|:| -2225 (-1169 *4)) (|:| -2236 (-1169 *4)))) (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3))))) -(-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3270 ((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2620 ((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) -((-3889 (((-968 |#2|) |#2| |#2|) 50)) (-3246 ((|#2| |#2| |#1|) 19 (|has| |#1| (-314))))) -(((-1176 |#1| |#2|) (-10 -7 (-15 -3889 ((-968 |#2|) |#2| |#2|)) (IF (|has| |#1| (-314)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|)) (-565) (-1256 |#1|)) (T -1176)) -((-3246 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-1176 *3 *2)) (-4 *2 (-1256 *3)))) (-3889 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-968 *3)) (-5 *1 (-1176 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -3889 ((-968 |#2|) |#2| |#2|)) (IF (|has| |#1| (-314)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|)) -((-2848 (((-112) $ $) NIL)) (-1638 (($ $ (-653 (-780))) 79)) (-2895 (($) 33)) (-4057 (($ $) 51)) (-4016 (((-653 $) $) 60)) (-2084 (((-112) $) 19)) (-3709 (((-653 (-953 |#2|)) $) 86)) (-3495 (($ $) 80)) (-3863 (((-780) $) 47)) (-3789 (($) 32)) (-3290 (($ $ (-653 (-780)) (-953 |#2|)) 72) (($ $ (-653 (-780)) (-780)) 73) (($ $ (-780) (-953 |#2|)) 75)) (-1480 (($ $ $) 57) (($ (-653 $)) 59)) (-4320 (((-780) $) 87)) (-2880 (((-112) $) 15)) (-3180 (((-1171) $) NIL)) (-3921 (((-112) $) 22)) (-3965 (((-1132) $) NIL)) (-3638 (((-173) $) 85)) (-1822 (((-953 |#2|) $) 81)) (-3915 (((-780) $) 82)) (-1751 (((-112) $) 84)) (-3350 (($ $ (-653 (-780)) (-173)) 78)) (-3928 (($ $) 52)) (-2942 (((-871) $) 99)) (-3396 (($ $ (-653 (-780)) (-112)) 77)) (-1811 (((-653 $) $) 11)) (-3503 (($ $ (-780)) 46)) (-2785 (($ $) 43)) (-3507 (((-112) $ $) NIL)) (-1948 (($ $ $ (-953 |#2|) (-780)) 68)) (-2718 (($ $ (-953 |#2|)) 67)) (-3535 (($ $ (-653 (-780)) (-953 |#2|)) 66) (($ $ (-653 (-780)) (-780)) 70) (((-780) $ (-953 |#2|)) 71)) (-2981 (((-112) $ $) 92))) -(((-1177 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -2880 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3921 ((-112) $)) (-15 -3789 ($)) (-15 -2895 ($)) (-15 -2785 ($ $)) (-15 -3503 ($ $ (-780))) (-15 -1811 ((-653 $) $)) (-15 -3863 ((-780) $)) (-15 -4057 ($ $)) (-15 -3928 ($ $)) (-15 -1480 ($ $ $)) (-15 -1480 ($ (-653 $))) (-15 -4016 ((-653 $) $)) (-15 -3535 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -2718 ($ $ (-953 |#2|))) (-15 -1948 ($ $ $ (-953 |#2|) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -3535 ($ $ (-653 (-780)) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-780))) (-15 -3535 ((-780) $ (-953 |#2|))) (-15 -3290 ($ $ (-780) (-953 |#2|))) (-15 -3396 ($ $ (-653 (-780)) (-112))) (-15 -3350 ($ $ (-653 (-780)) (-173))) (-15 -1638 ($ $ (-653 (-780)))) (-15 -1822 ((-953 |#2|) $)) (-15 -3915 ((-780) $)) (-15 -1751 ((-112) $)) (-15 -3638 ((-173) $)) (-15 -4320 ((-780) $)) (-15 -3495 ($ $)) (-15 -3709 ((-653 (-953 |#2|)) $)))) (-931) (-1061)) (T -1177)) -((-2880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3789 (*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-2895 (*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-2785 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3503 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3928 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-1480 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3535 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-953 *4)) (-4 *4 (-1061)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)))) (-1948 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-953 *5)) (-5 *3 (-780)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3535 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3535 (*1 *2 *1 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *2 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3396 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-112)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3350 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-173)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-1638 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-953 *4)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-653 (-953 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061))))) -(-13 (-1112) (-10 -8 (-15 -2880 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3921 ((-112) $)) (-15 -3789 ($)) (-15 -2895 ($)) (-15 -2785 ($ $)) (-15 -3503 ($ $ (-780))) (-15 -1811 ((-653 $) $)) (-15 -3863 ((-780) $)) (-15 -4057 ($ $)) (-15 -3928 ($ $)) (-15 -1480 ($ $ $)) (-15 -1480 ($ (-653 $))) (-15 -4016 ((-653 $) $)) (-15 -3535 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -2718 ($ $ (-953 |#2|))) (-15 -1948 ($ $ $ (-953 |#2|) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -3535 ($ $ (-653 (-780)) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-780))) (-15 -3535 ((-780) $ (-953 |#2|))) (-15 -3290 ($ $ (-780) (-953 |#2|))) (-15 -3396 ($ $ (-653 (-780)) (-112))) (-15 -3350 ($ $ (-653 (-780)) (-173))) (-15 -1638 ($ $ (-653 (-780)))) (-15 -1822 ((-953 |#2|) $)) (-15 -3915 ((-780) $)) (-15 -1751 ((-112) $)) (-15 -3638 ((-173) $)) (-15 -4320 ((-780) $)) (-15 -3495 ($ $)) (-15 -3709 ((-653 (-953 |#2|)) $)))) -((-2848 (((-112) $ $) NIL)) (-1808 ((|#2| $) 11)) (-1795 ((|#1| $) 10)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2955 (($ |#1| |#2|) 9)) (-2942 (((-871) $) 16)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1178 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -2955 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1808 (|#2| $)))) (-1112) (-1112)) (T -1178)) -((-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-1795 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-1112)))) (-1808 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -2955 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1808 (|#2| $)))) -((-2848 (((-112) $ $) NIL)) (-2514 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1179) (-13 (-1095) (-10 -8 (-15 -2514 ((-1147) $))))) (T -1179)) -((-2514 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1179))))) -(-13 (-1095) (-10 -8 (-15 -2514 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1442 (($ $ (-573)) NIL) (($ $ (-573) (-573)) 75)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) NIL)) (-3106 (((-1187 |#1| |#2| |#3|) $) 42)) (-1780 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 32)) (-4401 (((-1187 |#1| |#2| |#3|) $) 33)) (-2363 (($ $) 116 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 92 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 112 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 88 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) 120 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 96 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1189) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-573) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2205 (((-1187 |#1| |#2| |#3|) $) 140) (((-1189) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-573) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2230 (($ $) 37) (($ (-573) $) 38)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-1187 |#1| |#2| |#3|)) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 (-1187 |#1| |#2| |#3|)) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-1187 |#1| |#2| |#3|))) (|:| |vec| (-1280 (-1187 |#1| |#2| |#3|)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 54)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 74 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 76 (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 28)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) NIL) (((-573) $ (-573)) 26)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 (((-1187 |#1| |#2| |#3|) $) 44 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 19) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) 81 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) (-1187 |#1| |#2| |#3|)) 36)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 79 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 80 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-3733 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 158)) (-2837 (((-3 $ "failed") $ $) 55 (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 82 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-301 (-1187 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-301 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1187 |#1| |#2| |#3|)) (-653 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) NIL) (($ $ $) 61 (|has| (-573) (-1124))) (($ $ (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-293 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1276 |#2|)) 57) (($ $) 56 (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 (((-1187 |#1| |#2| |#3|) $) 46 (|has| |#1| (-371)))) (-2565 (((-573) $) 43)) (-2401 (($ $) 122 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 98 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 118 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 94 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 114 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 90 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-545) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-545))) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-227) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 162) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1187 |#1| |#2| |#3|)) 30) (($ (-1276 |#2|)) 25) (($ (-1189)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565)))) (($ (-416 (-573))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))) (|has| |#1| (-38 (-416 (-573))))))) (-4317 ((|#1| $ (-573)) 77)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-2437 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 128 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 104 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2413 (($ $) 124 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 100 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 108 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 110 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 106 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 126 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 102 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2132 (($) 21 T CONST)) (-2144 (($) 16 T CONST)) (-3609 (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3005 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 49 (|has| |#1| (-371))) (($ (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) 50 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 23)) (** (($ $ (-931)) NIL) (($ $ (-780)) 60) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) 83 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 137 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1187 |#1| |#2| |#3|)) 48 (|has| |#1| (-371))) (($ (-1187 |#1| |#2| |#3|) $) 47 (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1180 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1187 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1180)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1242 |#1| (-1187 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-3559 ((|#2| |#2| (-1104 |#2|)) 26) ((|#2| |#2| (-1189)) 28))) -(((-1181 |#1| |#2|) (-10 -7 (-15 -3559 (|#2| |#2| (-1189))) (-15 -3559 (|#2| |#2| (-1104 |#2|)))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-439 |#1|) (-161) (-27) (-1215))) (T -1181)) -((-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1181 *4 *2)))) (-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215)))))) -(-10 -7 (-15 -3559 (|#2| |#2| (-1189))) (-15 -3559 (|#2| |#2| (-1104 |#2|)))) -((-3559 (((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))) 31) (((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|))) 44) (((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189)) 33) (((-416 (-962 |#1|)) (-962 |#1|) (-1189)) 36))) -(((-1182 |#1|) (-10 -7 (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1189))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|)))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))))) (-13 (-565) (-1050 (-573)))) (T -1182)) -((-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 *3 (-323 *5))) (-5 *1 (-1182 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-962 *5))) (-5 *3 (-962 *5)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 *3)) (-5 *1 (-1182 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 (-416 (-962 *5)) (-323 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-416 (-962 *5))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-962 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-962 *5))))) -(-10 -7 (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1189))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|)))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))))) -((-1776 (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 13))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -1776 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)))) (-1061) (-1061)) (T -1183)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-1183 *5 *6))))) -(-10 -7 (-15 -1776 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)))) -((-2427 (((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))) 51)) (-4218 (((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))) 52))) -(((-1184 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|)))) (-15 -2427 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))))) (-802) (-859) (-461) (-959 |#3| |#1| |#2|)) (T -1184)) -((-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7)))))) -(-10 -7 (-15 -4218 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|)))) (-15 -2427 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))))) -((-2848 (((-112) $ $) 171)) (-1748 (((-112) $) 43)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) 82) (((-1185 |#1|) $) 71)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) 164 (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) 158 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 95 (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 115 (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-3168 (($ $ (-780)) 61)) (-2331 (($ $ (-780)) 63)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 80)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) 131)) (-2154 (($ $ $) NIL (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) 165 (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) 69)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-3471 (((-871) $ (-871)) 148)) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) 48)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) 73) (($ (-1185 $) (-1094)) 89)) (-2976 (($ $ (-780)) 51)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 87) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 153)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) 76)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 60)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 50)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 103 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) 167 (|has| |#1| (-461)))) (-2826 (($ $ (-780) |#1| $) 123)) (-2963 (((-427 (-1185 $)) (-1185 $)) 101 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 100 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 108 (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) 54)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 172 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) 78) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 162 (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) 149) (($ (-573)) NIL) (($ |#1|) 77) (($ (-1094)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) 41 (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 17 T CONST)) (-2144 (($) 19 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 120)) (-3103 (($ $ |#1|) 173 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 90)) (** (($ $ (-931)) 14) (($ $ (-780)) 12)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 39) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1185 |#1|) (-13 (-1256 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))) (-15 -2826 ($ $ (-780) |#1| $)))) (-1061)) (T -1185)) -((-3471 (*1 *2 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1185 *3)) (-4 *3 (-1061)))) (-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1185 *3)) (-4 *3 (-1061))))) -(-13 (-1256 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))) (-15 -2826 ($ $ (-780) |#1| $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1180 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 36)) (-2205 (((-1180 |#1| |#2| |#3|) $) NIL) (((-1187 |#1| |#2| |#3|) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1899 (((-416 (-573)) $) 59)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) (-1180 |#1| |#2| |#3|)) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 20) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 (((-1180 |#1| |#2| |#3|) $) 41)) (-4064 (((-3 (-1180 |#1| |#2| |#3|) "failed") $) NIL)) (-4412 (((-1180 |#1| |#2| |#3|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 39 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 40 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 38)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 62) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1180 |#1| |#2| |#3|)) 30) (($ (-1187 |#1| |#2| |#3|)) 31) (($ (-1276 |#2|)) 26) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 22 T CONST)) (-2144 (($) 16 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 24)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1186 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1180 |#1| |#2| |#3|)) (-1050 (-1187 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1186)) -((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1263 |#1| (-1180 |#1| |#2| |#3|)) (-1050 (-1187 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 129)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 119)) (-2866 (((-1253 |#2| |#1|) $ (-780)) 69)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 85) (($ $ (-780) (-780)) 82)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 105)) (-2363 (($ $) 173 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 169 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 118) (($ (-1169 |#1|)) 113)) (-2388 (($ $) 177 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 25)) (-1806 (($ $) 28)) (-4052 (((-962 |#1|) $ (-780)) 81) (((-962 |#1|) $ (-780) (-780)) 83)) (-1488 (((-112) $) 124)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) 126) (((-780) $ (-780)) 128)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 13) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $) 133 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 134 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2212 (($ $ (-780)) 15)) (-2837 (((-3 $ "failed") $ $) 26 (|has| |#1| (-565)))) (-1608 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 122) (($ $ $) 132 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-1276 |#2|)) 31)) (-2565 (((-780) $) NIL)) (-2401 (($ $) 179 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 175 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 171 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 206) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1253 |#2| |#1|)) 55) (($ (-1276 |#2|)) 36)) (-1920 (((-1169 |#1|) $) 101)) (-4317 ((|#1| $ (-780)) 121)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 58)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 185 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 161 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 181 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 189 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 165 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 191 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 167 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 187 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 163 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 183 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 17 T CONST)) (-2144 (($) 20 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 198)) (-3077 (($ $ $) 35)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#1|) 203 (|has| |#1| (-371))) (($ $ $) 138 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 141 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1187 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1187)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-1187 *3 *4 *5)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1187 *4 *5 *6)) (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-2942 (((-871) $) 33) (($ (-1189)) 35)) (-2817 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 46)) (-2804 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 39) (($ $) 40)) (-2519 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 41)) (-2506 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 43)) (-2495 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 42)) (-2482 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 44)) (-2076 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 45))) -(((-1188) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2519 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2495 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2506 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2482 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2817 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2076 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ $))))) (T -1188)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188)))) (-2519 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2495 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2506 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2482 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2817 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2076 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2804 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2804 (*1 *1 *1) (-5 *1 (-1188)))) -(-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2519 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2495 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2506 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2482 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2817 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2076 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ $)))) -((-2848 (((-112) $ $) NIL)) (-4282 (($ $ (-653 (-871))) 62)) (-3296 (($ $ (-653 (-871))) 60)) (-3248 (((-1171) $) 101)) (-4146 (((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $) 108)) (-3110 (((-112) $) 23)) (-3865 (($ $ (-653 (-653 (-871)))) 59) (($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) 99)) (-2579 (($) 163 T CONST)) (-4374 (((-1285)) 135)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 69) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 76)) (-3789 (($) 122) (($ $) 131)) (-2031 (($ $) 100)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1787 (((-653 $) $) 136)) (-3180 (((-1171) $) 114)) (-3965 (((-1132) $) NIL)) (-2198 (($ $ (-653 (-871))) 61)) (-1835 (((-545) $) 48) (((-1189) $) 49) (((-902 (-573)) $) 80) (((-902 (-387)) $) 78)) (-2942 (((-871) $) 55) (($ (-1171)) 50)) (-3507 (((-112) $ $) NIL)) (-3715 (($ $ (-653 (-871))) 63)) (-2808 (((-1171) $) 34) (((-1171) $ (-112)) 35) (((-1285) (-831) $) 36) (((-1285) (-831) $ (-112)) 37)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 52))) -(((-1189) (-13 (-859) (-623 (-545)) (-837) (-623 (-1189)) (-625 (-1171)) (-623 (-902 (-573))) (-623 (-902 (-387))) (-896 (-573)) (-896 (-387)) (-10 -8 (-15 -3789 ($)) (-15 -3789 ($ $)) (-15 -4374 ((-1285))) (-15 -2031 ($ $)) (-15 -3110 ((-112) $)) (-15 -4146 ((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $)) (-15 -3865 ($ $ (-653 (-653 (-871))))) (-15 -3865 ($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))))) (-15 -3296 ($ $ (-653 (-871)))) (-15 -4282 ($ $ (-653 (-871)))) (-15 -3715 ($ $ (-653 (-871)))) (-15 -2198 ($ $ (-653 (-871)))) (-15 -3248 ((-1171) $)) (-15 -1787 ((-653 $) $)) (-15 -2579 ($) -1705)))) (T -1189)) -((-3789 (*1 *1) (-5 *1 (-1189))) (-3789 (*1 *1 *1) (-5 *1 (-1189))) (-4374 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1189)))) (-2031 (*1 *1 *1) (-5 *1 (-1189))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) (-5 *1 (-1189)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-1189)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) (-5 *1 (-1189)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1189)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1189)))) (-2579 (*1 *1) (-5 *1 (-1189)))) -(-13 (-859) (-623 (-545)) (-837) (-623 (-1189)) (-625 (-1171)) (-623 (-902 (-573))) (-623 (-902 (-387))) (-896 (-573)) (-896 (-387)) (-10 -8 (-15 -3789 ($)) (-15 -3789 ($ $)) (-15 -4374 ((-1285))) (-15 -2031 ($ $)) (-15 -3110 ((-112) $)) (-15 -4146 ((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $)) (-15 -3865 ($ $ (-653 (-653 (-871))))) (-15 -3865 ($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))))) (-15 -3296 ($ $ (-653 (-871)))) (-15 -4282 ($ $ (-653 (-871)))) (-15 -3715 ($ $ (-653 (-871)))) (-15 -2198 ($ $ (-653 (-871)))) (-15 -3248 ((-1171) $)) (-15 -1787 ((-653 $) $)) (-15 -2579 ($) -1705))) -((-2633 (((-1280 |#1|) |#1| (-931)) 18) (((-1280 |#1|) (-653 |#1|)) 25))) -(((-1190 |#1|) (-10 -7 (-15 -2633 ((-1280 |#1|) (-653 |#1|))) (-15 -2633 ((-1280 |#1|) |#1| (-931)))) (-1061)) (T -1190)) -((-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-1280 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1061)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)) (-5 *1 (-1190 *4))))) -(-10 -7 (-15 -2633 ((-1280 |#1|) (-653 |#1|))) (-15 -2633 ((-1280 |#1|) |#1| (-931)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-2343 (($ $ |#1| (-983) $) NIL)) (-1959 (((-112) $) 17)) (-3772 (((-780) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-983)) NIL)) (-4036 (((-983) $) NIL)) (-1382 (($ (-1 (-983) (-983)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2826 (($ $ (-983) |#1| $) NIL (-12 (|has| (-983) (-132)) (|has| |#1| (-565))))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2565 (((-983) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-983)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 10 T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 21)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1191 |#1|) (-13 (-333 |#1| (-983)) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| (-983) (-132)) (-15 -2826 ($ $ (-983) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061)) (T -1191)) -((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-983)) (-4 *2 (-132)) (-5 *1 (-1191 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) -(-13 (-333 |#1| (-983)) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| (-983) (-132)) (-15 -2826 ($ $ (-983) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) -((-4390 (((-1193) (-1189) $) 25)) (-3982 (($) 29)) (-3926 (((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $) 22)) (-2678 (((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $) 41) (((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) 42) (((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) 43)) (-3439 (((-1285) (-1189)) 58)) (-2143 (((-1285) (-1189) $) 55) (((-1285) (-1189)) 56) (((-1285)) 57)) (-2458 (((-1285) (-1189)) 37)) (-4343 (((-1189)) 36)) (-3508 (($) 34)) (-3158 (((-446) (-1189) (-446) (-1189) $) 45) (((-446) (-653 (-1189)) (-446) (-1189) $) 49) (((-446) (-1189) (-446)) 46) (((-446) (-1189) (-446) (-1189)) 50)) (-1709 (((-1189)) 35)) (-2942 (((-871) $) 28)) (-2864 (((-1285)) 30) (((-1285) (-1189)) 33)) (-3100 (((-653 (-1189)) (-1189) $) 24)) (-3485 (((-1285) (-1189) (-653 (-1189)) $) 38) (((-1285) (-1189) (-653 (-1189))) 39) (((-1285) (-653 (-1189))) 40))) -(((-1192) (-13 (-622 (-871)) (-10 -8 (-15 -3982 ($)) (-15 -2864 ((-1285))) (-15 -2864 ((-1285) (-1189))) (-15 -3158 ((-446) (-1189) (-446) (-1189) $)) (-15 -3158 ((-446) (-653 (-1189)) (-446) (-1189) $)) (-15 -3158 ((-446) (-1189) (-446))) (-15 -3158 ((-446) (-1189) (-446) (-1189))) (-15 -2458 ((-1285) (-1189))) (-15 -1709 ((-1189))) (-15 -4343 ((-1189))) (-15 -3485 ((-1285) (-1189) (-653 (-1189)) $)) (-15 -3485 ((-1285) (-1189) (-653 (-1189)))) (-15 -3485 ((-1285) (-653 (-1189)))) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2678 ((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2143 ((-1285) (-1189) $)) (-15 -2143 ((-1285) (-1189))) (-15 -2143 ((-1285))) (-15 -3439 ((-1285) (-1189))) (-15 -3508 ($)) (-15 -3926 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $)) (-15 -3100 ((-653 (-1189)) (-1189) $)) (-15 -4390 ((-1193) (-1189) $))))) (T -1192)) -((-3982 (*1 *1) (-5 *1 (-1192))) (-2864 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *4 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-1709 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192)))) (-4343 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1189)) (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3508 (*1 *1) (-5 *1 (-1192))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-1192)))) (-3100 (*1 *2 *3 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1192)) (-5 *3 (-1189)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1193)) (-5 *1 (-1192))))) -(-13 (-622 (-871)) (-10 -8 (-15 -3982 ($)) (-15 -2864 ((-1285))) (-15 -2864 ((-1285) (-1189))) (-15 -3158 ((-446) (-1189) (-446) (-1189) $)) (-15 -3158 ((-446) (-653 (-1189)) (-446) (-1189) $)) (-15 -3158 ((-446) (-1189) (-446))) (-15 -3158 ((-446) (-1189) (-446) (-1189))) (-15 -2458 ((-1285) (-1189))) (-15 -1709 ((-1189))) (-15 -4343 ((-1189))) (-15 -3485 ((-1285) (-1189) (-653 (-1189)) $)) (-15 -3485 ((-1285) (-1189) (-653 (-1189)))) (-15 -3485 ((-1285) (-653 (-1189)))) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2678 ((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2143 ((-1285) (-1189) $)) (-15 -2143 ((-1285) (-1189))) (-15 -2143 ((-1285))) (-15 -3439 ((-1285) (-1189))) (-15 -3508 ($)) (-15 -3926 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $)) (-15 -3100 ((-653 (-1189)) (-1189) $)) (-15 -4390 ((-1193) (-1189) $)))) -((-3486 (((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $) 66)) (-2054 (((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $) 47)) (-3722 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) 17)) (-3439 (((-1285) $) 73)) (-4290 (((-653 (-1189)) $) 22)) (-3943 (((-1116) $) 60)) (-1744 (((-446) (-1189) $) 27)) (-1966 (((-653 (-1189)) $) 30)) (-3508 (($) 19)) (-3158 (((-446) (-653 (-1189)) (-446) $) 25) (((-446) (-1189) (-446) $) 24)) (-2942 (((-871) $) 9) (((-1202 (-1189) (-446)) $) 13))) -(((-1193) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ((-1202 (-1189) (-446)) $)) (-15 -3508 ($)) (-15 -3158 ((-446) (-653 (-1189)) (-446) $)) (-15 -3158 ((-446) (-1189) (-446) $)) (-15 -1744 ((-446) (-1189) $)) (-15 -4290 ((-653 (-1189)) $)) (-15 -2054 ((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $)) (-15 -1966 ((-653 (-1189)) $)) (-15 -3486 ((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $)) (-15 -3943 ((-1116) $)) (-15 -3439 ((-1285) $)) (-15 -3722 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))))))) (T -1193)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-1202 (-1189) (-446))) (-5 *1 (-1193)))) (-3508 (*1 *1) (-5 *1 (-1193))) (-3158 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *1 (-1193)))) (-3158 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1193)))) (-1744 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-446)) (-5 *1 (-1193)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193)))) (-2054 (*1 *2 *3 *1) (-12 (-5 *3 (-443)) (-5 *2 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) (-5 *1 (-1193)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))))) (-5 *1 (-1193)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1193)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1193)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) (-5 *1 (-1193))))) -(-13 (-622 (-871)) (-10 -8 (-15 -2942 ((-1202 (-1189) (-446)) $)) (-15 -3508 ($)) (-15 -3158 ((-446) (-653 (-1189)) (-446) $)) (-15 -3158 ((-446) (-1189) (-446) $)) (-15 -1744 ((-446) (-1189) $)) (-15 -4290 ((-653 (-1189)) $)) (-15 -2054 ((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $)) (-15 -1966 ((-653 (-1189)) $)) (-15 -3486 ((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $)) (-15 -3943 ((-1116) $)) (-15 -3439 ((-1285) $)) (-15 -3722 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446)))))))) -((-2848 (((-112) $ $) NIL)) (-1695 (((-3 (-573) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-515) "failed") $) 43) (((-3 (-1171) "failed") $) 47)) (-2205 (((-573) $) 30) (((-227) $) 36) (((-515) $) 40) (((-1171) $) 48)) (-3238 (((-112) $) 53)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3484 (((-3 (-573) (-227) (-515) (-1171) $) $) 55)) (-4419 (((-653 $) $) 57)) (-1835 (((-1116) $) 24) (($ (-1116)) 25)) (-1756 (((-112) $) 56)) (-2942 (((-871) $) 23) (($ (-573)) 26) (($ (-227)) 32) (($ (-515)) 38) (($ (-1171)) 44) (((-545) $) 59) (((-573) $) 31) (((-227) $) 37) (((-515) $) 41) (((-1171) $) 49)) (-2121 (((-112) $ (|[\|\|]| (-573))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-515))) 19) (((-112) $ (|[\|\|]| (-1171))) 16)) (-3908 (($ (-515) (-653 $)) 51) (($ $ (-653 $)) 52)) (-3507 (((-112) $ $) NIL)) (-1331 (((-573) $) 27) (((-227) $) 33) (((-515) $) 39) (((-1171) $) 45)) (-2981 (((-112) $ $) 7))) -(((-1194) (-13 (-1275) (-1112) (-1050 (-573)) (-1050 (-227)) (-1050 (-515)) (-1050 (-1171)) (-622 (-545)) (-10 -8 (-15 -1835 ((-1116) $)) (-15 -1835 ($ (-1116))) (-15 -2942 ((-573) $)) (-15 -1331 ((-573) $)) (-15 -2942 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2942 ((-515) $)) (-15 -1331 ((-515) $)) (-15 -2942 ((-1171) $)) (-15 -1331 ((-1171) $)) (-15 -3908 ($ (-515) (-653 $))) (-15 -3908 ($ $ (-653 $))) (-15 -3238 ((-112) $)) (-15 -3484 ((-3 (-573) (-227) (-515) (-1171) $) $)) (-15 -4419 ((-653 $) $)) (-15 -1756 ((-112) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -2121 ((-112) $ (|[\|\|]| (-227)))) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -2121 ((-112) $ (|[\|\|]| (-1171))))))) (T -1194)) -((-1835 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) (-3908 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-1194))) (-5 *1 (-1194)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-3 (-573) (-227) (-515) (-1171) (-1194))) (-5 *1 (-1194)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-1194))))) -(-13 (-1275) (-1112) (-1050 (-573)) (-1050 (-227)) (-1050 (-515)) (-1050 (-1171)) (-622 (-545)) (-10 -8 (-15 -1835 ((-1116) $)) (-15 -1835 ($ (-1116))) (-15 -2942 ((-573) $)) (-15 -1331 ((-573) $)) (-15 -2942 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2942 ((-515) $)) (-15 -1331 ((-515) $)) (-15 -2942 ((-1171) $)) (-15 -1331 ((-1171) $)) (-15 -3908 ($ (-515) (-653 $))) (-15 -3908 ($ $ (-653 $))) (-15 -3238 ((-112) $)) (-15 -3484 ((-3 (-573) (-227) (-515) (-1171) $) $)) (-15 -4419 ((-653 $) $)) (-15 -1756 ((-112) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -2121 ((-112) $ (|[\|\|]| (-227)))) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 22)) (-2579 (($) 12 T CONST)) (-2819 (($) 26)) (-3659 (($ $ $) NIL) (($) 19 T CONST)) (-3751 (($ $ $) NIL) (($) 20 T CONST)) (-3589 (((-931) $) 24)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 23)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1195 |#1|) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) (-931)) (T -1195)) -((-2579 (*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-931))))) -(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2012 ((|#1| $) 45)) (-1750 (((-112) $ (-781)) 8)) (-3063 (($) 7 T CONST)) (-3528 ((|#1| |#1| $) 47)) (-3416 ((|#1| $) 46)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1494 ((|#1| $) 40)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2277 ((|#1| $) 42)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-4292 (((-781) $) 44)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) 43)) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1136 |#1|) (-141) (-1233)) (T -1136)) +((-3528 (*1 *2 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4458) (-15 -3528 (|t#1| |t#1| $)) (-15 -3416 (|t#1| $)) (-15 -2012 (|t#1| $)) (-15 -4292 ((-781) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-1646 ((|#3| $) 87)) (-1706 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-4232 (((-699 (-574)) (-1283 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL) (((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 $) (-1283 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1283 $)) NIL)) (-3878 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192)) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-1483 ((|#3| $) 89)) (-3413 ((|#4| $) 43)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-934)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95))) +(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -1483 (|#3| |#1|)) (-15 -1646 (|#3| |#1|)) (-15 -3413 (|#4| |#1|)) (-15 -4232 ((-699 |#3|) (-1283 |#1|))) (-15 -4232 ((-699 |#3|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -2950 ((-872) |#1|))) (-1138 |#2| |#3| |#4| |#5|) (-781) (-1064) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1137)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -1483 (|#3| |#1|)) (-15 -1646 (|#3| |#1|)) (-15 -3413 (|#4| |#1|)) (-15 -4232 ((-699 |#3|) (-1283 |#1|))) (-15 -4232 ((-699 |#3|) (-699 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 |#3|)) (|:| |vec| (-1283 |#3|))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 |#1|) (-1283 |#1|))) (-15 -4232 ((-699 (-574)) (-699 |#1|))) (-15 -4232 ((-699 (-574)) (-1283 |#1|))) (-15 -2950 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3878 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1646 ((|#2| $) 78)) (-3385 (((-112) $) 120)) (-2599 (((-3 $ "failed") $ $) 20)) (-3087 (((-112) $) 118)) (-1750 (((-112) $ (-781)) 110)) (-2607 (($ |#2|) 81)) (-3063 (($) 18 T CONST)) (-1538 (($ $) 137 (|has| |#2| (-315)))) (-4358 ((|#3| $ (-574)) 132)) (-1706 (((-3 (-574) "failed") $) 95 (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) 92 (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) 89)) (-2216 (((-574) $) 94 (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) 91 (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) 90)) (-4232 (((-699 (-574)) (-1283 $)) 87 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 85 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 84) (((-699 |#2|) (-699 $)) 83) (((-699 |#2|) (-1283 $)) 82)) (-2978 (((-3 $ "failed") $) 37)) (-3557 (((-781) $) 138 (|has| |#2| (-566)))) (-2399 ((|#2| $ (-574) (-574)) 130)) (-1874 (((-654 |#2|) $) 103 (|has| $ (-6 -4458)))) (-2276 (((-112) $) 35)) (-3352 (((-781) $) 139 (|has| |#2| (-566)))) (-3819 (((-654 |#4|) $) 140 (|has| |#2| (-566)))) (-2199 (((-781) $) 126)) (-2208 (((-781) $) 127)) (-2121 (((-112) $ (-781)) 111)) (-2197 ((|#2| $) 73 (|has| |#2| (-6 (-4460 "*"))))) (-1536 (((-574) $) 122)) (-2419 (((-574) $) 124)) (-4187 (((-654 |#2|) $) 102 (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-2612 (((-574) $) 123)) (-2514 (((-574) $) 125)) (-2923 (($ (-654 (-654 |#2|))) 117)) (-2464 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-3160 (((-654 (-654 |#2|)) $) 128)) (-2713 (((-112) $ (-781)) 112)) (-1938 (((-1174) $) 10)) (-3861 (((-3 $ "failed") $) 72 (|has| |#2| (-372)))) (-3939 (((-1135) $) 11)) (-2852 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-566)))) (-4043 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 96 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) 116)) (-2234 (((-112) $) 113)) (-4272 (($) 114)) (-2209 ((|#2| $ (-574) (-574) |#2|) 131) ((|#2| $ (-574) (-574)) 129)) (-3878 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-781)) 56) (($ $ (-654 (-1192)) (-654 (-781))) 49 (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) 48 (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) 47 (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) 46 (|has| |#2| (-913 (-1192)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-781)) 43 (|has| |#2| (-239)))) (-1483 ((|#2| $) 77)) (-3381 (($ (-654 |#2|)) 80)) (-3808 (((-112) $) 119)) (-3413 ((|#3| $) 79)) (-3798 ((|#2| $) 74 (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4458))) (((-781) |#2| $) 101 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 115)) (-3144 ((|#4| $ (-574)) 133)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 93 (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) 88)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2235 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4458)))) (-1349 (((-112) $) 121)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-781)) 54) (($ $ (-654 (-1192)) (-654 (-781))) 53 (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) 52 (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) 51 (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) 50 (|has| |#2| (-913 (-1192)))) (($ $) 44 (|has| |#2| (-239))) (($ $ (-781)) 42 (|has| |#2| (-239)))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#2|) 136 (|has| |#2| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 71 (|has| |#2| (-372)))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2876 (((-781) $) 109 (|has| $ (-6 -4458))))) +(((-1138 |#1| |#2| |#3| |#4|) (-141) (-781) (-1064) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1138)) +((-2607 (*1 *1 *2) (-12 (-4 *2 (-1064)) (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1064)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1064)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1064)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1138 *3 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) (-3861 (*1 *1 *1) (|partial| -12 (-4 *1 (-1138 *2 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1068 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -2607 ($ |t#2|)) (-15 -3381 ($ (-654 |t#2|))) (-15 -3413 (|t#3| $)) (-15 -1646 (|t#2| $)) (-15 -1483 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4460 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3798 (|t#2| $)) (-15 -2197 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -3861 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4460 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1053 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-6 (-4460 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2832 (|has| |#2| (-174)) (|has| |#2| (-6 (-4460 "*")))) ((-736) . T) ((-913 (-1192)) |has| |#2| (-913 (-1192))) ((-1068 |#1| |#1| |#2| |#3| |#4|) . T) ((-1053 #0#) |has| |#2| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#2| (-1053 (-574))) ((-1053 |#2|) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) +((-3965 ((|#4| |#4|) 81)) (-2332 ((|#4| |#4|) 76)) (-2809 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|) 91)) (-2736 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-4038 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2332 (|#4| |#4|)) (-15 -4038 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3965 (|#4| |#4|)) (-15 -2736 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2809 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1139)) +((-2809 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) (-5 *1 (-1139 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-4038 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -2332 (|#4| |#4|)) (-15 -4038 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3965 (|#4| |#4|)) (-15 -2736 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2809 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3907 (-654 |#3|))) |#4| |#3|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 18)) (-4349 (((-654 |#2|) $) 174)) (-4172 (((-1188 $) $ |#2|) 60) (((-1188 |#1|) $) 49)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-4319 (($ $) 118 (|has| |#1| (-566)))) (-1731 (((-112) $) 120 (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2216 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) ((|#2| $) NIL)) (-3372 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1401 (($ $) 217)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) 90)) (-1420 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-541 |#2|) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-2276 (((-112) $) 20)) (-1901 (((-781) $) 30)) (-4338 (($ (-1188 |#1|) |#2|) 54) (($ (-1188 $) |#2|) 71)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) 38)) (-4327 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ |#2|) NIL)) (-2682 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-3577 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 128)) (-1407 (((-3 |#2| "failed") $) 177)) (-1365 (($ $) 216)) (-1377 ((|#1| $) 43)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| |#2|) (|:| -3843 (-781))) "failed") $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 39)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 148 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#1| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-922)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-3902 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3878 (($ $ |#2|) 215) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4144 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-2950 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3133 (((-654 |#1|) $) 162)) (-3584 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 87 T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2143 (($) 12 T CONST)) (-2155 (($) 14 T CONST)) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) 106)) (-3102 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3089 (($ $) 93) (($ $ $) 104)) (-3073 (($ $ $) 55)) (** (($ $ (-934)) 110) (($ $ (-781)) 109)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1140 |#1| |#2|) (-962 |#1| (-541 |#2|) |#2|) (-1064) (-860)) (T -1140)) +NIL +(-962 |#1| (-541 |#2|) |#2|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 |#2|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-2378 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4026 (((-965 |#1|) $ (-781)) NIL) (((-965 |#1|) $ (-781) (-781)) NIL)) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3513 (((-112) $) NIL)) (-4327 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3302 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-2699 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-4016 (($ $ (-781)) 16)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1619 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3878 (($ $ |#2|) 109) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4144 (((-541 |#2|) $) NIL)) (-2061 (((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|))) 87)) (-2415 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 18)) (-2950 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-3584 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 52 T CONST)) (-2155 (($) 62 T CONST)) (-3583 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 66)) (** (($ $ (-934)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1141 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -3584 (|#3| $ (-781))) (-15 -2950 ($ |#2|)) (-15 -2950 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2061 ((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $ |#2| |#1|)) (-15 -2699 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1064) (-860) (-962 |#1| (-541 |#2|) |#2|)) (T -1141)) +((-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-962 *4 (-541 *5) *5)) (-5 *1 (-1141 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-860)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) (-2950 (*1 *1 *2) (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-962 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-962 *3 (-541 *4) *4)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1172 *7))) (-4 *6 (-860)) (-4 *7 (-962 *5 (-541 *6) *6)) (-4 *5 (-1064)) (-5 *2 (-1 (-1172 *7) *7)) (-5 *1 (-1141 *5 *6 *7)))) (-3302 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) (-2699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1141 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *1 (-1141 *4 *3 *5)) (-4 *5 (-962 *4 (-541 *3) *3))))) +(-13 (-750 |#1| |#2|) (-10 -8 (-15 -3584 (|#3| $ (-781))) (-15 -2950 ($ |#2|)) (-15 -2950 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2061 ((-1 (-1172 |#3|) |#3|) (-654 |#2|) (-654 (-1172 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $ |#2| |#1|)) (-15 -2699 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) 86)) (-1346 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) 102) (((-112) $) 98)) (-3871 ((|#4| |#4| $) 93)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 127)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1779 ((|#4| |#4| $) 90)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2544 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) 106)) (-3288 (((-112) |#4| $) 137)) (-1861 (((-112) |#4| $) 134)) (-2196 (((-112) |#4| $) 138) (((-112) $) 135)) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 128)) (-3333 (((-3 |#4| "failed") $) 84)) (-2737 (((-654 $) |#4| $) 130)) (-2538 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2627 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-3599 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4009 (((-654 |#4|) $) 108)) (-1746 (((-112) |#4| $) 100) (((-112) $) 96)) (-2780 ((|#4| |#4| $) 91)) (-3419 (((-112) $ $) 111)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) 101) (((-112) $) 97)) (-1371 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3967 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-4144 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-2293 (($ $) 89)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3988 (((-781) $) 77 (|has| |#3| (-377)))) (-4259 (((-112) $ $) 9)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2457 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) 82)) (-2906 (((-112) |#4| $) 136)) (-2488 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-1142 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1142)) +NIL +(-13 (-1124 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1086 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1226 |#1| |#2| |#3| |#4|) . T) ((-1233) . T)) +((-2613 (((-654 |#2|) |#1|) 15)) (-2051 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-3890 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-4125 ((|#2| |#1|) 54)) (-2884 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4007 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-1459 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-2083 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1775 ((|#2| |#2| |#2| |#2|) 51)) (-2930 ((|#2| |#2| |#2|) 50)) (-1521 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1143 |#1| |#2|) (-10 -7 (-15 -2613 ((-654 |#2|) |#1|)) (-15 -4125 (|#2| |#1|)) (-15 -2884 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -3890 ((-654 |#2|) |#1|)) (-15 -1459 ((-654 |#2|) |#1|)) (-15 -2051 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -3890 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1459 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2930 (|#2| |#2| |#2|)) (-15 -1775 (|#2| |#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2083 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1259 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1143)) +((-2083 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-1521 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-1775 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-2930 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-2051 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-1459 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-3890 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-4007 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3)))) (-2051 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-3890 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1143 *3 *5)) (-4 *3 (-1259 *5)))) (-4125 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2)))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -2613 ((-654 |#2|) |#1|)) (-15 -4125 (|#2| |#1|)) (-15 -2884 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -3890 ((-654 |#2|) |#1|)) (-15 -1459 ((-654 |#2|) |#1|)) (-15 -2051 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -3890 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1459 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2930 (|#2| |#2| |#2|)) (-15 -1775 (|#2| |#2| |#2| |#2|)) (-15 -1521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2083 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4027 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192)) 82)) (-3162 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 111) (((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192)) 54)) (-3588 (((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)) 122) (((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192)) 121))) +(((-1144 |#1|) (-10 -7 (-15 -4027 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -3162 ((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3162 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3588 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -3588 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)))) (-13 (-315) (-148))) (T -1144)) +((-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1144 *5)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1144 *5)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-965 *5))))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5))))) +(-10 -7 (-15 -4027 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)) (-1192))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-417 (-965 |#1|)))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -4027 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-965 |#1|))))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-965 |#1|))))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -4027 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -3162 ((-654 (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3162 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -3588 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -3588 ((-1181 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-965 |#1|)) (-1192)))) +((-3363 (((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)) 36)) (-1456 (((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|)))) 48))) +(((-1145 |#1|) (-10 -7 (-15 -1456 ((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))))) (-15 -3363 ((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)))) (-566)) (T -1145)) +((-3363 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1188 (-324 *5)))) (-5 *3 (-1283 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1145 *5)))) (-1456 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1188 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1145 *3))))) +(-10 -7 (-15 -1456 ((-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))) (-417 (-1188 (-324 |#1|))))) (-15 -3363 ((-417 (-1188 (-324 |#1|))) (-1283 (-324 |#1|)) (-417 (-1188 (-324 |#1|))) (-574)))) +((-2613 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24))) +(((-1146 |#1|) (-10 -7 (-15 -2613 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192))) (-15 -2613 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))))) (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (T -1146)) +((-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1146 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) (-5 *3 (-324 *5)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) (-5 *3 (-302 (-324 *5))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) (-5 *3 (-302 (-324 *4))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) (-5 *3 (-324 *4))))) +(-10 -7 (-15 -2613 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1192))) (-15 -2613 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1192))) (-15 -2613 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1192))))) +((-3766 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4280 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -4280 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3766 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4280 (|#2| |#2|)) (-15 -3766 (|#2| |#2|))) |%noBranch|)) (-1233) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4458) (-6 -4459)))) (T -1147)) +((-3766 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459)))))) (-4280 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459)))))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) (-4280 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459))))))) +(-10 -7 (-15 -4280 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3766 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4280 (|#2| |#2|)) (-15 -3766 (|#2| |#2|))) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-3048 (((-1180 3 |#1|) $) 141)) (-2177 (((-112) $) 101)) (-3095 (($ $ (-654 (-956 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-956 |#1|))) 103) (((-654 (-956 |#1|)) $) 102)) (-3804 (((-112) $) 72)) (-3563 (($ $ (-956 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-956 |#1|)) 77) (((-956 |#1|) $) 75)) (-2628 (((-2 (|:| -3566 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-2265 (((-781) $) 53)) (-1717 (((-781) $) 52)) (-3321 (($ $ (-781) (-956 |#1|)) 67)) (-3912 (((-112) $) 111)) (-2646 (($ $ (-654 (-654 (-956 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-956 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-956 |#1|)))) 116) (($ (-654 (-654 (-956 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-956 |#1|))) $) 114)) (-4333 (($ (-654 $)) 56) (($ $ $) 57)) (-3997 (((-654 (-173)) $) 133)) (-2939 (((-654 (-956 |#1|)) $) 130)) (-3286 (((-654 (-654 (-173))) $) 132)) (-2926 (((-654 (-654 (-654 (-956 |#1|)))) $) NIL)) (-2016 (((-654 (-654 (-654 (-781)))) $) 131)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3918 (((-781) $ (-654 (-956 |#1|))) 65)) (-2998 (((-112) $) 84)) (-3874 (($ $ (-654 (-956 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-956 |#1|))) 87) (((-654 (-956 |#1|)) $) 85)) (-2063 (($) 48) (($ (-1180 3 |#1|)) 49)) (-3156 (($ $) 63)) (-2777 (((-654 $) $) 62)) (-4017 (($ (-654 $)) 59)) (-3205 (((-654 $) $) 61)) (-2950 (((-872) $) 146)) (-3192 (((-112) $) 94)) (-1694 (($ $ (-654 (-956 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-956 |#1|))) 97) (((-654 (-956 |#1|)) $) 95)) (-3788 (($ $) 140)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1148 |#1|) (-1149 |#1|) (-1064)) (T -1148)) +NIL +(-1149 |#1|) +((-2863 (((-112) $ $) 7)) (-3048 (((-1180 3 |#1|) $) 14)) (-2177 (((-112) $) 30)) (-3095 (($ $ (-654 (-956 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-956 |#1|))) 32) (((-654 (-956 |#1|)) $) 31)) (-3804 (((-112) $) 45)) (-3563 (($ $ (-956 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-956 |#1|)) 47) (((-956 |#1|) $) 46)) (-2628 (((-2 (|:| -3566 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-2265 (((-781) $) 59)) (-1717 (((-781) $) 60)) (-3321 (($ $ (-781) (-956 |#1|)) 51)) (-3912 (((-112) $) 22)) (-2646 (($ $ (-654 (-654 (-956 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-956 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-956 |#1|)))) 25) (($ (-654 (-654 (-956 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-956 |#1|))) $) 23)) (-4333 (($ (-654 $)) 58) (($ $ $) 57)) (-3997 (((-654 (-173)) $) 17)) (-2939 (((-654 (-956 |#1|)) $) 21)) (-3286 (((-654 (-654 (-173))) $) 18)) (-2926 (((-654 (-654 (-654 (-956 |#1|)))) $) 19)) (-2016 (((-654 (-654 (-654 (-781)))) $) 20)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-3918 (((-781) $ (-654 (-956 |#1|))) 52)) (-2998 (((-112) $) 40)) (-3874 (($ $ (-654 (-956 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-956 |#1|))) 42) (((-654 (-956 |#1|)) $) 41)) (-2063 (($) 62) (($ (-1180 3 |#1|)) 61)) (-3156 (($ $) 53)) (-2777 (((-654 $) $) 54)) (-4017 (($ (-654 $)) 56)) (-3205 (((-654 $) $) 55)) (-2950 (((-872) $) 12)) (-3192 (((-112) $) 35)) (-1694 (($ $ (-654 (-956 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-956 |#1|))) 37) (((-654 (-956 |#1|)) $) 36)) (-3788 (($ $) 15)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-1149 |#1|) (-141) (-1064)) (T -1149)) +((-2950 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-872)))) (-2063 (*1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-1180 3 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-4017 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3205 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)))) (-2777 (*1 *2 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-3918 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-956 *4))) (-4 *1 (-1149 *4)) (-4 *4 (-1064)) (-5 *2 (-781)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-956 *4)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-956 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-956 *3)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-1694 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-1694 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-956 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) (-2646 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-2646 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 *3)))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) (-2646 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *4 (-1064)) (-4 *1 (-1149 *4)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-956 *3)))))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (-2939 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-654 (-956 *3))))))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-173)))))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-173))))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -3566 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-1180 3 *3))))) +(-13 (-1115) (-10 -8 (-15 -2063 ($)) (-15 -2063 ($ (-1180 3 |t#1|))) (-15 -1717 ((-781) $)) (-15 -2265 ((-781) $)) (-15 -4333 ($ (-654 $))) (-15 -4333 ($ $ $)) (-15 -4017 ($ (-654 $))) (-15 -3205 ((-654 $) $)) (-15 -2777 ((-654 $) $)) (-15 -3156 ($ $)) (-15 -3918 ((-781) $ (-654 (-956 |t#1|)))) (-15 -3321 ($ $ (-781) (-956 |t#1|))) (-15 -3563 ($ $ (-956 |t#1|))) (-15 -3563 ($ $ (-654 |t#1|))) (-15 -3563 ($ $ (-781))) (-15 -3563 ($ (-956 |t#1|))) (-15 -3563 ((-956 |t#1|) $)) (-15 -3804 ((-112) $)) (-15 -3874 ($ $ (-654 (-956 |t#1|)))) (-15 -3874 ($ $ (-654 (-654 |t#1|)))) (-15 -3874 ($ (-654 (-956 |t#1|)))) (-15 -3874 ((-654 (-956 |t#1|)) $)) (-15 -2998 ((-112) $)) (-15 -1694 ($ $ (-654 (-956 |t#1|)))) (-15 -1694 ($ $ (-654 (-654 |t#1|)))) (-15 -1694 ($ (-654 (-956 |t#1|)))) (-15 -1694 ((-654 (-956 |t#1|)) $)) (-15 -3192 ((-112) $)) (-15 -3095 ($ $ (-654 (-956 |t#1|)))) (-15 -3095 ($ $ (-654 (-654 |t#1|)))) (-15 -3095 ($ (-654 (-956 |t#1|)))) (-15 -3095 ((-654 (-956 |t#1|)) $)) (-15 -2177 ((-112) $)) (-15 -2646 ($ $ (-654 (-654 (-956 |t#1|))) (-654 (-173)) (-173))) (-15 -2646 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -2646 ($ $ (-654 (-654 (-956 |t#1|))) (-112) (-112))) (-15 -2646 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -2646 ($ (-654 (-654 (-956 |t#1|))))) (-15 -2646 ($ (-654 (-654 (-956 |t#1|))) (-112) (-112))) (-15 -2646 ((-654 (-654 (-956 |t#1|))) $)) (-15 -3912 ((-112) $)) (-15 -2939 ((-654 (-956 |t#1|)) $)) (-15 -2016 ((-654 (-654 (-654 (-781)))) $)) (-15 -2926 ((-654 (-654 (-654 (-956 |t#1|)))) $)) (-15 -3286 ((-654 (-654 (-173))) $)) (-15 -3997 ((-654 (-173)) $)) (-15 -2628 ((-2 (|:| -3566 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -3788 ($ $)) (-15 -3048 ((-1180 3 |t#1|) $)) (-15 -2950 ((-872) $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 184) (($ (-1197)) NIL) (((-1197) $) 7)) (-2132 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1293))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1130))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1081))) 63) (((-112) $ (|[\|\|]| (-1294))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1166))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1051))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-985))) 99) (((-112) $ (|[\|\|]| (-1088))) 103) (((-112) $ (|[\|\|]| (-1105))) 107) (((-112) $ (|[\|\|]| (-1111))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1182))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1174))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-4259 (((-112) $ $) NIL)) (-1337 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1293) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1130) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1081) $) 64) (((-1294) $) 68) (((-535) $) 72) (((-1166) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1051) $) 92) (((-182) $) 96) (((-985) $) 100) (((-1088) $) 104) (((-1105) $) 108) (((-1111) $) 112) (((-636) $) 116) (((-1182) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1174) $) 144) (((-574) $) 148)) (-2985 (((-112) $ $) NIL))) +(((-1150) (-1152)) (T -1150)) +NIL +(-1152) +((-3709 (((-654 (-1197)) (-1174)) 9))) +(((-1151) (-10 -7 (-15 -3709 ((-654 (-1197)) (-1174))))) (T -1151)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-1151))))) +(-10 -7 (-15 -3709 ((-654 (-1197)) (-1174)))) +((-2863 (((-112) $ $) 7)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-1197)) 17) (((-1197) $) 16)) (-2132 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1293))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1130))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1081))) 63) (((-112) $ (|[\|\|]| (-1294))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1166))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1051))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-985))) 45) (((-112) $ (|[\|\|]| (-1088))) 43) (((-112) $ (|[\|\|]| (-1105))) 41) (((-112) $ (|[\|\|]| (-1111))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1182))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1174))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-4259 (((-112) $ $) 9)) (-1337 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1293) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1130) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1081) $) 62) (((-1294) $) 60) (((-535) $) 58) (((-1166) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1051) $) 48) (((-182) $) 46) (((-985) $) 44) (((-1088) $) 42) (((-1105) $) 40) (((-1111) $) 38) (((-636) $) 36) (((-1182) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1174) $) 22) (((-574) $) 20)) (-2985 (((-112) $ $) 6))) +(((-1152) (-141)) (T -1152)) +((-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-534)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-220)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-686)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1293))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1293)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-139)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-616)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-134)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1130))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1130)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-96)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-691)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-527)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1081)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1294)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-535)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1166)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-155)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-681)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-319)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1051))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1051)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-182)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-985)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1088)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1105)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1111)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-636)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1182)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-157)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-138)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-488)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-602)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-516)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1174)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-574))))) +(-13 (-1098) (-1278) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-534)))) (-15 -1337 ((-534) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-220)))) (-15 -1337 ((-220) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-686)))) (-15 -1337 ((-686) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1293)))) (-15 -1337 ((-1293) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-139)))) (-15 -1337 ((-139) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-616)))) (-15 -1337 ((-616) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-134)))) (-15 -1337 ((-134) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1130)))) (-15 -1337 ((-1130) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-96)))) (-15 -1337 ((-96) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-691)))) (-15 -1337 ((-691) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-527)))) (-15 -1337 ((-527) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1081)))) (-15 -1337 ((-1081) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1294)))) (-15 -1337 ((-1294) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-535)))) (-15 -1337 ((-535) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1166)))) (-15 -1337 ((-1166) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-155)))) (-15 -1337 ((-155) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-681)))) (-15 -1337 ((-681) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-319)))) (-15 -1337 ((-319) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1051)))) (-15 -1337 ((-1051) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-182)))) (-15 -1337 ((-182) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-985)))) (-15 -1337 ((-985) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1337 ((-1088) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1105)))) (-15 -1337 ((-1105) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1111)))) (-15 -1337 ((-1111) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-636)))) (-15 -1337 ((-636) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1182)))) (-15 -1337 ((-1182) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-157)))) (-15 -1337 ((-157) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-138)))) (-15 -1337 ((-138) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-488)))) (-15 -1337 ((-488) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-602)))) (-15 -1337 ((-602) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1174)))) (-15 -1337 ((-1174) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-574)))) (-15 -1337 ((-574) $)))) +(((-93) . T) ((-102) . T) ((-626 #0=(-1197)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1115) . T) ((-1098) . T) ((-1278) . T)) +((-4089 (((-1288) (-654 (-872))) 22) (((-1288) (-872)) 21)) (-4180 (((-1288) (-654 (-872))) 20) (((-1288) (-872)) 19)) (-3741 (((-1288) (-654 (-872))) 18) (((-1288) (-872)) 10) (((-1288) (-1174) (-872)) 16))) +(((-1153) (-10 -7 (-15 -3741 ((-1288) (-1174) (-872))) (-15 -3741 ((-1288) (-872))) (-15 -4180 ((-1288) (-872))) (-15 -4089 ((-1288) (-872))) (-15 -3741 ((-1288) (-654 (-872)))) (-15 -4180 ((-1288) (-654 (-872)))) (-15 -4089 ((-1288) (-654 (-872)))))) (T -1153)) +((-4089 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153))))) +(-10 -7 (-15 -3741 ((-1288) (-1174) (-872))) (-15 -3741 ((-1288) (-872))) (-15 -4180 ((-1288) (-872))) (-15 -4089 ((-1288) (-872))) (-15 -3741 ((-1288) (-654 (-872)))) (-15 -4180 ((-1288) (-654 (-872)))) (-15 -4089 ((-1288) (-654 (-872))))) +((-3932 (($ $ $) 10)) (-4127 (($ $) 9)) (-4238 (($ $ $) 13)) (-4072 (($ $ $) 15)) (-2625 (($ $ $) 12)) (-1769 (($ $ $) 14)) (-1730 (($ $) 17)) (-1394 (($ $) 16)) (-2366 (($ $) 6)) (-1433 (($ $ $) 11) (($ $) 7)) (-1437 (($ $ $) 8))) +(((-1154) (-141)) (T -1154)) +((-1730 (*1 *1 *1) (-4 *1 (-1154))) (-1394 (*1 *1 *1) (-4 *1 (-1154))) (-4072 (*1 *1 *1 *1) (-4 *1 (-1154))) (-1769 (*1 *1 *1 *1) (-4 *1 (-1154))) (-4238 (*1 *1 *1 *1) (-4 *1 (-1154))) (-2625 (*1 *1 *1 *1) (-4 *1 (-1154))) (-1433 (*1 *1 *1 *1) (-4 *1 (-1154))) (-3932 (*1 *1 *1 *1) (-4 *1 (-1154))) (-4127 (*1 *1 *1) (-4 *1 (-1154))) (-1437 (*1 *1 *1 *1) (-4 *1 (-1154))) (-1433 (*1 *1 *1) (-4 *1 (-1154))) (-2366 (*1 *1 *1) (-4 *1 (-1154)))) +(-13 (-10 -8 (-15 -2366 ($ $)) (-15 -1433 ($ $)) (-15 -1437 ($ $ $)) (-15 -4127 ($ $)) (-15 -3932 ($ $ $)) (-15 -1433 ($ $ $)) (-15 -2625 ($ $ $)) (-15 -4238 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -1394 ($ $)) (-15 -1730 ($ $)))) +((-2863 (((-112) $ $) 44)) (-3078 ((|#1| $) 17)) (-2543 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1866 (((-112) $) 19)) (-2351 (($ $ |#1|) 30)) (-1749 (($ $ (-112)) 32)) (-2021 (($ $) 33)) (-3284 (($ $ |#2|) 31)) (-1938 (((-1174) $) NIL)) (-4181 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3939 (((-1135) $) NIL)) (-2234 (((-112) $) 16)) (-4272 (($) 13)) (-3156 (($ $) 29)) (-2962 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4067 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2279 ((|#2| $) 18)) (-2950 (((-872) $) 53)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 42))) +(((-1155 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -4272 ($)) (-15 -2234 ((-112) $)) (-15 -3078 (|#1| $)) (-15 -2279 (|#2| $)) (-15 -1866 ((-112) $)) (-15 -2962 ($ |#1| |#2| (-112))) (-15 -2962 ($ |#1| |#2|)) (-15 -2962 ($ (-2 (|:| |val| |#1|) (|:| -4067 |#2|)))) (-15 -2962 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|))))) (-15 -2962 ((-654 $) |#1| (-654 |#2|))) (-15 -3156 ($ $)) (-15 -2351 ($ $ |#1|)) (-15 -3284 ($ $ |#2|)) (-15 -1749 ($ $ (-112))) (-15 -2021 ($ $)) (-15 -4181 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2543 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1115) (-34)) (-13 (-1115) (-34))) (T -1155)) +((-4272 (*1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *2 *3)) (-4 *3 (-13 (-1115) (-34))))) (-2279 (*1 *2 *1) (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4067 *4))) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *4)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4067 *5)))) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-654 (-1155 *4 *5))) (-5 *1 (-1155 *4 *5)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-654 (-1155 *3 *5))) (-5 *1 (-1155 *3 *5)) (-4 *3 (-13 (-1115) (-34))))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2351 (*1 *1 *1 *2) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-3284 (*1 *1 *1 *2) (-12 (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))) (-4 *2 (-13 (-1115) (-34))))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-2021 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-4181 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1155 *5 *6)))) (-2543 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34)))))) +(-13 (-1115) (-10 -8 (-15 -4272 ($)) (-15 -2234 ((-112) $)) (-15 -3078 (|#1| $)) (-15 -2279 (|#2| $)) (-15 -1866 ((-112) $)) (-15 -2962 ($ |#1| |#2| (-112))) (-15 -2962 ($ |#1| |#2|)) (-15 -2962 ($ (-2 (|:| |val| |#1|) (|:| -4067 |#2|)))) (-15 -2962 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|))))) (-15 -2962 ((-654 $) |#1| (-654 |#2|))) (-15 -3156 ($ $)) (-15 -2351 ($ $ |#1|)) (-15 -3284 ($ $ |#2|)) (-15 -1749 ($ $ (-112))) (-15 -2021 ($ $)) (-15 -4181 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2543 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2863 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-3078 (((-1155 |#1| |#2|) $) 27)) (-1684 (($ $) 91)) (-3654 (((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1544 (($ $ $ (-654 (-1155 |#1| |#2|))) 108) (($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1750 (((-112) $ (-781)) NIL)) (-2922 (((-1155 |#1| |#2|) $ (-1155 |#1| |#2|)) 46 (|has| $ (-6 -4459)))) (-3134 (((-1155 |#1| |#2|) $ "value" (-1155 |#1| |#2|)) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 44 (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-4045 (((-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|))) $) 95)) (-3245 (($ (-1155 |#1| |#2|) $) 42)) (-3310 (($ (-1155 |#1| |#2|) $) 34)) (-1874 (((-654 (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 54)) (-2099 (((-112) (-1155 |#1| |#2|) $) 97)) (-2232 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 (-1155 |#1| |#2|)) $) 58 (|has| $ (-6 -4458)))) (-3801 (((-112) (-1155 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-1155 |#1| |#2|) (-1115))))) (-2464 (($ (-1 (-1155 |#1| |#2|) (-1155 |#1| |#2|)) $) 50 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-1155 |#1| |#2|) (-1155 |#1| |#2|)) $) 49)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 (-1155 |#1| |#2|)) $) 56)) (-4086 (((-112) $) 45)) (-1938 (((-1174) $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-3939 (((-1135) $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-1999 (((-3 $ "failed") $) 89)) (-4043 (((-112) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-1155 |#1| |#2|)))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-302 (-1155 |#1| |#2|))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-1155 |#1| |#2|) (-1155 |#1| |#2|)) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115)))) (($ $ (-654 (-1155 |#1| |#2|)) (-654 (-1155 |#1| |#2|))) NIL (-12 (|has| (-1155 |#1| |#2|) (-317 (-1155 |#1| |#2|))) (|has| (-1155 |#1| |#2|) (-1115))))) (-3968 (((-112) $ $) 53)) (-2234 (((-112) $) 24)) (-4272 (($) 26)) (-2209 (((-1155 |#1| |#2|) $ "value") NIL)) (-1418 (((-574) $ $) NIL)) (-3325 (((-112) $) 47)) (-3948 (((-781) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458))) (((-781) (-1155 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-1155 |#1| |#2|) (-1115))))) (-3156 (($ $) 52)) (-2962 (($ (-1155 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1155 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2684 (((-654 |#2|) $) 96)) (-2950 (((-872) $) 87 (|has| (-1155 |#1| |#2|) (-623 (-872))))) (-1355 (((-654 $) $) 31)) (-1692 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-4259 (((-112) $ $) NIL (|has| (-1155 |#1| |#2|) (-1115)))) (-2235 (((-112) (-1 (-112) (-1155 |#1| |#2|)) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 70 (|has| (-1155 |#1| |#2|) (-1115)))) (-2876 (((-781) $) 64 (|has| $ (-6 -4458))))) +(((-1156 |#1| |#2|) (-13 (-1025 (-1155 |#1| |#2|)) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1999 ((-3 $ "failed") $)) (-15 -1684 ($ $)) (-15 -2962 ($ (-1155 |#1| |#2|))) (-15 -2962 ($ |#1| |#2| (-654 $))) (-15 -2962 ($ |#1| |#2| (-654 (-1155 |#1| |#2|)))) (-15 -2962 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2684 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|))) $)) (-15 -2099 ((-112) (-1155 |#1| |#2|) $)) (-15 -3654 ((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3310 ($ (-1155 |#1| |#2|) $)) (-15 -3245 ($ (-1155 |#1| |#2|) $)) (-15 -1544 ($ $ $ (-654 (-1155 |#1| |#2|)))) (-15 -1544 ($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1115) (-34)) (-13 (-1115) (-34))) (T -1156)) +((-1999 (*1 *1 *1) (|partial| -12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1156 *2 *3))) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) (-2962 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1155 *2 *3))) (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)))) (-2962 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))))) (-2099 (*1 *2 *3 *1) (-12 (-5 *3 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)))) (-3654 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1155 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *5 *6)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-3245 (*1 *1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-1544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1155 *3 *4))) (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) (-1544 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1155 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) (-5 *1 (-1156 *4 *5))))) +(-13 (-1025 (-1155 |#1| |#2|)) (-10 -8 (-6 -4459) (-6 -4458) (-15 -1999 ((-3 $ "failed") $)) (-15 -1684 ($ $)) (-15 -2962 ($ (-1155 |#1| |#2|))) (-15 -2962 ($ |#1| |#2| (-654 $))) (-15 -2962 ($ |#1| |#2| (-654 (-1155 |#1| |#2|)))) (-15 -2962 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2684 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4067 |#2|))) $)) (-15 -2099 ((-112) (-1155 |#1| |#2|) $)) (-15 -3654 ((-112) (-1155 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3310 ($ (-1155 |#1| |#2|) $)) (-15 -3245 ($ (-1155 |#1| |#2|) $)) (-15 -1544 ($ $ $ (-654 (-1155 |#1| |#2|)))) (-15 -1544 ($ $ $ (-654 (-1155 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1772 (($ $) NIL)) (-1646 ((|#2| $) NIL)) (-3385 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3091 (($ (-699 |#2|)) 56)) (-3087 (((-112) $) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2607 (($ |#2|) 14)) (-3063 (($) NIL T CONST)) (-1538 (($ $) 69 (|has| |#2| (-315)))) (-4358 (((-246 |#1| |#2|) $ (-574)) 42)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) ((|#2| $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) 83)) (-3557 (((-781) $) 71 (|has| |#2| (-566)))) (-2399 ((|#2| $ (-574) (-574)) NIL)) (-1874 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2276 (((-112) $) NIL)) (-3352 (((-781) $) 73 (|has| |#2| (-566)))) (-3819 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2199 (((-781) $) NIL)) (-3763 (($ |#2|) 25)) (-2208 (((-781) $) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2197 ((|#2| $) 67 (|has| |#2| (-6 (-4460 "*"))))) (-1536 (((-574) $) NIL)) (-2419 (((-574) $) NIL)) (-4187 (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-2612 (((-574) $) NIL)) (-2514 (((-574) $) NIL)) (-2923 (($ (-654 (-654 |#2|))) 37)) (-2464 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3160 (((-654 (-654 |#2|)) $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-3861 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3939 (((-1135) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-4043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3878 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-1483 ((|#2| $) NIL)) (-3381 (($ (-654 |#2|)) 50)) (-3808 (((-112) $) NIL)) (-3413 (((-246 |#1| |#2|) $) NIL)) (-3798 ((|#2| $) 65 (|has| |#2| (-6 (-4460 "*"))))) (-3948 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3156 (($ $) NIL)) (-1846 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-3144 (((-246 |#1| |#2|) $ (-574)) 44)) (-2950 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1053 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-3781 (((-781)) 23 T CONST)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-1349 (((-112) $) NIL)) (-2143 (($) 16 T CONST)) (-2155 (($) 21 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1157 |#1| |#2|) (-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3763 ($ |#2|)) (-15 -1772 ($ $)) (-15 -3091 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4460 "*"))) (-6 -4447) |%noBranch|) (IF (|has| |#2| (-6 (-4460 "*"))) (IF (|has| |#2| (-6 -4455)) (-6 -4455) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1064)) (T -1157)) +((-3763 (*1 *1 *2) (-12 (-5 *1 (-1157 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1064)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1064)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-781))))) +(-13 (-1138 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3763 ($ |#2|)) (-15 -1772 ($ $)) (-15 -3091 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4460 "*"))) (-6 -4447) |%noBranch|) (IF (|has| |#2| (-6 (-4460 "*"))) (IF (|has| |#2| (-6 -4455)) (-6 -4455) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) +((-1877 (($ $) 19)) (-3120 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3705 (((-112) $ $) 24)) (-1681 (($ $) 17)) (-2209 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (($ $ $) 31)) (-2950 (($ (-145)) 29) (((-872) $) NIL))) +(((-1158 |#1|) (-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| (-142))) (-15 -3120 (|#1| |#1| (-145))) (-15 -2950 (|#1| (-145))) (-15 -3705 ((-112) |#1| |#1|)) (-15 -1877 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2209 ((-145) |#1| (-574))) (-15 -2209 ((-145) |#1| (-574) (-145)))) (-1159)) (T -1158)) +NIL +(-10 -8 (-15 -2950 ((-872) |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| (-142))) (-15 -3120 (|#1| |#1| (-145))) (-15 -2950 (|#1| (-145))) (-15 -3705 ((-112) |#1| |#1|)) (-15 -1877 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -2209 ((-145) |#1| (-574))) (-15 -2209 ((-145) |#1| (-574) (-145)))) +((-2863 (((-112) $ $) 19 (|has| (-145) (-1115)))) (-4025 (($ $) 123)) (-1877 (($ $) 124)) (-3120 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-4369 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-4251 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-2212 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2631 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2469 (($ $ (-1250 (-574)) $) 117)) (-2818 (($ $) 80 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-145) $) 79 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4458)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) 52)) (-3705 (((-112) $ $) 122)) (-1451 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1874 (((-654 (-145)) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| (-145) (-860)))) (-4333 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-4187 (((-654 (-145)) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 118)) (-2697 (((-781) $ $ (-145)) 119)) (-2464 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2128 (($ $) 125)) (-1681 (($ $) 126)) (-2713 (((-112) $ (-781)) 10)) (-2645 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1938 (((-1174) $) 22 (|has| (-145) (-1115)))) (-1604 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| (-145) (-1115)))) (-2924 (((-145) $) 43 (|has| (-574) (-860)))) (-1745 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2485 (($ $ (-145)) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3670 (((-654 (-145)) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1250 (-574))) 71) (($ $ $) 105)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4458))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) 72)) (-4131 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| (-145) (-1115)))) (-2235 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3017 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2985 (((-112) $ $) 20 (|has| (-145) (-1115)))) (-3029 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3008 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1159) (-141)) (T -1159)) +((-1681 (*1 *1 *1) (-4 *1 (-1159))) (-2128 (*1 *1 *1) (-4 *1 (-1159))) (-1877 (*1 *1 *1) (-4 *1 (-1159))) (-4025 (*1 *1 *1) (-4 *1 (-1159))) (-3705 (*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112)))) (-3684 (*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112)))) (-3664 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2697 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1329 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2469 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1250 (-574))))) (-1451 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)))) (-1451 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1159)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) (-4369 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) (-3120 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-3120 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) (-2209 (*1 *1 *1 *1) (-4 *1 (-1159)))) +(-13 (-19 (-145)) (-10 -8 (-15 -1681 ($ $)) (-15 -2128 ($ $)) (-15 -1877 ($ $)) (-15 -4025 ($ $)) (-15 -3705 ((-112) $ $)) (-15 -3684 ((-112) $ $)) (-15 -3664 ((-112) $ $ (-574))) (-15 -2697 ((-781) $ $ (-145))) (-15 -1329 ((-112) $ $ (-145))) (-15 -2469 ($ $ (-1250 (-574)) $)) (-15 -1451 ((-574) $ $ (-574))) (-15 -1451 ((-574) (-142) $ (-574))) (-15 -2950 ($ (-145))) (-15 -4369 ((-654 $) $ (-145))) (-15 -4369 ((-654 $) $ (-142))) (-15 -3120 ($ $ (-145))) (-15 -3120 ($ $ (-142))) (-15 -2645 ($ $ (-145))) (-15 -2645 ($ $ (-142))) (-15 -2631 ($ $ (-145))) (-15 -2631 ($ $ (-142))) (-15 -2209 ($ $ $)))) +(((-34) . T) ((-102) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860))) ((-623 (-872)) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1115) -2832 (|has| (-145) (-1115)) (|has| (-145) (-860))) ((-1233) . T)) +((-3445 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781)) 112)) (-3222 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781)) 61)) (-3643 (((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)) 97)) (-2840 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-3526 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-1425 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1846 (((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) 90)) (-2990 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|) 60)) (-4371 (((-781) (-654 |#4|) (-654 |#5|)) 21))) +(((-1160 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4371 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2840 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2990 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3445 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781))) (-15 -1846 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3643 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|) (-1124 |#1| |#2| |#3| |#4|)) (T -1160)) +((-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1124 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) (-5 *1 (-1160 *4 *5 *6 *7 *8)))) (-3445 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4067 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4067 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) (-4 *11 (-1124 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1160 *7 *8 *9 *10 *11)))) (-1425 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-1425 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *7 *8 *9 *3 *4)) (-4 *4 (-1124 *7 *8 *9 *3)))) (-3222 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-3222 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1080 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) (-2990 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4371 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2840 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2990 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3222 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5| (-781))) (-15 -3526 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) |#4| |#5|)) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -1425 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3445 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))))) (-781))) (-15 -1846 ((-1174) (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|)))) (-15 -3643 ((-1288) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4067 |#5|))) (-781)))) +((-2863 (((-112) $ $) NIL)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1346 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4349 (((-654 |#3|) $) NIL)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3871 ((|#4| |#4| $) NIL)) (-3313 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| $) 97)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 75)) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) 29 (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2717 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 45)) (-1779 ((|#4| |#4| $) 78)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2544 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) NIL)) (-3288 (((-112) |#4| $) NIL)) (-1861 (((-112) |#4| $) NIL)) (-2196 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2045 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1874 (((-654 |#4|) $) 18 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#4|) $) 19 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-2464 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-3320 (((-654 |#3|) $) NIL)) (-2704 (((-112) |#3| $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-1979 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-1897 (((-654 (-2 (|:| |val| |#4|) (|:| -4067 $))) |#4| |#4| $) 117)) (-3333 (((-3 |#4| "failed") $) 42)) (-2737 (((-654 $) |#4| $) 102)) (-2538 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2034 (((-654 (-2 (|:| |val| (-112)) (|:| -4067 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2627 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-2405 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-3599 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4009 (((-654 |#4|) $) NIL)) (-1746 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2780 ((|#4| |#4| $) NIL)) (-3419 (((-112) $ $) NIL)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1371 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 40)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3967 (((-3 $ "failed") $ |#4|) 59)) (-4016 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 17)) (-4272 (($) 14)) (-4144 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1846 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 22)) (-2018 (($ $ |#3|) 52)) (-2250 (($ $ |#3|) 54)) (-2293 (($ $) NIL)) (-4091 (($ $ |#3|) NIL)) (-2950 (((-872) $) 35) (((-654 |#4|) $) 46)) (-3988 (((-781) $) NIL (|has| |#3| (-377)))) (-4259 (((-112) $ $) NIL)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2457 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) NIL)) (-2906 (((-112) |#4| $) NIL)) (-2488 (((-112) |#3| $) 74)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1161 |#1| |#2| |#3| |#4|) (-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3599 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2405 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2045 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1161)) +((-3599 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *3))) (-5 *1 (-1161 *5 *6 *7 *3)) (-4 *3 (-1080 *5 *6 *7)))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-2405 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) (-2045 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1161 *5 *6 *7 *8))))) (-5 *1 (-1161 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3599 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -1346 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2405 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2045 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2012 ((|#1| $) 37)) (-4063 (($ (-654 |#1|)) 45)) (-1750 (((-112) $ (-781)) NIL)) (-3063 (($) NIL T CONST)) (-3528 ((|#1| |#1| $) 40)) (-3416 ((|#1| $) 35)) (-1874 (((-654 |#1|) $) 18 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 22)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1494 ((|#1| $) 38)) (-1948 (($ |#1| $) 41)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2277 ((|#1| $) 36)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 32)) (-4272 (($) 43)) (-4292 (((-781) $) 30)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 27)) (-2950 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2765 (($ (-654 |#1|)) NIL)) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 17 (|has| |#1| (-1115)))) (-2876 (((-781) $) 31 (|has| $ (-6 -4458))))) +(((-1162 |#1|) (-13 (-1136 |#1|) (-10 -8 (-15 -4063 ($ (-654 |#1|))))) (-1233)) (T -1162)) +((-4063 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1162 *3))))) +(-13 (-1136 |#1|) (-10 -8 (-15 -4063 ($ (-654 |#1|))))) +((-3134 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1250 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-2841 (((-112) $) 12)) (-2464 (($ (-1 |#2| |#2|) $) 48)) (-2924 ((|#2| $) NIL) (($ $ (-781)) 17)) (-2485 (($ $ |#2|) 49)) (-2949 (((-112) $) 11)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1250 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-3539 (($ $ $) 56) (($ $ |#2|) NIL)) (-4131 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL))) +(((-1163 |#1| |#2|) (-10 -8 (-15 -2841 ((-112) |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -2485 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -4131 (|#1| |#1| |#2|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| "last")) (-15 -2209 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2209 (|#2| |#1| "value")) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|))) (-1164 |#2|) (-1233)) (T -1163)) +NIL +(-10 -8 (-15 -2841 ((-112) |#1|)) (-15 -2949 ((-112) |#1|)) (-15 -3134 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574) |#2|)) (-15 -2209 (|#2| |#1| (-574))) (-15 -2485 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1250 (-574)))) (-15 -4131 (|#1| |#1| |#2|)) (-15 -4131 (|#1| (-654 |#1|))) (-15 -3134 (|#2| |#1| (-1250 (-574)) |#2|)) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| "last")) (-15 -2209 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -2209 (|#2| |#1| "value")) (-15 -2464 (|#1| (-1 |#2| |#2|) |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1980 (($ $) 68)) (-2057 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-4031 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 119 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4458)))) (-2407 ((|#1| $) 67)) (-3063 (($) 7 T CONST)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-2818 (($ $) 101 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4458))) (($ |#1| $) 102 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 89)) (-2841 (((-112) $) 85)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) 111)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 97 (|has| (-574) (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 96 (|has| (-574) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-1604 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-2435 (((-654 (-574)) $) 94)) (-4088 (((-112) (-574) $) 93)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2485 (($ $ |#1|) 98 (|has| $ (-6 -4459)))) (-2949 (((-112) $) 86)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 92)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1250 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-1418 (((-574) $ $) 45)) (-2854 (($ $ (-1250 (-574))) 116) (($ $ (-574)) 115)) (-3325 (((-112) $) 47)) (-2592 (($ $) 63)) (-4423 (($ $) 60 (|has| $ (-6 -4459)))) (-1798 (((-781) $) 64)) (-1523 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-1846 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 109)) (-3539 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1164 |#1|) (-141) (-1233)) (T -1164)) +((-2949 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) +(-13 (-1271 |t#1|) (-661 |t#1|) (-10 -8 (-15 -2949 ((-112) $)) (-15 -2841 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T) ((-1271 |#1|) . T)) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) NIL)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1165 |#1| |#2| |#3|) (-1209 |#1| |#2|) (-1115) (-1115) |#2|) (T -1165)) +NIL +(-1209 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-2000 (((-701 (-1150)) $) 27)) (-4120 (((-1150) $) 15)) (-4071 (((-1150) $) 17)) (-1938 (((-1174) $) NIL)) (-4436 (((-516) $) 13)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 37) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1166) (-13 (-1098) (-10 -8 (-15 -4436 ((-516) $)) (-15 -4071 ((-1150) $)) (-15 -2000 ((-701 (-1150)) $)) (-15 -4120 ((-1150) $))))) (T -1166)) +((-4436 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1166)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-701 (-1150))) (-5 *1 (-1166)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) +(-13 (-1098) (-10 -8 (-15 -4436 ((-516) $)) (-15 -4071 ((-1150) $)) (-15 -2000 ((-701 (-1150)) $)) (-15 -4120 ((-1150) $)))) +((-2863 (((-112) $ $) 7)) (-4217 (((-3 $ "failed") $) 14)) (-1938 (((-1174) $) 10)) (-3791 (($) 15 T CONST)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2985 (((-112) $ $) 6))) +(((-1167) (-141)) (T -1167)) +((-3791 (*1 *1) (-4 *1 (-1167))) (-4217 (*1 *1 *1) (|partial| -4 *1 (-1167)))) +(-13 (-1115) (-10 -8 (-15 -3791 ($) -1716) (-15 -4217 ((-3 $ "failed") $)))) +(((-102) . T) ((-623 (-872)) . T) ((-1115) . T)) +((-3589 (((-1172 |#1|) (-1172 |#1|)) 17)) (-1722 (((-1172 |#1|) (-1172 |#1|)) 13)) (-2470 (((-1172 |#1|) (-1172 |#1|) (-574) (-574)) 20)) (-1704 (((-1172 |#1|) (-1172 |#1|)) 15))) +(((-1168 |#1|) (-10 -7 (-15 -1722 ((-1172 |#1|) (-1172 |#1|))) (-15 -1704 ((-1172 |#1|) (-1172 |#1|))) (-15 -3589 ((-1172 |#1|) (-1172 |#1|))) (-15 -2470 ((-1172 |#1|) (-1172 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1168)) +((-2470 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1168 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1168 *3))))) +(-10 -7 (-15 -1722 ((-1172 |#1|) (-1172 |#1|))) (-15 -1704 ((-1172 |#1|) (-1172 |#1|))) (-15 -3589 ((-1172 |#1|) (-1172 |#1|))) (-15 -2470 ((-1172 |#1|) (-1172 |#1|) (-574) (-574)))) +((-4131 (((-1172 |#1|) (-1172 (-1172 |#1|))) 15))) +(((-1169 |#1|) (-10 -7 (-15 -4131 ((-1172 |#1|) (-1172 (-1172 |#1|))))) (-1233)) (T -1169)) +((-4131 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-1233))))) +(-10 -7 (-15 -4131 ((-1172 |#1|) (-1172 (-1172 |#1|))))) +((-2316 (((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)) 25)) (-2881 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)) 26)) (-1787 (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 16))) +(((-1170 |#1| |#2|) (-10 -7 (-15 -1787 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -2316 ((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|))) (-15 -2881 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)))) (-1233) (-1233)) (T -1170)) +((-2881 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-1170 *5 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1172 *6)) (-4 *6 (-1233)) (-4 *3 (-1233)) (-5 *2 (-1172 *3)) (-5 *1 (-1170 *6 *3)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6))))) +(-10 -7 (-15 -1787 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -2316 ((-1172 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|))) (-15 -2881 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1172 |#1|)))) +((-1787 (((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)) 21))) +(((-1171 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)))) (-1233) (-1233) (-1233)) (T -1171)) +((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-1172 *7)) (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) (-5 *1 (-1171 *6 *7 *8))))) +(-10 -7 (-15 -1787 ((-1172 |#3|) (-1 |#3| |#1| |#2|) (-1172 |#1|) (-1172 |#2|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) NIL)) (-2420 ((|#1| $) NIL)) (-1980 (($ $) 67)) (-2057 (((-1288) $ (-574) (-574)) 99 (|has| $ (-6 -4459)))) (-4078 (($ $ (-574)) 128 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3677 (((-872) $) 56 (|has| |#1| (-1115)))) (-1445 (((-112)) 55 (|has| |#1| (-1115)))) (-2922 ((|#1| $ |#1|) NIL (|has| $ (-6 -4459)))) (-4031 (($ $ $) 115 (|has| $ (-6 -4459))) (($ $ (-574) $) 141)) (-2807 ((|#1| $ |#1|) 125 (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 120 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4459))) (($ $ "rest" $) 124 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 112 (|has| $ (-6 -4459))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 80)) (-2407 ((|#1| $) NIL)) (-3063 (($) NIL T CONST)) (-1858 (($ $) 14)) (-2934 (($ $) 40) (($ $ (-781)) 111)) (-2988 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1115)))) (-3106 (($ (-654 |#1|)) 130)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) 79)) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-2841 (((-112) $) NIL)) (-1874 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3230 (((-1288) (-574) $) 140 (|has| |#1| (-1115)))) (-3185 (((-781) $) 137)) (-2495 (((-654 $) $) NIL)) (-2232 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2713 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-4086 (((-112) $) NIL)) (-4189 (($ $) 113)) (-1751 (((-112) $) 13)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3333 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1604 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) 96)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2104 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1949 ((|#1| $) 10)) (-2924 ((|#1| $) 39) (($ $ (-781)) 65)) (-2899 (((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2150 (($ (-1 (-112) |#1|) $) 145)) (-2162 (($ (-1 (-112) |#1|) $) 146)) (-2485 (($ $ |#1|) 90 (|has| $ (-6 -4459)))) (-4016 (($ $ (-574)) 45)) (-2949 (((-112) $) 94)) (-3051 (((-112) $) 12)) (-2848 (((-112) $) 136)) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 30)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) 20)) (-4272 (($) 60)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1250 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-1418 (((-574) $ $) 64)) (-2854 (($ $ (-1250 (-574))) NIL) (($ $ (-574)) NIL)) (-2371 (($ (-1 $)) 63)) (-3325 (((-112) $) 91)) (-2592 (($ $) 92)) (-4423 (($ $) 116 (|has| $ (-6 -4459)))) (-1798 (((-781) $) NIL)) (-1523 (($ $) NIL)) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 59)) (-1846 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 73)) (-2237 (($ |#1| $) 114)) (-3539 (($ $ $) 118 (|has| $ (-6 -4459))) (($ $ |#1|) 119 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-2073 (($ $) 66)) (-2950 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) NIL)) (-1692 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 132 (|has| |#1| (-1115)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1172 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4459) (-15 -3106 ($ (-654 |#1|))) (IF (|has| |#1| (-1115)) (-15 -2988 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -2899 ((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2371 ($ (-1 $))) (-15 -2237 ($ |#1| $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3230 ((-1288) (-574) $)) (-15 -3677 ((-872) $)) (-15 -1445 ((-112)))) |%noBranch|) (-15 -4031 ($ $ (-574) $)) (-15 -2104 ($ (-1 |#1|))) (-15 -2104 ($ (-1 |#1| |#1|) |#1|)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)))) (-1233)) (T -1172)) +((-3106 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2988 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)) (-5 *1 (-1172 *4)))) (-2899 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781)))) (-5 *1 (-1172 *4)) (-4 *4 (-1233)) (-5 *3 (-781)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-1 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1233)))) (-3230 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1172 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)))) (-1445 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) (-4 *3 (-1233)))) (-4031 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2104 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) +(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4459) (-15 -3106 ($ (-654 |#1|))) (IF (|has| |#1| (-1115)) (-15 -2988 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -2899 ((-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2371 ($ (-1 $))) (-15 -2237 ($ |#1| $)) (IF (|has| |#1| (-1115)) (PROGN (-15 -3230 ((-1288) (-574) $)) (-15 -3677 ((-872) $)) (-15 -1445 ((-112)))) |%noBranch|) (-15 -4031 ($ $ (-574) $)) (-15 -2104 ($ (-1 |#1|))) (-15 -2104 ($ (-1 |#1| |#1|) |#1|)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)))) +((-2863 (((-112) $ $) 19)) (-4025 (($ $) 123)) (-1877 (($ $) 124)) (-3120 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-3231 (($ (-574)) 130)) (-4369 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-4251 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-2212 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-2631 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2469 (($ $ (-1250 (-574)) $) 117)) (-2818 (($ $) 80 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ (-145) $) 79 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4458)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) 52)) (-3705 (((-112) $ $) 122)) (-1451 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1115))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1874 (((-654 (-145)) $) 31 (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| (-145) (-860)))) (-4333 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-4187 (((-654 (-145)) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) 118)) (-2697 (((-781) $ $ (-145)) 119)) (-2464 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2128 (($ $) 125)) (-1681 (($ $) 126)) (-2713 (((-112) $ (-781)) 10)) (-2645 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1938 (((-1174) $) 22)) (-1604 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21)) (-2924 (((-145) $) 43 (|has| (-574) (-860)))) (-1745 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2485 (($ $ (-145)) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3670 (((-654 (-145)) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1250 (-574))) 71) (($ $ $) 105)) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-3948 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4458))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) 72)) (-4131 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (($ (-145)) 114) (((-872) $) 18)) (-4259 (((-112) $ $) 23)) (-2235 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4458)))) (-1579 (((-1174) $) 134) (((-1174) $ (-112)) 133) (((-1288) (-832) $) 132) (((-1288) (-832) $ (-112)) 131)) (-3040 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3017 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2985 (((-112) $ $) 20)) (-3029 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3008 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1173) (-141)) (T -1173)) +((-3231 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1173))))) +(-13 (-1159) (-1115) (-838) (-10 -8 (-15 -3231 ($ (-574))))) +(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1115) . T) ((-1159) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-4025 (($ $) NIL)) (-1877 (($ $) NIL)) (-3120 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-3684 (((-112) $ $) NIL)) (-3664 (((-112) $ $ (-574)) NIL)) (-3231 (($ (-574)) 8)) (-4369 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-4251 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-2212 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-860))))) (-2785 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459))) (((-145) $ (-1250 (-574)) (-145)) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-2631 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2469 (($ $ (-1250 (-574)) $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4458))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4459)))) (-2399 (((-145) $ (-574)) NIL)) (-3705 (((-112) $ $) NIL)) (-1451 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1115))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1115))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1874 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3763 (($ (-781) (-145)) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| (-145) (-860)))) (-4333 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-4187 (((-654 (-145)) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-1965 (((-574) $) NIL (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| (-145) (-860)))) (-1329 (((-112) $ $ (-145)) NIL)) (-2697 (((-781) $ $ (-145)) NIL)) (-2464 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2128 (($ $) NIL)) (-1681 (($ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-2645 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1938 (((-1174) $) NIL)) (-1604 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-145) $) NIL (|has| (-574) (-860)))) (-1745 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2485 (($ $ (-145)) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3670 (((-654 (-145)) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1250 (-574))) NIL) (($ $ $) NIL)) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-3948 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-145) (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2962 (($ (-654 (-145))) NIL)) (-4131 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (($ (-145)) NIL) (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2235 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4458)))) (-1579 (((-1174) $) 19) (((-1174) $ (-112)) 21) (((-1288) (-832) $) 22) (((-1288) (-832) $ (-112)) 23)) (-3040 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3017 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3008 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1174) (-1173)) (T -1174)) +NIL +(-1173) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-2057 (((-1288) $ (-1174) (-1174)) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-1174) |#1|) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#1| "failed") (-1174) $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#1| "failed") (-1174) $) NIL)) (-3310 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-1174) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-1174)) NIL)) (-1874 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-1174) $) NIL (|has| (-1174) (-860)))) (-4187 (((-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-1174) $) NIL (|has| (-1174) (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-1773 (((-654 (-1174)) $) NIL)) (-3735 (((-112) (-1174) $) NIL)) (-1494 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-2435 (((-654 (-1174)) $) NIL)) (-4088 (((-112) (-1174) $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-2924 ((|#1| $) NIL (|has| (-1174) (-860)))) (-1745 (((-3 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) "failed") (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-317 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-1174)) NIL) ((|#1| $ (-1174) |#1|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 (-1174)) (|:| -1918 |#1|)) (-1115)) (|has| |#1| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1175 |#1|) (-13 (-1209 (-1174) |#1|) (-10 -7 (-6 -4458))) (-1115)) (T -1175)) +NIL +(-13 (-1209 (-1174) |#1|) (-10 -7 (-6 -4458))) +((-2145 (((-1172 |#1|) (-1172 |#1|)) 83)) (-2978 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 39)) (-1669 (((-1172 |#1|) (-417 (-574)) (-1172 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-1509 (((-1172 |#1|) |#1| (-1172 |#1|)) 139 (|has| |#1| (-372)))) (-1652 (((-1172 |#1|) (-1172 |#1|)) 97)) (-3822 (((-1172 (-574)) (-574)) 63)) (-3594 (((-1172 |#1|) (-1172 (-1172 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-4256 (((-1172 |#1|) (-574) (-574) (-1172 |#1|)) 102)) (-3805 (((-1172 |#1|) |#1| (-574)) 51)) (-1955 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 66)) (-2707 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 136 (|has| |#1| (-372)))) (-4049 (((-1172 |#1|) |#1| (-1 (-1172 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-4066 (((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|))) 137 (|has| |#1| (-372)))) (-1943 (((-1172 |#1|) (-1172 |#1|)) 96)) (-2928 (((-1172 |#1|) (-1172 |#1|)) 82)) (-4335 (((-1172 |#1|) (-574) (-574) (-1172 |#1|)) 103)) (-3302 (((-1172 |#1|) |#1| (-1172 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-1718 (((-1172 (-574)) (-574)) 62)) (-3086 (((-1172 |#1|) |#1|) 65)) (-1885 (((-1172 |#1|) (-1172 |#1|) (-574) (-574)) 99)) (-1780 (((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|)) 72)) (-2852 (((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|)) 37)) (-4098 (((-1172 |#1|) (-1172 |#1|)) 98)) (-2660 (((-1172 |#1|) (-1172 |#1|) |#1|) 77)) (-3906 (((-1172 |#1|) (-1172 |#1|)) 68)) (-2025 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 78)) (-2950 (((-1172 |#1|) |#1|) 73)) (-3938 (((-1172 |#1|) (-1172 (-1172 |#1|))) 88)) (-3102 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 38)) (-3089 (((-1172 |#1|) (-1172 |#1|)) 21) (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 23)) (-3073 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 17)) (* (((-1172 |#1|) (-1172 |#1|) |#1|) 29) (((-1172 |#1|) |#1| (-1172 |#1|)) 26) (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 27))) +(((-1176 |#1|) (-10 -7 (-15 -3073 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2852 ((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|))) (-15 -3102 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2978 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3805 ((-1172 |#1|) |#1| (-574))) (-15 -1718 ((-1172 (-574)) (-574))) (-15 -3822 ((-1172 (-574)) (-574))) (-15 -3086 ((-1172 |#1|) |#1|)) (-15 -1955 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3906 ((-1172 |#1|) (-1172 |#1|))) (-15 -1780 ((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|))) (-15 -2950 ((-1172 |#1|) |#1|)) (-15 -2660 ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2025 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2928 ((-1172 |#1|) (-1172 |#1|))) (-15 -2145 ((-1172 |#1|) (-1172 |#1|))) (-15 -3938 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -1943 ((-1172 |#1|) (-1172 |#1|))) (-15 -1652 ((-1172 |#1|) (-1172 |#1|))) (-15 -4098 ((-1172 |#1|) (-1172 |#1|))) (-15 -1885 ((-1172 |#1|) (-1172 |#1|) (-574) (-574))) (-15 -4256 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (-15 -4335 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 -4049 ((-1172 |#1|) |#1| (-1 (-1172 |#1|)))) (-15 -3594 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -1669 ((-1172 |#1|) (-417 (-574)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2707 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4066 ((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|)))) (-15 -1509 ((-1172 |#1|) |#1| (-1172 |#1|)))) |%noBranch|)) (-1064)) (T -1176)) +((-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1172 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-1669 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1064)) (-5 *3 (-417 (-574))) (-5 *1 (-1176 *4)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1172 *3))) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)))) (-3302 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-4335 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-4256 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-1885 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1064)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2025 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-1780 (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1064)) (-5 *1 (-1176 *4)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) (-5 *3 (-574)))) (-1718 (*1 *2 *3) (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) (-5 *3 (-574)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) (-2978 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3102 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-2852 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) (-3073 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(-10 -7 (-15 -3073 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3089 ((-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 * ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 * ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2852 ((-3 (-1172 |#1|) "failed") (-1172 |#1|) (-1172 |#1|))) (-15 -3102 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2978 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3805 ((-1172 |#1|) |#1| (-574))) (-15 -1718 ((-1172 (-574)) (-574))) (-15 -3822 ((-1172 (-574)) (-574))) (-15 -3086 ((-1172 |#1|) |#1|)) (-15 -1955 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3906 ((-1172 |#1|) (-1172 |#1|))) (-15 -1780 ((-1172 |#1|) (-1 |#1| (-574)) (-1172 |#1|))) (-15 -2950 ((-1172 |#1|) |#1|)) (-15 -2660 ((-1172 |#1|) (-1172 |#1|) |#1|)) (-15 -2025 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2928 ((-1172 |#1|) (-1172 |#1|))) (-15 -2145 ((-1172 |#1|) (-1172 |#1|))) (-15 -3938 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -1943 ((-1172 |#1|) (-1172 |#1|))) (-15 -1652 ((-1172 |#1|) (-1172 |#1|))) (-15 -4098 ((-1172 |#1|) (-1172 |#1|))) (-15 -1885 ((-1172 |#1|) (-1172 |#1|) (-574) (-574))) (-15 -4256 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (-15 -4335 ((-1172 |#1|) (-574) (-574) (-1172 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ((-1172 |#1|) |#1| (-1172 |#1|))) (-15 -4049 ((-1172 |#1|) |#1| (-1 (-1172 |#1|)))) (-15 -3594 ((-1172 |#1|) (-1172 (-1172 |#1|)))) (-15 -1669 ((-1172 |#1|) (-417 (-574)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2707 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4066 ((-1172 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1172 |#1|)))) (-15 -1509 ((-1172 |#1|) |#1| (-1172 |#1|)))) |%noBranch|)) +((-2378 (((-1172 |#1|) (-1172 |#1|)) 60)) (-2260 (((-1172 |#1|) (-1172 |#1|)) 42)) (-2357 (((-1172 |#1|) (-1172 |#1|)) 56)) (-2238 (((-1172 |#1|) (-1172 |#1|)) 38)) (-2403 (((-1172 |#1|) (-1172 |#1|)) 63)) (-2281 (((-1172 |#1|) (-1172 |#1|)) 45)) (-3111 (((-1172 |#1|) (-1172 |#1|)) 34)) (-1619 (((-1172 |#1|) (-1172 |#1|)) 29)) (-2415 (((-1172 |#1|) (-1172 |#1|)) 64)) (-2289 (((-1172 |#1|) (-1172 |#1|)) 46)) (-2388 (((-1172 |#1|) (-1172 |#1|)) 61)) (-2271 (((-1172 |#1|) (-1172 |#1|)) 43)) (-2367 (((-1172 |#1|) (-1172 |#1|)) 58)) (-2249 (((-1172 |#1|) (-1172 |#1|)) 40)) (-2455 (((-1172 |#1|) (-1172 |#1|)) 68)) (-2319 (((-1172 |#1|) (-1172 |#1|)) 50)) (-2428 (((-1172 |#1|) (-1172 |#1|)) 66)) (-2301 (((-1172 |#1|) (-1172 |#1|)) 48)) (-2479 (((-1172 |#1|) (-1172 |#1|)) 71)) (-2339 (((-1172 |#1|) (-1172 |#1|)) 53)) (-2535 (((-1172 |#1|) (-1172 |#1|)) 72)) (-2348 (((-1172 |#1|) (-1172 |#1|)) 54)) (-2467 (((-1172 |#1|) (-1172 |#1|)) 70)) (-2329 (((-1172 |#1|) (-1172 |#1|)) 52)) (-2442 (((-1172 |#1|) (-1172 |#1|)) 69)) (-2311 (((-1172 |#1|) (-1172 |#1|)) 51)) (** (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 36))) +(((-1177 |#1|) (-10 -7 (-15 -1619 ((-1172 |#1|) (-1172 |#1|))) (-15 -3111 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2238 ((-1172 |#1|) (-1172 |#1|))) (-15 -2249 ((-1172 |#1|) (-1172 |#1|))) (-15 -2260 ((-1172 |#1|) (-1172 |#1|))) (-15 -2271 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2301 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2388 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2415 ((-1172 |#1|) (-1172 |#1|))) (-15 -2428 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2467 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) (-38 (-417 (-574)))) (T -1177)) +((-2535 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2311 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2271 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1177 *3))))) +(-10 -7 (-15 -1619 ((-1172 |#1|) (-1172 |#1|))) (-15 -3111 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2238 ((-1172 |#1|) (-1172 |#1|))) (-15 -2249 ((-1172 |#1|) (-1172 |#1|))) (-15 -2260 ((-1172 |#1|) (-1172 |#1|))) (-15 -2271 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2301 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2388 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2415 ((-1172 |#1|) (-1172 |#1|))) (-15 -2428 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2467 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) +((-2378 (((-1172 |#1|) (-1172 |#1|)) 102)) (-2260 (((-1172 |#1|) (-1172 |#1|)) 61)) (-3460 (((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|)) 98)) (-2357 (((-1172 |#1|) (-1172 |#1|)) 99)) (-3576 (((-2 (|:| -2238 (-1172 |#1|)) (|:| -2249 (-1172 |#1|))) (-1172 |#1|)) 54)) (-2238 (((-1172 |#1|) (-1172 |#1|)) 55)) (-2403 (((-1172 |#1|) (-1172 |#1|)) 104)) (-2281 (((-1172 |#1|) (-1172 |#1|)) 68)) (-3111 (((-1172 |#1|) (-1172 |#1|)) 40)) (-1619 (((-1172 |#1|) (-1172 |#1|)) 37)) (-2415 (((-1172 |#1|) (-1172 |#1|)) 105)) (-2289 (((-1172 |#1|) (-1172 |#1|)) 69)) (-2388 (((-1172 |#1|) (-1172 |#1|)) 103)) (-2271 (((-1172 |#1|) (-1172 |#1|)) 64)) (-2367 (((-1172 |#1|) (-1172 |#1|)) 100)) (-2249 (((-1172 |#1|) (-1172 |#1|)) 56)) (-2455 (((-1172 |#1|) (-1172 |#1|)) 113)) (-2319 (((-1172 |#1|) (-1172 |#1|)) 88)) (-2428 (((-1172 |#1|) (-1172 |#1|)) 107)) (-2301 (((-1172 |#1|) (-1172 |#1|)) 84)) (-2479 (((-1172 |#1|) (-1172 |#1|)) 117)) (-2339 (((-1172 |#1|) (-1172 |#1|)) 92)) (-2535 (((-1172 |#1|) (-1172 |#1|)) 119)) (-2348 (((-1172 |#1|) (-1172 |#1|)) 94)) (-2467 (((-1172 |#1|) (-1172 |#1|)) 115)) (-2329 (((-1172 |#1|) (-1172 |#1|)) 90)) (-2442 (((-1172 |#1|) (-1172 |#1|)) 109)) (-2311 (((-1172 |#1|) (-1172 |#1|)) 86)) (** (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 41))) +(((-1178 |#1|) (-10 -7 (-15 -1619 ((-1172 |#1|) (-1172 |#1|))) (-15 -3111 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3576 ((-2 (|:| -2238 (-1172 |#1|)) (|:| -2249 (-1172 |#1|))) (-1172 |#1|))) (-15 -2238 ((-1172 |#1|) (-1172 |#1|))) (-15 -2249 ((-1172 |#1|) (-1172 |#1|))) (-15 -2260 ((-1172 |#1|) (-1172 |#1|))) (-15 -2271 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2301 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -3460 ((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2388 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2415 ((-1172 |#1|) (-1172 |#1|))) (-15 -2428 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2467 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) (-38 (-417 (-574)))) (T -1178)) +((-2535 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2357 (-1172 *4)) (|:| -2367 (-1172 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2311 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2271 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2238 (-1172 *4)) (|:| -2249 (-1172 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3))))) +(-10 -7 (-15 -1619 ((-1172 |#1|) (-1172 |#1|))) (-15 -3111 ((-1172 |#1|) (-1172 |#1|))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3576 ((-2 (|:| -2238 (-1172 |#1|)) (|:| -2249 (-1172 |#1|))) (-1172 |#1|))) (-15 -2238 ((-1172 |#1|) (-1172 |#1|))) (-15 -2249 ((-1172 |#1|) (-1172 |#1|))) (-15 -2260 ((-1172 |#1|) (-1172 |#1|))) (-15 -2271 ((-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|))) (-15 -2289 ((-1172 |#1|) (-1172 |#1|))) (-15 -2301 ((-1172 |#1|) (-1172 |#1|))) (-15 -2311 ((-1172 |#1|) (-1172 |#1|))) (-15 -2319 ((-1172 |#1|) (-1172 |#1|))) (-15 -2329 ((-1172 |#1|) (-1172 |#1|))) (-15 -2339 ((-1172 |#1|) (-1172 |#1|))) (-15 -2348 ((-1172 |#1|) (-1172 |#1|))) (-15 -3460 ((-2 (|:| -2357 (-1172 |#1|)) (|:| -2367 (-1172 |#1|))) (-1172 |#1|))) (-15 -2357 ((-1172 |#1|) (-1172 |#1|))) (-15 -2367 ((-1172 |#1|) (-1172 |#1|))) (-15 -2378 ((-1172 |#1|) (-1172 |#1|))) (-15 -2388 ((-1172 |#1|) (-1172 |#1|))) (-15 -2403 ((-1172 |#1|) (-1172 |#1|))) (-15 -2415 ((-1172 |#1|) (-1172 |#1|))) (-15 -2428 ((-1172 |#1|) (-1172 |#1|))) (-15 -2442 ((-1172 |#1|) (-1172 |#1|))) (-15 -2455 ((-1172 |#1|) (-1172 |#1|))) (-15 -2467 ((-1172 |#1|) (-1172 |#1|))) (-15 -2479 ((-1172 |#1|) (-1172 |#1|))) (-15 -2535 ((-1172 |#1|) (-1172 |#1|)))) +((-3720 (((-971 |#2|) |#2| |#2|) 50)) (-1420 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315))))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -3720 ((-971 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1420 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1259 |#1|)) (T -1179)) +((-1420 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1259 *3)))) (-3720 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-971 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -3720 ((-971 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1420 (|#2| |#2| |#1|)) |%noBranch|)) +((-2863 (((-112) $ $) NIL)) (-3421 (($ $ (-654 (-781))) 79)) (-3048 (($) 33)) (-2913 (($ $) 51)) (-2471 (((-654 $) $) 60)) (-2191 (((-112) $) 19)) (-2568 (((-654 (-956 |#2|)) $) 86)) (-2241 (($ $) 80)) (-1548 (((-781) $) 47)) (-3763 (($) 32)) (-3771 (($ $ (-654 (-781)) (-956 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-956 |#2|)) 75)) (-4333 (($ $ $) 57) (($ (-654 $)) 59)) (-4312 (((-781) $) 87)) (-4086 (((-112) $) 15)) (-1938 (((-1174) $) NIL)) (-3976 (((-112) $) 22)) (-3939 (((-1135) $) NIL)) (-3146 (((-173) $) 85)) (-1475 (((-956 |#2|) $) 81)) (-3916 (((-781) $) 82)) (-2029 (((-112) $) 84)) (-3206 (($ $ (-654 (-781)) (-173)) 78)) (-4047 (($ $) 52)) (-2950 (((-872) $) 99)) (-2380 (($ $ (-654 (-781)) (-112)) 77)) (-1355 (((-654 $) $) 11)) (-4225 (($ $ (-781)) 46)) (-1387 (($ $) 43)) (-4259 (((-112) $ $) NIL)) (-3437 (($ $ $ (-956 |#2|) (-781)) 68)) (-1902 (($ $ (-956 |#2|)) 67)) (-1435 (($ $ (-654 (-781)) (-956 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-956 |#2|)) 71)) (-2985 (((-112) $ $) 92))) +(((-1180 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -4086 ((-112) $)) (-15 -2191 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -3763 ($)) (-15 -3048 ($)) (-15 -1387 ($ $)) (-15 -4225 ($ $ (-781))) (-15 -1355 ((-654 $) $)) (-15 -1548 ((-781) $)) (-15 -2913 ($ $)) (-15 -4047 ($ $)) (-15 -4333 ($ $ $)) (-15 -4333 ($ (-654 $))) (-15 -2471 ((-654 $) $)) (-15 -1435 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -1902 ($ $ (-956 |#2|))) (-15 -3437 ($ $ $ (-956 |#2|) (-781))) (-15 -3771 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -1435 ($ $ (-654 (-781)) (-781))) (-15 -3771 ($ $ (-654 (-781)) (-781))) (-15 -1435 ((-781) $ (-956 |#2|))) (-15 -3771 ($ $ (-781) (-956 |#2|))) (-15 -2380 ($ $ (-654 (-781)) (-112))) (-15 -3206 ($ $ (-654 (-781)) (-173))) (-15 -3421 ($ $ (-654 (-781)))) (-15 -1475 ((-956 |#2|) $)) (-15 -3916 ((-781) $)) (-15 -2029 ((-112) $)) (-15 -3146 ((-173) $)) (-15 -4312 ((-781) $)) (-15 -2241 ($ $)) (-15 -2568 ((-654 (-956 |#2|)) $)))) (-934) (-1064)) (T -1180)) +((-4086 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3763 (*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-3048 (*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2913 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4047 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4333 (*1 *1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1435 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-956 *4)) (-4 *4 (-1064)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)))) (-3437 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-956 *5)) (-5 *3 (-781)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-1435 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-1435 (*1 *2 *1 *3) (-12 (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *2 (-781)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-3771 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) (-2380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-3206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)) (-4 *5 (-1064)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-956 *4)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064)))) (-2241 (*1 *1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-654 (-956 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) (-4 *4 (-1064))))) +(-13 (-1115) (-10 -8 (-15 -4086 ((-112) $)) (-15 -2191 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -3763 ($)) (-15 -3048 ($)) (-15 -1387 ($ $)) (-15 -4225 ($ $ (-781))) (-15 -1355 ((-654 $) $)) (-15 -1548 ((-781) $)) (-15 -2913 ($ $)) (-15 -4047 ($ $)) (-15 -4333 ($ $ $)) (-15 -4333 ($ (-654 $))) (-15 -2471 ((-654 $) $)) (-15 -1435 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -1902 ($ $ (-956 |#2|))) (-15 -3437 ($ $ $ (-956 |#2|) (-781))) (-15 -3771 ($ $ (-654 (-781)) (-956 |#2|))) (-15 -1435 ($ $ (-654 (-781)) (-781))) (-15 -3771 ($ $ (-654 (-781)) (-781))) (-15 -1435 ((-781) $ (-956 |#2|))) (-15 -3771 ($ $ (-781) (-956 |#2|))) (-15 -2380 ($ $ (-654 (-781)) (-112))) (-15 -3206 ($ $ (-654 (-781)) (-173))) (-15 -3421 ($ $ (-654 (-781)))) (-15 -1475 ((-956 |#2|) $)) (-15 -3916 ((-781) $)) (-15 -2029 ((-112) $)) (-15 -3146 ((-173) $)) (-15 -4312 ((-781) $)) (-15 -2241 ($ $)) (-15 -2568 ((-654 (-956 |#2|)) $)))) +((-2863 (((-112) $ $) NIL)) (-1818 ((|#2| $) 11)) (-1806 ((|#1| $) 10)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2962 (($ |#1| |#2|) 9)) (-2950 (((-872) $) 16)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1181 |#1| |#2|) (-13 (-1115) (-10 -8 (-15 -2962 ($ |#1| |#2|)) (-15 -1806 (|#1| $)) (-15 -1818 (|#2| $)))) (-1115) (-1115)) (T -1181)) +((-2962 (*1 *1 *2 *3) (-12 (-5 *1 (-1181 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-1806 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *2 *3)) (-4 *3 (-1115)))) (-1818 (*1 *2 *1) (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *3 *2)) (-4 *3 (-1115))))) +(-13 (-1115) (-10 -8 (-15 -2962 ($ |#1| |#2|)) (-15 -1806 (|#1| $)) (-15 -1818 (|#2| $)))) +((-2863 (((-112) $ $) NIL)) (-2529 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1182) (-13 (-1098) (-10 -8 (-15 -2529 ((-1150) $))))) (T -1182)) +((-2529 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1182))))) +(-13 (-1098) (-10 -8 (-15 -2529 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 11)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4319 (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1731 (((-112) $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4430 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-2410 (((-1190 |#1| |#2| |#3|) $) 42)) (-4191 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 32)) (-4401 (((-1190 |#1| |#2| |#3|) $) 33)) (-2378 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2496 (((-574) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1192) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2216 (((-1190 |#1| |#2| |#3|) $) 140) (((-1192) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2957 (($ $) 37) (($ (-574) $) 38)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-1190 |#1| |#2| |#3|)) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 (-1190 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-1190 |#1| |#2| |#3|))) (|:| |vec| (-1283 (-1190 |#1| |#2| |#3|)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-2978 (((-3 $ "failed") $) 54)) (-3548 (((-417 (-965 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-1348 (((-112) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4396 (((-112) $) 28)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3837 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1190 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4217 (((-3 $ "failed") $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))))) (-3081 (((-112) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2528 (($ $ (-934)) NIL)) (-3936 (($ (-1 |#1| (-574)) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 19) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2953 (($ $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3111 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1190 |#1| |#2| |#3|)) 36)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2010 (($ $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-2787 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-574)) 158)) (-2852 (((-3 $ "failed") $ $) 55 (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-524 (-1192) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1190 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190 |#1| |#2| |#3|)) (-654 (-1190 |#1| |#2| |#3|))) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-317 (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1127))) (($ $ (-1190 |#1| |#2| |#3|)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-294 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1279 |#2|)) 57) (($ $) 56 (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2593 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1190 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-4144 (((-574) $) 43)) (-2415 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1846 (((-546) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1190 |#1| |#2| |#3|)) 30) (($ (-1279 |#2|)) 25) (($ (-1192)) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3584 ((|#1| $ (-574)) 77)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-2251 (((-1190 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2428 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2366 (($ $) NIL (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2143 (($) 21 T CONST)) (-2155 (($) 16 T CONST)) (-3583 (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3040 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3017 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3008 (((-112) $ $) NIL (-2832 (-12 (|has| (-1190 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1190 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1190 |#1| |#2| |#3|) (-1190 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 23)) (** (($ $ (-934)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1190 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1190 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1183 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1190 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1183)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1245 |#1| (-1190 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-3534 ((|#2| |#2| (-1107 |#2|)) 26) ((|#2| |#2| (-1192)) 28))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| |#2| (-1192))) (-15 -3534 (|#2| |#2| (-1107 |#2|)))) (-13 (-566) (-1053 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1218))) (T -1184)) +((-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1184 *4 *2)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218)))))) +(-10 -7 (-15 -3534 (|#2| |#2| (-1192))) (-15 -3534 (|#2| |#2| (-1107 |#2|)))) +((-3534 (((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))) 31) (((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|))) 44) (((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192)) 33) (((-417 (-965 |#1|)) (-965 |#1|) (-1192)) 36))) +(((-1185 |#1|) (-10 -7 (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1192))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|)))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))))) (-13 (-566) (-1053 (-574)))) (T -1185)) +((-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1185 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-965 *5))) (-5 *3 (-965 *5)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1185 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 (-417 (-965 *5)) (-324 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-417 (-965 *5))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-965 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-965 *5))))) +(-10 -7 (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1192))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1192))) (-15 -3534 ((-417 (-965 |#1|)) (-965 |#1|) (-1107 (-965 |#1|)))) (-15 -3534 ((-3 (-417 (-965 |#1|)) (-324 |#1|)) (-417 (-965 |#1|)) (-1107 (-417 (-965 |#1|)))))) +((-1787 (((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)) 13))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -1787 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)))) (-1064) (-1064)) (T -1186)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6))))) +(-10 -7 (-15 -1787 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)))) +((-2153 (((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))) 51)) (-4200 (((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))) 52))) +(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4200 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|)))) (-15 -2153 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))))) (-803) (-860) (-462) (-962 |#3| |#1| |#2|)) (T -1187)) +((-2153 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7)))))) +(-10 -7 (-15 -4200 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|)))) (-15 -2153 ((-428 (-1188 (-417 |#4|))) (-1188 (-417 |#4|))))) +((-2863 (((-112) $ $) 171)) (-1997 (((-112) $) 43)) (-3806 (((-1283 |#1|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1709 (($ (-1188 |#1|)) NIL)) (-4172 (((-1188 $) $ (-1097)) 82) (((-1188 |#1|) $) 71)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) 164 (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1641 (($ $ $) 158 (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) 95 (|has| |#1| (-922)))) (-3313 (($ $) NIL (|has| |#1| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 115 (|has| |#1| (-922)))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1815 (($ $ (-781)) 61)) (-2574 (($ $ (-781)) 63)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-1097) $) NIL)) (-3372 (($ $ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) 80)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-3203 (($ $ $) 131)) (-1577 (($ $ $) NIL (|has| |#1| (-566)))) (-3276 (((-2 (|:| -1868 |#1|) (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1420 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-781) $) 69)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1977 (((-872) $ (-872)) 148)) (-3837 (((-781) $ $) NIL (|has| |#1| (-566)))) (-2276 (((-112) $) 48)) (-1901 (((-781) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) 73) (($ (-1188 $) (-1097)) 89)) (-2528 (($ $ (-781)) 51)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 87) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1097)) NIL) (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 153)) (-2682 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3577 (($ (-1 (-781) (-781)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (((-1188 |#1|) $) NIL)) (-1407 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) 76)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1938 (((-1174) $) NIL)) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) 60)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1097)) (|:| -3843 (-781))) "failed") $) NIL)) (-3302 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) 50)) (-1354 ((|#1| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 103 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-3645 (($ $ (-781) |#1| $) 123)) (-2406 (((-428 (-1188 $)) (-1188 $)) 101 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 100 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 108 (|has| |#1| (-922)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#1|) NIL) (($ $ (-654 (-1097)) (-654 |#1|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3233 (((-3 $ "failed") $ (-781)) 54)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 172 (|has| |#1| (-372)))) (-3902 (($ $ (-1097)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4144 (((-781) $) 78) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1097)) NIL (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-922))))) (-4017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2950 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1097)) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 17 T CONST)) (-2155 (($) 19 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2985 (((-112) $ $) 120)) (-3102 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 90)) (** (($ $ (-934)) 14) (($ $ (-781)) 12)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1188 |#1|) (-13 (-1259 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-872))) (-15 -3645 ($ $ (-781) |#1| $)))) (-1064)) (T -1188)) +((-1977 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1188 *3)) (-4 *3 (-1064)))) (-3645 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1188 *3)) (-4 *3 (-1064))))) +(-13 (-1259 |#1|) (-10 -8 (-15 -1977 ((-872) $ (-872))) (-15 -3645 ($ $ (-781) |#1| $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 11)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 36)) (-2216 (((-1183 |#1| |#2| |#3|) $) NIL) (((-1190 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2904 (((-417 (-574)) $) 59)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) (-1183 |#1| |#2| |#3|)) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 20) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2567 (((-1183 |#1| |#2| |#3|) $) 41)) (-2992 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1183 |#1| |#2| |#3|) $) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 38)) (-4144 (((-417 (-574)) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1183 |#1| |#2| |#3|)) 30) (($ (-1190 |#1| |#2| |#3|)) 31) (($ (-1279 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 22 T CONST)) (-2155 (($) 16 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 24)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1189 |#1| |#2| |#3|) (-13 (-1266 |#1| (-1183 |#1| |#2| |#3|)) (-1053 (-1190 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1189)) +((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1266 |#1| (-1183 |#1| |#2| |#3|)) (-1053 (-1190 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 129)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 119)) (-3977 (((-1256 |#2| |#1|) $ (-781)) 69)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-2389 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2378 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1172 |#1|)) 113)) (-2403 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) 25)) (-4426 (($ $) 28)) (-4026 (((-965 |#1|) $ (-781)) 81) (((-965 |#1|) $ (-781) (-781)) 83)) (-4396 (((-112) $) 124)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $) 126) (((-781) $ (-781)) 128)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) NIL)) (-3936 (($ (-1 |#1| (-574)) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 13) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3302 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-4016 (($ $ (-781)) 15)) (-2852 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1619 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2209 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1279 |#2|)) 31)) (-4144 (((-781) $) NIL)) (-2415 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1256 |#2| |#1|)) 55) (($ (-1279 |#2|)) 36)) (-3133 (((-1172 |#1|) $) 101)) (-3584 ((|#1| $ (-781)) 121)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 58)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 17 T CONST)) (-2155 (($) 20 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 198)) (-3073 (($ $ $) 35)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1190 |#1| |#2| |#3|) (-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -3977 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1190)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-1190 *3 *4 *5)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1190 *4 *5 *6)) (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -3977 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-2950 (((-872) $) 33) (($ (-1192)) 35)) (-2832 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2819 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2532 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2522 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2510 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2498 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2087 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45))) +(((-1191) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2532 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2510 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2498 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2832 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2087 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ $))))) (T -1191)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1191)))) (-2532 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2510 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2522 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2498 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2832 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2087 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) (-5 *1 (-1191)))) (-2819 (*1 *1 *1) (-5 *1 (-1191)))) +(-13 (-623 (-872)) (-10 -8 (-15 -2950 ($ (-1192))) (-15 -2532 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2510 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2498 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2832 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2087 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2819 ($ $)))) +((-2863 (((-112) $ $) NIL)) (-3281 (($ $ (-654 (-872))) 62)) (-3832 (($ $ (-654 (-872))) 60)) (-3231 (((-1174) $) 101)) (-4121 (((-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-2462 (((-112) $) 23)) (-3839 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-3063 (($) 163 T CONST)) (-2918 (((-1288)) 135)) (-1793 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3763 (($) 122) (($ $) 131)) (-2041 (($ $) 100)) (-3632 (($ $ $) NIL)) (-2953 (($ $ $) NIL)) (-1797 (((-654 $) $) 136)) (-1938 (((-1174) $) 114)) (-3939 (((-1135) $) NIL)) (-2209 (($ $ (-654 (-872))) 61)) (-1846 (((-546) $) 48) (((-1192) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2950 (((-872) $) 55) (($ (-1174)) 50)) (-4259 (((-112) $ $) NIL)) (-2615 (($ $ (-654 (-872))) 63)) (-1579 (((-1174) $) 34) (((-1174) $ (-112)) 35) (((-1288) (-832) $) 36) (((-1288) (-832) $ (-112)) 37)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 51)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) 52))) +(((-1192) (-13 (-860) (-624 (-546)) (-838) (-624 (-1192)) (-626 (-1174)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3763 ($)) (-15 -3763 ($ $)) (-15 -2918 ((-1288))) (-15 -2041 ($ $)) (-15 -2462 ((-112) $)) (-15 -4121 ((-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3839 ($ $ (-654 (-654 (-872))))) (-15 -3839 ($ $ (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3832 ($ $ (-654 (-872)))) (-15 -3281 ($ $ (-654 (-872)))) (-15 -2615 ($ $ (-654 (-872)))) (-15 -2209 ($ $ (-654 (-872)))) (-15 -3231 ((-1174) $)) (-15 -1797 ((-654 $) $)) (-15 -3063 ($) -1716)))) (T -1192)) +((-3763 (*1 *1) (-5 *1 (-1192))) (-3763 (*1 *1 *1) (-5 *1 (-1192))) (-2918 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1192)))) (-2041 (*1 *1 *1) (-5 *1 (-1192))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1192)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1192)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1192)))) (-3832 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-3281 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1192)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1192)))) (-3063 (*1 *1) (-5 *1 (-1192)))) +(-13 (-860) (-624 (-546)) (-838) (-624 (-1192)) (-626 (-1174)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3763 ($)) (-15 -3763 ($ $)) (-15 -2918 ((-1288))) (-15 -2041 ($ $)) (-15 -2462 ((-112) $)) (-15 -4121 ((-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3839 ($ $ (-654 (-654 (-872))))) (-15 -3839 ($ $ (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3832 ($ $ (-654 (-872)))) (-15 -3281 ($ $ (-654 (-872)))) (-15 -2615 ($ $ (-654 (-872)))) (-15 -2209 ($ $ (-654 (-872)))) (-15 -3231 ((-1174) $)) (-15 -1797 ((-654 $) $)) (-15 -3063 ($) -1716))) +((-3559 (((-1283 |#1|) |#1| (-934)) 18) (((-1283 |#1|) (-654 |#1|)) 25))) +(((-1193 |#1|) (-10 -7 (-15 -3559 ((-1283 |#1|) (-654 |#1|))) (-15 -3559 ((-1283 |#1|) |#1| (-934)))) (-1064)) (T -1193)) +((-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-1283 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1064)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)) (-5 *1 (-1193 *4))))) +(-10 -7 (-15 -3559 ((-1283 |#1|) (-654 |#1|))) (-15 -3559 ((-1283 |#1|) |#1| (-934)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1053 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1053 (-417 (-574))))) ((|#1| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-1420 (($ $) NIL (|has| |#1| (-462)))) (-2680 (($ $ |#1| (-986) $) NIL)) (-2276 (((-112) $) 17)) (-1901 (((-781) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-986)) NIL)) (-2682 (((-986) $) NIL)) (-3577 (($ (-1 (-986) (-986)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#1| $) NIL)) (-3645 (($ $ (-986) |#1| $) NIL (-12 (|has| (-986) (-132)) (|has| |#1| (-566))))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4144 (((-986) $) NIL)) (-1514 ((|#1| $) NIL (|has| |#1| (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2832 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1053 (-417 (-574))))))) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ (-986)) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2143 (($) 10 T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 21)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1194 |#1|) (-13 (-334 |#1| (-986)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-986) (-132)) (-15 -3645 ($ $ (-986) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064)) (T -1194)) +((-3645 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-986)) (-4 *2 (-132)) (-5 *1 (-1194 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) +(-13 (-334 |#1| (-986)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-986) (-132)) (-15 -3645 ($ $ (-986) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) +((-1840 (((-1196) (-1192) $) 25)) (-3395 (($) 29)) (-4028 (((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $) 22)) (-2756 (((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $) 41) (((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) 42) (((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) 43)) (-2891 (((-1288) (-1192)) 58)) (-1481 (((-1288) (-1192) $) 55) (((-1288) (-1192)) 56) (((-1288)) 57)) (-4329 (((-1288) (-1192)) 37)) (-2595 (((-1192)) 36)) (-4272 (($) 34)) (-3148 (((-447) (-1192) (-447) (-1192) $) 45) (((-447) (-654 (-1192)) (-447) (-1192) $) 49) (((-447) (-1192) (-447)) 46) (((-447) (-1192) (-447) (-1192)) 50)) (-1637 (((-1192)) 35)) (-2950 (((-872) $) 28)) (-3958 (((-1288)) 30) (((-1288) (-1192)) 33)) (-2373 (((-654 (-1192)) (-1192) $) 24)) (-2129 (((-1288) (-1192) (-654 (-1192)) $) 38) (((-1288) (-1192) (-654 (-1192))) 39) (((-1288) (-654 (-1192))) 40))) +(((-1195) (-13 (-623 (-872)) (-10 -8 (-15 -3395 ($)) (-15 -3958 ((-1288))) (-15 -3958 ((-1288) (-1192))) (-15 -3148 ((-447) (-1192) (-447) (-1192) $)) (-15 -3148 ((-447) (-654 (-1192)) (-447) (-1192) $)) (-15 -3148 ((-447) (-1192) (-447))) (-15 -3148 ((-447) (-1192) (-447) (-1192))) (-15 -4329 ((-1288) (-1192))) (-15 -1637 ((-1192))) (-15 -2595 ((-1192))) (-15 -2129 ((-1288) (-1192) (-654 (-1192)) $)) (-15 -2129 ((-1288) (-1192) (-654 (-1192)))) (-15 -2129 ((-1288) (-654 (-1192)))) (-15 -2756 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -2756 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -2756 ((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -1481 ((-1288) (-1192) $)) (-15 -1481 ((-1288) (-1192))) (-15 -1481 ((-1288))) (-15 -2891 ((-1288) (-1192))) (-15 -4272 ($)) (-15 -4028 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $)) (-15 -2373 ((-654 (-1192)) (-1192) $)) (-15 -1840 ((-1196) (-1192) $))))) (T -1195)) +((-3395 (*1 *1) (-5 *1 (-1195))) (-3958 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *4 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-3148 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1637 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195)))) (-2595 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195)))) (-2129 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2756 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1192)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1481 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-1481 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) (-4272 (*1 *1) (-5 *1 (-1195))) (-4028 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-1195)))) (-2373 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1195)) (-5 *3 (-1192)))) (-1840 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1196)) (-5 *1 (-1195))))) +(-13 (-623 (-872)) (-10 -8 (-15 -3395 ($)) (-15 -3958 ((-1288))) (-15 -3958 ((-1288) (-1192))) (-15 -3148 ((-447) (-1192) (-447) (-1192) $)) (-15 -3148 ((-447) (-654 (-1192)) (-447) (-1192) $)) (-15 -3148 ((-447) (-1192) (-447))) (-15 -3148 ((-447) (-1192) (-447) (-1192))) (-15 -4329 ((-1288) (-1192))) (-15 -1637 ((-1192))) (-15 -2595 ((-1192))) (-15 -2129 ((-1288) (-1192) (-654 (-1192)) $)) (-15 -2129 ((-1288) (-1192) (-654 (-1192)))) (-15 -2129 ((-1288) (-654 (-1192)))) (-15 -2756 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")) $)) (-15 -2756 ((-1288) (-1192) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -2756 ((-1288) (-3 (|:| |fst| (-444)) (|:| -2440 "void")))) (-15 -1481 ((-1288) (-1192) $)) (-15 -1481 ((-1288) (-1192))) (-15 -1481 ((-1288))) (-15 -2891 ((-1288) (-1192))) (-15 -4272 ($)) (-15 -4028 ((-3 (|:| |fst| (-444)) (|:| -2440 "void")) (-1192) $)) (-15 -2373 ((-654 (-1192)) (-1192) $)) (-15 -1840 ((-1196) (-1192) $)))) +((-2140 (((-654 (-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $) 66)) (-1910 (((-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $) 47)) (-3696 (($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-447))))) 17)) (-2891 (((-1288) $) 73)) (-3358 (((-654 (-1192)) $) 22)) (-4202 (((-1119) $) 60)) (-1953 (((-447) (-1192) $) 27)) (-2324 (((-654 (-1192)) $) 30)) (-4272 (($) 19)) (-3148 (((-447) (-654 (-1192)) (-447) $) 25) (((-447) (-1192) (-447) $) 24)) (-2950 (((-872) $) 9) (((-1205 (-1192) (-447)) $) 13))) +(((-1196) (-13 (-623 (-872)) (-10 -8 (-15 -2950 ((-1205 (-1192) (-447)) $)) (-15 -4272 ($)) (-15 -3148 ((-447) (-654 (-1192)) (-447) $)) (-15 -3148 ((-447) (-1192) (-447) $)) (-15 -1953 ((-447) (-1192) $)) (-15 -3358 ((-654 (-1192)) $)) (-15 -1910 ((-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $)) (-15 -2324 ((-654 (-1192)) $)) (-15 -2140 ((-654 (-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $)) (-15 -4202 ((-1119) $)) (-15 -2891 ((-1288) $)) (-15 -3696 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-447))))))))) (T -1196)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-1205 (-1192) (-447))) (-5 *1 (-1196)))) (-4272 (*1 *1) (-5 *1 (-1196))) (-3148 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *1 (-1196)))) (-3148 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1196)))) (-1953 (*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-447)) (-5 *1 (-1196)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196)))) (-1910 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) (-5 *1 (-1196)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))))) (-5 *1 (-1196)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1196)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1196)))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-447))))) (-5 *1 (-1196))))) +(-13 (-623 (-872)) (-10 -8 (-15 -2950 ((-1205 (-1192) (-447)) $)) (-15 -4272 ($)) (-15 -3148 ((-447) (-654 (-1192)) (-447) $)) (-15 -3148 ((-447) (-1192) (-447) $)) (-15 -1953 ((-447) (-1192) $)) (-15 -3358 ((-654 (-1192)) $)) (-15 -1910 ((-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))) (-444) $)) (-15 -2324 ((-654 (-1192)) $)) (-15 -2140 ((-654 (-654 (-3 (|:| -2041 (-1192)) (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) $)) (-15 -4202 ((-1119) $)) (-15 -2891 ((-1288) $)) (-15 -3696 ($ (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-447)))))))) +((-2863 (((-112) $ $) NIL)) (-1706 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1174) "failed") $) 47)) (-2216 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1174) $) 48)) (-1339 (((-112) $) 53)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2116 (((-3 (-574) (-227) (-516) (-1174) $) $) 55)) (-2113 (((-654 $) $) 57)) (-1846 (((-1119) $) 24) (($ (-1119)) 25)) (-2070 (((-112) $) 56)) (-2950 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1174)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1174) $) 49)) (-2132 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1174))) 16)) (-3854 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-4259 (((-112) $ $) NIL)) (-1337 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1174) $) 45)) (-2985 (((-112) $ $) 7))) +(((-1197) (-13 (-1278) (-1115) (-1053 (-574)) (-1053 (-227)) (-1053 (-516)) (-1053 (-1174)) (-623 (-546)) (-10 -8 (-15 -1846 ((-1119) $)) (-15 -1846 ($ (-1119))) (-15 -2950 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2950 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2950 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2950 ((-1174) $)) (-15 -1337 ((-1174) $)) (-15 -3854 ($ (-516) (-654 $))) (-15 -3854 ($ $ (-654 $))) (-15 -1339 ((-112) $)) (-15 -2116 ((-3 (-574) (-227) (-516) (-1174) $) $)) (-15 -2113 ((-654 $) $)) (-15 -2070 ((-112) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-574)))) (-15 -2132 ((-112) $ (|[\|\|]| (-227)))) (-15 -2132 ((-112) $ (|[\|\|]| (-516)))) (-15 -2132 ((-112) $ (|[\|\|]| (-1174))))))) (T -1197)) +((-1846 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) (-3854 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1197))) (-5 *1 (-1197)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1174) (-1197))) (-5 *1 (-1197)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1197)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-1197))))) +(-13 (-1278) (-1115) (-1053 (-574)) (-1053 (-227)) (-1053 (-516)) (-1053 (-1174)) (-623 (-546)) (-10 -8 (-15 -1846 ((-1119) $)) (-15 -1846 ($ (-1119))) (-15 -2950 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2950 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2950 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2950 ((-1174) $)) (-15 -1337 ((-1174) $)) (-15 -3854 ($ (-516) (-654 $))) (-15 -3854 ($ $ (-654 $))) (-15 -1339 ((-112) $)) (-15 -2116 ((-3 (-574) (-227) (-516) (-1174) $) $)) (-15 -2113 ((-654 $) $)) (-15 -2070 ((-112) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-574)))) (-15 -2132 ((-112) $ (|[\|\|]| (-227)))) (-15 -2132 ((-112) $ (|[\|\|]| (-516)))) (-15 -2132 ((-112) $ (|[\|\|]| (-1174)))))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) 22)) (-3063 (($) 12 T CONST)) (-2834 (($) 26)) (-3632 (($ $ $) NIL) (($) 19 T CONST)) (-2953 (($ $ $) NIL) (($) 20 T CONST)) (-3880 (((-934) $) 24)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) 23)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1198 |#1|) (-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) (-934)) (T -1198)) +((-3063 (*1 *1) (-12 (-5 *1 (-1198 *2)) (-14 *2 (-934))))) +(-13 (-854) (-10 -8 (-15 -3063 ($) -1716))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) 19 T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) 12 T CONST)) (-3751 (($ $ $) NIL) (($) 18 T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) 21)) (-1741 (($ $ $) 20)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1196 |#1|) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) (-931)) (T -1196)) -((-1741 (*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) (-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) (-2579 (*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931))))) -(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) 19 T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) 12 T CONST)) (-2953 (($ $ $) NIL) (($) 18 T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1764 (($ $ $) 21)) (-1753 (($ $ $) 20)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1199 |#1|) (-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) (-934)) (T -1199)) +((-1753 (*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) (-1764 (*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) (-3063 (*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934))))) +(-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) -(((-1197) (-1112)) (T -1197)) -NIL -(-1112) -((-2010 (((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 69)) (-1994 (((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|)))) 80) (((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|))) 76) (((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189)) 81) (((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189)) 75) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|))))) 106) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|)))) 105) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189))) 107) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 104))) -(((-1198 |#1|) (-10 -7 (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))))) (-15 -2010 ((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))))) (-565)) (T -1198)) -((-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-962 *5)))) (-5 *1 (-1198 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) (-5 *1 (-1198 *4)) (-5 *3 (-301 (-416 (-962 *4)))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) (-5 *1 (-1198 *4)) (-5 *3 (-416 (-962 *4))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) (-5 *3 (-301 (-416 (-962 *5)))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) (-5 *3 (-416 (-962 *5))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)) (-5 *3 (-653 (-301 (-416 (-962 *4))))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5)) (-5 *3 (-653 (-301 (-416 (-962 *5))))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5))))) -(-10 -7 (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))))) (-15 -2010 ((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))))) -((-2523 (((-1171)) 7)) (-3341 (((-1171)) 11 T CONST)) (-3723 (((-1285) (-1171)) 13)) (-3408 (((-1171)) 8 T CONST)) (-3788 (((-131)) 10 T CONST))) -(((-1199) (-13 (-1230) (-10 -7 (-15 -2523 ((-1171))) (-15 -3408 ((-1171)) -1705) (-15 -3788 ((-131)) -1705) (-15 -3341 ((-1171)) -1705) (-15 -3723 ((-1285) (-1171)))))) (T -1199)) -((-2523 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3408 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3788 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1199)))) (-3341 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1199))))) -(-13 (-1230) (-10 -7 (-15 -2523 ((-1171))) (-15 -3408 ((-1171)) -1705) (-15 -3788 ((-131)) -1705) (-15 -3341 ((-1171)) -1705) (-15 -3723 ((-1285) (-1171))))) -((-2884 (((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|)))) 56)) (-1464 (((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|))) 38)) (-2483 (((-1201 (-653 |#1|)) (-653 |#1|)) 49)) (-3937 (((-653 (-653 |#1|)) (-653 |#1|)) 45)) (-4265 (((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))) 53)) (-1409 (((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|)))) 52)) (-1955 (((-653 (-653 |#1|)) (-653 (-653 |#1|))) 43)) (-3299 (((-653 |#1|) (-653 |#1|)) 46)) (-2749 (((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|)))) 32)) (-2809 (((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|)))) 29)) (-2378 (((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|))) 24)) (-1924 (((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|)))) 58)) (-3279 (((-653 (-653 |#1|)) (-1201 (-653 |#1|))) 60))) -(((-1200 |#1|) (-10 -7 (-15 -2378 ((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|)))) (-15 -2809 ((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2749 ((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2884 ((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -1924 ((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -3279 ((-653 (-653 |#1|)) (-1201 (-653 |#1|)))) (-15 -1464 ((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)))) (-15 -2483 ((-1201 (-653 |#1|)) (-653 |#1|))) (-15 -1955 ((-653 (-653 |#1|)) (-653 (-653 |#1|)))) (-15 -3937 ((-653 (-653 |#1|)) (-653 |#1|))) (-15 -3299 ((-653 |#1|) (-653 |#1|))) (-15 -1409 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))))) (-15 -4265 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))))) (-859)) (T -1200)) -((-4265 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-2 (|:| |f1| (-653 *4)) (|:| |f2| (-653 (-653 (-653 *4)))) (|:| |f3| (-653 (-653 *4))) (|:| |f4| (-653 (-653 (-653 *4)))))) (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 (-653 *4)))))) (-1409 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-859)) (-5 *3 (-653 *6)) (-5 *5 (-653 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-653 *5)) (|:| |f3| *5) (|:| |f4| (-653 *5)))) (-5 *1 (-1200 *6)) (-5 *4 (-653 *5)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-1200 *3)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) (-5 *3 (-653 *4)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-859)) (-5 *1 (-1200 *3)))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-1201 (-653 *4))) (-5 *1 (-1200 *4)) (-5 *3 (-653 *4)))) (-1464 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 (-653 *4)))) (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 *4))))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1201 (-653 *4))) (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) (-4 *4 (-859)))) (-2884 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) (-4 *4 (-859)) (-5 *1 (-1200 *4)))) (-2749 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *1 (-1200 *4)))) (-2809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-653 *5)) (-4 *5 (-859)) (-5 *1 (-1200 *5)))) (-2378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-859)) (-5 *4 (-653 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-653 *4)))) (-5 *1 (-1200 *6)) (-5 *5 (-653 *4))))) -(-10 -7 (-15 -2378 ((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|)))) (-15 -2809 ((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2749 ((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2884 ((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -1924 ((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -3279 ((-653 (-653 |#1|)) (-1201 (-653 |#1|)))) (-15 -1464 ((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)))) (-15 -2483 ((-1201 (-653 |#1|)) (-653 |#1|))) (-15 -1955 ((-653 (-653 |#1|)) (-653 (-653 |#1|)))) (-15 -3937 ((-653 (-653 |#1|)) (-653 |#1|))) (-15 -3299 ((-653 |#1|) (-653 |#1|))) (-15 -1409 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))))) (-15 -4265 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))))) -((-3738 (($ (-653 (-653 |#1|))) 10)) (-1612 (((-653 (-653 |#1|)) $) 11)) (-2942 (((-871) $) 33))) -(((-1201 |#1|) (-10 -8 (-15 -3738 ($ (-653 (-653 |#1|)))) (-15 -1612 ((-653 (-653 |#1|)) $)) (-15 -2942 ((-871) $))) (-1112)) (T -1201)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) (-3738 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-1201 *3))))) -(-10 -8 (-15 -3738 ($ (-653 (-653 |#1|)))) (-15 -1612 ((-653 (-653 |#1|)) $)) (-15 -2942 ((-871) $))) -((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1202 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112)) (T -1202)) -NIL -(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) -((-2848 (((-112) $ $) NIL)) (-4173 (($ |#1| (-55)) 10)) (-2031 ((|#1| $) 12)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ |#1|) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 14)) (-2981 (((-112) $ $) NIL))) -(((-1203 |#1|) (-13 (-844 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55))))) (-1112)) (T -1203)) -((-4173 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1203 *2)) (-4 *2 (-1112))))) -(-13 (-844 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55))))) -((-3154 ((|#1| (-653 |#1|)) 46)) (-4198 ((|#1| |#1| (-573)) 24)) (-1768 (((-1185 |#1|) |#1| (-931)) 20))) -(((-1204 |#1|) (-10 -7 (-15 -3154 (|#1| (-653 |#1|))) (-15 -1768 ((-1185 |#1|) |#1| (-931))) (-15 -4198 (|#1| |#1| (-573)))) (-371)) (T -1204)) -((-4198 (*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-1204 *2)) (-4 *2 (-371)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-1185 *3)) (-5 *1 (-1204 *3)) (-4 *3 (-371)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) -(-10 -7 (-15 -3154 (|#1| (-653 |#1|))) (-15 -1768 ((-1185 |#1|) |#1| (-931))) (-15 -4198 (|#1| |#1| (-573)))) -((-3777 (($) 10) (($ (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)))) 14)) (-2596 (($ (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 39) (((-653 |#3|) $) 41)) (-2446 (($ (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1776 (($ (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2487 (((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 60)) (-3181 (($ (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 16)) (-1977 (((-653 |#2|) $) 19)) (-2560 (((-112) |#2| $) 65)) (-2036 (((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 64)) (-3815 (((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 69)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1535 (((-653 |#3|) $) 43)) (-2198 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) NIL) (((-780) |#3| $) NIL) (((-780) (-1 (-112) |#3|) $) 79)) (-2942 (((-871) $) 27)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2981 (((-112) $ $) 51))) -(((-1205 |#1| |#2| |#3|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3777 (|#1| (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))))) (-15 -3777 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-653 |#3|) |#1|)) (-15 -3974 ((-780) |#3| |#1|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2560 ((-112) |#2| |#1|)) (-15 -1977 ((-653 |#2|) |#1|)) (-15 -2596 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2596 (|#1| (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2596 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 ((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2487 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3181 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3815 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3974 ((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3974 ((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1575 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1646 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|))) (-1206 |#2| |#3|) (-1112) (-1112)) (T -1205)) -NIL -(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3777 (|#1| (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))))) (-15 -3777 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-653 |#3|) |#1|)) (-15 -3974 ((-780) |#3| |#1|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2560 ((-112) |#2| |#1|)) (-15 -1977 ((-653 |#2|) |#1|)) (-15 -2596 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2596 (|#1| (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2596 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 ((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2487 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3181 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3815 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3974 ((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3974 ((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1575 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1646 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|))) -((-2848 (((-112) $ $) 19 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3777 (($) 73) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 72)) (-3791 (((-1285) $ |#1| |#1|) 100 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#2| $ |#1| |#2|) 74)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 89)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455))) (((-653 |#2|) $) 80 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 97 (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455))) (((-653 |#2|) $) 81 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 96 (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41)) (-1977 (((-653 |#1|) $) 94)) (-2560 (((-112) |#1| $) 93)) (-3965 (((-1132) $) 21 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2914 ((|#2| $) 98 (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52)) (-3112 (($ $ |#2|) 99 (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 87 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 85 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) 84 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) |#2| $) 82 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51)) (-2942 (((-871) $) 18 (-2817 (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))))) (-3507 (((-112) $ $) 23 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1206 |#1| |#2|) (-141) (-1112) (-1112)) (T -1206)) -((-3142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-3777 (*1 *1) (-12 (-4 *1 (-1206 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3777 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 *3) (|:| -1907 *4)))) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *1 (-1206 *3 *4)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) -(-13 (-619 |t#1| |t#2|) (-613 |t#1| |t#2|) (-10 -8 (-15 -3142 (|t#2| $ |t#1| |t#2|)) (-15 -3777 ($)) (-15 -3777 ($ (-653 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))))) (-15 -1776 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #0#) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-293 |#1| |#2|) . T) ((-295 |#1| |#2|) . T) ((-316 #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-498 #0#) . T) ((-498 |#2|) . T) ((-613 |#1| |#2|) . T) ((-523 #0# #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-619 |#1| |#2|) . T) ((-1112) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-1230) . T)) -((-2921 (((-112)) 29)) (-4074 (((-1285) (-1171)) 31)) (-1713 (((-112)) 41)) (-1891 (((-1285)) 39)) (-3803 (((-1285) (-1171) (-1171)) 30)) (-4079 (((-112)) 42)) (-3181 (((-1285) |#1| |#2|) 53)) (-4389 (((-1285)) 26)) (-1830 (((-3 |#2| "failed") |#1|) 51)) (-1357 (((-1285)) 40))) -(((-1207 |#1| |#2|) (-10 -7 (-15 -4389 ((-1285))) (-15 -3803 ((-1285) (-1171) (-1171))) (-15 -4074 ((-1285) (-1171))) (-15 -1891 ((-1285))) (-15 -1357 ((-1285))) (-15 -2921 ((-112))) (-15 -1713 ((-112))) (-15 -4079 ((-112))) (-15 -1830 ((-3 |#2| "failed") |#1|)) (-15 -3181 ((-1285) |#1| |#2|))) (-1112) (-1112)) (T -1207)) -((-3181 (*1 *2 *3 *4) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1830 (*1 *2 *3) (|partial| -12 (-4 *2 (-1112)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-1112)))) (-4079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1713 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-2921 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1357 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1891 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)))) (-4389 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) -(-10 -7 (-15 -4389 ((-1285))) (-15 -3803 ((-1285) (-1171) (-1171))) (-15 -4074 ((-1285) (-1171))) (-15 -1891 ((-1285))) (-15 -1357 ((-1285))) (-15 -2921 ((-112))) (-15 -1713 ((-112))) (-15 -4079 ((-112))) (-15 -1830 ((-3 |#2| "failed") |#1|)) (-15 -3181 ((-1285) |#1| |#2|))) -((-2309 (((-1171) (-1171)) 22)) (-2466 (((-52) (-1171)) 25))) -(((-1208) (-10 -7 (-15 -2466 ((-52) (-1171))) (-15 -2309 ((-1171) (-1171))))) (T -1208)) -((-2309 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1208)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-1208))))) -(-10 -7 (-15 -2466 ((-52) (-1171))) (-15 -2309 ((-1171) (-1171)))) -((-2942 (((-1210) |#1|) 11))) -(((-1209 |#1|) (-10 -7 (-15 -2942 ((-1210) |#1|))) (-1112)) (T -1209)) -((-2942 (*1 *2 *3) (-12 (-5 *2 (-1210)) (-5 *1 (-1209 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2942 ((-1210) |#1|))) -((-2848 (((-112) $ $) NIL)) (-3896 (((-653 (-1171)) $) 39)) (-1613 (((-653 (-1171)) $ (-653 (-1171))) 42)) (-3845 (((-653 (-1171)) $ (-653 (-1171))) 41)) (-3880 (((-653 (-1171)) $ (-653 (-1171))) 43)) (-3887 (((-653 (-1171)) $) 38)) (-3789 (($) 28)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2907 (((-653 (-1171)) $) 40)) (-1402 (((-1285) $ (-573)) 35) (((-1285) $) 36)) (-1835 (($ (-871) (-573)) 33) (($ (-871) (-573) (-871)) NIL)) (-2942 (((-871) $) 49) (($ (-871)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1210) (-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1835 ($ (-871) (-573) (-871))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3896 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -1613 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171))))))) (T -1210)) -((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) (-1835 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1210)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1210)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3789 (*1 *1) (-5 *1 (-1210))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3880 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-1613 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1835 ($ (-871) (-573) (-871))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3896 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -1613 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171)))))) -((-2848 (((-112) $ $) NIL)) (-1703 (((-1171) $ (-1171)) 17) (((-1171) $) 16)) (-4288 (((-1171) $ (-1171)) 15)) (-2169 (($ $ (-1171)) NIL)) (-3399 (((-3 (-1171) "failed") $) 11)) (-3750 (((-1171) $) 8)) (-1737 (((-3 (-1171) "failed") $) 12)) (-4188 (((-1171) $) 9)) (-1674 (($ (-397)) NIL) (($ (-397) (-1171)) NIL)) (-2031 (((-397) $) NIL)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2507 (((-112) $) 21)) (-2942 (((-871) $) NIL)) (-1981 (($ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1211) (-13 (-372 (-397) (-1171)) (-10 -8 (-15 -1703 ((-1171) $ (-1171))) (-15 -1703 ((-1171) $)) (-15 -3750 ((-1171) $)) (-15 -3399 ((-3 (-1171) "failed") $)) (-15 -1737 ((-3 (-1171) "failed") $)) (-15 -2507 ((-112) $))))) (T -1211)) -((-1703 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-3399 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-1737 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) -(-13 (-372 (-397) (-1171)) (-10 -8 (-15 -1703 ((-1171) $ (-1171))) (-15 -1703 ((-1171) $)) (-15 -3750 ((-1171) $)) (-15 -3399 ((-3 (-1171) "failed") $)) (-15 -1737 ((-3 (-1171) "failed") $)) (-15 -2507 ((-112) $)))) -((-1983 (((-3 (-573) "failed") |#1|) 19)) (-1540 (((-3 (-573) "failed") |#1|) 14)) (-1411 (((-573) (-1171)) 33))) -(((-1212 |#1|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") |#1|)) (-15 -1540 ((-3 (-573) "failed") |#1|)) (-15 -1411 ((-573) (-1171)))) (-1061)) (T -1212)) -((-1411 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-1212 *4)) (-4 *4 (-1061)))) (-1540 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061)))) (-1983 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) -(-10 -7 (-15 -1983 ((-3 (-573) "failed") |#1|)) (-15 -1540 ((-3 (-573) "failed") |#1|)) (-15 -1411 ((-573) (-1171)))) -((-1430 (((-1145 (-227))) 9))) -(((-1213) (-10 -7 (-15 -1430 ((-1145 (-227)))))) (T -1213)) -((-1430 (*1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1213))))) -(-10 -7 (-15 -1430 ((-1145 (-227))))) -((-2999 (($) 12)) (-2439 (($ $) 36)) (-2413 (($ $) 34)) (-2286 (($ $) 26)) (-2464 (($ $) 18)) (-2520 (($ $) 16)) (-2452 (($ $) 20)) (-2314 (($ $) 31)) (-2426 (($ $) 35)) (-2296 (($ $) 30))) -(((-1214 |#1|) (-10 -8 (-15 -2999 (|#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2296 (|#1| |#1|))) (-1215)) (T -1214)) -NIL -(-10 -8 (-15 -2999 (|#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2296 (|#1| |#1|))) -((-2363 (($ $) 26)) (-2246 (($ $) 11)) (-2342 (($ $) 27)) (-2225 (($ $) 10)) (-2388 (($ $) 28)) (-2266 (($ $) 9)) (-2999 (($) 16)) (-3118 (($ $) 19)) (-1608 (($ $) 18)) (-2401 (($ $) 29)) (-2274 (($ $) 8)) (-2374 (($ $) 30)) (-2255 (($ $) 7)) (-2352 (($ $) 31)) (-2236 (($ $) 6)) (-2439 (($ $) 20)) (-2304 (($ $) 32)) (-2413 (($ $) 21)) (-2286 (($ $) 33)) (-2464 (($ $) 22)) (-2324 (($ $) 34)) (-2520 (($ $) 23)) (-2333 (($ $) 35)) (-2452 (($ $) 24)) (-2314 (($ $) 36)) (-2426 (($ $) 25)) (-2296 (($ $) 37)) (** (($ $ $) 17))) -(((-1215) (-141)) (T -1215)) -((-2999 (*1 *1) (-4 *1 (-1215)))) -(-13 (-1218) (-95) (-502) (-35) (-291) (-10 -8 (-15 -2999 ($)))) -(((-35) . T) ((-95) . T) ((-291) . T) ((-502) . T) ((-1218) . T)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 19)) (-2574 (($ |#1| (-653 $)) 28) (($ (-653 |#1|)) 35) (($ |#1|) 30)) (-3450 (((-112) $ (-780)) 72)) (-2367 ((|#1| $ |#1|) 14 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 13 (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1863 (((-653 |#1|) $) 77 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 64)) (-3208 (((-112) $ $) 50 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 62)) (-3214 (((-653 |#1|) $) 78 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 27)) (-2673 (((-112) $ (-780)) 60)) (-3505 (((-653 |#1|) $) 55)) (-2880 (((-112) $) 53)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 107)) (-3811 (((-112) $) 9)) (-3508 (($) 10)) (-2198 ((|#1| $ "value") NIL)) (-1501 (((-573) $ $) 48)) (-2360 (((-653 $) $) 89)) (-3780 (((-112) $ $) 110)) (-3163 (((-653 $) $) 105)) (-3795 (($ $) 106)) (-1628 (((-112) $) 84)) (-3974 (((-780) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4455))) (((-780) |#1| $) 17 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 88)) (-2942 (((-871) $) 91 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 12)) (-1716 (((-112) $ $) 39 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 37 (|has| |#1| (-1112)))) (-2862 (((-780) $) 58 (|has| $ (-6 -4455))))) -(((-1216 |#1|) (-13 (-1022 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2574 ($ |#1| (-653 $))) (-15 -2574 ($ (-653 |#1|))) (-15 -2574 ($ |#1|)) (-15 -1628 ((-112) $)) (-15 -3795 ($ $)) (-15 -3163 ((-653 $) $)) (-15 -3780 ((-112) $ $)) (-15 -2360 ((-653 $) $)))) (-1112)) (T -1216)) -((-1628 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-2574 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-1216 *2))) (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1216 *3)))) (-2574 (*1 *1 *2) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-3780 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) -(-13 (-1022 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2574 ($ |#1| (-653 $))) (-15 -2574 ($ (-653 |#1|))) (-15 -2574 ($ |#1|)) (-15 -1628 ((-112) $)) (-15 -3795 ($ $)) (-15 -3163 ((-653 $) $)) (-15 -3780 ((-112) $ $)) (-15 -2360 ((-653 $) $)))) -((-2246 (($ $) 15)) (-2266 (($ $) 12)) (-2274 (($ $) 10)) (-2255 (($ $) 17))) -(((-1217 |#1|) (-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) (-1218)) (T -1217)) -NIL -(-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) -((-2246 (($ $) 11)) (-2225 (($ $) 10)) (-2266 (($ $) 9)) (-2274 (($ $) 8)) (-2255 (($ $) 7)) (-2236 (($ $) 6))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 9)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 7))) +(((-1200) (-1115)) (T -1200)) +NIL +(-1115) +((-2753 (((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 69)) (-2613 (((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|)))) 80) (((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|))) 76) (((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192)) 81) (((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192)) 75) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192))) 107) (((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192))) 104))) +(((-1201 |#1|) (-10 -7 (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))))) (-15 -2753 ((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))))) (-566)) (T -1201)) +((-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-965 *5)))) (-5 *1 (-1201 *5)))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) (-5 *1 (-1201 *4)) (-5 *3 (-302 (-417 (-965 *4)))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) (-5 *1 (-1201 *4)) (-5 *3 (-417 (-965 *4))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) (-5 *3 (-302 (-417 (-965 *5)))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-1192)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) (-5 *3 (-417 (-965 *5))))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-302 (-417 (-965 *4))))))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5)) (-5 *3 (-654 (-302 (-417 (-965 *5))))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5))))) +(-10 -7 (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))) (-654 (-1192)))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-417 (-965 |#1|))))) (-15 -2613 ((-654 (-654 (-302 (-417 (-965 |#1|))))) (-654 (-302 (-417 (-965 |#1|)))))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)) (-1192))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))) (-1192))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-417 (-965 |#1|)))) (-15 -2613 ((-654 (-302 (-417 (-965 |#1|)))) (-302 (-417 (-965 |#1|))))) (-15 -2753 ((-654 (-654 (-965 |#1|))) (-654 (-417 (-965 |#1|))) (-654 (-1192))))) +((-3733 (((-1174)) 7)) (-3107 (((-1174)) 11 T CONST)) (-3697 (((-1288) (-1174)) 13)) (-2526 (((-1174)) 8 T CONST)) (-2036 (((-131)) 10 T CONST))) +(((-1202) (-13 (-1233) (-10 -7 (-15 -3733 ((-1174))) (-15 -2526 ((-1174)) -1716) (-15 -2036 ((-131)) -1716) (-15 -3107 ((-1174)) -1716) (-15 -3697 ((-1288) (-1174)))))) (T -1202)) +((-3733 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-2526 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-2036 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1202)))) (-3107 (*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1202))))) +(-13 (-1233) (-10 -7 (-15 -3733 ((-1174))) (-15 -2526 ((-1174)) -1716) (-15 -2036 ((-131)) -1716) (-15 -3107 ((-1174)) -1716) (-15 -3697 ((-1288) (-1174))))) +((-4117 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-4157 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-1466 (((-1204 (-654 |#1|)) (-654 |#1|)) 49)) (-4140 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4252 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-3041 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-3501 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-3861 (((-654 |#1|) (-654 |#1|)) 46)) (-2223 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-1591 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-1763 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-3177 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-3662 (((-654 (-654 |#1|)) (-1204 (-654 |#1|))) 60))) +(((-1203 |#1|) (-10 -7 (-15 -1763 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -1591 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2223 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -4117 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3177 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3662 ((-654 (-654 |#1|)) (-1204 (-654 |#1|)))) (-15 -4157 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1466 ((-1204 (-654 |#1|)) (-654 |#1|))) (-15 -3501 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -4140 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3861 ((-654 |#1|) (-654 |#1|))) (-15 -3041 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4252 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1203)) +((-4252 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-3041 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1203 *6)) (-5 *4 (-654 *5)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1203 *3)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) (-5 *3 (-654 *4)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1203 *3)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1204 (-654 *4))) (-5 *1 (-1203 *4)) (-5 *3 (-654 *4)))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 *4))))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-1204 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) (-4 *4 (-860)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1203 *4)))) (-2223 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1203 *4)))) (-1591 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1203 *5)))) (-1763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1203 *6)) (-5 *5 (-654 *4))))) +(-10 -7 (-15 -1763 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -1591 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2223 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -4117 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3177 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -3662 ((-654 (-654 |#1|)) (-1204 (-654 |#1|)))) (-15 -4157 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1466 ((-1204 (-654 |#1|)) (-654 |#1|))) (-15 -3501 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -4140 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3861 ((-654 |#1|) (-654 |#1|))) (-15 -3041 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4252 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) +((-2836 (($ (-654 (-654 |#1|))) 10)) (-3160 (((-654 (-654 |#1|)) $) 11)) (-2950 (((-872) $) 33))) +(((-1204 |#1|) (-10 -8 (-15 -2836 ($ (-654 (-654 |#1|)))) (-15 -3160 ((-654 (-654 |#1|)) $)) (-15 -2950 ((-872) $))) (-1115)) (T -1204)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) (-2836 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-1204 *3))))) +(-10 -8 (-15 -2836 ($ (-654 (-654 |#1|)))) (-15 -3160 ((-654 (-654 |#1|)) $)) (-15 -2950 ((-872) $))) +((-2863 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-3751 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2057 (((-1288) $ |#1| |#1|) NIL (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#2| $ |#1| |#2|) NIL)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-3063 (($) NIL T CONST)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) NIL)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) NIL)) (-2344 ((|#1| $) NIL (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-654 |#2|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-1965 ((|#1| $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-1773 (((-654 |#1|) $) NIL)) (-3735 (((-112) |#1| $) NIL)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2435 (((-654 |#1|) $) NIL)) (-4088 (((-112) |#1| $) NIL)) (-3939 (((-1135) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2924 ((|#2| $) NIL (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2485 (($ $ |#2|) NIL (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2163 (($) NIL) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4458)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2950 (((-872) $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-4259 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) NIL)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) NIL (-2832 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| |#2| (-1115))))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1205 |#1| |#2|) (-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) (-1115) (-1115)) (T -1205)) +NIL +(-13 (-1209 |#1| |#2|) (-10 -7 (-6 -4458))) +((-2863 (((-112) $ $) NIL)) (-4151 (($ |#1| (-55)) 10)) (-2041 ((|#1| $) 12)) (-1938 (((-1174) $) NIL)) (-2454 (((-112) $ |#1|) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2404 (((-55) $) 14)) (-2985 (((-112) $ $) NIL))) +(((-1206 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4151 ($ |#1| (-55))))) (-1115)) (T -1206)) +((-4151 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1206 *2)) (-4 *2 (-1115))))) +(-13 (-845 |#1|) (-10 -8 (-15 -4151 ($ |#1| (-55))))) +((-1688 ((|#1| (-654 |#1|)) 46)) (-3701 ((|#1| |#1| (-574)) 24)) (-2195 (((-1188 |#1|) |#1| (-934)) 20))) +(((-1207 |#1|) (-10 -7 (-15 -1688 (|#1| (-654 |#1|))) (-15 -2195 ((-1188 |#1|) |#1| (-934))) (-15 -3701 (|#1| |#1| (-574)))) (-372)) (T -1207)) +((-3701 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1207 *2)) (-4 *2 (-372)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-934)) (-5 *2 (-1188 *3)) (-5 *1 (-1207 *3)) (-4 *3 (-372)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) +(-10 -7 (-15 -1688 (|#1| (-654 |#1|))) (-15 -2195 ((-1188 |#1|) |#1| (-934))) (-15 -3701 (|#1| |#1| (-574)))) +((-3751 (($) 10) (($ (-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)))) 14)) (-3245 (($ (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1874 (((-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2464 (($ (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1787 (($ (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1494 (((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) 60)) (-1948 (($ (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) 16)) (-2435 (((-654 |#2|) $) 19)) (-4088 (((-112) |#2| $) 65)) (-1745 (((-3 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) 64)) (-2277 (((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) 69)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3670 (((-654 |#3|) $) 43)) (-2209 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) NIL) (((-781) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2950 (((-872) $) 27)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2985 (((-112) $ $) 51))) +(((-1208 |#1| |#2| |#3|) (-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3751 (|#1| (-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))))) (-15 -3751 (|#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2464 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1874 ((-654 |#3|) |#1|)) (-15 -3948 ((-781) |#3| |#1|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -3670 ((-654 |#3|) |#1|)) (-15 -4088 ((-112) |#2| |#1|)) (-15 -2435 ((-654 |#2|) |#1|)) (-15 -3245 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3245 (|#1| (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3245 (|#1| (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1745 ((-3 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1494 ((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1948 (|#1| (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2277 ((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -3948 ((-781) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1874 ((-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3948 ((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -4043 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2235 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2464 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1787 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|))) (-1209 |#2| |#3|) (-1115) (-1115)) (T -1208)) +NIL +(-10 -8 (-15 -2985 ((-112) |#1| |#1|)) (-15 -2950 ((-872) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3751 (|#1| (-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))))) (-15 -3751 (|#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2464 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2235 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4043 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3948 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1874 ((-654 |#3|) |#1|)) (-15 -3948 ((-781) |#3| |#1|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -3670 ((-654 |#3|) |#1|)) (-15 -4088 ((-112) |#2| |#1|)) (-15 -2435 ((-654 |#2|) |#1|)) (-15 -3245 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3245 (|#1| (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3245 (|#1| (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1745 ((-3 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1494 ((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1948 (|#1| (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2277 ((-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -3948 ((-781) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1874 ((-654 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3948 ((-781) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -4043 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2235 ((-112) (-1 (-112) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2464 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1787 (|#1| (-1 (-2 (|:| -3666 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3666 |#2|) (|:| -1918 |#3|))) |#1|))) +((-2863 (((-112) $ $) 19 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-3751 (($) 73) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 72)) (-2057 (((-1288) $ |#1| |#1|) 100 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#2| $ |#1| |#2|) 74)) (-1657 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4458)))) (-2175 (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4458)))) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-3063 (($) 7 T CONST)) (-2818 (($ $) 59 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458))))) (-3245 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4458))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4458))) (((-3 |#2| "failed") |#1| $) 63)) (-3310 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4458)))) (-2881 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4458))) (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4458)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4459)))) (-2399 ((|#2| $ |#1|) 89)) (-1874 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4458))) (((-654 |#2|) $) 80 (|has| $ (-6 -4458)))) (-2121 (((-112) $ (-781)) 9)) (-2344 ((|#1| $) 97 (|has| |#1| (-860)))) (-4187 (((-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4458))) (((-654 |#2|) $) 81 (|has| $ (-6 -4458)))) (-3801 (((-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458))))) (-1965 ((|#1| $) 96 (|has| |#1| (-860)))) (-2464 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4459))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4459)))) (-1787 (($ (-1 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2713 (((-112) $ (-781)) 10)) (-1938 (((-1174) $) 22 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-1773 (((-654 |#1|) $) 64)) (-3735 (((-112) |#1| $) 65)) (-1494 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 40)) (-1948 (($ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 41)) (-2435 (((-654 |#1|) $) 94)) (-4088 (((-112) |#1| $) 93)) (-3939 (((-1135) $) 21 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-2924 ((|#2| $) 98 (|has| |#1| (-860)))) (-1745 (((-3 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 52)) (-2485 (($ $ |#2|) 99 (|has| $ (-6 -4459)))) (-2277 (((-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 42)) (-4043 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-302 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4458)) (|has| |#2| (-1115))))) (-3670 (((-654 |#2|) $) 92)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2163 (($) 50) (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 49)) (-3948 (((-781) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4458))) (((-781) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| $ (-6 -4458)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4458)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 60 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))))) (-2962 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 51)) (-2950 (((-872) $) 18 (-2832 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872)))))) (-4259 (((-112) $ $) 23 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-2765 (($ (-654 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) 43)) (-2235 (((-112) (-1 (-112) (-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4458))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (-2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1209 |#1| |#2|) (-141) (-1115) (-1115)) (T -1209)) +((-3134 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) (-3751 (*1 *1) (-12 (-4 *1 (-1209 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3666 *3) (|:| -1918 *4)))) (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *1 (-1209 *3 *4)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1209 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) +(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3134 (|t#2| $ |t#1| |t#2|)) (-15 -3751 ($)) (-15 -3751 ($ (-654 (-2 (|:| -3666 |t#1|) (|:| -1918 |t#2|))))) (-15 -1787 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3666 |#1|) (|:| -1918 |#2|))) . T) ((-102) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-623 (-872)) -2832 (|has| |#2| (-1115)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-317 (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1115))) ((-620 |#1| |#2|) . T) ((-1115) -2832 (|has| |#2| (-1115)) (|has| (-2 (|:| -3666 |#1|) (|:| -1918 |#2|)) (-1115))) ((-1233) . T)) +((-3296 (((-112)) 29)) (-1823 (((-1288) (-1174)) 31)) (-1675 (((-112)) 41)) (-4029 (((-1288)) 39)) (-2171 (((-1288) (-1174) (-1174)) 30)) (-1867 (((-112)) 42)) (-1948 (((-1288) |#1| |#2|) 53)) (-1828 (((-1288)) 26)) (-1549 (((-3 |#2| "failed") |#1|) 51)) (-1852 (((-1288)) 40))) +(((-1210 |#1| |#2|) (-10 -7 (-15 -1828 ((-1288))) (-15 -2171 ((-1288) (-1174) (-1174))) (-15 -1823 ((-1288) (-1174))) (-15 -4029 ((-1288))) (-15 -1852 ((-1288))) (-15 -3296 ((-112))) (-15 -1675 ((-112))) (-15 -1867 ((-112))) (-15 -1549 ((-3 |#2| "failed") |#1|)) (-15 -1948 ((-1288) |#1| |#2|))) (-1115) (-1115)) (T -1210)) +((-1948 (*1 *2 *3 *4) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-1549 (*1 *2 *3) (|partial| -12 (-4 *2 (-1115)) (-5 *1 (-1210 *3 *2)) (-4 *3 (-1115)))) (-1867 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-1675 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-3296 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-1852 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-4029 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)))) (-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)))) (-1828 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115))))) +(-10 -7 (-15 -1828 ((-1288))) (-15 -2171 ((-1288) (-1174) (-1174))) (-15 -1823 ((-1288) (-1174))) (-15 -4029 ((-1288))) (-15 -1852 ((-1288))) (-15 -3296 ((-112))) (-15 -1675 ((-112))) (-15 -1867 ((-112))) (-15 -1549 ((-3 |#2| "failed") |#1|)) (-15 -1948 ((-1288) |#1| |#2|))) +((-2359 (((-1174) (-1174)) 22)) (-4405 (((-52) (-1174)) 25))) +(((-1211) (-10 -7 (-15 -4405 ((-52) (-1174))) (-15 -2359 ((-1174) (-1174))))) (T -1211)) +((-2359 (*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1211)))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-1211))))) +(-10 -7 (-15 -4405 ((-52) (-1174))) (-15 -2359 ((-1174) (-1174)))) +((-2950 (((-1213) |#1|) 11))) +(((-1212 |#1|) (-10 -7 (-15 -2950 ((-1213) |#1|))) (-1115)) (T -1212)) +((-2950 (*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-1212 *3)) (-4 *3 (-1115))))) +(-10 -7 (-15 -2950 ((-1213) |#1|))) +((-2863 (((-112) $ $) NIL)) (-3870 (((-654 (-1174)) $) 39)) (-3170 (((-654 (-1174)) $ (-654 (-1174))) 42)) (-1364 (((-654 (-1174)) $ (-654 (-1174))) 41)) (-1700 (((-654 (-1174)) $ (-654 (-1174))) 43)) (-3695 (((-654 (-1174)) $) 38)) (-3763 (($) 28)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3174 (((-654 (-1174)) $) 40)) (-1413 (((-1288) $ (-574)) 35) (((-1288) $) 36)) (-1846 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2950 (((-872) $) 49) (($ (-872)) 32)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1213) (-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1846 ($ (-872) (-574))) (-15 -1846 ($ (-872) (-574) (-872))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3174 ((-654 (-1174)) $)) (-15 -3870 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -3695 ((-654 (-1174)) $)) (-15 -1700 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3170 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1364 ((-654 (-1174)) $ (-654 (-1174))))))) (T -1213)) +((-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) (-1846 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1213)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1213)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3763 (*1 *1) (-5 *1 (-1213))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-1700 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-3170 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213)))) (-1364 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) +(-13 (-1115) (-626 (-872)) (-10 -8 (-15 -1846 ($ (-872) (-574))) (-15 -1846 ($ (-872) (-574) (-872))) (-15 -1413 ((-1288) $ (-574))) (-15 -1413 ((-1288) $)) (-15 -3174 ((-654 (-1174)) $)) (-15 -3870 ((-654 (-1174)) $)) (-15 -3763 ($)) (-15 -3695 ((-654 (-1174)) $)) (-15 -1700 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -3170 ((-654 (-1174)) $ (-654 (-1174)))) (-15 -1364 ((-654 (-1174)) $ (-654 (-1174)))))) +((-2863 (((-112) $ $) NIL)) (-2825 (((-1174) $ (-1174)) 17) (((-1174) $) 16)) (-3347 (((-1174) $ (-1174)) 15)) (-3613 (($ $ (-1174)) NIL)) (-2418 (((-3 (-1174) "failed") $) 11)) (-2940 (((-1174) $) 8)) (-1904 (((-3 (-1174) "failed") $) 12)) (-1685 (((-1174) $) 9)) (-1686 (($ (-398)) NIL) (($ (-398) (-1174)) NIL)) (-2041 (((-398) $) NIL)) (-1938 (((-1174) $) NIL)) (-1552 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-3600 (((-112) $) 21)) (-2950 (((-872) $) NIL)) (-2474 (($ $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1214) (-13 (-373 (-398) (-1174)) (-10 -8 (-15 -2825 ((-1174) $ (-1174))) (-15 -2825 ((-1174) $)) (-15 -2940 ((-1174) $)) (-15 -2418 ((-3 (-1174) "failed") $)) (-15 -1904 ((-3 (-1174) "failed") $)) (-15 -3600 ((-112) $))))) (T -1214)) +((-2825 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-2418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-1904 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214))))) +(-13 (-373 (-398) (-1174)) (-10 -8 (-15 -2825 ((-1174) $ (-1174))) (-15 -2825 ((-1174) $)) (-15 -2940 ((-1174) $)) (-15 -2418 ((-3 (-1174) "failed") $)) (-15 -1904 ((-3 (-1174) "failed") $)) (-15 -3600 ((-112) $)))) +((-2496 (((-3 (-574) "failed") |#1|) 19)) (-3726 (((-3 (-574) "failed") |#1|) 14)) (-3061 (((-574) (-1174)) 33))) +(((-1215 |#1|) (-10 -7 (-15 -2496 ((-3 (-574) "failed") |#1|)) (-15 -3726 ((-3 (-574) "failed") |#1|)) (-15 -3061 ((-574) (-1174)))) (-1064)) (T -1215)) +((-3061 (*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-1215 *4)) (-4 *4 (-1064)))) (-3726 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064)))) (-2496 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) +(-10 -7 (-15 -2496 ((-3 (-574) "failed") |#1|)) (-15 -3726 ((-3 (-574) "failed") |#1|)) (-15 -3061 ((-574) (-1174)))) +((-4310 (((-1148 (-227))) 9))) +(((-1216) (-10 -7 (-15 -4310 ((-1148 (-227)))))) (T -1216)) +((-4310 (*1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1216))))) +(-10 -7 (-15 -4310 ((-1148 (-227))))) +((-3003 (($) 12)) (-2455 (($ $) 36)) (-2428 (($ $) 34)) (-2301 (($ $) 26)) (-2479 (($ $) 18)) (-2535 (($ $) 16)) (-2467 (($ $) 20)) (-2329 (($ $) 31)) (-2442 (($ $) 35)) (-2311 (($ $) 30))) +(((-1217 |#1|) (-10 -8 (-15 -3003 (|#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2311 (|#1| |#1|))) (-1218)) (T -1217)) +NIL +(-10 -8 (-15 -3003 (|#1|)) (-15 -2455 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2311 (|#1| |#1|))) +((-2378 (($ $) 26)) (-2260 (($ $) 11)) (-2357 (($ $) 27)) (-2238 (($ $) 10)) (-2403 (($ $) 28)) (-2281 (($ $) 9)) (-3003 (($) 16)) (-3111 (($ $) 19)) (-1619 (($ $) 18)) (-2415 (($ $) 29)) (-2289 (($ $) 8)) (-2388 (($ $) 30)) (-2271 (($ $) 7)) (-2367 (($ $) 31)) (-2249 (($ $) 6)) (-2455 (($ $) 20)) (-2319 (($ $) 32)) (-2428 (($ $) 21)) (-2301 (($ $) 33)) (-2479 (($ $) 22)) (-2339 (($ $) 34)) (-2535 (($ $) 23)) (-2348 (($ $) 35)) (-2467 (($ $) 24)) (-2329 (($ $) 36)) (-2442 (($ $) 25)) (-2311 (($ $) 37)) (** (($ $ $) 17))) (((-1218) (-141)) (T -1218)) -((-2246 (*1 *1 *1) (-4 *1 (-1218))) (-2225 (*1 *1 *1) (-4 *1 (-1218))) (-2266 (*1 *1 *1) (-4 *1 (-1218))) (-2274 (*1 *1 *1) (-4 *1 (-1218))) (-2255 (*1 *1 *1) (-4 *1 (-1218))) (-2236 (*1 *1 *1) (-4 *1 (-1218)))) -(-13 (-10 -8 (-15 -2236 ($ $)) (-15 -2255 ($ $)) (-15 -2274 ($ $)) (-15 -2266 ($ $)) (-15 -2225 ($ $)) (-15 -2246 ($ $)))) -((-2125 ((|#2| |#2|) 98)) (-2814 (((-112) |#2|) 29)) (-4238 ((|#2| |#2|) 33)) (-4248 ((|#2| |#2|) 35)) (-3173 ((|#2| |#2| (-1189)) 92) ((|#2| |#2|) 93)) (-3513 (((-171 |#2|) |#2|) 31)) (-1733 ((|#2| |#2| (-1189)) 94) ((|#2| |#2|) 95))) -(((-1219 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -2125 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -1219)) -((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-171 *3)) (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4248 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-4238 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) -(-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -2125 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) -((-2798 ((|#4| |#4| |#1|) 31)) (-3929 ((|#4| |#4| |#1|) 32))) -(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2798 (|#4| |#4| |#1|)) (-15 -3929 (|#4| |#4| |#1|))) (-565) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -1220)) -((-3929 (*1 *2 *2 *3) (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2798 (*1 *2 *2 *3) (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(-10 -7 (-15 -2798 (|#4| |#4| |#1|)) (-15 -3929 (|#4| |#4| |#1|))) -((-2668 ((|#2| |#2|) 148)) (-3245 ((|#2| |#2|) 145)) (-3263 ((|#2| |#2|) 136)) (-4018 ((|#2| |#2|) 133)) (-2934 ((|#2| |#2|) 141)) (-2216 ((|#2| |#2|) 129)) (-4371 ((|#2| |#2|) 44)) (-2153 ((|#2| |#2|) 105)) (-1953 ((|#2| |#2|) 88)) (-2657 ((|#2| |#2|) 143)) (-3136 ((|#2| |#2|) 131)) (-3022 ((|#2| |#2|) 153)) (-3133 ((|#2| |#2|) 151)) (-2810 ((|#2| |#2|) 152)) (-4312 ((|#2| |#2|) 150)) (-2954 ((|#2| |#2|) 163)) (-3642 ((|#2| |#2|) 30 (-12 (|has| |#2| (-623 (-902 |#1|))) (|has| |#2| (-896 |#1|)) (|has| |#1| (-623 (-902 |#1|))) (|has| |#1| (-896 |#1|))))) (-1925 ((|#2| |#2|) 89)) (-4391 ((|#2| |#2|) 154)) (-2127 ((|#2| |#2|) 155)) (-1362 ((|#2| |#2|) 142)) (-3186 ((|#2| |#2|) 130)) (-3662 ((|#2| |#2|) 149)) (-3655 ((|#2| |#2|) 147)) (-3517 ((|#2| |#2|) 137)) (-2607 ((|#2| |#2|) 135)) (-2789 ((|#2| |#2|) 139)) (-4217 ((|#2| |#2|) 127))) -(((-1221 |#1| |#2|) (-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -4217 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3186 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (IF (|has| |#1| (-896 |#1|)) (IF (|has| |#1| (-623 (-902 |#1|))) (IF (|has| |#2| (-623 (-902 |#1|))) (IF (|has| |#2| (-896 |#1|)) (-15 -3642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-461) (-13 (-439 |#1|) (-1215))) (T -1221)) -((-3642 (*1 *2 *2) (-12 (-4 *3 (-623 (-902 *3))) (-4 *3 (-896 *3)) (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-623 (-902 *3))) (-4 *2 (-896 *3)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4312 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3263 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3136 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4217 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4391 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2954 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215)))))) -(-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -4217 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3186 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (IF (|has| |#1| (-896 |#1|)) (IF (|has| |#1| (-623 (-902 |#1|))) (IF (|has| |#2| (-623 (-902 |#1|))) (IF (|has| |#2| (-896 |#1|)) (-15 -3642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2261 (((-112) |#5| $) 68) (((-112) $) 110)) (-1554 ((|#5| |#5| $) 83)) (-2164 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4304 (((-653 |#5|) (-653 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1695 (((-3 $ "failed") (-653 |#5|)) 135)) (-2925 (((-3 $ "failed") $) 120)) (-3760 ((|#5| |#5| $) 102)) (-4310 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3117 ((|#5| |#5| $) 106)) (-2867 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2660 (((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) $) 63)) (-4022 (((-112) |#5| $) 66) (((-112) $) 111)) (-3338 ((|#4| $) 116)) (-3359 (((-3 |#5| "failed") $) 118)) (-2870 (((-653 |#5|) $) 55)) (-3161 (((-112) |#5| $) 75) (((-112) $) 115)) (-3430 ((|#5| |#5| $) 89)) (-2614 (((-112) $ $) 29)) (-1973 (((-112) |#5| $) 71) (((-112) $) 113)) (-1448 ((|#5| |#5| $) 86)) (-2914 (((-3 |#5| "failed") $) 117)) (-2212 (($ $ |#5|) 136)) (-2565 (((-780) $) 60)) (-2955 (($ (-653 |#5|)) 133)) (-4409 (($ $ |#4|) 131)) (-3496 (($ $ |#4|) 129)) (-1388 (($ $) 128)) (-2942 (((-871) $) NIL) (((-653 |#5|) $) 121)) (-3922 (((-780) $) 140)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3039 (((-112) $ (-1 (-112) |#5| (-653 |#5|))) 108)) (-3734 (((-653 |#4|) $) 123)) (-4333 (((-112) |#4| $) 126)) (-2981 (((-112) $ $) 20))) -(((-1222 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3922 ((-780) |#1|)) (-15 -2212 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4333 ((-112) |#4| |#1|)) (-15 -3734 ((-653 |#4|) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-3 |#5| "failed") |#1|)) (-15 -2914 ((-3 |#5| "failed") |#1|)) (-15 -3117 (|#5| |#5| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -3760 (|#5| |#5| |#1|)) (-15 -3430 (|#5| |#5| |#1|)) (-15 -1448 (|#5| |#5| |#1|)) (-15 -1554 (|#5| |#5| |#1|)) (-15 -4304 ((-653 |#5|) (-653 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2867 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3161 ((-112) |#1|)) (-15 -1973 ((-112) |#1|)) (-15 -2261 ((-112) |#1|)) (-15 -3039 ((-112) |#1| (-1 (-112) |#5| (-653 |#5|)))) (-15 -3161 ((-112) |#5| |#1|)) (-15 -1973 ((-112) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4022 ((-112) |#1|)) (-15 -4022 ((-112) |#5| |#1|)) (-15 -2660 ((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) |#1|)) (-15 -2565 ((-780) |#1|)) (-15 -2870 ((-653 |#5|) |#1|)) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2614 ((-112) |#1| |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-653 |#5|))) (-15 -2942 ((-653 |#5|) |#1|)) (-15 -2955 (|#1| (-653 |#5|))) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1223 |#2| |#3| |#4| |#5|) (-565) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -1222)) -NIL -(-10 -8 (-15 -3922 ((-780) |#1|)) (-15 -2212 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4333 ((-112) |#4| |#1|)) (-15 -3734 ((-653 |#4|) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-3 |#5| "failed") |#1|)) (-15 -2914 ((-3 |#5| "failed") |#1|)) (-15 -3117 (|#5| |#5| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -3760 (|#5| |#5| |#1|)) (-15 -3430 (|#5| |#5| |#1|)) (-15 -1448 (|#5| |#5| |#1|)) (-15 -1554 (|#5| |#5| |#1|)) (-15 -4304 ((-653 |#5|) (-653 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2867 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3161 ((-112) |#1|)) (-15 -1973 ((-112) |#1|)) (-15 -2261 ((-112) |#1|)) (-15 -3039 ((-112) |#1| (-1 (-112) |#5| (-653 |#5|)))) (-15 -3161 ((-112) |#5| |#1|)) (-15 -1973 ((-112) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4022 ((-112) |#1|)) (-15 -4022 ((-112) |#5| |#1|)) (-15 -2660 ((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) |#1|)) (-15 -2565 ((-780) |#1|)) (-15 -2870 ((-653 |#5|) |#1|)) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2614 ((-112) |#1| |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-653 |#5|))) (-15 -2942 ((-653 |#5|) |#1|)) (-15 -2955 (|#1| (-653 |#5|))) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-3359 (((-3 |#4| "failed") $) 84)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) -(((-1223 |#1| |#2| |#3| |#4|) (-141) (-565) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1223)) -((-2614 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *8)))) (-5 *3 (-653 *8)) (-4 *1 (-1223 *5 *6 *7 *8)))) (-3955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *9)))) (-5 *3 (-653 *9)) (-4 *1 (-1223 *6 *7 *8 *9)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *6)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-780)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-2 (|:| -1380 (-653 *6)) (|:| -1674 (-653 *6)))))) (-4022 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-4310 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1223 *5 *6 *7 *3)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)))) (-2261 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3161 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3039 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-653 *7))) (-4 *1 (-1223 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-2867 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1223 *5 *6 *7 *2)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *2 (-1077 *5 *6 *7)))) (-4304 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1223 *5 *6 *7 *8)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)))) (-1554 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1448 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3430 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3760 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1388 (*1 *1 *1) (-12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) (-3117 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1223 *4 *5 *6 *7)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| -1380 *1) (|:| -1674 (-653 *7))))) (-5 *3 (-653 *7)) (-4 *1 (-1223 *4 *5 *6 *7)))) (-2914 (*1 *2 *1) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3359 (*1 *2 *1) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-2925 (*1 *1 *1) (|partial| -12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-4333 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *3 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) (-2164 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1223 *4 *5 *3 *2)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *2 (-1077 *4 *5 *3)))) (-2865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *5 (-376)) (-5 *2 (-780))))) -(-13 (-988 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2614 ((-112) $ $)) (-15 -3955 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |t#4|))) "failed") (-653 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3955 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |t#4|))) "failed") (-653 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2870 ((-653 |t#4|) $)) (-15 -2565 ((-780) $)) (-15 -2660 ((-2 (|:| -1380 (-653 |t#4|)) (|:| -1674 (-653 |t#4|))) $)) (-15 -4022 ((-112) |t#4| $)) (-15 -4022 ((-112) $)) (-15 -4310 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2261 ((-112) |t#4| $)) (-15 -1973 ((-112) |t#4| $)) (-15 -3161 ((-112) |t#4| $)) (-15 -3039 ((-112) $ (-1 (-112) |t#4| (-653 |t#4|)))) (-15 -2261 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -3161 ((-112) $)) (-15 -2867 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4304 ((-653 |t#4|) (-653 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1554 (|t#4| |t#4| $)) (-15 -1448 (|t#4| |t#4| $)) (-15 -3430 (|t#4| |t#4| $)) (-15 -3760 (|t#4| |t#4| $)) (-15 -1388 ($ $)) (-15 -3117 (|t#4| |t#4| $)) (-15 -3527 ((-653 $) (-653 |t#4|))) (-15 -2280 ((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |t#4|)))) (-653 |t#4|))) (-15 -2914 ((-3 |t#4| "failed") $)) (-15 -3359 ((-3 |t#4| "failed") $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -3734 ((-653 |t#3|) $)) (-15 -4333 ((-112) |t#3| $)) (-15 -2164 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2865 ((-3 $ "failed") $ |t#4|)) (-15 -2212 ($ $ |t#4|)) (IF (|has| |t#3| (-376)) (-15 -3922 ((-780) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1230) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4052 (((-962 |#1|) $ (-780)) 17) (((-962 |#1|) $ (-780) (-780)) NIL)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $ (-1189) (-780)) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) NIL)) (-4334 (($ $ (-653 (-1189)) (-653 (-540 (-1189)))) NIL) (($ $ (-1189) (-540 (-1189))) NIL) (($ |#1| (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $ (-1189)) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-3131 (($ (-1 $) (-1189) |#1|) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2212 (($ $ (-780)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ (-1189) $) NIL) (($ $ (-653 (-1189)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL)) (-3904 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2565 (((-540 (-1189)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-1189)) NIL) (($ (-962 |#1|)) NIL)) (-4317 ((|#1| $ (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (((-962 |#1|) $ (-780)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1224 |#1|) (-13 (-749 |#1| (-1189)) (-10 -8 (-15 -4317 ((-962 |#1|) $ (-780))) (-15 -2942 ($ (-1189))) (-15 -2942 ($ (-962 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ (-1189) |#1|)) (-15 -3131 ($ (-1 $) (-1189) |#1|))) |%noBranch|))) (-1061)) (T -1224)) -((-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-962 *4)) (-5 *1 (-1224 *4)) (-4 *4 (-1061)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-1061)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-5 *1 (-1224 *3)))) (-1626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)))) (-3131 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1224 *4))) (-5 *3 (-1189)) (-5 *1 (-1224 *4)) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) -(-13 (-749 |#1| (-1189)) (-10 -8 (-15 -4317 ((-962 |#1|) $ (-780))) (-15 -2942 ($ (-1189))) (-15 -2942 ($ (-962 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ (-1189) |#1|)) (-15 -3131 ($ (-1 $) (-1189) |#1|))) |%noBranch|))) -((-1909 (($ |#1| (-653 (-653 (-953 (-227)))) (-112)) 19)) (-1723 (((-112) $ (-112)) 18)) (-3453 (((-112) $) 17)) (-3416 (((-653 (-653 (-953 (-227)))) $) 13)) (-3234 ((|#1| $) 8)) (-1355 (((-112) $) 15))) -(((-1225 |#1|) (-10 -8 (-15 -3234 (|#1| $)) (-15 -3416 ((-653 (-653 (-953 (-227)))) $)) (-15 -1355 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -1723 ((-112) $ (-112))) (-15 -1909 ($ |#1| (-653 (-653 (-953 (-227)))) (-112)))) (-986)) (T -1225)) -((-1909 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-112)) (-5 *1 (-1225 *2)) (-4 *2 (-986)))) (-1723 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3234 (*1 *2 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-986))))) -(-10 -8 (-15 -3234 (|#1| $)) (-15 -3416 ((-653 (-653 (-953 (-227)))) $)) (-15 -1355 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -1723 ((-112) $ (-112))) (-15 -1909 ($ |#1| (-653 (-653 (-953 (-227)))) (-112)))) -((-3690 (((-953 (-227)) (-953 (-227))) 31)) (-3590 (((-953 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3347 (((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227)))) 56)) (-2658 (((-227) (-953 (-227)) (-953 (-227))) 27)) (-3925 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 28)) (-2822 (((-653 (-653 (-227))) (-573)) 44)) (-3093 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 26)) (-3077 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 24)) (* (((-953 (-227)) (-227) (-953 (-227))) 22))) -(((-1226) (-10 -7 (-15 -3590 ((-953 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-953 (-227)) (-227) (-953 (-227)))) (-15 -3077 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3093 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -2658 ((-227) (-953 (-227)) (-953 (-227)))) (-15 -3925 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3690 ((-953 (-227)) (-953 (-227)))) (-15 -2822 ((-653 (-653 (-227))) (-573))) (-15 -3347 ((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227))))))) (T -1226)) -((-3347 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-653 (-653 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 (-953 *4))) (-5 *1 (-1226)) (-5 *3 (-953 *4)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-1226)))) (-3690 (*1 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-3925 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-2658 (*1 *2 *3 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-227)) (-5 *1 (-1226)))) (-3093 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-953 (-227))) (-5 *3 (-227)) (-5 *1 (-1226)))) (-3590 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)) (-5 *3 (-227))))) -(-10 -7 (-15 -3590 ((-953 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-953 (-227)) (-227) (-953 (-227)))) (-15 -3077 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3093 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -2658 ((-227) (-953 (-227)) (-953 (-227)))) (-15 -3925 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3690 ((-953 (-227)) (-953 (-227)))) (-15 -2822 ((-653 (-653 (-227))) (-573))) (-15 -3347 ((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227)))))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2164 ((|#1| $ (-780)) 18)) (-4134 (((-780) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2942 (((-968 |#1|) $) 12) (($ (-968 |#1|)) 11) (((-871) $) 29 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 22 (|has| |#1| (-1112))))) -(((-1227 |#1|) (-13 (-499 (-968 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-780))) (-15 -4134 ((-780) $)) (IF (|has| |#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1227)) -((-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-1227 *2)) (-4 *2 (-1230)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1227 *3)) (-4 *3 (-1230))))) -(-13 (-499 (-968 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-780))) (-15 -4134 ((-780) $)) (IF (|has| |#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) -((-3423 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)) 94)) (-1945 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|))) 86)) (-3441 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|))) 70))) -(((-1228 |#1|) (-10 -7 (-15 -1945 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3441 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3423 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)))) (-357)) (T -1228)) -((-3423 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *5 (-357)) (-5 *2 (-427 (-1185 (-1185 *5)))) (-5 *1 (-1228 *5)) (-5 *3 (-1185 (-1185 *5))))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4))))) (-1945 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) -(-10 -7 (-15 -1945 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3441 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3423 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 9) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1229) (-1095)) (T -1229)) -NIL -(-1095) -NIL -(((-1230) (-141)) (T -1230)) -NIL -(-13 (-10 -7 (-6 -3520))) -((-2171 (((-112)) 18)) (-2251 (((-1285) (-653 |#1|) (-653 |#1|)) 22) (((-1285) (-653 |#1|)) 23)) (-2078 (((-112) |#1| |#1|) 37 (|has| |#1| (-859)))) (-2673 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2226 ((|#1| (-653 |#1|)) 38 (|has| |#1| (-859))) ((|#1| (-653 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3554 (((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|)))) 20))) -(((-1231 |#1|) (-10 -7 (-15 -2251 ((-1285) (-653 |#1|))) (-15 -2251 ((-1285) (-653 |#1|) (-653 |#1|))) (-15 -3554 ((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|))))) (-15 -2673 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2673 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2226 (|#1| (-653 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2171 ((-112))) (IF (|has| |#1| (-859)) (PROGN (-15 -2226 (|#1| (-653 |#1|))) (-15 -2078 ((-112) |#1| |#1|))) |%noBranch|)) (-1112)) (T -1231)) -((-2078 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-859)) (-4 *3 (-1112)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-859)) (-5 *1 (-1231 *2)))) (-2171 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1231 *2)) (-4 *2 (-1112)))) (-2673 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-1231 *3)))) (-2673 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-3554 (*1 *2) (-12 (-5 *2 (-2 (|:| -4141 (-653 *3)) (|:| -4055 (-653 *3)))) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-2251 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) (-5 *1 (-1231 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) (-5 *1 (-1231 *4))))) -(-10 -7 (-15 -2251 ((-1285) (-653 |#1|))) (-15 -2251 ((-1285) (-653 |#1|) (-653 |#1|))) (-15 -3554 ((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|))))) (-15 -2673 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2673 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2226 (|#1| (-653 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2171 ((-112))) (IF (|has| |#1| (-859)) (PROGN (-15 -2226 (|#1| (-653 |#1|))) (-15 -2078 ((-112) |#1| |#1|))) |%noBranch|)) -((-3431 (((-1285) (-653 (-1189)) (-653 (-1189))) 14) (((-1285) (-653 (-1189))) 12)) (-3490 (((-1285)) 16)) (-2044 (((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) 20))) -(((-1232) (-10 -7 (-15 -3431 ((-1285) (-653 (-1189)))) (-15 -3431 ((-1285) (-653 (-1189)) (-653 (-1189)))) (-15 -2044 ((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189)))))) (-15 -3490 ((-1285))))) (T -1232)) -((-3490 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1232)))) (-2044 (*1 *2) (-12 (-5 *2 (-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) (-5 *1 (-1232)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232))))) -(-10 -7 (-15 -3431 ((-1285) (-653 (-1189)))) (-15 -3431 ((-1285) (-653 (-1189)) (-653 (-1189)))) (-15 -2044 ((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189)))))) (-15 -3490 ((-1285)))) -((-4285 (($ $) 17)) (-2696 (((-112) $) 28))) -(((-1233 |#1|) (-10 -8 (-15 -4285 (|#1| |#1|)) (-15 -2696 ((-112) |#1|))) (-1234)) (T -1233)) -NIL -(-10 -8 (-15 -4285 (|#1| |#1|)) (-15 -2696 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2696 (((-112) $) 59)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) -(((-1234) (-141)) (T -1234)) -((-2696 (*1 *2 *1) (-12 (-4 *1 (-1234)) (-5 *2 (-112)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) (-4285 (*1 *1 *1) (-4 *1 (-1234))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234))))) -(-13 (-461) (-10 -8 (-15 -2696 ((-112) $)) (-15 -2427 ((-427 $) $)) (-15 -4285 ($ $)) (-15 -4218 ((-427 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1235) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1235)) -((-1741 (*1 *1 *1 *1) (-5 *1 (-1235))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1235))) (-2579 (*1 *1) (-5 *1 (-1235)))) -(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-3003 (*1 *1) (-4 *1 (-1218)))) +(-13 (-1221) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3003 ($)))) +(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1221) . T)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3078 ((|#1| $) 19)) (-2589 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-1750 (((-112) $ (-781)) 72)) (-2922 ((|#1| $ |#1|) 14 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 13 (|has| $ (-6 -4459)))) (-3063 (($) NIL T CONST)) (-1874 (((-654 |#1|) $) 77 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 64)) (-2232 (((-112) $ $) 50 (|has| |#1| (-1115)))) (-2121 (((-112) $ (-781)) 62)) (-4187 (((-654 |#1|) $) 78 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-2464 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 27)) (-2713 (((-112) $ (-781)) 60)) (-3482 (((-654 |#1|) $) 55)) (-4086 (((-112) $) 53)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-4043 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 107)) (-2234 (((-112) $) 9)) (-4272 (($) 10)) (-2209 ((|#1| $ "value") NIL)) (-1418 (((-574) $ $) 48)) (-2865 (((-654 $) $) 89)) (-1972 (((-112) $ $) 110)) (-1767 (((-654 $) $) 105)) (-2101 (($ $) 106)) (-3325 (((-112) $) 84)) (-3948 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4458))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3156 (($ $) 88)) (-2950 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 12)) (-1692 (((-112) $ $) 39 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 37 (|has| |#1| (-1115)))) (-2876 (((-781) $) 58 (|has| $ (-6 -4458))))) +(((-1219 |#1|) (-13 (-1025 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -2589 ($ |#1| (-654 $))) (-15 -2589 ($ (-654 |#1|))) (-15 -2589 ($ |#1|)) (-15 -3325 ((-112) $)) (-15 -2101 ($ $)) (-15 -1767 ((-654 $) $)) (-15 -1972 ((-112) $ $)) (-15 -2865 ((-654 $) $)))) (-1115)) (T -1219)) +((-3325 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-2589 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1219 *2))) (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1219 *3)))) (-2589 (*1 *1 *2) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-2101 (*1 *1 *1) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-1972 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(-13 (-1025 |#1|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -2589 ($ |#1| (-654 $))) (-15 -2589 ($ (-654 |#1|))) (-15 -2589 ($ |#1|)) (-15 -3325 ((-112) $)) (-15 -2101 ($ $)) (-15 -1767 ((-654 $) $)) (-15 -1972 ((-112) $ $)) (-15 -2865 ((-654 $) $)))) +((-2260 (($ $) 15)) (-2281 (($ $) 12)) (-2289 (($ $) 10)) (-2271 (($ $) 17))) +(((-1220 |#1|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2260 (|#1| |#1|))) (-1221)) (T -1220)) +NIL +(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2260 (|#1| |#1|))) +((-2260 (($ $) 11)) (-2238 (($ $) 10)) (-2281 (($ $) 9)) (-2289 (($ $) 8)) (-2271 (($ $) 7)) (-2249 (($ $) 6))) +(((-1221) (-141)) (T -1221)) +((-2260 (*1 *1 *1) (-4 *1 (-1221))) (-2238 (*1 *1 *1) (-4 *1 (-1221))) (-2281 (*1 *1 *1) (-4 *1 (-1221))) (-2289 (*1 *1 *1) (-4 *1 (-1221))) (-2271 (*1 *1 *1) (-4 *1 (-1221))) (-2249 (*1 *1 *1) (-4 *1 (-1221)))) +(-13 (-10 -8 (-15 -2249 ($ $)) (-15 -2271 ($ $)) (-15 -2289 ($ $)) (-15 -2281 ($ $)) (-15 -2238 ($ $)) (-15 -2260 ($ $)))) +((-1323 ((|#2| |#2|) 98)) (-1644 (((-112) |#2|) 29)) (-4222 ((|#2| |#2|) 33)) (-4233 ((|#2| |#2|) 35)) (-1870 ((|#2| |#2| (-1192)) 92) ((|#2| |#2|) 93)) (-4330 (((-171 |#2|) |#2|) 31)) (-1864 ((|#2| |#2| (-1192)) 94) ((|#2| |#2|) 95))) +(((-1222 |#1| |#2|) (-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -1870 (|#2| |#2| (-1192))) (-15 -1864 (|#2| |#2|)) (-15 -1864 (|#2| |#2| (-1192))) (-15 -1323 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -1644 ((-112) |#2|)) (-15 -4330 ((-171 |#2|) |#2|))) (-13 (-462) (-1053 (-574)) (-649 (-574))) (-13 (-27) (-1218) (-440 |#1|))) (T -1222)) +((-4330 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-4222 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-1323 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) (-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) +(-10 -7 (-15 -1870 (|#2| |#2|)) (-15 -1870 (|#2| |#2| (-1192))) (-15 -1864 (|#2| |#2|)) (-15 -1864 (|#2| |#2| (-1192))) (-15 -1323 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -1644 ((-112) |#2|)) (-15 -4330 ((-171 |#2|) |#2|))) +((-1505 ((|#4| |#4| |#1|) 31)) (-4058 ((|#4| |#4| |#1|) 32))) +(((-1223 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1505 (|#4| |#4| |#1|)) (-15 -4058 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1223)) +((-4058 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1505 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(-10 -7 (-15 -1505 (|#4| |#4| |#1|)) (-15 -4058 (|#4| |#4| |#1|))) +((-2667 ((|#2| |#2|) 148)) (-1409 ((|#2| |#2|) 145)) (-1576 ((|#2| |#2|) 136)) (-2493 ((|#2| |#2|) 133)) (-3405 ((|#2| |#2|) 141)) (-4035 ((|#2| |#2|) 129)) (-2887 ((|#2| |#2|) 44)) (-1565 ((|#2| |#2|) 105)) (-3480 ((|#2| |#2|) 88)) (-2534 ((|#2| |#2|) 143)) (-2754 ((|#2| |#2|) 131)) (-2991 ((|#2| |#2|) 153)) (-2722 ((|#2| |#2|) 151)) (-1603 ((|#2| |#2|) 152)) (-3532 ((|#2| |#2|) 150)) (-3590 ((|#2| |#2|) 163)) (-3190 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-3188 ((|#2| |#2|) 89)) (-1851 ((|#2| |#2|) 154)) (-2138 ((|#2| |#2|) 155)) (-1952 ((|#2| |#2|) 142)) (-2003 ((|#2| |#2|) 130)) (-3379 ((|#2| |#2|) 149)) (-3312 ((|#2| |#2|) 147)) (-4372 ((|#2| |#2|) 137)) (-3368 ((|#2| |#2|) 135)) (-1431 ((|#2| |#2|) 139)) (-3893 ((|#2| |#2|) 127))) +(((-1224 |#1| |#2|) (-10 -7 (-15 -2138 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -3188 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -2754 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -3405 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2667 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -3368 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3190 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1218))) (T -1224)) +((-3190 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2667 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3405 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2754 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2887 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218))))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-440 *3) (-1218)))))) +(-10 -7 (-15 -2138 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -3188 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -2754 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -3405 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2667 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -3368 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3190 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3228 (((-112) |#5| $) 68) (((-112) $) 110)) (-3871 ((|#5| |#5| $) 83)) (-2175 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3461 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1706 (((-3 $ "failed") (-654 |#5|)) 135)) (-2934 (((-3 $ "failed") $) 120)) (-1779 ((|#5| |#5| $) 102)) (-3514 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2544 ((|#5| |#5| $) 106)) (-2881 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2569 (((-2 (|:| -1389 (-654 |#5|)) (|:| -1686 (-654 |#5|))) $) 63)) (-2541 (((-112) |#5| $) 66) (((-112) $) 111)) (-3066 ((|#4| $) 116)) (-3333 (((-3 |#5| "failed") $) 118)) (-4009 (((-654 |#5|) $) 55)) (-1746 (((-112) |#5| $) 75) (((-112) $) 115)) (-2780 ((|#5| |#5| $) 89)) (-3419 (((-112) $ $) 29)) (-2385 (((-112) |#5| $) 71) (((-112) $) 113)) (-1371 ((|#5| |#5| $) 86)) (-2924 (((-3 |#5| "failed") $) 117)) (-4016 (($ $ |#5|) 136)) (-4144 (((-781) $) 60)) (-2962 (($ (-654 |#5|)) 133)) (-2018 (($ $ |#4|) 131)) (-2250 (($ $ |#4|) 129)) (-2293 (($ $) 128)) (-2950 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-3988 (((-781) $) 140)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3060 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-2797 (((-654 |#4|) $) 123)) (-2488 (((-112) |#4| $) 126)) (-2985 (((-112) $ $) 20))) +(((-1225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3988 ((-781) |#1|)) (-15 -4016 (|#1| |#1| |#5|)) (-15 -2175 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2488 ((-112) |#4| |#1|)) (-15 -2797 ((-654 |#4|) |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1|)) (-15 -3333 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -2544 (|#5| |#5| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -1779 (|#5| |#5| |#1|)) (-15 -2780 (|#5| |#5| |#1|)) (-15 -1371 (|#5| |#5| |#1|)) (-15 -3871 (|#5| |#5| |#1|)) (-15 -3461 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2881 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1746 ((-112) |#1|)) (-15 -2385 ((-112) |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3060 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -1746 ((-112) |#5| |#1|)) (-15 -2385 ((-112) |#5| |#1|)) (-15 -3228 ((-112) |#5| |#1|)) (-15 -3514 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2541 ((-112) |#1|)) (-15 -2541 ((-112) |#5| |#1|)) (-15 -2569 ((-2 (|:| -1389 (-654 |#5|)) (|:| -1686 (-654 |#5|))) |#1|)) (-15 -4144 ((-781) |#1|)) (-15 -4009 ((-654 |#5|) |#1|)) (-15 -3153 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3153 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3419 ((-112) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#4|)) (-15 -2250 (|#1| |#1| |#4|)) (-15 -3066 (|#4| |#1|)) (-15 -1706 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2950 ((-654 |#5|) |#1|)) (-15 -2962 (|#1| (-654 |#5|))) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2175 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) (-1226 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1080 |#2| |#3| |#4|)) (T -1225)) +NIL +(-10 -8 (-15 -3988 ((-781) |#1|)) (-15 -4016 (|#1| |#1| |#5|)) (-15 -2175 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2488 ((-112) |#4| |#1|)) (-15 -2797 ((-654 |#4|) |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1|)) (-15 -3333 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -2544 (|#5| |#5| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -1779 (|#5| |#5| |#1|)) (-15 -2780 (|#5| |#5| |#1|)) (-15 -1371 (|#5| |#5| |#1|)) (-15 -3871 (|#5| |#5| |#1|)) (-15 -3461 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2881 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1746 ((-112) |#1|)) (-15 -2385 ((-112) |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3060 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -1746 ((-112) |#5| |#1|)) (-15 -2385 ((-112) |#5| |#1|)) (-15 -3228 ((-112) |#5| |#1|)) (-15 -3514 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2541 ((-112) |#1|)) (-15 -2541 ((-112) |#5| |#1|)) (-15 -2569 ((-2 (|:| -1389 (-654 |#5|)) (|:| -1686 (-654 |#5|))) |#1|)) (-15 -4144 ((-781) |#1|)) (-15 -4009 ((-654 |#5|) |#1|)) (-15 -3153 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3153 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3419 ((-112) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#4|)) (-15 -2250 (|#1| |#1| |#4|)) (-15 -3066 (|#4| |#1|)) (-15 -1706 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2950 ((-654 |#5|) |#1|)) (-15 -2962 (|#1| (-654 |#5|))) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2175 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2881 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2950 ((-872) |#1|)) (-15 -2985 ((-112) |#1| |#1|))) +((-2863 (((-112) $ $) 7)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) 86)) (-1346 (((-654 $) (-654 |#4|)) 87)) (-4349 (((-654 |#3|) $) 34)) (-3042 (((-112) $) 27)) (-2857 (((-112) $) 18 (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) 102) (((-112) $) 98)) (-3871 ((|#4| |#4| $) 93)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) 28)) (-1750 (((-112) $ (-781)) 45)) (-2175 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) 80)) (-3063 (($) 46 T CONST)) (-3860 (((-112) $) 23 (|has| |#1| (-566)))) (-3636 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3730 (((-112) $ $) 24 (|has| |#1| (-566)))) (-2831 (((-112) $) 26 (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2717 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2934 (((-3 $ "failed") $) 83)) (-1779 ((|#4| |#4| $) 90)) (-2818 (($ $) 69 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#4| $) 68 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2544 ((|#4| |#4| $) 88)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) 106)) (-1874 (((-654 |#4|) $) 53 (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-2121 (((-112) $ (-781)) 44)) (-4187 (((-654 |#4|) $) 54 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-3320 (((-654 |#3|) $) 33)) (-2704 (((-112) |#3| $) 32)) (-2713 (((-112) $ (-781)) 43)) (-1938 (((-1174) $) 10)) (-3333 (((-3 |#4| "failed") $) 84)) (-4009 (((-654 |#4|) $) 108)) (-1746 (((-112) |#4| $) 100) (((-112) $) 96)) (-2780 ((|#4| |#4| $) 91)) (-3419 (((-112) $ $) 111)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) 101) (((-112) $) 97)) (-1371 ((|#4| |#4| $) 92)) (-3939 (((-1135) $) 11)) (-2924 (((-3 |#4| "failed") $) 85)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3967 (((-3 $ "failed") $ |#4|) 79)) (-4016 (($ $ |#4|) 78)) (-4043 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) 39)) (-2234 (((-112) $) 42)) (-4272 (($) 41)) (-4144 (((-781) $) 107)) (-3948 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1115)) (|has| $ (-6 -4458)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4458)))) (-3156 (($ $) 40)) (-1846 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) 61)) (-2018 (($ $ |#3|) 29)) (-2250 (($ $ |#3|) 31)) (-2293 (($ $) 89)) (-4091 (($ $ |#3|) 30)) (-2950 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3988 (((-781) $) 77 (|has| |#3| (-377)))) (-4259 (((-112) $ $) 9)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2235 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) 82)) (-2488 (((-112) |#3| $) 81)) (-2985 (((-112) $ $) 6)) (-2876 (((-781) $) 47 (|has| $ (-6 -4458))))) +(((-1226 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1080 |t#1| |t#2| |t#3|)) (T -1226)) +((-3419 (*1 *2 *1 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-3153 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1226 *5 *6 *7 *8)))) (-3153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1226 *6 *7 *8 *9)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *6)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-781)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-2 (|:| -1389 (-654 *6)) (|:| -1686 (-654 *6)))))) (-2541 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-3514 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1226 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)))) (-3228 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-2385 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-1746 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-3060 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1226 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) (-2881 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1226 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1080 *5 *6 *7)))) (-3461 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1226 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)))) (-3871 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1371 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2780 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1779 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2293 (*1 *1 *1) (-12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) (-2544 (*1 *2 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1226 *4 *5 *6 *7)))) (-3403 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1389 *1) (|:| -1686 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1226 *4 *5 *6 *7)))) (-2924 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3333 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-2934 (*1 *1 *1) (|partial| -12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2488 (*1 *2 *3 *1) (-12 (-4 *1 (-1226 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) (-2175 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1226 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1080 *4 *5 *3)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781))))) +(-13 (-991 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4458) (-6 -4459) (-15 -3419 ((-112) $ $)) (-15 -3153 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3153 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4009 ((-654 |t#4|) $)) (-15 -4144 ((-781) $)) (-15 -2569 ((-2 (|:| -1389 (-654 |t#4|)) (|:| -1686 (-654 |t#4|))) $)) (-15 -2541 ((-112) |t#4| $)) (-15 -2541 ((-112) $)) (-15 -3514 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3228 ((-112) |t#4| $)) (-15 -2385 ((-112) |t#4| $)) (-15 -1746 ((-112) |t#4| $)) (-15 -3060 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -3228 ((-112) $)) (-15 -2385 ((-112) $)) (-15 -1746 ((-112) $)) (-15 -2881 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3461 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3871 (|t#4| |t#4| $)) (-15 -1371 (|t#4| |t#4| $)) (-15 -2780 (|t#4| |t#4| $)) (-15 -1779 (|t#4| |t#4| $)) (-15 -2293 ($ $)) (-15 -2544 (|t#4| |t#4| $)) (-15 -1346 ((-654 $) (-654 |t#4|))) (-15 -3403 ((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2924 ((-3 |t#4| "failed") $)) (-15 -3333 ((-3 |t#4| "failed") $)) (-15 -2934 ((-3 $ "failed") $)) (-15 -2797 ((-654 |t#3|) $)) (-15 -2488 ((-112) |t#3| $)) (-15 -2175 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3967 ((-3 $ "failed") $ |t#4|)) (-15 -4016 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -3988 ((-781) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))) ((-991 |#1| |#2| |#3| |#4|) . T) ((-1115) . T) ((-1233) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1192)) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4026 (((-965 |#1|) $ (-781)) 17) (((-965 |#1|) $ (-781) (-781)) NIL)) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $ (-1192)) NIL) (((-781) $ (-1192) (-781)) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3513 (((-112) $) NIL)) (-4327 (($ $ (-654 (-1192)) (-654 (-541 (-1192)))) NIL) (($ $ (-1192) (-541 (-1192))) NIL) (($ |#1| (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3302 (($ $ (-1192)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-2699 (($ (-1 $) (-1192) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4016 (($ $ (-781)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (($ $ (-1192) $) NIL) (($ $ (-654 (-1192)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3878 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-4144 (((-541 (-1192)) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1192)) NIL) (($ (-965 |#1|)) NIL)) (-3584 ((|#1| $ (-541 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (((-965 |#1|) $ (-781)) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3583 (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1227 |#1|) (-13 (-750 |#1| (-1192)) (-10 -8 (-15 -3584 ((-965 |#1|) $ (-781))) (-15 -2950 ($ (-1192))) (-15 -2950 ($ (-965 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $ (-1192) |#1|)) (-15 -2699 ($ (-1 $) (-1192) |#1|))) |%noBranch|))) (-1064)) (T -1227)) +((-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-965 *4)) (-5 *1 (-1227 *4)) (-4 *4 (-1064)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-1064)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-5 *1 (-1227 *3)))) (-3302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)))) (-2699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1227 *4))) (-5 *3 (-1192)) (-5 *1 (-1227 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) +(-13 (-750 |#1| (-1192)) (-10 -8 (-15 -3584 ((-965 |#1|) $ (-781))) (-15 -2950 ($ (-1192))) (-15 -2950 ($ (-965 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $ (-1192) |#1|)) (-15 -2699 ($ (-1 $) (-1192) |#1|))) |%noBranch|))) +((-3007 (($ |#1| (-654 (-654 (-956 (-227)))) (-112)) 19)) (-1762 (((-112) $ (-112)) 18)) (-1783 (((-112) $) 17)) (-2620 (((-654 (-654 (-956 (-227)))) $) 13)) (-4410 ((|#1| $) 8)) (-1829 (((-112) $) 15))) +(((-1228 |#1|) (-10 -8 (-15 -4410 (|#1| $)) (-15 -2620 ((-654 (-654 (-956 (-227)))) $)) (-15 -1829 ((-112) $)) (-15 -1783 ((-112) $)) (-15 -1762 ((-112) $ (-112))) (-15 -3007 ($ |#1| (-654 (-654 (-956 (-227)))) (-112)))) (-989)) (T -1228)) +((-3007 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-112)) (-5 *1 (-1228 *2)) (-4 *2 (-989)))) (-1762 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-1228 *3)) (-4 *3 (-989)))) (-4410 (*1 *2 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-989))))) +(-10 -8 (-15 -4410 (|#1| $)) (-15 -2620 ((-654 (-654 (-956 (-227)))) $)) (-15 -1829 ((-112) $)) (-15 -1783 ((-112) $)) (-15 -1762 ((-112) $ (-112))) (-15 -3007 ($ |#1| (-654 (-654 (-956 (-227)))) (-112)))) +((-2365 (((-956 (-227)) (-956 (-227))) 31)) (-3563 (((-956 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3171 (((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-2546 (((-227) (-956 (-227)) (-956 (-227))) 27)) (-4018 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 28)) (-1691 (((-654 (-654 (-227))) (-574)) 44)) (-3089 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 26)) (-3073 (((-956 (-227)) (-956 (-227)) (-956 (-227))) 24)) (* (((-956 (-227)) (-227) (-956 (-227))) 22))) +(((-1229) (-10 -7 (-15 -3563 ((-956 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-956 (-227)) (-227) (-956 (-227)))) (-15 -3073 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3089 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -2546 ((-227) (-956 (-227)) (-956 (-227)))) (-15 -4018 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -2365 ((-956 (-227)) (-956 (-227)))) (-15 -1691 ((-654 (-654 (-227))) (-574))) (-15 -3171 ((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227))))))) (T -1229)) +((-3171 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-956 *4))) (-5 *1 (-1229)) (-5 *3 (-956 *4)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1229)))) (-2365 (*1 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-2546 (*1 *2 *3 *3) (-12 (-5 *3 (-956 (-227))) (-5 *2 (-227)) (-5 *1 (-1229)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (-3073 (*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-956 (-227))) (-5 *3 (-227)) (-5 *1 (-1229)))) (-3563 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)) (-5 *3 (-227))))) +(-10 -7 (-15 -3563 ((-956 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-956 (-227)) (-227) (-956 (-227)))) (-15 -3073 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -3089 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -2546 ((-227) (-956 (-227)) (-956 (-227)))) (-15 -4018 ((-956 (-227)) (-956 (-227)) (-956 (-227)))) (-15 -2365 ((-956 (-227)) (-956 (-227)))) (-15 -1691 ((-654 (-654 (-227))) (-574))) (-15 -3171 ((-654 (-956 (-227))) (-956 (-227)) (-956 (-227)) (-956 (-227)) (-227) (-654 (-654 (-227)))))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2175 ((|#1| $ (-781)) 18)) (-4108 (((-781) $) 13)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2950 (((-971 |#1|) $) 12) (($ (-971 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2985 (((-112) $ $) 22 (|has| |#1| (-1115))))) +(((-1230 |#1|) (-13 (-500 (-971 |#1|)) (-10 -8 (-15 -2175 (|#1| $ (-781))) (-15 -4108 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) (-1233)) (T -1230)) +((-2175 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1230 *2)) (-4 *2 (-1233)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1230 *3)) (-4 *3 (-1233))))) +(-13 (-500 (-971 |#1|)) (-10 -8 (-15 -2175 (|#1| $ (-781))) (-15 -4108 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|))) +((-2706 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)) 94)) (-3407 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|))) 86)) (-2910 (((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|))) 70))) +(((-1231 |#1|) (-10 -7 (-15 -3407 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2910 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2706 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)))) (-358)) (T -1231)) +((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1188 (-1188 *5)))) (-5 *1 (-1231 *5)) (-5 *3 (-1188 (-1188 *5))))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4))))) (-3407 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) +(-10 -7 (-15 -3407 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2910 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)))) (-15 -2706 ((-428 (-1188 (-1188 |#1|))) (-1188 (-1188 |#1|)) (-574)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 9) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1232) (-1098)) (T -1232)) +NIL +(-1098) +NIL +(((-1233) (-141)) (T -1233)) +NIL +(-13 (-10 -7 (-6 -3494))) +((-3633 (((-112)) 18)) (-3140 (((-1288) (-654 |#1|) (-654 |#1|)) 22) (((-1288) (-654 |#1|)) 23)) (-2121 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-2713 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4115 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1630 (((-2 (|:| -4375 (-654 |#1|)) (|:| -2893 (-654 |#1|)))) 20))) +(((-1234 |#1|) (-10 -7 (-15 -3140 ((-1288) (-654 |#1|))) (-15 -3140 ((-1288) (-654 |#1|) (-654 |#1|))) (-15 -1630 ((-2 (|:| -4375 (-654 |#1|)) (|:| -2893 (-654 |#1|))))) (-15 -2713 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2713 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4115 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3633 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -4115 (|#1| (-654 |#1|))) (-15 -2121 ((-112) |#1| |#1|))) |%noBranch|)) (-1115)) (T -1234)) +((-2121 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-860)) (-4 *3 (-1115)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-860)) (-5 *1 (-1234 *2)))) (-3633 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1234 *2)) (-4 *2 (-1115)))) (-2713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1115)) (-5 *2 (-112)) (-5 *1 (-1234 *3)))) (-2713 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-1630 (*1 *2) (-12 (-5 *2 (-2 (|:| -4375 (-654 *3)) (|:| -2893 (-654 *3)))) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) (-3140 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) (-5 *1 (-1234 *4)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) (-5 *1 (-1234 *4))))) +(-10 -7 (-15 -3140 ((-1288) (-654 |#1|))) (-15 -3140 ((-1288) (-654 |#1|) (-654 |#1|))) (-15 -1630 ((-2 (|:| -4375 (-654 |#1|)) (|:| -2893 (-654 |#1|))))) (-15 -2713 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2713 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4115 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3633 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -4115 (|#1| (-654 |#1|))) (-15 -2121 ((-112) |#1| |#1|))) |%noBranch|)) +((-2791 (((-1288) (-654 (-1192)) (-654 (-1192))) 14) (((-1288) (-654 (-1192))) 12)) (-2188 (((-1288)) 16)) (-1814 (((-2 (|:| -2893 (-654 (-1192))) (|:| -4375 (-654 (-1192))))) 20))) +(((-1235) (-10 -7 (-15 -2791 ((-1288) (-654 (-1192)))) (-15 -2791 ((-1288) (-654 (-1192)) (-654 (-1192)))) (-15 -1814 ((-2 (|:| -2893 (-654 (-1192))) (|:| -4375 (-654 (-1192)))))) (-15 -2188 ((-1288))))) (T -1235)) +((-2188 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1235)))) (-1814 (*1 *2) (-12 (-5 *2 (-2 (|:| -2893 (-654 (-1192))) (|:| -4375 (-654 (-1192))))) (-5 *1 (-1235)))) (-2791 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235))))) +(-10 -7 (-15 -2791 ((-1288) (-654 (-1192)))) (-15 -2791 ((-1288) (-654 (-1192)) (-654 (-1192)))) (-15 -1814 ((-2 (|:| -2893 (-654 (-1192))) (|:| -4375 (-654 (-1192)))))) (-15 -2188 ((-1288)))) +((-3313 (($ $) 17)) (-2941 (((-112) $) 28))) +(((-1236 |#1|) (-10 -8 (-15 -3313 (|#1| |#1|)) (-15 -2941 ((-112) |#1|))) (-1237)) (T -1236)) +NIL +(-10 -8 (-15 -3313 (|#1| |#1|)) (-15 -2941 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 57)) (-2153 (((-428 $) $) 58)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2941 (((-112) $) 59)) (-2276 (((-112) $) 35)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +(((-1237) (-141)) (T -1237)) +((-2941 (*1 *2 *1) (-12 (-4 *1 (-1237)) (-5 *2 (-112)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) (-3313 (*1 *1 *1) (-4 *1 (-1237))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237))))) +(-13 (-462) (-10 -8 (-15 -2941 ((-112) $)) (-15 -2153 ((-428 $) $)) (-15 -3313 ($ $)) (-15 -4200 ((-428 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1066 $) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1238) (-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716)))) (T -1238)) +((-1753 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1238))) (-3063 (*1 *1) (-5 *1 (-1238)))) +(-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1236) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1236)) -((-1741 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1236))) (-2579 (*1 *1) (-5 *1 (-1236)))) -(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1239) (-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716)))) (T -1239)) +((-1753 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1239))) (-3063 (*1 *1) (-5 *1 (-1239)))) +(-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1237) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1237)) -((-1741 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1237))) (-2579 (*1 *1) (-5 *1 (-1237)))) -(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1240) (-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716)))) (T -1240)) +((-1753 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1240))) (-3063 (*1 *1) (-5 *1 (-1240)))) +(-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) -(((-1238) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1238)) -((-1741 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1238))) (-2579 (*1 *1) (-5 *1 (-1238)))) -(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) +((-2863 (((-112) $ $) NIL)) (-1497 (((-781)) NIL)) (-3063 (($) NIL T CONST)) (-2834 (($) NIL)) (-3632 (($ $ $) NIL) (($) NIL T CONST)) (-2953 (($ $ $) NIL) (($) NIL T CONST)) (-3880 (((-934) $) NIL)) (-1938 (((-1174) $) NIL)) (-2590 (($ (-934)) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-4259 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL)) (-3008 (((-112) $ $) NIL))) +(((-1241) (-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716)))) (T -1241)) +((-1753 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3063 (*1 *1) (-5 *1 (-1241)))) +(-13 (-854) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -3063 ($) -1716))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-1776 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 23))) -(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1061) (-1061) (-1189) (-1189) |#1| |#2|) (T -1239)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1189))))) -(-10 -7 (-15 -1776 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 112) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 185 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 184 (|has| |#1| (-565)))) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-573) $) 114) (((-573) $ (-573)) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 186)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-573)) 73) (($ $ (-1094) (-573)) 88) (($ $ (-653 (-1094)) (-653 (-573))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-573)))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 119) (($ $ $) 95 (|has| (-573) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2565 (((-573) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1240 |#1|) (-141) (-1061)) (T -1240)) -((-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-4 *3 (-1061)) (-4 *1 (-1240 *3)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1240 *3)) (-4 *3 (-1061)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) (-5 *2 (-416 (-962 *4))))) (-3997 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) (-5 *2 (-416 (-962 *4))))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) -(-13 (-1258 |t#1| (-573)) (-10 -8 (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |t#1|))))) (-15 -2861 ($ (-1 |t#1| (-573)) $)) (IF (|has| |t#1| (-565)) (PROGN (-15 -3997 ((-416 (-962 |t#1|)) $ (-573))) (-15 -3997 ((-416 (-962 |t#1|)) $ (-573) (-573)))) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-573)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-573) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T)) -((-1748 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17) (((-3 (-1189) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL)) (-2205 ((|#3| $) 14) (((-1189) $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL))) -(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) (-1242 |#2| |#3|) (-1061) (-1271 |#2|)) (T -1241)) -NIL -(-10 -8 (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 ((|#2| $) 246 (-2086 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 112) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 118)) (-3106 ((|#2| $) 282)) (-1780 (((-3 |#2| "failed") $) 278)) (-4401 ((|#2| $) 279)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 255 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 252 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) 264 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 285) (((-3 (-573) "failed") $) 275 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) 273 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-1189) "failed") $) 257 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2205 ((|#2| $) 286) (((-573) $) 274 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-416 (-573)) $) 272 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-1189) $) 256 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2230 (($ $) 281) (($ (-573) $) 280)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2759 (((-698 |#2|) (-1280 $)) 236 (|has| |#1| (-371))) (((-698 |#2|) (-698 $)) 235 (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 234 (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 233 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) 232 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) 231 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 37)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 185 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 184 (|has| |#1| (-565)))) (-2819 (($) 248 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-4152 (((-112) $) 262 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 240 (-2086 (|has| |#2| (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 239 (-2086 (|has| |#2| (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) 114) (((-573) $ (-573)) 113)) (-1959 (((-112) $) 35)) (-3041 (($ $) 244 (|has| |#1| (-371)))) (-2965 ((|#2| $) 242 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) 276 (-2086 (|has| |#2| (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) 263 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 186)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-573)) 73) (($ $ (-1094) (-573)) 88) (($ $ (-653 (-1094)) (-653 (-573))) 87)) (-3659 (($ $ $) 266 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3751 (($ $ $) 267 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-1776 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-371)))) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-4412 (($ (-573) |#2|) 283)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3816 (($) 277 (-2086 (|has| |#2| (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-2408 (($ $) 247 (-2086 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-3733 ((|#2| $) 250 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) 253 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) 254 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) |#2|) 225 (-2086 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 |#2|)) 224 (-2086 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-301 |#2|))) 223 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-301 |#2|)) 222 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ |#2| |#2|) 221 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-653 |#2|) (-653 |#2|)) 220 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 119) (($ $ $) 95 (|has| (-573) (-1124))) (($ $ |#2|) 219 (-2086 (|has| |#2| (-293 |#2| |#2|)) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) 229 (|has| |#1| (-371))) (($ $) 99 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) 97 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) 103 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189) (-780)) 102 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-653 (-1189))) 101 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189)) 100 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))))) (-2662 (($ $) 245 (|has| |#1| (-371)))) (-2975 ((|#2| $) 243 (|has| |#1| (-371)))) (-2565 (((-573) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-227) $) 261 (-2086 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-387) $) 260 (-2086 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-545) $) 259 (-2086 (|has| |#2| (-623 (-545))) (|has| |#1| (-371)))) (((-902 (-387)) $) 238 (-2086 (|has| |#2| (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) 237 (-2086 (|has| |#2| (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 251 (-2086 (-2086 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#1| (-371))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1189)) 258 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371)))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 71)) (-4279 (((-3 $ "failed") $) 60 (-2817 (-2086 (-2817 (|has| |#2| (-146)) (-2086 (|has| $ (-146)) (|has| |#2| (-919)))) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-2437 ((|#2| $) 249 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) 265 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) 227 (|has| |#1| (-371))) (($ $) 98 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) 96 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) 107 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189) (-780)) 106 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-653 (-1189))) 105 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189)) 104 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))))) (-3040 (((-112) $ $) 269 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3015 (((-112) $ $) 270 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 268 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3005 (((-112) $ $) 271 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371))) (($ |#2| |#2|) 241 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-371))) (($ |#2| $) 217 (|has| |#1| (-371))) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1242 |#1| |#2|) (-141) (-1061) (-1271 |t#1|)) (T -1242)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)) (-5 *2 (-573)))) (-4412 (*1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *4 (-1061)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1271 *4)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3)))) (-2230 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1271 *2)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3)))) (-1780 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) -(-13 (-1240 |t#1|) (-1050 |t#2|) (-625 |t#2|) (-10 -8 (-15 -4412 ($ (-573) |t#2|)) (-15 -2565 ((-573) $)) (-15 -3106 (|t#2| $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)) (-15 -4401 (|t#2| $)) (-15 -1780 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-371)) (-6 (-1004 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-573)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-371)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-371)) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 #2=(-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) ((-625 |#1|) |has| |#1| (-174)) ((-625 |#2|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-623 (-227)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-623 (-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-623 (-545)) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-573))))) ((-235 $) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-233 |#2|) |has| |#1| (-371)) ((-238) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-237) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 |#2| $) -12 (|has| |#1| (-371)) (|has| |#2| (-293 |#2| |#2|))) ((-293 $ $) |has| (-573) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-316 |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) ((-371) |has| |#1| (-371)) ((-346 |#2|) |has| |#1| (-371)) ((-385 |#2|) |has| |#1| (-371)) ((-409 |#2|) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-523 (-1189) |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-523 (-1189) |#2|))) ((-523 |#2| |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 |#2|) |has| |#1| (-371)) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 #3=(-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((-657 |#1|) . T) ((-657 |#2|) |has| |#1| (-371)) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 |#2|) |has| |#1| (-371)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-648 #3#) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((-648 |#2|) |has| |#1| (-371)) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 |#2|) |has| |#1| (-371)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-800) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-801) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-803) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-804) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-829) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-857) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-859) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-859))) (-12 (|has| |#1| (-371)) (|has| |#2| (-829)))) ((-910 (-1189)) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-910 (-1189)))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) ((-896 (-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-573)))) ((-894 |#2|) |has| |#1| (-371)) ((-919) -12 (|has| |#1| (-371)) (|has| |#2| (-919))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1004 |#2|) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1034) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-1050 (-416 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) ((-1050 (-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) ((-1050 #2#) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) ((-1050 |#2|) . T) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 |#2|) |has| |#1| (-371)) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 |#2|) |has| |#1| (-371)) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) -12 (|has| |#1| (-371)) (|has| |#2| (-1164))) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1240 |#1|) . T) ((-1258 |#1| #0#) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 81)) (-3770 ((|#2| $) NIL (-12 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 100)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 109) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 51)) (-3106 ((|#2| $) 11)) (-1780 (((-3 |#2| "failed") $) 35)) (-4401 ((|#2| $) 36)) (-2363 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 182 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 178 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 59)) (-2388 (($ $) 210 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 186 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 157) (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-1189) "failed") $) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2205 ((|#2| $) 156) (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-1189) $) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2230 (($ $) 65) (($ (-573) $) 28)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 |#2|) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 |#2|) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 88)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 124 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 126 (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 74)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#2| (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#2| (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) 105) (((-573) $ (-573)) 107)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 ((|#2| $) 165 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) 148)) (-2861 (($ (-1 |#1| (-573)) $) 144)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 20) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3751 (($ $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-1776 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) 176 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) |#2|) 10)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 159 (|has| |#1| (-371)))) (-1626 (($ $) 228 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 233 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3816 (($) NIL (-12 (|has| |#2| (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-3733 ((|#2| $) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 138)) (-2837 (((-3 $ "failed") $ $) 128 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) |#2|) NIL (-12 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 |#2|)) NIL (-12 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 103) (($ $ $) 90 (|has| (-573) (-1124))) (($ $ |#2|) NIL (-12 (|has| |#2| (-293 |#2| |#2|)) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#1| (-371))) (($ $) 149 (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) 153 (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 ((|#2| $) 166 (|has| |#1| (-371)))) (-2565 (((-573) $) 12)) (-2401 (($ $) 212 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 188 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 184 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 180 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-227) $) NIL (-12 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-545) $) NIL (-12 (|has| |#2| (-623 (-545))) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| |#2| (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| |#2| (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4101 (($ $) 136)) (-2942 (((-871) $) 266) (($ (-573)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1189)) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371)))) (($ (-416 (-573))) 169 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 85)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919)) (|has| |#1| (-371))) (-12 (|has| |#2| (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) 155 T CONST)) (-3358 ((|#1| $) 102)) (-2437 ((|#2| $) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 218 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 194 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 214 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 190 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 222 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 224 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 220 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 196 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 216 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 192 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2132 (($) 13 T CONST)) (-2144 (($) 18 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3015 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-2981 (((-112) $ $) 72)) (-3027 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3005 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 163 (|has| |#1| (-371))) (($ |#2| |#2|) 164 (|has| |#1| (-371)))) (-3093 (($ $) 227) (($ $ $) 78)) (-3077 (($ $ $) 76)) (** (($ $ (-931)) NIL) (($ $ (-780)) 84) (($ $ (-573)) 160 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 172 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-371))) (($ |#2| $) 161 (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1061) (-1271 |#1|)) (T -1243)) -NIL -(-1242 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 10)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1442 (($ $ (-573)) NIL) (($ $ (-573) (-573)) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) NIL)) (-3106 (((-1272 |#1| |#2| |#3|) $) NIL)) (-1780 (((-3 (-1272 |#1| |#2| |#3|) "failed") $) NIL)) (-4401 (((-1272 |#1| |#2| |#3|) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1272 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-573) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2205 (((-1272 |#1| |#2| |#3|) $) NIL) (((-1189) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-573) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-1272 |#1| |#2| |#3|)) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 (-1272 |#1| |#2| |#3|)) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-1272 |#1| |#2| |#3|))) (|:| |vec| (-1280 (-1272 |#1| |#2| |#3|)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) NIL)) (-3997 (((-416 (-962 |#1|)) $ (-573)) NIL (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) NIL (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) NIL) (((-573) $ (-573)) NIL)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 (((-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 18) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) (-1272 |#1| |#2| |#3|)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 27 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 28 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-3733 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-301 (-1272 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-301 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1272 |#1| |#2| |#3|)) (-653 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) NIL) (($ $ $) NIL (|has| (-573) (-1124))) (($ $ (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-293 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1276 |#2|)) 26) (($ $) 25 (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 (((-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371)))) (-2565 (((-573) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-545) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-545))) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-227) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1272 |#1| |#2| |#3|)) NIL) (($ (-1276 |#2|)) 24) (($ (-1189)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565)))) (($ (-416 (-573))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))) (|has| |#1| (-38 (-416 (-573))))))) (-4317 ((|#1| $ (-573)) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 11)) (-2437 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2132 (($) 20 T CONST)) (-2144 (($) 15 T CONST)) (-3609 (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3005 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371))) (($ (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 22)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1272 |#1| |#2| |#3|)) NIL (|has| |#1| (-371))) (($ (-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1272 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1244)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1242 |#1| (-1272 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-2096 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)) 13)) (-2513 (((-427 |#1|) |#1|) 26)) (-4218 (((-427 |#1|) |#1|) 24))) -(((-1245 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)))) (-1256 (-573))) (T -1245)) -((-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) -(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)))) -((-1776 (((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|)) 23 (|has| |#1| (-857))) (((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|)) 17))) -(((-1246 |#1| |#2|) (-10 -7 (-15 -1776 ((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) |%noBranch|)) (-1230) (-1230)) (T -1246)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-857)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1246 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1247 *6)) (-5 *1 (-1246 *5 *6))))) -(-10 -7 (-15 -1776 ((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) |%noBranch|)) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3241 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1776 (((-1169 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-857)))) (-4141 ((|#1| $) 15)) (-2815 ((|#1| $) 12)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1952 (((-573) $) 19)) (-4055 ((|#1| $) 18)) (-1965 ((|#1| $) 13)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2356 (((-112) $) 17)) (-2127 (((-1169 |#1|) $) 41 (|has| |#1| (-857))) (((-1169 |#1|) (-653 $)) 40 (|has| |#1| (-857)))) (-1835 (($ |#1|) 26)) (-2942 (($ (-1106 |#1|)) 25) (((-871) $) 37 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4277 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2732 (($ $ (-573)) 14)) (-2981 (((-112) $ $) 30 (|has| |#1| (-1112))))) -(((-1247 |#1|) (-13 (-1105 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3241 ($ |#1|)) (-15 -2942 ($ (-1106 |#1|))) (-15 -2356 ((-112) $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-1169 |#1|))) |%noBranch|))) (-1230)) (T -1247)) -((-4277 (*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230)))) (-3241 (*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1106 *3)) (-4 *3 (-1230)) (-5 *1 (-1247 *3)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1247 *3)) (-4 *3 (-1230))))) -(-13 (-1105 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3241 ($ |#1|)) (-15 -2942 ($ (-1106 |#1|))) (-15 -2356 ((-112) $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-1169 |#1|))) |%noBranch|))) -((-1776 (((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)) 15))) -(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 ((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)))) (-1189) (-1061) (-1189) (-1061)) (T -1248)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1253 *5 *6)) (-14 *5 (-1189)) (-4 *6 (-1061)) (-4 *8 (-1061)) (-5 *2 (-1253 *7 *8)) (-5 *1 (-1248 *5 *6 *7 *8)) (-14 *7 (-1189))))) -(-10 -7 (-15 -1776 ((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)))) -((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3343 ((|#1| |#3|) 13)) (-1946 ((|#3| |#3|) 19))) -(((-1249 |#1| |#2| |#3|) (-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-565) (-1004 |#1|) (-1256 |#2|)) (T -1249)) -((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1249 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-1249 *3 *4 *2)) (-4 *2 (-1256 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-1249 *2 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3407 (((-3 |#2| "failed") |#2| (-780) |#1|) 35)) (-2403 (((-3 |#2| "failed") |#2| (-780)) 36)) (-4351 (((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|) 50)) (-3680 (((-653 |#2|) |#2|) 52)) (-2459 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1250 |#1| |#2|) (-10 -7 (-15 -2403 ((-3 |#2| "failed") |#2| (-780))) (-15 -3407 ((-3 |#2| "failed") |#2| (-780) |#1|)) (-15 -2459 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4351 ((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|)) (-15 -3680 ((-653 |#2|) |#2|))) (-13 (-565) (-148)) (-1256 |#1|)) (T -1250)) -((-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-653 *3)) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4)))) (-4351 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4)))) (-2459 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1256 *3)))) (-3407 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4)))) (-2403 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) -(-10 -7 (-15 -2403 ((-3 |#2| "failed") |#2| (-780))) (-15 -3407 ((-3 |#2| "failed") |#2| (-780) |#1|)) (-15 -2459 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4351 ((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|)) (-15 -3680 ((-653 |#2|) |#2|))) -((-3409 (((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|) 30))) -(((-1251 |#1| |#2|) (-10 -7 (-15 -3409 ((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|))) (-565) (-1256 |#1|)) (T -1251)) -((-3409 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1256 *4))))) -(-10 -7 (-15 -3409 ((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|))) -((-3141 ((|#2| |#2| |#2|) 22)) (-3742 ((|#2| |#2| |#2|) 36)) (-3236 ((|#2| |#2| |#2| (-780) (-780)) 44))) -(((-1252 |#1| |#2|) (-10 -7 (-15 -3141 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| (-780) (-780)))) (-1061) (-1256 |#1|)) (T -1252)) -((-3236 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-1252 *4 *2)) (-4 *2 (-1256 *4)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3)))) (-3141 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) -(-10 -7 (-15 -3141 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| (-780) (-780)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1867 (((-1280 |#2|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#2|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) NIL (|has| |#2| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#2| (-371)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2784 (($ $ $) NIL (|has| |#2| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#2| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) NIL (|has| |#2| (-565)))) (-1368 (((-2 (|:| -1857 |#2|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#2| (-371)))) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-1094)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#2| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#2| (-1164)))) (-4344 (($ (-1185 |#2|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) 18) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-4112 (((-1185 |#2|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#2| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#2| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2826 (($ $ (-780) |#2| $) NIL)) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#2|) NIL) (($ $ (-653 (-1094)) (-653 |#2|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#2| (-371)))) (-2198 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#2| (-565))) ((|#2| (-416 $) |#2|) NIL (|has| |#2| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#2| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-1094)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#2| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#2| (-565)))) (-2942 (((-871) $) 13) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-1094)) NIL) (($ (-1276 |#1|)) 20) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1253 |#1| |#2|) (-13 (-1256 |#2|) (-625 (-1276 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#2| $)))) (-1189) (-1061)) (T -1253)) -((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1253 *4 *3)) (-14 *4 (-1189)) (-4 *3 (-1061))))) -(-13 (-1256 |#2|) (-625 (-1276 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#2| $)))) -((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1061) (-1256 |#1|) (-1061) (-1256 |#3|)) (T -1254)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *4 *6 *2)) (-4 *4 (-1256 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) -((-1867 (((-1280 |#2|) $ (-780)) 129)) (-4354 (((-653 (-1094)) $) 16)) (-1343 (($ (-1185 |#2|)) 80)) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) 21)) (-1600 (((-427 (-1185 $)) (-1185 $)) 204)) (-4285 (($ $) 194)) (-2427 (((-427 $) $) 192)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 95)) (-3168 (($ $ (-780)) 84)) (-2331 (($ $ (-780)) 86)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1695 (((-3 |#2| "failed") $) 132) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#2| $) 130) (((-416 (-573)) $) NIL) (((-573) $) NIL) (((-1094) $) NIL)) (-2154 (($ $ $) 170)) (-1368 (((-2 (|:| -1857 |#2|) (|:| -3152 $) (|:| -3132 $)) $ $) 172)) (-2534 (((-780) $ $) 189)) (-1470 (((-3 $ "failed") $) 138)) (-4334 (($ |#2| (-780)) NIL) (($ $ (-1094) (-780)) 59) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) 54) (((-653 (-780)) $ (-653 (-1094))) 55)) (-4112 (((-1185 |#2|) $) 72)) (-1453 (((-3 (-1094) "failed") $) 52)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 83)) (-1626 (($ $) 219)) (-3816 (($) 134)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 201)) (-2963 (((-427 (-1185 $)) (-1185 $)) 101)) (-1655 (((-427 (-1185 $)) (-1185 $)) 99)) (-4218 (((-427 $) $) 120)) (-2645 (($ $ (-653 (-301 $))) 51) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#2|) 39) (($ $ (-653 (-1094)) (-653 |#2|)) 36) (($ $ (-1094) $) 32) (($ $ (-653 (-1094)) (-653 $)) 30)) (-2163 (((-780) $) 207)) (-2198 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) 164) ((|#2| (-416 $) |#2|) 206) (((-416 $) $ (-416 $)) 188)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 212)) (-3904 (($ $ (-1094)) 157) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) 155) (($ $ (-780)) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) 17) (((-653 (-780)) $ (-653 (-1094))) 23)) (-3257 ((|#2| $) NIL) (($ $ (-1094)) 140)) (-2871 (((-3 $ "failed") $ $) 180) (((-3 (-416 $) "failed") (-416 $) $) 176)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-1094)) 64) (($ (-416 (-573))) NIL) (($ $) NIL))) -(((-1255 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -2198 ((-416 |#1|) |#1| (-416 |#1|))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -2198 (|#2| (-416 |#1|) |#2|)) (-15 -4016 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1368 ((-2 (|:| -1857 |#2|) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2871 ((-3 (-416 |#1|) "failed") (-416 |#1|) |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 ((-780) |#1| |#1|)) (-15 -2198 ((-416 |#1|) (-416 |#1|) (-416 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2331 (|#1| |#1| (-780))) (-15 -3168 (|#1| |#1| (-780))) (-15 -4263 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| (-780))) (-15 -1343 (|#1| (-1185 |#2|))) (-15 -4112 ((-1185 |#2|) |#1|)) (-15 -1867 ((-1280 |#2|) |#1| (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| |#2|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1600 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3257 (|#1| |#1| (-1094))) (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -2769 ((-780) |#1| (-653 (-1094)))) (-15 -2769 ((-780) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -4334 (|#1| |#1| (-1094) (-780))) (-15 -4036 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -4036 ((-780) |#1| (-1094))) (-15 -1453 ((-3 (-1094) "failed") |#1|)) (-15 -2565 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -2565 ((-780) |#1| (-1094))) (-15 -2942 (|#1| (-1094))) (-15 -1695 ((-3 (-1094) "failed") |#1|)) (-15 -2205 ((-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1094) |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 ((-780) |#1|)) (-15 -4334 (|#1| |#2| (-780))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -4036 ((-780) |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3904 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1094) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1094)))) (-15 -3904 (|#1| |#1| (-1094))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1256 |#2|) (-1061)) (T -1255)) -NIL -(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -2198 ((-416 |#1|) |#1| (-416 |#1|))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -2198 (|#2| (-416 |#1|) |#2|)) (-15 -4016 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1368 ((-2 (|:| -1857 |#2|) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2871 ((-3 (-416 |#1|) "failed") (-416 |#1|) |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 ((-780) |#1| |#1|)) (-15 -2198 ((-416 |#1|) (-416 |#1|) (-416 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2331 (|#1| |#1| (-780))) (-15 -3168 (|#1| |#1| (-780))) (-15 -4263 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| (-780))) (-15 -1343 (|#1| (-1185 |#2|))) (-15 -4112 ((-1185 |#2|) |#1|)) (-15 -1867 ((-1280 |#2|) |#1| (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| |#2|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1600 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3257 (|#1| |#1| (-1094))) (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -2769 ((-780) |#1| (-653 (-1094)))) (-15 -2769 ((-780) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -4334 (|#1| |#1| (-1094) (-780))) (-15 -4036 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -4036 ((-780) |#1| (-1094))) (-15 -1453 ((-3 (-1094) "failed") |#1|)) (-15 -2565 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -2565 ((-780) |#1| (-1094))) (-15 -2942 (|#1| (-1094))) (-15 -1695 ((-3 (-1094) "failed") |#1|)) (-15 -2205 ((-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1094) |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 ((-780) |#1|)) (-15 -4334 (|#1| |#2| (-780))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -4036 ((-780) |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3904 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1094) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1094)))) (-15 -3904 (|#1| |#1| (-1094))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1867 (((-1280 |#1|) $ (-780)) 243)) (-4354 (((-653 (-1094)) $) 112)) (-1343 (($ (-1185 |#1|)) 241)) (-4193 (((-1185 $) $ (-1094)) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 (-1094))) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-4183 (($ $ $) 228 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2800 (((-112) $ $) 213 (|has| |#1| (-371)))) (-3168 (($ $ (-780)) 236)) (-2331 (($ $ (-780)) 235)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-461)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) 140)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) (((-1094) $) 141)) (-2277 (($ $ $ (-1094)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2784 (($ $ $) 217 (|has| |#1| (-371)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 216 (|has| |#1| (-371)))) (-4272 (($ $ $) 234)) (-2154 (($ $ $) 225 (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) 224 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 211 (|has| |#1| (-371)))) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ (-1094)) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) 229 (|has| |#1| (-565)))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-1470 (((-3 $ "failed") $) 209 (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) 119) (($ (-1185 $) (-1094)) 118)) (-2976 (($ $ (-780)) 240)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 220 (|has| |#1| (-371)))) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| (-780)) 157) (($ $ (-1094) (-780)) 121) (($ $ (-653 (-1094)) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) 122) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 238)) (-4036 (((-780) $) 174) (((-780) $ (-1094)) 124) (((-653 (-780)) $ (-653 (-1094))) 123)) (-1382 (($ (-1 (-780) (-780)) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-4112 (((-1185 |#1|) $) 242)) (-1453 (((-3 (-1094) "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 237)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) 115)) (-1626 (($ $) 221 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) 208 (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 218 (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 212 (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ (-1094) |#1|) 145) (($ $ (-653 (-1094)) (-653 |#1|)) 144) (($ $ (-1094) $) 143) (($ $ (-653 (-1094)) (-653 $)) 142)) (-2163 (((-780) $) 214 (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-416 $) (-416 $) (-416 $)) 230 (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) 222 (|has| |#1| (-371))) (((-416 $) $ (-416 $)) 210 (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) 239)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 215 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) 46) (($ $ (-653 (-1094))) 45) (($ $ (-1094) (-780)) 44) (($ $ (-653 (-1094)) (-653 (-780))) 43) (($ $) 259) (($ $ (-780)) 257) (($ $ (-1189)) 255 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 254 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 253 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 252 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-2565 (((-780) $) 154) (((-780) $ (-1094)) 132) (((-653 (-780)) $ (-653 (-1094))) 131)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ (-1094)) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) 227 (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) 226 (|has| |#1| (-565)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ (-1094)) 139) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ (-780)) 159) (($ $ (-1094) (-780)) 130) (($ $ (-653 (-1094)) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1094)) 42) (($ $ (-653 (-1094))) 41) (($ $ (-1094) (-780)) 40) (($ $ (-653 (-1094)) (-653 (-780))) 39) (($ $) 258) (($ $ (-780)) 256) (($ $ (-1189)) 251 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 250 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 249 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 248 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1256 |#1|) (-141) (-1061)) (T -1256)) -((-1867 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1256 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-5 *2 (-1185 *3)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1061)) (-4 *1 (-1256 *3)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-1929 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-2424 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *3)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *4)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-4272 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)))) (-3904 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174)))) (-2277 (*1 *2 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174)))) (-2198 (*1 *2 *2 *2) (-12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)) (-5 *2 (-780)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-2871 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-2871 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)))) (-2154 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -1857 *3) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *3)))) (-4016 (*1 *2 *1 *1) (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1256 *3)))) (-2198 (*1 *2 *3 *2) (-12 (-5 *3 (-416 *1)) (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573))))))) -(-13 (-959 |t#1| (-780) (-1094)) (-293 |t#1| |t#1|) (-293 $ $) (-238) (-233 |t#1|) (-10 -8 (-15 -1867 ((-1280 |t#1|) $ (-780))) (-15 -4112 ((-1185 |t#1|) $)) (-15 -1343 ($ (-1185 |t#1|))) (-15 -2976 ($ $ (-780))) (-15 -1929 ((-3 $ "failed") $ (-780))) (-15 -2424 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4263 ((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780))) (-15 -3168 ($ $ (-780))) (-15 -2331 ($ $ (-780))) (-15 -4272 ($ $ $)) (-15 -3904 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3592 (|t#1| $)) (-15 -2277 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-6 (-293 (-416 $) (-416 $))) (-15 -2198 ((-416 $) (-416 $) (-416 $))) (-15 -2534 ((-780) $ $)) (-15 -4183 ($ $ $)) (-15 -2871 ((-3 $ "failed") $ $)) (-15 -2871 ((-3 (-416 $) "failed") (-416 $) $)) (-15 -2154 ($ $ $)) (-15 -1368 ((-2 (|:| -1857 |t#1|) (|:| -3152 $) (|:| -3132 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (-15 -4016 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-6 (-314)) (-6 -4451) (-15 -2198 (|t#1| (-416 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (-15 -1626 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-780)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 #2=(-1094)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573))))) ((-235 $) . T) ((-233 |#1|) . T) ((-238) . T) ((-237) . T) ((-293 (-416 $) (-416 $)) |has| |#1| (-565)) ((-293 |#1| |#1|) . T) ((-293 $ $) . T) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-316 $) . T) ((-333 |#1| #0#) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-523 #2# |#1|) . T) ((-523 #2# $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 #3=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-648 #3#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-735) . T) ((-910 #2#) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) -12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387)))) ((-896 (-573)) -12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))) ((-959 |#1| #0# #2#) . T) ((-919) |has| |#1| (-919)) ((-930) |has| |#1| (-371)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 |#1|) . T) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-1164)) ((-1230) . T) ((-1234) |has| |#1| (-919))) -((-4354 (((-653 (-1094)) $) 34)) (-1391 (($ $) 31)) (-4334 (($ |#2| |#3|) NIL) (($ $ (-1094) |#3|) 28) (($ $ (-653 (-1094)) (-653 |#3|)) 27)) (-1358 (($ $) 14)) (-1369 ((|#2| $) 12)) (-2565 ((|#3| $) 10))) -(((-1257 |#1| |#2| |#3|) (-10 -8 (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 |#3|))) (-15 -4334 (|#1| |#1| (-1094) |#3|)) (-15 -1391 (|#1| |#1|)) (-15 -4334 (|#1| |#2| |#3|)) (-15 -2565 (|#3| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -1369 (|#2| |#1|))) (-1258 |#2| |#3|) (-1061) (-801)) (T -1257)) -NIL -(-10 -8 (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 |#3|))) (-15 -4334 (|#1| |#1| (-1094) |#3|)) (-15 -1391 (|#1| |#1|)) (-15 -4334 (|#1| |#2| |#3|)) (-15 -2565 (|#3| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -1369 (|#2| |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-1662 (((-1169 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1488 (((-112) $) 85)) (-2534 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-1959 (((-112) $) 35)) (-2976 (($ $ (-931)) 115)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73) (($ $ (-1094) |#2|) 88) (($ $ (-653 (-1094)) (-653 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2212 (($ $ |#2|) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2198 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2565 ((|#2| $) 76)) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-3550 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1258 |#1| |#2|) (-141) (-1061) (-801)) (T -1258)) -((-1662 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-1169 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-1189)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-2534 (*1 *2 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1442 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2942 (*2 (-1189)))) (-4 *2 (-1061)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-2645 (*1 *2 *1 *3) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1169 *3))))) -(-13 (-985 |t#1| |t#2| (-1094)) (-293 |t#2| |t#1|) (-10 -8 (-15 -1662 ((-1169 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1487 ((-1189) $)) (-15 -3358 (|t#1| $)) (-15 -2976 ($ $ (-931))) (-15 -2534 (|t#2| $)) (-15 -2534 (|t#2| $ |t#2|)) (-15 -1442 ($ $ |t#2|)) (-15 -1442 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2942 (|t#1| (-1189)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3550 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2212 ($ $ |t#2|)) (IF (|has| |t#2| (-1124)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2645 ((-1169 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-293 |#2| |#1|) . T) ((-293 $ $) |has| |#2| (-1124)) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| |#2| (-1094)) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) -((-4285 ((|#2| |#2|) 12)) (-2427 (((-427 |#2|) |#2|) 14)) (-2799 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))) 30))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -2427 ((-427 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -2799 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))))) (-565) (-13 (-1256 |#1|) (-565) (-10 -8 (-15 -2872 ($ $ $))))) (T -1259)) -((-2799 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-573)))) (-4 *4 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))) (-4 *3 (-565)) (-5 *1 (-1259 *3 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-1259 *4 *3)) (-4 *3 (-13 (-1256 *4) (-565) (-10 -8 (-15 -2872 ($ $ $)))))))) -(-10 -7 (-15 -2427 ((-427 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -2799 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))))) -((-1776 (((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)) 24))) -(((-1260 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)))) (-1061) (-1061) (-1189) (-1189) |#1| |#2|) (T -1260)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5 *7 *9)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1265 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1189))))) -(-10 -7 (-15 -1776 ((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 112) (($ $ (-416 (-573)) (-416 (-573))) 111)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 114) (((-416 (-573)) $ (-416 (-573))) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115) (($ $ (-416 (-573))) 184)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-416 (-573))) 73) (($ $ (-1094) (-416 (-573))) 88) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 119) (($ $ $) 95 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1261 |#1|) (-141) (-1061)) (T -1261)) -((-3622 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))) (-4 *4 (-1061)) (-4 *1 (-1261 *4)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1261 *3)) (-4 *3 (-1061)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) -(-13 (-1258 |t#1| (-416 (-573))) (-10 -8 (-15 -3622 ($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |t#1|))))) (-15 -2976 ($ $ (-416 (-573)))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-416 (-573))) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-416 (-573)) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T)) -((-1748 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17)) (-2205 ((|#3| $) 14))) -(((-1262 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) (-1263 |#2| |#3|) (-1061) (-1240 |#2|)) (T -1262)) -NIL -(-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 112) (($ $ (-416 (-573)) (-416 (-573))) 111)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 196)) (-2205 ((|#2| $) 197)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1899 (((-416 (-573)) $) 193)) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) |#2|) 194)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 114) (((-416 (-573)) $ (-416 (-573))) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115) (($ $ (-416 (-573))) 184)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-416 (-573))) 73) (($ $ (-1094) (-416 (-573))) 88) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3120 ((|#2| $) 192)) (-4064 (((-3 |#2| "failed") $) 190)) (-4412 ((|#2| $) 191)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 119) (($ $ $) 95 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1263 |#1| |#2|) (-141) (-1061) (-1240 |t#1|)) (T -1263)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) (-5 *2 (-416 (-573))))) (-4423 (*1 *1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-4 *4 (-1061)) (-4 *1 (-1263 *4 *3)) (-4 *3 (-1240 *4)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) (-5 *2 (-416 (-573))))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3)))) (-4064 (*1 *2 *1) (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) -(-13 (-1261 |t#1|) (-1050 |t#2|) (-625 |t#2|) (-10 -8 (-15 -4423 ($ (-416 (-573)) |t#2|)) (-15 -1899 ((-416 (-573)) $)) (-15 -3120 (|t#2| $)) (-15 -2565 ((-416 (-573)) $)) (-15 -4412 (|t#2| $)) (-15 -4064 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-416 (-573))) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 |#2|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-416 (-573)) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1050 |#2|) . T) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T) ((-1261 |#1|) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 104)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 116) (($ $ (-416 (-573)) (-416 (-573))) 118)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 54)) (-2363 (($ $) 192 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 168 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 188 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 164 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 65)) (-2388 (($ $) 196 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 172 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2205 ((|#2| $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 85)) (-1899 (((-416 (-573)) $) 13)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) |#2|) 11)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) 74)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 113) (((-416 (-573)) $ (-416 (-573))) 114)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 130) (($ $ (-416 (-573))) 128)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 33) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 125)) (-3118 (($ $) 162 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 ((|#2| $) 12)) (-4064 (((-3 |#2| "failed") $) 44)) (-4412 ((|#2| $) 45)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 101 (|has| |#1| (-371)))) (-1626 (($ $) 146 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 151 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 122)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 108) (($ $ $) 94 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 138 (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 16)) (-2401 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 194 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 170 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 190 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 166 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 120)) (-2942 (((-871) $) NIL) (($ (-573)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-416 (-573))) 139 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 107)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 127 T CONST)) (-3358 ((|#1| $) 106)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 180 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 176 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 184 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 210 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 186 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 182 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 178 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 21 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 72)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 100 (|has| |#1| (-371)))) (-3093 (($ $) 142) (($ $ $) 78)) (-3077 (($ $ $) 76)) (** (($ $ (-931)) NIL) (($ $ (-780)) 82) (($ $ (-573)) 157 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 158 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1264 |#1| |#2|) (-1263 |#1| |#2|) (-1061) (-1240 |#1|)) (T -1264)) -NIL -(-1263 |#1| |#2|) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1244 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1272 |#1| |#2| |#3|) "failed") $) 22)) (-2205 (((-1244 |#1| |#2| |#3|) $) NIL) (((-1272 |#1| |#2| |#3|) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1899 (((-416 (-573)) $) 69)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) (-1244 |#1| |#2| |#3|)) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 30) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 (((-1244 |#1| |#2| |#3|) $) 72)) (-4064 (((-3 (-1244 |#1| |#2| |#3|) "failed") $) NIL)) (-4412 (((-1244 |#1| |#2| |#3|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 39 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 40 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 38)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 107) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1244 |#1| |#2| |#3|)) 16) (($ (-1272 |#1| |#2| |#3|)) 17) (($ (-1276 |#2|)) 36) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 32 T CONST)) (-2144 (($) 26 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 34)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1265 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1244 |#1| |#2| |#3|)) (-1050 (-1272 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1265)) -((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1263 |#1| (-1244 |#1| |#2| |#3|)) (-1050 (-1272 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 37)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))) (((-3 (-1265 |#2| |#3| |#4|) "failed") $) 22)) (-2205 (((-573) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))) (((-1265 |#2| |#3| |#4|) $) NIL)) (-1391 (($ $) 41)) (-2232 (((-3 $ "failed") $) 27)) (-3246 (($ $) NIL (|has| (-1265 |#2| |#3| |#4|) (-461)))) (-2343 (($ $ (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 11)) (-3676 (((-112) $) NIL)) (-4334 (($ (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) 25)) (-4036 (((-326 |#2| |#3| |#4|) $) NIL)) (-1382 (($ (-1 (-326 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) $) NIL)) (-1776 (($ (-1 (-1265 |#2| |#3| |#4|) (-1265 |#2| |#3| |#4|)) $) NIL)) (-2440 (((-3 (-852 |#2|) "failed") $) 90)) (-1358 (($ $) NIL)) (-1369 (((-1265 |#2| |#3| |#4|) $) 20)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 (((-1265 |#2| |#3| |#4|) $) NIL)) (-2837 (((-3 $ "failed") $ (-1265 |#2| |#3| |#4|)) NIL (|has| (-1265 |#2| |#3| |#4|) (-565))) (((-3 $ "failed") $ $) NIL)) (-3560 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $) 74)) (-2565 (((-326 |#2| |#3| |#4|) $) 17)) (-3257 (((-1265 |#2| |#3| |#4|) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-1265 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573)))) (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))))) (-1920 (((-653 (-1265 |#2| |#3| |#4|)) $) NIL)) (-4317 (((-1265 |#2| |#3| |#4|) $ (-326 |#2| |#3| |#4|)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-146)))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| (-1265 |#2| |#3| |#4|) (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ (-1265 |#2| |#3| |#4|)) NIL (|has| (-1265 |#2| |#3| |#4|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-1265 |#2| |#3| |#4|)) NIL) (($ (-1265 |#2| |#3| |#4|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573))))))) -(((-1266 |#1| |#2| |#3| |#4|) (-13 (-333 (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) (-565) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -3560 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $)))) (-13 (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -1266)) -((-2440 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-852 *4)) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4))) (-3560 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 *4 *5 *6)) (|:| |%expon| (-326 *4 *5 *6)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))))) (|:| |%type| (-1171)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4)))) -(-13 (-333 (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) (-565) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -3560 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $)))) -((-3082 ((|#2| $) 34)) (-2404 ((|#2| $) 18)) (-1969 (($ $) 53)) (-1896 (($ $ (-573)) 85)) (-3450 (((-112) $ (-780)) 46)) (-2367 ((|#2| $ |#2|) 82)) (-2016 ((|#2| $ |#2|) 78)) (-3142 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2720 (($ $ (-653 $)) 81)) (-2392 ((|#2| $) 17)) (-2925 (($ $) NIL) (($ $ (-780)) 59)) (-3113 (((-653 $) $) 31)) (-3208 (((-112) $ $) 69)) (-2078 (((-112) $ (-780)) 45)) (-2673 (((-112) $ (-780)) 43)) (-2880 (((-112) $) 33)) (-3359 ((|#2| $) 25) (($ $ (-780)) 64)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1628 (((-112) $) 23)) (-1992 (($ $) 56)) (-3839 (($ $) 86)) (-4072 (((-780) $) 58)) (-1512 (($ $) 57)) (-4156 (($ $ $) 77) (($ |#2| $) NIL)) (-1811 (((-653 $) $) 32)) (-2981 (((-112) $ $) 67)) (-2862 (((-780) $) 52))) -(((-1267 |#1| |#2|) (-10 -8 (-15 -1896 (|#1| |#1| (-573))) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -2016 (|#2| |#1| |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3839 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -2404 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2198 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2367 (|#2| |#1| |#2|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2720 (|#1| |#1| (-653 |#1|))) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) (-1268 |#2|) (-1230)) (T -1267)) -NIL -(-10 -8 (-15 -1896 (|#1| |#1| (-573))) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -2016 (|#2| |#1| |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3839 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -2404 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2198 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2367 (|#2| |#1| |#2|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2720 (|#1| |#1| (-653 |#1|))) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1268 |#1|) (-141) (-1230)) (T -1268)) -((-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2925 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-1512 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-1992 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3839 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2554 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2016 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-1896 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) (-4 *3 (-1230))))) -(-13 (-1022 |t#1|) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4156 ($ |t#1| $)) (-15 -2914 (|t#1| $)) (-15 -2198 (|t#1| $ "first")) (-15 -2914 ($ $ (-780))) (-15 -2925 ($ $)) (-15 -2198 ($ $ "rest")) (-15 -2925 ($ $ (-780))) (-15 -3359 (|t#1| $)) (-15 -2198 (|t#1| $ "last")) (-15 -3359 ($ $ (-780))) (-15 -1969 ($ $)) (-15 -2392 (|t#1| $)) (-15 -2404 (|t#1| $)) (-15 -1512 ($ $)) (-15 -4072 ((-780) $)) (-15 -1992 ($ $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3996 ($ $ $)) (-15 -3996 ($ $ |t#1|)) (-15 -3839 ($ $)) (-15 -2647 (|t#1| $ |t#1|)) (-15 -3142 (|t#1| $ "first" |t#1|)) (-15 -2554 ($ $ $)) (-15 -3142 ($ $ "rest" $)) (-15 -2016 (|t#1| $ |t#1|)) (-15 -3142 (|t#1| $ "last" |t#1|)) (-15 -1896 ($ $ (-573)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) -((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-1061) (-1061) (-1271 |#1|) (-1271 |#2|)) (T -1269)) -((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-1271 *6)) (-5 *1 (-1269 *5 *6 *4 *2)) (-4 *4 (-1271 *5))))) -(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) -((-1748 (((-112) $) 17)) (-2363 (($ $) 105)) (-2246 (($ $) 81)) (-2342 (($ $) 101)) (-2225 (($ $) 77)) (-2388 (($ $) 109)) (-2266 (($ $) 85)) (-3118 (($ $) 75)) (-1608 (($ $) 73)) (-2401 (($ $) 111)) (-2274 (($ $) 87)) (-2374 (($ $) 107)) (-2255 (($ $) 83)) (-2352 (($ $) 103)) (-2236 (($ $) 79)) (-2942 (((-871) $) 61) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2439 (($ $) 117)) (-2304 (($ $) 93)) (-2413 (($ $) 113)) (-2286 (($ $) 89)) (-2464 (($ $) 121)) (-2324 (($ $) 97)) (-2520 (($ $) 123)) (-2333 (($ $) 99)) (-2452 (($ $) 119)) (-2314 (($ $) 95)) (-2426 (($ $) 115)) (-2296 (($ $) 91)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-416 (-573))) 71))) -(((-1270 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -1748 ((-112) |#1|)) (-15 -2942 ((-871) |#1|))) (-1271 |#2|) (-1061)) (T -1270)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -1748 ((-112) |#1|)) (-15 -2942 ((-871) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 112) (($ $ (-780) (-780)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 169) (($ (-1169 |#1|)) 167)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1806 (($ $) 166)) (-4052 (((-962 |#1|) $ (-780)) 164) (((-962 |#1|) $ (-780) (-780)) 163)) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) 114) (((-780) $ (-780)) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 165)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-780)) 73) (($ $ (-1094) (-780)) 88) (($ $ (-653 (-1094)) (-653 (-780))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-1626 (($ $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 160 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2212 (($ $ (-780)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 119) (($ $ $) 95 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2565 (((-780) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1920 (((-1169 |#1|) $) 168)) (-4317 ((|#1| $ (-780)) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ |#1|) 162 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) -(((-1271 |#1|) (-141) (-1061)) (T -1271)) -((-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-780)) (|:| |c| *3)))) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-5 *2 (-1169 *3)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) (-1806 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1271 *3)) (-4 *3 (-1061)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) (-5 *2 (-962 *4)))) (-4052 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) (-5 *2 (-962 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) -(-13 (-1258 |t#1| (-780)) (-10 -8 (-15 -3622 ($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |t#1|))))) (-15 -1920 ((-1169 |t#1|) $)) (-15 -3622 ($ (-1169 |t#1|))) (-15 -1806 ($ $)) (-15 -2861 ($ (-1 |t#1| (-573)) $)) (-15 -4052 ((-962 |t#1|) $ (-780))) (-15 -4052 ((-962 |t#1|) $ (-780) (-780))) (IF (|has| |t#1| (-371)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-780)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-780) (-1124)) ((-297) |has| |#1| (-565)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) |has| |#1| (-565)) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1258 |#1| #0#) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 90)) (-2866 (((-1253 |#2| |#1|) $ (-780)) 73)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) 142 (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 127) (($ $ (-780) (-780)) 130)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 43)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 52) (($ (-1169 |#1|)) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2080 (($ $) 134)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1806 (($ $) 140)) (-4052 (((-962 |#1|) $ (-780)) 63) (((-962 |#1|) $ (-780) (-780)) 65)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) NIL) (((-780) $ (-780)) NIL)) (-1959 (((-112) $) NIL)) (-2023 (($ $) 117)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3823 (($ (-573) (-573) $) 136)) (-2976 (($ $ (-931)) 139)) (-2861 (($ (-1 |#1| (-573)) $) 111)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 16) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 98)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1742 (($ $) 115)) (-1901 (($ $) 113)) (-2110 (($ (-573) (-573) $) 138)) (-1626 (($ $) 150 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 156 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 151 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-1735 (($ $ (-573) (-573)) 121)) (-2212 (($ $ (-780)) 123)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3616 (($ $) 119)) (-2645 (((-1169 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 95) (($ $ $) 132 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 108 (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-1276 |#2|)) 103)) (-2565 (((-780) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 125)) (-2942 (((-871) $) NIL) (($ (-573)) 26) (($ (-416 (-573))) 148 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1253 |#2| |#1|)) 81) (($ (-1276 |#2|)) 22)) (-1920 (((-1169 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) 94)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 91)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 18 T CONST)) (-2144 (($) 13 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 107)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#1|) 145 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) -(((-1272 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (-15 -1901 ($ $)) (-15 -1742 ($ $)) (-15 -2023 ($ $)) (-15 -3616 ($ $)) (-15 -1735 ($ $ (-573) (-573))) (-15 -2080 ($ $)) (-15 -3823 ($ (-573) (-573) $)) (-15 -2110 ($ (-573) (-573) $)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1272)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-1272 *3 *4 *5)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1272 *4 *5 *6)) (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1901 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-2023 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-3616 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-1735 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-2080 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-3823 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-2110 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (-15 -1901 ($ $)) (-15 -1742 ($ $)) (-15 -2023 ($ $)) (-15 -3616 ($ $)) (-15 -1735 ($ $ (-573) (-573))) (-15 -2080 ($ $)) (-15 -3823 ($ (-573) (-573) $)) (-15 -2110 ($ (-573) (-573) $)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) -((-3832 (((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|))) 24)) (-1571 (((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2716 (((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|)) 13)) (-2272 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4103 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2256 ((|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|)) 60)) (-2834 (((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))) 66)) (-3654 ((|#2| |#2| |#2|) 43))) -(((-1273 |#1| |#2|) (-10 -7 (-15 -2716 ((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|))) (-15 -1571 ((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3832 ((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|)))) (-15 -3654 (|#2| |#2| |#2|)) (-15 -4103 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|))) (-15 -2834 ((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))))) (-38 (-416 (-573))) (-1271 |#1|)) (T -1273)) -((-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 (-1 *6 (-653 *6)))) (-4 *5 (-38 (-416 (-573)))) (-4 *6 (-1271 *5)) (-5 *2 (-653 *6)) (-5 *1 (-1273 *5 *6)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-653 *2))) (-5 *4 (-653 *5)) (-4 *5 (-38 (-416 (-573)))) (-4 *2 (-1271 *5)) (-5 *1 (-1273 *5 *2)))) (-2272 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) (-4 *4 (-38 (-416 (-573)))))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) (-4 *4 (-38 (-416 (-573)))))) (-3654 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1271 *3)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-653 *5))) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-653 (-1169 *4)))) (-5 *1 (-1273 *4 *5)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5))))) -(-10 -7 (-15 -2716 ((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|))) (-15 -1571 ((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3832 ((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|)))) (-15 -3654 (|#2| |#2| |#2|)) (-15 -4103 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|))) (-15 -2834 ((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))))) -((-3259 ((|#2| |#4| (-780)) 31)) (-1670 ((|#4| |#2|) 26)) (-4012 ((|#4| (-416 |#2|)) 49 (|has| |#1| (-565)))) (-3980 (((-1 |#4| (-653 |#4|)) |#3|) 43))) -(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1670 (|#4| |#2|)) (-15 -3259 (|#2| |#4| (-780))) (-15 -3980 ((-1 |#4| (-653 |#4|)) |#3|)) (IF (|has| |#1| (-565)) (-15 -4012 (|#4| (-416 |#2|))) |%noBranch|)) (-1061) (-1256 |#1|) (-665 |#2|) (-1271 |#1|)) (T -1274)) -((-4012 (*1 *2 *3) (-12 (-5 *3 (-416 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-565)) (-4 *4 (-1061)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *5 *6 *2)) (-4 *6 (-665 *5)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-1256 *4)) (-5 *2 (-1 *6 (-653 *6))) (-5 *1 (-1274 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-1271 *4)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-1274 *5 *2 *6 *3)) (-4 *6 (-665 *2)) (-4 *3 (-1271 *5)))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *3 (-1256 *4)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *3 *5 *2)) (-4 *5 (-665 *3))))) -(-10 -7 (-15 -1670 (|#4| |#2|)) (-15 -3259 (|#2| |#4| (-780))) (-15 -3980 ((-1 |#4| (-653 |#4|)) |#3|)) (IF (|has| |#1| (-565)) (-15 -4012 (|#4| (-416 |#2|))) |%noBranch|)) -NIL -(((-1275) (-141)) (T -1275)) -NIL -(-13 (-10 -7 (-6 -3520))) -((-2848 (((-112) $ $) NIL)) (-1487 (((-1189)) 12)) (-3180 (((-1171) $) 18)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11) (((-1189) $) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) -(((-1276 |#1|) (-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -2942 ((-1189) $)) (-15 -1487 ((-1189))))) (-1189)) (T -1276)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2))) (-1487 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2)))) -(-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -2942 ((-1189) $)) (-15 -1487 ((-1189))))) -((-2215 (($ (-780)) 19)) (-3898 (((-698 |#2|) $ $) 41)) (-3155 ((|#2| $) 51)) (-4134 ((|#2| $) 50)) (-2658 ((|#2| $ $) 36)) (-3925 (($ $ $) 47)) (-3093 (($ $) 23) (($ $ $) 29)) (-3077 (($ $ $) 15)) (* (($ (-573) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1277 |#1| |#2|) (-10 -8 (-15 -3155 (|#2| |#1|)) (-15 -4134 (|#2| |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3898 ((-698 |#2|) |#1| |#1|)) (-15 -2658 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2215 (|#1| (-780))) (-15 -3077 (|#1| |#1| |#1|))) (-1278 |#2|) (-1230)) (T -1277)) -NIL -(-10 -8 (-15 -3155 (|#2| |#1|)) (-15 -4134 (|#2| |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3898 ((-698 |#2|) |#1| |#1|)) (-15 -2658 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2215 (|#1| (-780))) (-15 -3077 (|#1| |#1| |#1|))) -((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780)) 115 (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) 108 (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3155 ((|#1| $) 105 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-2673 (((-112) $ (-780)) 10)) (-4134 ((|#1| $) 106 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2658 ((|#1| $ $) 109 (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3925 (($ $ $) 107 (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-3093 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3077 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-573) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-735))) (($ $ |#1|) 110 (|has| |#1| (-735)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) -(((-1278 |#1|) (-141) (-1230)) (T -1278)) -((-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-25)))) (-2215 (*1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1278 *3)) (-4 *3 (-23)) (-4 *3 (-1230)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (-3898 (*1 *2 *1 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-1061)) (-5 *2 (-698 *3)))) (-3925 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) (-4 *2 (-1061)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) (-4 *2 (-1061))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3077 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2215 ($ (-780))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3093 ($ $)) (-15 -3093 ($ $ $)) (-15 * ($ (-573) $))) |%noBranch|) (IF (|has| |t#1| (-735)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1061)) (PROGN (-15 -2658 (|t#1| $ $)) (-15 -3898 ((-698 |t#1|) $ $)) (-15 -3925 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-1061)) (PROGN (-15 -4134 (|t#1| $)) (-15 -3155 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) -((-3094 (((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|) 13)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|) 15)) (-1776 (((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)) 30) (((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|)) 18))) -(((-1279 |#1| |#2|) (-10 -7 (-15 -3094 ((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -1776 ((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|))) (-15 -1776 ((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)))) (-1230) (-1230)) (T -1279)) -((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-1279 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1280 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-1280 *5)) (-5 *1 (-1279 *6 *5))))) -(-10 -7 (-15 -3094 ((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -1776 ((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|))) (-15 -1776 ((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)))) -((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3891 (($ (-653 |#1|)) 11)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 16 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 12 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) NIL (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 20 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 10)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1280 |#1|) (-13 (-1278 |#1|) (-10 -8 (-15 -3891 ($ (-653 |#1|))))) (-1230)) (T -1280)) -((-3891 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1280 *3))))) -(-13 (-1278 |#1|) (-10 -8 (-15 -3891 ($ (-653 |#1|))))) -((-2848 (((-112) $ $) NIL)) (-1602 (((-1171) $ (-1171)) 107) (((-1171) $ (-1171) (-1171)) 105) (((-1171) $ (-1171) (-653 (-1171))) 104)) (-3000 (($) 69)) (-1392 (((-1285) $ (-477) (-931)) 54)) (-1996 (((-1285) $ (-931) (-1171)) 89) (((-1285) $ (-931) (-883)) 90)) (-2807 (((-1285) $ (-931) (-387) (-387)) 57)) (-3876 (((-1285) $ (-1171)) 84)) (-1617 (((-1285) $ (-931) (-1171)) 94)) (-3465 (((-1285) $ (-931) (-387) (-387)) 58)) (-1753 (((-1285) $ (-931) (-931)) 55)) (-1580 (((-1285) $) 85)) (-1785 (((-1285) $ (-931) (-1171)) 93)) (-3194 (((-1285) $ (-477) (-931)) 41)) (-3999 (((-1285) $ (-931) (-1171)) 92)) (-3212 (((-653 (-269)) $) 29) (($ $ (-653 (-269))) 30)) (-3365 (((-1285) $ (-780) (-780)) 52)) (-3265 (($ $) 70) (($ (-477) (-653 (-269))) 71)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 48)) (-3965 (((-1132) $) NIL)) (-1590 (((-1280 (-3 (-477) "undefined")) $) 47)) (-1872 (((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $) 46)) (-3762 (((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573)) 83)) (-3817 (((-653 (-953 (-227))) $) NIL)) (-3387 (((-477) $ (-931)) 43)) (-4089 (((-1285) $ (-780) (-780) (-931) (-931)) 50)) (-2538 (((-1285) $ (-1171)) 95)) (-1962 (((-1285) $ (-931) (-1171)) 91)) (-2942 (((-871) $) 102)) (-1380 (((-1285) $) 96)) (-3507 (((-112) $ $) NIL)) (-3967 (((-1285) $ (-931) (-1171)) 87) (((-1285) $ (-931) (-883)) 88)) (-2981 (((-112) $ $) NIL))) -(((-1281) (-13 (-1112) (-10 -8 (-15 -3817 ((-653 (-953 (-227))) $)) (-15 -3000 ($)) (-15 -3265 ($ $)) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3265 ($ (-477) (-653 (-269)))) (-15 -3762 ((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573))) (-15 -1872 ((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $)) (-15 -1590 ((-1280 (-3 (-477) "undefined")) $)) (-15 -3876 ((-1285) $ (-1171))) (-15 -3194 ((-1285) $ (-477) (-931))) (-15 -3387 ((-477) $ (-931))) (-15 -3967 ((-1285) $ (-931) (-1171))) (-15 -3967 ((-1285) $ (-931) (-883))) (-15 -1996 ((-1285) $ (-931) (-1171))) (-15 -1996 ((-1285) $ (-931) (-883))) (-15 -3999 ((-1285) $ (-931) (-1171))) (-15 -1785 ((-1285) $ (-931) (-1171))) (-15 -1962 ((-1285) $ (-931) (-1171))) (-15 -2538 ((-1285) $ (-1171))) (-15 -1380 ((-1285) $)) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3465 ((-1285) $ (-931) (-387) (-387))) (-15 -2807 ((-1285) $ (-931) (-387) (-387))) (-15 -1617 ((-1285) $ (-931) (-1171))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1392 ((-1285) $ (-477) (-931))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1580 ((-1285) $)) (-15 -3692 ((-573) $)) (-15 -2942 ((-871) $))))) (T -1281)) -((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1281)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-653 (-953 (-227)))) (-5 *1 (-1281)))) (-3000 (*1 *1) (-5 *1 (-1281))) (-3265 (*1 *1 *1) (-5 *1 (-1281))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) (-3265 (*1 *1 *2 *3) (-12 (-5 *2 (-477)) (-5 *3 (-653 (-269))) (-5 *1 (-1281)))) (-3762 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-931)) (-5 *4 (-227)) (-5 *5 (-573)) (-5 *6 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573))))) (-5 *1 (-1281)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1280 (-3 (-477) "undefined"))) (-5 *1 (-1281)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-5 *2 (-477)) (-5 *1 (-1281)))) (-3967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1785 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1962 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) (-4089 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3465 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-2807 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1617 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3365 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1392 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1753 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1281))))) -(-13 (-1112) (-10 -8 (-15 -3817 ((-653 (-953 (-227))) $)) (-15 -3000 ($)) (-15 -3265 ($ $)) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3265 ($ (-477) (-653 (-269)))) (-15 -3762 ((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573))) (-15 -1872 ((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $)) (-15 -1590 ((-1280 (-3 (-477) "undefined")) $)) (-15 -3876 ((-1285) $ (-1171))) (-15 -3194 ((-1285) $ (-477) (-931))) (-15 -3387 ((-477) $ (-931))) (-15 -3967 ((-1285) $ (-931) (-1171))) (-15 -3967 ((-1285) $ (-931) (-883))) (-15 -1996 ((-1285) $ (-931) (-1171))) (-15 -1996 ((-1285) $ (-931) (-883))) (-15 -3999 ((-1285) $ (-931) (-1171))) (-15 -1785 ((-1285) $ (-931) (-1171))) (-15 -1962 ((-1285) $ (-931) (-1171))) (-15 -2538 ((-1285) $ (-1171))) (-15 -1380 ((-1285) $)) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3465 ((-1285) $ (-931) (-387) (-387))) (-15 -2807 ((-1285) $ (-931) (-387) (-387))) (-15 -1617 ((-1285) $ (-931) (-1171))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1392 ((-1285) $ (-477) (-931))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1580 ((-1285) $)) (-15 -3692 ((-573) $)) (-15 -2942 ((-871) $)))) -((-2848 (((-112) $ $) NIL)) (-3058 (((-1285) $ (-387)) 169) (((-1285) $ (-387) (-387) (-387)) 170)) (-1602 (((-1171) $ (-1171)) 179) (((-1171) $ (-1171) (-1171)) 177) (((-1171) $ (-1171) (-653 (-1171))) 176)) (-3824 (($) 67)) (-3798 (((-1285) $ (-387) (-387) (-387) (-387) (-387)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1285) $ (-573) (-573) (-387) (-387) (-387)) 144) (((-1285) $ (-387) (-387)) 145) (((-1285) $ (-387) (-387) (-387)) 152)) (-2730 (((-387)) 122) (((-387) (-387)) 123)) (-3052 (((-387)) 117) (((-387) (-387)) 119)) (-3446 (((-387)) 120) (((-387) (-387)) 121)) (-3205 (((-387)) 126) (((-387) (-387)) 127)) (-4038 (((-387)) 124) (((-387) (-387)) 125)) (-2807 (((-1285) $ (-387) (-387)) 171)) (-3876 (((-1285) $ (-1171)) 153)) (-2895 (((-1145 (-227)) $) 68) (($ $ (-1145 (-227))) 69)) (-2875 (((-1285) $ (-1171)) 187)) (-1516 (((-1285) $ (-1171)) 188)) (-2134 (((-1285) $ (-387) (-387)) 151) (((-1285) $ (-573) (-573)) 168)) (-1753 (((-1285) $ (-931) (-931)) 160)) (-1580 (((-1285) $) 137)) (-2997 (((-1285) $ (-1171)) 186)) (-2859 (((-1285) $ (-1171)) 134)) (-3212 (((-653 (-269)) $) 70) (($ $ (-653 (-269))) 71)) (-3365 (((-1285) $ (-780) (-780)) 159)) (-3063 (((-1285) $ (-780) (-953 (-227))) 193)) (-3913 (($ $) 73) (($ (-1145 (-227)) (-1171)) 74) (($ (-1145 (-227)) (-653 (-269))) 75)) (-2046 (((-1285) $ (-387) (-387) (-387)) 131)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 128)) (-2726 (((-1285) $ (-387)) 174)) (-3923 (((-1285) $ (-387)) 191)) (-3965 (((-1132) $) NIL)) (-2552 (((-1285) $ (-387)) 190)) (-4177 (((-1285) $ (-1171)) 136)) (-4089 (((-1285) $ (-780) (-780) (-931) (-931)) 158)) (-3065 (((-1285) $ (-1171)) 133)) (-2538 (((-1285) $ (-1171)) 135)) (-3778 (((-1285) $ (-158) (-158)) 157)) (-2942 (((-871) $) 166)) (-1380 (((-1285) $) 138)) (-3918 (((-1285) $ (-1171)) 189)) (-3507 (((-112) $ $) NIL)) (-3967 (((-1285) $ (-1171)) 132)) (-2981 (((-112) $ $) NIL))) -(((-1282) (-13 (-1112) (-10 -8 (-15 -3052 ((-387))) (-15 -3052 ((-387) (-387))) (-15 -3446 ((-387))) (-15 -3446 ((-387) (-387))) (-15 -2730 ((-387))) (-15 -2730 ((-387) (-387))) (-15 -4038 ((-387))) (-15 -4038 ((-387) (-387))) (-15 -3205 ((-387))) (-15 -3205 ((-387) (-387))) (-15 -3824 ($)) (-15 -3913 ($ $)) (-15 -3913 ($ (-1145 (-227)) (-1171))) (-15 -3913 ($ (-1145 (-227)) (-653 (-269)))) (-15 -2895 ((-1145 (-227)) $)) (-15 -2895 ($ $ (-1145 (-227)))) (-15 -3063 ((-1285) $ (-780) (-953 (-227)))) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -3876 ((-1285) $ (-1171))) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3798 ((-1285) $ (-387) (-387) (-387) (-387) (-387))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3798 ((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3798 ((-1285) $ (-573) (-573) (-387) (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387) (-387))) (-15 -2538 ((-1285) $ (-1171))) (-15 -3967 ((-1285) $ (-1171))) (-15 -3065 ((-1285) $ (-1171))) (-15 -2859 ((-1285) $ (-1171))) (-15 -4177 ((-1285) $ (-1171))) (-15 -2134 ((-1285) $ (-387) (-387))) (-15 -2134 ((-1285) $ (-573) (-573))) (-15 -3058 ((-1285) $ (-387))) (-15 -3058 ((-1285) $ (-387) (-387) (-387))) (-15 -2807 ((-1285) $ (-387) (-387))) (-15 -2997 ((-1285) $ (-1171))) (-15 -2552 ((-1285) $ (-387))) (-15 -3923 ((-1285) $ (-387))) (-15 -2875 ((-1285) $ (-1171))) (-15 -1516 ((-1285) $ (-1171))) (-15 -3918 ((-1285) $ (-1171))) (-15 -2046 ((-1285) $ (-387) (-387) (-387))) (-15 -2726 ((-1285) $ (-387))) (-15 -1580 ((-1285) $)) (-15 -3778 ((-1285) $ (-158) (-158))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1380 ((-1285) $)) (-15 -3692 ((-573) $))))) (T -1282)) -((-3052 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3446 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-2730 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-2730 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-4038 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-4038 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3205 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3824 (*1 *1) (-5 *1 (-1282))) (-3913 (*1 *1 *1) (-5 *1 (-1282))) (-3913 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1171)) (-5 *1 (-1282)))) (-3913 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-653 (-269))) (-5 *1 (-1282)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) (-3063 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) (-3365 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1753 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-4089 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-573)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3967 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2859 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3058 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2807 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2552 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3923 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1516 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3918 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2046 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2726 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1282))))) -(-13 (-1112) (-10 -8 (-15 -3052 ((-387))) (-15 -3052 ((-387) (-387))) (-15 -3446 ((-387))) (-15 -3446 ((-387) (-387))) (-15 -2730 ((-387))) (-15 -2730 ((-387) (-387))) (-15 -4038 ((-387))) (-15 -4038 ((-387) (-387))) (-15 -3205 ((-387))) (-15 -3205 ((-387) (-387))) (-15 -3824 ($)) (-15 -3913 ($ $)) (-15 -3913 ($ (-1145 (-227)) (-1171))) (-15 -3913 ($ (-1145 (-227)) (-653 (-269)))) (-15 -2895 ((-1145 (-227)) $)) (-15 -2895 ($ $ (-1145 (-227)))) (-15 -3063 ((-1285) $ (-780) (-953 (-227)))) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -3876 ((-1285) $ (-1171))) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3798 ((-1285) $ (-387) (-387) (-387) (-387) (-387))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3798 ((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3798 ((-1285) $ (-573) (-573) (-387) (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387) (-387))) (-15 -2538 ((-1285) $ (-1171))) (-15 -3967 ((-1285) $ (-1171))) (-15 -3065 ((-1285) $ (-1171))) (-15 -2859 ((-1285) $ (-1171))) (-15 -4177 ((-1285) $ (-1171))) (-15 -2134 ((-1285) $ (-387) (-387))) (-15 -2134 ((-1285) $ (-573) (-573))) (-15 -3058 ((-1285) $ (-387))) (-15 -3058 ((-1285) $ (-387) (-387) (-387))) (-15 -2807 ((-1285) $ (-387) (-387))) (-15 -2997 ((-1285) $ (-1171))) (-15 -2552 ((-1285) $ (-387))) (-15 -3923 ((-1285) $ (-387))) (-15 -2875 ((-1285) $ (-1171))) (-15 -1516 ((-1285) $ (-1171))) (-15 -3918 ((-1285) $ (-1171))) (-15 -2046 ((-1285) $ (-387) (-387) (-387))) (-15 -2726 ((-1285) $ (-387))) (-15 -1580 ((-1285) $)) (-15 -3778 ((-1285) $ (-158) (-158))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1380 ((-1285) $)) (-15 -3692 ((-573) $)))) -((-2502 (((-653 (-1171)) (-653 (-1171))) 104) (((-653 (-1171))) 96)) (-1763 (((-653 (-1171))) 94)) (-3573 (((-653 (-931)) (-653 (-931))) 69) (((-653 (-931))) 64)) (-4028 (((-653 (-780)) (-653 (-780))) 61) (((-653 (-780))) 55)) (-4003 (((-1285)) 71)) (-1967 (((-931) (-931)) 87) (((-931)) 86)) (-3885 (((-931) (-931)) 85) (((-931)) 84)) (-1584 (((-883) (-883)) 81) (((-883)) 80)) (-1620 (((-227)) 91) (((-227) (-387)) 93)) (-4207 (((-931)) 88) (((-931) (-931)) 89)) (-2462 (((-931) (-931)) 83) (((-931)) 82)) (-2434 (((-883) (-883)) 75) (((-883)) 73)) (-2162 (((-883) (-883)) 77) (((-883)) 76)) (-2158 (((-883) (-883)) 79) (((-883)) 78))) -(((-1283) (-10 -7 (-15 -2434 ((-883))) (-15 -2434 ((-883) (-883))) (-15 -2162 ((-883))) (-15 -2162 ((-883) (-883))) (-15 -2158 ((-883))) (-15 -2158 ((-883) (-883))) (-15 -1584 ((-883))) (-15 -1584 ((-883) (-883))) (-15 -2462 ((-931))) (-15 -2462 ((-931) (-931))) (-15 -4028 ((-653 (-780)))) (-15 -4028 ((-653 (-780)) (-653 (-780)))) (-15 -3573 ((-653 (-931)))) (-15 -3573 ((-653 (-931)) (-653 (-931)))) (-15 -4003 ((-1285))) (-15 -2502 ((-653 (-1171)))) (-15 -2502 ((-653 (-1171)) (-653 (-1171)))) (-15 -1763 ((-653 (-1171)))) (-15 -3885 ((-931))) (-15 -1967 ((-931))) (-15 -3885 ((-931) (-931))) (-15 -1967 ((-931) (-931))) (-15 -4207 ((-931) (-931))) (-15 -4207 ((-931))) (-15 -1620 ((-227) (-387))) (-15 -1620 ((-227))))) (T -1283)) -((-1620 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1283)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-1283)))) (-4207 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1967 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1967 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-3885 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1763 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-2502 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-4003 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1283)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) (-3573 (*1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) (-4028 (*1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-2462 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-1584 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2158 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2162 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2434 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) -(-10 -7 (-15 -2434 ((-883))) (-15 -2434 ((-883) (-883))) (-15 -2162 ((-883))) (-15 -2162 ((-883) (-883))) (-15 -2158 ((-883))) (-15 -2158 ((-883) (-883))) (-15 -1584 ((-883))) (-15 -1584 ((-883) (-883))) (-15 -2462 ((-931))) (-15 -2462 ((-931) (-931))) (-15 -4028 ((-653 (-780)))) (-15 -4028 ((-653 (-780)) (-653 (-780)))) (-15 -3573 ((-653 (-931)))) (-15 -3573 ((-653 (-931)) (-653 (-931)))) (-15 -4003 ((-1285))) (-15 -2502 ((-653 (-1171)))) (-15 -2502 ((-653 (-1171)) (-653 (-1171)))) (-15 -1763 ((-653 (-1171)))) (-15 -3885 ((-931))) (-15 -1967 ((-931))) (-15 -3885 ((-931) (-931))) (-15 -1967 ((-931) (-931))) (-15 -4207 ((-931) (-931))) (-15 -4207 ((-931))) (-15 -1620 ((-227) (-387))) (-15 -1620 ((-227)))) -((-3713 (((-477) (-653 (-653 (-953 (-227)))) (-653 (-269))) 22) (((-477) (-653 (-653 (-953 (-227))))) 21) (((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269))) 20)) (-2563 (((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269))) 30) (((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269))) 29)) (-2942 (((-1281) (-477)) 46))) -(((-1284) (-10 -7 (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2942 ((-1281) (-477))))) (T -1284)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-2563 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-477)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284))))) -(-10 -7 (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2942 ((-1281) (-477)))) -((-2425 (($) 6)) (-2942 (((-871) $) 9))) -(((-1285) (-13 (-622 (-871)) (-10 -8 (-15 -2425 ($))))) (T -1285)) -((-2425 (*1 *1) (-5 *1 (-1285)))) -(-13 (-622 (-871)) (-10 -8 (-15 -2425 ($)))) -((-3103 (($ $ |#2|) 10))) -(((-1286 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-1287 |#2|) (-371)) (T -1286)) -NIL -(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2365 (((-135)) 33)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 34)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1287 |#1|) (-141) (-371)) (T -1287)) -((-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-371)))) (-2365 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-371)) (-5 *2 (-135))))) -(-13 (-726 |t#1|) (-10 -8 (-15 -3103 ($ $ |t#1|)) (-15 -2365 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) -((-1537 (((-653 (-1224 |#1|)) (-1189) (-1224 |#1|)) 83)) (-1850 (((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|))) 63)) (-2405 (((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))) 74)) (-2643 (((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780)) 65)) (-1717 (((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189)) 32)) (-2699 (((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780)) 64))) -(((-1288 |#1|) (-10 -7 (-15 -2643 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -2699 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -1850 ((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|)))) (-15 -1717 ((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189))) (-15 -1537 ((-653 (-1224 |#1|)) (-1189) (-1224 |#1|))) (-15 -2405 ((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))))) (-371)) (T -1288)) -((-2405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780)) (-4 *6 (-371)) (-5 *4 (-1224 *6)) (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1288 *6)) (-5 *5 (-1169 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-653 (-1224 *5))) (-5 *1 (-1288 *5)) (-5 *4 (-1224 *5)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 (-1185 (-962 *4)) (-962 *4))) (-5 *1 (-1288 *4)) (-4 *4 (-371)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-1169 (-1169 (-962 *5)))) (-5 *1 (-1288 *5)) (-5 *4 (-1169 (-962 *5))))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) (-5 *1 (-1288 *4)) (-4 *4 (-371)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) (-5 *1 (-1288 *4)) (-4 *4 (-371))))) -(-10 -7 (-15 -2643 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -2699 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -1850 ((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|)))) (-15 -1717 ((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189))) (-15 -1537 ((-653 (-1224 |#1|)) (-1189) (-1224 |#1|))) (-15 -2405 ((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))))) -((-3574 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|) 80)) (-3529 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) 79))) -(((-1289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|))) (-357) (-1256 |#1|) (-1256 |#2|) (-418 |#2| |#3|)) (T -1289)) -((-3574 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-1289 *4 *3 *5 *6)) (-4 *6 (-418 *3 *5)))) (-3529 (*1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-698 *4)))) (-5 *1 (-1289 *3 *4 *5 *6)) (-4 *6 (-418 *4 *5))))) -(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|))) -((-2848 (((-112) $ $) NIL)) (-2818 (((-1147) $) 11)) (-1693 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1290) (-13 (-1095) (-10 -8 (-15 -1693 ((-1147) $)) (-15 -2818 ((-1147) $))))) (T -1290)) -((-1693 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) -(-13 (-1095) (-10 -8 (-15 -1693 ((-1147) $)) (-15 -2818 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2264 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1291) (-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $))))) (T -1291)) -((-2264 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1291))))) -(-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 58)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 81) (($ (-573)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1545 (((-780)) NIL T CONST)) (-4291 (((-1285) (-780)) 16)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 84 T CONST)) (-2981 (((-112) $ $) 87)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) 89) (($ $ $) NIL)) (-3077 (($ $ $) 63)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1292 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1061) (-499 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) (-1061) (-859) (-802) (-959 |#1| |#3| |#2|) (-653 |#2|) (-653 (-780)) (-780)) (T -1292)) -((-3103 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-802)) (-14 *6 (-653 *3)) (-5 *1 (-1292 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-959 *2 *4 *3)) (-14 *7 (-653 (-780))) (-14 *8 (-780)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-14 *8 (-653 *5)) (-5 *2 (-1285)) (-5 *1 (-1292 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-959 *4 *6 *5)) (-14 *9 (-653 *3)) (-14 *10 *3)))) -(-13 (-1061) (-499 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) -((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 96)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2346 (((-653 |#4|) (-653 |#4|) $) 28 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 78)) (-3760 ((|#4| |#4| $) 83)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-1863 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 84)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 32 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3984 (((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-653 |#4|)) 38)) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-3 |#4| "failed") $) NIL)) (-2870 (((-653 |#4|) $) 54)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) 82)) (-2614 (((-112) $ $) 93)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 77)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) NIL)) (-2212 (($ $ |#4|) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 75)) (-3508 (($) 46)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) NIL)) (-4409 (($ $ |#3|) NIL)) (-3496 (($ $ |#3|) NIL)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) NIL) (((-653 |#4|) $) 63)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3540 (((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-653 |#4|)) 45)) (-3895 (((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-653 $) (-653 |#4|)) 74)) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-4333 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) -(((-1293 |#1| |#2| |#3| |#4|) (-13 (-1223 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3984 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3984 ((-3 $ "failed") (-653 |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|))) (-15 -3895 ((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3895 ((-653 $) (-653 |#4|))))) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1293)) -((-3984 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8)))) (-3984 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1293 *3 *4 *5 *6)))) (-3540 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8)))) (-3540 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1293 *3 *4 *5 *6)))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-653 (-1293 *6 *7 *8 *9))) (-5 *1 (-1293 *6 *7 *8 *9)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-1293 *4 *5 *6 *7))) (-5 *1 (-1293 *4 *5 *6 *7))))) -(-13 (-1223 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3984 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3984 ((-3 $ "failed") (-653 |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|))) (-15 -3895 ((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3895 ((-653 $) (-653 |#4|))))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 45)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1294 |#1|) (-141) (-1061)) (T -1294)) -NIL -(-13 (-1061) (-111 |t#1| |t#1|) (-625 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) -((-2848 (((-112) $ $) 67)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 52)) (-4398 (($ $ (-780)) 46)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ (-780)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ $) 70) (($ $ (-828 |#1|)) 56) (($ $ |#1|) 60)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL)) (-1391 (($ $) 39)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) NIL)) (-2329 (($ $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) 38)) (-4386 (($ $) 40)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 12)) (-1585 (((-828 |#1|) $) NIL)) (-3400 (((-828 |#1|) $) 41)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (($ $ $) 69) (($ $ (-828 |#1|)) 58) (($ $ |#1|) 62)) (-3228 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-828 |#1|) $) 35)) (-1369 ((|#2| $) 37)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2565 (((-780) $) 43)) (-4044 (((-112) $) 47)) (-1705 ((|#2| $) NIL)) (-2942 (((-871) $) NIL) (($ (-828 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-573)) NIL)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-828 |#1|)) NIL)) (-1857 ((|#2| $ $) 76) ((|#2| $ (-828 |#1|)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 13 T CONST)) (-2144 (($) 19 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2981 (((-112) $ $) 44)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 28)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-828 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1295 |#1| |#2|) (-13 (-390 |#2| (-828 |#1|)) (-1301 |#1| |#2|)) (-859) (-1061)) (T -1295)) -NIL -(-13 (-390 |#2| (-828 |#1|)) (-1301 |#1| |#2|)) -((-3118 ((|#3| |#3| (-780)) 28)) (-1608 ((|#3| |#3| (-780)) 34)) (-2850 ((|#3| |#3| |#3| (-780)) 35))) -(((-1296 |#1| |#2| |#3|) (-10 -7 (-15 -1608 (|#3| |#3| (-780))) (-15 -3118 (|#3| |#3| (-780))) (-15 -2850 (|#3| |#3| |#3| (-780)))) (-13 (-1061) (-726 (-416 (-573)))) (-859) (-1301 |#2| |#1|)) (T -1296)) -((-2850 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) (-3118 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4))))) -(-10 -7 (-15 -1608 (|#3| |#3| (-780))) (-15 -3118 (|#3| |#3| (-780))) (-15 -2850 (|#3| |#3| |#3| (-780)))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 47)) (-2983 (((-3 $ "failed") $ $) 20)) (-3348 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-780)) 49 (|has| |#2| (-174)))) (-2579 (($) 18 T CONST)) (-1680 (($ $ |#1|) 61) (($ $ (-828 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-828 |#1|) "failed") $) 71)) (-2205 (((-828 |#1|) $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2088 (((-112) $) 52)) (-2329 (($ $) 51)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 57)) (-3831 (($ (-828 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 67)) (-1585 (((-828 |#1|) $) 68)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-1435 (($ $ |#1|) 64) (($ $ (-828 |#1|)) 63) (($ $ $) 62)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4044 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#2|) 75) (($ (-828 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-828 |#1|)) 66) ((|#2| $ $) 65)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1297 |#1| |#2|) (-141) (-859) (-1061)) (T -1297)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-828 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-2 (|:| |k| (-828 *3)) (|:| |c| *4))))) (-1857 (*1 *2 *1 *3) (-12 (-5 *3 (-828 *4)) (-4 *1 (-1297 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1061)))) (-1857 (*1 *2 *1 *1) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (-1435 (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1435 (*1 *1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1435 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1680 (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1680 (*1 *1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-3831 (*1 *1 *2 *3) (-12 (-5 *2 (-828 *4)) (-4 *4 (-859)) (-4 *1 (-1297 *4 *3)) (-4 *3 (-1061)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-2942 (*1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-3348 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)) (-4 *3 (-174)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-4 *4 (-174)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-653 *3))))) -(-13 (-1061) (-1294 |t#2|) (-1050 (-828 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1585 ((-828 |t#1|) $)) (-15 -3781 ((-2 (|:| |k| (-828 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1857 (|t#2| $ (-828 |t#1|))) (-15 -1857 (|t#2| $ $)) (-15 -1435 ($ $ |t#1|)) (-15 -1435 ($ $ (-828 |t#1|))) (-15 -1435 ($ $ $)) (-15 -1680 ($ $ |t#1|)) (-15 -1680 ($ $ (-828 |t#1|))) (-15 -1680 ($ $ $)) (-15 -3831 ($ (-828 |t#1|) |t#2|)) (-15 -3676 ((-112) $)) (-15 -4386 ($ $)) (-15 -2942 ($ |t#1|)) (-15 -4044 ((-112) $)) (-15 -1705 (|t#2| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3348 ($ $ $)) (-15 -3348 ($ $ (-780)))) |%noBranch|) (-15 -1776 ($ (-1 |t#2| |t#2|) $)) (-15 -1653 ((-653 |t#1|) $)) (IF (|has| |t#2| (-6 -4448)) (-6 -4448) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 #0=(-828 |#1|)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) |has| |#2| (-174)) ((-726 |#2|) |has| |#2| (-174)) ((-735) . T) ((-1050 #0#) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1294 |#2|) . T)) -((-3511 (((-112) $) 15)) (-4333 (((-112) $) 14)) (-1629 (($ $) 19) (($ $ (-780)) 21))) -(((-1298 |#1| |#2|) (-10 -8 (-15 -1629 (|#1| |#1| (-780))) (-15 -1629 (|#1| |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|))) (-1299 |#2|) (-371)) (T -1298)) -NIL -(-10 -8 (-15 -1629 (|#1| |#1| (-780))) (-15 -1629 (|#1| |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-3511 (((-112) $) 104)) (-3115 (((-780)) 100)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2205 ((|#1| $) 112)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2104 (($ $ (-780)) 97 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) 96 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 94 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-2772 (((-112) $) 103)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-3216 (((-842 (-931))) 101)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 95 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) 109)) (-2565 (((-842 (-931)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 110)) (-4279 (((-3 $ "failed") $) 93 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-4333 (((-112) $) 105)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-1629 (($ $) 99 (|has| |#1| (-376))) (($ $ (-780)) 98 (|has| |#1| (-376)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1299 |#1|) (-141) (-371)) (T -1299)) -((-4333 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) (-3216 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) (-3115 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-780)))) (-1629 (*1 *1 *1) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-371)) (-4 *2 (-376)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-4 *3 (-376))))) -(-13 (-371) (-1050 |t#1|) (-1287 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-411)) |%noBranch|) (-15 -4333 ((-112) $)) (-15 -3511 ((-112) $)) (-15 -2772 ((-112) $)) (-15 -2565 ((-842 (-931)) $)) (-15 -3216 ((-842 (-931)))) (-15 -3115 ((-780))) (IF (|has| |t#1| (-376)) (PROGN (-6 (-411)) (-15 -1629 ($ $)) (-15 -1629 ($ $ (-780)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-411) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T) ((-1287 |#1|) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 98)) (-4398 (($ $ (-780)) 102)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-780)) NIL (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ |#1|) NIL) (($ $ (-828 |#1|)) NIL) (($ $ $) NIL)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL) (((-3 (-903 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL) (((-903 |#1|) $) NIL)) (-1391 (($ $) 101)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) 90)) (-2329 (($ $) 93)) (-3044 (($ $ $ (-780)) 103)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) NIL) (($ (-903 |#1|) |#2|) 29)) (-4386 (($ $) 119)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1585 (((-828 |#1|) $) NIL)) (-3400 (((-828 |#1|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (($ $ |#1|) NIL) (($ $ (-828 |#1|)) NIL) (($ $ $) NIL)) (-3118 (($ $ (-780)) 112 (|has| |#2| (-726 (-416 (-573)))))) (-3228 (((-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-903 |#1|) $) 83)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1608 (($ $ (-780)) 109 (|has| |#2| (-726 (-416 (-573)))))) (-2565 (((-780) $) 99)) (-4044 (((-112) $) 84)) (-1705 ((|#2| $) 88)) (-2942 (((-871) $) 69) (($ (-573)) NIL) (($ |#2|) 60) (($ (-828 |#1|)) NIL) (($ |#1|) 71) (($ (-903 |#1|)) NIL) (($ (-673 |#1| |#2|)) 48) (((-1295 |#1| |#2|) $) 76) (((-1304 |#1| |#2|) $) 81)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-903 |#1|)) NIL)) (-1857 ((|#2| $ (-828 |#1|)) NIL) ((|#2| $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 28 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4284 (((-3 (-673 |#1| |#2|) "failed") $) 118)) (-2981 (((-112) $ $) 77)) (-3093 (($ $) 111) (($ $ $) 110)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-903 |#1|)) NIL))) -(((-1300 |#1| |#2|) (-13 (-1301 |#1| |#2|) (-390 |#2| (-903 |#1|)) (-10 -8 (-15 -2942 ($ (-673 |#1| |#2|))) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1304 |#1| |#2|) $)) (-15 -4284 ((-3 (-673 |#1| |#2|) "failed") $)) (-15 -3044 ($ $ $ (-780))) (IF (|has| |#2| (-726 (-416 (-573)))) (PROGN (-15 -1608 ($ $ (-780))) (-15 -3118 ($ $ (-780)))) |%noBranch|))) (-859) (-174)) (T -1300)) -((-2942 (*1 *1 *2) (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *1 (-1300 *3 *4)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-4284 (*1 *2 *1) (|partial| -12 (-5 *2 (-673 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-3044 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) -(-13 (-1301 |#1| |#2|) (-390 |#2| (-903 |#1|)) (-10 -8 (-15 -2942 ($ (-673 |#1| |#2|))) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1304 |#1| |#2|) $)) (-15 -4284 ((-3 (-673 |#1| |#2|) "failed") $)) (-15 -3044 ($ $ $ (-780))) (IF (|has| |#2| (-726 (-416 (-573)))) (PROGN (-15 -1608 ($ $ (-780))) (-15 -3118 ($ $ (-780)))) |%noBranch|))) -((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 47)) (-4398 (($ $ (-780)) 80)) (-2983 (((-3 $ "failed") $ $) 20)) (-3348 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-780)) 49 (|has| |#2| (-174)))) (-2579 (($) 18 T CONST)) (-1680 (($ $ |#1|) 61) (($ $ (-828 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-828 |#1|) "failed") $) 71)) (-2205 (((-828 |#1|) $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2088 (((-112) $) 52)) (-2329 (($ $) 51)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 57)) (-3831 (($ (-828 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 67)) (-1585 (((-828 |#1|) $) 68)) (-3400 (((-828 |#1|) $) 82)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-1435 (($ $ |#1|) 64) (($ $ (-828 |#1|)) 63) (($ $ $) 62)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 (((-780) $) 81)) (-4044 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#2|) 75) (($ (-828 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-828 |#1|)) 66) ((|#2| $ $) 65)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1301 |#1| |#2|) (-141) (-859) (-1061)) (T -1301)) -((-3400 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-828 *3)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-780)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) -(-13 (-1297 |t#1| |t#2|) (-10 -8 (-15 -3400 ((-828 |t#1|) $)) (-15 -2565 ((-780) $)) (-15 -4398 ($ $ (-780))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 #0=(-828 |#1|)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) |has| |#2| (-174)) ((-726 |#2|) |has| |#2| (-174)) ((-735) . T) ((-1050 #0#) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1294 |#2|) . T) ((-1297 |#1| |#2|) . T)) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 (-1189)) $) NIL)) (-1764 (($ (-1295 (-1189) |#1|)) NIL)) (-4398 (($ $ (-780)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-780)) NIL (|has| |#1| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ (-1189)) NIL) (($ $ (-828 (-1189))) NIL) (($ $ $) NIL)) (-1695 (((-3 (-828 (-1189)) "failed") $) NIL)) (-2205 (((-828 (-1189)) $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) NIL)) (-2329 (($ $) NIL)) (-1959 (((-112) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 (-1189)) |#1|) NIL)) (-4386 (($ $) NIL)) (-3781 (((-2 (|:| |k| (-828 (-1189))) (|:| |c| |#1|)) $) NIL)) (-1585 (((-828 (-1189)) $) NIL)) (-3400 (((-828 (-1189)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (($ $ (-1189)) NIL) (($ $ (-828 (-1189))) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2127 (((-1295 (-1189) |#1|) $) NIL)) (-2565 (((-780) $) NIL)) (-4044 (((-112) $) NIL)) (-1705 ((|#1| $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-828 (-1189))) NIL) (($ (-1189)) NIL)) (-1857 ((|#1| $ (-828 (-1189))) NIL) ((|#1| $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2776 (((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $) NIL)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1189) $) NIL))) -(((-1302 |#1|) (-13 (-1301 (-1189) |#1|) (-10 -8 (-15 -2127 ((-1295 (-1189) |#1|) $)) (-15 -1764 ($ (-1295 (-1189) |#1|))) (-15 -2776 ((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $)))) (-1061)) (T -1302)) -((-2127 (*1 *2 *1) (-12 (-5 *2 (-1295 (-1189) *3)) (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1295 (-1189) *3)) (-4 *3 (-1061)) (-5 *1 (-1302 *3)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-1189)) (|:| |c| (-1302 *3))))) (-5 *1 (-1302 *3)) (-4 *3 (-1061))))) -(-13 (-1301 (-1189) |#1|) (-10 -8 (-15 -2127 ((-1295 (-1189) |#1|) $)) (-15 -1764 ($ (-1295 (-1189) |#1|))) (-15 -2776 ((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $)))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2205 ((|#2| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 42)) (-2088 (((-112) $) 35)) (-2329 (($ $) 37)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ |#2| |#1|) NIL)) (-1585 ((|#2| $) 24)) (-3400 ((|#2| $) 22)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1358 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4044 (((-112) $) 32)) (-1705 ((|#1| $) 33)) (-2942 (((-871) $) 65) (($ (-573)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ |#2|) NIL)) (-1857 ((|#1| $ |#2|) 28)) (-1545 (((-780)) 14 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 29 T CONST)) (-2144 (($) 11 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2981 (((-112) $ $) 30)) (-3103 (($ $ |#1|) 67 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 50)) (** (($ $ (-931)) NIL) (($ $ (-780)) 52)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2862 (((-780) $) 16))) -(((-1303 |#1| |#2|) (-13 (-1061) (-1294 |#1|) (-390 |#1| |#2|) (-625 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2862 ((-780) $)) (-15 -3400 (|#2| $)) (-15 -1585 (|#2| $)) (-15 -1391 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -4044 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-371)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061) (-855)) (T -1303)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-855)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-3400 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061)))) (-1585 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061)))) (-1857 (*1 *2 *1 *3) (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-1705 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-855))))) -(-13 (-1061) (-1294 |#1|) (-390 |#1| |#2|) (-625 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2862 ((-780) $)) (-15 -3400 (|#2| $)) (-15 -1585 (|#2| $)) (-15 -1391 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -4044 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-371)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) -((-2848 (((-112) $ $) 27)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 132)) (-1764 (($ (-1295 |#1| |#2|)) 50)) (-4398 (($ $ (-780)) 38)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-780)) 52 (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ |#1|) 114) (($ $ (-828 |#1|)) 115) (($ $ $) 26)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL)) (-2232 (((-3 $ "failed") $) 122)) (-2088 (((-112) $) 117)) (-2329 (($ $) 118)) (-1959 (((-112) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) 20)) (-4386 (($ $) NIL)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1585 (((-828 |#1|) $) 123)) (-3400 (((-828 |#1|) $) 126)) (-1776 (($ (-1 |#2| |#2|) $) 131)) (-1435 (($ $ |#1|) 112) (($ $ (-828 |#1|)) 113) (($ $ $) 62)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2127 (((-1295 |#1| |#2|) $) 94)) (-2565 (((-780) $) 129)) (-4044 (((-112) $) 81)) (-1705 ((|#2| $) 32)) (-2942 (((-871) $) 73) (($ (-573)) 87) (($ |#2|) 85) (($ (-828 |#1|)) 18) (($ |#1|) 84)) (-1857 ((|#2| $ (-828 |#1|)) 116) ((|#2| $ $) 28)) (-1545 (((-780)) 120 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 15 T CONST)) (-2776 (((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2144 (($) 33 T CONST)) (-2981 (((-112) $ $) 14)) (-3093 (($ $) 98) (($ $ $) 101)) (-3077 (($ $ $) 61)) (** (($ $ (-931)) NIL) (($ $ (-780)) 55)) (* (($ (-931) $) NIL) (($ (-780) $) 53) (($ (-573) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1304 |#1| |#2|) (-13 (-1301 |#1| |#2|) (-10 -8 (-15 -2127 ((-1295 |#1| |#2|) $)) (-15 -1764 ($ (-1295 |#1| |#2|))) (-15 -2776 ((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-859) (-1061)) (T -1304)) -((-2127 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *1 (-1304 *3 *4)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| *3) (|:| |c| (-1304 *3 *4))))) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) -(-13 (-1301 |#1| |#2|) (-10 -8 (-15 -2127 ((-1295 |#1| |#2|) $)) (-15 -1764 ($ (-1295 |#1| |#2|))) (-15 -2776 ((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2848 (((-112) $ $) NIL)) (-1986 (($ (-653 (-931))) 10)) (-3962 (((-983) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 25) (($ (-983)) 14) (((-983) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) -(((-1305) (-13 (-1112) (-499 (-983)) (-10 -8 (-15 -1986 ($ (-653 (-931)))) (-15 -3962 ((-983) $))))) (T -1305)) -((-1986 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1305)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-1305))))) -(-13 (-1112) (-499 (-983)) (-10 -8 (-15 -1986 ($ (-653 (-931)))) (-15 -3962 ((-983) $)))) -((-1880 (((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)) 16) (((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|))) 13))) -(((-1306 |#1|) (-10 -7 (-15 -1880 ((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|)))) (-15 -1880 ((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)))) (-1230)) (T -1306)) -((-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-653 (-1169 *5)) (-653 (-1169 *5)))) (-5 *4 (-573)) (-5 *2 (-653 (-1169 *5))) (-5 *1 (-1306 *5)) (-4 *5 (-1230)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1 (-1169 *4) (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1306 *4)) (-4 *4 (-1230))))) -(-10 -7 (-15 -1880 ((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|)))) (-15 -1880 ((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)))) -((-2712 (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|))) 174) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112)) 173) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)) 172) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112)) 171) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|)) 156)) (-4138 (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|))) 85) (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112)) 84) (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112)) 83)) (-2427 (((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|)) 73)) (-2676 (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|))) 140) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112)) 139) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112)) 138) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112)) 137) (((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|)) 132)) (-2531 (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|))) 145) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112)) 144) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112)) 143) (((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|)) 142)) (-1835 (((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) 111) (((-1185 (-1036 (-416 |#1|))) (-1185 |#1|)) 102) (((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|))) 109) (((-962 (-1036 (-416 |#1|))) (-962 |#1|)) 107) (((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|))) 33))) -(((-1307 |#1| |#2| |#3|) (-10 -7 (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2427 ((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|))) (-15 -1835 ((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|)))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-962 |#1|))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|)))) (-15 -1835 ((-1185 (-1036 (-416 |#1|))) (-1185 |#1|))) (-15 -1835 ((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))))) (-13 (-857) (-314) (-148) (-1034)) (-653 (-1189)) (-653 (-1189))) (T -1307)) -((-1835 (*1 *2 *3) (-12 (-5 *3 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6)))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-789 *4 (-873 *6)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-1185 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-789 *4 (-873 *6))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-789 *4 (-873 *5))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-789 *4 (-873 *6))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2531 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1307 *4 *5 *6)) (-5 *3 (-653 (-962 *4))) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *4 *5))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-4138 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189)))))) -(-10 -7 (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2427 ((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|))) (-15 -1835 ((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|)))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-962 |#1|))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|)))) (-15 -1835 ((-1185 (-1036 (-416 |#1|))) (-1185 |#1|))) (-15 -1835 ((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))))) -((-4349 (((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|) 21)) (-3392 (((-112) (-1280 |#1|)) 12)) (-3415 (((-3 (-1280 (-573)) "failed") (-1280 |#1|)) 16))) -(((-1308 |#1|) (-10 -7 (-15 -3392 ((-112) (-1280 |#1|))) (-15 -3415 ((-3 (-1280 (-573)) "failed") (-1280 |#1|))) (-15 -4349 ((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|))) (-13 (-1061) (-648 (-573)))) (T -1308)) -((-4349 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-1280 (-416 (-573)))) (-5 *1 (-1308 *4)))) (-3415 (*1 *2 *3) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-1280 (-573))) (-5 *1 (-1308 *4)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-1308 *4))))) -(-10 -7 (-15 -3392 ((-112) (-1280 |#1|))) (-15 -3415 ((-3 (-1280 (-573)) "failed") (-1280 |#1|))) (-15 -4349 ((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|))) -((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 11)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) 8)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 58)) (-2819 (($) 49)) (-1959 (((-112) $) 57)) (-1470 (((-3 $ "failed") $) 40)) (-3589 (((-931) $) 15)) (-3180 (((-1171) $) NIL)) (-3816 (($) 32 T CONST)) (-2575 (($ (-931)) 50)) (-3965 (((-1132) $) NIL)) (-1835 (((-573) $) 13)) (-2942 (((-871) $) 27) (($ (-573)) 24)) (-1545 (((-780)) 9 T CONST)) (-3507 (((-112) $ $) 60)) (-2132 (($) 29 T CONST)) (-2144 (($) 31 T CONST)) (-2981 (((-112) $ $) 38)) (-3093 (($ $) 52) (($ $ $) 47)) (-3077 (($ $ $) 35)) (** (($ $ (-931)) NIL) (($ $ (-780)) 54)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 44) (($ $ $) 43))) -(((-1309 |#1|) (-13 (-174) (-376) (-623 (-573)) (-1164)) (-931)) (T -1309)) -NIL -(-13 (-174) (-376) (-623 (-573)) (-1164)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3238343 3238348 3238353 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238328 3238333 3238338 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238313 3238318 3238323 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3238298 3238303 3238308 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1309 3237441 3238173 3238250 "ZMOD" 3238255 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1308 3236495 3236659 3236882 "ZLINDEP" 3237273 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1307 3225795 3227563 3229535 "ZDSOLVE" 3234625 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1306 3225041 3225182 3225371 "YSTREAM" 3225641 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1305 3224469 3224715 3224828 "YDIAGRAM" 3224950 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1304 3222243 3223770 3223974 "XRPOLY" 3224312 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3218796 3220114 3220689 "XPR" 3221715 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1302 3216517 3218127 3218331 "XPOLY" 3218627 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1301 3214170 3215538 3215593 "XPOLYC" 3215881 NIL XPOLYC (NIL T T) -9 NIL 3215994 NIL) (-1300 3210546 3212687 3213075 "XPBWPOLY" 3213828 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1299 3206241 3208536 3208578 "XF" 3209199 NIL XF (NIL T) -9 NIL 3209599 NIL) (-1298 3205862 3205950 3206119 "XF-" 3206124 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1297 3201058 3202347 3202402 "XFALG" 3204574 NIL XFALG (NIL T T) -9 NIL 3205363 NIL) (-1296 3200191 3200295 3200500 "XEXPPKG" 3200950 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1295 3198300 3200041 3200137 "XDPOLY" 3200142 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1294 3197107 3197707 3197750 "XALG" 3197755 NIL XALG (NIL T) -9 NIL 3197866 NIL) (-1293 3190549 3195084 3195578 "WUTSET" 3196699 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1292 3188805 3189601 3189924 "WP" 3190360 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1291 3188407 3188627 3188697 "WHILEAST" 3188757 T WHILEAST (NIL) -8 NIL NIL NIL) (-1290 3187879 3188124 3188218 "WHEREAST" 3188335 T WHEREAST (NIL) -8 NIL NIL NIL) (-1289 3186765 3186963 3187258 "WFFINTBS" 3187676 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1288 3184669 3185096 3185558 "WEIER" 3186337 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1287 3183715 3184165 3184207 "VSPACE" 3184343 NIL VSPACE (NIL T) -9 NIL 3184417 NIL) (-1286 3183553 3183580 3183671 "VSPACE-" 3183676 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1285 3183362 3183404 3183472 "VOID" 3183507 T VOID (NIL) -8 NIL NIL NIL) (-1284 3181498 3181857 3182263 "VIEW" 3182978 T VIEW (NIL) -7 NIL NIL NIL) (-1283 3177922 3178561 3179298 "VIEWDEF" 3180783 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1282 3167226 3169470 3171643 "VIEW3D" 3175771 T VIEW3D (NIL) -8 NIL NIL NIL) (-1281 3159477 3161137 3162716 "VIEW2D" 3165669 T VIEW2D (NIL) -8 NIL NIL NIL) (-1280 3154830 3159247 3159339 "VECTOR" 3159420 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1279 3153407 3153666 3153984 "VECTOR2" 3154560 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1278 3146849 3151158 3151201 "VECTCAT" 3152196 NIL VECTCAT (NIL T) -9 NIL 3152783 NIL) (-1277 3145863 3146117 3146507 "VECTCAT-" 3146512 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1276 3145317 3145514 3145634 "VARIABLE" 3145778 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1275 3145250 3145255 3145285 "UTYPE" 3145290 T UTYPE (NIL) -9 NIL NIL NIL) (-1274 3144080 3144234 3144496 "UTSODETL" 3145076 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1273 3141520 3141980 3142504 "UTSODE" 3143621 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1272 3133358 3139146 3139635 "UTS" 3141089 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1271 3124098 3129467 3129510 "UTSCAT" 3130622 NIL UTSCAT (NIL T) -9 NIL 3131380 NIL) (-1270 3121446 3122168 3123157 "UTSCAT-" 3123162 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1269 3121073 3121116 3121249 "UTS2" 3121397 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1268 3115299 3117911 3117954 "URAGG" 3120024 NIL URAGG (NIL T) -9 NIL 3120747 NIL) (-1267 3112238 3113101 3114224 "URAGG-" 3114229 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1266 3107947 3110873 3111338 "UPXSSING" 3111902 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1265 3100013 3107194 3107467 "UPXS" 3107732 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1264 3093086 3099917 3099989 "UPXSCONS" 3099994 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1263 3082683 3089478 3089540 "UPXSCCA" 3090114 NIL UPXSCCA (NIL T T) -9 NIL 3090347 NIL) (-1262 3082321 3082406 3082580 "UPXSCCA-" 3082585 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1261 3071770 3078338 3078381 "UPXSCAT" 3079029 NIL UPXSCAT (NIL T) -9 NIL 3079638 NIL) (-1260 3071200 3071279 3071458 "UPXS2" 3071685 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1259 3069854 3070107 3070458 "UPSQFREE" 3070943 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1258 3063234 3066293 3066348 "UPSCAT" 3067428 NIL UPSCAT (NIL T T) -9 NIL 3068193 NIL) (-1257 3062438 3062645 3062972 "UPSCAT-" 3062977 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1256 3047921 3055778 3055821 "UPOLYC" 3057922 NIL UPOLYC (NIL T) -9 NIL 3059143 NIL) (-1255 3039249 3041675 3044822 "UPOLYC-" 3044827 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1254 3038876 3038919 3039052 "UPOLYC2" 3039200 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1253 3030598 3038559 3038688 "UP" 3038795 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1252 3029937 3030044 3030208 "UPMP" 3030487 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1251 3029490 3029571 3029710 "UPDIVP" 3029850 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1250 3028058 3028307 3028623 "UPDECOMP" 3029239 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1249 3027289 3027401 3027587 "UPCDEN" 3027942 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1248 3026808 3026877 3027026 "UP2" 3027214 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1247 3025275 3026012 3026289 "UNISEG" 3026566 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1246 3024490 3024617 3024822 "UNISEG2" 3025118 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1245 3023550 3023730 3023956 "UNIFACT" 3024306 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1244 3007311 3022727 3022978 "ULS" 3023357 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 2995174 3007215 3007287 "ULSCONS" 3007292 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1242 2976773 2988897 2988959 "ULSCCAT" 2989597 NIL ULSCCAT (NIL T T) -9 NIL 2989886 NIL) (-1241 2975823 2976068 2976456 "ULSCCAT-" 2976461 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1240 2965063 2971545 2971588 "ULSCAT" 2972451 NIL ULSCAT (NIL T) -9 NIL 2973182 NIL) (-1239 2964493 2964572 2964751 "ULS2" 2964978 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 2963612 2964122 2964229 "UINT8" 2964340 T UINT8 (NIL) -8 NIL NIL 2964425) (-1237 2962730 2963240 2963347 "UINT64" 2963458 T UINT64 (NIL) -8 NIL NIL 2963543) (-1236 2961848 2962358 2962465 "UINT32" 2962576 T UINT32 (NIL) -8 NIL NIL 2962661) (-1235 2960966 2961476 2961583 "UINT16" 2961694 T UINT16 (NIL) -8 NIL NIL 2961779) (-1234 2959269 2960226 2960256 "UFD" 2960468 T UFD (NIL) -9 NIL 2960582 NIL) (-1233 2959063 2959109 2959204 "UFD-" 2959209 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1232 2958145 2958328 2958544 "UDVO" 2958869 T UDVO (NIL) -7 NIL NIL NIL) (-1231 2955961 2956370 2956841 "UDPO" 2957709 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1230 2955894 2955899 2955929 "TYPE" 2955934 T TYPE (NIL) -9 NIL NIL NIL) (-1229 2955654 2955849 2955880 "TYPEAST" 2955885 T TYPEAST (NIL) -8 NIL NIL NIL) (-1228 2954625 2954827 2955067 "TWOFACT" 2955448 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1227 2953648 2954034 2954269 "TUPLE" 2954425 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1226 2951339 2951858 2952397 "TUBETOOL" 2953131 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1225 2950188 2950393 2950634 "TUBE" 2951132 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1224 2944917 2949160 2949443 "TS" 2949940 NIL TS (NIL T) -8 NIL NIL NIL) (-1223 2933557 2937676 2937773 "TSETCAT" 2943042 NIL TSETCAT (NIL T T T T) -9 NIL 2944573 NIL) (-1222 2928289 2929889 2931780 "TSETCAT-" 2931785 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1221 2922928 2923775 2924704 "TRMANIP" 2927425 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1220 2922369 2922432 2922595 "TRIMAT" 2922860 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1219 2920235 2920472 2920829 "TRIGMNIP" 2922118 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1218 2919755 2919868 2919898 "TRIGCAT" 2920111 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1217 2919424 2919503 2919644 "TRIGCAT-" 2919649 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1216 2916269 2918282 2918563 "TREE" 2919178 NIL TREE (NIL T) -8 NIL NIL NIL) (-1215 2915543 2916071 2916101 "TRANFUN" 2916136 T TRANFUN (NIL) -9 NIL 2916202 NIL) (-1214 2914822 2915013 2915293 "TRANFUN-" 2915298 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1213 2914626 2914658 2914719 "TOPSP" 2914783 T TOPSP (NIL) -7 NIL NIL NIL) (-1212 2913974 2914089 2914243 "TOOLSIGN" 2914507 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1211 2912608 2913151 2913390 "TEXTFILE" 2913757 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1210 2910520 2911061 2911490 "TEX" 2912201 T TEX (NIL) -8 NIL NIL NIL) (-1209 2910301 2910332 2910404 "TEX1" 2910483 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1208 2909949 2910012 2910102 "TEMUTL" 2910233 T TEMUTL (NIL) -7 NIL NIL NIL) (-1207 2908103 2908383 2908708 "TBCMPPK" 2909672 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1206 2899880 2906263 2906319 "TBAGG" 2906719 NIL TBAGG (NIL T T) -9 NIL 2906930 NIL) (-1205 2894950 2896438 2898192 "TBAGG-" 2898197 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1204 2894334 2894441 2894586 "TANEXP" 2894839 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1203 2893845 2894109 2894199 "TALGOP" 2894279 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1202 2887235 2893702 2893795 "TABLE" 2893800 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1201 2886647 2886746 2886884 "TABLEAU" 2887132 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1200 2881255 2882475 2883723 "TABLBUMP" 2885433 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1199 2880477 2880624 2880805 "SYSTEM" 2881096 T SYSTEM (NIL) -8 NIL NIL NIL) (-1198 2876936 2877635 2878418 "SYSSOLP" 2879728 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1197 2876734 2876891 2876922 "SYSPTR" 2876927 T SYSPTR (NIL) -8 NIL NIL NIL) (-1196 2875770 2876275 2876394 "SYSNNI" 2876580 NIL SYSNNI (NIL NIL) -8 NIL NIL 2876665) (-1195 2875069 2875528 2875607 "SYSINT" 2875667 NIL SYSINT (NIL NIL) -8 NIL NIL 2875712) (-1194 2871401 2872347 2873057 "SYNTAX" 2874381 T SYNTAX (NIL) -8 NIL NIL NIL) (-1193 2868559 2869161 2869793 "SYMTAB" 2870791 T SYMTAB (NIL) -8 NIL NIL NIL) (-1192 2863808 2864710 2865693 "SYMS" 2867598 T SYMS (NIL) -8 NIL NIL NIL) (-1191 2861043 2863266 2863496 "SYMPOLY" 2863613 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1190 2860560 2860635 2860758 "SYMFUNC" 2860955 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1189 2856580 2857872 2858685 "SYMBOL" 2859769 T SYMBOL (NIL) -8 NIL NIL NIL) (-1188 2850119 2851808 2853528 "SWITCH" 2854882 T SWITCH (NIL) -8 NIL NIL NIL) (-1187 2843353 2848940 2849243 "SUTS" 2849874 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2835419 2842600 2842873 "SUPXS" 2843138 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2827089 2835037 2835163 "SUP" 2835328 NIL SUP (NIL T) -8 NIL NIL NIL) (-1184 2826248 2826375 2826592 "SUPFRACF" 2826957 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1183 2825869 2825928 2826041 "SUP2" 2826183 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1182 2824317 2824591 2824947 "SUMRF" 2825568 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1181 2823652 2823718 2823910 "SUMFS" 2824238 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1180 2807448 2822829 2823080 "SULS" 2823459 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1179 2807050 2807270 2807340 "SUCHTAST" 2807400 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1178 2806345 2806575 2806715 "SUCH" 2806958 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1177 2800212 2801251 2802210 "SUBSPACE" 2805433 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1176 2799642 2799732 2799896 "SUBRESP" 2800100 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1175 2793010 2794307 2795618 "STTF" 2798378 NIL STTF (NIL T) -7 NIL NIL NIL) (-1174 2787183 2788303 2789450 "STTFNC" 2791910 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1173 2778496 2780365 2782159 "STTAYLOR" 2785424 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1172 2771626 2778360 2778443 "STRTBL" 2778448 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1171 2766990 2771581 2771612 "STRING" 2771617 T STRING (NIL) -8 NIL NIL NIL) (-1170 2761819 2766333 2766363 "STRICAT" 2766422 T STRICAT (NIL) -9 NIL 2766484 NIL) (-1169 2754572 2759438 2760049 "STREAM" 2761243 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1168 2754082 2754159 2754303 "STREAM3" 2754489 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1167 2753064 2753247 2753482 "STREAM2" 2753895 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1166 2752752 2752804 2752897 "STREAM1" 2753006 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1165 2751768 2751949 2752180 "STINPROD" 2752568 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1164 2751320 2751530 2751560 "STEP" 2751640 T STEP (NIL) -9 NIL 2751718 NIL) (-1163 2750507 2750809 2750957 "STEPAST" 2751194 T STEPAST (NIL) -8 NIL NIL NIL) (-1162 2743939 2750406 2750483 "STBL" 2750488 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1161 2739034 2743130 2743173 "STAGG" 2743326 NIL STAGG (NIL T) -9 NIL 2743415 NIL) (-1160 2736736 2737338 2738210 "STAGG-" 2738215 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1159 2734883 2736506 2736598 "STACK" 2736679 NIL STACK (NIL T) -8 NIL NIL NIL) (-1158 2727578 2733024 2733480 "SREGSET" 2734513 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1157 2720003 2721372 2722885 "SRDCMPK" 2726184 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1156 2712888 2717413 2717443 "SRAGG" 2718746 T SRAGG (NIL) -9 NIL 2719354 NIL) (-1155 2711905 2712160 2712539 "SRAGG-" 2712544 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1154 2706276 2710852 2711273 "SQMATRIX" 2711531 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1153 2699961 2702994 2703721 "SPLTREE" 2705621 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1152 2695924 2696617 2697263 "SPLNODE" 2699387 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1151 2694971 2695204 2695234 "SPFCAT" 2695678 T SPFCAT (NIL) -9 NIL NIL NIL) (-1150 2693708 2693918 2694182 "SPECOUT" 2694729 T SPECOUT (NIL) -7 NIL NIL NIL) (-1149 2684818 2686690 2686720 "SPADXPT" 2691396 T SPADXPT (NIL) -9 NIL 2693560 NIL) (-1148 2684579 2684619 2684688 "SPADPRSR" 2684771 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1147 2682628 2684534 2684565 "SPADAST" 2684570 T SPADAST (NIL) -8 NIL NIL NIL) (-1146 2674573 2676346 2676389 "SPACEC" 2680762 NIL SPACEC (NIL T) -9 NIL 2682578 NIL) (-1145 2672703 2674505 2674554 "SPACE3" 2674559 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1144 2671455 2671626 2671917 "SORTPAK" 2672508 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1143 2669547 2669850 2670262 "SOLVETRA" 2671119 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1142 2668597 2668819 2669080 "SOLVESER" 2669320 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1141 2663901 2664789 2665784 "SOLVERAD" 2667649 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1140 2659716 2660325 2661054 "SOLVEFOR" 2663268 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1139 2653986 2659065 2659162 "SNTSCAT" 2659167 NIL SNTSCAT (NIL T T T T) -9 NIL 2659237 NIL) (-1138 2648092 2652309 2652700 "SMTS" 2653676 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1137 2642688 2647980 2648057 "SMP" 2648062 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1136 2640847 2641148 2641546 "SMITH" 2642385 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1135 2633373 2637659 2637762 "SMATCAT" 2639113 NIL SMATCAT (NIL NIL T T T) -9 NIL 2639663 NIL) (-1134 2630091 2630976 2632234 "SMATCAT-" 2632239 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1133 2627757 2629327 2629370 "SKAGG" 2629631 NIL SKAGG (NIL T) -9 NIL 2629766 NIL) (-1132 2624033 2627230 2627414 "SINT" 2627566 T SINT (NIL) -8 NIL NIL 2627728) (-1131 2623805 2623843 2623909 "SIMPAN" 2623989 T SIMPAN (NIL) -7 NIL NIL NIL) (-1130 2623084 2623340 2623480 "SIG" 2623687 T SIG (NIL) -8 NIL NIL NIL) (-1129 2621922 2622143 2622418 "SIGNRF" 2622843 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1128 2620755 2620906 2621190 "SIGNEF" 2621751 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1127 2620061 2620338 2620462 "SIGAST" 2620653 T SIGAST (NIL) -8 NIL NIL NIL) (-1126 2617751 2618205 2618711 "SHP" 2619602 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1125 2611466 2617652 2617728 "SHDP" 2617733 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1124 2611039 2611231 2611261 "SGROUP" 2611354 T SGROUP (NIL) -9 NIL 2611416 NIL) (-1123 2610897 2610923 2610996 "SGROUP-" 2611001 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1122 2607688 2608386 2609109 "SGCF" 2610196 T SGCF (NIL) -7 NIL NIL NIL) (-1121 2602056 2607135 2607232 "SFRTCAT" 2607237 NIL SFRTCAT (NIL T T T T) -9 NIL 2607276 NIL) (-1120 2595477 2596495 2597631 "SFRGCD" 2601039 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1119 2588603 2589676 2590862 "SFQCMPK" 2594410 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1118 2588223 2588312 2588423 "SFORT" 2588544 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1117 2587341 2588063 2588184 "SEXOF" 2588189 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1116 2586448 2587222 2587290 "SEX" 2587295 T SEX (NIL) -8 NIL NIL NIL) (-1115 2582229 2582944 2583039 "SEXCAT" 2585661 NIL SEXCAT (NIL T T T T T) -9 NIL 2586221 NIL) (-1114 2579382 2582163 2582211 "SET" 2582216 NIL SET (NIL T) -8 NIL NIL NIL) (-1113 2577606 2578095 2578400 "SETMN" 2579123 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1112 2577102 2577254 2577284 "SETCAT" 2577460 T SETCAT (NIL) -9 NIL 2577570 NIL) (-1111 2576794 2576872 2577002 "SETCAT-" 2577007 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1110 2573155 2575255 2575298 "SETAGG" 2576168 NIL SETAGG (NIL T) -9 NIL 2576508 NIL) (-1109 2572613 2572729 2572966 "SETAGG-" 2572971 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1108 2572056 2572309 2572410 "SEQAST" 2572534 T SEQAST (NIL) -8 NIL NIL NIL) (-1107 2571255 2571549 2571610 "SEGXCAT" 2571896 NIL SEGXCAT (NIL T T) -9 NIL 2572016 NIL) (-1106 2570261 2570921 2571103 "SEG" 2571108 NIL SEG (NIL T) -8 NIL NIL NIL) (-1105 2569240 2569454 2569497 "SEGCAT" 2570019 NIL SEGCAT (NIL T) -9 NIL 2570240 NIL) (-1104 2568172 2568603 2568811 "SEGBIND" 2569067 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1103 2567793 2567852 2567965 "SEGBIND2" 2568107 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1102 2567366 2567594 2567671 "SEGAST" 2567738 T SEGAST (NIL) -8 NIL NIL NIL) (-1101 2566585 2566711 2566915 "SEG2" 2567210 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1100 2565956 2566520 2566567 "SDVAR" 2566572 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1099 2558394 2565726 2565856 "SDPOL" 2565861 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1098 2556987 2557253 2557572 "SCPKG" 2558109 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1097 2556151 2556323 2556515 "SCOPE" 2556817 T SCOPE (NIL) -8 NIL NIL NIL) (-1096 2555371 2555505 2555684 "SCACHE" 2556006 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1095 2555017 2555203 2555233 "SASTCAT" 2555238 T SASTCAT (NIL) -9 NIL 2555251 NIL) (-1094 2554504 2554852 2554928 "SAOS" 2554963 T SAOS (NIL) -8 NIL NIL NIL) (-1093 2554069 2554104 2554277 "SAERFFC" 2554463 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1092 2547919 2553966 2554046 "SAE" 2554051 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1091 2547512 2547547 2547706 "SAEFACT" 2547878 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1090 2545833 2546147 2546548 "RURPK" 2547178 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1089 2544470 2544776 2545081 "RULESET" 2545667 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1088 2541693 2542223 2542681 "RULE" 2544151 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1087 2541305 2541487 2541570 "RULECOLD" 2541645 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1086 2541095 2541123 2541194 "RTVALUE" 2541256 T RTVALUE (NIL) -8 NIL NIL NIL) (-1085 2540566 2540812 2540906 "RSTRCAST" 2541023 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1084 2535414 2536209 2537129 "RSETGCD" 2539765 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1083 2524644 2529723 2529820 "RSETCAT" 2533939 NIL RSETCAT (NIL T T T T) -9 NIL 2535036 NIL) (-1082 2522571 2523110 2523934 "RSETCAT-" 2523939 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1081 2514957 2516333 2517853 "RSDCMPK" 2521170 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1080 2512936 2513403 2513477 "RRCC" 2514563 NIL RRCC (NIL T T) -9 NIL 2514907 NIL) (-1079 2512287 2512461 2512740 "RRCC-" 2512745 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1078 2511730 2511983 2512084 "RPTAST" 2512208 T RPTAST (NIL) -8 NIL NIL NIL) (-1077 2485446 2494894 2494961 "RPOLCAT" 2505627 NIL RPOLCAT (NIL T T T) -9 NIL 2508787 NIL) (-1076 2476944 2479284 2482406 "RPOLCAT-" 2482411 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1075 2467875 2475155 2475637 "ROUTINE" 2476484 T ROUTINE (NIL) -8 NIL NIL NIL) (-1074 2464622 2467501 2467641 "ROMAN" 2467757 T ROMAN (NIL) -8 NIL NIL NIL) (-1073 2462866 2463482 2463742 "ROIRC" 2464427 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1072 2459098 2461382 2461412 "RNS" 2461716 T RNS (NIL) -9 NIL 2461990 NIL) (-1071 2457607 2457990 2458524 "RNS-" 2458599 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1070 2457010 2457418 2457448 "RNG" 2457453 T RNG (NIL) -9 NIL 2457474 NIL) (-1069 2456013 2456375 2456577 "RNGBIND" 2456861 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1068 2455412 2455800 2455843 "RMODULE" 2455848 NIL RMODULE (NIL T) -9 NIL 2455875 NIL) (-1067 2454248 2454342 2454678 "RMCAT2" 2455313 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1066 2451098 2453594 2453891 "RMATRIX" 2454010 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1065 2443925 2446185 2446300 "RMATCAT" 2449659 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2450641 NIL) (-1064 2443300 2443447 2443754 "RMATCAT-" 2443759 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1063 2442701 2442922 2442965 "RLINSET" 2443159 NIL RLINSET (NIL T) -9 NIL 2443250 NIL) (-1062 2442268 2442343 2442471 "RINTERP" 2442620 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1061 2441326 2441880 2441910 "RING" 2441966 T RING (NIL) -9 NIL 2442058 NIL) (-1060 2441118 2441162 2441259 "RING-" 2441264 NIL RING- (NIL T) -8 NIL NIL NIL) (-1059 2439959 2440196 2440454 "RIDIST" 2440882 T RIDIST (NIL) -7 NIL NIL NIL) (-1058 2431248 2439427 2439633 "RGCHAIN" 2439807 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1057 2430598 2431004 2431045 "RGBCSPC" 2431103 NIL RGBCSPC (NIL T) -9 NIL 2431155 NIL) (-1056 2429756 2430137 2430178 "RGBCMDL" 2430410 NIL RGBCMDL (NIL T) -9 NIL 2430524 NIL) (-1055 2426750 2427364 2428034 "RF" 2429120 NIL RF (NIL T) -7 NIL NIL NIL) (-1054 2426396 2426459 2426562 "RFFACTOR" 2426681 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1053 2426121 2426156 2426253 "RFFACT" 2426355 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1052 2424238 2424602 2424984 "RFDIST" 2425761 T RFDIST (NIL) -7 NIL NIL NIL) (-1051 2423691 2423783 2423946 "RETSOL" 2424140 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1050 2423327 2423407 2423450 "RETRACT" 2423583 NIL RETRACT (NIL T) -9 NIL 2423670 NIL) (-1049 2423176 2423201 2423288 "RETRACT-" 2423293 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1048 2422778 2422998 2423068 "RETAST" 2423128 T RETAST (NIL) -8 NIL NIL NIL) (-1047 2415516 2422431 2422558 "RESULT" 2422673 T RESULT (NIL) -8 NIL NIL NIL) (-1046 2414107 2414785 2414984 "RESRING" 2415419 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1045 2413743 2413792 2413890 "RESLATC" 2414044 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1044 2413448 2413483 2413590 "REPSQ" 2413702 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1043 2410870 2411450 2412052 "REP" 2412868 T REP (NIL) -7 NIL NIL NIL) (-1042 2410567 2410602 2410713 "REPDB" 2410829 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1041 2404467 2405856 2407079 "REP2" 2409379 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1040 2400844 2401525 2402333 "REP1" 2403694 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1039 2393540 2398985 2399441 "REGSET" 2400474 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1038 2392305 2392688 2392938 "REF" 2393325 NIL REF (NIL T) -8 NIL NIL NIL) (-1037 2391682 2391785 2391952 "REDORDER" 2392189 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1036 2387650 2390895 2391122 "RECLOS" 2391510 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1035 2386702 2386883 2387098 "REALSOLV" 2387457 T REALSOLV (NIL) -7 NIL NIL NIL) (-1034 2386548 2386589 2386619 "REAL" 2386624 T REAL (NIL) -9 NIL 2386659 NIL) (-1033 2383031 2383833 2384717 "REAL0Q" 2385713 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1032 2378632 2379620 2380681 "REAL0" 2382012 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1031 2378103 2378349 2378443 "RDUCEAST" 2378560 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1030 2377508 2377580 2377787 "RDIV" 2378025 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1029 2376576 2376750 2376963 "RDIST" 2377330 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1028 2375173 2375460 2375832 "RDETRS" 2376284 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1027 2372985 2373439 2373977 "RDETR" 2374715 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1026 2371610 2371888 2372285 "RDEEFS" 2372701 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1025 2370119 2370425 2370850 "RDEEF" 2371298 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1024 2364180 2367100 2367130 "RCFIELD" 2368425 T RCFIELD (NIL) -9 NIL 2369156 NIL) (-1023 2362244 2362748 2363444 "RCFIELD-" 2363519 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1022 2358513 2360345 2360388 "RCAGG" 2361472 NIL RCAGG (NIL T) -9 NIL 2361937 NIL) (-1021 2358141 2358235 2358398 "RCAGG-" 2358403 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1020 2357476 2357588 2357753 "RATRET" 2358025 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1019 2357029 2357096 2357217 "RATFACT" 2357404 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1018 2356337 2356457 2356609 "RANDSRC" 2356899 T RANDSRC (NIL) -7 NIL NIL NIL) (-1017 2356071 2356115 2356188 "RADUTIL" 2356286 T RADUTIL (NIL) -7 NIL NIL NIL) (-1016 2349092 2354902 2355213 "RADIX" 2355794 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1015 2340608 2348934 2349064 "RADFF" 2349069 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1014 2340255 2340330 2340360 "RADCAT" 2340520 T RADCAT (NIL) -9 NIL NIL NIL) (-1013 2340037 2340085 2340185 "RADCAT-" 2340190 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1012 2338135 2339807 2339899 "QUEUE" 2339980 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1011 2334583 2338068 2338116 "QUAT" 2338121 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1010 2334214 2334257 2334388 "QUATCT2" 2334534 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1009 2327410 2330845 2330887 "QUATCAT" 2331678 NIL QUATCAT (NIL T) -9 NIL 2332444 NIL) (-1008 2323549 2324586 2325976 "QUATCAT-" 2326072 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1007 2321014 2322625 2322668 "QUAGG" 2323049 NIL QUAGG (NIL T) -9 NIL 2323224 NIL) (-1006 2320616 2320836 2320906 "QQUTAST" 2320966 T QQUTAST (NIL) -8 NIL NIL NIL) (-1005 2319629 2320129 2320294 "QFORM" 2320497 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1004 2310436 2315764 2315806 "QFCAT" 2316474 NIL QFCAT (NIL T) -9 NIL 2317475 NIL) (-1003 2305781 2307044 2308718 "QFCAT-" 2308814 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1002 2305412 2305455 2305586 "QFCAT2" 2305732 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1001 2304867 2304977 2305109 "QEQUAT" 2305302 T QEQUAT (NIL) -8 NIL NIL NIL) (-1000 2297993 2299066 2300252 "QCMPACK" 2303800 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-999 2295542 2295990 2296418 "QALGSET" 2297648 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-998 2294787 2294961 2295193 "QALGSET2" 2295362 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-997 2293477 2293701 2294018 "PWFFINTB" 2294560 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-996 2291659 2291827 2292181 "PUSHVAR" 2293291 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-995 2287577 2288631 2288672 "PTRANFN" 2290556 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-994 2285979 2286270 2286592 "PTPACK" 2287288 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-993 2285611 2285668 2285777 "PTFUNC2" 2285916 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-992 2280056 2284453 2284494 "PTCAT" 2284790 NIL PTCAT (NIL T) -9 NIL 2284943 NIL) (-991 2279714 2279749 2279873 "PSQFR" 2280015 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-990 2278309 2278607 2278941 "PSEUDLIN" 2279412 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-989 2265072 2267443 2269767 "PSETPK" 2276069 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-988 2258090 2260830 2260926 "PSETCAT" 2263947 NIL PSETCAT (NIL T T T T) -9 NIL 2264761 NIL) (-987 2255926 2256560 2257381 "PSETCAT-" 2257386 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-986 2255275 2255440 2255468 "PSCURVE" 2255736 T PSCURVE (NIL) -9 NIL 2255903 NIL) (-985 2251273 2252789 2252854 "PSCAT" 2253698 NIL PSCAT (NIL T T T) -9 NIL 2253938 NIL) (-984 2250336 2250552 2250952 "PSCAT-" 2250957 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-983 2248695 2249405 2249668 "PRTITION" 2250093 T PRTITION (NIL) -8 NIL NIL NIL) (-982 2248170 2248416 2248508 "PRTDAST" 2248623 T PRTDAST (NIL) -8 NIL NIL NIL) (-981 2237260 2239474 2241662 "PRS" 2246032 NIL PRS (NIL T T) -7 NIL NIL NIL) (-980 2235071 2236610 2236650 "PRQAGG" 2236833 NIL PRQAGG (NIL T) -9 NIL 2236935 NIL) (-979 2234407 2234712 2234740 "PROPLOG" 2234879 T PROPLOG (NIL) -9 NIL 2234994 NIL) (-978 2234011 2234068 2234191 "PROPFUN2" 2234330 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-977 2233326 2233447 2233619 "PROPFUN1" 2233872 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-976 2231507 2232073 2232370 "PROPFRML" 2233062 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-975 2230976 2231083 2231211 "PROPERTY" 2231399 T PROPERTY (NIL) -8 NIL NIL NIL) (-974 2225034 2229142 2229962 "PRODUCT" 2230202 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-973 2222312 2224492 2224726 "PR" 2224845 NIL PR (NIL T T) -8 NIL NIL NIL) (-972 2222108 2222140 2222199 "PRINT" 2222273 T PRINT (NIL) -7 NIL NIL NIL) (-971 2221448 2221565 2221717 "PRIMES" 2221988 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-970 2219513 2219914 2220380 "PRIMELT" 2221027 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-969 2219242 2219291 2219319 "PRIMCAT" 2219443 T PRIMCAT (NIL) -9 NIL NIL NIL) (-968 2215357 2219180 2219225 "PRIMARR" 2219230 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-967 2214364 2214542 2214770 "PRIMARR2" 2215175 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-966 2214007 2214063 2214174 "PREASSOC" 2214302 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-965 2213482 2213615 2213643 "PPCURVE" 2213848 T PPCURVE (NIL) -9 NIL 2213984 NIL) (-964 2213077 2213277 2213360 "PORTNUM" 2213419 T PORTNUM (NIL) -8 NIL NIL NIL) (-963 2210436 2210835 2211427 "POLYROOT" 2212658 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-962 2204529 2210040 2210200 "POLY" 2210309 NIL POLY (NIL T) -8 NIL NIL NIL) (-961 2203912 2203970 2204204 "POLYLIFT" 2204465 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-960 2200187 2200636 2201265 "POLYCATQ" 2203457 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-959 2186769 2191986 2192051 "POLYCAT" 2195565 NIL POLYCAT (NIL T T T) -9 NIL 2197443 NIL) (-958 2179996 2181920 2184384 "POLYCAT-" 2184389 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-957 2179583 2179651 2179771 "POLY2UP" 2179922 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-956 2179215 2179272 2179381 "POLY2" 2179520 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-955 2177900 2178139 2178415 "POLUTIL" 2178989 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-954 2176255 2176532 2176863 "POLTOPOL" 2177622 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-953 2171720 2176191 2176237 "POINT" 2176242 NIL POINT (NIL T) -8 NIL NIL NIL) (-952 2169907 2170264 2170639 "PNTHEORY" 2171365 T PNTHEORY (NIL) -7 NIL NIL NIL) (-951 2168365 2168662 2169061 "PMTOOLS" 2169605 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-950 2167958 2168036 2168153 "PMSYM" 2168281 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-949 2167466 2167535 2167710 "PMQFCAT" 2167883 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-948 2166821 2166931 2167087 "PMPRED" 2167343 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-947 2166214 2166300 2166462 "PMPREDFS" 2166722 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-946 2164878 2165086 2165464 "PMPLCAT" 2165976 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-945 2164410 2164489 2164641 "PMLSAGG" 2164793 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-944 2163883 2163959 2164141 "PMKERNEL" 2164328 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-943 2163500 2163575 2163688 "PMINS" 2163802 NIL PMINS (NIL T) -7 NIL NIL NIL) (-942 2162942 2163011 2163220 "PMFS" 2163425 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-941 2162170 2162288 2162493 "PMDOWN" 2162819 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-940 2161337 2161495 2161676 "PMASS" 2162009 T PMASS (NIL) -7 NIL NIL NIL) (-939 2160610 2160720 2160883 "PMASSFS" 2161224 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-938 2160265 2160333 2160427 "PLOTTOOL" 2160536 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-937 2154872 2156076 2157224 "PLOT" 2159137 T PLOT (NIL) -8 NIL NIL NIL) (-936 2150676 2151720 2152641 "PLOT3D" 2153971 T PLOT3D (NIL) -8 NIL NIL NIL) (-935 2149588 2149765 2150000 "PLOT1" 2150480 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-934 2124979 2129654 2134505 "PLEQN" 2144854 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-933 2124297 2124419 2124599 "PINTERP" 2124844 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-932 2123990 2124037 2124140 "PINTERPA" 2124244 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-931 2123206 2123754 2123841 "PI" 2123881 T PI (NIL) -8 NIL NIL 2123948) (-930 2121503 2122478 2122506 "PID" 2122688 T PID (NIL) -9 NIL 2122822 NIL) (-929 2121254 2121291 2121366 "PICOERCE" 2121460 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-928 2120574 2120713 2120889 "PGROEB" 2121110 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-927 2116161 2116975 2117880 "PGE" 2119689 T PGE (NIL) -7 NIL NIL NIL) (-926 2114284 2114531 2114897 "PGCD" 2115878 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-925 2113622 2113725 2113886 "PFRPAC" 2114168 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-924 2110262 2112170 2112523 "PFR" 2113301 NIL PFR (NIL T) -8 NIL NIL NIL) (-923 2108651 2108895 2109220 "PFOTOOLS" 2110009 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-922 2107184 2107423 2107774 "PFOQ" 2108408 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-921 2105685 2105897 2106253 "PFO" 2106968 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-920 2102238 2105574 2105643 "PF" 2105648 NIL PF (NIL NIL) -8 NIL NIL NIL) (-919 2099572 2100843 2100871 "PFECAT" 2101456 T PFECAT (NIL) -9 NIL 2101840 NIL) (-918 2099017 2099171 2099385 "PFECAT-" 2099390 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-917 2097620 2097872 2098173 "PFBRU" 2098766 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-916 2095486 2095838 2096270 "PFBR" 2097271 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-915 2091532 2092998 2093645 "PERM" 2094872 NIL PERM (NIL T) -8 NIL NIL NIL) (-914 2086766 2087739 2088609 "PERMGRP" 2090695 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-913 2084885 2085845 2085886 "PERMCAT" 2086286 NIL PERMCAT (NIL T) -9 NIL 2086584 NIL) (-912 2084538 2084579 2084703 "PERMAN" 2084838 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-911 2082026 2084203 2084325 "PENDTREE" 2084449 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-910 2080050 2080818 2080859 "PDRING" 2081516 NIL PDRING (NIL T) -9 NIL 2081802 NIL) (-909 2079153 2079371 2079733 "PDRING-" 2079738 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-908 2076368 2077146 2077814 "PDEPROB" 2078505 T PDEPROB (NIL) -8 NIL NIL NIL) (-907 2073913 2074417 2074972 "PDEPACK" 2075833 T PDEPACK (NIL) -7 NIL NIL NIL) (-906 2072825 2073015 2073266 "PDECOMP" 2073712 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-905 2070404 2071247 2071275 "PDECAT" 2072062 T PDECAT (NIL) -9 NIL 2072775 NIL) (-904 2070155 2070188 2070278 "PCOMP" 2070365 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-903 2068333 2068956 2069253 "PBWLB" 2069884 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-902 2060806 2062406 2063744 "PATTERN" 2067016 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-901 2060438 2060495 2060604 "PATTERN2" 2060743 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-900 2058195 2058583 2059040 "PATTERN1" 2060027 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-899 2055563 2056144 2056625 "PATRES" 2057760 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-898 2055127 2055194 2055326 "PATRES2" 2055490 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-897 2053010 2053415 2053822 "PATMATCH" 2054794 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-896 2052520 2052729 2052770 "PATMAB" 2052877 NIL PATMAB (NIL T) -9 NIL 2052960 NIL) (-895 2051038 2051374 2051632 "PATLRES" 2052325 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-894 2050584 2050707 2050748 "PATAB" 2050753 NIL PATAB (NIL T) -9 NIL 2050925 NIL) (-893 2048766 2049161 2049584 "PARTPERM" 2050181 T PARTPERM (NIL) -7 NIL NIL NIL) (-892 2048387 2048450 2048552 "PARSURF" 2048697 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-891 2048019 2048076 2048185 "PARSU2" 2048324 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-890 2047783 2047823 2047890 "PARSER" 2047972 T PARSER (NIL) -7 NIL NIL NIL) (-889 2047404 2047467 2047569 "PARSCURV" 2047714 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-888 2047036 2047093 2047202 "PARSC2" 2047341 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-887 2046675 2046733 2046830 "PARPCURV" 2046972 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-886 2046307 2046364 2046473 "PARPC2" 2046612 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-885 2045368 2045680 2045862 "PARAMAST" 2046145 T PARAMAST (NIL) -8 NIL NIL NIL) (-884 2044888 2044974 2045093 "PAN2EXPR" 2045269 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-883 2043665 2044009 2044237 "PALETTE" 2044680 T PALETTE (NIL) -8 NIL NIL NIL) (-882 2042058 2042670 2043030 "PAIR" 2043351 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-881 2035837 2041315 2041510 "PADICRC" 2041912 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-880 2028961 2035181 2035366 "PADICRAT" 2035684 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-879 2027276 2028898 2028943 "PADIC" 2028948 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-878 2024386 2025950 2025990 "PADICCT" 2026571 NIL PADICCT (NIL NIL) -9 NIL 2026853 NIL) (-877 2023343 2023543 2023811 "PADEPAC" 2024173 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-876 2022555 2022688 2022894 "PADE" 2023205 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-875 2020942 2021763 2022043 "OWP" 2022359 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-874 2020435 2020648 2020745 "OVERSET" 2020865 T OVERSET (NIL) -8 NIL NIL NIL) (-873 2019481 2020040 2020212 "OVAR" 2020303 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-872 2018745 2018866 2019027 "OUT" 2019340 T OUT (NIL) -7 NIL NIL NIL) (-871 2007617 2009854 2012054 "OUTFORM" 2016565 T OUTFORM (NIL) -8 NIL NIL NIL) (-870 2006953 2007214 2007341 "OUTBFILE" 2007510 T OUTBFILE (NIL) -8 NIL NIL NIL) (-869 2006260 2006425 2006453 "OUTBCON" 2006771 T OUTBCON (NIL) -9 NIL 2006937 NIL) (-868 2005861 2005973 2006130 "OUTBCON-" 2006135 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-867 2005241 2005590 2005679 "OSI" 2005792 T OSI (NIL) -8 NIL NIL NIL) (-866 2004771 2005109 2005137 "OSGROUP" 2005142 T OSGROUP (NIL) -9 NIL 2005164 NIL) (-865 2003516 2003743 2004028 "ORTHPOL" 2004518 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-864 2001067 2003351 2003472 "OREUP" 2003477 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-863 1998470 2000758 2000885 "ORESUP" 2001009 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-862 1995998 1996498 1997059 "OREPCTO" 1997959 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-861 1989684 1991885 1991926 "OREPCAT" 1994274 NIL OREPCAT (NIL T) -9 NIL 1995378 NIL) (-860 1986831 1987613 1988671 "OREPCAT-" 1988676 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-859 1985982 1986280 1986308 "ORDSET" 1986617 T ORDSET (NIL) -9 NIL 1986781 NIL) (-858 1985413 1985561 1985785 "ORDSET-" 1985790 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-857 1983978 1984769 1984797 "ORDRING" 1984999 T ORDRING (NIL) -9 NIL 1985124 NIL) (-856 1983623 1983717 1983861 "ORDRING-" 1983866 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-855 1983003 1983466 1983494 "ORDMON" 1983499 T ORDMON (NIL) -9 NIL 1983520 NIL) (-854 1982165 1982312 1982507 "ORDFUNS" 1982852 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-853 1981503 1981922 1981950 "ORDFIN" 1982015 T ORDFIN (NIL) -9 NIL 1982089 NIL) (-852 1978062 1980089 1980498 "ORDCOMP" 1981127 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-851 1977328 1977455 1977641 "ORDCOMP2" 1977922 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-850 1973909 1974819 1975633 "OPTPROB" 1976534 T OPTPROB (NIL) -8 NIL NIL NIL) (-849 1970711 1971350 1972054 "OPTPACK" 1973225 T OPTPACK (NIL) -7 NIL NIL NIL) (-848 1968398 1969164 1969192 "OPTCAT" 1970011 T OPTCAT (NIL) -9 NIL 1970661 NIL) (-847 1967782 1968075 1968180 "OPSIG" 1968313 T OPSIG (NIL) -8 NIL NIL NIL) (-846 1967550 1967589 1967655 "OPQUERY" 1967736 T OPQUERY (NIL) -7 NIL NIL NIL) (-845 1964681 1965861 1966365 "OP" 1967079 NIL OP (NIL T) -8 NIL NIL NIL) (-844 1964055 1964281 1964322 "OPERCAT" 1964534 NIL OPERCAT (NIL T) -9 NIL 1964631 NIL) (-843 1963810 1963866 1963983 "OPERCAT-" 1963988 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-842 1960623 1962607 1962976 "ONECOMP" 1963474 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-841 1959928 1960043 1960217 "ONECOMP2" 1960495 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-840 1959347 1959453 1959583 "OMSERVER" 1959818 T OMSERVER (NIL) -7 NIL NIL NIL) (-839 1956209 1958787 1958827 "OMSAGG" 1958888 NIL OMSAGG (NIL T) -9 NIL 1958952 NIL) (-838 1954832 1955095 1955377 "OMPKG" 1955947 T OMPKG (NIL) -7 NIL NIL NIL) (-837 1954262 1954365 1954393 "OM" 1954692 T OM (NIL) -9 NIL NIL NIL) (-836 1952809 1953811 1953980 "OMLO" 1954143 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-835 1951769 1951916 1952136 "OMEXPR" 1952635 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-834 1951060 1951315 1951451 "OMERR" 1951653 T OMERR (NIL) -8 NIL NIL NIL) (-833 1950211 1950481 1950641 "OMERRK" 1950920 T OMERRK (NIL) -8 NIL NIL NIL) (-832 1949662 1949888 1949996 "OMENC" 1950123 T OMENC (NIL) -8 NIL NIL NIL) (-831 1943557 1944742 1945913 "OMDEV" 1948511 T OMDEV (NIL) -8 NIL NIL NIL) (-830 1942626 1942797 1942991 "OMCONN" 1943383 T OMCONN (NIL) -8 NIL NIL NIL) (-829 1941147 1942123 1942151 "OINTDOM" 1942156 T OINTDOM (NIL) -9 NIL 1942177 NIL) (-828 1938485 1939835 1940172 "OFMONOID" 1940842 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-827 1937857 1938422 1938467 "ODVAR" 1938472 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-826 1935280 1937602 1937757 "ODR" 1937762 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-825 1927772 1935056 1935182 "ODPOL" 1935187 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-824 1921457 1927644 1927749 "ODP" 1927754 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-823 1920223 1920438 1920713 "ODETOOLS" 1921231 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-822 1917190 1917848 1918564 "ODESYS" 1919556 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-821 1912072 1912980 1914005 "ODERTRIC" 1916265 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-820 1911498 1911580 1911774 "ODERED" 1911984 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-819 1908386 1908934 1909611 "ODERAT" 1910921 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-818 1905345 1905810 1906407 "ODEPRRIC" 1907915 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-817 1903288 1903884 1904370 "ODEPROB" 1904879 T ODEPROB (NIL) -8 NIL NIL NIL) (-816 1899808 1900293 1900940 "ODEPRIM" 1902767 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-815 1899057 1899159 1899419 "ODEPAL" 1899700 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-814 1895219 1896010 1896874 "ODEPACK" 1898213 T ODEPACK (NIL) -7 NIL NIL NIL) (-813 1894280 1894387 1894609 "ODEINT" 1895108 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-812 1888381 1889806 1891253 "ODEIFTBL" 1892853 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-811 1883779 1884565 1885517 "ODEEF" 1887540 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-810 1883128 1883217 1883440 "ODECONST" 1883684 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-809 1881253 1881914 1881942 "ODECAT" 1882547 T ODECAT (NIL) -9 NIL 1883078 NIL) (-808 1878108 1880958 1881080 "OCT" 1881163 NIL OCT (NIL T) -8 NIL NIL NIL) (-807 1877746 1877789 1877916 "OCTCT2" 1878059 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-806 1872357 1874792 1874832 "OC" 1875929 NIL OC (NIL T) -9 NIL 1876787 NIL) (-805 1869584 1870332 1871322 "OC-" 1871416 NIL OC- (NIL T T) -8 NIL NIL NIL) (-804 1868936 1869404 1869432 "OCAMON" 1869437 T OCAMON (NIL) -9 NIL 1869458 NIL) (-803 1868467 1868808 1868836 "OASGP" 1868841 T OASGP (NIL) -9 NIL 1868861 NIL) (-802 1867728 1868217 1868245 "OAMONS" 1868285 T OAMONS (NIL) -9 NIL 1868328 NIL) (-801 1867142 1867575 1867603 "OAMON" 1867608 T OAMON (NIL) -9 NIL 1867628 NIL) (-800 1866400 1866918 1866946 "OAGROUP" 1866951 T OAGROUP (NIL) -9 NIL 1866971 NIL) (-799 1866090 1866140 1866228 "NUMTUBE" 1866344 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-798 1859663 1861181 1862717 "NUMQUAD" 1864574 T NUMQUAD (NIL) -7 NIL NIL NIL) (-797 1855419 1856407 1857432 "NUMODE" 1858658 T NUMODE (NIL) -7 NIL NIL NIL) (-796 1852774 1853654 1853682 "NUMINT" 1854605 T NUMINT (NIL) -9 NIL 1855369 NIL) (-795 1851722 1851919 1852137 "NUMFMT" 1852576 T NUMFMT (NIL) -7 NIL NIL NIL) (-794 1838081 1841026 1843558 "NUMERIC" 1849229 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-793 1832451 1837530 1837625 "NTSCAT" 1837630 NIL NTSCAT (NIL T T T T) -9 NIL 1837669 NIL) (-792 1831645 1831810 1832003 "NTPOLFN" 1832290 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-791 1819633 1828470 1829282 "NSUP" 1830866 NIL NSUP (NIL T) -8 NIL NIL NIL) (-790 1819265 1819322 1819431 "NSUP2" 1819570 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-789 1809402 1819039 1819172 "NSMP" 1819177 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-788 1807834 1808135 1808492 "NREP" 1809090 NIL NREP (NIL T) -7 NIL NIL NIL) (-787 1806425 1806677 1807035 "NPCOEF" 1807577 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-786 1805491 1805606 1805822 "NORMRETR" 1806306 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-785 1803532 1803822 1804231 "NORMPK" 1805199 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-784 1803217 1803245 1803369 "NORMMA" 1803498 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-783 1803017 1803174 1803203 "NONE" 1803208 T NONE (NIL) -8 NIL NIL NIL) (-782 1802806 1802835 1802904 "NONE1" 1802981 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-781 1802303 1802365 1802544 "NODE1" 1802738 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-780 1800584 1801435 1801690 "NNI" 1802037 T NNI (NIL) -8 NIL NIL 1802272) (-779 1799004 1799317 1799681 "NLINSOL" 1800252 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-778 1795245 1796240 1797139 "NIPROB" 1798125 T NIPROB (NIL) -8 NIL NIL NIL) (-777 1794002 1794236 1794538 "NFINTBAS" 1795007 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-776 1793176 1793652 1793693 "NETCLT" 1793865 NIL NETCLT (NIL T) -9 NIL 1793947 NIL) (-775 1791884 1792115 1792396 "NCODIV" 1792944 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-774 1791646 1791683 1791758 "NCNTFRAC" 1791841 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-773 1789826 1790190 1790610 "NCEP" 1791271 NIL NCEP (NIL T) -7 NIL NIL NIL) (-772 1788677 1789450 1789478 "NASRING" 1789588 T NASRING (NIL) -9 NIL 1789668 NIL) (-771 1788472 1788516 1788610 "NASRING-" 1788615 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-770 1787579 1788104 1788132 "NARNG" 1788249 T NARNG (NIL) -9 NIL 1788340 NIL) (-769 1787271 1787338 1787472 "NARNG-" 1787477 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-768 1786150 1786357 1786592 "NAGSP" 1787056 T NAGSP (NIL) -7 NIL NIL NIL) (-767 1777422 1779106 1780779 "NAGS" 1784497 T NAGS (NIL) -7 NIL NIL NIL) (-766 1775970 1776278 1776609 "NAGF07" 1777111 T NAGF07 (NIL) -7 NIL NIL NIL) (-765 1770508 1771799 1773106 "NAGF04" 1774683 T NAGF04 (NIL) -7 NIL NIL NIL) (-764 1763476 1765090 1766723 "NAGF02" 1768895 T NAGF02 (NIL) -7 NIL NIL NIL) (-763 1758700 1759800 1760917 "NAGF01" 1762379 T NAGF01 (NIL) -7 NIL NIL NIL) (-762 1752328 1753894 1755479 "NAGE04" 1757135 T NAGE04 (NIL) -7 NIL NIL NIL) (-761 1743497 1745618 1747748 "NAGE02" 1750218 T NAGE02 (NIL) -7 NIL NIL NIL) (-760 1739450 1740397 1741361 "NAGE01" 1742553 T NAGE01 (NIL) -7 NIL NIL NIL) (-759 1737245 1737779 1738337 "NAGD03" 1738912 T NAGD03 (NIL) -7 NIL NIL NIL) (-758 1728995 1730923 1732877 "NAGD02" 1735311 T NAGD02 (NIL) -7 NIL NIL NIL) (-757 1722806 1724231 1725671 "NAGD01" 1727575 T NAGD01 (NIL) -7 NIL NIL NIL) (-756 1719015 1719837 1720674 "NAGC06" 1721989 T NAGC06 (NIL) -7 NIL NIL NIL) (-755 1717480 1717812 1718168 "NAGC05" 1718679 T NAGC05 (NIL) -7 NIL NIL NIL) (-754 1716856 1716975 1717119 "NAGC02" 1717356 T NAGC02 (NIL) -7 NIL NIL NIL) (-753 1715815 1716398 1716438 "NAALG" 1716517 NIL NAALG (NIL T) -9 NIL 1716578 NIL) (-752 1715650 1715679 1715769 "NAALG-" 1715774 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-751 1709600 1710708 1711895 "MULTSQFR" 1714546 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-750 1708919 1708994 1709178 "MULTFACT" 1709512 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-749 1701643 1705556 1705609 "MTSCAT" 1706679 NIL MTSCAT (NIL T T) -9 NIL 1707194 NIL) (-748 1701355 1701409 1701501 "MTHING" 1701583 NIL MTHING (NIL T) -7 NIL NIL NIL) (-747 1701147 1701180 1701240 "MSYSCMD" 1701315 T MSYSCMD (NIL) -7 NIL NIL NIL) (-746 1697229 1699902 1700222 "MSET" 1700860 NIL MSET (NIL T) -8 NIL NIL NIL) (-745 1694298 1696790 1696831 "MSETAGG" 1696836 NIL MSETAGG (NIL T) -9 NIL 1696870 NIL) (-744 1690140 1691677 1692422 "MRING" 1693598 NIL MRING (NIL T T) -8 NIL NIL NIL) (-743 1689706 1689773 1689904 "MRF2" 1690067 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-742 1689324 1689359 1689503 "MRATFAC" 1689665 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-741 1686936 1687231 1687662 "MPRFF" 1689029 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-740 1681144 1686790 1686887 "MPOLY" 1686892 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-739 1680634 1680669 1680877 "MPCPF" 1681103 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-738 1680148 1680191 1680375 "MPC3" 1680585 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1679343 1679424 1679645 "MPC2" 1680063 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-736 1677644 1677981 1678371 "MONOTOOL" 1679003 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-735 1676869 1677186 1677214 "MONOID" 1677433 T MONOID (NIL) -9 NIL 1677580 NIL) (-734 1676415 1676534 1676715 "MONOID-" 1676720 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-733 1666513 1672554 1672613 "MONOGEN" 1673287 NIL MONOGEN (NIL T T) -9 NIL 1673743 NIL) (-732 1663731 1664466 1665466 "MONOGEN-" 1665585 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-731 1662564 1663010 1663038 "MONADWU" 1663430 T MONADWU (NIL) -9 NIL 1663668 NIL) (-730 1661936 1662095 1662343 "MONADWU-" 1662348 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-729 1661295 1661539 1661567 "MONAD" 1661774 T MONAD (NIL) -9 NIL 1661886 NIL) (-728 1660980 1661058 1661190 "MONAD-" 1661195 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-727 1659269 1659893 1660172 "MOEBIUS" 1660733 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-726 1658547 1658951 1658991 "MODULE" 1658996 NIL MODULE (NIL T) -9 NIL 1659035 NIL) (-725 1658115 1658211 1658401 "MODULE-" 1658406 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-724 1655795 1656479 1656806 "MODRING" 1657939 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-723 1652739 1653900 1654421 "MODOP" 1655324 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-722 1651327 1651806 1652083 "MODMONOM" 1652602 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-721 1641282 1649618 1650032 "MODMON" 1650964 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-720 1638438 1640126 1640402 "MODFIELD" 1641157 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1637415 1637719 1637909 "MMLFORM" 1638268 T MMLFORM (NIL) -8 NIL NIL NIL) (-718 1636941 1636984 1637163 "MMAP" 1637366 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-717 1635020 1635787 1635828 "MLO" 1636251 NIL MLO (NIL T) -9 NIL 1636493 NIL) (-716 1632386 1632902 1633504 "MLIFT" 1634501 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-715 1631777 1631861 1632015 "MKUCFUNC" 1632297 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-714 1631376 1631446 1631569 "MKRECORD" 1631700 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-713 1630423 1630585 1630813 "MKFUNC" 1631187 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-712 1629811 1629915 1630071 "MKFLCFN" 1630306 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-711 1629088 1629190 1629375 "MKBCFUNC" 1629704 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-710 1625763 1628642 1628778 "MINT" 1628972 T MINT (NIL) -8 NIL NIL NIL) (-709 1624575 1624818 1625095 "MHROWRED" 1625518 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-708 1619955 1623110 1623515 "MFLOAT" 1624190 T MFLOAT (NIL) -8 NIL NIL NIL) (-707 1619312 1619388 1619559 "MFINFACT" 1619867 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-706 1615627 1616475 1617359 "MESH" 1618448 T MESH (NIL) -7 NIL NIL NIL) (-705 1614017 1614329 1614682 "MDDFACT" 1615314 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-704 1610812 1613176 1613217 "MDAGG" 1613472 NIL MDAGG (NIL T) -9 NIL 1613615 NIL) (-703 1600459 1610105 1610312 "MCMPLX" 1610625 T MCMPLX (NIL) -8 NIL NIL NIL) (-702 1599596 1599742 1599943 "MCDEN" 1600308 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-701 1597486 1597756 1598136 "MCALCFN" 1599326 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-700 1596411 1596651 1596884 "MAYBE" 1597292 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-699 1594023 1594546 1595108 "MATSTOR" 1595882 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-698 1589980 1593395 1593643 "MATRIX" 1593808 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-697 1585746 1586453 1587189 "MATLIN" 1589337 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-696 1575852 1579038 1579115 "MATCAT" 1583995 NIL MATCAT (NIL T T T) -9 NIL 1585412 NIL) (-695 1572208 1573229 1574585 "MATCAT-" 1574590 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-694 1570802 1570955 1571288 "MATCAT2" 1572043 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-693 1568914 1569238 1569622 "MAPPKG3" 1570477 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-692 1567895 1568068 1568290 "MAPPKG2" 1568738 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-691 1566394 1566678 1567005 "MAPPKG1" 1567601 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-690 1565473 1565800 1565977 "MAPPAST" 1566237 T MAPPAST (NIL) -8 NIL NIL NIL) (-689 1565084 1565142 1565265 "MAPHACK3" 1565409 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-688 1564676 1564737 1564851 "MAPHACK2" 1565016 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-687 1564114 1564217 1564359 "MAPHACK1" 1564567 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-686 1562193 1562814 1563118 "MAGMA" 1563842 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-685 1561672 1561917 1562008 "MACROAST" 1562122 T MACROAST (NIL) -8 NIL NIL NIL) (-684 1558090 1559911 1560372 "M3D" 1561244 NIL M3D (NIL T) -8 NIL NIL NIL) (-683 1552165 1556429 1556470 "LZSTAGG" 1557252 NIL LZSTAGG (NIL T) -9 NIL 1557547 NIL) (-682 1548123 1549296 1550753 "LZSTAGG-" 1550758 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-681 1545210 1546014 1546501 "LWORD" 1547668 NIL LWORD (NIL T) -8 NIL NIL NIL) (-680 1544786 1545014 1545089 "LSTAST" 1545155 T LSTAST (NIL) -8 NIL NIL NIL) (-679 1537863 1544557 1544691 "LSQM" 1544696 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-678 1537087 1537226 1537454 "LSPP" 1537718 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-677 1534899 1535200 1535656 "LSMP" 1536776 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-676 1531678 1532352 1533082 "LSMP1" 1534201 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-675 1525524 1530815 1530856 "LSAGG" 1530918 NIL LSAGG (NIL T) -9 NIL 1530996 NIL) (-674 1522219 1523143 1524356 "LSAGG-" 1524361 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-673 1519818 1521363 1521612 "LPOLY" 1522014 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-672 1519400 1519485 1519608 "LPEFRAC" 1519727 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-671 1517721 1518494 1518747 "LO" 1519232 NIL LO (NIL T T T) -8 NIL NIL NIL) (-670 1517373 1517485 1517513 "LOGIC" 1517624 T LOGIC (NIL) -9 NIL 1517705 NIL) (-669 1517235 1517258 1517329 "LOGIC-" 1517334 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-668 1516428 1516568 1516761 "LODOOPS" 1517091 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-667 1513851 1516344 1516410 "LODO" 1516415 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-666 1512389 1512624 1512977 "LODOF" 1513598 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-665 1508593 1511024 1511065 "LODOCAT" 1511503 NIL LODOCAT (NIL T) -9 NIL 1511714 NIL) (-664 1508326 1508384 1508511 "LODOCAT-" 1508516 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-663 1505646 1508167 1508285 "LODO2" 1508290 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-662 1503081 1505583 1505628 "LODO1" 1505633 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-661 1501962 1502127 1502432 "LODEEF" 1502904 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-660 1497265 1500156 1500197 "LNAGG" 1501059 NIL LNAGG (NIL T) -9 NIL 1501494 NIL) (-659 1496412 1496626 1496968 "LNAGG-" 1496973 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-658 1492548 1493337 1493976 "LMOPS" 1495827 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-657 1491951 1492339 1492380 "LMODULE" 1492385 NIL LMODULE (NIL T) -9 NIL 1492411 NIL) (-656 1489149 1491596 1491719 "LMDICT" 1491861 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-655 1488555 1488776 1488817 "LLINSET" 1489008 NIL LLINSET (NIL T) -9 NIL 1489099 NIL) (-654 1488254 1488463 1488523 "LITERAL" 1488528 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-653 1481417 1487188 1487492 "LIST" 1487983 NIL LIST (NIL T) -8 NIL NIL NIL) (-652 1480942 1481016 1481155 "LIST3" 1481337 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-651 1479949 1480127 1480355 "LIST2" 1480760 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-650 1478083 1478395 1478794 "LIST2MAP" 1479596 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-649 1477679 1477916 1477957 "LINSET" 1477962 NIL LINSET (NIL T) -9 NIL 1477996 NIL) (-648 1476408 1476941 1476982 "LINEXP" 1477333 NIL LINEXP (NIL T) -9 NIL 1477524 NIL) (-647 1474985 1475245 1475556 "LINDEP" 1476160 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-646 1471752 1472471 1473248 "LIMITRF" 1474240 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-645 1470055 1470351 1470760 "LIMITPS" 1471447 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-644 1464483 1469566 1469794 "LIE" 1469876 NIL LIE (NIL T T) -8 NIL NIL NIL) (-643 1463431 1463900 1463940 "LIECAT" 1464080 NIL LIECAT (NIL T) -9 NIL 1464231 NIL) (-642 1463272 1463299 1463387 "LIECAT-" 1463392 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-641 1455859 1462812 1462968 "LIB" 1463136 T LIB (NIL) -8 NIL NIL NIL) (-640 1451494 1452377 1453312 "LGROBP" 1454976 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-639 1449492 1449766 1450116 "LF" 1451215 NIL LF (NIL T T) -7 NIL NIL NIL) (-638 1448332 1449024 1449052 "LFCAT" 1449259 T LFCAT (NIL) -9 NIL 1449398 NIL) (-637 1445234 1445864 1446552 "LEXTRIPK" 1447696 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-636 1441978 1442804 1443307 "LEXP" 1444814 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-635 1441454 1441699 1441791 "LETAST" 1441906 T LETAST (NIL) -8 NIL NIL NIL) (-634 1439852 1440165 1440566 "LEADCDET" 1441136 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-633 1439042 1439116 1439345 "LAZM3PK" 1439773 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-632 1433959 1437119 1437657 "LAUPOL" 1438554 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-631 1433538 1433582 1433743 "LAPLACE" 1433909 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-630 1431477 1432639 1432890 "LA" 1433371 NIL LA (NIL T T T) -8 NIL NIL NIL) (-629 1430471 1431055 1431096 "LALG" 1431158 NIL LALG (NIL T) -9 NIL 1431217 NIL) (-628 1430185 1430244 1430380 "LALG-" 1430385 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-627 1430020 1430044 1430085 "KVTFROM" 1430147 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-626 1428943 1429387 1429572 "KTVLOGIC" 1429855 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-625 1428778 1428802 1428843 "KRCFROM" 1428905 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-624 1427682 1427869 1428168 "KOVACIC" 1428578 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-623 1427517 1427541 1427582 "KONVERT" 1427644 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-622 1427352 1427376 1427417 "KOERCE" 1427479 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-621 1425183 1425945 1426322 "KERNEL" 1427008 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-620 1424679 1424760 1424892 "KERNEL2" 1425097 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-619 1418449 1423218 1423272 "KDAGG" 1423649 NIL KDAGG (NIL T T) -9 NIL 1423855 NIL) (-618 1417978 1418102 1418307 "KDAGG-" 1418312 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-617 1411126 1417639 1417794 "KAFILE" 1417856 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-616 1405554 1410637 1410865 "JORDAN" 1410947 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-615 1404933 1405203 1405324 "JOINAST" 1405453 T JOINAST (NIL) -8 NIL NIL NIL) (-614 1404779 1404838 1404893 "JAVACODE" 1404898 T JAVACODE (NIL) -8 NIL NIL NIL) (-613 1401031 1402984 1403038 "IXAGG" 1403967 NIL IXAGG (NIL T T) -9 NIL 1404426 NIL) (-612 1399950 1400256 1400675 "IXAGG-" 1400680 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-611 1395480 1399872 1399931 "IVECTOR" 1399936 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-610 1394246 1394483 1394749 "ITUPLE" 1395247 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-609 1392748 1392925 1393220 "ITRIGMNP" 1394068 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-608 1391493 1391697 1391980 "ITFUN3" 1392524 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-607 1391125 1391182 1391291 "ITFUN2" 1391430 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-606 1390284 1390605 1390779 "ITFORM" 1390971 T ITFORM (NIL) -8 NIL NIL NIL) (-605 1388245 1389304 1389582 "ITAYLOR" 1390039 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-604 1377190 1382382 1383545 "ISUPS" 1387115 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-603 1376294 1376434 1376670 "ISUMP" 1377037 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-602 1371669 1376239 1376280 "ISTRING" 1376285 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-601 1371145 1371390 1371482 "ISAST" 1371597 T ISAST (NIL) -8 NIL NIL NIL) (-600 1370354 1370436 1370652 "IRURPK" 1371059 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-599 1369290 1369491 1369731 "IRSN" 1370134 T IRSN (NIL) -7 NIL NIL NIL) (-598 1367361 1367716 1368145 "IRRF2F" 1368928 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-597 1367108 1367146 1367222 "IRREDFFX" 1367317 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-596 1365723 1365982 1366281 "IROOT" 1366841 NIL IROOT (NIL T) -7 NIL NIL NIL) (-595 1362327 1363407 1364099 "IR" 1365063 NIL IR (NIL T) -8 NIL NIL NIL) (-594 1361532 1361820 1361971 "IRFORM" 1362196 T IRFORM (NIL) -8 NIL NIL NIL) (-593 1359145 1359640 1360206 "IR2" 1361010 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-592 1358245 1358358 1358572 "IR2F" 1359028 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-591 1358036 1358070 1358130 "IPRNTPK" 1358205 T IPRNTPK (NIL) -7 NIL NIL NIL) (-590 1354617 1357925 1357994 "IPF" 1357999 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-589 1352944 1354542 1354599 "IPADIC" 1354604 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-588 1352256 1352504 1352634 "IP4ADDR" 1352834 T IP4ADDR (NIL) -8 NIL NIL NIL) (-587 1351630 1351885 1352017 "IOMODE" 1352144 T IOMODE (NIL) -8 NIL NIL NIL) (-586 1350703 1351227 1351354 "IOBFILE" 1351523 T IOBFILE (NIL) -8 NIL NIL NIL) (-585 1350191 1350607 1350635 "IOBCON" 1350640 T IOBCON (NIL) -9 NIL 1350661 NIL) (-584 1349702 1349760 1349943 "INVLAPLA" 1350127 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-583 1339350 1341704 1344090 "INTTR" 1347366 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-582 1335685 1336427 1337292 "INTTOOLS" 1338535 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-581 1335271 1335362 1335479 "INTSLPE" 1335588 T INTSLPE (NIL) -7 NIL NIL NIL) (-580 1333224 1335194 1335253 "INTRVL" 1335258 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-579 1330826 1331338 1331913 "INTRF" 1332709 NIL INTRF (NIL T) -7 NIL NIL NIL) (-578 1330237 1330334 1330476 "INTRET" 1330724 NIL INTRET (NIL T) -7 NIL NIL NIL) (-577 1328234 1328623 1329093 "INTRAT" 1329845 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-576 1325497 1326080 1326699 "INTPM" 1327719 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-575 1322242 1322841 1323579 "INTPAF" 1324883 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-574 1317421 1318383 1319434 "INTPACK" 1321211 T INTPACK (NIL) -7 NIL NIL NIL) (-573 1314319 1317218 1317327 "INT" 1317332 T INT (NIL) -8 NIL NIL NIL) (-572 1313571 1313723 1313931 "INTHERTR" 1314161 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-571 1313010 1313090 1313278 "INTHERAL" 1313485 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-570 1310856 1311299 1311756 "INTHEORY" 1312573 T INTHEORY (NIL) -7 NIL NIL NIL) (-569 1302262 1303883 1305655 "INTG0" 1309208 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-568 1282835 1287625 1292435 "INTFTBL" 1297472 T INTFTBL (NIL) -8 NIL NIL NIL) (-567 1282084 1282222 1282395 "INTFACT" 1282694 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-566 1279511 1279957 1280514 "INTEF" 1281638 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-565 1277878 1278617 1278645 "INTDOM" 1278946 T INTDOM (NIL) -9 NIL 1279153 NIL) (-564 1277247 1277421 1277663 "INTDOM-" 1277668 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-563 1273635 1275563 1275617 "INTCAT" 1276416 NIL INTCAT (NIL T) -9 NIL 1276737 NIL) (-562 1273107 1273210 1273338 "INTBIT" 1273527 T INTBIT (NIL) -7 NIL NIL NIL) (-561 1271806 1271960 1272267 "INTALG" 1272952 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-560 1271289 1271379 1271536 "INTAF" 1271710 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-559 1264632 1271099 1271239 "INTABL" 1271244 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-558 1263965 1264431 1264496 "INT8" 1264530 T INT8 (NIL) -8 NIL NIL 1264575) (-557 1263297 1263763 1263828 "INT64" 1263862 T INT64 (NIL) -8 NIL NIL 1263907) (-556 1262629 1263095 1263160 "INT32" 1263194 T INT32 (NIL) -8 NIL NIL 1263239) (-555 1261961 1262427 1262492 "INT16" 1262526 T INT16 (NIL) -8 NIL NIL 1262571) (-554 1256756 1259522 1259550 "INS" 1260484 T INS (NIL) -9 NIL 1261149 NIL) (-553 1253996 1254767 1255741 "INS-" 1255814 NIL INS- (NIL T) -8 NIL NIL NIL) (-552 1252771 1252998 1253296 "INPSIGN" 1253749 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-551 1251889 1252006 1252203 "INPRODPF" 1252651 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-550 1250783 1250900 1251137 "INPRODFF" 1251769 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-549 1249783 1249935 1250195 "INNMFACT" 1250619 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-548 1248980 1249077 1249265 "INMODGCD" 1249682 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-547 1247488 1247733 1248057 "INFSP" 1248725 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-546 1246672 1246789 1246972 "INFPROD0" 1247368 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-545 1243527 1244737 1245252 "INFORM" 1246165 T INFORM (NIL) -8 NIL NIL NIL) (-544 1243137 1243197 1243295 "INFORM1" 1243462 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-543 1242660 1242749 1242863 "INFINITY" 1243043 T INFINITY (NIL) -7 NIL NIL NIL) (-542 1241836 1242380 1242481 "INETCLTS" 1242579 T INETCLTS (NIL) -8 NIL NIL NIL) (-541 1240452 1240702 1241023 "INEP" 1241584 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-540 1239701 1240349 1240414 "INDE" 1240419 NIL INDE (NIL T) -8 NIL NIL NIL) (-539 1239265 1239333 1239450 "INCRMAPS" 1239628 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-538 1238083 1238534 1238740 "INBFILE" 1239079 T INBFILE (NIL) -8 NIL NIL NIL) (-537 1233382 1234319 1235263 "INBFF" 1237171 NIL INBFF (NIL T) -7 NIL NIL NIL) (-536 1232290 1232559 1232587 "INBCON" 1233100 T INBCON (NIL) -9 NIL 1233366 NIL) (-535 1231542 1231765 1232041 "INBCON-" 1232046 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-534 1231021 1231266 1231357 "INAST" 1231471 T INAST (NIL) -8 NIL NIL NIL) (-533 1230448 1230700 1230806 "IMPTAST" 1230935 T IMPTAST (NIL) -8 NIL NIL NIL) (-532 1226894 1230292 1230396 "IMATRIX" 1230401 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-531 1225602 1225725 1226041 "IMATQF" 1226750 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-530 1223822 1224049 1224386 "IMATLIN" 1225358 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-529 1218400 1223746 1223804 "ILIST" 1223809 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-528 1216305 1218260 1218373 "IIARRAY2" 1218378 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-527 1211703 1216216 1216280 "IFF" 1216285 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-526 1211050 1211320 1211436 "IFAST" 1211607 T IFAST (NIL) -8 NIL NIL NIL) (-525 1206045 1210342 1210530 "IFARRAY" 1210907 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-524 1205225 1205949 1206022 "IFAMON" 1206027 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-523 1204809 1204874 1204928 "IEVALAB" 1205135 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-522 1204484 1204552 1204712 "IEVALAB-" 1204717 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-521 1204115 1204398 1204461 "IDPO" 1204466 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-520 1203365 1204004 1204079 "IDPOAMS" 1204084 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-519 1202672 1203254 1203329 "IDPOAM" 1203334 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-518 1201731 1202007 1202060 "IDPC" 1202473 NIL IDPC (NIL T T) -9 NIL 1202622 NIL) (-517 1201200 1201623 1201696 "IDPAM" 1201701 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-516 1200576 1201092 1201165 "IDPAG" 1201170 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-515 1200221 1200412 1200487 "IDENT" 1200521 T IDENT (NIL) -8 NIL NIL NIL) (-514 1196476 1197324 1198219 "IDECOMP" 1199378 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-513 1189313 1190399 1191446 "IDEAL" 1195512 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-512 1188473 1188585 1188785 "ICDEN" 1189197 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-511 1187544 1187953 1188100 "ICARD" 1188346 T ICARD (NIL) -8 NIL NIL NIL) (-510 1185604 1185917 1186322 "IBPTOOLS" 1187221 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-509 1181211 1185224 1185337 "IBITS" 1185523 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-508 1177934 1178510 1179205 "IBATOOL" 1180628 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-507 1175713 1176175 1176708 "IBACHIN" 1177469 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-506 1173542 1175559 1175662 "IARRAY2" 1175667 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-505 1169648 1173468 1173525 "IARRAY1" 1173530 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-504 1163686 1168060 1168541 "IAN" 1169187 T IAN (NIL) -8 NIL NIL NIL) (-503 1163197 1163254 1163427 "IALGFACT" 1163623 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-502 1162725 1162838 1162866 "HYPCAT" 1163073 T HYPCAT (NIL) -9 NIL NIL NIL) (-501 1162263 1162380 1162566 "HYPCAT-" 1162571 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-500 1161858 1162058 1162141 "HOSTNAME" 1162200 T HOSTNAME (NIL) -8 NIL NIL NIL) (-499 1161703 1161740 1161781 "HOMOTOP" 1161786 NIL HOMOTOP (NIL T) -9 NIL 1161819 NIL) (-498 1158335 1159713 1159754 "HOAGG" 1160735 NIL HOAGG (NIL T) -9 NIL 1161414 NIL) (-497 1156929 1157328 1157854 "HOAGG-" 1157859 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-496 1150838 1156522 1156672 "HEXADEC" 1156799 T HEXADEC (NIL) -8 NIL NIL NIL) (-495 1149586 1149808 1150071 "HEUGCD" 1150615 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-494 1148662 1149423 1149553 "HELLFDIV" 1149558 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-493 1146841 1148439 1148527 "HEAP" 1148606 NIL HEAP (NIL T) -8 NIL NIL NIL) (-492 1146104 1146393 1146527 "HEADAST" 1146727 T HEADAST (NIL) -8 NIL NIL NIL) (-491 1139833 1146019 1146081 "HDP" 1146086 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-490 1133732 1139468 1139620 "HDMP" 1139734 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-489 1133056 1133196 1133360 "HB" 1133588 T HB (NIL) -7 NIL NIL NIL) (-488 1126442 1132902 1133006 "HASHTBL" 1133011 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-487 1125918 1126163 1126255 "HASAST" 1126370 T HASAST (NIL) -8 NIL NIL NIL) (-486 1123696 1125540 1125722 "HACKPI" 1125756 T HACKPI (NIL) -8 NIL NIL NIL) (-485 1119364 1123549 1123662 "GTSET" 1123667 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-484 1112779 1119242 1119340 "GSTBL" 1119345 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-483 1105057 1111810 1112075 "GSERIES" 1112570 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-482 1104198 1104615 1104643 "GROUP" 1104846 T GROUP (NIL) -9 NIL 1104980 NIL) (-481 1103564 1103723 1103974 "GROUP-" 1103979 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-480 1101931 1102252 1102639 "GROEBSOL" 1103241 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-479 1100845 1101133 1101184 "GRMOD" 1101713 NIL GRMOD (NIL T T) -9 NIL 1101881 NIL) (-478 1100613 1100649 1100777 "GRMOD-" 1100782 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-477 1095903 1096967 1097967 "GRIMAGE" 1099633 T GRIMAGE (NIL) -8 NIL NIL NIL) (-476 1094369 1094630 1094954 "GRDEF" 1095599 T GRDEF (NIL) -7 NIL NIL NIL) (-475 1093813 1093929 1094070 "GRAY" 1094248 T GRAY (NIL) -7 NIL NIL NIL) (-474 1093000 1093406 1093457 "GRALG" 1093610 NIL GRALG (NIL T T) -9 NIL 1093703 NIL) (-473 1092661 1092734 1092897 "GRALG-" 1092902 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-472 1089438 1092246 1092424 "GPOLSET" 1092568 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-471 1088792 1088849 1089107 "GOSPER" 1089375 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-470 1084524 1085230 1085756 "GMODPOL" 1088491 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-469 1083529 1083713 1083951 "GHENSEL" 1084336 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-468 1077685 1078528 1079548 "GENUPS" 1082613 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-467 1077382 1077433 1077522 "GENUFACT" 1077628 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-466 1076794 1076871 1077036 "GENPGCD" 1077300 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-465 1076268 1076303 1076516 "GENMFACT" 1076753 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-464 1074834 1075091 1075398 "GENEEZ" 1076011 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-463 1068893 1074445 1074607 "GDMP" 1074757 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-462 1058236 1062664 1063770 "GCNAALG" 1067876 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-461 1056563 1057425 1057453 "GCDDOM" 1057708 T GCDDOM (NIL) -9 NIL 1057865 NIL) (-460 1056033 1056160 1056375 "GCDDOM-" 1056380 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-459 1054705 1054890 1055194 "GB" 1055812 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1043321 1045651 1048043 "GBINTERN" 1052396 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-457 1041158 1041450 1041871 "GBF" 1042996 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-456 1039939 1040104 1040371 "GBEUCLID" 1040974 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-455 1039288 1039413 1039562 "GAUSSFAC" 1039810 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-454 1037655 1037957 1038271 "GALUTIL" 1039007 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-453 1035963 1036237 1036561 "GALPOLYU" 1037382 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-452 1033328 1033618 1034025 "GALFACTU" 1035660 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-451 1025134 1026633 1028241 "GALFACT" 1031760 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-450 1022522 1023180 1023208 "FVFUN" 1024364 T FVFUN (NIL) -9 NIL 1025084 NIL) (-449 1021788 1021970 1021998 "FVC" 1022289 T FVC (NIL) -9 NIL 1022472 NIL) (-448 1021431 1021613 1021681 "FUNDESC" 1021740 T FUNDESC (NIL) -8 NIL NIL NIL) (-447 1021046 1021228 1021309 "FUNCTION" 1021383 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-446 1018790 1019368 1019834 "FT" 1020600 T FT (NIL) -8 NIL NIL NIL) (-445 1017581 1018091 1018294 "FTEM" 1018607 T FTEM (NIL) -8 NIL NIL NIL) (-444 1015872 1016161 1016558 "FSUPFACT" 1017272 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-443 1014269 1014558 1014890 "FST" 1015560 T FST (NIL) -8 NIL NIL NIL) (-442 1013468 1013574 1013762 "FSRED" 1014151 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-441 1012167 1012423 1012770 "FSPRMELT" 1013183 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-440 1009473 1009911 1010397 "FSPECF" 1011730 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-439 990845 999316 999357 "FS" 1003241 NIL FS (NIL T) -9 NIL 1005530 NIL) (-438 979488 982481 986538 "FS-" 986838 NIL FS- (NIL T T) -8 NIL NIL NIL) (-437 979016 979070 979240 "FSINT" 979429 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-436 977308 978009 978312 "FSERIES" 978795 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-435 976350 976466 976690 "FSCINT" 977188 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-434 972558 975294 975335 "FSAGG" 975705 NIL FSAGG (NIL T) -9 NIL 975964 NIL) (-433 970320 970921 971717 "FSAGG-" 971812 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-432 969362 969505 969732 "FSAGG2" 970173 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-431 967044 967324 967871 "FS2UPS" 969080 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-430 966678 966721 966850 "FS2" 966995 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-429 965556 965727 966029 "FS2EXPXP" 966503 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-428 964982 965097 965249 "FRUTIL" 965436 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-427 956395 960477 961835 "FR" 963656 NIL FR (NIL T) -8 NIL NIL NIL) (-426 951409 954084 954124 "FRNAALG" 955444 NIL FRNAALG (NIL T) -9 NIL 956042 NIL) (-425 947082 948158 949433 "FRNAALG-" 950183 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-424 946720 946763 946890 "FRNAAF2" 947033 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-423 945095 945569 945865 "FRMOD" 946532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-422 942838 943470 943788 "FRIDEAL" 944886 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-421 942029 942116 942407 "FRIDEAL2" 942745 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-420 941162 941576 941617 "FRETRCT" 941622 NIL FRETRCT (NIL T) -9 NIL 941798 NIL) (-419 940274 940505 940856 "FRETRCT-" 940861 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-418 937362 938572 938631 "FRAMALG" 939513 NIL FRAMALG (NIL T T) -9 NIL 939805 NIL) (-417 935496 935951 936581 "FRAMALG-" 936804 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-416 929326 934969 935246 "FRAC" 935251 NIL FRAC (NIL T) -8 NIL NIL NIL) (-415 928962 929019 929126 "FRAC2" 929263 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-414 928598 928655 928762 "FR2" 928899 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-413 923111 926004 926032 "FPS" 927151 T FPS (NIL) -9 NIL 927708 NIL) (-412 922560 922669 922833 "FPS-" 922979 NIL FPS- (NIL T) -8 NIL NIL NIL) (-411 919862 921531 921559 "FPC" 921784 T FPC (NIL) -9 NIL 921926 NIL) (-410 919655 919695 919792 "FPC-" 919797 NIL FPC- (NIL T) -8 NIL NIL NIL) (-409 918445 919143 919184 "FPATMAB" 919189 NIL FPATMAB (NIL T) -9 NIL 919341 NIL) (-408 916118 916621 917047 "FPARFRAC" 918082 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-407 911512 912010 912692 "FORTRAN" 915550 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-406 909228 909728 910267 "FORT" 910993 T FORT (NIL) -7 NIL NIL NIL) (-405 906904 907466 907494 "FORTFN" 908554 T FORTFN (NIL) -9 NIL 909178 NIL) (-404 906668 906718 906746 "FORTCAT" 906805 T FORTCAT (NIL) -9 NIL 906867 NIL) (-403 904774 905284 905674 "FORMULA" 906298 T FORMULA (NIL) -8 NIL NIL NIL) (-402 904562 904592 904661 "FORMULA1" 904738 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-401 904085 904137 904310 "FORDER" 904504 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-400 903181 903345 903538 "FOP" 903912 T FOP (NIL) -7 NIL NIL NIL) (-399 901762 902461 902635 "FNLA" 903063 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-398 900491 900906 900934 "FNCAT" 901394 T FNCAT (NIL) -9 NIL 901654 NIL) (-397 900030 900450 900478 "FNAME" 900483 T FNAME (NIL) -8 NIL NIL NIL) (-396 898593 899556 899584 "FMTC" 899589 T FMTC (NIL) -9 NIL 899625 NIL) (-395 897339 898529 898575 "FMONOID" 898580 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-394 894167 895335 895376 "FMONCAT" 896593 NIL FMONCAT (NIL T) -9 NIL 897198 NIL) (-393 893359 893909 894058 "FM" 894063 NIL FM (NIL T T) -8 NIL NIL NIL) (-392 890783 891429 891457 "FMFUN" 892601 T FMFUN (NIL) -9 NIL 893309 NIL) (-391 890052 890233 890261 "FMC" 890551 T FMC (NIL) -9 NIL 890733 NIL) (-390 887131 887991 888045 "FMCAT" 889240 NIL FMCAT (NIL T T) -9 NIL 889735 NIL) (-389 885997 886897 886997 "FM1" 887076 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-388 883771 884187 884681 "FLOATRP" 885548 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-387 877349 881500 882121 "FLOAT" 883170 T FLOAT (NIL) -8 NIL NIL NIL) (-386 874787 875287 875865 "FLOATCP" 876816 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-385 873634 874393 874434 "FLINEXP" 874439 NIL FLINEXP (NIL T) -9 NIL 874532 NIL) (-384 872566 872863 873271 "FLINEXP-" 873276 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-383 871642 871786 872010 "FLASORT" 872418 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-382 868758 869626 869678 "FLALG" 870905 NIL FLALG (NIL T T) -9 NIL 871372 NIL) (-381 862462 866214 866255 "FLAGG" 867517 NIL FLAGG (NIL T) -9 NIL 868169 NIL) (-380 861188 861527 862017 "FLAGG-" 862022 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-379 860230 860373 860600 "FLAGG2" 861041 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-378 857081 858089 858148 "FINRALG" 859276 NIL FINRALG (NIL T T) -9 NIL 859784 NIL) (-377 856241 856470 856809 "FINRALG-" 856814 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-376 855621 855860 855888 "FINITE" 856084 T FINITE (NIL) -9 NIL 856191 NIL) (-375 847978 850165 850205 "FINAALG" 853872 NIL FINAALG (NIL T) -9 NIL 855325 NIL) (-374 843310 844360 845504 "FINAALG-" 846883 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-373 842678 843065 843168 "FILE" 843240 NIL FILE (NIL T) -8 NIL NIL NIL) (-372 841336 841674 841728 "FILECAT" 842412 NIL FILECAT (NIL T T) -9 NIL 842628 NIL) (-371 839052 840580 840608 "FIELD" 840648 T FIELD (NIL) -9 NIL 840728 NIL) (-370 837672 838057 838568 "FIELD-" 838573 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-369 835522 836307 836654 "FGROUP" 837358 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-368 834612 834776 834996 "FGLMICPK" 835354 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-367 830444 834537 834594 "FFX" 834599 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-366 830045 830106 830241 "FFSLPE" 830377 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-365 826035 826817 827613 "FFPOLY" 829281 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-364 825539 825575 825784 "FFPOLY2" 825993 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-363 821385 825458 825521 "FFP" 825526 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-362 816783 821296 821360 "FF" 821365 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-361 811909 816126 816316 "FFNBX" 816637 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-360 806837 811044 811302 "FFNBP" 811763 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-359 801470 806121 806332 "FFNB" 806670 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-358 800302 800500 800815 "FFINTBAS" 801267 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-357 796328 798549 798577 "FFIELDC" 799197 T FFIELDC (NIL) -9 NIL 799573 NIL) (-356 794990 795361 795858 "FFIELDC-" 795863 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-355 794559 794605 794729 "FFHOM" 794932 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-354 792254 792741 793258 "FFF" 794074 NIL FFF (NIL T) -7 NIL NIL NIL) (-353 787872 791996 792097 "FFCGX" 792197 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-352 783494 787604 787711 "FFCGP" 787815 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-351 778677 783221 783329 "FFCG" 783430 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-350 759612 768797 768883 "FFCAT" 774048 NIL FFCAT (NIL T T T) -9 NIL 775499 NIL) (-349 754809 755857 757171 "FFCAT-" 758401 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-348 754220 754263 754498 "FFCAT2" 754760 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-347 743543 747192 748412 "FEXPR" 753072 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-346 742505 742940 742981 "FEVALAB" 743065 NIL FEVALAB (NIL T) -9 NIL 743326 NIL) (-345 741664 741874 742212 "FEVALAB-" 742217 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-344 740230 741047 741250 "FDIV" 741563 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-343 737250 737991 738106 "FDIVCAT" 739674 NIL FDIVCAT (NIL T T T T) -9 NIL 740111 NIL) (-342 737012 737039 737209 "FDIVCAT-" 737214 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-341 736232 736319 736596 "FDIV2" 736919 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-340 735206 735527 735729 "FCTRDATA" 736050 T FCTRDATA (NIL) -8 NIL NIL NIL) (-339 733892 734151 734440 "FCPAK1" 734937 T FCPAK1 (NIL) -7 NIL NIL NIL) (-338 732991 733392 733533 "FCOMP" 733783 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-337 716696 720141 723679 "FC" 729473 T FC (NIL) -8 NIL NIL NIL) (-336 708975 713003 713043 "FAXF" 714845 NIL FAXF (NIL T) -9 NIL 715537 NIL) (-335 706252 706909 707734 "FAXF-" 708199 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-334 701304 705628 705804 "FARRAY" 706109 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-333 696198 698265 698318 "FAMR" 699341 NIL FAMR (NIL T T) -9 NIL 699801 NIL) (-332 695088 695390 695825 "FAMR-" 695830 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-331 694257 695010 695063 "FAMONOID" 695068 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-330 692043 692753 692806 "FAMONC" 693747 NIL FAMONC (NIL T T) -9 NIL 694133 NIL) (-329 690707 691797 691934 "FAGROUP" 691939 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-328 688502 688821 689224 "FACUTIL" 690388 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-327 687601 687786 688008 "FACTFUNC" 688312 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-326 680023 686904 687103 "EXPUPXS" 687457 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-325 677506 678046 678632 "EXPRTUBE" 679457 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-324 673777 674369 675099 "EXPRODE" 676845 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-323 659496 672426 672855 "EXPR" 673381 NIL EXPR (NIL T) -8 NIL NIL NIL) (-322 654050 654637 655443 "EXPR2UPS" 658794 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-321 653682 653739 653848 "EXPR2" 653987 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-320 644935 652833 653124 "EXPEXPAN" 653518 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-319 644735 644892 644921 "EXIT" 644926 T EXIT (NIL) -8 NIL NIL NIL) (-318 644215 644459 644550 "EXITAST" 644664 T EXITAST (NIL) -8 NIL NIL NIL) (-317 643842 643904 644017 "EVALCYC" 644147 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-316 643383 643501 643542 "EVALAB" 643712 NIL EVALAB (NIL T) -9 NIL 643816 NIL) (-315 642864 642986 643207 "EVALAB-" 643212 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-314 640232 641534 641562 "EUCDOM" 642117 T EUCDOM (NIL) -9 NIL 642467 NIL) (-313 638637 639079 639669 "EUCDOM-" 639674 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-312 626176 628935 631685 "ESTOOLS" 635907 T ESTOOLS (NIL) -7 NIL NIL NIL) (-311 625808 625865 625974 "ESTOOLS2" 626113 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-310 625559 625601 625681 "ESTOOLS1" 625760 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-309 619596 621204 621232 "ES" 624000 T ES (NIL) -9 NIL 625410 NIL) (-308 614543 615830 617647 "ES-" 617811 NIL ES- (NIL T) -8 NIL NIL NIL) (-307 610917 611678 612458 "ESCONT" 613783 T ESCONT (NIL) -7 NIL NIL NIL) (-306 610662 610694 610776 "ESCONT1" 610879 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-305 610337 610387 610487 "ES2" 610606 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-304 609967 610025 610134 "ES1" 610273 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-303 609183 609312 609488 "ERROR" 609811 T ERROR (NIL) -7 NIL NIL NIL) (-302 602575 609042 609133 "EQTBL" 609138 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-301 595078 597889 599338 "EQ" 601159 NIL -2076 (NIL T) -8 NIL NIL NIL) (-300 594710 594767 594876 "EQ2" 595015 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-299 590001 591048 592141 "EP" 593649 NIL EP (NIL T) -7 NIL NIL NIL) (-298 588601 588892 589198 "ENV" 589715 T ENV (NIL) -8 NIL NIL NIL) (-297 587695 588249 588277 "ENTIRER" 588282 T ENTIRER (NIL) -9 NIL 588328 NIL) (-296 584389 585877 586238 "EMR" 587503 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-295 583519 583704 583758 "ELTAGG" 584138 NIL ELTAGG (NIL T T) -9 NIL 584349 NIL) (-294 583238 583300 583441 "ELTAGG-" 583446 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-293 583002 583031 583085 "ELTAB" 583169 NIL ELTAB (NIL T T) -9 NIL 583221 NIL) (-292 582128 582274 582473 "ELFUTS" 582853 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-291 581870 581926 581954 "ELEMFUN" 582059 T ELEMFUN (NIL) -9 NIL NIL NIL) (-290 581740 581761 581829 "ELEMFUN-" 581834 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-289 576554 579810 579851 "ELAGG" 580791 NIL ELAGG (NIL T) -9 NIL 581254 NIL) (-288 574839 575273 575936 "ELAGG-" 575941 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-287 574151 574288 574444 "ELABOR" 574703 T ELABOR (NIL) -8 NIL NIL NIL) (-286 572812 573091 573385 "ELABEXPR" 573877 T ELABEXPR (NIL) -8 NIL NIL NIL) (-285 565676 567479 568306 "EFUPXS" 572088 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-284 559126 560927 561737 "EFULS" 564952 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-283 556611 556969 557441 "EFSTRUC" 558758 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-282 546402 547968 549516 "EF" 555126 NIL EF (NIL T T) -7 NIL NIL NIL) (-281 545476 545887 546036 "EAB" 546273 T EAB (NIL) -8 NIL NIL NIL) (-280 544658 545435 545463 "E04UCFA" 545468 T E04UCFA (NIL) -8 NIL NIL NIL) (-279 543840 544617 544645 "E04NAFA" 544650 T E04NAFA (NIL) -8 NIL NIL NIL) (-278 543022 543799 543827 "E04MBFA" 543832 T E04MBFA (NIL) -8 NIL NIL NIL) (-277 542204 542981 543009 "E04JAFA" 543014 T E04JAFA (NIL) -8 NIL NIL NIL) (-276 541388 542163 542191 "E04GCFA" 542196 T E04GCFA (NIL) -8 NIL NIL NIL) (-275 540572 541347 541375 "E04FDFA" 541380 T E04FDFA (NIL) -8 NIL NIL NIL) (-274 539754 540531 540559 "E04DGFA" 540564 T E04DGFA (NIL) -8 NIL NIL NIL) (-273 533927 535279 536643 "E04AGNT" 538410 T E04AGNT (NIL) -7 NIL NIL NIL) (-272 532698 533241 533281 "DVARCAT" 533622 NIL DVARCAT (NIL T) -9 NIL 533785 NIL) (-271 531902 532114 532428 "DVARCAT-" 532433 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-270 524950 531701 531830 "DSMP" 531835 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-269 519731 520895 521963 "DROPT" 523902 T DROPT (NIL) -8 NIL NIL NIL) (-268 519396 519455 519553 "DROPT1" 519666 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-267 514511 515637 516774 "DROPT0" 518279 T DROPT0 (NIL) -7 NIL NIL NIL) (-266 512856 513181 513567 "DRAWPT" 514145 T DRAWPT (NIL) -7 NIL NIL NIL) (-265 507443 508366 509445 "DRAW" 511830 NIL DRAW (NIL T) -7 NIL NIL NIL) (-264 507076 507129 507247 "DRAWHACK" 507384 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-263 505807 506076 506367 "DRAWCX" 506805 T DRAWCX (NIL) -7 NIL NIL NIL) (-262 505322 505391 505542 "DRAWCURV" 505733 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-261 495790 497752 499867 "DRAWCFUN" 503227 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-260 492554 494483 494524 "DQAGG" 495153 NIL DQAGG (NIL T) -9 NIL 495427 NIL) (-259 480464 487022 487105 "DPOLCAT" 488957 NIL DPOLCAT (NIL T T T T) -9 NIL 489502 NIL) (-258 475301 476649 478607 "DPOLCAT-" 478612 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-257 468610 475162 475260 "DPMO" 475265 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-256 461822 468390 468557 "DPMM" 468562 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-255 461392 461606 461695 "DOMTMPLT" 461753 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-254 460825 461194 461274 "DOMCTOR" 461332 T DOMCTOR (NIL) -8 NIL NIL NIL) (-253 460037 460305 460456 "DOMAIN" 460694 T DOMAIN (NIL) -8 NIL NIL NIL) (-252 453936 459672 459824 "DMP" 459938 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-251 453536 453592 453736 "DLP" 453874 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 447358 452863 453053 "DLIST" 453378 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 444155 446211 446252 "DLAGG" 446802 NIL DLAGG (NIL T) -9 NIL 447032 NIL) (-248 442831 443495 443523 "DIVRING" 443615 T DIVRING (NIL) -9 NIL 443698 NIL) (-247 442068 442258 442558 "DIVRING-" 442563 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 440170 440527 440933 "DISPLAY" 441682 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 433919 440084 440147 "DIRPROD" 440152 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 432767 432970 433235 "DIRPROD2" 433712 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 421224 427370 427423 "DIRPCAT" 427833 NIL DIRPCAT (NIL NIL T) -9 NIL 428673 NIL) (-242 418328 419032 419993 "DIRPCAT-" 420330 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 417615 417775 417961 "DIOSP" 418162 T DIOSP (NIL) -7 NIL NIL NIL) (-240 414270 416527 416568 "DIOPS" 417002 NIL DIOPS (NIL T) -9 NIL 417231 NIL) (-239 413819 413933 414124 "DIOPS-" 414129 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 412870 413498 413526 "DIFRING" 413531 T DIFRING (NIL) -9 NIL 413553 NIL) (-237 412542 412616 412644 "DIFFSPC" 412763 T DIFFSPC (NIL) -9 NIL 412838 NIL) (-236 412187 412265 412417 "DIFFSPC-" 412422 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 411895 411940 411981 "DIFFDOM" 412102 NIL DIFFDOM (NIL T) -9 NIL 412170 NIL) (-234 411748 411772 411856 "DIFFDOM-" 411861 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409400 410672 410713 "DIFEXT" 411076 NIL DIFEXT (NIL T) -9 NIL 411370 NIL) (-232 407685 408113 408779 "DIFEXT-" 408784 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404960 407217 407258 "DIAGG" 407263 NIL DIAGG (NIL T) -9 NIL 407283 NIL) (-230 404344 404501 404753 "DIAGG-" 404758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399761 403303 403580 "DHMATRIX" 404113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395373 396282 397292 "DFSFUN" 398771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390453 394304 394616 "DFLOAT" 395081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388716 388997 389386 "DFINTTLS" 390161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385745 386737 387137 "DERHAM" 388382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383546 385520 385609 "DEQUEUE" 385689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382800 382933 383116 "DEGRED" 383408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379230 379975 380821 "DEFINTRF" 382028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376785 377254 377846 "DEFINTEF" 378749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376135 376405 376520 "DEFAST" 376690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370044 375728 375878 "DECIMAL" 376005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367556 368014 368520 "DDFACT" 369588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367152 367195 367346 "DBLRESP" 367507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365020 365382 365743 "DBASE" 366918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364262 364500 364646 "DATAARY" 364919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363368 364221 364249 "D03FAFA" 364254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362475 363327 363355 "D03EEFA" 363360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360425 360891 361380 "D03AGNT" 362006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359714 360384 360412 "D02EJFA" 360417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359003 359673 359701 "D02CJFA" 359706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358292 358962 358990 "D02BHFA" 358995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357581 358251 358279 "D02BBFA" 358284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350778 352367 353973 "D02AGNT" 355995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348546 349069 349615 "D01WGTS" 350252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347613 348505 348533 "D01TRNS" 348538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346681 347572 347600 "D01GBFA" 347605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345749 346640 346668 "D01FCFA" 346673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344817 345708 345736 "D01ASFA" 345741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343885 344776 344804 "D01AQFA" 344809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342953 343844 343872 "D01APFA" 343877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342021 342912 342940 "D01ANFA" 342945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341089 341980 342008 "D01AMFA" 342013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340157 341048 341076 "D01ALFA" 341081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339225 340116 340144 "D01AKFA" 340149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338293 339184 339212 "D01AJFA" 339217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331588 333141 334702 "D01AGNT" 336752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330925 331053 331205 "CYCLOTOM" 331456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327658 328373 329100 "CYCLES" 330218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326970 327104 327275 "CVMP" 327519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324811 325069 325438 "CTRIGMNP" 326698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324247 324605 324678 "CTOR" 324758 T CTOR (NIL) -8 NIL NIL NIL) (-188 323756 323978 324079 "CTORKIND" 324166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323047 323363 323391 "CTORCAT" 323573 T CTORCAT (NIL) -9 NIL 323686 NIL) (-186 322645 322756 322915 "CTORCAT-" 322920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322107 322319 322427 "CTORCALL" 322569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321481 321580 321733 "CSTTOOLS" 322004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317280 317937 318695 "CRFP" 320793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316755 317001 317093 "CRCEAST" 317208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315802 315987 316215 "CRAPACK" 316559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315186 315287 315491 "CPMATCH" 315678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314911 314939 315045 "CPIMA" 315152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311259 311931 312650 "COORDSYS" 314246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310671 310792 310934 "CONTOUR" 311137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306562 308674 309166 "CONTFRAC" 310211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306442 306463 306491 "CONDUIT" 306528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305530 306084 306112 "COMRING" 306117 T COMRING (NIL) -9 NIL 306169 NIL) (-173 304584 304888 305072 "COMPPROP" 305366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304245 304280 304408 "COMPLPAT" 304543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294447 304054 304163 "COMPLEX" 304168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294083 294140 294247 "COMPLEX2" 294384 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293422 293543 293703 "COMPILER" 293943 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293140 293175 293273 "COMPFACT" 293381 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-1787 (((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)) 23))) +(((-1242 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) (-1064) (-1064) (-1192) (-1192) |#1| |#2|) (T -1242)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1192))))) +(-10 -7 (-15 -1787 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 176 (|has| |#1| (-372)))) (-2153 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-2800 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-3548 (((-417 (-965 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2941 (((-112) $) 178 (|has| |#1| (-372)))) (-4396 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-574) $) 114) (((-574) $ (-574)) 113)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) 115)) (-3936 (($ (-1 |#1| (-574)) $) 186)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3513 (((-112) $) 74)) (-4327 (($ |#1| (-574)) 73) (($ $ (-1097) (-574)) 88) (($ $ (-654 (-1097)) (-654 (-574))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3111 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2844 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-3302 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 172 (|has| |#1| (-372)))) (-4016 (($ $ (-574)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1619 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-3575 (((-781) $) 168 (|has| |#1| (-372)))) (-2209 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-4144 (((-574) $) 76)) (-2415 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3584 ((|#1| $ (-574)) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2428 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1243 |#1|) (-141) (-1064)) (T -1243)) +((-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1064)) (-4 *1 (-1243 *3)))) (-3936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1243 *3)) (-4 *3 (-1064)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) (-5 *2 (-417 (-965 *4))))) (-3548 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) (-5 *2 (-417 (-965 *4))))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-3302 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1261 |t#1| (-574)) (-10 -8 (-15 -3596 ($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -3936 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3548 ((-417 (-965 |t#1|)) $ (-574))) (-15 -3548 ((-417 (-965 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $)) (IF (|has| |t#1| (-15 -3302 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T)) +((-1997 (((-112) $) 12)) (-1706 (((-3 |#3| "failed") $) 17) (((-3 (-1192) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2216 ((|#3| $) 14) (((-1192) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL))) +(((-1244 |#1| |#2| |#3|) (-10 -8 (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -1997 ((-112) |#1|))) (-1245 |#2| |#3|) (-1064) (-1274 |#2|)) (T -1244)) +NIL +(-10 -8 (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1706 ((-3 (-1192) "failed") |#1|)) (-15 -2216 ((-1192) |#1|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -1997 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1882 ((|#2| $) 246 (-2097 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2410 ((|#2| $) 282)) (-4191 (((-3 |#2| "failed") $) 278)) (-4401 ((|#2| $) 279)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-3065 (((-428 (-1188 $)) (-1188 $)) 255 (-2097 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3313 (($ $) 176 (|has| |#1| (-372)))) (-2153 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 252 (-2097 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-1526 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2496 (((-574) $) 264 (-2097 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 285) (((-3 (-574) "failed") $) 275 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 273 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-1192) "failed") $) 257 (-2097 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 286) (((-574) $) 274 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 272 (-2097 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-1192) $) 256 (-2097 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2957 (($ $) 281) (($ (-574) $) 280)) (-2800 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-4232 (((-699 |#2|) (-1283 $)) 236 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) 234 (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 233 (-2097 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 232 (-2097 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) 231 (-2097 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-2978 (((-3 $ "failed") $) 37)) (-3548 (((-417 (-965 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2834 (($) 248 (-2097 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2941 (((-112) $) 178 (|has| |#1| (-372)))) (-1348 (((-112) $) 262 (-2097 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4396 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 240 (-2097 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 239 (-2097 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3837 (((-574) $) 114) (((-574) $ (-574)) 113)) (-2276 (((-112) $) 35)) (-3071 (($ $) 244 (|has| |#1| (-372)))) (-2970 ((|#2| $) 242 (|has| |#1| (-372)))) (-3649 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4217 (((-3 $ "failed") $) 276 (-2097 (|has| |#2| (-1167)) (|has| |#1| (-372))))) (-3081 (((-112) $) 263 (-2097 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2528 (($ $ (-934)) 115)) (-3936 (($ (-1 |#1| (-574)) $) 186)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3513 (((-112) $) 74)) (-4327 (($ |#1| (-574)) 73) (($ $ (-1097) (-574)) 88) (($ $ (-654 (-1097)) (-654 (-574))) 87)) (-3632 (($ $ $) 266 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2953 (($ $ $) 267 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1787 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-372)))) (-3111 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2844 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 283)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-3302 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3791 (($) 277 (-2097 (|has| |#2| (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-2010 (($ $) 247 (-2097 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-2787 ((|#2| $) 250 (-2097 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2406 (((-428 (-1188 $)) (-1188 $)) 253 (-2097 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-2318 (((-428 (-1188 $)) (-1188 $)) 254 (-2097 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 172 (|has| |#1| (-372)))) (-4016 (($ $ (-574)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1619 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) |#2|) 225 (-2097 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 |#2|)) 224 (-2097 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 223 (-2097 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 222 (-2097 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 221 (-2097 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 220 (-2097 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-3575 (((-781) $) 168 (|has| |#1| (-372)))) (-2209 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1127))) (($ $ |#2|) 219 (-2097 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 229 (|has| |#1| (-372))) (($ $) 99 (-2832 (-2097 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 97 (-2832 (-2097 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) 103 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192) (-781)) 102 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1192))) 101 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192)) 100 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-2593 (($ $) 245 (|has| |#1| (-372)))) (-2981 ((|#2| $) 243 (|has| |#1| (-372)))) (-4144 (((-574) $) 76)) (-2415 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1846 (((-227) $) 261 (-2097 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-388) $) 260 (-2097 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-546) $) 259 (-2097 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 238 (-2097 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 237 (-2097 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 251 (-2097 (-2097 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#1| (-372))))) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1192)) 258 (-2097 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3584 ((|#1| $ (-574)) 71)) (-3270 (((-3 $ "failed") $) 60 (-2832 (-2097 (-2832 (|has| |#2| (-146)) (-2097 (|has| $ (-146)) (|has| |#2| (-922)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-2251 ((|#2| $) 249 (-2097 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2428 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2366 (($ $) 265 (-2097 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 227 (|has| |#1| (-372))) (($ $) 98 (-2832 (-2097 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 96 (-2832 (-2097 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) 107 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192) (-781)) 106 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1192))) 105 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1192)) 104 (-2832 (-2097 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3040 (((-112) $ $) 269 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3017 (((-112) $ $) 270 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2985 (((-112) $ $) 6)) (-3029 (((-112) $ $) 268 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3008 (((-112) $ $) 271 (-2097 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372))) (($ |#2| |#2|) 241 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-372))) (($ |#2| $) 217 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1245 |#1| |#2|) (-141) (-1064) (-1274 |t#1|)) (T -1245)) +((-4144 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)) (-5 *2 (-574)))) (-4413 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1064)) (-4 *1 (-1245 *4 *3)) (-4 *3 (-1274 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3)))) (-2957 (*1 *1 *1) (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1274 *2)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3)))) (-4191 (*1 *2 *1) (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) +(-13 (-1243 |t#1|) (-1053 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4413 ($ (-574) |t#2|)) (-15 -4144 ((-574) $)) (-15 -2410 (|t#2| $)) (-15 -2957 ($ $)) (-15 -2957 ($ (-574) $)) (-15 -4401 (|t#2| $)) (-15 -4191 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1007 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1192)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-238) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1192) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1192) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-913 (-1192)) -2832 (-12 (|has| |#1| (-372)) (|has| |#2| (-913 (-1192)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-922) -12 (|has| |#1| (-372)) (|has| |#2| (-922))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1007 |#2|) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1037) -12 (|has| |#1| (-372)) (|has| |#2| (-1037))) ((-1053 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) ((-1053 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-574)))) ((-1053 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1053 (-1192)))) ((-1053 |#2|) . T) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 |#2|) |has| |#1| (-372)) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 |#2|) |has| |#1| (-372)) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) -12 (|has| |#1| (-372)) (|has| |#2| (-1167))) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1243 |#1|) . T) ((-1261 |#1| #0#) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 81)) (-1882 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 100)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-2410 ((|#2| $) 11)) (-4191 (((-3 |#2| "failed") $) 35)) (-4401 ((|#2| $) 36)) (-2378 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2496 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2403 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-1192) "failed") $) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1053 (-574))) (|has| |#1| (-372)))) (((-1192) $) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372))))) (-2957 (($ $) 65) (($ (-574) $) 28)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-4232 (((-699 |#2|) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-2978 (((-3 $ "failed") $) 88)) (-3548 (((-417 (-965 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-1348 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4396 (((-112) $) 74)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3837 (((-574) $) 105) (((-574) $ (-574)) 107)) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-372)))) (-2970 ((|#2| $) 165 (|has| |#1| (-372)))) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4217 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1167)) (|has| |#1| (-372))))) (-3081 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2528 (($ $ (-934)) 148)) (-3936 (($ (-1 |#1| (-574)) $) 144)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 20) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2953 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1787 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3111 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 10)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 159 (|has| |#1| (-372)))) (-3302 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 233 (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3791 (($) NIL (-12 (|has| |#2| (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2010 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-2787 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| |#2| (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-574)) 138)) (-2852 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) |#2|) NIL (-12 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1192) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1127))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) 149 (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) 153 (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2593 (($ $) NIL (|has| |#1| (-372)))) (-2981 ((|#2| $) 166 (|has| |#1| (-372)))) (-4144 (((-574) $) 12)) (-2415 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1846 (((-227) $) NIL (-12 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1037)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922)) (|has| |#1| (-372))))) (-2073 (($ $) 136)) (-2950 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1192)) NIL (-12 (|has| |#2| (-1053 (-1192))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-574)) 85)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3781 (((-781)) 155 T CONST)) (-3332 ((|#1| $) 102)) (-2251 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2366 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2143 (($) 13 T CONST)) (-2155 (($) 18 T CONST)) (-3583 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#2| (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3040 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3017 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2985 (((-112) $ $) 72)) (-3029 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3008 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3089 (($ $) 227) (($ $ $) 78)) (-3073 (($ $ $) 76)) (** (($ $ (-934)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1246 |#1| |#2|) (-1245 |#1| |#2|) (-1064) (-1274 |#1|)) (T -1246)) +NIL +(-1245 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1882 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 10)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4319 (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1731 (((-112) $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4430 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-2389 (((-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-2410 (((-1275 |#1| |#2| |#3|) $) NIL)) (-4191 (((-3 (-1275 |#1| |#2| |#3|) "failed") $) NIL)) (-4401 (((-1275 |#1| |#2| |#3|) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2496 (((-574) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3596 (($ (-1172 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-1275 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1192) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2216 (((-1275 |#1| |#2| |#3|) $) NIL) (((-1192) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))))) (-2957 (($ $) NIL) (($ (-574) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-1275 |#1| |#2| |#3|)) (-1283 $)) NIL (|has| |#1| (-372))) (((-699 (-1275 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-1275 |#1| |#2| |#3|))) (|:| |vec| (-1283 (-1275 |#1| |#2| |#3|)))) (-699 $) (-1283 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1283 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-2978 (((-3 $ "failed") $) NIL)) (-3548 (((-417 (-965 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-965 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2834 (($) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-1348 (((-112) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3837 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-2276 (((-112) $) NIL)) (-3071 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4217 (((-3 $ "failed") $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))))) (-3081 (((-112) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2528 (($ $ (-934)) NIL)) (-3936 (($ (-1 |#1| (-574)) $) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-574)) 18) (($ $ (-1097) (-574)) NIL) (($ $ (-654 (-1097)) (-654 (-574))) NIL)) (-3632 (($ $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2953 (($ $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1275 |#1| |#2| |#3|)) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1167)) (|has| |#1| (-372))) CONST)) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2010 (($ $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-2787 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-574)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1192) (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1192)) (-654 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-524 (-1192) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1275 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1275 |#1| |#2| |#3|)) (-654 (-1275 |#1| |#2| |#3|))) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-317 (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1127))) (($ $ (-1275 |#1| |#2| |#3|)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-294 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1279 |#2|)) 26) (($ $) 25 (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-2593 (($ $) NIL (|has| |#1| (-372)))) (-2981 (((-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-4144 (((-574) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1846 (((-546) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1037)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1275 |#1| |#2| |#3|)) NIL) (($ (-1279 |#2|)) 24) (($ (-1192)) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-1192))) (|has| |#1| (-372)))) (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-1053 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3584 ((|#1| $ (-574)) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 11)) (-2251 (((-1275 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-922)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2366 (($ $) NIL (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2143 (($) 20 T CONST)) (-2155 (($) 15 T CONST)) (-3583 (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192) (-781)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-654 (-1192))) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192)))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-913 (-1192))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-913 (-1192))))))) (-3040 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3017 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2985 (((-112) $ $) NIL)) (-3029 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3008 (((-112) $ $) NIL (-2832 (-12 (|has| (-1275 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1275 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1275 |#1| |#2| |#3|) (-1275 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 22)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1275 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1275 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1247 |#1| |#2| |#3|) (-13 (-1245 |#1| (-1275 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1247)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1245 |#1| (-1275 |#1| |#2| |#3|)) (-10 -8 (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-4199 (((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112)) 13)) (-3657 (((-428 |#1|) |#1|) 26)) (-4200 (((-428 |#1|) |#1|) 24))) +(((-1248 |#1|) (-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1|)) (-15 -4199 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112)))) (-1259 (-574))) (T -1248)) +((-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574))))) (-3657 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574))))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) +(-10 -7 (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3657 ((-428 |#1|) |#1|)) (-15 -4199 ((-2 (|:| |contp| (-574)) (|:| -2679 (-654 (-2 (|:| |irr| |#1|) (|:| -3737 (-574)))))) |#1| (-112)))) +((-1787 (((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|)) 23 (|has| |#1| (-858))) (((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|)) 17))) +(((-1249 |#1| |#2|) (-10 -7 (-15 -1787 ((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) (IF (|has| |#1| (-858)) (-15 -1787 ((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) |%noBranch|)) (-1233) (-1233)) (T -1249)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-858)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1249 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1250 *6)) (-5 *1 (-1249 *5 *6))))) +(-10 -7 (-15 -1787 ((-1250 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) (IF (|has| |#1| (-858)) (-15 -1787 ((-1172 |#2|) (-1 |#2| |#1|) (-1250 |#1|))) |%noBranch|)) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3224 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1787 (((-1172 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-4375 ((|#1| $) 15)) (-2830 ((|#1| $) 12)) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1964 (((-574) $) 19)) (-2893 ((|#1| $) 18)) (-1976 ((|#1| $) 13)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2814 (((-112) $) 17)) (-2138 (((-1172 |#1|) $) 41 (|has| |#1| (-858))) (((-1172 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1846 (($ |#1|) 26)) (-2950 (($ (-1109 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-4264 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2747 (($ $ (-574)) 14)) (-2985 (((-112) $ $) 30 (|has| |#1| (-1115))))) +(((-1250 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -4264 ($ |#1|)) (-15 -3224 ($ |#1|)) (-15 -2950 ($ (-1109 |#1|))) (-15 -2814 ((-112) $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-1172 |#1|))) |%noBranch|))) (-1233)) (T -1250)) +((-4264 (*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233)))) (-3224 (*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1233)) (-5 *1 (-1250 *3)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3)) (-4 *3 (-1233))))) +(-13 (-1108 |#1|) (-10 -8 (-15 -4264 ($ |#1|)) (-15 -3224 ($ |#1|)) (-15 -2950 ($ (-1109 |#1|))) (-15 -2814 ((-112) $)) (IF (|has| |#1| (-1115)) (-6 (-1115)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1110 |#1| (-1172 |#1|))) |%noBranch|))) +((-1787 (((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)) 15))) +(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 ((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)))) (-1192) (-1064) (-1192) (-1064)) (T -1251)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1192)) (-4 *6 (-1064)) (-4 *8 (-1064)) (-5 *2 (-1256 *7 *8)) (-5 *1 (-1251 *5 *6 *7 *8)) (-14 *7 (-1192))))) +(-10 -7 (-15 -1787 ((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)))) +((-1809 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3128 ((|#1| |#3|) 13)) (-3417 ((|#3| |#3|) 19))) +(((-1252 |#1| |#2| |#3|) (-10 -7 (-15 -3128 (|#1| |#3|)) (-15 -3417 (|#3| |#3|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1007 |#1|) (-1259 |#2|)) (T -1252)) +((-1809 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1252 *4 *5 *3)) (-4 *3 (-1259 *5)))) (-3417 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-1252 *3 *4 *2)) (-4 *2 (-1259 *4)))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-1252 *2 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -3128 (|#1| |#3|)) (-15 -3417 (|#3| |#3|)) (-15 -1809 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2515 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-1966 (((-3 |#2| "failed") |#2| (-781)) 36)) (-2678 (((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|) 50)) (-3551 (((-654 |#2|) |#2|) 52)) (-4341 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1253 |#1| |#2|) (-10 -7 (-15 -1966 ((-3 |#2| "failed") |#2| (-781))) (-15 -2515 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -4341 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2678 ((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|)) (-15 -3551 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1259 |#1|)) (T -1253)) +((-3551 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4)))) (-2678 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4)))) (-4341 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1259 *3)))) (-2515 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4)))) (-1966 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) +(-10 -7 (-15 -1966 ((-3 |#2| "failed") |#2| (-781))) (-15 -2515 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -4341 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2678 ((-3 (-2 (|:| -3864 |#2|) (|:| -3877 |#2|)) "failed") |#2|)) (-15 -3551 ((-654 |#2|) |#2|))) +((-2540 (((-3 (-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) "failed") |#2| |#2|) 30))) +(((-1254 |#1| |#2|) (-10 -7 (-15 -2540 ((-3 (-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) "failed") |#2| |#2|))) (-566) (-1259 |#1|)) (T -1254)) +((-2540 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1259 *4))))) +(-10 -7 (-15 -2540 ((-3 (-2 (|:| -1670 |#2|) (|:| -2711 |#2|)) "failed") |#2| |#2|))) +((-2795 ((|#2| |#2| |#2|) 22)) (-2860 ((|#2| |#2| |#2|) 36)) (-4433 ((|#2| |#2| |#2| (-781) (-781)) 44))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -2795 (|#2| |#2| |#2|)) (-15 -2860 (|#2| |#2| |#2|)) (-15 -4433 (|#2| |#2| |#2| (-781) (-781)))) (-1064) (-1259 |#1|)) (T -1255)) +((-4433 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1259 *4)))) (-2860 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3)))) (-2795 (*1 *2 *2 *2) (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) +(-10 -7 (-15 -2795 (|#2| |#2| |#2|)) (-15 -2860 (|#2| |#2| |#2|)) (-15 -4433 (|#2| |#2| |#2| (-781) (-781)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-3806 (((-1283 |#2|) $ (-781)) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1709 (($ (-1188 |#2|)) NIL)) (-4172 (((-1188 $) $ (-1097)) NIL) (((-1188 |#2|) $) NIL)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4319 (($ $) NIL (|has| |#2| (-566)))) (-1731 (((-112) $) NIL (|has| |#2| (-566)))) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1097))) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1641 (($ $ $) NIL (|has| |#2| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-3313 (($ $) NIL (|has| |#2| (-462)))) (-2153 (((-428 $) $) NIL (|has| |#2| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-1526 (((-112) $ $) NIL (|has| |#2| (-372)))) (-1815 (($ $ (-781)) NIL)) (-2574 (($ $ (-781)) NIL)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1053 (-574)))) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1053 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1053 (-574)))) (((-1097) $) NIL)) (-3372 (($ $ $ (-1097)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2800 (($ $ $) NIL (|has| |#2| (-372)))) (-1401 (($ $) NIL)) (-4232 (((-699 (-574)) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#2|)) (|:| |vec| (-1283 |#2|))) (-699 $) (-1283 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1283 $)) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-372)))) (-3203 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#2| (-566)))) (-3276 (((-2 (|:| -1868 |#2|) (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-1420 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1097)) NIL (|has| |#2| (-462)))) (-1388 (((-654 $) $) NIL)) (-2941 (((-112) $) NIL (|has| |#2| (-922)))) (-2680 (($ $ |#2| (-781) $) NIL)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1097) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1097) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3837 (((-781) $ $) NIL (|has| |#2| (-566)))) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-4217 (((-3 $ "failed") $) NIL (|has| |#2| (-1167)))) (-4338 (($ (-1188 |#2|) (-1097)) NIL) (($ (-1188 $) (-1097)) NIL)) (-2528 (($ $ (-781)) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-4327 (($ |#2| (-781)) 18) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1097)) NIL) (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL)) (-2682 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-3577 (($ (-1 (-781) (-781)) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2198 (((-1188 |#2|) $) NIL)) (-1407 (((-3 (-1097) "failed") $) NIL)) (-1365 (($ $) NIL)) (-1377 ((|#2| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-1938 (((-1174) $) NIL)) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) NIL)) (-1898 (((-3 (-654 $) "failed") $) NIL)) (-3145 (((-3 (-654 $) "failed") $) NIL)) (-3019 (((-3 (-2 (|:| |var| (-1097)) (|:| -3843 (-781))) "failed") $) NIL)) (-3302 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3791 (($) NIL (|has| |#2| (-1167)) CONST)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 ((|#2| $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#2| (-462)))) (-2886 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3645 (($ $ (-781) |#2| $) NIL)) (-2406 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) NIL (|has| |#2| (-922)))) (-4200 (((-428 $) $) NIL (|has| |#2| (-922)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#2| (-372)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2660 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#2|) NIL) (($ $ (-654 (-1097)) (-654 |#2|)) NIL) (($ $ (-1097) $) NIL) (($ $ (-654 (-1097)) (-654 $)) NIL)) (-3575 (((-781) $) NIL (|has| |#2| (-372)))) (-2209 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-3233 (((-3 $ "failed") $ (-781)) NIL)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#2| (-372)))) (-3902 (($ $ (-1097)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3878 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4144 (((-781) $) NIL) (((-781) $ (-1097)) NIL) (((-654 (-781)) $ (-654 (-1097))) NIL)) (-1846 (((-903 (-388)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1097) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1514 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1097)) NIL (|has| |#2| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-922))))) (-4017 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2950 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1097)) NIL) (($ (-1279 |#1|)) 20) (($ (-417 (-574))) NIL (-2832 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1053 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-781)) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-3270 (((-3 $ "failed") $) NIL (-2832 (-12 (|has| $ (-146)) (|has| |#2| (-922))) (|has| |#2| (-146))))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2143 (($) NIL T CONST)) (-2155 (($) 14 T CONST)) (-3583 (($ $ (-1097)) NIL) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1192)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1192) (-781)) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) NIL (|has| |#2| (-913 (-1192)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1256 |#1| |#2|) (-13 (-1259 |#2|) (-626 (-1279 |#1|)) (-10 -8 (-15 -3645 ($ $ (-781) |#2| $)))) (-1192) (-1064)) (T -1256)) +((-3645 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1192)) (-4 *3 (-1064))))) +(-13 (-1259 |#2|) (-626 (-1279 |#1|)) (-10 -8 (-15 -3645 ($ $ (-781) |#2| $)))) +((-1787 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) (-1064) (-1259 |#1|) (-1064) (-1259 |#3|)) (T -1257)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *4 *6 *2)) (-4 *4 (-1259 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) +((-3806 (((-1283 |#2|) $ (-781)) 129)) (-4349 (((-654 (-1097)) $) 16)) (-1709 (($ (-1188 |#2|)) 80)) (-4347 (((-781) $) NIL) (((-781) $ (-654 (-1097))) 21)) (-3065 (((-428 (-1188 $)) (-1188 $)) 204)) (-3313 (($ $) 194)) (-2153 (((-428 $) $) 192)) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 95)) (-1815 (($ $ (-781)) 84)) (-2574 (($ $ (-781)) 86)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1706 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1097) "failed") $) NIL)) (-2216 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1097) $) NIL)) (-1577 (($ $ $) 170)) (-3276 (((-2 (|:| -1868 |#2|) (|:| -1670 $) (|:| -2711 $)) $ $) 172)) (-3837 (((-781) $ $) 189)) (-4217 (((-3 $ "failed") $) 138)) (-4327 (($ |#2| (-781)) NIL) (($ $ (-1097) (-781)) 59) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-2682 (((-781) $) NIL) (((-781) $ (-1097)) 54) (((-654 (-781)) $ (-654 (-1097))) 55)) (-2198 (((-1188 |#2|) $) 72)) (-1407 (((-3 (-1097) "failed") $) 52)) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) 83)) (-3302 (($ $) 219)) (-3791 (($) 134)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 201)) (-2406 (((-428 (-1188 $)) (-1188 $)) 101)) (-2318 (((-428 (-1188 $)) (-1188 $)) 99)) (-4200 (((-428 $) $) 120)) (-2660 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1097) |#2|) 39) (($ $ (-654 (-1097)) (-654 |#2|)) 36) (($ $ (-1097) $) 32) (($ $ (-654 (-1097)) (-654 $)) 30)) (-3575 (((-781) $) 207)) (-2209 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 212)) (-3878 (($ $ (-1097)) 157) (($ $ (-654 (-1097))) NIL) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL) (($ $) 155) (($ $ (-781)) NIL) (($ $ (-1192)) NIL) (($ $ (-654 (-1192))) NIL) (($ $ (-1192) (-781)) NIL) (($ $ (-654 (-1192)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4144 (((-781) $) NIL) (((-781) $ (-1097)) 17) (((-654 (-781)) $ (-654 (-1097))) 23)) (-1514 ((|#2| $) NIL) (($ $ (-1097)) 140)) (-4017 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1097)) 64) (($ (-417 (-574))) NIL) (($ $) NIL))) +(((-1258 |#1| |#2|) (-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -2209 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -3575 ((-781) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -2209 (|#2| (-417 |#1|) |#2|)) (-15 -2471 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -1868 |#2|) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -4017 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3837 ((-781) |#1| |#1|)) (-15 -2209 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2574 (|#1| |#1| (-781))) (-15 -1815 (|#1| |#1| (-781))) (-15 -3115 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| (-781))) (-15 -1709 (|#1| (-1188 |#2|))) (-15 -2198 ((-1188 |#2|) |#1|)) (-15 -3806 ((-1283 |#2|) |#1| (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| |#2|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3065 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1514 (|#1| |#1| (-1097))) (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4347 ((-781) |#1| (-654 (-1097)))) (-15 -4347 ((-781) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -4327 (|#1| |#1| (-1097) (-781))) (-15 -2682 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -2682 ((-781) |#1| (-1097))) (-15 -1407 ((-3 (-1097) "failed") |#1|)) (-15 -4144 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -4144 ((-781) |#1| (-1097))) (-15 -2950 (|#1| (-1097))) (-15 -1706 ((-3 (-1097) "failed") |#1|)) (-15 -2216 ((-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1097) |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4144 ((-781) |#1|)) (-15 -4327 (|#1| |#2| (-781))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2682 ((-781) |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -3878 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1097) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1097)))) (-15 -3878 (|#1| |#1| (-1097))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) (-1259 |#2|) (-1064)) (T -1258)) +NIL +(-10 -8 (-15 -2950 (|#1| |#1|)) (-15 -4161 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2153 ((-428 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -3791 (|#1|)) (-15 -4217 ((-3 |#1| "failed") |#1|)) (-15 -2209 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -3575 ((-781) |#1|)) (-15 -2696 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -2209 (|#2| (-417 |#1|) |#2|)) (-15 -2471 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -1868 |#2|) (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -4017 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3837 ((-781) |#1| |#1|)) (-15 -2209 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2574 (|#1| |#1| (-781))) (-15 -1815 (|#1| |#1| (-781))) (-15 -3115 ((-2 (|:| -1670 |#1|) (|:| -2711 |#1|)) |#1| (-781))) (-15 -1709 (|#1| (-1188 |#2|))) (-15 -2198 ((-1188 |#2|) |#1|)) (-15 -3806 ((-1283 |#2|) |#1| (-781))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3878 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1192) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1192)))) (-15 -3878 (|#1| |#1| (-1192))) (-15 -3878 (|#1| |#1| (-781))) (-15 -3878 (|#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| |#2|)) (-15 -4200 ((-428 |#1|) |#1|)) (-15 -3065 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2318 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2406 ((-428 (-1188 |#1|)) (-1188 |#1|))) (-15 -2580 ((-3 (-654 (-1188 |#1|)) "failed") (-654 (-1188 |#1|)) (-1188 |#1|))) (-15 -1514 (|#1| |#1| (-1097))) (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4347 ((-781) |#1| (-654 (-1097)))) (-15 -4347 ((-781) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -4327 (|#1| |#1| (-1097) (-781))) (-15 -2682 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -2682 ((-781) |#1| (-1097))) (-15 -1407 ((-3 (-1097) "failed") |#1|)) (-15 -4144 ((-654 (-781)) |#1| (-654 (-1097)))) (-15 -4144 ((-781) |#1| (-1097))) (-15 -2950 (|#1| (-1097))) (-15 -1706 ((-3 (-1097) "failed") |#1|)) (-15 -2216 ((-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#1|))) (-15 -2660 (|#1| |#1| (-1097) |#1|)) (-15 -2660 (|#1| |#1| (-654 (-1097)) (-654 |#2|))) (-15 -2660 (|#1| |#1| (-1097) |#2|)) (-15 -2660 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2660 (|#1| |#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| (-302 |#1|))) (-15 -2660 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4144 ((-781) |#1|)) (-15 -4327 (|#1| |#2| (-781))) (-15 -1706 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1706 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2950 (|#1| |#2|)) (-15 -2682 ((-781) |#1|)) (-15 -1514 (|#2| |#1|)) (-15 -3878 (|#1| |#1| (-654 (-1097)) (-654 (-781)))) (-15 -3878 (|#1| |#1| (-1097) (-781))) (-15 -3878 (|#1| |#1| (-654 (-1097)))) (-15 -3878 (|#1| |#1| (-1097))) (-15 -2950 (|#1| (-574))) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-3806 (((-1283 |#1|) $ (-781)) 243)) (-4349 (((-654 (-1097)) $) 112)) (-1709 (($ (-1188 |#1|)) 241)) (-4172 (((-1188 $) $ (-1097)) 127) (((-1188 |#1|) $) 126)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-4319 (($ $) 90 (|has| |#1| (-566)))) (-1731 (((-112) $) 92 (|has| |#1| (-566)))) (-4347 (((-781) $) 114) (((-781) $ (-654 (-1097))) 113)) (-2599 (((-3 $ "failed") $ $) 20)) (-1641 (($ $ $) 228 (|has| |#1| (-566)))) (-3065 (((-428 (-1188 $)) (-1188 $)) 102 (|has| |#1| (-922)))) (-3313 (($ $) 100 (|has| |#1| (-462)))) (-2153 (((-428 $) $) 99 (|has| |#1| (-462)))) (-2580 (((-3 (-654 (-1188 $)) "failed") (-654 (-1188 $)) (-1188 $)) 105 (|has| |#1| (-922)))) (-1526 (((-112) $ $) 213 (|has| |#1| (-372)))) (-1815 (($ $ (-781)) 236)) (-2574 (($ $ (-781)) 235)) (-2471 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-462)))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1053 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1053 (-574)))) (((-3 (-1097) "failed") $) 140)) (-2216 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1053 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1053 (-574)))) (((-1097) $) 141)) (-3372 (($ $ $ (-1097)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2800 (($ $ $) 217 (|has| |#1| (-372)))) (-1401 (($ $) 158)) (-4232 (((-699 (-574)) (-1283 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 (-574))) (|:| |vec| (-1283 (-574)))) (-699 $) (-1283 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4226 (-699 |#1|)) (|:| |vec| (-1283 |#1|))) (-699 $) (-1283 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1283 $)) 133)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 216 (|has| |#1| (-372)))) (-3203 (($ $ $) 234)) (-1577 (($ $ $) 225 (|has| |#1| (-566)))) (-3276 (((-2 (|:| -1868 |#1|) (|:| -1670 $) (|:| -2711 $)) $ $) 224 (|has| |#1| (-566)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 211 (|has| |#1| (-372)))) (-1420 (($ $) 180 (|has| |#1| (-462))) (($ $ (-1097)) 107 (|has| |#1| (-462)))) (-1388 (((-654 $) $) 111)) (-2941 (((-112) $) 98 (|has| |#1| (-922)))) (-2680 (($ $ |#1| (-781) $) 176)) (-1793 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3837 (((-781) $ $) 229 (|has| |#1| (-566)))) (-2276 (((-112) $) 35)) (-1901 (((-781) $) 173)) (-4217 (((-3 $ "failed") $) 209 (|has| |#1| (-1167)))) (-4338 (($ (-1188 |#1|) (-1097)) 119) (($ (-1188 $) (-1097)) 118)) (-2528 (($ $ (-781)) 240)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 220 (|has| |#1| (-372)))) (-3700 (((-654 $) $) 128)) (-3513 (((-112) $) 156)) (-4327 (($ |#1| (-781)) 157) (($ $ (-1097) (-781)) 121) (($ $ (-654 (-1097)) (-654 (-781))) 120)) (-2141 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $ (-1097)) 122) (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 238)) (-2682 (((-781) $) 174) (((-781) $ (-1097)) 124) (((-654 (-781)) $ (-654 (-1097))) 123)) (-3577 (($ (-1 (-781) (-781)) $) 175)) (-1787 (($ (-1 |#1| |#1|) $) 155)) (-2198 (((-1188 |#1|) $) 242)) (-1407 (((-3 (-1097) "failed") $) 125)) (-1365 (($ $) 153)) (-1377 ((|#1| $) 152)) (-2844 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-1938 (((-1174) $) 10)) (-3115 (((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781)) 237)) (-1898 (((-3 (-654 $) "failed") $) 116)) (-3145 (((-3 (-654 $) "failed") $) 117)) (-3019 (((-3 (-2 (|:| |var| (-1097)) (|:| -3843 (-781))) "failed") $) 115)) (-3302 (($ $) 221 (|has| |#1| (-38 (-417 (-574)))))) (-3791 (($) 208 (|has| |#1| (-1167)) CONST)) (-3939 (((-1135) $) 11)) (-1342 (((-112) $) 170)) (-1354 ((|#1| $) 171)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 97 (|has| |#1| (-462)))) (-2886 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2406 (((-428 (-1188 $)) (-1188 $)) 104 (|has| |#1| (-922)))) (-2318 (((-428 (-1188 $)) (-1188 $)) 103 (|has| |#1| (-922)))) (-4200 (((-428 $) $) 101 (|has| |#1| (-922)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 218 (|has| |#1| (-372)))) (-2852 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 212 (|has| |#1| (-372)))) (-2660 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ (-1097) |#1|) 145) (($ $ (-654 (-1097)) (-654 |#1|)) 144) (($ $ (-1097) $) 143) (($ $ (-654 (-1097)) (-654 $)) 142)) (-3575 (((-781) $) 214 (|has| |#1| (-372)))) (-2209 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-417 $) (-417 $) (-417 $)) 230 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 222 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 210 (|has| |#1| (-566)))) (-3233 (((-3 $ "failed") $ (-781)) 239)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 215 (|has| |#1| (-372)))) (-3902 (($ $ (-1097)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3878 (($ $ (-1097)) 46) (($ $ (-654 (-1097))) 45) (($ $ (-1097) (-781)) 44) (($ $ (-654 (-1097)) (-654 (-781))) 43) (($ $) 259) (($ $ (-781)) 257) (($ $ (-1192)) 255 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 254 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 253 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 252 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-4144 (((-781) $) 154) (((-781) $ (-1097)) 132) (((-654 (-781)) $ (-654 (-1097))) 131)) (-1846 (((-903 (-388)) $) 84 (-12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1514 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ (-1097)) 108 (|has| |#1| (-462)))) (-1318 (((-3 (-1283 $) "failed") (-699 $)) 106 (-2097 (|has| $ (-146)) (|has| |#1| (-922))))) (-4017 (((-3 $ "failed") $ $) 227 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 226 (|has| |#1| (-566)))) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ (-1097)) 139) (($ (-417 (-574))) 80 (-2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-3133 (((-654 |#1|) $) 172)) (-3584 ((|#1| $ (-781)) 159) (($ $ (-1097) (-781)) 130) (($ $ (-654 (-1097)) (-654 (-781))) 129)) (-3270 (((-3 $ "failed") $) 81 (-2832 (-2097 (|has| $ (-146)) (|has| |#1| (-922))) (|has| |#1| (-146))))) (-3781 (((-781)) 32 T CONST)) (-3702 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-1097)) 42) (($ $ (-654 (-1097))) 41) (($ $ (-1097) (-781)) 40) (($ $ (-654 (-1097)) (-654 (-781))) 39) (($ $) 258) (($ $ (-781)) 256) (($ $ (-1192)) 251 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192))) 250 (|has| |#1| (-913 (-1192)))) (($ $ (-1192) (-781)) 249 (|has| |#1| (-913 (-1192)))) (($ $ (-654 (-1192)) (-654 (-781))) 248 (|has| |#1| (-913 (-1192)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-1259 |#1|) (-141) (-1064)) (T -1259)) +((-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1259 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-5 *2 (-1188 *3)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1064)) (-4 *1 (-1259 *3)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-3233 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-2141 (*1 *2 *1 *1) (-12 (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1259 *3)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1259 *4)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-2574 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-3203 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)))) (-3878 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174)))) (-3372 (*1 *2 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174)))) (-2209 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1641 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-4017 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-4017 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) (-3276 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1868 *3) (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1259 *3)))) (-2471 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1259 *3)))) (-2209 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574))))))) +(-13 (-962 |t#1| (-781) (-1097)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -3806 ((-1283 |t#1|) $ (-781))) (-15 -2198 ((-1188 |t#1|) $)) (-15 -1709 ($ (-1188 |t#1|))) (-15 -2528 ($ $ (-781))) (-15 -3233 ((-3 $ "failed") $ (-781))) (-15 -2141 ((-2 (|:| -1670 $) (|:| -2711 $)) $ $)) (-15 -3115 ((-2 (|:| -1670 $) (|:| -2711 $)) $ (-781))) (-15 -1815 ($ $ (-781))) (-15 -2574 ($ $ (-781))) (-15 -3203 ($ $ $)) (-15 -3878 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1167)) (-6 (-1167)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3902 (|t#1| $)) (-15 -3372 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2209 ((-417 $) (-417 $) (-417 $))) (-15 -3837 ((-781) $ $)) (-15 -1641 ($ $ $)) (-15 -4017 ((-3 $ "failed") $ $)) (-15 -4017 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -1577 ($ $ $)) (-15 -3276 ((-2 (|:| -1868 |t#1|) (|:| -1670 $) (|:| -2711 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -2471 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4454) (-15 -2209 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -3302 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-1053 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1097)) . T) ((-626 |#1|) . T) ((-626 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1097) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1097) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1097) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2832 (|has| |#1| (-922)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-913 #2#) . T) ((-913 (-1192)) |has| |#1| (-913 (-1192))) ((-897 (-388)) -12 (|has| (-1097) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1097) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-962 |#1| #0# #2#) . T) ((-922) |has| |#1| (-922)) ((-933) |has| |#1| (-372)) ((-1053 (-417 (-574))) |has| |#1| (-1053 (-417 (-574)))) ((-1053 (-574)) |has| |#1| (-1053 (-574))) ((-1053 #2#) . T) ((-1053 |#1|) . T) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-922)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1167) |has| |#1| (-1167)) ((-1233) . T) ((-1237) |has| |#1| (-922))) +((-4349 (((-654 (-1097)) $) 34)) (-1401 (($ $) 31)) (-4327 (($ |#2| |#3|) NIL) (($ $ (-1097) |#3|) 28) (($ $ (-654 (-1097)) (-654 |#3|)) 27)) (-1365 (($ $) 14)) (-1377 ((|#2| $) 12)) (-4144 ((|#3| $) 10))) +(((-1260 |#1| |#2| |#3|) (-10 -8 (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 |#3|))) (-15 -4327 (|#1| |#1| (-1097) |#3|)) (-15 -1401 (|#1| |#1|)) (-15 -4327 (|#1| |#2| |#3|)) (-15 -4144 (|#3| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1377 (|#2| |#1|))) (-1261 |#2| |#3|) (-1064) (-802)) (T -1260)) +NIL +(-10 -8 (-15 -4349 ((-654 (-1097)) |#1|)) (-15 -4327 (|#1| |#1| (-654 (-1097)) (-654 |#3|))) (-15 -4327 (|#1| |#1| (-1097) |#3|)) (-15 -1401 (|#1| |#1|)) (-15 -4327 (|#1| |#2| |#3|)) (-15 -4144 (|#3| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1377 (|#2| |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-2389 (((-1172 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-4396 (((-112) $) 85)) (-3837 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-2276 (((-112) $) 35)) (-2528 (($ $ (-934)) 115)) (-3513 (((-112) $) 74)) (-4327 (($ |#1| |#2|) 73) (($ $ (-1097) |#2|) 88) (($ $ (-654 (-1097)) (-654 |#2|)) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4016 (($ $ |#2|) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2209 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4144 ((|#2| $) 76)) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3584 ((|#1| $ |#2|) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3524 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1261 |#1| |#2|) (-141) (-1064) (-802)) (T -1261)) +((-2389 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-1172 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-1192)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3837 (*1 *2 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-4430 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-4430 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-3524 (*1 *2 *1 *3) (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2950 (*2 (-1192)))) (-4 *2 (-1064)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) (-2660 (*1 *2 *1 *3) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1172 *3))))) +(-13 (-988 |t#1| |t#2| (-1097)) (-294 |t#2| |t#1|) (-10 -8 (-15 -2389 ((-1172 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1498 ((-1192) $)) (-15 -3332 (|t#1| $)) (-15 -2528 ($ $ (-934))) (-15 -3837 (|t#2| $)) (-15 -3837 (|t#2| $ |t#2|)) (-15 -4430 ($ $ |t#2|)) (-15 -4430 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2950 (|t#1| (-1192)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3524 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4016 ($ $ |t#2|)) (IF (|has| |t#2| (-1127)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-913 (-1192))) (-6 (-913 (-1192))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2660 ((-1172 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1127)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| |#2| (-1097)) . T) ((-1066 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1233) . T)) +((-3313 ((|#2| |#2|) 12)) (-2153 (((-428 |#2|) |#2|) 14)) (-1516 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30))) +(((-1262 |#1| |#2|) (-10 -7 (-15 -2153 ((-428 |#2|) |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -1516 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1259 |#1|) (-566) (-10 -8 (-15 -2886 ($ $ $))))) (T -1262)) +((-1516 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1262 *3 *4)))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1262 *4 *3)) (-4 *3 (-13 (-1259 *4) (-566) (-10 -8 (-15 -2886 ($ $ $)))))))) +(-10 -7 (-15 -2153 ((-428 |#2|) |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -1516 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) +((-1787 (((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)) 24))) +(((-1263 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 ((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)))) (-1064) (-1064) (-1192) (-1192) |#1| |#2|) (T -1263)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1263 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1192))))) +(-10 -7 (-15 -1787 ((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 176 (|has| |#1| (-372)))) (-2153 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-2800 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2941 (((-112) $) 178 (|has| |#1| (-372)))) (-4396 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) 115) (($ $ (-417 (-574))) 184)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3513 (((-112) $) 74)) (-4327 (($ |#1| (-417 (-574))) 73) (($ $ (-1097) (-417 (-574))) 88) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3111 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2844 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-1938 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-3302 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 172 (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1619 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) 168 (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4144 (((-417 (-574)) $) 76)) (-2415 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2428 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1264 |#1|) (-141) (-1064)) (T -1264)) +((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1064)) (-4 *1 (-1264 *4)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1264 *3)) (-4 *3 (-1064)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-3302 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1261 |t#1| (-417 (-574))) (-10 -8 (-15 -3596 ($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -2528 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $)) (IF (|has| |t#1| (-15 -3302 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T)) +((-1997 (((-112) $) 12)) (-1706 (((-3 |#3| "failed") $) 17)) (-2216 ((|#3| $) 14))) +(((-1265 |#1| |#2| |#3|) (-10 -8 (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -1997 ((-112) |#1|))) (-1266 |#2| |#3|) (-1064) (-1243 |#2|)) (T -1265)) +NIL +(-10 -8 (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -1997 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 176 (|has| |#1| (-372)))) (-2153 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 196)) (-2216 ((|#2| $) 197)) (-2800 (($ $ $) 171 (|has| |#1| (-372)))) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-2904 (((-417 (-574)) $) 193)) (-2811 (($ $ $) 170 (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) |#2|) 194)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2941 (((-112) $) 178 (|has| |#1| (-372)))) (-4396 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) 115) (($ $ (-417 (-574))) 184)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3513 (((-112) $) 74)) (-4327 (($ |#1| (-417 (-574))) 73) (($ $ (-1097) (-417 (-574))) 88) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3111 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-2844 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-2567 ((|#2| $) 192)) (-2992 (((-3 |#2| "failed") $) 190)) (-4413 ((|#2| $) 191)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 179 (|has| |#1| (-372)))) (-3302 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 182 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 164 (|has| |#1| (-372)))) (-2886 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4200 (((-428 $) $) 175 (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 172 (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1619 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) 168 (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 169 (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4144 (((-417 (-574)) $) 76)) (-2415 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2428 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1266 |#1| |#2|) (-141) (-1064) (-1243 |t#1|)) (T -1266)) +((-4144 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) (-5 *2 (-417 (-574))))) (-4425 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1064)) (-4 *1 (-1266 *4 *3)) (-4 *3 (-1243 *4)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) (-5 *2 (-417 (-574))))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3)))) (-2992 (*1 *2 *1) (|partial| -12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) +(-13 (-1264 |t#1|) (-1053 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4425 ($ (-417 (-574)) |t#2|)) (-15 -2904 ((-417 (-574)) $)) (-15 -2567 (|t#2| $)) (-15 -4144 ((-417 (-574)) $)) (-15 -4413 (|t#2| $)) (-15 -2992 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1127)) ((-298) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-933) |has| |#1| (-372)) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1053 |#2|) . T) ((-1066 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1071 #1#) -2832 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1237) |has| |#1| (-372)) ((-1261 |#1| #0#) . T) ((-1264 |#1|) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 104)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2378 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2403 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) 85)) (-2904 (((-417 (-574)) $) 13)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) |#2|) 11)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-4396 (((-112) $) 74)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) 130) (($ $ (-417 (-574))) 128)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 33) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 125)) (-3111 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2567 ((|#2| $) 12)) (-2992 (((-3 |#2| "failed") $) 44)) (-4413 ((|#2| $) 45)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) 101 (|has| |#1| (-372)))) (-3302 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 151 (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218)))))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) 122)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4144 (((-417 (-574)) $) 16)) (-2415 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 120)) (-2950 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) 107)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) 127 T CONST)) (-3332 ((|#1| $) 106)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 21 T CONST)) (-2155 (($) 17 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) 72)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3089 (($ $) 142) (($ $ $) 78)) (-3073 (($ $ $) 76)) (** (($ $ (-934)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1267 |#1| |#2|) (-1266 |#1| |#2|) (-1064) (-1243 |#1|)) (T -1267)) +NIL +(-1266 |#1| |#2|) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 11)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) NIL (|has| |#1| (-566)))) (-4430 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2389 (((-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-372)))) (-2153 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1526 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-781) (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-1247 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1275 |#1| |#2| |#3|) "failed") $) 22)) (-2216 (((-1247 |#1| |#2| |#3|) $) NIL) (((-1275 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-372)))) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2904 (((-417 (-574)) $) 69)) (-2811 (($ $ $) NIL (|has| |#1| (-372)))) (-4425 (($ (-417 (-574)) (-1247 |#1| |#2| |#3|)) NIL)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2941 (((-112) $) NIL (|has| |#1| (-372)))) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-2276 (((-112) $) NIL)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) NIL) (($ $ (-417 (-574))) NIL)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-417 (-574))) 30) (($ $ (-1097) (-417 (-574))) NIL) (($ $ (-654 (-1097)) (-654 (-417 (-574)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-2844 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-2567 (((-1247 |#1| |#2| |#3|) $) 72)) (-2992 (((-3 (-1247 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1247 |#1| |#2| |#3|) $) NIL)) (-1938 (((-1174) $) NIL)) (-1327 (($ $) NIL (|has| |#1| (-372)))) (-3302 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) NIL (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) NIL (|has| |#1| (-372)))) (-2886 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4200 (((-428 $) $) NIL (|has| |#1| (-372)))) (-2504 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) NIL (|has| |#1| (-372)))) (-4016 (($ $ (-417 (-574))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2912 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-3575 (((-781) $) NIL (|has| |#1| (-372)))) (-2209 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1127)))) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) NIL (|has| |#1| (-372)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1279 |#2|)) 38)) (-4144 (((-417 (-574)) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) NIL)) (-2950 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1247 |#1| |#2| |#3|)) 16) (($ (-1275 |#1| |#2| |#3|)) 17) (($ (-1279 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3584 ((|#1| $ (-417 (-574))) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 32 T CONST)) (-2155 (($) 26 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 34)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1268 |#1| |#2| |#3|) (-13 (-1266 |#1| (-1247 |#1| |#2| |#3|)) (-1053 (-1275 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1268)) +((-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1266 |#1| (-1247 |#1| |#2| |#3|)) (-1053 (-1275 |#1| |#2| |#3|)) (-626 (-1279 |#2|)) (-10 -8 (-15 -3878 ($ $ (-1279 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 37)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL)) (-4319 (($ $) NIL)) (-1731 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 (-574) "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))) (((-3 (-1268 |#2| |#3| |#4|) "failed") $) 22)) (-2216 (((-574) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-574)))) (((-417 (-574)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))) (((-1268 |#2| |#3| |#4|) $) NIL)) (-1401 (($ $) 41)) (-2978 (((-3 $ "failed") $) 27)) (-1420 (($ $) NIL (|has| (-1268 |#2| |#3| |#4|) (-462)))) (-2680 (($ $ (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) 11)) (-3513 (((-112) $) NIL)) (-4327 (($ (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-2682 (((-327 |#2| |#3| |#4|) $) NIL)) (-3577 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1787 (($ (-1 (-1268 |#2| |#3| |#4|) (-1268 |#2| |#3| |#4|)) $) NIL)) (-2273 (((-3 (-853 |#2|) "failed") $) 90)) (-1365 (($ $) NIL)) (-1377 (((-1268 |#2| |#3| |#4|) $) 20)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1342 (((-112) $) NIL)) (-1354 (((-1268 |#2| |#3| |#4|) $) NIL)) (-2852 (((-3 $ "failed") $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-3601 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $) 74)) (-4144 (((-327 |#2| |#3| |#4|) $) 17)) (-1514 (((-1268 |#2| |#3| |#4|) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-462)))) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1268 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2832 (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1268 |#2| |#3| |#4|) (-1053 (-417 (-574))))))) (-3133 (((-654 (-1268 |#2| |#3| |#4|)) $) NIL)) (-3584 (((-1268 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-3270 (((-3 $ "failed") $) NIL (|has| (-1268 |#2| |#3| |#4|) (-146)))) (-3781 (((-781)) NIL T CONST)) (-3702 (($ $ $ (-781)) NIL (|has| (-1268 |#2| |#3| |#4|) (-174)))) (-4259 (((-112) $ $) NIL)) (-3676 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1268 |#2| |#3| |#4|)) NIL) (($ (-1268 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-417 (-574))))))) +(((-1269 |#1| |#2| |#3| |#4|) (-13 (-334 (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2273 ((-3 (-853 |#2|) "failed") $)) (-15 -3601 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $)))) (-13 (-1053 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1218) (-440 |#1|)) (-1192) |#2|) (T -1269)) +((-2273 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4))) (-3601 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1174)))) (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) (-14 *6 *4)))) +(-13 (-334 (-1268 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2273 ((-3 (-853 |#2|) "failed") $)) (-15 -3601 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1174))) "failed") $)))) +((-3078 ((|#2| $) 34)) (-2420 ((|#2| $) 18)) (-1980 (($ $) 53)) (-4078 (($ $ (-574)) 85)) (-1750 (((-112) $ (-781)) 46)) (-2922 ((|#2| $ |#2|) 82)) (-2807 ((|#2| $ |#2|) 78)) (-3134 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1921 (($ $ (-654 $)) 81)) (-2407 ((|#2| $) 17)) (-2934 (($ $) NIL) (($ $ (-781)) 59)) (-2495 (((-654 $) $) 31)) (-2232 (((-112) $ $) 69)) (-2121 (((-112) $ (-781)) 45)) (-2713 (((-112) $ (-781)) 43)) (-4086 (((-112) $) 33)) (-3333 ((|#2| $) 25) (($ $ (-781)) 64)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3325 (((-112) $) 23)) (-2592 (($ $) 56)) (-4423 (($ $) 86)) (-1798 (((-781) $) 58)) (-1523 (($ $) 57)) (-4131 (($ $ $) 77) (($ |#2| $) NIL)) (-1355 (((-654 $) $) 32)) (-2985 (((-112) $ $) 67)) (-2876 (((-781) $) 52))) +(((-1270 |#1| |#2|) (-10 -8 (-15 -4078 (|#1| |#1| (-574))) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -2807 (|#2| |#1| |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -4423 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -1798 ((-781) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2420 (|#2| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2209 (|#2| |#1| "first")) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -2922 (|#2| |#1| |#2|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1921 (|#1| |#1| (-654 |#1|))) (-15 -2232 ((-112) |#1| |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781)))) (-1271 |#2|) (-1233)) (T -1270)) +NIL +(-10 -8 (-15 -4078 (|#1| |#1| (-574))) (-15 -3134 (|#2| |#1| "last" |#2|)) (-15 -2807 (|#2| |#1| |#2|)) (-15 -3134 (|#1| |#1| "rest" |#1|)) (-15 -3134 (|#2| |#1| "first" |#2|)) (-15 -4423 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -1798 ((-781) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2420 (|#2| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3333 (|#1| |#1| (-781))) (-15 -2209 (|#2| |#1| "last")) (-15 -3333 (|#2| |#1|)) (-15 -2934 (|#1| |#1| (-781))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2934 (|#1| |#1|)) (-15 -2209 (|#2| |#1| "first")) (-15 -4131 (|#1| |#2| |#1|)) (-15 -4131 (|#1| |#1| |#1|)) (-15 -2922 (|#2| |#1| |#2|)) (-15 -3134 (|#2| |#1| "value" |#2|)) (-15 -1921 (|#1| |#1| (-654 |#1|))) (-15 -2232 ((-112) |#1| |#1|)) (-15 -3325 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3078 (|#2| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -2495 ((-654 |#1|) |#1|)) (-15 -1355 ((-654 |#1|) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2876 ((-781) |#1|)) (-15 -1750 ((-112) |#1| (-781))) (-15 -2121 ((-112) |#1| (-781))) (-15 -2713 ((-112) |#1| (-781)))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-3078 ((|#1| $) 49)) (-2420 ((|#1| $) 66)) (-1980 (($ $) 68)) (-4078 (($ $ (-574)) 53 (|has| $ (-6 -4459)))) (-1750 (((-112) $ (-781)) 8)) (-2922 ((|#1| $ |#1|) 40 (|has| $ (-6 -4459)))) (-4031 (($ $ $) 57 (|has| $ (-6 -4459)))) (-2807 ((|#1| $ |#1|) 55 (|has| $ (-6 -4459)))) (-2424 ((|#1| $ |#1|) 59 (|has| $ (-6 -4459)))) (-3134 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4459))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4459))) (($ $ "rest" $) 56 (|has| $ (-6 -4459))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4459)))) (-1921 (($ $ (-654 $)) 42 (|has| $ (-6 -4459)))) (-2407 ((|#1| $) 67)) (-3063 (($) 7 T CONST)) (-2934 (($ $) 74) (($ $ (-781)) 72)) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-2495 (((-654 $) $) 51)) (-2232 (((-112) $ $) 43 (|has| |#1| (-1115)))) (-2121 (((-112) $ (-781)) 9)) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2713 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-4086 (((-112) $) 50)) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-3333 ((|#1| $) 71) (($ $ (-781)) 69)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 77) (($ $ (-781)) 75)) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1418 (((-574) $ $) 45)) (-3325 (((-112) $) 47)) (-2592 (($ $) 63)) (-4423 (($ $) 60 (|has| $ (-6 -4459)))) (-1798 (((-781) $) 64)) (-1523 (($ $) 65)) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3156 (($ $) 13)) (-3539 (($ $ $) 62 (|has| $ (-6 -4459))) (($ $ |#1|) 61 (|has| $ (-6 -4459)))) (-4131 (($ $ $) 79) (($ |#1| $) 78)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1355 (((-654 $) $) 52)) (-1692 (((-112) $ $) 44 (|has| |#1| (-1115)))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1271 |#1|) (-141) (-1233)) (T -1271)) +((-4131 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4131 (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2934 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2934 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) (-2592 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3539 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3539 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4423 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-2424 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4031 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) (-2807 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-3134 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) (-4 *3 (-1233))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -4131 ($ $ $)) (-15 -4131 ($ |t#1| $)) (-15 -2924 (|t#1| $)) (-15 -2209 (|t#1| $ "first")) (-15 -2924 ($ $ (-781))) (-15 -2934 ($ $)) (-15 -2209 ($ $ "rest")) (-15 -2934 ($ $ (-781))) (-15 -3333 (|t#1| $)) (-15 -2209 (|t#1| $ "last")) (-15 -3333 ($ $ (-781))) (-15 -1980 ($ $)) (-15 -2407 (|t#1| $)) (-15 -2420 (|t#1| $)) (-15 -1523 ($ $)) (-15 -1798 ((-781) $)) (-15 -2592 ($ $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -3539 ($ $ $)) (-15 -3539 ($ $ |t#1|)) (-15 -4423 ($ $)) (-15 -2424 (|t#1| $ |t#1|)) (-15 -3134 (|t#1| $ "first" |t#1|)) (-15 -4031 ($ $ $)) (-15 -3134 ($ $ "rest" $)) (-15 -2807 (|t#1| $ |t#1|)) (-15 -3134 (|t#1| $ "last" |t#1|)) (-15 -4078 ($ $ (-574)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1115)) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-1025 |#1|) . T) ((-1115) |has| |#1| (-1115)) ((-1233) . T)) +((-1787 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) (-1064) (-1064) (-1274 |#1|) (-1274 |#2|)) (T -1272)) +((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *6 *4 *2)) (-4 *4 (-1274 *5))))) +(-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) +((-1997 (((-112) $) 17)) (-2378 (($ $) 105)) (-2260 (($ $) 81)) (-2357 (($ $) 101)) (-2238 (($ $) 77)) (-2403 (($ $) 109)) (-2281 (($ $) 85)) (-3111 (($ $) 75)) (-1619 (($ $) 73)) (-2415 (($ $) 111)) (-2289 (($ $) 87)) (-2388 (($ $) 107)) (-2271 (($ $) 83)) (-2367 (($ $) 103)) (-2249 (($ $) 79)) (-2950 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2455 (($ $) 117)) (-2319 (($ $) 93)) (-2428 (($ $) 113)) (-2301 (($ $) 89)) (-2479 (($ $) 121)) (-2339 (($ $) 97)) (-2535 (($ $) 123)) (-2348 (($ $) 99)) (-2467 (($ $) 119)) (-2329 (($ $) 95)) (-2442 (($ $) 115)) (-2311 (($ $) 91)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71))) +(((-1273 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -1997 ((-112) |#1|)) (-15 -2950 ((-872) |#1|))) (-1274 |#2|) (-1064)) (T -1273)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2467 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2950 (|#1| |#2|)) (-15 -2950 (|#1| |#1|)) (-15 -2950 (|#1| (-417 (-574)))) (-15 -2950 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-934))) (-15 -1997 ((-112) |#1|)) (-15 -2950 ((-872) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-4349 (((-654 (-1097)) $) 86)) (-1498 (((-1192) $) 117)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4319 (($ $) 64 (|has| |#1| (-566)))) (-1731 (((-112) $) 66 (|has| |#1| (-566)))) (-4430 (($ $ (-781)) 112) (($ $ (-781) (-781)) 111)) (-2389 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 118)) (-2378 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) 20)) (-4211 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 169) (($ (-1172 |#1|)) 167)) (-2403 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) 18 T CONST)) (-1401 (($ $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-4426 (($ $) 166)) (-4026 (((-965 |#1|) $ (-781)) 164) (((-965 |#1|) $ (-781) (-781)) 163)) (-4396 (((-112) $) 85)) (-3003 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $) 114) (((-781) $ (-781)) 113)) (-2276 (((-112) $) 35)) (-3649 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2528 (($ $ (-934)) 115)) (-3936 (($ (-1 |#1| (-574)) $) 165)) (-3513 (((-112) $) 74)) (-4327 (($ |#1| (-781)) 73) (($ $ (-1097) (-781)) 88) (($ $ (-654 (-1097)) (-654 (-781))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3111 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) 77)) (-1377 ((|#1| $) 78)) (-1938 (((-1174) $) 10)) (-3302 (($ $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 160 (-2832 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-972)) (|has| |#1| (-1218)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3939 (((-1135) $) 11)) (-4016 (($ $ (-781)) 109)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1619 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2660 (((-1172 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2209 ((|#1| $ (-781)) 119) (($ $ $) 95 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) 103 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192) (-781)) 102 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1192))) 101 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192)) 100 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-4144 (((-781) $) 76)) (-2415 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 84)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3133 (((-1172 |#1|) $) 168)) (-3584 ((|#1| $ (-781)) 71)) (-3270 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3781 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 116)) (-4259 (((-112) $ $) 9)) (-2455 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2428 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) 107 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192) (-781)) 106 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1192))) 105 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1192)) 104 (-12 (|has| |#1| (-913 (-1192))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 96 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ |#1|) 162 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) +(((-1274 |#1|) (-141) (-1064)) (T -1274)) +((-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-5 *2 (-1172 *3)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) (-4426 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)))) (-3936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1274 *3)) (-4 *3 (-1064)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) (-5 *2 (-965 *4)))) (-4026 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) (-5 *2 (-965 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) (-3302 (*1 *1 *1 *2) (-2832 (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) +(-13 (-1261 |t#1| (-781)) (-10 -8 (-15 -3596 ($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -3133 ((-1172 |t#1|) $)) (-15 -3596 ($ (-1172 |t#1|))) (-15 -4426 ($ $)) (-15 -3936 ($ (-1 |t#1| (-574)) $)) (-15 -4026 ((-965 |t#1|) $ (-781))) (-15 -4026 ((-965 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3302 ($ $)) (IF (|has| |t#1| (-15 -3302 (|t#1| |t#1| (-1192)))) (IF (|has| |t#1| (-15 -4349 ((-654 (-1192)) |t#1|))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1218)) (IF (|has| |t#1| (-972)) (IF (|has| |t#1| (-29 (-574))) (-15 -3302 ($ $ (-1192))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1017)) (-6 (-1218))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1127)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-913 (-1192)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192)))) ((-988 |#1| #0# (-1097)) . T) ((-1017) |has| |#1| (-38 (-417 (-574)))) ((-1066 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1066 |#1|) . T) ((-1066 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1071 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1071 |#1|) . T) ((-1071 $) -2832 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1218) |has| |#1| (-38 (-417 (-574)))) ((-1221) |has| |#1| (-38 (-417 (-574)))) ((-1233) . T) ((-1261 |#1| #0#) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-4349 (((-654 (-1097)) $) NIL)) (-1498 (((-1192) $) 90)) (-3977 (((-1256 |#2| |#1|) $ (-781)) 73)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4319 (($ $) NIL (|has| |#1| (-566)))) (-1731 (((-112) $) 142 (|has| |#1| (-566)))) (-4430 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-2389 (((-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2378 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2599 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3596 (($ (-1172 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1172 |#1|)) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3063 (($) NIL T CONST)) (-2145 (($ $) 134)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-4426 (($ $) 140)) (-4026 (((-965 |#1|) $ (-781)) 63) (((-965 |#1|) $ (-781) (-781)) 65)) (-4396 (((-112) $) NIL)) (-3003 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3837 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-2276 (((-112) $) NIL)) (-1652 (($ $) 117)) (-3649 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4256 (($ (-574) (-574) $) 136)) (-2528 (($ $ (-934)) 139)) (-3936 (($ (-1 |#1| (-574)) $) 111)) (-3513 (((-112) $) NIL)) (-4327 (($ |#1| (-781)) 16) (($ $ (-1097) (-781)) NIL) (($ $ (-654 (-1097)) (-654 (-781))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 98)) (-3111 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1365 (($ $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-1943 (($ $) 115)) (-2928 (($ $) 113)) (-4335 (($ (-574) (-574) $) 138)) (-3302 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1192)) 156 (-2832 (-12 (|has| |#1| (-15 -3302 (|#1| |#1| (-1192)))) (|has| |#1| (-15 -4349 ((-654 (-1192)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-972)) (|has| |#1| (-1218))))) (($ $ (-1279 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3939 (((-1135) $) NIL)) (-1885 (($ $ (-574) (-574)) 121)) (-4016 (($ $ (-781)) 123)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4098 (($ $) 119)) (-2660 (((-1172 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2209 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1127)))) (-3878 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1279 |#2|)) 103)) (-4144 (((-781) $) NIL)) (-2415 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2271 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2073 (($ $) 125)) (-2950 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1256 |#2| |#1|)) 81) (($ (-1279 |#2|)) 22)) (-3133 (((-1172 |#1|) $) NIL)) (-3584 ((|#1| $ (-781)) 94)) (-3270 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3781 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 91)) (-4259 (((-112) $ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3676 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2479 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2950 (|#1| (-1192))))))) (-2535 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2467 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2442 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2311 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2143 (($) 18 T CONST)) (-2155 (($) 13 T CONST)) (-3583 (($ $ (-654 (-1192)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-654 (-1192))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $ (-1192)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-913 (-1192))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2985 (((-112) $ $) NIL)) (-3102 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) 107)) (-3073 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) +(((-1275 |#1| |#2| |#3|) (-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -3977 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (-15 -2928 ($ $)) (-15 -1943 ($ $)) (-15 -1652 ($ $)) (-15 -4098 ($ $)) (-15 -1885 ($ $ (-574) (-574))) (-15 -2145 ($ $)) (-15 -4256 ($ (-574) (-574) $)) (-15 -4335 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) (-1064) (-1192) |#1|) (T -1275)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3) (-5 *1 (-1275 *3 *4 *5)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1275 *4 *5 *6)) (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *5 *3))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-1943 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-4098 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-1885 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) (-14 *4 *2))) (-4256 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-4335 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) (-14 *5 *3))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(-13 (-1274 |#1|) (-10 -8 (-15 -2950 ($ (-1256 |#2| |#1|))) (-15 -3977 ((-1256 |#2| |#1|) $ (-781))) (-15 -2950 ($ (-1279 |#2|))) (-15 -3878 ($ $ (-1279 |#2|))) (-15 -2928 ($ $)) (-15 -1943 ($ $)) (-15 -1652 ($ $)) (-15 -4098 ($ $)) (-15 -1885 ($ $ (-574) (-574))) (-15 -2145 ($ $)) (-15 -4256 ($ (-574) (-574) $)) (-15 -4335 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3302 ($ $ (-1279 |#2|))) |%noBranch|))) +((-4348 (((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-4014 (((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1883 (((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|)) 13)) (-3327 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2096 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3172 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-3707 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-3300 ((|#2| |#2| |#2|) 43))) +(((-1276 |#1| |#2|) (-10 -7 (-15 -1883 ((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|))) (-15 -4014 ((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4348 ((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -3300 (|#2| |#2| |#2|)) (-15 -2096 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3327 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3172 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3707 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1274 |#1|)) (T -1276)) +((-3707 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1274 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1276 *5 *6)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1274 *5)) (-5 *1 (-1276 *5 *2)))) (-3327 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3300 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1276 *3 *2)) (-4 *2 (-1274 *3)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-654 (-1172 *4)))) (-5 *1 (-1276 *4 *5)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5))))) +(-10 -7 (-15 -1883 ((-1 (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2|))) (-15 -4014 ((-1 (-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4348 ((-1 (-1172 |#1|) (-654 (-1172 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -3300 (|#2| |#2| |#2|)) (-15 -2096 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3327 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3172 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3707 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) +((-1535 ((|#2| |#4| (-781)) 31)) (-2489 ((|#4| |#2|) 26)) (-2432 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-3374 (((-1 |#4| (-654 |#4|)) |#3|) 43))) +(((-1277 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 (|#4| |#2|)) (-15 -1535 (|#2| |#4| (-781))) (-15 -3374 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2432 (|#4| (-417 |#2|))) |%noBranch|)) (-1064) (-1259 |#1|) (-666 |#2|) (-1274 |#1|)) (T -1277)) +((-2432 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-566)) (-4 *4 (-1064)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-3374 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *5 (-1259 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1277 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1274 *4)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-1277 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1274 *5)))) (-2489 (*1 *2 *3) (-12 (-4 *4 (-1064)) (-4 *3 (-1259 *4)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) +(-10 -7 (-15 -2489 (|#4| |#2|)) (-15 -1535 (|#2| |#4| (-781))) (-15 -3374 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2432 (|#4| (-417 |#2|))) |%noBranch|)) +NIL +(((-1278) (-141)) (T -1278)) +NIL +(-13 (-10 -7 (-6 -3494))) +((-2863 (((-112) $ $) NIL)) (-1498 (((-1192)) 12)) (-1938 (((-1174) $) 18)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 11) (((-1192) $) 8)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 15))) +(((-1279 |#1|) (-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -2950 ((-1192) $)) (-15 -1498 ((-1192))))) (-1192)) (T -1279)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2))) (-1498 (*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2)))) +(-13 (-1115) (-623 (-1192)) (-10 -8 (-15 -2950 ((-1192) $)) (-15 -1498 ((-1192))))) +((-2227 (($ (-781)) 19)) (-3872 (((-699 |#2|) $ $) 41)) (-1697 ((|#2| $) 51)) (-4108 ((|#2| $) 50)) (-2546 ((|#2| $ $) 36)) (-4018 (($ $ $) 47)) (-3089 (($ $) 23) (($ $ $) 29)) (-3073 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1280 |#1| |#2|) (-10 -8 (-15 -1697 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -2546 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2227 (|#1| (-781))) (-15 -3073 (|#1| |#1| |#1|))) (-1281 |#2|) (-1233)) (T -1280)) +NIL +(-10 -8 (-15 -1697 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -2546 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3089 (|#1| |#1| |#1|)) (-15 -3089 (|#1| |#1|)) (-15 -2227 (|#1| (-781))) (-15 -3073 (|#1| |#1| |#1|))) +((-2863 (((-112) $ $) 19 (|has| |#1| (-1115)))) (-2227 (($ (-781)) 115 (|has| |#1| (-23)))) (-2057 (((-1288) $ (-574) (-574)) 41 (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4459))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4459))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) 8)) (-3134 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) 60 (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4458)))) (-3063 (($) 7 T CONST)) (-3680 (($ $) 93 (|has| $ (-6 -4459)))) (-4424 (($ $) 103)) (-2818 (($ $) 80 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3310 (($ |#1| $) 79 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) 52)) (-1451 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) 31 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) 70)) (-2121 (((-112) $ (-781)) 9)) (-2344 (((-574) $) 44 (|has| (-574) (-860)))) (-3632 (($ $ $) 90 (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) 30 (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-1965 (((-574) $) 45 (|has| (-574) (-860)))) (-2953 (($ $ $) 89 (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1697 ((|#1| $) 105 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-2713 (((-112) $ (-781)) 10)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1064)) (|has| |#1| (-1017))))) (-1938 (((-1174) $) 22 (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-2435 (((-654 (-574)) $) 47)) (-4088 (((-112) (-574) $) 48)) (-3939 (((-1135) $) 21 (|has| |#1| (-1115)))) (-2924 ((|#1| $) 43 (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2485 (($ $ |#1|) 42 (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) 14)) (-3961 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) 49)) (-2234 (((-112) $) 11)) (-4272 (($) 12)) (-2209 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1250 (-574))) 71)) (-2546 ((|#1| $ $) 109 (|has| |#1| (-1064)))) (-2854 (($ $ (-574)) 64) (($ $ (-1250 (-574))) 63)) (-4018 (($ $ $) 107 (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4458))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1115)) (|has| $ (-6 -4458))))) (-3957 (($ $ $ (-574)) 94 (|has| $ (-6 -4459)))) (-3156 (($ $) 13)) (-1846 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 72)) (-4131 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2950 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) 23 (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3017 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2985 (((-112) $ $) 20 (|has| |#1| (-1115)))) (-3029 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3008 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3089 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3073 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2876 (((-781) $) 6 (|has| $ (-6 -4458))))) +(((-1281 |#1|) (-141) (-1233)) (T -1281)) +((-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-25)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1281 *3)) (-4 *3 (-23)) (-4 *3 (-1233)))) (-3089 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) (-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) (-3872 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-1064)) (-5 *2 (-699 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) (-4 *2 (-1064)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) (-4 *2 (-1064))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3073 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2227 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1064)) (PROGN (-15 -2546 (|t#1| $ $)) (-15 -3872 ((-699 |t#1|) $ $)) (-15 -4018 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1017)) (IF (|has| |t#1| (-1064)) (PROGN (-15 -4108 (|t#1| $)) (-15 -1697 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-623 (-872)) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1250 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1115) -2832 (|has| |#1| (-1115)) (|has| |#1| (-860))) ((-1233) . T)) +((-2316 (((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|) 13)) (-2881 ((|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|) 15)) (-1787 (((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)) 30) (((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|)) 18))) +(((-1282 |#1| |#2|) (-10 -7 (-15 -2316 ((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -1787 ((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|))) (-15 -1787 ((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)))) (-1233) (-1233)) (T -1282)) +((-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) (-2881 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) (-4 *2 (-1233)) (-5 *1 (-1282 *5 *2)))) (-2316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1283 *6)) (-4 *6 (-1233)) (-4 *5 (-1233)) (-5 *2 (-1283 *5)) (-5 *1 (-1282 *6 *5))))) +(-10 -7 (-15 -2316 ((-1283 |#2|) (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -2881 (|#2| (-1 |#2| |#1| |#2|) (-1283 |#1|) |#2|)) (-15 -1787 ((-1283 |#2|) (-1 |#2| |#1|) (-1283 |#1|))) (-15 -1787 ((-3 (-1283 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1283 |#1|)))) +((-2863 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2227 (($ (-781)) NIL (|has| |#1| (-23)))) (-3865 (($ (-654 |#1|)) 11)) (-2057 (((-1288) $ (-574) (-574)) NIL (|has| $ (-6 -4459)))) (-4251 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-2212 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4459))) (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-860))))) (-2785 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-1750 (((-112) $ (-781)) NIL)) (-3134 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459))) ((|#1| $ (-1250 (-574)) |#1|) NIL (|has| $ (-6 -4459)))) (-2175 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3063 (($) NIL T CONST)) (-3680 (($ $) NIL (|has| $ (-6 -4459)))) (-4424 (($ $) NIL)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2881 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4458))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4458)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4459)))) (-2399 ((|#1| $ (-574)) NIL)) (-1451 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1115))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1115)))) (-1874 (((-654 |#1|) $) 16 (|has| $ (-6 -4458)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1064)))) (-3763 (($ (-781) |#1|) NIL)) (-2121 (((-112) $ (-781)) NIL)) (-2344 (((-574) $) NIL (|has| (-574) (-860)))) (-3632 (($ $ $) NIL (|has| |#1| (-860)))) (-4333 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-4187 (((-654 |#1|) $) NIL (|has| $ (-6 -4458)))) (-3801 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-1965 (((-574) $) 12 (|has| (-574) (-860)))) (-2953 (($ $ $) NIL (|has| |#1| (-860)))) (-2464 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1697 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-2713 (((-112) $ (-781)) NIL)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1017)) (|has| |#1| (-1064))))) (-1938 (((-1174) $) NIL (|has| |#1| (-1115)))) (-1604 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-2435 (((-654 (-574)) $) NIL)) (-4088 (((-112) (-574) $) NIL)) (-3939 (((-1135) $) NIL (|has| |#1| (-1115)))) (-2924 ((|#1| $) NIL (|has| (-574) (-860)))) (-1745 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2485 (($ $ |#1|) NIL (|has| $ (-6 -4459)))) (-4043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1115))))) (-3968 (((-112) $ $) NIL)) (-3961 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3670 (((-654 |#1|) $) NIL)) (-2234 (((-112) $) NIL)) (-4272 (($) NIL)) (-2209 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-2546 ((|#1| $ $) NIL (|has| |#1| (-1064)))) (-2854 (($ $ (-574)) NIL) (($ $ (-1250 (-574))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1064)))) (-3948 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#1| (-1115))))) (-3957 (($ $ $ (-574)) NIL (|has| $ (-6 -4459)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2962 (($ (-654 |#1|)) 10)) (-4131 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2950 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4259 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-2235 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4458)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-1115)))) (-3029 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3008 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3089 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3073 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1283 |#1|) (-13 (-1281 |#1|) (-10 -8 (-15 -3865 ($ (-654 |#1|))))) (-1233)) (T -1283)) +((-3865 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1283 *3))))) +(-13 (-1281 |#1|) (-10 -8 (-15 -3865 ($ (-654 |#1|))))) +((-2863 (((-112) $ $) NIL)) (-1613 (((-1174) $ (-1174)) 107) (((-1174) $ (-1174) (-1174)) 105) (((-1174) $ (-1174) (-654 (-1174))) 104)) (-2782 (($) 69)) (-1402 (((-1288) $ (-478) (-934)) 54)) (-2007 (((-1288) $ (-934) (-1174)) 89) (((-1288) $ (-934) (-884)) 90)) (-2823 (((-1288) $ (-934) (-388) (-388)) 57)) (-3850 (((-1288) $ (-1174)) 84)) (-1628 (((-1288) $ (-934) (-1174)) 94)) (-1916 (((-1288) $ (-934) (-388) (-388)) 58)) (-2039 (((-1288) $ (-934) (-934)) 55)) (-1589 (((-1288) $) 85)) (-4247 (((-1288) $ (-934) (-1174)) 93)) (-2076 (((-1288) $ (-478) (-934)) 41)) (-3566 (((-1288) $ (-934) (-1174)) 92)) (-3198 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-3350 (((-1288) $ (-781) (-781)) 52)) (-1601 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-1938 (((-1174) $) NIL)) (-3666 (((-574) $) 48)) (-3939 (((-1135) $) NIL)) (-2976 (((-1283 (-3 (-478) "undefined")) $) 47)) (-3845 (((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3566 (-574)) (|:| -2306 (-574)) (|:| |spline| (-574)) (|:| -3251 (-574)) (|:| |axesColor| (-884)) (|:| -2007 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-1804 (((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-2287 (((-654 (-956 (-227))) $) NIL)) (-2291 (((-478) $ (-934)) 43)) (-1956 (((-1288) $ (-781) (-781) (-934) (-934)) 50)) (-3881 (((-1288) $ (-1174)) 95)) (-2306 (((-1288) $ (-934) (-1174)) 91)) (-2950 (((-872) $) 102)) (-1389 (((-1288) $) 96)) (-4259 (((-112) $ $) NIL)) (-3251 (((-1288) $ (-934) (-1174)) 87) (((-1288) $ (-934) (-884)) 88)) (-2985 (((-112) $ $) NIL))) +(((-1284) (-13 (-1115) (-10 -8 (-15 -2287 ((-654 (-956 (-227))) $)) (-15 -2782 ($)) (-15 -1601 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -1601 ($ (-478) (-654 (-270)))) (-15 -1804 ((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -3845 ((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3566 (-574)) (|:| -2306 (-574)) (|:| |spline| (-574)) (|:| -3251 (-574)) (|:| |axesColor| (-884)) (|:| -2007 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -2976 ((-1283 (-3 (-478) "undefined")) $)) (-15 -3850 ((-1288) $ (-1174))) (-15 -2076 ((-1288) $ (-478) (-934))) (-15 -2291 ((-478) $ (-934))) (-15 -3251 ((-1288) $ (-934) (-1174))) (-15 -3251 ((-1288) $ (-934) (-884))) (-15 -2007 ((-1288) $ (-934) (-1174))) (-15 -2007 ((-1288) $ (-934) (-884))) (-15 -3566 ((-1288) $ (-934) (-1174))) (-15 -4247 ((-1288) $ (-934) (-1174))) (-15 -2306 ((-1288) $ (-934) (-1174))) (-15 -3881 ((-1288) $ (-1174))) (-15 -1389 ((-1288) $)) (-15 -1956 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -1916 ((-1288) $ (-934) (-388) (-388))) (-15 -2823 ((-1288) $ (-934) (-388) (-388))) (-15 -1628 ((-1288) $ (-934) (-1174))) (-15 -3350 ((-1288) $ (-781) (-781))) (-15 -1402 ((-1288) $ (-478) (-934))) (-15 -2039 ((-1288) $ (-934) (-934))) (-15 -1613 ((-1174) $ (-1174))) (-15 -1613 ((-1174) $ (-1174) (-1174))) (-15 -1613 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1589 ((-1288) $)) (-15 -3666 ((-574) $)) (-15 -2950 ((-872) $))))) (T -1284)) +((-2950 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1284)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-654 (-956 (-227)))) (-5 *1 (-1284)))) (-2782 (*1 *1) (-5 *1 (-1284))) (-1601 (*1 *1 *1) (-5 *1 (-1284))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1284)))) (-1804 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-934)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3566 (-574)) (|:| -2306 (-574)) (|:| |spline| (-574)) (|:| -3251 (-574)) (|:| |axesColor| (-884)) (|:| -2007 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1284)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1283 (-3 (-478) "undefined"))) (-5 *1 (-1284)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2076 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2291 (*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-5 *2 (-478)) (-5 *1 (-1284)))) (-3251 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3251 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2007 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2007 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3566 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-4247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2306 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1956 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1916 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2823 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1628 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-2039 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) (-1613 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1613 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1613 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1284)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1284))))) +(-13 (-1115) (-10 -8 (-15 -2287 ((-654 (-956 (-227))) $)) (-15 -2782 ($)) (-15 -1601 ($ $)) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -1601 ($ (-478) (-654 (-270)))) (-15 -1804 ((-1288) $ (-934) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -3845 ((-1283 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3566 (-574)) (|:| -2306 (-574)) (|:| |spline| (-574)) (|:| -3251 (-574)) (|:| |axesColor| (-884)) (|:| -2007 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -2976 ((-1283 (-3 (-478) "undefined")) $)) (-15 -3850 ((-1288) $ (-1174))) (-15 -2076 ((-1288) $ (-478) (-934))) (-15 -2291 ((-478) $ (-934))) (-15 -3251 ((-1288) $ (-934) (-1174))) (-15 -3251 ((-1288) $ (-934) (-884))) (-15 -2007 ((-1288) $ (-934) (-1174))) (-15 -2007 ((-1288) $ (-934) (-884))) (-15 -3566 ((-1288) $ (-934) (-1174))) (-15 -4247 ((-1288) $ (-934) (-1174))) (-15 -2306 ((-1288) $ (-934) (-1174))) (-15 -3881 ((-1288) $ (-1174))) (-15 -1389 ((-1288) $)) (-15 -1956 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -1916 ((-1288) $ (-934) (-388) (-388))) (-15 -2823 ((-1288) $ (-934) (-388) (-388))) (-15 -1628 ((-1288) $ (-934) (-1174))) (-15 -3350 ((-1288) $ (-781) (-781))) (-15 -1402 ((-1288) $ (-478) (-934))) (-15 -2039 ((-1288) $ (-934) (-934))) (-15 -1613 ((-1174) $ (-1174))) (-15 -1613 ((-1174) $ (-1174) (-1174))) (-15 -1613 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1589 ((-1288) $)) (-15 -3666 ((-574) $)) (-15 -2950 ((-872) $)))) +((-2863 (((-112) $ $) NIL)) (-3267 (((-1288) $ (-388)) 169) (((-1288) $ (-388) (-388) (-388)) 170)) (-1613 (((-1174) $ (-1174)) 179) (((-1174) $ (-1174) (-1174)) 177) (((-1174) $ (-1174) (-654 (-1174))) 176)) (-4267 (($) 67)) (-2136 (((-1288) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1288) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1288) $ (-388) (-388)) 145) (((-1288) $ (-388) (-388) (-388)) 152)) (-2027 (((-388)) 122) (((-388) (-388)) 123)) (-3200 (((-388)) 117) (((-388) (-388)) 119)) (-1713 (((-388)) 120) (((-388) (-388)) 121)) (-2201 (((-388)) 126) (((-388) (-388)) 127)) (-2708 (((-388)) 124) (((-388) (-388)) 125)) (-2823 (((-1288) $ (-388) (-388)) 171)) (-3850 (((-1288) $ (-1174)) 153)) (-3048 (((-1148 (-227)) $) 68) (($ $ (-1148 (-227))) 69)) (-4048 (((-1288) $ (-1174)) 187)) (-3493 (((-1288) $ (-1174)) 188)) (-1410 (((-1288) $ (-388) (-388)) 151) (((-1288) $ (-574) (-574)) 168)) (-2039 (((-1288) $ (-934) (-934)) 160)) (-1589 (((-1288) $) 137)) (-2762 (((-1288) $ (-1174)) 186)) (-3917 (((-1288) $ (-1174)) 134)) (-3198 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-3350 (((-1288) $ (-781) (-781)) 159)) (-3321 (((-1288) $ (-781) (-956 (-227))) 193)) (-3899 (($ $) 73) (($ (-1148 (-227)) (-1174)) 74) (($ (-1148 (-227)) (-654 (-270))) 75)) (-1836 (((-1288) $ (-388) (-388) (-388)) 131)) (-1938 (((-1174) $) NIL)) (-3666 (((-574) $) 128)) (-1983 (((-1288) $ (-388)) 174)) (-3998 (((-1288) $ (-388)) 191)) (-3939 (((-1135) $) NIL)) (-4012 (((-1288) $ (-388)) 190)) (-1573 (((-1288) $ (-1174)) 136)) (-1956 (((-1288) $ (-781) (-781) (-934) (-934)) 158)) (-3344 (((-1288) $ (-1174)) 133)) (-3881 (((-1288) $ (-1174)) 135)) (-1950 (((-1288) $ (-158) (-158)) 157)) (-2950 (((-872) $) 166)) (-1389 (((-1288) $) 138)) (-3947 (((-1288) $ (-1174)) 189)) (-4259 (((-112) $ $) NIL)) (-3251 (((-1288) $ (-1174)) 132)) (-2985 (((-112) $ $) NIL))) +(((-1285) (-13 (-1115) (-10 -8 (-15 -3200 ((-388))) (-15 -3200 ((-388) (-388))) (-15 -1713 ((-388))) (-15 -1713 ((-388) (-388))) (-15 -2027 ((-388))) (-15 -2027 ((-388) (-388))) (-15 -2708 ((-388))) (-15 -2708 ((-388) (-388))) (-15 -2201 ((-388))) (-15 -2201 ((-388) (-388))) (-15 -4267 ($)) (-15 -3899 ($ $)) (-15 -3899 ($ (-1148 (-227)) (-1174))) (-15 -3899 ($ (-1148 (-227)) (-654 (-270)))) (-15 -3048 ((-1148 (-227)) $)) (-15 -3048 ($ $ (-1148 (-227)))) (-15 -3321 ((-1288) $ (-781) (-956 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3350 ((-1288) $ (-781) (-781))) (-15 -2039 ((-1288) $ (-934) (-934))) (-15 -3850 ((-1288) $ (-1174))) (-15 -1956 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -2136 ((-1288) $ (-388) (-388) (-388) (-388) (-388))) (-15 -2136 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2136 ((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2136 ((-1288) $ (-574) (-574) (-388) (-388) (-388))) (-15 -2136 ((-1288) $ (-388) (-388))) (-15 -2136 ((-1288) $ (-388) (-388) (-388))) (-15 -3881 ((-1288) $ (-1174))) (-15 -3251 ((-1288) $ (-1174))) (-15 -3344 ((-1288) $ (-1174))) (-15 -3917 ((-1288) $ (-1174))) (-15 -1573 ((-1288) $ (-1174))) (-15 -1410 ((-1288) $ (-388) (-388))) (-15 -1410 ((-1288) $ (-574) (-574))) (-15 -3267 ((-1288) $ (-388))) (-15 -3267 ((-1288) $ (-388) (-388) (-388))) (-15 -2823 ((-1288) $ (-388) (-388))) (-15 -2762 ((-1288) $ (-1174))) (-15 -4012 ((-1288) $ (-388))) (-15 -3998 ((-1288) $ (-388))) (-15 -4048 ((-1288) $ (-1174))) (-15 -3493 ((-1288) $ (-1174))) (-15 -3947 ((-1288) $ (-1174))) (-15 -1836 ((-1288) $ (-388) (-388) (-388))) (-15 -1983 ((-1288) $ (-388))) (-15 -1589 ((-1288) $)) (-15 -1950 ((-1288) $ (-158) (-158))) (-15 -1613 ((-1174) $ (-1174))) (-15 -1613 ((-1174) $ (-1174) (-1174))) (-15 -1613 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1389 ((-1288) $)) (-15 -3666 ((-574) $))))) (T -1285)) +((-3200 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-1713 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-1713 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2027 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2027 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2708 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2201 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) (-4267 (*1 *1) (-5 *1 (-1285))) (-3899 (*1 *1 *1) (-5 *1 (-1285))) (-3899 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1174)) (-5 *1 (-1285)))) (-3899 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) (-3321 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3198 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2039 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1956 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2136 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1285)))) (-2136 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2136 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2136 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2136 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3251 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1573 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3267 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3267 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-2762 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-4048 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1836 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1983 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1288)) (-5 *1 (-1285)))) (-1613 (*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1613 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1613 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1285)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))) +(-13 (-1115) (-10 -8 (-15 -3200 ((-388))) (-15 -3200 ((-388) (-388))) (-15 -1713 ((-388))) (-15 -1713 ((-388) (-388))) (-15 -2027 ((-388))) (-15 -2027 ((-388) (-388))) (-15 -2708 ((-388))) (-15 -2708 ((-388) (-388))) (-15 -2201 ((-388))) (-15 -2201 ((-388) (-388))) (-15 -4267 ($)) (-15 -3899 ($ $)) (-15 -3899 ($ (-1148 (-227)) (-1174))) (-15 -3899 ($ (-1148 (-227)) (-654 (-270)))) (-15 -3048 ((-1148 (-227)) $)) (-15 -3048 ($ $ (-1148 (-227)))) (-15 -3321 ((-1288) $ (-781) (-956 (-227)))) (-15 -3198 ((-654 (-270)) $)) (-15 -3198 ($ $ (-654 (-270)))) (-15 -3350 ((-1288) $ (-781) (-781))) (-15 -2039 ((-1288) $ (-934) (-934))) (-15 -3850 ((-1288) $ (-1174))) (-15 -1956 ((-1288) $ (-781) (-781) (-934) (-934))) (-15 -2136 ((-1288) $ (-388) (-388) (-388) (-388) (-388))) (-15 -2136 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2136 ((-1288) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2136 ((-1288) $ (-574) (-574) (-388) (-388) (-388))) (-15 -2136 ((-1288) $ (-388) (-388))) (-15 -2136 ((-1288) $ (-388) (-388) (-388))) (-15 -3881 ((-1288) $ (-1174))) (-15 -3251 ((-1288) $ (-1174))) (-15 -3344 ((-1288) $ (-1174))) (-15 -3917 ((-1288) $ (-1174))) (-15 -1573 ((-1288) $ (-1174))) (-15 -1410 ((-1288) $ (-388) (-388))) (-15 -1410 ((-1288) $ (-574) (-574))) (-15 -3267 ((-1288) $ (-388))) (-15 -3267 ((-1288) $ (-388) (-388) (-388))) (-15 -2823 ((-1288) $ (-388) (-388))) (-15 -2762 ((-1288) $ (-1174))) (-15 -4012 ((-1288) $ (-388))) (-15 -3998 ((-1288) $ (-388))) (-15 -4048 ((-1288) $ (-1174))) (-15 -3493 ((-1288) $ (-1174))) (-15 -3947 ((-1288) $ (-1174))) (-15 -1836 ((-1288) $ (-388) (-388) (-388))) (-15 -1983 ((-1288) $ (-388))) (-15 -1589 ((-1288) $)) (-15 -1950 ((-1288) $ (-158) (-158))) (-15 -1613 ((-1174) $ (-1174))) (-15 -1613 ((-1174) $ (-1174) (-1174))) (-15 -1613 ((-1174) $ (-1174) (-654 (-1174)))) (-15 -1389 ((-1288) $)) (-15 -3666 ((-574) $)))) +((-1640 (((-654 (-1174)) (-654 (-1174))) 104) (((-654 (-1174))) 96)) (-2139 (((-654 (-1174))) 94)) (-3724 (((-654 (-934)) (-654 (-934))) 69) (((-654 (-934))) 64)) (-2600 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-3607 (((-1288)) 71)) (-2335 (((-934) (-934)) 87) (((-934)) 86)) (-3674 (((-934) (-934)) 85) (((-934)) 84)) (-2920 (((-884) (-884)) 81) (((-884)) 80)) (-3237 (((-227)) 91) (((-227) (-388)) 93)) (-3799 (((-934)) 88) (((-934) (-934)) 89)) (-4373 (((-934) (-934)) 83) (((-934)) 82)) (-2229 (((-884) (-884)) 75) (((-884)) 73)) (-3564 (((-884) (-884)) 77) (((-884)) 76)) (-1612 (((-884) (-884)) 79) (((-884)) 78))) +(((-1286) (-10 -7 (-15 -2229 ((-884))) (-15 -2229 ((-884) (-884))) (-15 -3564 ((-884))) (-15 -3564 ((-884) (-884))) (-15 -1612 ((-884))) (-15 -1612 ((-884) (-884))) (-15 -2920 ((-884))) (-15 -2920 ((-884) (-884))) (-15 -4373 ((-934))) (-15 -4373 ((-934) (-934))) (-15 -2600 ((-654 (-781)))) (-15 -2600 ((-654 (-781)) (-654 (-781)))) (-15 -3724 ((-654 (-934)))) (-15 -3724 ((-654 (-934)) (-654 (-934)))) (-15 -3607 ((-1288))) (-15 -1640 ((-654 (-1174)))) (-15 -1640 ((-654 (-1174)) (-654 (-1174)))) (-15 -2139 ((-654 (-1174)))) (-15 -3674 ((-934))) (-15 -2335 ((-934))) (-15 -3674 ((-934) (-934))) (-15 -2335 ((-934) (-934))) (-15 -3799 ((-934) (-934))) (-15 -3799 ((-934))) (-15 -3237 ((-227) (-388))) (-15 -3237 ((-227))))) (T -1286)) +((-3237 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1286)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1286)))) (-3799 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2335 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-3674 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2139 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-1640 (*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) (-3607 (*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1286)))) (-3724 (*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) (-3724 (*1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) (-2600 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-4373 (*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-2920 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-1612 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-3564 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) (-2229 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) +(-10 -7 (-15 -2229 ((-884))) (-15 -2229 ((-884) (-884))) (-15 -3564 ((-884))) (-15 -3564 ((-884) (-884))) (-15 -1612 ((-884))) (-15 -1612 ((-884) (-884))) (-15 -2920 ((-884))) (-15 -2920 ((-884) (-884))) (-15 -4373 ((-934))) (-15 -4373 ((-934) (-934))) (-15 -2600 ((-654 (-781)))) (-15 -2600 ((-654 (-781)) (-654 (-781)))) (-15 -3724 ((-654 (-934)))) (-15 -3724 ((-654 (-934)) (-654 (-934)))) (-15 -3607 ((-1288))) (-15 -1640 ((-654 (-1174)))) (-15 -1640 ((-654 (-1174)) (-654 (-1174)))) (-15 -2139 ((-654 (-1174)))) (-15 -3674 ((-934))) (-15 -2335 ((-934))) (-15 -3674 ((-934) (-934))) (-15 -2335 ((-934) (-934))) (-15 -3799 ((-934) (-934))) (-15 -3799 ((-934))) (-15 -3237 ((-227) (-388))) (-15 -3237 ((-227)))) +((-2594 (((-478) (-654 (-654 (-956 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-956 (-227))))) 21) (((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270))) 20)) (-4123 (((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270))) 30) (((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270))) 29)) (-2950 (((-1284) (-478)) 46))) +(((-1287) (-10 -7 (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))))) (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -4123 ((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4123 ((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -2950 ((-1284) (-478))))) (T -1287)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-4123 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-1287)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-478)) (-5 *1 (-1287)))) (-2594 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287))))) +(-10 -7 (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))))) (-15 -2594 ((-478) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -4123 ((-1284) (-654 (-654 (-956 (-227)))) (-884) (-884) (-934) (-654 (-270)))) (-15 -4123 ((-1284) (-654 (-654 (-956 (-227)))) (-654 (-270)))) (-15 -2950 ((-1284) (-478)))) +((-2440 (($) 6)) (-2950 (((-872) $) 9))) +(((-1288) (-13 (-623 (-872)) (-10 -8 (-15 -2440 ($))))) (T -1288)) +((-2440 (*1 *1) (-5 *1 (-1288)))) +(-13 (-623 (-872)) (-10 -8 (-15 -2440 ($)))) +((-3102 (($ $ |#2|) 10))) +(((-1289 |#1| |#2|) (-10 -8 (-15 -3102 (|#1| |#1| |#2|))) (-1290 |#2|) (-372)) (T -1289)) +NIL +(-10 -8 (-15 -3102 (|#1| |#1| |#2|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2900 (((-135)) 33)) (-2950 (((-872) $) 12)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2985 (((-112) $ $) 6)) (-3102 (($ $ |#1|) 34)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1290 |#1|) (-141) (-372)) (T -1290)) +((-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-372)))) (-2900 (*1 *2) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) +(-13 (-727 |t#1|) (-10 -8 (-15 -3102 ($ $ |t#1|)) (-15 -2900 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1115) . T)) +((-3691 (((-654 (-1227 |#1|)) (-1192) (-1227 |#1|)) 83)) (-3646 (((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|))) 63)) (-1978 (((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))) 74)) (-2387 (((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781)) 65)) (-1701 (((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192)) 32)) (-1720 (((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781)) 64))) +(((-1291 |#1|) (-10 -7 (-15 -2387 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1720 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -3646 ((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|)))) (-15 -1701 ((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192))) (-15 -3691 ((-654 (-1227 |#1|)) (-1192) (-1227 |#1|))) (-15 -1978 ((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))))) (-372)) (T -1291)) +((-1978 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1227 *6)) (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1291 *6)) (-5 *5 (-1172 *4)))) (-3691 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-654 (-1227 *5))) (-5 *1 (-1291 *5)) (-5 *4 (-1227 *5)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1 (-1188 (-965 *4)) (-965 *4))) (-5 *1 (-1291 *4)) (-4 *4 (-372)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-1172 (-1172 (-965 *5)))) (-5 *1 (-1291 *5)) (-5 *4 (-1172 (-965 *5))))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) (-5 *1 (-1291 *4)) (-4 *4 (-372)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) (-5 *1 (-1291 *4)) (-4 *4 (-372))))) +(-10 -7 (-15 -2387 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -1720 ((-1 (-1172 (-965 |#1|)) (-1172 (-965 |#1|))) (-781))) (-15 -3646 ((-1172 (-1172 (-965 |#1|))) (-1192) (-1172 (-965 |#1|)))) (-15 -1701 ((-1 (-1188 (-965 |#1|)) (-965 |#1|)) (-1192))) (-15 -3691 ((-654 (-1227 |#1|)) (-1192) (-1227 |#1|))) (-15 -1978 ((-1 (-1172 (-1227 |#1|)) (-1172 (-1227 |#1|))) (-781) (-1227 |#1|) (-1172 (-1227 |#1|))))) +((-3734 (((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-1369 (((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79))) +(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1259 |#1|) (-1259 |#2|) (-419 |#2| |#3|)) (T -1292)) +((-3734 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) (-5 *2 (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1292 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-1369 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) (-5 *2 (-2 (|:| -3907 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1292 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) +(-10 -7 (-15 -1369 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3734 ((-2 (|:| -3907 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) +((-2863 (((-112) $ $) NIL)) (-1664 (((-1150) $) 11)) (-2748 (((-1150) $) 9)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 17) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1293) (-13 (-1098) (-10 -8 (-15 -2748 ((-1150) $)) (-15 -1664 ((-1150) $))))) (T -1293)) +((-2748 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) +(-13 (-1098) (-10 -8 (-15 -2748 ((-1150) $)) (-15 -1664 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2279 (((-1150) $) 9)) (-2950 (((-872) $) 15) (($ (-1197)) NIL) (((-1197) $) NIL)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL))) +(((-1294) (-13 (-1098) (-10 -8 (-15 -2279 ((-1150) $))))) (T -1294)) +((-2279 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1294))))) +(-13 (-1098) (-10 -8 (-15 -2279 ((-1150) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 58)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) NIL)) (-2276 (((-112) $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3781 (((-781)) NIL T CONST)) (-3369 (((-1288) (-781)) 16)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 84 T CONST)) (-2985 (((-112) $ $) 87)) (-3102 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3089 (($ $) 89) (($ $ $) NIL)) (-3073 (($ $ $) 63)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1295 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1064) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3102 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3369 ((-1288) (-781))))) (-1064) (-860) (-803) (-962 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1295)) +((-3102 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1295 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-962 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1288)) (-5 *1 (-1295 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-962 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3)))) +(-13 (-1064) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3102 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3369 ((-1288) (-781))))) +((-2863 (((-112) $ $) NIL)) (-3403 (((-654 (-2 (|:| -1389 $) (|:| -1686 (-654 |#4|)))) (-654 |#4|)) NIL)) (-1346 (((-654 $) (-654 |#4|)) 96)) (-4349 (((-654 |#3|) $) NIL)) (-3042 (((-112) $) NIL)) (-2857 (((-112) $) NIL (|has| |#1| (-566)))) (-3228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3871 ((|#4| |#4| $) NIL)) (-2785 (((-2 (|:| |under| $) (|:| -2787 $) (|:| |upper| $)) $ |#3|) NIL)) (-1750 (((-112) $ (-781)) NIL)) (-2175 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3063 (($) NIL T CONST)) (-3860 (((-112) $) NIL (|has| |#1| (-566)))) (-3636 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3730 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2831 (((-112) $) NIL (|has| |#1| (-566)))) (-3461 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2717 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-1392 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1706 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2934 (((-3 $ "failed") $) 78)) (-1779 ((|#4| |#4| $) 83)) (-2818 (($ $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2711 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3514 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2544 ((|#4| |#4| $) NIL)) (-2881 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4458))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4458))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2569 (((-2 (|:| -1389 (-654 |#4|)) (|:| -1686 (-654 |#4|))) $) NIL)) (-1874 (((-654 |#4|) $) NIL (|has| $ (-6 -4458)))) (-2541 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 84)) (-2121 (((-112) $ (-781)) NIL)) (-4187 (((-654 |#4|) $) 32 (|has| $ (-6 -4458)))) (-3801 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115))))) (-3415 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2464 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1787 (($ (-1 |#4| |#4|) $) NIL)) (-3320 (((-654 |#3|) $) NIL)) (-2704 (((-112) |#3| $) NIL)) (-2713 (((-112) $ (-781)) NIL)) (-1938 (((-1174) $) NIL)) (-3333 (((-3 |#4| "failed") $) NIL)) (-4009 (((-654 |#4|) $) 54)) (-1746 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2780 ((|#4| |#4| $) 82)) (-3419 (((-112) $ $) 93)) (-3817 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2385 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1371 ((|#4| |#4| $) NIL)) (-3939 (((-1135) $) NIL)) (-2924 (((-3 |#4| "failed") $) 77)) (-1745 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3967 (((-3 $ "failed") $ |#4|) NIL)) (-4016 (($ $ |#4|) NIL)) (-4043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2660 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1115))))) (-3968 (((-112) $ $) NIL)) (-2234 (((-112) $) 75)) (-4272 (($) 46)) (-4144 (((-781) $) NIL)) (-3948 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4458)) (|has| |#4| (-1115)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-3156 (($ $) NIL)) (-1846 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2962 (($ (-654 |#4|)) NIL)) (-2018 (($ $ |#3|) NIL)) (-2250 (($ $ |#3|) NIL)) (-2293 (($ $) NIL)) (-4091 (($ $ |#3|) NIL)) (-2950 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-3988 (((-781) $) NIL (|has| |#3| (-377)))) (-1486 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-3762 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-4259 (((-112) $ $) NIL)) (-3153 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3060 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2235 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4458)))) (-2797 (((-654 |#3|) $) NIL)) (-2488 (((-112) |#3| $) NIL)) (-2985 (((-112) $ $) NIL)) (-2876 (((-781) $) NIL (|has| $ (-6 -4458))))) +(((-1296 |#1| |#2| |#3| |#4|) (-13 (-1226 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3415 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3415 ((-3 $ "failed") (-654 |#4|))) (-15 -1486 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1486 ((-3 $ "failed") (-654 |#4|))) (-15 -3762 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3762 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1080 |#1| |#2| |#3|)) (T -1296)) +((-3415 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8)))) (-3415 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1296 *3 *4 *5 *6)))) (-1486 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8)))) (-1486 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1296 *3 *4 *5 *6)))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1296 *6 *7 *8 *9))) (-5 *1 (-1296 *6 *7 *8 *9)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1296 *4 *5 *6 *7))) (-5 *1 (-1296 *4 *5 *6 *7))))) +(-13 (-1226 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3415 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3415 ((-3 $ "failed") (-654 |#4|))) (-15 -1486 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1486 ((-3 $ "failed") (-654 |#4|))) (-15 -3762 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3762 ((-654 $) (-654 |#4|))))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2599 (((-3 $ "failed") $ $) 20)) (-3063 (($) 18 T CONST)) (-2978 (((-3 $ "failed") $) 37)) (-2276 (((-112) $) 35)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1297 |#1|) (-141) (-1064)) (T -1297)) +NIL +(-13 (-1064) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1066 |#1|) . T) ((-1071 |#1|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T)) +((-2863 (((-112) $ $) 67)) (-1997 (((-112) $) NIL)) (-1665 (((-654 |#1|) $) 52)) (-1923 (($ $ (-781)) 46)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3183 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3063 (($) NIL T CONST)) (-2596 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1706 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-1401 (($ $) 39)) (-2978 (((-3 $ "failed") $) NIL)) (-2221 (((-112) $) NIL)) (-2551 (($ $) NIL)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) 38)) (-1792 (($ $) 40)) (-1984 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-2932 (((-829 |#1|) $) NIL)) (-2430 (((-829 |#1|) $) 41)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4365 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-4345 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-829 |#1|) $) 35)) (-1377 ((|#2| $) 37)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-4144 (((-781) $) 43)) (-2772 (((-112) $) 47)) (-1716 ((|#2| $) NIL)) (-2950 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-829 |#1|)) NIL)) (-1868 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 13 T CONST)) (-2155 (($) 19 T CONST)) (-1502 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2985 (((-112) $ $) 44)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-934)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1298 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1304 |#1| |#2|)) (-860) (-1064)) (T -1298)) +NIL +(-13 (-391 |#2| (-829 |#1|)) (-1304 |#1| |#2|)) +((-3111 ((|#3| |#3| (-781)) 28)) (-1619 ((|#3| |#3| (-781)) 34)) (-3844 ((|#3| |#3| |#3| (-781)) 35))) +(((-1299 |#1| |#2| |#3|) (-10 -7 (-15 -1619 (|#3| |#3| (-781))) (-15 -3111 (|#3| |#3| (-781))) (-15 -3844 (|#3| |#3| |#3| (-781)))) (-13 (-1064) (-727 (-417 (-574)))) (-860) (-1304 |#2| |#1|)) (T -1299)) +((-3844 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) (-3111 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4))))) +(-10 -7 (-15 -1619 (|#3| |#3| (-781))) (-15 -3111 (|#3| |#3| (-781))) (-15 -3844 (|#3| |#3| |#3| (-781)))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1665 (((-654 |#1|) $) 47)) (-2599 (((-3 $ "failed") $ $) 20)) (-3183 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3063 (($) 18 T CONST)) (-2596 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1706 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-2221 (((-112) $) 52)) (-2551 (($ $) 51)) (-2276 (((-112) $) 35)) (-3513 (((-112) $) 57)) (-3805 (($ (-829 |#1|) |#2|) 58)) (-1792 (($ $) 56)) (-1984 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2932 (((-829 |#1|) $) 68)) (-1787 (($ (-1 |#2| |#2|) $) 48)) (-4365 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-2772 (((-112) $) 54)) (-1716 ((|#2| $) 53)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1868 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1300 |#1| |#2|) (-141) (-860) (-1064)) (T -1300)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-829 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1300 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1064)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (-4365 (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-4365 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-2596 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-3805 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1300 *4 *3)) (-4 *3 (-1064)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2950 (*1 *1 *2) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-112)))) (-2551 (*1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)) (-4 *3 (-174)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-4 *4 (-174)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-654 *3))))) +(-13 (-1064) (-1297 |t#2|) (-1053 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2932 ((-829 |t#1|) $)) (-15 -1984 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1868 (|t#2| $ (-829 |t#1|))) (-15 -1868 (|t#2| $ $)) (-15 -4365 ($ $ |t#1|)) (-15 -4365 ($ $ (-829 |t#1|))) (-15 -4365 ($ $ $)) (-15 -2596 ($ $ |t#1|)) (-15 -2596 ($ $ (-829 |t#1|))) (-15 -2596 ($ $ $)) (-15 -3805 ($ (-829 |t#1|) |t#2|)) (-15 -3513 ((-112) $)) (-15 -1792 ($ $)) (-15 -2950 ($ |t#1|)) (-15 -2772 ((-112) $)) (-15 -1716 (|t#2| $)) (-15 -2221 ((-112) $)) (-15 -2551 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3183 ($ $ $)) (-15 -3183 ($ $ (-781)))) |%noBranch|) (-15 -1787 ($ (-1 |t#2| |t#2|) $)) (-15 -1665 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4451)) (-6 -4451) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1053 #0#) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1297 |#2|) . T)) +((-4308 (((-112) $) 15)) (-2488 (((-112) $) 14)) (-3337 (($ $) 19) (($ $ (-781)) 21))) +(((-1301 |#1| |#2|) (-10 -8 (-15 -3337 (|#1| |#1| (-781))) (-15 -3337 (|#1| |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -2488 ((-112) |#1|))) (-1302 |#2|) (-372)) (T -1301)) +NIL +(-10 -8 (-15 -3337 (|#1| |#1| (-781))) (-15 -3337 (|#1| |#1|)) (-15 -4308 ((-112) |#1|)) (-15 -2488 ((-112) |#1|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-2746 (((-2 (|:| -3462 $) (|:| -4445 $) (|:| |associate| $)) $) 47)) (-4319 (($ $) 46)) (-1731 (((-112) $) 44)) (-4308 (((-112) $) 104)) (-2519 (((-781)) 100)) (-2599 (((-3 $ "failed") $ $) 20)) (-3313 (($ $) 81)) (-2153 (((-428 $) $) 80)) (-1526 (((-112) $ $) 65)) (-3063 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2800 (($ $ $) 61)) (-2978 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-1850 (((-2 (|:| -1868 (-654 $)) (|:| -2974 $)) (-654 $)) 57)) (-4278 (($ $ (-781)) 97 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2941 (((-112) $) 79)) (-3837 (((-843 (-934)) $) 94 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2276 (((-112) $) 35)) (-2207 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2844 (($ $ $) 52) (($ (-654 $)) 51)) (-1938 (((-1174) $) 10)) (-1327 (($ $) 78)) (-4370 (((-112) $) 103)) (-3939 (((-1135) $) 11)) (-4161 (((-1188 $) (-1188 $) (-1188 $)) 50)) (-2886 (($ $ $) 54) (($ (-654 $)) 53)) (-4200 (((-428 $) $) 82)) (-4210 (((-843 (-934))) 101)) (-2504 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2974 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2912 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3575 (((-781) $) 64)) (-2696 (((-2 (|:| -1670 $) (|:| -2711 $)) $ $) 63)) (-3411 (((-3 (-781) "failed") $ $) 95 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2900 (((-135)) 109)) (-4144 (((-843 (-934)) $) 102)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3270 (((-3 $ "failed") $) 93 (-2832 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-3676 (((-112) $ $) 45)) (-2488 (((-112) $) 105)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3337 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2985 (((-112) $ $) 6)) (-3102 (($ $ $) 73) (($ $ |#1|) 108)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1302 |#1|) (-141) (-372)) (T -1302)) +((-2488 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) (-4210 (*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) (-2519 (*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-3337 (*1 *1 *1) (-12 (-4 *1 (-1302 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-3337 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-4 *3 (-377))))) +(-13 (-372) (-1053 |t#1|) (-1290 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -2488 ((-112) $)) (-15 -4308 ((-112) $)) (-15 -4370 ((-112) $)) (-15 -4144 ((-843 (-934)) $)) (-15 -4210 ((-843 (-934)))) (-15 -2519 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -3337 ($ $)) (-15 -3337 ($ $ (-781)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2832 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-933) . T) ((-1053 |#1|) . T) ((-1066 #0#) . T) ((-1066 |#1|) . T) ((-1066 $) . T) ((-1071 #0#) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1237) . T) ((-1290 |#1|) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1665 (((-654 |#1|) $) 98)) (-1923 (($ $ (-781)) 102)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3183 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-3063 (($) NIL T CONST)) (-2596 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1706 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1401 (($ $) 101)) (-2978 (((-3 $ "failed") $) NIL)) (-2221 (((-112) $) 90)) (-2551 (($ $) 93)) (-3112 (($ $ $ (-781)) 103)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-1792 (($ $) 119)) (-1984 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2932 (((-829 |#1|) $) NIL)) (-2430 (((-829 |#1|) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4365 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3111 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-4345 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1365 (((-904 |#1|) $) 83)) (-1377 ((|#2| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-1619 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-4144 (((-781) $) 99)) (-2772 (((-112) $) 84)) (-1716 ((|#2| $) 88)) (-2950 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1298 |#1| |#2|) $) 76) (((-1307 |#1| |#2|) $) 81)) (-3133 (((-654 |#2|) $) NIL)) (-3584 ((|#2| $ (-904 |#1|)) NIL)) (-1868 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 28 T CONST)) (-1502 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3301 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2985 (((-112) $ $) 77)) (-3089 (($ $) 111) (($ $ $) 110)) (-3073 (($ $ $) 20)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL))) +(((-1303 |#1| |#2|) (-13 (-1304 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2950 ($ (-674 |#1| |#2|))) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1307 |#1| |#2|) $)) (-15 -3301 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3112 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1619 ($ $ (-781))) (-15 -3111 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1303)) +((-2950 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1303 *3 *4)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3301 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3112 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3111 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) +(-13 (-1304 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2950 ($ (-674 |#1| |#2|))) (-15 -2950 ((-1298 |#1| |#2|) $)) (-15 -2950 ((-1307 |#1| |#2|) $)) (-15 -3301 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3112 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1619 ($ $ (-781))) (-15 -3111 ($ $ (-781)))) |%noBranch|))) +((-2863 (((-112) $ $) 7)) (-1997 (((-112) $) 17)) (-1665 (((-654 |#1|) $) 47)) (-1923 (($ $ (-781)) 80)) (-2599 (((-3 $ "failed") $ $) 20)) (-3183 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3063 (($) 18 T CONST)) (-2596 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1706 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-2978 (((-3 $ "failed") $) 37)) (-2221 (((-112) $) 52)) (-2551 (($ $) 51)) (-2276 (((-112) $) 35)) (-3513 (((-112) $) 57)) (-3805 (($ (-829 |#1|) |#2|) 58)) (-1792 (($ $) 56)) (-1984 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2932 (((-829 |#1|) $) 68)) (-2430 (((-829 |#1|) $) 82)) (-1787 (($ (-1 |#2| |#2|) $) 48)) (-4365 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-1938 (((-1174) $) 10)) (-3939 (((-1135) $) 11)) (-4144 (((-781) $) 81)) (-2772 (((-112) $) 54)) (-1716 ((|#2| $) 53)) (-2950 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1868 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-3781 (((-781)) 32 T CONST)) (-4259 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2985 (((-112) $ $) 6)) (-3089 (($ $) 23) (($ $ $) 22)) (-3073 (($ $ $) 15)) (** (($ $ (-934)) 28) (($ $ (-781)) 36)) (* (($ (-934) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1304 |#1| |#2|) (-141) (-860) (-1064)) (T -1304)) +((-2430 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-829 *3)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *2 (-781)))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) +(-13 (-1300 |t#1| |t#2|) (-10 -8 (-15 -2430 ((-829 |t#1|) $)) (-15 -4144 ((-781) $)) (-15 -1923 ($ $ (-781))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1053 #0#) . T) ((-1066 |#2|) . T) ((-1071 |#2|) . T) ((-1064) . T) ((-1073) . T) ((-1127) . T) ((-1115) . T) ((-1297 |#2|) . T) ((-1300 |#1| |#2|) . T)) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-1665 (((-654 (-1192)) $) NIL)) (-2151 (($ (-1298 (-1192) |#1|)) NIL)) (-1923 (($ $ (-781)) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3183 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-3063 (($) NIL T CONST)) (-2596 (($ $ (-1192)) NIL) (($ $ (-829 (-1192))) NIL) (($ $ $) NIL)) (-1706 (((-3 (-829 (-1192)) "failed") $) NIL)) (-2216 (((-829 (-1192)) $) NIL)) (-2978 (((-3 $ "failed") $) NIL)) (-2221 (((-112) $) NIL)) (-2551 (($ $) NIL)) (-2276 (((-112) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ (-829 (-1192)) |#1|) NIL)) (-1792 (($ $) NIL)) (-1984 (((-2 (|:| |k| (-829 (-1192))) (|:| |c| |#1|)) $) NIL)) (-2932 (((-829 (-1192)) $) NIL)) (-2430 (((-829 (-1192)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $ (-1192)) NIL) (($ $ (-829 (-1192))) NIL) (($ $ $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2138 (((-1298 (-1192) |#1|) $) NIL)) (-4144 (((-781) $) NIL)) (-2772 (((-112) $) NIL)) (-1716 ((|#1| $) NIL)) (-2950 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1192))) NIL) (($ (-1192)) NIL)) (-1868 ((|#1| $ (-829 (-1192))) NIL) ((|#1| $ $) NIL)) (-3781 (((-781)) NIL T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-4412 (((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $) NIL)) (-2155 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) NIL)) (** (($ $ (-934)) NIL) (($ $ (-781)) NIL)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1192) $) NIL))) +(((-1305 |#1|) (-13 (-1304 (-1192) |#1|) (-10 -8 (-15 -2138 ((-1298 (-1192) |#1|) $)) (-15 -2151 ($ (-1298 (-1192) |#1|))) (-15 -4412 ((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $)))) (-1064)) (T -1305)) +((-2138 (*1 *2 *1) (-12 (-5 *2 (-1298 (-1192) *3)) (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-1298 (-1192) *3)) (-4 *3 (-1064)) (-5 *1 (-1305 *3)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1192)) (|:| |c| (-1305 *3))))) (-5 *1 (-1305 *3)) (-4 *3 (-1064))))) +(-13 (-1304 (-1192) |#1|) (-10 -8 (-15 -2138 ((-1298 (-1192) |#1|) $)) (-15 -2151 ($ (-1298 (-1192) |#1|))) (-15 -4412 ((-654 (-2 (|:| |k| (-1192)) (|:| |c| $))) $)))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) NIL)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3063 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-1401 (($ $) NIL)) (-2978 (((-3 $ "failed") $) 42)) (-2221 (((-112) $) 35)) (-2551 (($ $) 37)) (-2276 (((-112) $) NIL)) (-1901 (((-781) $) NIL)) (-3700 (((-654 $) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ |#2| |#1|) NIL)) (-2932 ((|#2| $) 24)) (-2430 ((|#2| $) 22)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4345 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1365 ((|#2| $) NIL)) (-1377 ((|#1| $) NIL)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2772 (((-112) $) 32)) (-1716 ((|#1| $) 33)) (-2950 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3133 (((-654 |#1|) $) NIL)) (-3584 ((|#1| $ |#2|) NIL)) (-1868 ((|#1| $ |#2|) 28)) (-3781 (((-781)) 14 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 29 T CONST)) (-2155 (($) 11 T CONST)) (-1502 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2985 (((-112) $ $) 30)) (-3102 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3089 (($ $) NIL) (($ $ $) NIL)) (-3073 (($ $ $) 50)) (** (($ $ (-934)) NIL) (($ $ (-781)) 52)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2876 (((-781) $) 16))) +(((-1306 |#1| |#2|) (-13 (-1064) (-1297 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2876 ((-781) $)) (-15 -2430 (|#2| $)) (-15 -2932 (|#2| $)) (-15 -1401 ($ $)) (-15 -1868 (|#1| $ |#2|)) (-15 -2772 ((-112) $)) (-15 -1716 (|#1| $)) (-15 -2221 ((-112) $)) (-15 -2551 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3102 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) (-1064) (-856)) (T -1306)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-856)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-2430 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064)))) (-2932 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064)))) (-1868 (*1 *2 *1 *3) (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-1716 (*1 *2 *1) (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-856)))) (-2551 (*1 *1 *1) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856)))) (-3102 (*1 *1 *1 *2) (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-856))))) +(-13 (-1064) (-1297 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2876 ((-781) $)) (-15 -2430 (|#2| $)) (-15 -2932 (|#2| $)) (-15 -1401 ($ $)) (-15 -1868 (|#1| $ |#2|)) (-15 -2772 ((-112) $)) (-15 -1716 (|#1| $)) (-15 -2221 ((-112) $)) (-15 -2551 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3102 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|))) +((-2863 (((-112) $ $) 27)) (-1997 (((-112) $) NIL)) (-1665 (((-654 |#1|) $) 132)) (-2151 (($ (-1298 |#1| |#2|)) 50)) (-1923 (($ $ (-781)) 38)) (-2599 (((-3 $ "failed") $ $) NIL)) (-3183 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-3063 (($) NIL T CONST)) (-2596 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1706 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-2978 (((-3 $ "failed") $) 122)) (-2221 (((-112) $) 117)) (-2551 (($ $) 118)) (-2276 (((-112) $) NIL)) (-3513 (((-112) $) NIL)) (-3805 (($ (-829 |#1|) |#2|) 20)) (-1792 (($ $) NIL)) (-1984 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2932 (((-829 |#1|) $) 123)) (-2430 (((-829 |#1|) $) 126)) (-1787 (($ (-1 |#2| |#2|) $) 131)) (-4365 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2138 (((-1298 |#1| |#2|) $) 94)) (-4144 (((-781) $) 129)) (-2772 (((-112) $) 81)) (-1716 ((|#2| $) 32)) (-2950 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1868 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-3781 (((-781)) 120 T CONST)) (-4259 (((-112) $ $) NIL)) (-2143 (($) 15 T CONST)) (-4412 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2155 (($) 33 T CONST)) (-2985 (((-112) $ $) 14)) (-3089 (($ $) 98) (($ $ $) 101)) (-3073 (($ $ $) 61)) (** (($ $ (-934)) NIL) (($ $ (-781)) 55)) (* (($ (-934) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1307 |#1| |#2|) (-13 (-1304 |#1| |#2|) (-10 -8 (-15 -2138 ((-1298 |#1| |#2|) $)) (-15 -2151 ($ (-1298 |#1| |#2|))) (-15 -4412 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1064)) (T -1307)) +((-2138 (*1 *2 *1) (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) (-5 *1 (-1307 *3 *4)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1307 *3 *4))))) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) +(-13 (-1304 |#1| |#2|) (-10 -8 (-15 -2138 ((-1298 |#1| |#2|) $)) (-15 -2151 ($ (-1298 |#1| |#2|))) (-15 -4412 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2863 (((-112) $ $) NIL)) (-2520 (($ (-654 (-934))) 10)) (-3218 (((-986) $) 12)) (-1938 (((-1174) $) NIL)) (-3939 (((-1135) $) NIL)) (-2950 (((-872) $) 25) (($ (-986)) 14) (((-986) $) 13)) (-4259 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 17))) +(((-1308) (-13 (-1115) (-500 (-986)) (-10 -8 (-15 -2520 ($ (-654 (-934)))) (-15 -3218 ((-986) $))))) (T -1308)) +((-2520 (*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1308)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-1308))))) +(-13 (-1115) (-500 (-986)) (-10 -8 (-15 -2520 ($ (-654 (-934)))) (-15 -3218 ((-986) $)))) +((-1891 (((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)) 16) (((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|))) 13))) +(((-1309 |#1|) (-10 -7 (-15 -1891 ((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|)))) (-15 -1891 ((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)))) (-1233)) (T -1309)) +((-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1172 *5)) (-654 (-1172 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1172 *5))) (-5 *1 (-1309 *5)) (-4 *5 (-1233)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1 (-1172 *4) (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1309 *4)) (-4 *4 (-1233))))) +(-10 -7 (-15 -1891 ((-1172 |#1|) (-1 (-1172 |#1|) (-1172 |#1|)))) (-15 -1891 ((-654 (-1172 |#1|)) (-1 (-654 (-1172 |#1|)) (-654 (-1172 |#1|))) (-574)))) +((-1838 (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|))) 174) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112)) 173) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-1061 |#1| |#2|)) 156)) (-4342 (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|))) 85) (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112)) 84) (((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112)) 83)) (-2153 (((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|)) 73)) (-2735 (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|))) 140) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112)) 139) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|)) 132)) (-3818 (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|))) 145) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112)) 144) (((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|)) 142)) (-1846 (((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1188 (-1039 (-417 |#1|))) (-1188 |#1|)) 102) (((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-965 (-1039 (-417 |#1|))) (-965 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33))) +(((-1310 |#1| |#2| |#3|) (-10 -7 (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112))) (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112))) (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-1061 |#1| |#2|))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -2153 ((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|))) (-15 -1846 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1846 ((-965 (-1039 (-417 |#1|))) (-965 |#1|))) (-15 -1846 ((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1846 ((-1188 (-1039 (-417 |#1|))) (-1188 |#1|))) (-15 -1846 ((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1037)) (-654 (-1192)) (-654 (-1192))) (T -1310)) +((-1846 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1188 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-1188 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-3818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-2735 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-2735 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) (-5 *1 (-1310 *4 *5 *6)) (-5 *3 (-654 (-965 *4))) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1838 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1838 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *4 *5))) (-5 *1 (-1310 *4 *5 *6)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) (-4342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192)))))) +(-10 -7 (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112) (-112))) (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)) (-112))) (-15 -4342 ((-654 (-1061 |#1| |#2|)) (-654 (-965 |#1|)))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-1061 |#1| |#2|))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)) (-112))) (-15 -1838 ((-654 (-2 (|:| -4374 (-1188 |#1|)) (|:| -4421 (-654 (-965 |#1|))))) (-654 (-965 |#1|)))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -2735 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-1061 |#1| |#2|))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112) (-112))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)) (-112))) (-15 -3818 ((-654 (-654 (-1039 (-417 |#1|)))) (-654 (-965 |#1|)))) (-15 -2153 ((-654 (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1061 |#1| |#2|))) (-15 -1846 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1846 ((-965 (-1039 (-417 |#1|))) (-965 |#1|))) (-15 -1846 ((-965 (-1039 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1846 ((-1188 (-1039 (-417 |#1|))) (-1188 |#1|))) (-15 -1846 ((-654 (-790 |#1| (-874 |#3|))) (-1161 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) +((-2656 (((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|) 21)) (-2341 (((-112) (-1283 |#1|)) 12)) (-2609 (((-3 (-1283 (-574)) "failed") (-1283 |#1|)) 16))) +(((-1311 |#1|) (-10 -7 (-15 -2341 ((-112) (-1283 |#1|))) (-15 -2609 ((-3 (-1283 (-574)) "failed") (-1283 |#1|))) (-15 -2656 ((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|))) (-13 (-1064) (-649 (-574)))) (T -1311)) +((-2656 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-1283 (-417 (-574)))) (-5 *1 (-1311 *4)))) (-2609 (*1 *2 *3) (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-1283 (-574))) (-5 *1 (-1311 *4)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1311 *4))))) +(-10 -7 (-15 -2341 ((-112) (-1283 |#1|))) (-15 -2609 ((-3 (-1283 (-574)) "failed") (-1283 |#1|))) (-15 -2656 ((-3 (-1283 (-417 (-574))) "failed") (-1283 |#1|) |#1|))) +((-2863 (((-112) $ $) NIL)) (-1997 (((-112) $) 11)) (-2599 (((-3 $ "failed") $ $) NIL)) (-1497 (((-781)) 8)) (-3063 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $) 58)) (-2834 (($) 49)) (-2276 (((-112) $) 57)) (-4217 (((-3 $ "failed") $) 40)) (-3880 (((-934) $) 15)) (-1938 (((-1174) $) NIL)) (-3791 (($) 32 T CONST)) (-2590 (($ (-934)) 50)) (-3939 (((-1135) $) NIL)) (-1846 (((-574) $) 13)) (-2950 (((-872) $) 27) (($ (-574)) 24)) (-3781 (((-781)) 9 T CONST)) (-4259 (((-112) $ $) 60)) (-2143 (($) 29 T CONST)) (-2155 (($) 31 T CONST)) (-2985 (((-112) $ $) 38)) (-3089 (($ $) 52) (($ $ $) 47)) (-3073 (($ $ $) 35)) (** (($ $ (-934)) NIL) (($ $ (-781)) 54)) (* (($ (-934) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43))) +(((-1312 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1167)) (-934)) (T -1312)) +NIL +(-13 (-174) (-377) (-624 (-574)) (-1167)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3239765 3239770 3239775 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3239750 3239755 3239760 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3239735 3239740 3239745 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3239720 3239725 3239730 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1312 3238863 3239595 3239672 "ZMOD" 3239677 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1311 3237917 3238081 3238304 "ZLINDEP" 3238695 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1310 3227217 3228985 3230957 "ZDSOLVE" 3236047 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1309 3226463 3226604 3226793 "YSTREAM" 3227063 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1308 3225891 3226137 3226250 "YDIAGRAM" 3226372 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1307 3223665 3225192 3225396 "XRPOLY" 3225734 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3220218 3221536 3222111 "XPR" 3223137 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1305 3217939 3219549 3219753 "XPOLY" 3220049 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1304 3215592 3216960 3217015 "XPOLYC" 3217303 NIL XPOLYC (NIL T T) -9 NIL 3217416 NIL) (-1303 3211968 3214109 3214497 "XPBWPOLY" 3215250 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3207663 3209958 3210000 "XF" 3210621 NIL XF (NIL T) -9 NIL 3211021 NIL) (-1301 3207284 3207372 3207541 "XF-" 3207546 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1300 3202480 3203769 3203824 "XFALG" 3205996 NIL XFALG (NIL T T) -9 NIL 3206785 NIL) (-1299 3201613 3201717 3201922 "XEXPPKG" 3202372 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1298 3199722 3201463 3201559 "XDPOLY" 3201564 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1297 3198529 3199129 3199172 "XALG" 3199177 NIL XALG (NIL T) -9 NIL 3199288 NIL) (-1296 3191971 3196506 3197000 "WUTSET" 3198121 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1295 3190227 3191023 3191346 "WP" 3191782 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1294 3189829 3190049 3190119 "WHILEAST" 3190179 T WHILEAST (NIL) -8 NIL NIL NIL) (-1293 3189301 3189546 3189640 "WHEREAST" 3189757 T WHEREAST (NIL) -8 NIL NIL NIL) (-1292 3188187 3188385 3188680 "WFFINTBS" 3189098 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1291 3186091 3186518 3186980 "WEIER" 3187759 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1290 3185137 3185587 3185629 "VSPACE" 3185765 NIL VSPACE (NIL T) -9 NIL 3185839 NIL) (-1289 3184975 3185002 3185093 "VSPACE-" 3185098 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1288 3184784 3184826 3184894 "VOID" 3184929 T VOID (NIL) -8 NIL NIL NIL) (-1287 3182920 3183279 3183685 "VIEW" 3184400 T VIEW (NIL) -7 NIL NIL NIL) (-1286 3179344 3179983 3180720 "VIEWDEF" 3182205 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1285 3168648 3170892 3173065 "VIEW3D" 3177193 T VIEW3D (NIL) -8 NIL NIL NIL) (-1284 3160899 3162559 3164138 "VIEW2D" 3167091 T VIEW2D (NIL) -8 NIL NIL NIL) (-1283 3156252 3160669 3160761 "VECTOR" 3160842 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1282 3154829 3155088 3155406 "VECTOR2" 3155982 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1281 3148271 3152580 3152623 "VECTCAT" 3153618 NIL VECTCAT (NIL T) -9 NIL 3154205 NIL) (-1280 3147285 3147539 3147929 "VECTCAT-" 3147934 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1279 3146739 3146936 3147056 "VARIABLE" 3147200 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1278 3146672 3146677 3146707 "UTYPE" 3146712 T UTYPE (NIL) -9 NIL NIL NIL) (-1277 3145502 3145656 3145918 "UTSODETL" 3146498 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1276 3142942 3143402 3143926 "UTSODE" 3145043 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1275 3134780 3140568 3141057 "UTS" 3142511 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1274 3125520 3130889 3130932 "UTSCAT" 3132044 NIL UTSCAT (NIL T) -9 NIL 3132802 NIL) (-1273 3122868 3123590 3124579 "UTSCAT-" 3124584 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1272 3122495 3122538 3122671 "UTS2" 3122819 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1271 3116721 3119333 3119376 "URAGG" 3121446 NIL URAGG (NIL T) -9 NIL 3122169 NIL) (-1270 3113660 3114523 3115646 "URAGG-" 3115651 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1269 3109369 3112295 3112760 "UPXSSING" 3113324 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1268 3101435 3108616 3108889 "UPXS" 3109154 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1267 3094508 3101339 3101411 "UPXSCONS" 3101416 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1266 3084105 3090900 3090962 "UPXSCCA" 3091536 NIL UPXSCCA (NIL T T) -9 NIL 3091769 NIL) (-1265 3083743 3083828 3084002 "UPXSCCA-" 3084007 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1264 3073192 3079760 3079803 "UPXSCAT" 3080451 NIL UPXSCAT (NIL T) -9 NIL 3081060 NIL) (-1263 3072622 3072701 3072880 "UPXS2" 3073107 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1262 3071276 3071529 3071880 "UPSQFREE" 3072365 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1261 3064656 3067715 3067770 "UPSCAT" 3068850 NIL UPSCAT (NIL T T) -9 NIL 3069615 NIL) (-1260 3063860 3064067 3064394 "UPSCAT-" 3064399 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1259 3049343 3057200 3057243 "UPOLYC" 3059344 NIL UPOLYC (NIL T) -9 NIL 3060565 NIL) (-1258 3040671 3043097 3046244 "UPOLYC-" 3046249 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1257 3040298 3040341 3040474 "UPOLYC2" 3040622 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1256 3032020 3039981 3040110 "UP" 3040217 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1255 3031359 3031466 3031630 "UPMP" 3031909 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1254 3030912 3030993 3031132 "UPDIVP" 3031272 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1253 3029480 3029729 3030045 "UPDECOMP" 3030661 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1252 3028711 3028823 3029009 "UPCDEN" 3029364 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1251 3028230 3028299 3028448 "UP2" 3028636 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1250 3026697 3027434 3027711 "UNISEG" 3027988 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1249 3025912 3026039 3026244 "UNISEG2" 3026540 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1248 3024972 3025152 3025378 "UNIFACT" 3025728 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1247 3008733 3024149 3024400 "ULS" 3024779 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1246 2996596 3008637 3008709 "ULSCONS" 3008714 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1245 2978195 2990319 2990381 "ULSCCAT" 2991019 NIL ULSCCAT (NIL T T) -9 NIL 2991308 NIL) (-1244 2977245 2977490 2977878 "ULSCCAT-" 2977883 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1243 2966485 2972967 2973010 "ULSCAT" 2973873 NIL ULSCAT (NIL T) -9 NIL 2974604 NIL) (-1242 2965915 2965994 2966173 "ULS2" 2966400 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1241 2965034 2965544 2965651 "UINT8" 2965762 T UINT8 (NIL) -8 NIL NIL 2965847) (-1240 2964152 2964662 2964769 "UINT64" 2964880 T UINT64 (NIL) -8 NIL NIL 2964965) (-1239 2963270 2963780 2963887 "UINT32" 2963998 T UINT32 (NIL) -8 NIL NIL 2964083) (-1238 2962388 2962898 2963005 "UINT16" 2963116 T UINT16 (NIL) -8 NIL NIL 2963201) (-1237 2960691 2961648 2961678 "UFD" 2961890 T UFD (NIL) -9 NIL 2962004 NIL) (-1236 2960485 2960531 2960626 "UFD-" 2960631 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1235 2959567 2959750 2959966 "UDVO" 2960291 T UDVO (NIL) -7 NIL NIL NIL) (-1234 2957383 2957792 2958263 "UDPO" 2959131 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1233 2957316 2957321 2957351 "TYPE" 2957356 T TYPE (NIL) -9 NIL NIL NIL) (-1232 2957076 2957271 2957302 "TYPEAST" 2957307 T TYPEAST (NIL) -8 NIL NIL NIL) (-1231 2956047 2956249 2956489 "TWOFACT" 2956870 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1230 2955070 2955456 2955691 "TUPLE" 2955847 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1229 2952761 2953280 2953819 "TUBETOOL" 2954553 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1228 2951610 2951815 2952056 "TUBE" 2952554 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1227 2946339 2950582 2950865 "TS" 2951362 NIL TS (NIL T) -8 NIL NIL NIL) (-1226 2934979 2939098 2939195 "TSETCAT" 2944464 NIL TSETCAT (NIL T T T T) -9 NIL 2945995 NIL) (-1225 2929711 2931311 2933202 "TSETCAT-" 2933207 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1224 2924350 2925197 2926126 "TRMANIP" 2928847 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1223 2923791 2923854 2924017 "TRIMAT" 2924282 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1222 2921657 2921894 2922251 "TRIGMNIP" 2923540 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1221 2921177 2921290 2921320 "TRIGCAT" 2921533 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1220 2920846 2920925 2921066 "TRIGCAT-" 2921071 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1219 2917691 2919704 2919985 "TREE" 2920600 NIL TREE (NIL T) -8 NIL NIL NIL) (-1218 2916965 2917493 2917523 "TRANFUN" 2917558 T TRANFUN (NIL) -9 NIL 2917624 NIL) (-1217 2916244 2916435 2916715 "TRANFUN-" 2916720 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1216 2916048 2916080 2916141 "TOPSP" 2916205 T TOPSP (NIL) -7 NIL NIL NIL) (-1215 2915396 2915511 2915665 "TOOLSIGN" 2915929 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1214 2914030 2914573 2914812 "TEXTFILE" 2915179 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1213 2911942 2912483 2912912 "TEX" 2913623 T TEX (NIL) -8 NIL NIL NIL) (-1212 2911723 2911754 2911826 "TEX1" 2911905 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1211 2911371 2911434 2911524 "TEMUTL" 2911655 T TEMUTL (NIL) -7 NIL NIL NIL) (-1210 2909525 2909805 2910130 "TBCMPPK" 2911094 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1209 2901302 2907685 2907741 "TBAGG" 2908141 NIL TBAGG (NIL T T) -9 NIL 2908352 NIL) (-1208 2896372 2897860 2899614 "TBAGG-" 2899619 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1207 2895756 2895863 2896008 "TANEXP" 2896261 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1206 2895267 2895531 2895621 "TALGOP" 2895701 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1205 2888657 2895124 2895217 "TABLE" 2895222 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1204 2888069 2888168 2888306 "TABLEAU" 2888554 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1203 2882677 2883897 2885145 "TABLBUMP" 2886855 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1202 2881899 2882046 2882227 "SYSTEM" 2882518 T SYSTEM (NIL) -8 NIL NIL NIL) (-1201 2878358 2879057 2879840 "SYSSOLP" 2881150 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1200 2878156 2878313 2878344 "SYSPTR" 2878349 T SYSPTR (NIL) -8 NIL NIL NIL) (-1199 2877192 2877697 2877816 "SYSNNI" 2878002 NIL SYSNNI (NIL NIL) -8 NIL NIL 2878087) (-1198 2876491 2876950 2877029 "SYSINT" 2877089 NIL SYSINT (NIL NIL) -8 NIL NIL 2877134) (-1197 2872823 2873769 2874479 "SYNTAX" 2875803 T SYNTAX (NIL) -8 NIL NIL NIL) (-1196 2869981 2870583 2871215 "SYMTAB" 2872213 T SYMTAB (NIL) -8 NIL NIL NIL) (-1195 2865230 2866132 2867115 "SYMS" 2869020 T SYMS (NIL) -8 NIL NIL NIL) (-1194 2862465 2864688 2864918 "SYMPOLY" 2865035 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1193 2861982 2862057 2862180 "SYMFUNC" 2862377 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1192 2858002 2859294 2860107 "SYMBOL" 2861191 T SYMBOL (NIL) -8 NIL NIL NIL) (-1191 2851541 2853230 2854950 "SWITCH" 2856304 T SWITCH (NIL) -8 NIL NIL NIL) (-1190 2844775 2850362 2850665 "SUTS" 2851296 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1189 2836841 2844022 2844295 "SUPXS" 2844560 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1188 2828511 2836459 2836585 "SUP" 2836750 NIL SUP (NIL T) -8 NIL NIL NIL) (-1187 2827670 2827797 2828014 "SUPFRACF" 2828379 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1186 2827291 2827350 2827463 "SUP2" 2827605 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1185 2825739 2826013 2826369 "SUMRF" 2826990 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1184 2825074 2825140 2825332 "SUMFS" 2825660 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1183 2808870 2824251 2824502 "SULS" 2824881 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2808472 2808692 2808762 "SUCHTAST" 2808822 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1181 2807767 2807997 2808137 "SUCH" 2808380 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1180 2801634 2802673 2803632 "SUBSPACE" 2806855 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1179 2801064 2801154 2801318 "SUBRESP" 2801522 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1178 2794432 2795729 2797040 "STTF" 2799800 NIL STTF (NIL T) -7 NIL NIL NIL) (-1177 2788605 2789725 2790872 "STTFNC" 2793332 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1176 2779918 2781787 2783581 "STTAYLOR" 2786846 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1175 2773048 2779782 2779865 "STRTBL" 2779870 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1174 2768412 2773003 2773034 "STRING" 2773039 T STRING (NIL) -8 NIL NIL NIL) (-1173 2763241 2767755 2767785 "STRICAT" 2767844 T STRICAT (NIL) -9 NIL 2767906 NIL) (-1172 2755994 2760860 2761471 "STREAM" 2762665 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1171 2755504 2755581 2755725 "STREAM3" 2755911 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1170 2754486 2754669 2754904 "STREAM2" 2755317 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1169 2754174 2754226 2754319 "STREAM1" 2754428 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1168 2753190 2753371 2753602 "STINPROD" 2753990 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1167 2752742 2752952 2752982 "STEP" 2753062 T STEP (NIL) -9 NIL 2753140 NIL) (-1166 2751929 2752231 2752379 "STEPAST" 2752616 T STEPAST (NIL) -8 NIL NIL NIL) (-1165 2745361 2751828 2751905 "STBL" 2751910 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1164 2740456 2744552 2744595 "STAGG" 2744748 NIL STAGG (NIL T) -9 NIL 2744837 NIL) (-1163 2738158 2738760 2739632 "STAGG-" 2739637 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1162 2736305 2737928 2738020 "STACK" 2738101 NIL STACK (NIL T) -8 NIL NIL NIL) (-1161 2729000 2734446 2734902 "SREGSET" 2735935 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1160 2721425 2722794 2724307 "SRDCMPK" 2727606 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1159 2714310 2718835 2718865 "SRAGG" 2720168 T SRAGG (NIL) -9 NIL 2720776 NIL) (-1158 2713327 2713582 2713961 "SRAGG-" 2713966 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1157 2707698 2712274 2712695 "SQMATRIX" 2712953 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1156 2701383 2704416 2705143 "SPLTREE" 2707043 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1155 2697346 2698039 2698685 "SPLNODE" 2700809 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1154 2696393 2696626 2696656 "SPFCAT" 2697100 T SPFCAT (NIL) -9 NIL NIL NIL) (-1153 2695130 2695340 2695604 "SPECOUT" 2696151 T SPECOUT (NIL) -7 NIL NIL NIL) (-1152 2686240 2688112 2688142 "SPADXPT" 2692818 T SPADXPT (NIL) -9 NIL 2694982 NIL) (-1151 2686001 2686041 2686110 "SPADPRSR" 2686193 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1150 2684050 2685956 2685987 "SPADAST" 2685992 T SPADAST (NIL) -8 NIL NIL NIL) (-1149 2675995 2677768 2677811 "SPACEC" 2682184 NIL SPACEC (NIL T) -9 NIL 2684000 NIL) (-1148 2674125 2675927 2675976 "SPACE3" 2675981 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1147 2672877 2673048 2673339 "SORTPAK" 2673930 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1146 2670969 2671272 2671684 "SOLVETRA" 2672541 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1145 2670019 2670241 2670502 "SOLVESER" 2670742 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1144 2665323 2666211 2667206 "SOLVERAD" 2669071 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1143 2661138 2661747 2662476 "SOLVEFOR" 2664690 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1142 2655408 2660487 2660584 "SNTSCAT" 2660589 NIL SNTSCAT (NIL T T T T) -9 NIL 2660659 NIL) (-1141 2649514 2653731 2654122 "SMTS" 2655098 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1140 2644110 2649402 2649479 "SMP" 2649484 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1139 2642269 2642570 2642968 "SMITH" 2643807 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1138 2634795 2639081 2639184 "SMATCAT" 2640535 NIL SMATCAT (NIL NIL T T T) -9 NIL 2641085 NIL) (-1137 2631513 2632398 2633656 "SMATCAT-" 2633661 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1136 2629179 2630749 2630792 "SKAGG" 2631053 NIL SKAGG (NIL T) -9 NIL 2631188 NIL) (-1135 2625455 2628652 2628836 "SINT" 2628988 T SINT (NIL) -8 NIL NIL 2629150) (-1134 2625227 2625265 2625331 "SIMPAN" 2625411 T SIMPAN (NIL) -7 NIL NIL NIL) (-1133 2624506 2624762 2624902 "SIG" 2625109 T SIG (NIL) -8 NIL NIL NIL) (-1132 2623344 2623565 2623840 "SIGNRF" 2624265 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1131 2622177 2622328 2622612 "SIGNEF" 2623173 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1130 2621483 2621760 2621884 "SIGAST" 2622075 T SIGAST (NIL) -8 NIL NIL NIL) (-1129 2619173 2619627 2620133 "SHP" 2621024 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1128 2612888 2619074 2619150 "SHDP" 2619155 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1127 2612461 2612653 2612683 "SGROUP" 2612776 T SGROUP (NIL) -9 NIL 2612838 NIL) (-1126 2612319 2612345 2612418 "SGROUP-" 2612423 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1125 2609110 2609808 2610531 "SGCF" 2611618 T SGCF (NIL) -7 NIL NIL NIL) (-1124 2603478 2608557 2608654 "SFRTCAT" 2608659 NIL SFRTCAT (NIL T T T T) -9 NIL 2608698 NIL) (-1123 2596899 2597917 2599053 "SFRGCD" 2602461 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1122 2590025 2591098 2592284 "SFQCMPK" 2595832 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1121 2589645 2589734 2589845 "SFORT" 2589966 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1120 2588763 2589485 2589606 "SEXOF" 2589611 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1119 2587870 2588644 2588712 "SEX" 2588717 T SEX (NIL) -8 NIL NIL NIL) (-1118 2583651 2584366 2584461 "SEXCAT" 2587083 NIL SEXCAT (NIL T T T T T) -9 NIL 2587643 NIL) (-1117 2580804 2583585 2583633 "SET" 2583638 NIL SET (NIL T) -8 NIL NIL NIL) (-1116 2579028 2579517 2579822 "SETMN" 2580545 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1115 2578524 2578676 2578706 "SETCAT" 2578882 T SETCAT (NIL) -9 NIL 2578992 NIL) (-1114 2578216 2578294 2578424 "SETCAT-" 2578429 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1113 2574577 2576677 2576720 "SETAGG" 2577590 NIL SETAGG (NIL T) -9 NIL 2577930 NIL) (-1112 2574035 2574151 2574388 "SETAGG-" 2574393 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1111 2573478 2573731 2573832 "SEQAST" 2573956 T SEQAST (NIL) -8 NIL NIL NIL) (-1110 2572677 2572971 2573032 "SEGXCAT" 2573318 NIL SEGXCAT (NIL T T) -9 NIL 2573438 NIL) (-1109 2571683 2572343 2572525 "SEG" 2572530 NIL SEG (NIL T) -8 NIL NIL NIL) (-1108 2570662 2570876 2570919 "SEGCAT" 2571441 NIL SEGCAT (NIL T) -9 NIL 2571662 NIL) (-1107 2569594 2570025 2570233 "SEGBIND" 2570489 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1106 2569215 2569274 2569387 "SEGBIND2" 2569529 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1105 2568788 2569016 2569093 "SEGAST" 2569160 T SEGAST (NIL) -8 NIL NIL NIL) (-1104 2568007 2568133 2568337 "SEG2" 2568632 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1103 2567378 2567942 2567989 "SDVAR" 2567994 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1102 2559816 2567148 2567278 "SDPOL" 2567283 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1101 2558409 2558675 2558994 "SCPKG" 2559531 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1100 2557573 2557745 2557937 "SCOPE" 2558239 T SCOPE (NIL) -8 NIL NIL NIL) (-1099 2556793 2556927 2557106 "SCACHE" 2557428 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1098 2556439 2556625 2556655 "SASTCAT" 2556660 T SASTCAT (NIL) -9 NIL 2556673 NIL) (-1097 2555926 2556274 2556350 "SAOS" 2556385 T SAOS (NIL) -8 NIL NIL NIL) (-1096 2555491 2555526 2555699 "SAERFFC" 2555885 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1095 2549341 2555388 2555468 "SAE" 2555473 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1094 2548934 2548969 2549128 "SAEFACT" 2549300 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1093 2547255 2547569 2547970 "RURPK" 2548600 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1092 2545892 2546198 2546503 "RULESET" 2547089 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1091 2543115 2543645 2544103 "RULE" 2545573 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1090 2542727 2542909 2542992 "RULECOLD" 2543067 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1089 2542517 2542545 2542616 "RTVALUE" 2542678 T RTVALUE (NIL) -8 NIL NIL NIL) (-1088 2541988 2542234 2542328 "RSTRCAST" 2542445 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1087 2536836 2537631 2538551 "RSETGCD" 2541187 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1086 2526066 2531145 2531242 "RSETCAT" 2535361 NIL RSETCAT (NIL T T T T) -9 NIL 2536458 NIL) (-1085 2523993 2524532 2525356 "RSETCAT-" 2525361 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1084 2516379 2517755 2519275 "RSDCMPK" 2522592 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1083 2514358 2514825 2514899 "RRCC" 2515985 NIL RRCC (NIL T T) -9 NIL 2516329 NIL) (-1082 2513709 2513883 2514162 "RRCC-" 2514167 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1081 2513152 2513405 2513506 "RPTAST" 2513630 T RPTAST (NIL) -8 NIL NIL NIL) (-1080 2486868 2496316 2496383 "RPOLCAT" 2507049 NIL RPOLCAT (NIL T T T) -9 NIL 2510209 NIL) (-1079 2478366 2480706 2483828 "RPOLCAT-" 2483833 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1078 2469297 2476577 2477059 "ROUTINE" 2477906 T ROUTINE (NIL) -8 NIL NIL NIL) (-1077 2466044 2468923 2469063 "ROMAN" 2469179 T ROMAN (NIL) -8 NIL NIL NIL) (-1076 2464288 2464904 2465164 "ROIRC" 2465849 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1075 2460520 2462804 2462834 "RNS" 2463138 T RNS (NIL) -9 NIL 2463412 NIL) (-1074 2459029 2459412 2459946 "RNS-" 2460021 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1073 2458432 2458840 2458870 "RNG" 2458875 T RNG (NIL) -9 NIL 2458896 NIL) (-1072 2457435 2457797 2457999 "RNGBIND" 2458283 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1071 2456834 2457222 2457265 "RMODULE" 2457270 NIL RMODULE (NIL T) -9 NIL 2457297 NIL) (-1070 2455670 2455764 2456100 "RMCAT2" 2456735 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1069 2452520 2455016 2455313 "RMATRIX" 2455432 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1068 2445347 2447607 2447722 "RMATCAT" 2451081 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2452063 NIL) (-1067 2444722 2444869 2445176 "RMATCAT-" 2445181 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1066 2444123 2444344 2444387 "RLINSET" 2444581 NIL RLINSET (NIL T) -9 NIL 2444672 NIL) (-1065 2443690 2443765 2443893 "RINTERP" 2444042 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1064 2442748 2443302 2443332 "RING" 2443388 T RING (NIL) -9 NIL 2443480 NIL) (-1063 2442540 2442584 2442681 "RING-" 2442686 NIL RING- (NIL T) -8 NIL NIL NIL) (-1062 2441381 2441618 2441876 "RIDIST" 2442304 T RIDIST (NIL) -7 NIL NIL NIL) (-1061 2432670 2440849 2441055 "RGCHAIN" 2441229 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1060 2432020 2432426 2432467 "RGBCSPC" 2432525 NIL RGBCSPC (NIL T) -9 NIL 2432577 NIL) (-1059 2431178 2431559 2431600 "RGBCMDL" 2431832 NIL RGBCMDL (NIL T) -9 NIL 2431946 NIL) (-1058 2428172 2428786 2429456 "RF" 2430542 NIL RF (NIL T) -7 NIL NIL NIL) (-1057 2427818 2427881 2427984 "RFFACTOR" 2428103 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1056 2427543 2427578 2427675 "RFFACT" 2427777 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1055 2425660 2426024 2426406 "RFDIST" 2427183 T RFDIST (NIL) -7 NIL NIL NIL) (-1054 2425113 2425205 2425368 "RETSOL" 2425562 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1053 2424749 2424829 2424872 "RETRACT" 2425005 NIL RETRACT (NIL T) -9 NIL 2425092 NIL) (-1052 2424598 2424623 2424710 "RETRACT-" 2424715 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1051 2424200 2424420 2424490 "RETAST" 2424550 T RETAST (NIL) -8 NIL NIL NIL) (-1050 2416938 2423853 2423980 "RESULT" 2424095 T RESULT (NIL) -8 NIL NIL NIL) (-1049 2415529 2416207 2416406 "RESRING" 2416841 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1048 2415165 2415214 2415312 "RESLATC" 2415466 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1047 2414870 2414905 2415012 "REPSQ" 2415124 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1046 2412292 2412872 2413474 "REP" 2414290 T REP (NIL) -7 NIL NIL NIL) (-1045 2411989 2412024 2412135 "REPDB" 2412251 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1044 2405889 2407278 2408501 "REP2" 2410801 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1043 2402266 2402947 2403755 "REP1" 2405116 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1042 2394962 2400407 2400863 "REGSET" 2401896 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1041 2393727 2394110 2394360 "REF" 2394747 NIL REF (NIL T) -8 NIL NIL NIL) (-1040 2393104 2393207 2393374 "REDORDER" 2393611 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1039 2389072 2392317 2392544 "RECLOS" 2392932 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1038 2388124 2388305 2388520 "REALSOLV" 2388879 T REALSOLV (NIL) -7 NIL NIL NIL) (-1037 2387970 2388011 2388041 "REAL" 2388046 T REAL (NIL) -9 NIL 2388081 NIL) (-1036 2384453 2385255 2386139 "REAL0Q" 2387135 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1035 2380054 2381042 2382103 "REAL0" 2383434 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1034 2379525 2379771 2379865 "RDUCEAST" 2379982 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1033 2378930 2379002 2379209 "RDIV" 2379447 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1032 2377998 2378172 2378385 "RDIST" 2378752 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1031 2376595 2376882 2377254 "RDETRS" 2377706 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1030 2374407 2374861 2375399 "RDETR" 2376137 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1029 2373032 2373310 2373707 "RDEEFS" 2374123 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1028 2371541 2371847 2372272 "RDEEF" 2372720 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1027 2365602 2368522 2368552 "RCFIELD" 2369847 T RCFIELD (NIL) -9 NIL 2370578 NIL) (-1026 2363666 2364170 2364866 "RCFIELD-" 2364941 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1025 2359935 2361767 2361810 "RCAGG" 2362894 NIL RCAGG (NIL T) -9 NIL 2363359 NIL) (-1024 2359563 2359657 2359820 "RCAGG-" 2359825 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1023 2358898 2359010 2359175 "RATRET" 2359447 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1022 2358451 2358518 2358639 "RATFACT" 2358826 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1021 2357759 2357879 2358031 "RANDSRC" 2358321 T RANDSRC (NIL) -7 NIL NIL NIL) (-1020 2357493 2357537 2357610 "RADUTIL" 2357708 T RADUTIL (NIL) -7 NIL NIL NIL) (-1019 2350514 2356324 2356635 "RADIX" 2357216 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1018 2342030 2350356 2350486 "RADFF" 2350491 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1017 2341677 2341752 2341782 "RADCAT" 2341942 T RADCAT (NIL) -9 NIL NIL NIL) (-1016 2341459 2341507 2341607 "RADCAT-" 2341612 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1015 2339557 2341229 2341321 "QUEUE" 2341402 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1014 2336005 2339490 2339538 "QUAT" 2339543 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1013 2335636 2335679 2335810 "QUATCT2" 2335956 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1012 2328832 2332267 2332309 "QUATCAT" 2333100 NIL QUATCAT (NIL T) -9 NIL 2333866 NIL) (-1011 2324971 2326008 2327398 "QUATCAT-" 2327494 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1010 2322436 2324047 2324090 "QUAGG" 2324471 NIL QUAGG (NIL T) -9 NIL 2324646 NIL) (-1009 2322038 2322258 2322328 "QQUTAST" 2322388 T QQUTAST (NIL) -8 NIL NIL NIL) (-1008 2321051 2321551 2321716 "QFORM" 2321919 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1007 2311858 2317186 2317228 "QFCAT" 2317896 NIL QFCAT (NIL T) -9 NIL 2318897 NIL) (-1006 2307203 2308466 2310140 "QFCAT-" 2310236 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1005 2306834 2306877 2307008 "QFCAT2" 2307154 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1004 2306289 2306399 2306531 "QEQUAT" 2306724 T QEQUAT (NIL) -8 NIL NIL NIL) (-1003 2299415 2300488 2301674 "QCMPACK" 2305222 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1002 2296953 2297401 2297831 "QALGSET" 2299070 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1001 2296188 2296364 2296600 "QALGSET2" 2296771 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1000 2294873 2295097 2295416 "PWFFINTB" 2295961 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-999 2293055 2293223 2293577 "PUSHVAR" 2294687 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-998 2288973 2290027 2290068 "PTRANFN" 2291952 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-997 2287375 2287666 2287988 "PTPACK" 2288684 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-996 2287007 2287064 2287173 "PTFUNC2" 2287312 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-995 2281452 2285849 2285890 "PTCAT" 2286186 NIL PTCAT (NIL T) -9 NIL 2286339 NIL) (-994 2281110 2281145 2281269 "PSQFR" 2281411 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-993 2279705 2280003 2280337 "PSEUDLIN" 2280808 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-992 2266468 2268839 2271163 "PSETPK" 2277465 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-991 2259486 2262226 2262322 "PSETCAT" 2265343 NIL PSETCAT (NIL T T T T) -9 NIL 2266157 NIL) (-990 2257322 2257956 2258777 "PSETCAT-" 2258782 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-989 2256671 2256836 2256864 "PSCURVE" 2257132 T PSCURVE (NIL) -9 NIL 2257299 NIL) (-988 2252669 2254185 2254250 "PSCAT" 2255094 NIL PSCAT (NIL T T T) -9 NIL 2255334 NIL) (-987 2251732 2251948 2252348 "PSCAT-" 2252353 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-986 2250091 2250801 2251064 "PRTITION" 2251489 T PRTITION (NIL) -8 NIL NIL NIL) (-985 2249566 2249812 2249904 "PRTDAST" 2250019 T PRTDAST (NIL) -8 NIL NIL NIL) (-984 2238656 2240870 2243058 "PRS" 2247428 NIL PRS (NIL T T) -7 NIL NIL NIL) (-983 2236467 2238006 2238046 "PRQAGG" 2238229 NIL PRQAGG (NIL T) -9 NIL 2238331 NIL) (-982 2235803 2236108 2236136 "PROPLOG" 2236275 T PROPLOG (NIL) -9 NIL 2236390 NIL) (-981 2235407 2235464 2235587 "PROPFUN2" 2235726 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-980 2234722 2234843 2235015 "PROPFUN1" 2235268 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-979 2232903 2233469 2233766 "PROPFRML" 2234458 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-978 2232372 2232479 2232607 "PROPERTY" 2232795 T PROPERTY (NIL) -8 NIL NIL NIL) (-977 2226430 2230538 2231358 "PRODUCT" 2231598 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-976 2223708 2225888 2226122 "PR" 2226241 NIL PR (NIL T T) -8 NIL NIL NIL) (-975 2223504 2223536 2223595 "PRINT" 2223669 T PRINT (NIL) -7 NIL NIL NIL) (-974 2222844 2222961 2223113 "PRIMES" 2223384 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-973 2220909 2221310 2221776 "PRIMELT" 2222423 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-972 2220638 2220687 2220715 "PRIMCAT" 2220839 T PRIMCAT (NIL) -9 NIL NIL NIL) (-971 2216753 2220576 2220621 "PRIMARR" 2220626 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-970 2215760 2215938 2216166 "PRIMARR2" 2216571 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-969 2215403 2215459 2215570 "PREASSOC" 2215698 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-968 2214878 2215011 2215039 "PPCURVE" 2215244 T PPCURVE (NIL) -9 NIL 2215380 NIL) (-967 2214473 2214673 2214756 "PORTNUM" 2214815 T PORTNUM (NIL) -8 NIL NIL NIL) (-966 2211832 2212231 2212823 "POLYROOT" 2214054 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-965 2205925 2211436 2211596 "POLY" 2211705 NIL POLY (NIL T) -8 NIL NIL NIL) (-964 2205308 2205366 2205600 "POLYLIFT" 2205861 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-963 2201583 2202032 2202661 "POLYCATQ" 2204853 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-962 2188165 2193382 2193447 "POLYCAT" 2196961 NIL POLYCAT (NIL T T T) -9 NIL 2198839 NIL) (-961 2181392 2183316 2185780 "POLYCAT-" 2185785 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-960 2180979 2181047 2181167 "POLY2UP" 2181318 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-959 2180611 2180668 2180777 "POLY2" 2180916 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-958 2179296 2179535 2179811 "POLUTIL" 2180385 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-957 2177651 2177928 2178259 "POLTOPOL" 2179018 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-956 2173116 2177587 2177633 "POINT" 2177638 NIL POINT (NIL T) -8 NIL NIL NIL) (-955 2171303 2171660 2172035 "PNTHEORY" 2172761 T PNTHEORY (NIL) -7 NIL NIL NIL) (-954 2169761 2170058 2170457 "PMTOOLS" 2171001 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-953 2169354 2169432 2169549 "PMSYM" 2169677 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-952 2168862 2168931 2169106 "PMQFCAT" 2169279 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-951 2168217 2168327 2168483 "PMPRED" 2168739 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-950 2167610 2167696 2167858 "PMPREDFS" 2168118 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-949 2166274 2166482 2166860 "PMPLCAT" 2167372 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-948 2165806 2165885 2166037 "PMLSAGG" 2166189 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-947 2165279 2165355 2165537 "PMKERNEL" 2165724 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-946 2164896 2164971 2165084 "PMINS" 2165198 NIL PMINS (NIL T) -7 NIL NIL NIL) (-945 2164338 2164407 2164616 "PMFS" 2164821 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-944 2163566 2163684 2163889 "PMDOWN" 2164215 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-943 2162733 2162891 2163072 "PMASS" 2163405 T PMASS (NIL) -7 NIL NIL NIL) (-942 2162006 2162116 2162279 "PMASSFS" 2162620 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-941 2161661 2161729 2161823 "PLOTTOOL" 2161932 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-940 2156268 2157472 2158620 "PLOT" 2160533 T PLOT (NIL) -8 NIL NIL NIL) (-939 2152072 2153116 2154037 "PLOT3D" 2155367 T PLOT3D (NIL) -8 NIL NIL NIL) (-938 2150984 2151161 2151396 "PLOT1" 2151876 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-937 2126375 2131050 2135901 "PLEQN" 2146250 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-936 2125693 2125815 2125995 "PINTERP" 2126240 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-935 2125386 2125433 2125536 "PINTERPA" 2125640 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-934 2124602 2125150 2125237 "PI" 2125277 T PI (NIL) -8 NIL NIL 2125344) (-933 2122899 2123874 2123902 "PID" 2124084 T PID (NIL) -9 NIL 2124218 NIL) (-932 2122650 2122687 2122762 "PICOERCE" 2122856 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-931 2121970 2122109 2122285 "PGROEB" 2122506 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-930 2117557 2118371 2119276 "PGE" 2121085 T PGE (NIL) -7 NIL NIL NIL) (-929 2115680 2115927 2116293 "PGCD" 2117274 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-928 2115018 2115121 2115282 "PFRPAC" 2115564 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-927 2111658 2113566 2113919 "PFR" 2114697 NIL PFR (NIL T) -8 NIL NIL NIL) (-926 2110047 2110291 2110616 "PFOTOOLS" 2111405 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-925 2108580 2108819 2109170 "PFOQ" 2109804 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-924 2107081 2107293 2107649 "PFO" 2108364 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-923 2103634 2106970 2107039 "PF" 2107044 NIL PF (NIL NIL) -8 NIL NIL NIL) (-922 2100968 2102239 2102267 "PFECAT" 2102852 T PFECAT (NIL) -9 NIL 2103236 NIL) (-921 2100413 2100567 2100781 "PFECAT-" 2100786 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-920 2099016 2099268 2099569 "PFBRU" 2100162 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-919 2096882 2097234 2097666 "PFBR" 2098667 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-918 2092928 2094394 2095041 "PERM" 2096268 NIL PERM (NIL T) -8 NIL NIL NIL) (-917 2088162 2089135 2090005 "PERMGRP" 2092091 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-916 2086281 2087241 2087282 "PERMCAT" 2087682 NIL PERMCAT (NIL T) -9 NIL 2087980 NIL) (-915 2085934 2085975 2086099 "PERMAN" 2086234 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-914 2083422 2085599 2085721 "PENDTREE" 2085845 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-913 2081446 2082214 2082255 "PDRING" 2082912 NIL PDRING (NIL T) -9 NIL 2083198 NIL) (-912 2080549 2080767 2081129 "PDRING-" 2081134 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-911 2077764 2078542 2079210 "PDEPROB" 2079901 T PDEPROB (NIL) -8 NIL NIL NIL) (-910 2075309 2075813 2076368 "PDEPACK" 2077229 T PDEPACK (NIL) -7 NIL NIL NIL) (-909 2074221 2074411 2074662 "PDECOMP" 2075108 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-908 2071800 2072643 2072671 "PDECAT" 2073458 T PDECAT (NIL) -9 NIL 2074171 NIL) (-907 2071429 2071484 2071538 "PDDOM" 2071703 NIL PDDOM (NIL T T) -9 NIL 2071783 NIL) (-906 2071248 2071278 2071385 "PDDOM-" 2071390 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-905 2070999 2071032 2071122 "PCOMP" 2071209 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2069177 2069800 2070097 "PBWLB" 2070728 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2061650 2063250 2064588 "PATTERN" 2067860 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2061282 2061339 2061448 "PATTERN2" 2061587 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2059039 2059427 2059884 "PATTERN1" 2060871 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2056407 2056988 2057469 "PATRES" 2058604 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2055971 2056038 2056170 "PATRES2" 2056334 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2053854 2054259 2054666 "PATMATCH" 2055638 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2053364 2053573 2053614 "PATMAB" 2053721 NIL PATMAB (NIL T) -9 NIL 2053804 NIL) (-896 2051882 2052218 2052476 "PATLRES" 2053169 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2051428 2051551 2051592 "PATAB" 2051597 NIL PATAB (NIL T) -9 NIL 2051769 NIL) (-894 2049610 2050005 2050428 "PARTPERM" 2051025 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2049231 2049294 2049396 "PARSURF" 2049541 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2048863 2048920 2049029 "PARSU2" 2049168 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2048627 2048667 2048734 "PARSER" 2048816 T PARSER (NIL) -7 NIL NIL NIL) (-890 2048248 2048311 2048413 "PARSCURV" 2048558 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2047880 2047937 2048046 "PARSC2" 2048185 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2047519 2047577 2047674 "PARPCURV" 2047816 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2047151 2047208 2047317 "PARPC2" 2047456 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2046212 2046524 2046706 "PARAMAST" 2046989 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2045732 2045818 2045937 "PAN2EXPR" 2046113 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2044509 2044853 2045081 "PALETTE" 2045524 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2042902 2043514 2043874 "PAIR" 2044195 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2036681 2042159 2042354 "PADICRC" 2042756 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2029805 2036025 2036210 "PADICRAT" 2036528 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2028120 2029742 2029787 "PADIC" 2029792 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2025230 2026794 2026834 "PADICCT" 2027415 NIL PADICCT (NIL NIL) -9 NIL 2027697 NIL) (-878 2024187 2024387 2024655 "PADEPAC" 2025017 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2023399 2023532 2023738 "PADE" 2024049 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2021786 2022607 2022887 "OWP" 2023203 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2021279 2021492 2021589 "OVERSET" 2021709 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2020325 2020884 2021056 "OVAR" 2021147 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2019589 2019710 2019871 "OUT" 2020184 T OUT (NIL) -7 NIL NIL NIL) (-872 2008461 2010698 2012898 "OUTFORM" 2017409 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2007797 2008058 2008185 "OUTBFILE" 2008354 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2007104 2007269 2007297 "OUTBCON" 2007615 T OUTBCON (NIL) -9 NIL 2007781 NIL) (-869 2006705 2006817 2006974 "OUTBCON-" 2006979 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2006085 2006434 2006523 "OSI" 2006636 T OSI (NIL) -8 NIL NIL NIL) (-867 2005615 2005953 2005981 "OSGROUP" 2005986 T OSGROUP (NIL) -9 NIL 2006008 NIL) (-866 2004360 2004587 2004872 "ORTHPOL" 2005362 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 2001911 2004195 2004316 "OREUP" 2004321 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1999314 2001602 2001729 "ORESUP" 2001853 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1996842 1997342 1997903 "OREPCTO" 1998803 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1990528 1992729 1992770 "OREPCAT" 1995118 NIL OREPCAT (NIL T) -9 NIL 1996222 NIL) (-861 1987675 1988457 1989515 "OREPCAT-" 1989520 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1986826 1987124 1987152 "ORDSET" 1987461 T ORDSET (NIL) -9 NIL 1987625 NIL) (-859 1986257 1986405 1986629 "ORDSET-" 1986634 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1984822 1985613 1985641 "ORDRING" 1985843 T ORDRING (NIL) -9 NIL 1985968 NIL) (-857 1984467 1984561 1984705 "ORDRING-" 1984710 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1983847 1984310 1984338 "ORDMON" 1984343 T ORDMON (NIL) -9 NIL 1984364 NIL) (-855 1983009 1983156 1983351 "ORDFUNS" 1983696 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1982347 1982766 1982794 "ORDFIN" 1982859 T ORDFIN (NIL) -9 NIL 1982933 NIL) (-853 1978906 1980933 1981342 "ORDCOMP" 1981971 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1978172 1978299 1978485 "ORDCOMP2" 1978766 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1974753 1975663 1976477 "OPTPROB" 1977378 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1971555 1972194 1972898 "OPTPACK" 1974069 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1969242 1970008 1970036 "OPTCAT" 1970855 T OPTCAT (NIL) -9 NIL 1971505 NIL) (-848 1968626 1968919 1969024 "OPSIG" 1969157 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1968394 1968433 1968499 "OPQUERY" 1968580 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1965525 1966705 1967209 "OP" 1967923 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1964899 1965125 1965166 "OPERCAT" 1965378 NIL OPERCAT (NIL T) -9 NIL 1965475 NIL) (-844 1964654 1964710 1964827 "OPERCAT-" 1964832 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1961467 1963451 1963820 "ONECOMP" 1964318 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1960772 1960887 1961061 "ONECOMP2" 1961339 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1960191 1960297 1960427 "OMSERVER" 1960662 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1957053 1959631 1959671 "OMSAGG" 1959732 NIL OMSAGG (NIL T) -9 NIL 1959796 NIL) (-839 1955676 1955939 1956221 "OMPKG" 1956791 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1955106 1955209 1955237 "OM" 1955536 T OM (NIL) -9 NIL NIL NIL) (-837 1953653 1954655 1954824 "OMLO" 1954987 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1952613 1952760 1952980 "OMEXPR" 1953479 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1951904 1952159 1952295 "OMERR" 1952497 T OMERR (NIL) -8 NIL NIL NIL) (-834 1951055 1951325 1951485 "OMERRK" 1951764 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1950506 1950732 1950840 "OMENC" 1950967 T OMENC (NIL) -8 NIL NIL NIL) (-832 1944401 1945586 1946757 "OMDEV" 1949355 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1943470 1943641 1943835 "OMCONN" 1944227 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1941991 1942967 1942995 "OINTDOM" 1943000 T OINTDOM (NIL) -9 NIL 1943021 NIL) (-829 1939329 1940679 1941016 "OFMONOID" 1941686 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1938701 1939266 1939311 "ODVAR" 1939316 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1936124 1938446 1938601 "ODR" 1938606 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1928616 1935900 1936026 "ODPOL" 1936031 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1922301 1928488 1928593 "ODP" 1928598 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1921067 1921282 1921557 "ODETOOLS" 1922075 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1918034 1918692 1919408 "ODESYS" 1920400 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1912916 1913824 1914849 "ODERTRIC" 1917109 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1912342 1912424 1912618 "ODERED" 1912828 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1909230 1909778 1910455 "ODERAT" 1911765 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1906189 1906654 1907251 "ODEPRRIC" 1908759 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1904132 1904728 1905214 "ODEPROB" 1905723 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1900652 1901137 1901784 "ODEPRIM" 1903611 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1899901 1900003 1900263 "ODEPAL" 1900544 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1896063 1896854 1897718 "ODEPACK" 1899057 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1895124 1895231 1895453 "ODEINT" 1895952 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1889225 1890650 1892097 "ODEIFTBL" 1893697 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1884623 1885409 1886361 "ODEEF" 1888384 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1883972 1884061 1884284 "ODECONST" 1884528 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1882097 1882758 1882786 "ODECAT" 1883391 T ODECAT (NIL) -9 NIL 1883922 NIL) (-809 1878952 1881802 1881924 "OCT" 1882007 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1878590 1878633 1878760 "OCTCT2" 1878903 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1873201 1875636 1875676 "OC" 1876773 NIL OC (NIL T) -9 NIL 1877631 NIL) (-806 1870428 1871176 1872166 "OC-" 1872260 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1869780 1870248 1870276 "OCAMON" 1870281 T OCAMON (NIL) -9 NIL 1870302 NIL) (-804 1869311 1869652 1869680 "OASGP" 1869685 T OASGP (NIL) -9 NIL 1869705 NIL) (-803 1868572 1869061 1869089 "OAMONS" 1869129 T OAMONS (NIL) -9 NIL 1869172 NIL) (-802 1867986 1868419 1868447 "OAMON" 1868452 T OAMON (NIL) -9 NIL 1868472 NIL) (-801 1867244 1867762 1867790 "OAGROUP" 1867795 T OAGROUP (NIL) -9 NIL 1867815 NIL) (-800 1866934 1866984 1867072 "NUMTUBE" 1867188 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1860507 1862025 1863561 "NUMQUAD" 1865418 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1856263 1857251 1858276 "NUMODE" 1859502 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1853618 1854498 1854526 "NUMINT" 1855449 T NUMINT (NIL) -9 NIL 1856213 NIL) (-796 1852566 1852763 1852981 "NUMFMT" 1853420 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1838925 1841870 1844402 "NUMERIC" 1850073 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1833295 1838374 1838469 "NTSCAT" 1838474 NIL NTSCAT (NIL T T T T) -9 NIL 1838513 NIL) (-793 1832489 1832654 1832847 "NTPOLFN" 1833134 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1820477 1829314 1830126 "NSUP" 1831710 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1820109 1820166 1820275 "NSUP2" 1820414 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1810246 1819883 1820016 "NSMP" 1820021 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1808678 1808979 1809336 "NREP" 1809934 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1807269 1807521 1807879 "NPCOEF" 1808421 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1806335 1806450 1806666 "NORMRETR" 1807150 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1804376 1804666 1805075 "NORMPK" 1806043 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1804061 1804089 1804213 "NORMMA" 1804342 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1803861 1804018 1804047 "NONE" 1804052 T NONE (NIL) -8 NIL NIL NIL) (-783 1803650 1803679 1803748 "NONE1" 1803825 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1803147 1803209 1803388 "NODE1" 1803582 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1801428 1802279 1802534 "NNI" 1802881 T NNI (NIL) -8 NIL NIL 1803116) (-780 1799848 1800161 1800525 "NLINSOL" 1801096 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1796089 1797084 1797983 "NIPROB" 1798969 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1794846 1795080 1795382 "NFINTBAS" 1795851 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1794020 1794496 1794537 "NETCLT" 1794709 NIL NETCLT (NIL T) -9 NIL 1794791 NIL) (-776 1792728 1792959 1793240 "NCODIV" 1793788 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1792490 1792527 1792602 "NCNTFRAC" 1792685 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1790670 1791034 1791454 "NCEP" 1792115 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1789521 1790294 1790322 "NASRING" 1790432 T NASRING (NIL) -9 NIL 1790512 NIL) (-772 1789316 1789360 1789454 "NASRING-" 1789459 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1788423 1788948 1788976 "NARNG" 1789093 T NARNG (NIL) -9 NIL 1789184 NIL) (-770 1788115 1788182 1788316 "NARNG-" 1788321 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1786994 1787201 1787436 "NAGSP" 1787900 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1778266 1779950 1781623 "NAGS" 1785341 T NAGS (NIL) -7 NIL NIL NIL) (-767 1776814 1777122 1777453 "NAGF07" 1777955 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1771352 1772643 1773950 "NAGF04" 1775527 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1764320 1765934 1767567 "NAGF02" 1769739 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1759544 1760644 1761761 "NAGF01" 1763223 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1753172 1754738 1756323 "NAGE04" 1757979 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1744341 1746462 1748592 "NAGE02" 1751062 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1740294 1741241 1742205 "NAGE01" 1743397 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1738089 1738623 1739181 "NAGD03" 1739756 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1729839 1731767 1733721 "NAGD02" 1736155 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1723650 1725075 1726515 "NAGD01" 1728419 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1719859 1720681 1721518 "NAGC06" 1722833 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1718324 1718656 1719012 "NAGC05" 1719523 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1717700 1717819 1717963 "NAGC02" 1718200 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1716659 1717242 1717282 "NAALG" 1717361 NIL NAALG (NIL T) -9 NIL 1717422 NIL) (-753 1716494 1716523 1716613 "NAALG-" 1716618 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1710444 1711552 1712739 "MULTSQFR" 1715390 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1709763 1709838 1710022 "MULTFACT" 1710356 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1702487 1706400 1706453 "MTSCAT" 1707523 NIL MTSCAT (NIL T T) -9 NIL 1708038 NIL) (-749 1702199 1702253 1702345 "MTHING" 1702427 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1701991 1702024 1702084 "MSYSCMD" 1702159 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1698073 1700746 1701066 "MSET" 1701704 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1695142 1697634 1697675 "MSETAGG" 1697680 NIL MSETAGG (NIL T) -9 NIL 1697714 NIL) (-745 1690984 1692521 1693266 "MRING" 1694442 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1690550 1690617 1690748 "MRF2" 1690911 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1690168 1690203 1690347 "MRATFAC" 1690509 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1687780 1688075 1688506 "MPRFF" 1689873 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1681988 1687634 1687731 "MPOLY" 1687736 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1681478 1681513 1681721 "MPCPF" 1681947 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1680992 1681035 1681219 "MPC3" 1681429 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1680187 1680268 1680489 "MPC2" 1680907 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1678488 1678825 1679215 "MONOTOOL" 1679847 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1677713 1678030 1678058 "MONOID" 1678277 T MONOID (NIL) -9 NIL 1678424 NIL) (-735 1677259 1677378 1677559 "MONOID-" 1677564 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1667357 1673398 1673457 "MONOGEN" 1674131 NIL MONOGEN (NIL T T) -9 NIL 1674587 NIL) (-733 1664575 1665310 1666310 "MONOGEN-" 1666429 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1663408 1663854 1663882 "MONADWU" 1664274 T MONADWU (NIL) -9 NIL 1664512 NIL) (-731 1662780 1662939 1663187 "MONADWU-" 1663192 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1662139 1662383 1662411 "MONAD" 1662618 T MONAD (NIL) -9 NIL 1662730 NIL) (-729 1661824 1661902 1662034 "MONAD-" 1662039 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1660113 1660737 1661016 "MOEBIUS" 1661577 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1659391 1659795 1659835 "MODULE" 1659840 NIL MODULE (NIL T) -9 NIL 1659879 NIL) (-726 1658959 1659055 1659245 "MODULE-" 1659250 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1656639 1657323 1657650 "MODRING" 1658783 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1653583 1654744 1655265 "MODOP" 1656168 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1652171 1652650 1652927 "MODMONOM" 1653446 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1642126 1650462 1650876 "MODMON" 1651808 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1639282 1640970 1641246 "MODFIELD" 1642001 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1638259 1638563 1638753 "MMLFORM" 1639112 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1637785 1637828 1638007 "MMAP" 1638210 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1635864 1636631 1636672 "MLO" 1637095 NIL MLO (NIL T) -9 NIL 1637337 NIL) (-717 1633230 1633746 1634348 "MLIFT" 1635345 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1632621 1632705 1632859 "MKUCFUNC" 1633141 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1632220 1632290 1632413 "MKRECORD" 1632544 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1631267 1631429 1631657 "MKFUNC" 1632031 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1630655 1630759 1630915 "MKFLCFN" 1631150 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1629932 1630034 1630219 "MKBCFUNC" 1630548 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1626607 1629486 1629622 "MINT" 1629816 T MINT (NIL) -8 NIL NIL NIL) (-710 1625419 1625662 1625939 "MHROWRED" 1626362 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1620799 1623954 1624359 "MFLOAT" 1625034 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1620156 1620232 1620403 "MFINFACT" 1620711 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1616471 1617319 1618203 "MESH" 1619292 T MESH (NIL) -7 NIL NIL NIL) (-706 1614861 1615173 1615526 "MDDFACT" 1616158 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1611656 1614020 1614061 "MDAGG" 1614316 NIL MDAGG (NIL T) -9 NIL 1614459 NIL) (-704 1601303 1610949 1611156 "MCMPLX" 1611469 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1600440 1600586 1600787 "MCDEN" 1601152 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1598330 1598600 1598980 "MCALCFN" 1600170 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1597255 1597495 1597728 "MAYBE" 1598136 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1594867 1595390 1595952 "MATSTOR" 1596726 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1590824 1594239 1594487 "MATRIX" 1594652 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1586590 1587297 1588033 "MATLIN" 1590181 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1576696 1579882 1579959 "MATCAT" 1584839 NIL MATCAT (NIL T T T) -9 NIL 1586256 NIL) (-696 1573052 1574073 1575429 "MATCAT-" 1575434 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1571646 1571799 1572132 "MATCAT2" 1572887 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1569758 1570082 1570466 "MAPPKG3" 1571321 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1568739 1568912 1569134 "MAPPKG2" 1569582 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1567238 1567522 1567849 "MAPPKG1" 1568445 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1566317 1566644 1566821 "MAPPAST" 1567081 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1565928 1565986 1566109 "MAPHACK3" 1566253 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1565520 1565581 1565695 "MAPHACK2" 1565860 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1564958 1565061 1565203 "MAPHACK1" 1565411 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1563037 1563658 1563962 "MAGMA" 1564686 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1562516 1562761 1562852 "MACROAST" 1562966 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1558934 1560755 1561216 "M3D" 1562088 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1553009 1557273 1557314 "LZSTAGG" 1558096 NIL LZSTAGG (NIL T) -9 NIL 1558391 NIL) (-683 1548967 1550140 1551597 "LZSTAGG-" 1551602 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1546054 1546858 1547345 "LWORD" 1548512 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1545630 1545858 1545933 "LSTAST" 1545999 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1538707 1545401 1545535 "LSQM" 1545540 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1537931 1538070 1538298 "LSPP" 1538562 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1535743 1536044 1536500 "LSMP" 1537620 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1532522 1533196 1533926 "LSMP1" 1535045 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1526368 1531659 1531700 "LSAGG" 1531762 NIL LSAGG (NIL T) -9 NIL 1531840 NIL) (-675 1523063 1523987 1525200 "LSAGG-" 1525205 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1520662 1522207 1522456 "LPOLY" 1522858 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1520244 1520329 1520452 "LPEFRAC" 1520571 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1518565 1519338 1519591 "LO" 1520076 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1518217 1518329 1518357 "LOGIC" 1518468 T LOGIC (NIL) -9 NIL 1518549 NIL) (-670 1518079 1518102 1518173 "LOGIC-" 1518178 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1517272 1517412 1517605 "LODOOPS" 1517935 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1514695 1517188 1517254 "LODO" 1517259 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1513233 1513468 1513821 "LODOF" 1514442 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1509437 1511868 1511909 "LODOCAT" 1512347 NIL LODOCAT (NIL T) -9 NIL 1512558 NIL) (-665 1509170 1509228 1509355 "LODOCAT-" 1509360 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1506490 1509011 1509129 "LODO2" 1509134 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1503925 1506427 1506472 "LODO1" 1506477 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1502806 1502971 1503276 "LODEEF" 1503748 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1498109 1501000 1501041 "LNAGG" 1501903 NIL LNAGG (NIL T) -9 NIL 1502338 NIL) (-660 1497256 1497470 1497812 "LNAGG-" 1497817 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1493392 1494181 1494820 "LMOPS" 1496671 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1492795 1493183 1493224 "LMODULE" 1493229 NIL LMODULE (NIL T) -9 NIL 1493255 NIL) (-657 1489993 1492440 1492563 "LMDICT" 1492705 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1489399 1489620 1489661 "LLINSET" 1489852 NIL LLINSET (NIL T) -9 NIL 1489943 NIL) (-655 1489098 1489307 1489367 "LITERAL" 1489372 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1482261 1488032 1488336 "LIST" 1488827 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1481786 1481860 1481999 "LIST3" 1482181 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1480793 1480971 1481199 "LIST2" 1481604 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1478927 1479239 1479638 "LIST2MAP" 1480440 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1478523 1478760 1478801 "LINSET" 1478806 NIL LINSET (NIL T) -9 NIL 1478840 NIL) (-649 1477252 1477785 1477826 "LINEXP" 1478177 NIL LINEXP (NIL T) -9 NIL 1478368 NIL) (-648 1475829 1476089 1476400 "LINDEP" 1477004 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1472596 1473315 1474092 "LIMITRF" 1475084 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1470899 1471195 1471604 "LIMITPS" 1472291 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1465327 1470410 1470638 "LIE" 1470720 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1464275 1464744 1464784 "LIECAT" 1464924 NIL LIECAT (NIL T) -9 NIL 1465075 NIL) (-643 1464116 1464143 1464231 "LIECAT-" 1464236 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1456703 1463656 1463812 "LIB" 1463980 T LIB (NIL) -8 NIL NIL NIL) (-641 1452338 1453221 1454156 "LGROBP" 1455820 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1450336 1450610 1450960 "LF" 1452059 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1449176 1449868 1449896 "LFCAT" 1450103 T LFCAT (NIL) -9 NIL 1450242 NIL) (-638 1446078 1446708 1447396 "LEXTRIPK" 1448540 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1442822 1443648 1444151 "LEXP" 1445658 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1442298 1442543 1442635 "LETAST" 1442750 T LETAST (NIL) -8 NIL NIL NIL) (-635 1440696 1441009 1441410 "LEADCDET" 1441980 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1439886 1439960 1440189 "LAZM3PK" 1440617 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1434803 1437963 1438501 "LAUPOL" 1439398 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1434382 1434426 1434587 "LAPLACE" 1434753 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1432321 1433483 1433734 "LA" 1434215 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1431315 1431899 1431940 "LALG" 1432002 NIL LALG (NIL T) -9 NIL 1432061 NIL) (-629 1431029 1431088 1431224 "LALG-" 1431229 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1430864 1430888 1430929 "KVTFROM" 1430991 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1429787 1430231 1430416 "KTVLOGIC" 1430699 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1429622 1429646 1429687 "KRCFROM" 1429749 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1428526 1428713 1429012 "KOVACIC" 1429422 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1428361 1428385 1428426 "KONVERT" 1428488 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1428196 1428220 1428261 "KOERCE" 1428323 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1426027 1426789 1427166 "KERNEL" 1427852 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1425523 1425604 1425736 "KERNEL2" 1425941 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1419293 1424062 1424116 "KDAGG" 1424493 NIL KDAGG (NIL T T) -9 NIL 1424699 NIL) (-619 1418822 1418946 1419151 "KDAGG-" 1419156 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1411970 1418483 1418638 "KAFILE" 1418700 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1406398 1411481 1411709 "JORDAN" 1411791 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1405777 1406047 1406168 "JOINAST" 1406297 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1405623 1405682 1405737 "JAVACODE" 1405742 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1401875 1403828 1403882 "IXAGG" 1404811 NIL IXAGG (NIL T T) -9 NIL 1405270 NIL) (-613 1400794 1401100 1401519 "IXAGG-" 1401524 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1396324 1400716 1400775 "IVECTOR" 1400780 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1395090 1395327 1395593 "ITUPLE" 1396091 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1393592 1393769 1394064 "ITRIGMNP" 1394912 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1392337 1392541 1392824 "ITFUN3" 1393368 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1391969 1392026 1392135 "ITFUN2" 1392274 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1391128 1391449 1391623 "ITFORM" 1391815 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1389089 1390148 1390426 "ITAYLOR" 1390883 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1378034 1383226 1384389 "ISUPS" 1387959 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1377138 1377278 1377514 "ISUMP" 1377881 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1372513 1377083 1377124 "ISTRING" 1377129 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1371989 1372234 1372326 "ISAST" 1372441 T ISAST (NIL) -8 NIL NIL NIL) (-601 1371198 1371280 1371496 "IRURPK" 1371903 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1370134 1370335 1370575 "IRSN" 1370978 T IRSN (NIL) -7 NIL NIL NIL) (-599 1368205 1368560 1368989 "IRRF2F" 1369772 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1367952 1367990 1368066 "IRREDFFX" 1368161 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1366567 1366826 1367125 "IROOT" 1367685 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1363171 1364251 1364943 "IR" 1365907 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1362376 1362664 1362815 "IRFORM" 1363040 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1359989 1360484 1361050 "IR2" 1361854 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1359089 1359202 1359416 "IR2F" 1359872 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1358880 1358914 1358974 "IPRNTPK" 1359049 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1355461 1358769 1358838 "IPF" 1358843 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1353788 1355386 1355443 "IPADIC" 1355448 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1353100 1353348 1353478 "IP4ADDR" 1353678 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1352474 1352729 1352861 "IOMODE" 1352988 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1351547 1352071 1352198 "IOBFILE" 1352367 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1351035 1351451 1351479 "IOBCON" 1351484 T IOBCON (NIL) -9 NIL 1351505 NIL) (-585 1350546 1350604 1350787 "INVLAPLA" 1350971 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1340194 1342548 1344934 "INTTR" 1348210 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1336529 1337271 1338136 "INTTOOLS" 1339379 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1336115 1336206 1336323 "INTSLPE" 1336432 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1334068 1336038 1336097 "INTRVL" 1336102 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1331670 1332182 1332757 "INTRF" 1333553 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1331081 1331178 1331320 "INTRET" 1331568 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1329078 1329467 1329937 "INTRAT" 1330689 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1326341 1326924 1327543 "INTPM" 1328563 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1323086 1323685 1324423 "INTPAF" 1325727 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1318265 1319227 1320278 "INTPACK" 1322055 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1315163 1318062 1318171 "INT" 1318176 T INT (NIL) -8 NIL NIL NIL) (-573 1314415 1314567 1314775 "INTHERTR" 1315005 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1313854 1313934 1314122 "INTHERAL" 1314329 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1311700 1312143 1312600 "INTHEORY" 1313417 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1303106 1304727 1306499 "INTG0" 1310052 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1283679 1288469 1293279 "INTFTBL" 1298316 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1282928 1283066 1283239 "INTFACT" 1283538 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1280355 1280801 1281358 "INTEF" 1282482 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1278722 1279461 1279489 "INTDOM" 1279790 T INTDOM (NIL) -9 NIL 1279997 NIL) (-565 1278091 1278265 1278507 "INTDOM-" 1278512 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1274479 1276407 1276461 "INTCAT" 1277260 NIL INTCAT (NIL T) -9 NIL 1277581 NIL) (-563 1273951 1274054 1274182 "INTBIT" 1274371 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1272650 1272804 1273111 "INTALG" 1273796 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1272133 1272223 1272380 "INTAF" 1272554 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1265476 1271943 1272083 "INTABL" 1272088 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1264809 1265275 1265340 "INT8" 1265374 T INT8 (NIL) -8 NIL NIL 1265419) (-558 1264141 1264607 1264672 "INT64" 1264706 T INT64 (NIL) -8 NIL NIL 1264751) (-557 1263473 1263939 1264004 "INT32" 1264038 T INT32 (NIL) -8 NIL NIL 1264083) (-556 1262805 1263271 1263336 "INT16" 1263370 T INT16 (NIL) -8 NIL NIL 1263415) (-555 1257600 1260366 1260394 "INS" 1261328 T INS (NIL) -9 NIL 1261993 NIL) (-554 1254840 1255611 1256585 "INS-" 1256658 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1253615 1253842 1254140 "INPSIGN" 1254593 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1252733 1252850 1253047 "INPRODPF" 1253495 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1251627 1251744 1251981 "INPRODFF" 1252613 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1250627 1250779 1251039 "INNMFACT" 1251463 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1249824 1249921 1250109 "INMODGCD" 1250526 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1248332 1248577 1248901 "INFSP" 1249569 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1247516 1247633 1247816 "INFPROD0" 1248212 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1244371 1245581 1246096 "INFORM" 1247009 T INFORM (NIL) -8 NIL NIL NIL) (-545 1243981 1244041 1244139 "INFORM1" 1244306 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1243504 1243593 1243707 "INFINITY" 1243887 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1242680 1243224 1243325 "INETCLTS" 1243423 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1241296 1241546 1241867 "INEP" 1242428 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1240545 1241193 1241258 "INDE" 1241263 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1240109 1240177 1240294 "INCRMAPS" 1240472 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1238927 1239378 1239584 "INBFILE" 1239923 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1234226 1235163 1236107 "INBFF" 1238015 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1233134 1233403 1233431 "INBCON" 1233944 T INBCON (NIL) -9 NIL 1234210 NIL) (-536 1232386 1232609 1232885 "INBCON-" 1232890 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1231865 1232110 1232201 "INAST" 1232315 T INAST (NIL) -8 NIL NIL NIL) (-534 1231292 1231544 1231650 "IMPTAST" 1231779 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1227738 1231136 1231240 "IMATRIX" 1231245 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1226446 1226569 1226885 "IMATQF" 1227594 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1224666 1224893 1225230 "IMATLIN" 1226202 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1219244 1224590 1224648 "ILIST" 1224653 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1217149 1219104 1219217 "IIARRAY2" 1219222 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1212547 1217060 1217124 "IFF" 1217129 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1211894 1212164 1212280 "IFAST" 1212451 T IFAST (NIL) -8 NIL NIL NIL) (-526 1206889 1211186 1211374 "IFARRAY" 1211751 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1206069 1206793 1206866 "IFAMON" 1206871 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1205653 1205718 1205772 "IEVALAB" 1205979 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1205328 1205396 1205556 "IEVALAB-" 1205561 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1204959 1205242 1205305 "IDPO" 1205310 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1204209 1204848 1204923 "IDPOAMS" 1204928 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1203516 1204098 1204173 "IDPOAM" 1204178 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1202575 1202851 1202904 "IDPC" 1203317 NIL IDPC (NIL T T) -9 NIL 1203466 NIL) (-518 1202044 1202467 1202540 "IDPAM" 1202545 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1201420 1201936 1202009 "IDPAG" 1202014 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1201065 1201256 1201331 "IDENT" 1201365 T IDENT (NIL) -8 NIL NIL NIL) (-515 1197320 1198168 1199063 "IDECOMP" 1200222 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1190157 1191243 1192290 "IDEAL" 1196356 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1189317 1189429 1189629 "ICDEN" 1190041 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1188388 1188797 1188944 "ICARD" 1189190 T ICARD (NIL) -8 NIL NIL NIL) (-511 1186448 1186761 1187166 "IBPTOOLS" 1188065 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1182055 1186068 1186181 "IBITS" 1186367 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1178778 1179354 1180049 "IBATOOL" 1181472 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1176557 1177019 1177552 "IBACHIN" 1178313 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1174386 1176403 1176506 "IARRAY2" 1176511 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1170492 1174312 1174369 "IARRAY1" 1174374 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1164530 1168904 1169385 "IAN" 1170031 T IAN (NIL) -8 NIL NIL NIL) (-504 1164041 1164098 1164271 "IALGFACT" 1164467 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1163569 1163682 1163710 "HYPCAT" 1163917 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1163107 1163224 1163410 "HYPCAT-" 1163415 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1162702 1162902 1162985 "HOSTNAME" 1163044 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1162547 1162584 1162625 "HOMOTOP" 1162630 NIL HOMOTOP (NIL T) -9 NIL 1162663 NIL) (-499 1159179 1160557 1160598 "HOAGG" 1161579 NIL HOAGG (NIL T) -9 NIL 1162258 NIL) (-498 1157773 1158172 1158698 "HOAGG-" 1158703 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1151682 1157366 1157516 "HEXADEC" 1157643 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1150430 1150652 1150915 "HEUGCD" 1151459 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1149506 1150267 1150397 "HELLFDIV" 1150402 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1147685 1149283 1149371 "HEAP" 1149450 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1146948 1147237 1147371 "HEADAST" 1147571 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1140677 1146863 1146925 "HDP" 1146930 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1134576 1140312 1140464 "HDMP" 1140578 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1133900 1134040 1134204 "HB" 1134432 T HB (NIL) -7 NIL NIL NIL) (-489 1127286 1133746 1133850 "HASHTBL" 1133855 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1126762 1127007 1127099 "HASAST" 1127214 T HASAST (NIL) -8 NIL NIL NIL) (-487 1124540 1126384 1126566 "HACKPI" 1126600 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1120208 1124393 1124506 "GTSET" 1124511 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1113623 1120086 1120184 "GSTBL" 1120189 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1105901 1112654 1112919 "GSERIES" 1113414 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1105042 1105459 1105487 "GROUP" 1105690 T GROUP (NIL) -9 NIL 1105824 NIL) (-482 1104408 1104567 1104818 "GROUP-" 1104823 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1102775 1103096 1103483 "GROEBSOL" 1104085 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1101689 1101977 1102028 "GRMOD" 1102557 NIL GRMOD (NIL T T) -9 NIL 1102725 NIL) (-479 1101457 1101493 1101621 "GRMOD-" 1101626 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1096747 1097811 1098811 "GRIMAGE" 1100477 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1095213 1095474 1095798 "GRDEF" 1096443 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1094657 1094773 1094914 "GRAY" 1095092 T GRAY (NIL) -7 NIL NIL NIL) (-475 1093844 1094250 1094301 "GRALG" 1094454 NIL GRALG (NIL T T) -9 NIL 1094547 NIL) (-474 1093505 1093578 1093741 "GRALG-" 1093746 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1090282 1093090 1093268 "GPOLSET" 1093412 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1089636 1089693 1089951 "GOSPER" 1090219 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1085368 1086074 1086600 "GMODPOL" 1089335 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1084373 1084557 1084795 "GHENSEL" 1085180 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1078529 1079372 1080392 "GENUPS" 1083457 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1078226 1078277 1078366 "GENUFACT" 1078472 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1077638 1077715 1077880 "GENPGCD" 1078144 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1077112 1077147 1077360 "GENMFACT" 1077597 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1075678 1075935 1076242 "GENEEZ" 1076855 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1069737 1075289 1075451 "GDMP" 1075601 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1059080 1063508 1064614 "GCNAALG" 1068720 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1057407 1058269 1058297 "GCDDOM" 1058552 T GCDDOM (NIL) -9 NIL 1058709 NIL) (-461 1056877 1057004 1057219 "GCDDOM-" 1057224 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1055549 1055734 1056038 "GB" 1056656 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1044165 1046495 1048887 "GBINTERN" 1053240 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1042002 1042294 1042715 "GBF" 1043840 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1040783 1040948 1041215 "GBEUCLID" 1041818 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1040132 1040257 1040406 "GAUSSFAC" 1040654 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1038499 1038801 1039115 "GALUTIL" 1039851 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1036807 1037081 1037405 "GALPOLYU" 1038226 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1034172 1034462 1034869 "GALFACTU" 1036504 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1025978 1027477 1029085 "GALFACT" 1032604 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1023366 1024024 1024052 "FVFUN" 1025208 T FVFUN (NIL) -9 NIL 1025928 NIL) (-450 1022632 1022814 1022842 "FVC" 1023133 T FVC (NIL) -9 NIL 1023316 NIL) (-449 1022275 1022457 1022525 "FUNDESC" 1022584 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1021890 1022072 1022153 "FUNCTION" 1022227 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1019634 1020212 1020678 "FT" 1021444 T FT (NIL) -8 NIL NIL NIL) (-446 1018425 1018935 1019138 "FTEM" 1019451 T FTEM (NIL) -8 NIL NIL NIL) (-445 1016716 1017005 1017402 "FSUPFACT" 1018116 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1015113 1015402 1015734 "FST" 1016404 T FST (NIL) -8 NIL NIL NIL) (-443 1014312 1014418 1014606 "FSRED" 1014995 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1013011 1013267 1013614 "FSPRMELT" 1014027 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1010317 1010755 1011241 "FSPECF" 1012574 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 991689 1000160 1000201 "FS" 1004085 NIL FS (NIL T) -9 NIL 1006374 NIL) (-439 980332 983325 987382 "FS-" 987682 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 979860 979914 980084 "FSINT" 980273 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 978152 978853 979156 "FSERIES" 979639 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 977194 977310 977534 "FSCINT" 978032 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 973402 976138 976179 "FSAGG" 976549 NIL FSAGG (NIL T) -9 NIL 976808 NIL) (-434 971164 971765 972561 "FSAGG-" 972656 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 970206 970349 970576 "FSAGG2" 971017 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 967888 968168 968715 "FS2UPS" 969924 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 967522 967565 967694 "FS2" 967839 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 966400 966571 966873 "FS2EXPXP" 967347 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 965826 965941 966093 "FRUTIL" 966280 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 957239 961321 962679 "FR" 964500 NIL FR (NIL T) -8 NIL NIL NIL) (-427 952253 954928 954968 "FRNAALG" 956288 NIL FRNAALG (NIL T) -9 NIL 956886 NIL) (-426 947926 949002 950277 "FRNAALG-" 951027 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 947564 947607 947734 "FRNAAF2" 947877 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 945939 946413 946709 "FRMOD" 947376 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 943682 944314 944632 "FRIDEAL" 945730 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 942873 942960 943251 "FRIDEAL2" 943589 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 942006 942420 942461 "FRETRCT" 942466 NIL FRETRCT (NIL T) -9 NIL 942642 NIL) (-420 941118 941349 941700 "FRETRCT-" 941705 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 938206 939416 939475 "FRAMALG" 940357 NIL FRAMALG (NIL T T) -9 NIL 940649 NIL) (-418 936340 936795 937425 "FRAMALG-" 937648 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 930170 935813 936090 "FRAC" 936095 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 929806 929863 929970 "FRAC2" 930107 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 929442 929499 929606 "FR2" 929743 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 923955 926848 926876 "FPS" 927995 T FPS (NIL) -9 NIL 928552 NIL) (-413 923404 923513 923677 "FPS-" 923823 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 920706 922375 922403 "FPC" 922628 T FPC (NIL) -9 NIL 922770 NIL) (-411 920499 920539 920636 "FPC-" 920641 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 919289 919987 920028 "FPATMAB" 920033 NIL FPATMAB (NIL T) -9 NIL 920185 NIL) (-409 916962 917465 917891 "FPARFRAC" 918926 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 912356 912854 913536 "FORTRAN" 916394 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 910072 910572 911111 "FORT" 911837 T FORT (NIL) -7 NIL NIL NIL) (-406 907748 908310 908338 "FORTFN" 909398 T FORTFN (NIL) -9 NIL 910022 NIL) (-405 907512 907562 907590 "FORTCAT" 907649 T FORTCAT (NIL) -9 NIL 907711 NIL) (-404 905618 906128 906518 "FORMULA" 907142 T FORMULA (NIL) -8 NIL NIL NIL) (-403 905406 905436 905505 "FORMULA1" 905582 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 904929 904981 905154 "FORDER" 905348 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 904025 904189 904382 "FOP" 904756 T FOP (NIL) -7 NIL NIL NIL) (-400 902606 903305 903479 "FNLA" 903907 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 901335 901750 901778 "FNCAT" 902238 T FNCAT (NIL) -9 NIL 902498 NIL) (-398 900874 901294 901322 "FNAME" 901327 T FNAME (NIL) -8 NIL NIL NIL) (-397 899437 900400 900428 "FMTC" 900433 T FMTC (NIL) -9 NIL 900469 NIL) (-396 898183 899373 899419 "FMONOID" 899424 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 895011 896179 896220 "FMONCAT" 897437 NIL FMONCAT (NIL T) -9 NIL 898042 NIL) (-394 894203 894753 894902 "FM" 894907 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 891627 892273 892301 "FMFUN" 893445 T FMFUN (NIL) -9 NIL 894153 NIL) (-392 890896 891077 891105 "FMC" 891395 T FMC (NIL) -9 NIL 891577 NIL) (-391 887975 888835 888889 "FMCAT" 890084 NIL FMCAT (NIL T T) -9 NIL 890579 NIL) (-390 886841 887741 887841 "FM1" 887920 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 884615 885031 885525 "FLOATRP" 886392 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 878193 882344 882965 "FLOAT" 884014 T FLOAT (NIL) -8 NIL NIL NIL) (-387 875631 876131 876709 "FLOATCP" 877660 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 874478 875237 875278 "FLINEXP" 875283 NIL FLINEXP (NIL T) -9 NIL 875376 NIL) (-385 873410 873707 874115 "FLINEXP-" 874120 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 872486 872630 872854 "FLASORT" 873262 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 869602 870470 870522 "FLALG" 871749 NIL FLALG (NIL T T) -9 NIL 872216 NIL) (-382 863306 867058 867099 "FLAGG" 868361 NIL FLAGG (NIL T) -9 NIL 869013 NIL) (-381 862032 862371 862861 "FLAGG-" 862866 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 861074 861217 861444 "FLAGG2" 861885 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 857925 858933 858992 "FINRALG" 860120 NIL FINRALG (NIL T T) -9 NIL 860628 NIL) (-378 857085 857314 857653 "FINRALG-" 857658 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 856465 856704 856732 "FINITE" 856928 T FINITE (NIL) -9 NIL 857035 NIL) (-376 848822 851009 851049 "FINAALG" 854716 NIL FINAALG (NIL T) -9 NIL 856169 NIL) (-375 844154 845204 846348 "FINAALG-" 847727 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 843522 843909 844012 "FILE" 844084 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 842180 842518 842572 "FILECAT" 843256 NIL FILECAT (NIL T T) -9 NIL 843472 NIL) (-372 839896 841424 841452 "FIELD" 841492 T FIELD (NIL) -9 NIL 841572 NIL) (-371 838516 838901 839412 "FIELD-" 839417 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 836366 837151 837498 "FGROUP" 838202 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 835456 835620 835840 "FGLMICPK" 836198 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 831288 835381 835438 "FFX" 835443 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 830889 830950 831085 "FFSLPE" 831221 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 826879 827661 828457 "FFPOLY" 830125 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 826383 826419 826628 "FFPOLY2" 826837 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 822229 826302 826365 "FFP" 826370 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 817627 822140 822204 "FF" 822209 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 812753 816970 817160 "FFNBX" 817481 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 807681 811888 812146 "FFNBP" 812607 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 802314 806965 807176 "FFNB" 807514 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 801146 801344 801659 "FFINTBAS" 802111 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 797172 799393 799421 "FFIELDC" 800041 T FFIELDC (NIL) -9 NIL 800417 NIL) (-357 795834 796205 796702 "FFIELDC-" 796707 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 795403 795449 795573 "FFHOM" 795776 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 793098 793585 794102 "FFF" 794918 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 788716 792840 792941 "FFCGX" 793041 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 784338 788448 788555 "FFCGP" 788659 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 779521 784065 784173 "FFCG" 784274 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 760456 769641 769727 "FFCAT" 774892 NIL FFCAT (NIL T T T) -9 NIL 776343 NIL) (-350 755653 756701 758015 "FFCAT-" 759245 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 755064 755107 755342 "FFCAT2" 755604 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 744387 748036 749256 "FEXPR" 753916 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 743349 743784 743825 "FEVALAB" 743909 NIL FEVALAB (NIL T) -9 NIL 744170 NIL) (-346 742508 742718 743056 "FEVALAB-" 743061 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 741074 741891 742094 "FDIV" 742407 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 738094 738835 738950 "FDIVCAT" 740518 NIL FDIVCAT (NIL T T T T) -9 NIL 740955 NIL) (-343 737856 737883 738053 "FDIVCAT-" 738058 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 737076 737163 737440 "FDIV2" 737763 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 736050 736371 736573 "FCTRDATA" 736894 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 734736 734995 735284 "FCPAK1" 735781 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 733835 734236 734377 "FCOMP" 734627 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 717540 720985 724523 "FC" 730317 T FC (NIL) -8 NIL NIL NIL) (-337 709819 713847 713887 "FAXF" 715689 NIL FAXF (NIL T) -9 NIL 716381 NIL) (-336 707096 707753 708578 "FAXF-" 709043 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 702148 706472 706648 "FARRAY" 706953 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 697042 699109 699162 "FAMR" 700185 NIL FAMR (NIL T T) -9 NIL 700645 NIL) (-333 695932 696234 696669 "FAMR-" 696674 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 695101 695854 695907 "FAMONOID" 695912 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 692887 693597 693650 "FAMONC" 694591 NIL FAMONC (NIL T T) -9 NIL 694977 NIL) (-330 691551 692641 692778 "FAGROUP" 692783 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 689346 689665 690068 "FACUTIL" 691232 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 688445 688630 688852 "FACTFUNC" 689156 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 680867 687748 687947 "EXPUPXS" 688301 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 678350 678890 679476 "EXPRTUBE" 680301 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 674621 675213 675943 "EXPRODE" 677689 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 660340 673270 673699 "EXPR" 674225 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 654894 655481 656287 "EXPR2UPS" 659638 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 654526 654583 654692 "EXPR2" 654831 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 645779 653677 653968 "EXPEXPAN" 654362 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 645579 645736 645765 "EXIT" 645770 T EXIT (NIL) -8 NIL NIL NIL) (-319 645059 645303 645394 "EXITAST" 645508 T EXITAST (NIL) -8 NIL NIL NIL) (-318 644686 644748 644861 "EVALCYC" 644991 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 644227 644345 644386 "EVALAB" 644556 NIL EVALAB (NIL T) -9 NIL 644660 NIL) (-316 643708 643830 644051 "EVALAB-" 644056 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 641076 642378 642406 "EUCDOM" 642961 T EUCDOM (NIL) -9 NIL 643311 NIL) (-314 639481 639923 640513 "EUCDOM-" 640518 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 627020 629779 632529 "ESTOOLS" 636751 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 626652 626709 626818 "ESTOOLS2" 626957 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 626403 626445 626525 "ESTOOLS1" 626604 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 620440 622048 622076 "ES" 624844 T ES (NIL) -9 NIL 626254 NIL) (-309 615387 616674 618491 "ES-" 618655 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 611761 612522 613302 "ESCONT" 614627 T ESCONT (NIL) -7 NIL NIL NIL) (-307 611506 611538 611620 "ESCONT1" 611723 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 611181 611231 611331 "ES2" 611450 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 610811 610869 610978 "ES1" 611117 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 610027 610156 610332 "ERROR" 610655 T ERROR (NIL) -7 NIL NIL NIL) (-303 603419 609886 609977 "EQTBL" 609982 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 595922 598733 600182 "EQ" 602003 NIL -2087 (NIL T) -8 NIL NIL NIL) (-301 595554 595611 595720 "EQ2" 595859 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 590845 591892 592985 "EP" 594493 NIL EP (NIL T) -7 NIL NIL NIL) (-299 589445 589736 590042 "ENV" 590559 T ENV (NIL) -8 NIL NIL NIL) (-298 588539 589093 589121 "ENTIRER" 589126 T ENTIRER (NIL) -9 NIL 589172 NIL) (-297 585233 586721 587082 "EMR" 588347 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 584363 584548 584602 "ELTAGG" 584982 NIL ELTAGG (NIL T T) -9 NIL 585193 NIL) (-295 584082 584144 584285 "ELTAGG-" 584290 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 583846 583875 583929 "ELTAB" 584013 NIL ELTAB (NIL T T) -9 NIL 584065 NIL) (-293 582972 583118 583317 "ELFUTS" 583697 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 582714 582770 582798 "ELEMFUN" 582903 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 582584 582605 582673 "ELEMFUN-" 582678 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 577398 580654 580695 "ELAGG" 581635 NIL ELAGG (NIL T) -9 NIL 582098 NIL) (-289 575683 576117 576780 "ELAGG-" 576785 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 574995 575132 575288 "ELABOR" 575547 T ELABOR (NIL) -8 NIL NIL NIL) (-287 573656 573935 574229 "ELABEXPR" 574721 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 566520 568323 569150 "EFUPXS" 572932 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 559970 561771 562581 "EFULS" 565796 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 557455 557813 558285 "EFSTRUC" 559602 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 547246 548812 550360 "EF" 555970 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 546320 546731 546880 "EAB" 547117 T EAB (NIL) -8 NIL NIL NIL) (-281 545502 546279 546307 "E04UCFA" 546312 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 544684 545461 545489 "E04NAFA" 545494 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 543866 544643 544671 "E04MBFA" 544676 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 543048 543825 543853 "E04JAFA" 543858 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 542232 543007 543035 "E04GCFA" 543040 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 541416 542191 542219 "E04FDFA" 542224 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 540598 541375 541403 "E04DGFA" 541408 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 534771 536123 537487 "E04AGNT" 539254 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 533542 534085 534125 "DVARCAT" 534466 NIL DVARCAT (NIL T) -9 NIL 534629 NIL) (-272 532746 532958 533272 "DVARCAT-" 533277 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 525794 532545 532674 "DSMP" 532679 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 520575 521739 522807 "DROPT" 524746 T DROPT (NIL) -8 NIL NIL NIL) (-269 520240 520299 520397 "DROPT1" 520510 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 515355 516481 517618 "DROPT0" 519123 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 513700 514025 514411 "DRAWPT" 514989 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 508287 509210 510289 "DRAW" 512674 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 507920 507973 508091 "DRAWHACK" 508228 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 506651 506920 507211 "DRAWCX" 507649 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 506166 506235 506386 "DRAWCURV" 506577 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 496634 498596 500711 "DRAWCFUN" 504071 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 493398 495327 495368 "DQAGG" 495997 NIL DQAGG (NIL T) -9 NIL 496271 NIL) (-260 481308 487866 487949 "DPOLCAT" 489801 NIL DPOLCAT (NIL T T T T) -9 NIL 490346 NIL) (-259 476145 477493 479451 "DPOLCAT-" 479456 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 469454 476006 476104 "DPMO" 476109 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 462666 469234 469401 "DPMM" 469406 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 462236 462450 462539 "DOMTMPLT" 462597 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 461669 462038 462118 "DOMCTOR" 462176 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460881 461149 461300 "DOMAIN" 461538 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454780 460516 460668 "DMP" 460782 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 454380 454436 454580 "DLP" 454718 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 448202 453707 453897 "DLIST" 454222 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444999 447055 447096 "DLAGG" 447646 NIL DLAGG (NIL T) -9 NIL 447876 NIL) (-249 443675 444339 444367 "DIVRING" 444459 T DIVRING (NIL) -9 NIL 444542 NIL) (-248 442912 443102 443402 "DIVRING-" 443407 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 441014 441371 441777 "DISPLAY" 442526 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434763 440928 440991 "DIRPROD" 440996 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433611 433814 434079 "DIRPROD2" 434556 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422068 428214 428267 "DIRPCAT" 428677 NIL DIRPCAT (NIL NIL T) -9 NIL 429517 NIL) (-243 419172 419876 420837 "DIRPCAT-" 421174 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418459 418619 418805 "DIOSP" 419006 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415114 417371 417412 "DIOPS" 417846 NIL DIOPS (NIL T) -9 NIL 418075 NIL) (-240 414663 414777 414968 "DIOPS-" 414973 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413714 414342 414370 "DIFRING" 414375 T DIFRING (NIL) -9 NIL 414397 NIL) (-238 413386 413460 413488 "DIFFSPC" 413607 T DIFFSPC (NIL) -9 NIL 413682 NIL) (-237 413031 413109 413261 "DIFFSPC-" 413266 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412187 412665 412705 "DIFFMOD" 412710 NIL DIFFMOD (NIL T) -9 NIL 412737 NIL) (-235 411895 411940 411981 "DIFFDOM" 412102 NIL DIFFDOM (NIL T) -9 NIL 412170 NIL) (-234 411748 411772 411856 "DIFFDOM-" 411861 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409400 410672 410713 "DIFEXT" 411076 NIL DIFEXT (NIL T) -9 NIL 411370 NIL) (-232 407685 408113 408779 "DIFEXT-" 408784 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404960 407217 407258 "DIAGG" 407263 NIL DIAGG (NIL T) -9 NIL 407283 NIL) (-230 404344 404501 404753 "DIAGG-" 404758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399761 403303 403580 "DHMATRIX" 404113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395373 396282 397292 "DFSFUN" 398771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390453 394304 394616 "DFLOAT" 395081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388716 388997 389386 "DFINTTLS" 390161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385745 386737 387137 "DERHAM" 388382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383546 385520 385609 "DEQUEUE" 385689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382800 382933 383116 "DEGRED" 383408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379230 379975 380821 "DEFINTRF" 382028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376785 377254 377846 "DEFINTEF" 378749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376135 376405 376520 "DEFAST" 376690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370044 375728 375878 "DECIMAL" 376005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367556 368014 368520 "DDFACT" 369588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367152 367195 367346 "DBLRESP" 367507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365020 365382 365743 "DBASE" 366918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364262 364500 364646 "DATAARY" 364919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363368 364221 364249 "D03FAFA" 364254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362475 363327 363355 "D03EEFA" 363360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360425 360891 361380 "D03AGNT" 362006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359714 360384 360412 "D02EJFA" 360417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359003 359673 359701 "D02CJFA" 359706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358292 358962 358990 "D02BHFA" 358995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357581 358251 358279 "D02BBFA" 358284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350778 352367 353973 "D02AGNT" 355995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348546 349069 349615 "D01WGTS" 350252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347613 348505 348533 "D01TRNS" 348538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346681 347572 347600 "D01GBFA" 347605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345749 346640 346668 "D01FCFA" 346673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344817 345708 345736 "D01ASFA" 345741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343885 344776 344804 "D01AQFA" 344809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342953 343844 343872 "D01APFA" 343877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342021 342912 342940 "D01ANFA" 342945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341089 341980 342008 "D01AMFA" 342013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340157 341048 341076 "D01ALFA" 341081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339225 340116 340144 "D01AKFA" 340149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338293 339184 339212 "D01AJFA" 339217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331588 333141 334702 "D01AGNT" 336752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330925 331053 331205 "CYCLOTOM" 331456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327658 328373 329100 "CYCLES" 330218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326970 327104 327275 "CVMP" 327519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324811 325069 325438 "CTRIGMNP" 326698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324247 324605 324678 "CTOR" 324758 T CTOR (NIL) -8 NIL NIL NIL) (-188 323756 323978 324079 "CTORKIND" 324166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323047 323363 323391 "CTORCAT" 323573 T CTORCAT (NIL) -9 NIL 323686 NIL) (-186 322645 322756 322915 "CTORCAT-" 322920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322107 322319 322427 "CTORCALL" 322569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321481 321580 321733 "CSTTOOLS" 322004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317280 317937 318695 "CRFP" 320793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316755 317001 317093 "CRCEAST" 317208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315802 315987 316215 "CRAPACK" 316559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315186 315287 315491 "CPMATCH" 315678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314911 314939 315045 "CPIMA" 315152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311259 311931 312650 "COORDSYS" 314246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310671 310792 310934 "CONTOUR" 311137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306562 308674 309166 "CONTFRAC" 310211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306442 306463 306491 "CONDUIT" 306528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305530 306084 306112 "COMRING" 306117 T COMRING (NIL) -9 NIL 306169 NIL) (-173 304584 304888 305072 "COMPPROP" 305366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304245 304280 304408 "COMPLPAT" 304543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294447 304054 304163 "COMPLEX" 304168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294083 294140 294247 "COMPLEX2" 294384 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293422 293543 293703 "COMPILER" 293943 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293140 293175 293273 "COMPFACT" 293381 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index bc56a4fa..9987c8fe 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,13207 +1,13595 @@ -(732559 . 3485684128) -(((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) +(732729 . 3485693911) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) + (-5 *2 (-1050)) (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) - (-4 *3 (-565)))) - ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) - (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) - (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *3) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) - (-4 *3 (-1256 *4)) - (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-416 (-573)))) - (-5 *1 (-312))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1171)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *4 (-1077 *6 *7 *8)) (-5 *2 (-1285)) - (-5 *1 (-785 *6 *7 *8 *4 *5)) (-4 *5 (-1083 *6 *7 *8 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) - (-4 *2 (-665 *4))))) + (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1166))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) - (-5 *2 (-2 (|:| -1857 (-573)) (|:| |var| (-621 *1)))) - (-4 *1 (-439 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-573)) (-4 *6 (-371)) (-4 *6 (-376)) - (-4 *6 (-1061)) (-5 *2 (-653 (-653 (-698 *6)))) (-5 *1 (-1041 *6)) - (-5 *3 (-653 (-698 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-371)) (-4 *4 (-376)) (-4 *4 (-1061)) - (-5 *2 (-653 (-653 (-698 *4)))) (-5 *1 (-1041 *4)) - (-5 *3 (-653 (-698 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) - (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) - (-5 *3 (-653 (-698 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) - (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) - (-5 *3 (-653 (-698 *5)))))) + (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1188 *4)) + (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-5 *1 (-1255 *4 *2)) + (-4 *2 (-1259 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *1 *1) (-4 *1 (-1075))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1259 *4)) + (-5 *2 (-1283 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-416 (-573))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + (-12 (-5 *4 (-417 (-574))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)))) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *6 *3)))) + (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) - (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) - (-4 *8 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) + (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) + (-4 *8 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) - (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) - (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *8 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) + (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) + (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-416 (-573))) (-4 *4 (-1061)) (-4 *1 (-1263 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)))) + (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1064)) (-4 *1 (-1266 *4 *3)) + (-4 *3 (-1243 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)))) ((*1 *2 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) + (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-286))) (-5 *1 (-286)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) - (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-5 *2 (-895 *5 *6 (-653 *6))) - (-5 *1 (-897 *5 *6 *4)) (-5 *3 (-653 *6)) (-4 *4 (-623 (-902 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 *3))) (-5 *1 (-897 *5 *3 *4)) - (-4 *3 (-1050 (-1189))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 (-962 *3)))) - (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1061)) - (-2075 (-4 *3 (-1050 (-1189)))) (-4 *3 (-896 *5)) - (-4 *4 (-623 (-902 *5))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) + (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-761))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1283 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-1283 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1259 *4)) (-5 *2 (-1283 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) + (-5 *2 (-1283 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-5 *2 (-899 *5 *3)) (-5 *1 (-897 *5 *3 *4)) - (-2075 (-4 *3 (-1050 (-1189)))) (-2075 (-4 *3 (-1061))) - (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061))))) + (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) + (-5 *2 (-1283 *5)) (-5 *1 (-1101 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1288)) (-5 *1 (-841))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-4 *2 (-910 *5)) (-5 *1 (-701 *5 *2 *3 *4)) - (-4 *3 (-381 *2)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) -(((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-246))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) + (-5 *1 (-707))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-4 *5 (-13 (-461) (-1050 *4) (-648 *4))) - (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) + (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-654 (-324 (-227)))) + (|:| -3791 (-654 (-227))))))) + (-5 *2 (-654 (-1174))) (-5 *1 (-274))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) + ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1053 *4) (-649 *4))) + (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-1050 *5) (-648 *5))) (-5 *5 (-573)) - (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-1053 *5) (-649 *5))) (-5 *5 (-574)) + (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) - (-4 *7 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) + (-4 *7 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) - (-4 *3 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *7 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) + (-4 *3 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-573)) (-4 *4 (-1061)) (-4 *1 (-1242 *4 *3)) - (-4 *3 (-1271 *4)))) + (-12 (-5 *2 (-574)) (-4 *4 (-1064)) (-4 *1 (-1245 *4 *3)) + (-4 *3 (-1274 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-171 *5)) (-5 *1 (-609 *4 *5 *3)) - (-4 *5 (-13 (-439 *4) (-1014) (-1215))) - (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215)))))) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-1192)) (|:| |c| (-1305 *3))))) + (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1307 *3 *4))))) + (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-989))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) + (-4 *2 (-1259 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -4144 (-574))))) + (-4 *4 (-1259 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-1211))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-689 *5 *6 *2))))) -(((*1 *1) (-5 *1 (-587)))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-4 *2 (-1115)) (-5 *1 (-690 *5 *6 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) + (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *1) (-5 *1 (-158)))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)))) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-301 *3)) (-5 *5 (-780)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) - (-4 *6 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *5 *6)))) + (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) + (-4 *6 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *6 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-780))) - (-4 *7 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-781))) + (-4 *7 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-780))) - (-4 *3 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *7 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-781))) + (-4 *3 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) + (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) + (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4096 (-654 *9)) (|:| -4067 *4) (|:| |ineq| (-654 *9)))) + (-5 *1 (-1003 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) + (-4 *4 (-1086 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) + (-4 *8 (-860)) (-4 *9 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4096 (-654 *9)) (|:| -4067 *4) (|:| |ineq| (-654 *9)))) + (-5 *1 (-1122 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) + (-4 *4 (-1086 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-979 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) - (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) - (-4 *4 (-696 *2 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-698 (-962 *4))) (-5 *1 (-1040 *4)) - (-4 *4 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-556)))))) -(((*1 *1) (-5 *1 (-832)))) -(((*1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-376)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1256 *4)) (-5 *1 (-818 *4 *2 *3 *5)) - (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) - (-4 *5 (-665 (-416 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1193)) (-5 *1 (-1192))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1172 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4231 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1050)) (-5 *1 (-313))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) (((*1 *2) - (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) (((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *6)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-636 *2 *3 *4)) (-4 *2 (-859)) - (-4 *3 (-13 (-174) (-726 (-416 (-573))))) (-14 *4 (-931)))) - ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1050)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) + (-5 *1 (-429 *4)))) + ((*1 *1 *1) (-5 *1 (-939))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) + ((*1 *1 *1) (-5 *1 (-940))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) + (-5 *4 (-417 (-574))) (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) + (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) + (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) - ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) - (-5 *1 (-816 *4 *5 *3 *6)) (-4 *3 (-665 *5)) - (-4 *6 (-665 (-416 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) - (-5 *1 (-816 *5 *4 *3 *6)) (-4 *3 (-665 *4)) - (-4 *6 (-665 (-416 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) - (-5 *1 (-816 *4 *5 *6 *3)) (-4 *6 (-665 *5)) - (-4 *3 (-665 (-416 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) - (-5 *1 (-816 *5 *4 *6 *3)) (-4 *6 (-665 *4)) - (-4 *3 (-665 (-416 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-482))) ((*1 *1 *1 *1) (-4 *1 (-770)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-748 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1256 *9)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-314)) - (-4 *10 (-959 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-653 (-1185 *10))) - (|:| |dterm| - (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-653 *6)) (|:| |nlead| (-653 *10)))) - (-5 *1 (-787 *6 *7 *8 *9 *10)) (-5 *3 (-1185 *10)) (-5 *4 (-653 *6)) - (-5 *5 (-653 *10))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-796)) (-5 *2 (-1047)) - (-5 *3 - (-2 (|:| |fn| (-323 (-227))) - (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-796)) (-5 *2 (-1047)) - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (-12 (-4 *3 (-1259 (-417 (-574)))) (-5 *1 (-926 *3 *2)) + (-4 *2 (-1259 (-417 *3)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *2) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) +(((*1 *2) + (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *2) + (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) - (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) - (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1189))))) + (-12 (-5 *3 (-417 (-965 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) + (-5 *4 (-654 (-1192))) (-5 *2 (-654 (-654 (-171 *5)))) + (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858)))))) +(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-860)))) + ((*1 *2 *2) + (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1218))) + (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-593 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-596 (-417 (-965 *3)))) + (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -1366 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1283 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1283 (-1283 *5))) (-4 *5 (-372)) (-4 *5 (-1064)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1159)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1159))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)) + (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) + (-5 *2 (-699 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1237)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1259 (-417 *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) - (-4 *3 (-657 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) - (-4 *3 (-657 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) - ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1236)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-573)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) - (-5 *1 (-458 *5 *6 *7 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) - (-5 *1 (-513 *4 *5 *6 *2)) (-4 *2 (-959 *4 *5 *6)))) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *1 *1) (-4 *1 (-770)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) + (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-765))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1259 (-171 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) +(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-158))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1075)) (-5 *3 (-1171))))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1233)) + (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *2 *7)) (-4 *6 (-1064)) + (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-314) (-148))) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) - (|:| |wcond| (-653 (-962 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) - (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-653 *11)) (-5 *5 (-653 (-1185 *9))) - (-5 *6 (-653 *9)) (-5 *7 (-653 *12)) (-5 *8 (-653 (-780))) - (-4 *11 (-859)) (-4 *9 (-314)) (-4 *12 (-959 *9 *10 *11)) - (-4 *10 (-802)) (-5 *2 (-653 (-1185 *12))) - (-5 *1 (-716 *10 *11 *9 *12)) (-5 *3 (-1185 *12))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-416 (-573)))) - (-5 *2 - (-653 - (-2 (|:| |outval| *4) (|:| |outmult| (-573)) - (|:| |outvect| (-653 (-698 *4)))))) - (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1642 *1) (|:| -4442 *1) (|:| |associate| *1))) - (-4 *1 (-565))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) + (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6))))) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) + (-5 *2 (-654 (-1109 (-227)))) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) + (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-653 (-621 *4))) (-4 *4 (-439 *3)) (-4 *3 (-1112)) - (-5 *1 (-582 *3 *4)))) + (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1115)) + (-5 *1 (-583 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-621 *5))) (-4 *4 (-1112)) (-5 *2 (-621 *5)) - (-5 *1 (-582 *4 *5)) (-4 *5 (-439 *4))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-653 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) - (-5 *1 (-458 *3 *4 *5 *6))))) + (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-934)) (-5 *1 (-452 *2)) + (-4 *2 (-1259 (-574))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-934)) (-5 *4 (-781)) (-5 *1 (-452 *2)) + (-4 *2 (-1259 (-574))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) + (-4 *2 (-1259 (-574))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) + (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-934)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) + (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1259 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-428 *2)) (-4 *2 (-1259 *5)) + (-5 *1 (-454 *5 *2)) (-4 *5 (-1064))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) - (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-654 (-1192))) (-5 *1 (-274)))) ((*1 *2 *3) - (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-653 *5)) - (-5 *1 (-328 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-654 *5)) + (-5 *1 (-329 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-347 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-396)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-397)))) ((*1 *2 *1) - (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-1189))))) + (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-654 (-1192))))) ((*1 *2 *1) - (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) ((*1 *2 *1) - (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-653 *5)))) + (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-654 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *5)) - (-5 *1 (-960 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *5)) + (-5 *1 (-963 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-4 *5 (-859)) (-5 *2 (-653 *5)))) + (-12 (-4 *1 (-988 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-4 *5 (-860)) (-5 *2 (-654 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-1189))) - (-5 *1 (-1055 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1192))) + (-5 *1 (-1058 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1274 *4)) + (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-1 (-1172 *4) (-654 (-1172 *4)))) (-5 *1 (-1276 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-781))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-565) (-148))) - (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-1250 *4 *3)) - (-4 *3 (-1256 *4))))) + (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-315) (-148))) + (-4 *2 (-962 *4 *6 *5)) (-5 *1 (-937 *4 *5 *6 *2)) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803))))) (((*1 *2 *1) - (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-653 *6)) - (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) - (-5 *2 (-1280 (-416 (-573)))) (-5 *1 (-1308 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-764))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) - (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-653 (-112))) (-5 *7 (-698 (-227))) - (-5 *8 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-400))))) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-860))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1259 *4)) + (-5 *1 (-935 *4 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-1061 *5 *6))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-965 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-1061 *4 *5))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1253 *3 *2)) + (-4 *2 (-1259 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-366 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-538 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1185 (-416 (-1185 *2)))) (-5 *4 (-621 *2)) - (-4 *2 (-13 (-439 *5) (-27) (-1215))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1112)))) + (-12 (-5 *3 (-1188 (-417 (-1188 *2)))) (-5 *4 (-622 *2)) + (-4 *2 (-13 (-440 *5) (-27) (-1218))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1115)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *3 (-859)))) + (-12 (-5 *2 (-1188 *1)) (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *3 (-860)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185 *4)) (-4 *4 (-1061)) (-4 *1 (-959 *4 *5 *3)) - (-4 *5 (-802)) (-4 *3 (-859)))) + (-12 (-5 *2 (-1188 *4)) (-4 *4 (-1064)) (-4 *1 (-962 *4 *5 *3)) + (-4 *5 (-803)) (-4 *3 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-1185 *2))) (-4 *5 (-802)) (-4 *4 (-859)) - (-4 *6 (-1061)) + (-12 (-5 *3 (-417 (-1188 *2))) (-4 *5 (-803)) (-4 *4 (-860)) + (-4 *6 (-1064)) (-4 *2 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) - (-5 *1 (-960 *5 *4 *6 *7 *2)) (-4 *7 (-959 *6 *5 *4)))) + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) + (-5 *1 (-963 *5 *4 *6 *7 *2)) (-4 *7 (-962 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-1185 (-416 (-962 *5))))) (-5 *4 (-1189)) - (-5 *2 (-416 (-962 *5))) (-5 *1 (-1055 *5)) (-4 *5 (-565))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192))))) + (-12 (-5 *3 (-417 (-1188 (-417 (-965 *5))))) (-5 *4 (-1192)) + (-5 *2 (-417 (-965 *5))) (-5 *1 (-1058 *5)) (-4 *5 (-566))))) +(((*1 *1 *1) (-5 *1 (-1078)))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) - (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-653 *7) (-653 *7))) (-5 *2 (-653 *7)) - (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-780)) (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-869)) (-5 *2 (-700 (-558))) (-5 *3 (-558))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797))))) -(((*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) + (-5 *1 (-1176 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) + (-14 *4 (-1192)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) + (-14 *3 (-934)) (-4 *4 (-1064)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) + (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-171 (-324 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-171 *3)) (-5 *1 (-1222 *4 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-653 (-931))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) - (-4 *2 (-371)) (-14 *5 (-1005 *4 *2)))) + (-12 (-5 *3 (-654 (-934))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-934)) + (-4 *2 (-372)) (-14 *5 (-1008 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-722 *5 *6 *7)) (-4 *5 (-859)) - (-4 *6 (-243 (-2862 *4) (-780))) + (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) + (-4 *6 (-244 (-2876 *4) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) - (-2 (|:| -2575 *5) (|:| -3907 *6)))) - (-14 *4 (-653 (-1189))) (-4 *2 (-174)) - (-5 *1 (-470 *4 *2 *5 *6 *7 *8)) (-4 *8 (-959 *2 *6 (-873 *4))))) + (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) + (-2 (|:| -2590 *5) (|:| -3843 *6)))) + (-14 *4 (-654 (-1192))) (-4 *2 (-174)) + (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-962 *2 *6 (-874 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) + (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) - (-4 *4 (-1256 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) + (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) + (-4 *4 (-1259 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-744 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-735)))) + (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-736)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) - (-4 *4 (-1061)) (-4 *5 (-859)))) + (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) + (-4 *4 (-1064)) (-4 *5 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) - (-4 *2 (-859)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) + (-4 *2 (-860)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) - (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) + (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *2 (-859)))) + (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *2 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 *5)) (-4 *1 (-985 *4 *5 *6)) - (-4 *4 (-1061)) (-4 *5 (-801)) (-4 *6 (-859)))) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-988 *4 *5 *6)) + (-4 *4 (-1064)) (-4 *5 (-802)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-985 *4 *3 *2)) (-4 *4 (-1061)) (-4 *3 (-801)) - (-4 *2 (-859))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1223 *4 *5 *3 *6)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-13 (-314) (-148))) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) - (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)) - (-4 *7 (-959 *4 *6 *5))))) + (-12 (-4 *1 (-988 *4 *3 *2)) (-4 *4 (-1064)) (-4 *3 (-802)) + (-4 *2 (-860))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-992 *5 *6 *7 *8))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) + (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-922)) (-4 *5 (-803)) + (-4 *6 (-860)) (-5 *1 (-919 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) + (-4 *5 (-1259 *4)) (-4 *4 (-922)) (-5 *1 (-920 *4 *5))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) + (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) + (-4 *5 (-462)) + (-5 *2 + (-2 (|:| |gblist| (-654 (-253 *4 *5))) + (|:| |gvlist| (-654 (-574))))) + (-5 *1 (-641 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) + (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-14 *6 (-1192)) (-14 *7 *3)))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-1188 *4)) + (-4 *4 (-13 (-440 *7) (-27) (-1218))) + (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1188 *4))) + (-4 *4 (-13 (-440 *7) (-27) (-1218))) + (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) -(((*1 *1) (-5 *1 (-446)))) + (-12 + (-5 *3 + (-654 + (-2 (|:| -3557 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *7))))) + (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) + (-5 *1 (-937 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1154 *4 *2)) (-14 *4 (-931)) - (-4 *2 (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) - (-5 *1 (-912 *4 *2))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) (-4 *1 (-566)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-427 *5)) (-4 *5 (-565)) + (-12 (-5 *3 (-417 *6)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) + (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1259 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| -3907 (-780)) (|:| -1857 *5) (|:| |radicand| (-653 *5)))) - (-5 *1 (-327 *5)) (-5 *4 (-780)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-573))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-416 *6)) - (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) - (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) - (-5 *1 (-877 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) - (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) - (-5 *1 (-877 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-962 (-573)))) (-5 *1 (-446)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-227))) (-5 *2 (-1116)) - (-5 *1 (-768)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-573))) (-5 *2 (-1116)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-318)))) + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-769))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))) ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-1189)) - (-4 *2 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *5 *2))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 (-931))) (-4 *2 (-371)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-931)) (-14 *5 (-1005 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) - (-4 *4 (-1256 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-735)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) - (-4 *4 (-1061)) (-4 *5 (-859)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) - (-4 *2 (-859)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) - (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *2 (-859)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *2 (-959 *4 (-540 *5) *5)) - (-5 *1 (-1138 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-859)))) + (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *5 (-934)) + (-5 *2 (-1288)) (-5 *1 (-478)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-962 *4)) (-5 *1 (-1224 *4)) - (-4 *4 (-1061))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *2)) - (-4 *2 (-657 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1189)) - (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) + (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-884)) (-5 *5 (-934)) + (-5 *2 (-1288)) (-5 *1 (-478))))) +(((*1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1216))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) + (-5 *2 (-1050)) (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *1) (-5 *1 (-1078)))) +(((*1 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1115))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) - (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) - (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-936)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-936)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) + (-5 *1 (-758))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1223 *5 *6 *7 *3)) - (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-606)) (-5 *1 (-287))))) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 (-1188 *7))) (-5 *3 (-1188 *7)) + (-4 *7 (-962 *5 *6 *4)) (-4 *5 (-922)) (-4 *6 (-803)) + (-4 *4 (-860)) (-5 *1 (-919 *5 *6 *4 *7))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) (((*1 *2 *3) - (-12 (-4 *1 (-905)) + (-12 (-5 *3 - (-2 (|:| |pde| (-653 (-323 (-227)))) - (|:| |constraints| - (-653 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-780)) (|:| |boundaryType| (-573)) - (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) - (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) - (|:| |tol| (-227)))) - (-5 *2 (-1047))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-212))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-684 (-227))) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-759))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1223 *5 *6 *7 *8)) (-4 *5 (-565)) - (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1280 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) - (-4 *1 (-733 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1256 *5)) - (-5 *2 (-698 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) - (-5 *1 (-757))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-5 *1 (-708)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-698 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-371)) (-5 *1 (-990 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-194))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1064))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) - (-5 *2 (-112)) (-5 *1 (-676 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-112)) - (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-459 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-836 *2 *3)) (-4 *2 (-717 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-870)))) - ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-870))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1064)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3020 (-574)) (|:| -2679 (-654 *3)))) + (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) - (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) + (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 *4)))) + (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)))) ((*1 *2 *1) - (-12 (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-4 *7 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-1115 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-875 *4 *5 *6 *7)) - (-4 *4 (-1061)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) - (-14 *8 (-653 *5)) (-5 *2 (-1285)) - (-5 *1 (-1292 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-959 *4 *6 *5)) - (-14 *9 (-653 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193))))) -(((*1 *2 *1) (-12 (-5 *2 (-968 (-185 (-140)))) (-5 *1 (-340)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) - (-4 *4 (-565)) (-5 *2 (-1280 *4)) (-5 *1 (-647 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) - (-4 *1 (-1083 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1234))) + (-12 (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115)) + (-4 *7 (-1115)) (-5 *2 (-654 *1)) (-4 *1 (-1118 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) + (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-1259 *3 *2)) - (-4 *2 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $)))))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *1 (-673 *3 *4)))) + (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459))))))) +(((*1 *2 *1) (-12 (-5 *2 (-971 (-185 (-140)))) (-5 *1 (-341)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))) + ((*1 *1 *1) (-4 *1 (-412)))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) + (-14 *4 (-654 (-1192))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-673 *3 *4)) (-5 *1 (-1300 *3 *4)) - (-4 *3 (-859)) (-4 *4 (-174))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) + (-14 *4 (-654 (-1192)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-965 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) + (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1192))) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-965 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) + (-5 *1 (-937 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) + (|:| |wcond| (-654 (-965 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *4)))))))))) + (-5 *1 (-937 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *5 (-934)) (-4 *9 (-962 *6 *8 *7)) + (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1192)))) + (-4 *8 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) + (|:| |wcond| (-654 (-965 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *6)))))))))) + (-5 *1 (-937 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) + (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) + (|:| |wcond| (-654 (-965 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *6)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *6)))))))))) + (-5 *1 (-937 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-934)) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-965 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) + (-5 *1 (-937 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1174)) + (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1192))) (-5 *5 (-1174)) + (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-1174)) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-937 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-934)) + (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) + (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1192))) (-5 *5 (-934)) + (-5 *6 (-1174)) (-4 *10 (-962 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) + (-4 *8 (-13 (-860) (-624 (-1192)))) (-4 *9 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *9)) (-5 *4 (-934)) (-5 *5 (-1174)) + (-4 *9 (-962 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-13 (-860) (-624 (-1192)))) (-4 *8 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *6 *7 *8 *9))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299))) + ((*1 *1) (-5 *1 (-872))) + ((*1 *1) + (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) + (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1100))) + ((*1 *1) + (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34))))) + ((*1 *1) (-5 *1 (-1195))) ((*1 *1) (-5 *1 (-1196)))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) + ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) (((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) - ((*1 *1 *1) (-5 *1 (-871))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) - ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-357))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-919))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-653 (-301 *4))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) -(((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1132)) (-4 *4 (-357)) - (-5 *1 (-537 *4))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *4 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1189)) - (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) - (-5 *2 - (-2 (|:| -3861 (-416 (-962 *5))) (|:| |coeff| (-416 (-962 *5))))) - (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) + ((*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *1) (-5 *1 (-1285)))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) - (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-757))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-1280 *5)) (-4 *5 (-314)) - (-4 *5 (-1061)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5))))) + (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) + (-5 *1 (-1176 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) + (-14 *4 (-1192)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) - (-4 *2 - (-13 (-411) - (-10 -7 (-15 -2942 (*2 *4)) (-15 -3589 ((-931) *2)) - (-15 -3914 ((-1280 *2) (-931))) (-15 -1629 (*2 *2))))) - (-5 *1 (-364 *2 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-371)) (-5 *2 (-653 (-1169 *4))) (-5 *1 (-292 *4 *5)) - (-5 *3 (-1169 *4)) (-4 *5 (-1271 *4))))) + (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) + (-5 *1 (-682 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))) + (-5 *1 (-813))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) + (-12 (-4 *4 (-860)) (-5 *2 - (-2 (|:| |f1| (-653 *4)) (|:| |f2| (-653 (-653 (-653 *4)))) - (|:| |f3| (-653 (-653 *4))) (|:| |f4| (-653 (-653 (-653 *4)))))) - (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 (-653 *4))))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-1061)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *1 *2) - (-12 (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1154 *3 *4)) - (-14 *3 (-780))))) + (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) + (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) + (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 (-654 *4))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-956 (-227)) (-227) (-227))) (-5 *1 (-707))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *1) (-4 *1 (-310))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) (((*1 *1 *2) - (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1230)) (-4 *1 (-243 *3 *4))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) -(((*1 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) + (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1233)) (-4 *1 (-244 *3 *4))))) +(((*1 *2 *1) + (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) + (-4 *5 (-244 (-2876 *3) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *5)) + (-2 (|:| -2590 *2) (|:| -3843 *5)))) + (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-962 *4 *5 (-874 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) - (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-337)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-545))) (-5 *2 (-1189)) (-5 *1 (-545))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) + (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(((*1 *1) (-5 *1 (-338)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154))))) + (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1192)) (-5 *1 (-546))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) + (-4 *4 (-358)) (-5 *2 (-1288)) (-5 *1 (-538 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-654 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *1)) (-5 *4 (-1283 *1)) (-4 *1 (-649 *5)) + (-4 *5 (-1064)) + (-5 *2 (-2 (|:| -4226 (-699 *5)) (|:| |vec| (-1283 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) + (-5 *2 (-699 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1064)) + (-5 *2 (-699 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-417 (-574))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-312))))) + (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-315)) + (-5 *2 (-417 (-428 (-965 *4)))) (-5 *1 (-1057 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-5 *2 (-971 (-781))) (-5 *1 (-341))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1256 (-171 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-596 *2)) (-4 *2 (-554))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1256 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-780)) (-5 *2 (-1285))))) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) + (-5 *1 (-313))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *2 *3) - (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)) (-5 *3 (-1171))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1169 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-387)))) (-5 *2 (-1106 (-852 (-227)))) - (-5 *1 (-312))))) -(((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3877 *7) (|:| |sol?| (-112))) + (-574) *7)) + (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) + (-5 *3 (-417 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-584 *7 *8))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1174)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-681)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) + (-14 *4 (-934))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1259 (-171 *3)))))) +(((*1 *1 *1) (|partial| -4 *1 (-1167)))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) - (-4 *2 (-13 (-859) (-21)))))) + (|partial| -12 (-5 *4 (-934)) (-4 *5 (-566)) (-5 *2 (-699 *5)) + (-5 *1 (-969 *5 *3)) (-4 *3 (-666 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1192)) + (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) - ((*1 *1 *1) (-4 *1 (-1014))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1024)))) - ((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1024)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-931)))) - ((*1 *1 *1) (-4 *1 (-1024)))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-461)) - (-5 *2 (-653 (-653 *7))) (-5 *1 (-547 *6 *7 *5)) (-4 *7 (-371)) - (-4 *5 (-13 (-371) (-857)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-387)) (-5 *1 (-207))))) -(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + ((*1 *1 *1) (-4 *1 (-1017))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1027)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1027)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-934)))) + ((*1 *1 *1) (-4 *1 (-1027)))) +(((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-934)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-843 (-934))) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) + ((*1 *2) + (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) - (-5 *1 (-273))))) -(((*1 *2 *3) - (-12 (-5 *3 (-778)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) - (-5 *1 (-574)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-778)) (-5 *4 (-1075)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) - (-5 *1 (-574)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-796)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |fn| (-323 (-227))) - (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) - (|:| |extra| (-1047)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-796)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) - (|:| |extra| (-1047)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-809)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-817)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-814)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-817)) (-5 *4 (-1075)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-814)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-848)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) - (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-848)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) - (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-850)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-849)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1075)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-849)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-905)) (-5 *3 (-1075)) - (-5 *4 - (-2 (|:| |pde| (-653 (-323 (-227)))) - (|:| |constraints| - (-653 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-780)) (|:| |boundaryType| (-573)) - (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) - (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-908)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-907)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-908)) (-5 *4 (-1075)) - (-5 *2 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *1 (-907))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-871))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-1097)))) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1218) (-440 *3))) + (-14 *4 (-1192)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-4 *2 (-13 (-27) (-1218) (-440 *3) (-10 -8 (-15 -2950 ($ *4))))) + (-4 *4 (-858)) + (-4 *5 + (-13 (-1261 *2 *4) (-372) (-1218) + (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) + (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-998 *5)) (-14 *7 (-1192))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-934)) (-5 *1 (-1047 *2)) + (-4 *2 (-13 (-1115) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-48))) (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1256 (-48))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) + (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) + (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) + (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1196))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1259 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) - (-5 *2 (-427 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-959 (-48) *6 *5)))) + (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) + (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-962 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) - (-4 *7 (-959 (-48) *6 *5)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1185 *7)))) + (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) + (-4 *7 (-962 (-48) *6 *5)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1188 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1256 (-171 *4))))) + (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1259 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1256 *4)))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1259 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) + (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) - (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) + (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) ((*1 *2 *3) - (-12 (-5 *2 (-427 (-171 (-573)))) (-5 *1 (-455)) - (-5 *3 (-171 (-573))))) + (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) + (-5 *3 (-171 (-574))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-4 *5 (-802)) (-4 *7 (-565)) (-5 *2 (-427 *3)) - (-5 *1 (-465 *4 *5 *6 *7 *3)) (-4 *6 (-565)) - (-4 *3 (-959 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-314)) (-5 *2 (-427 (-1185 *4))) (-5 *1 (-467 *4)) - (-5 *3 (-1185 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) - (-4 *7 (-13 (-371) (-148) (-733 *5 *6))) (-5 *2 (-427 *3)) - (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1256 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) - (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) - (-5 *2 (-427 *3)) (-5 *1 (-549 *5 *6 *7 *3)) - (-4 *3 (-959 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) - (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) - (-4 *8 (-959 *7 *6 *5)) (-5 *2 (-427 (-1185 *8))) - (-5 *1 (-549 *5 *6 *7 *8)) (-5 *3 (-1185 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) (-5 *2 (-653 (-662 (-416 *6)))) - (-5 *1 (-666 *5 *6)) (-5 *3 (-662 (-416 *6))))) + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) + (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) + (-4 *3 (-962 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1188 *4))) (-5 *1 (-468 *4)) + (-5 *3 (-1188 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) + (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) + (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1259 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) + (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) + (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) + (-4 *3 (-962 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-428 (-1188 *7)) (-1188 *7))) + (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) + (-4 *8 (-962 *7 *6 *5)) (-5 *2 (-428 (-1188 *8))) + (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1188 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) (-5 *2 (-654 (-663 (-417 *6)))) + (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) - (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) + (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-681 *4))) - (-5 *1 (-681 *4)))) + (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) + (-5 *1 (-682 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-5 *2 (-653 *3)) (-5 *1 (-705 *3)) - (-4 *3 (-1256 *4)))) + (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) + (-4 *3 (-1259 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-5 *2 (-427 *3)) - (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) + (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) - (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) + (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) + (-12 (-4 *4 (-803)) (-4 *5 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-739 *4 *5 *6 *3)) - (-4 *3 (-959 (-962 *6) *4 *5)))) + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) + (-4 *3 (-962 (-965 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) - (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) - (-5 *2 (-427 *3)) (-5 *1 (-741 *4 *5 *6 *3)) - (-4 *3 (-959 (-416 (-962 *6)) *4 *5)))) + (-12 (-4 *4 (-803)) + (-4 *5 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *6 (-566)) + (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) + (-4 *3 (-962 (-417 (-965 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-13 (-314) (-148))) - (-5 *2 (-427 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-959 (-416 *6) *4 *5)))) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) + (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) + (-4 *3 (-962 (-417 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) - (-5 *2 (-427 *3)) (-5 *1 (-750 *4 *5 *6 *3)) - (-4 *3 (-959 *6 *5 *4)))) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) + (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) + (-4 *3 (-962 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) - (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) + (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) - (-4 *3 (-1256 (-416 (-573)))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) + (-4 *3 (-1259 (-417 (-574)))))) ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-1053 *3)) - (-4 *3 (-1256 (-416 (-962 (-573))))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1056 *3)) + (-4 *3 (-1259 (-417 (-965 (-574))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1256 (-416 (-573)))) - (-4 *5 (-13 (-371) (-148) (-733 (-416 (-573)) *4))) - (-5 *2 (-427 *3)) (-5 *1 (-1091 *4 *5 *3)) (-4 *3 (-1256 *5)))) + (-12 (-4 *4 (-1259 (-417 (-574)))) + (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) + (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1259 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1256 (-416 (-962 (-573))))) - (-4 *5 (-13 (-371) (-148) (-733 (-416 (-962 (-573))) *4))) - (-5 *2 (-427 *3)) (-5 *1 (-1093 *4 *5 *3)) (-4 *3 (-1256 *5)))) + (-12 (-4 *4 (-1259 (-417 (-965 (-574))))) + (-4 *5 (-13 (-372) (-148) (-734 (-417 (-965 (-574))) *4))) + (-5 *2 (-428 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1259 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) - (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) + (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3))))) -(((*1 *1) (-5 *1 (-446)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) - (-5 *1 (-1122))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) + (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) + (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4456)) (-4 *4 (-371)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-530 *4 *5 *6 *3)) - (-4 *3 (-696 *4 *5 *6)))) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4456)) (-4 *4 (-565)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *8 (-381 *7)) - (-4 *9 (-381 *7)) (-5 *2 (-653 *6)) - (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-696 *4 *5 *6)) - (-4 *10 (-696 *7 *8 *9)))) + (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))) ((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-653 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-697 *4 *5 *6 *3)) - (-4 *3 (-696 *4 *5 *6)))) + (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) - (-5 *2 (-653 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) + (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) + (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) + (-4 *6 (-566)) (-4 *7 (-962 *6 *5 *3)) + (-5 *1 (-472 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1053 (-417 (-574))) (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) + (-15 -2981 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) + (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-765)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-765))))) +(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) + (-5 *2 (-781)) (-5 *1 (-958 *5 *6)) (-4 *6 (-1259 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) + (-5 *2 (-654 (-1192))) (-5 *1 (-1091 *3 *4 *5)) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) + (-5 *2 (-112)) (-5 *1 (-1155 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-654 (-1192))) (-4 *2 (-174)) + (-4 *3 (-244 (-2876 *4) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *3)) + (-2 (|:| -2590 *5) (|:| -3843 *3)))) + (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) + (-4 *7 (-962 *2 *3 (-874 *4)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-315)) (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) + (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1050)) + (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-597 *4)) - (-4 *4 (-357))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) - (-5 *1 (-757))))) -(((*1 *2) - (-12 (-4 *1 (-357)) - (-5 *2 (-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573)))))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-52)) (-5 *1 (-902 *4)) - (-4 *4 (-1112))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |h| *6) - (|:| |c1| (-416 *6)) (|:| |c2| (-416 *6)) (|:| -2142 *6))) - (-5 *1 (-1028 *5 *6)) (-5 *3 (-416 *6))))) + (-12 (-5 *3 (-940)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1035 *4)) + (-4 *4 (-1259 (-574)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-992 *4 *5 *6 *7))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-621 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) - (-4 *4 (-565)) (-5 *2 (-416 (-1185 *1))))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) + (-4 *4 (-566)) (-5 *2 (-417 (-1188 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-1185 (-416 (-1185 *3)))) (-5 *1 (-569 *6 *3 *7)) - (-5 *5 (-1185 *3)) (-4 *7 (-1112)))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-1188 (-417 (-1188 *3)))) (-5 *1 (-570 *6 *3 *7)) + (-5 *5 (-1188 *3)) (-4 *7 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1276 *5)) (-14 *5 (-1189)) (-4 *6 (-1061)) - (-5 *2 (-1253 *5 (-962 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-962 *6)))) + (-12 (-5 *4 (-1279 *5)) (-14 *5 (-1192)) (-4 *6 (-1064)) + (-5 *2 (-1256 *5 (-965 *6))) (-5 *1 (-960 *5 *6)) (-5 *3 (-965 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-1185 *3)))) + (-12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-1188 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-1185 *1)) - (-4 *1 (-959 *4 *5 *3)))) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1188 *1)) + (-4 *1 (-962 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-416 (-1185 *3))) - (-5 *1 (-960 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *5 *4)) (-5 *2 (-417 (-1188 *3))) + (-5 *1 (-963 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1185 *3)) + (-12 (-5 *2 (-1188 *3)) (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) - (-4 *7 (-959 *6 *5 *4)) (-4 *5 (-802)) (-4 *4 (-859)) - (-4 *6 (-1061)) (-5 *1 (-960 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-565)) - (-5 *2 (-416 (-1185 (-416 (-962 *5))))) (-5 *1 (-1055 *5)) - (-5 *3 (-416 (-962 *5)))))) + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $))))) + (-4 *7 (-962 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) + (-4 *6 (-1064)) (-5 *1 (-963 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-4 *5 (-566)) + (-5 *2 (-417 (-1188 (-417 (-965 *5))))) (-5 *1 (-1058 *5)) + (-5 *3 (-417 (-965 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-109))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) + (-4 *3 (-1259 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) + (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) (((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) - (-4 *2 (-1271 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) - (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) - (-4 *2 (-1271 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-462)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-922)) (-5 *1 (-467 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-922))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1053 (-48))) + (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 (-1188 (-48)))) (-5 *1 (-445 *4 *5 *3)) + (-4 *3 (-1259 *5))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1192)) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) +(((*1 *2) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) + (-5 *1 (-1203 *4)) (-5 *3 (-654 (-654 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-965 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 (-416 (-962 *6)))) - (-5 *3 (-416 (-962 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-579 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1061)) - (-5 *3 (-416 (-573))) (-5 *1 (-1173 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-621 *4)) (-5 *6 (-1189)) - (-4 *4 (-13 (-439 *7) (-27) (-1215))) - (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1259 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-953 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1))) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-5 *2 (-1171))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-781)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-439 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-440 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-439 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-115)) (-5 *1 (-164)))) + (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-440 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-282 *3 *4)) - (-4 *4 (-13 (-439 *3) (-1014))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-308 *3)) (-4 *3 (-309)))) - ((*1 *2 *2) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) + (-4 *4 (-13 (-440 *3) (-1017))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) + ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1112)) (-5 *1 (-438 *3 *4)) - (-4 *3 (-439 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1115)) (-5 *1 (-439 *3 *4)) + (-4 *3 (-440 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-440 *3 *4)) - (-4 *4 (-439 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) + (-4 *4 (-440 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-639 *3 *4)) - (-4 *4 (-13 (-439 *3) (-1014) (-1215))))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1203 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-216 (-511))) (-5 *1 (-846))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *2 (-1077 *4 *5 *6)) (-5 *1 (-785 *4 *5 *6 *2 *3)) - (-4 *3 (-1083 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) - (-5 *2 (-416 (-573))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573)))))) + (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) + (-4 *4 (-13 (-440 *3) (-1017) (-1218))))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1206 *2)) (-4 *2 (-1115))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-416 (-1185 (-323 *3)))) (-4 *3 (-565)) - (-5 *1 (-1142 *3))))) + (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) +(((*1 *1 *2) + (-12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) + (-5 *1 (-409 *3 *4))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) - (-4 *3 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) - (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) - (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-387)) (-5 *1 (-207))))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) + ((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) + (-14 *4 (-654 (-1192))))) + ((*1 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) + (-14 *4 (-654 (-1192))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1188 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) + (-4 *8 (-962 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1064)) + (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-934)))) + ((*1 *2 *1) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) + (-4 *4 (-1259 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *3 (-860)) (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *2 *4)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *2 (-802)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1274 *3)) + (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-934))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-781))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1062))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1218))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4)) + (-5 *3 (-654 *4))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) + (-5 *1 (-931 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 (-780))) (-5 *1 (-981 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1047)) (-5 *1 (-312)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1047))) (-5 *2 (-1047)) (-5 *1 (-312)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *1) (-5 *1 (-1075))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1166 *4)) - (-4 *4 (-1230)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-1097))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) + (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1259 (-171 *3)))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1188 *3)) + (-4 *3 (-13 (-440 *7) (-27) (-1218))) + (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) + (-5 *6 (-417 (-1188 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1218))) + (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1115))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1050)) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1050))) (-5 *2 (-1050)) (-5 *1 (-313)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *1) (-5 *1 (-1078))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1169 *4)) + (-4 *4 (-1233)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) (((*1 *2 *1) - (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) - (-4 *3 (-1256 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1115)) (-4 *5 (-676 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-979 *4)) (-4 *4 (-1115)) (-5 *2 (-1117 *4)) + (-5 *1 (-980 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3634 *3)))) + (-5 *4 (-781)) (-4 *3 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1154)))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-780)) (-4 *4 (-314)) (-4 *6 (-1256 *4)) - (-5 *2 (-1280 (-653 *6))) (-5 *1 (-464 *4 *6)) (-5 *5 (-653 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) + (|partial| -12 (-5 *2 (-1283 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) + (-5 *1 (-677 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-372)) + (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4459)))) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459)))) + (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) + (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) - (-4 *4 (-1256 (-573))) (-5 *2 (-780)) (-5 *1 (-451 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) + (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-1284)) + (-5 *1 (-1287)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) + (-5 *2 (-1284)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1050)) (-5 *1 (-759)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-398)) (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) - (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) - (|:| |args| (-653 (-871))))) - (-5 *1 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3821 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1047)) (-5 *1 (-312))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-427 *4) *4)) (-4 *4 (-565)) (-5 *2 (-427 *4)) - (-5 *1 (-428 *4)))) - ((*1 *1 *1) (-5 *1 (-936))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) - ((*1 *1 *1) (-5 *1 (-937))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) - (-5 *4 (-416 (-573))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) - (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) - (-5 *4 (-416 (-573))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2))))) + (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) + (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) + (|:| |args| (-654 (-872))))) + (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) +(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) + (-4 *4 (-860)) (-5 *1 (-1203 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) + (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) - (-4 *3 (-623 (-387))))) + (-12 (-5 *4 (-934)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) + (-4 *3 (-624 (-388))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-623 (-387))) - (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) + (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-931)) (-4 *5 (-174)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-934)) (-4 *5 (-174)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) - (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) + (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) - (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 (-388))) + (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) - (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) + (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) - (-5 *1 (-794 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-1058 *4 *5))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3))))) + (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1234 *2)) + (-4 *2 (-1115)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-860)) + (-5 *1 (-1234 *2))))) (((*1 *2 *3) (-12 (-5 *3 - (-653 - (-2 (|:| -3583 (-780)) - (|:| |eqns| - (-653 - (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) - (|:| |cols| (-653 (-573)))))) - (|:| |fgb| (-653 *7))))) - (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) - (-5 *1 (-934 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) - (-5 *2 (-1047)) (-5 *1 (-755))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) - (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) - ((*1 *1 *1) (-4 *1 (-554))) - ((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1227 *3)) (-4 *3 (-1230)))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-803)) (-4 *2 (-962 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) + (-4 *4 (-462)) (-4 *6 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *5 *6)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) + (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) + (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) + (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) + (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) + (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) + (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) + (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) + (-5 *1 (-325 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) + (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) + ((*1 *1 *1) (-4 *1 (-555))) + ((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1230 *3)) (-4 *3 (-1233)))) ((*1 *2 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) - (-4 *2 (-1061))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) - (-5 *1 (-757))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) + (-4 *2 (-1064))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1064)) (-5 *1 (-724 *2 *4)) + (-4 *4 (-658 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) - (|:| |wcond| (-653 (-962 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) - (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-5 *4 (-653 (-1189))) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) - (|:| |wcond| (-653 (-962 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) - (-5 *1 (-934 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) - (|:| |wcond| (-653 (-962 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) - (-5 *1 (-934 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *9)) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) - (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) - (-4 *8 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) - (|:| |wcond| (-653 (-962 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) - (-5 *1 (-934 *6 *7 *8 *9)) (-5 *4 (-653 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) - (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) - (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) - (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) - (|:| |wcond| (-653 (-962 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) - (-5 *1 (-934 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-5 *4 (-931)) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) + (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1288)) (-5 *1 (-841))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 - (-653 - (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) - (|:| |wcond| (-653 (-962 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) - (-5 *1 (-934 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 *9)) (-5 *5 (-1171)) - (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) - (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-1171)) - (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) - (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-5 *4 (-1171)) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 *10)) (-5 *5 (-931)) - (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) - (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) - (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) - (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *9)) (-5 *4 (-931)) (-5 *5 (-1171)) - (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) - (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-780)) (-4 *2 (-1112)) - (-5 *1 (-687 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1115)) + (-5 *1 (-688 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) + (-5 *1 (-274))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1089)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-654 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-574))))) + (-4 *2 (-566)) (-5 *1 (-428 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-574)) + (|:| -2679 (-654 (-2 (|:| |irr| *4) (|:| -3737 (-574))))))) + (-4 *4 (-1259 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1259 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-416 *5)) - (|:| |c2| (-416 *5)) (|:| |deg| (-780)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) + (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-962 *4 *6 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) - ((*1 *2 *2) - (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) - (-5 *1 (-899 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1288))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-757))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-270))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1086)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) - (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-802)) - (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) - (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *3 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *6)) - (-4 *6 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) - (-4 *2 (-959 (-962 *4) *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *3 (-653 (-269))) - (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-314)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1256 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-314)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1256 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-314)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-780))) - (-5 *1 (-548 *3 *2 *4 *5)) (-4 *2 (-1256 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-314))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-5 *2 (-1185 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-653 (-1189))) - (-4 *2 (-13 (-439 (-171 *5)) (-1014) (-1215))) (-4 *5 (-565)) - (-5 *1 (-609 *5 *6 *2)) (-4 *6 (-13 (-439 *5) (-1014) (-1215)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) - (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) - (-5 *1 (-763))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) + (-4 *3 (-1233))))) +(((*1 *1 *1) (-5 *1 (-1078)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) - (-4 *4 (-38 (-416 (-573))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) - ((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) (-4 *1 (-878 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) - (-4 *4 (-859))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-314)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-456 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) - (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-456 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) - (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-456 *4 *5 *6 *7))))) + (-12 (-5 *3 (-654 (-417 (-965 (-171 (-574)))))) + (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-302 (-417 (-965 (-171 (-574))))))) + (-5 *2 (-654 (-654 (-302 (-965 (-171 *4)))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 (-171 (-574))))) + (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-965 (-171 (-574)))))) + (-5 *2 (-654 (-302 (-965 (-171 *4))))) (-5 *1 (-387 *4)) + (-4 *4 (-13 (-372) (-858)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *7)) (-4 *7 (-859)) - (-4 *8 (-959 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |particular| (-3 (-1280 (-416 *8)) "failed")) - (|:| -3914 (-653 (-1280 (-416 *8)))))) - (-5 *1 (-678 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *3 (-1256 *4)) (-5 *1 (-818 *4 *3 *2 *5)) (-4 *2 (-665 *3)) - (-4 *5 (-665 (-416 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-416 *5)) - (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) - (-5 *1 (-818 *4 *5 *2 *6)) (-4 *2 (-665 *5)) (-4 *6 (-665 *3))))) + (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) + (|:| |polypart| *6))) + (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-5 *2 (-700 (-1147))) (-5 *1 (-1163))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 *3 (-653 *1))) - (-4 *1 (-1083 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-700 (-976 *3))) (-5 *1 (-976 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-12 (-5 *3 (-302 (-965 (-574)))) + (-5 *2 + (-2 (|:| |varOrder| (-654 (-1192))) + (|:| |inhom| (-3 (-654 (-1283 (-781))) "failed")) + (|:| |hom| (-654 (-1283 (-781)))))) + (-5 *1 (-242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1166))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1188 *6)) (-1188 *6))) + (-4 *6 (-372)) + (-5 *2 + (-654 + (-2 (|:| |outval| *7) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 *7)))))) + (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-388)) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1172 *4))) (-4 *4 (-372)) + (-4 *4 (-1064)) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-145)))) (((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1159 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-756))))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1162 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1230)) (-5 *2 (-780)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-683 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) - (-4 *3 (-1112)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) - (-5 *1 (-960 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) - (-15 -2975 (*7 $)))))))) -(((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) - ((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) - (-4 *4 (-357))))) + (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-839)) (-5 *3 (-1174))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-439 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *1 *1) (-4 *1 (-638))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *1) (-4 *1 (-638))) + (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) (-5 *2 (-654 (-663 (-417 *5)))) + (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1174)) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) + (-4 *2 (-666 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-621 *3)) (-5 *5 (-1 (-1185 *3) (-1185 *3))) - (-4 *3 (-13 (-27) (-439 *6))) (-4 *6 (-565)) (-5 *2 (-595 *3)) - (-5 *1 (-560 *6 *3))))) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-592))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) - (-4 *4 (-1112)) (-4 *5 (-1112))))) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-654 (-227))) + (-5 *1 (-478))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1172 *3))) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-992 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) + (-4 *4 (-1233)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) (((*1 *2 *3) (-12 (-5 *3 - (-653 - (-2 (|:| -3583 (-780)) - (|:| |eqns| - (-653 - (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) - (|:| |cols| (-653 (-573)))))) - (|:| |fgb| (-653 *7))))) - (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) - (-5 *1 (-934 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1172 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-416 *2)) (-4 *2 (-1256 *5)) - (-5 *1 (-816 *5 *2 *3 *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *3 (-665 *2)) (-4 *6 (-665 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-416 *2))) (-4 *2 (-1256 *5)) - (-5 *1 (-816 *5 *2 *3 *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) - (-4 *6 (-665 (-416 *2)))))) + (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-112)) + (-5 *1 (-270))))) +(((*1 *2 *3) + (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1109 (-853 (-388)))) (-5 *2 (-1109 (-853 (-227)))) + (-5 *1 (-313))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-5 *1 (-1172 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34)))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) -(((*1 *1 *1) (-4 *1 (-638))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) + (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1259 *3))))) (((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-584 *4 *2)) - (-4 *2 (-13 (-1215) (-969) (-1151) (-29 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) - (-4 *2 (-1240 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) - (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) + (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1192)) + (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *1 (-1195))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-301 (-852 *3))) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (-852 *3) - (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) - (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) - "failed")) - (-5 *1 (-645 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-301 *3)) (-5 *5 (-1171)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-852 *3)) (-5 *1 (-645 *6 *3)))) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) + (-5 *1 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 (-852 (-962 *5)))) (-4 *5 (-461)) - (-5 *2 - (-3 (-852 (-416 (-962 *5))) - (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-852 (-416 (-962 *5))) "failed"))) - "failed")) - (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5))))) + (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) + (-5 *1 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) - (-4 *5 (-461)) - (-5 *2 - (-3 (-852 *3) - (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) - (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) - "failed")) - (-5 *1 (-646 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-301 (-416 (-962 *6)))) (-5 *5 (-1171)) - (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-852 *3)) - (-5 *1 (-646 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-915 (-573))) (-5 *4 (-573)) (-5 *2 (-698 *4)) - (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) + (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) + (-5 *1 (-1144 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1040 *4)) - (-4 *4 (-1061)))) + (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-13 (-315) (-148))) + (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1144 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-915 (-573)))) (-5 *4 (-573)) - (-5 *2 (-653 (-698 *4))) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) + (-12 (-5 *3 (-654 (-302 (-417 (-965 *5))))) (-5 *4 (-654 (-1192))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) + (-5 *1 (-1144 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-653 (-573)))) (-5 *2 (-653 (-698 (-573)))) - (-5 *1 (-1040 *4)) (-4 *4 (-1061))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) - (-5 *2 (-653 (-653 (-653 (-953 *3)))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) -(((*1 *2 *3) - (-12 (-4 *4 (-461)) - (-5 *2 - (-653 - (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) - (|:| |geneigvec| (-653 (-698 (-416 (-962 *4)))))))) - (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573))))) -(((*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) - ((*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) + (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) + (-5 *1 (-1144 *4))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) - (-4 *5 (-859)) (-5 *2 (-962 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) + (-4 *5 (-860)) (-5 *2 (-965 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) - (-4 *5 (-859)) (-5 *2 (-962 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1064)) + (-4 *5 (-860)) (-5 *2 (-965 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) - (-5 *2 (-962 *4)))) + (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) + (-5 *2 (-965 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) - (-5 *2 (-962 *4))))) + (-12 (-5 *3 (-781)) (-4 *1 (-1274 *4)) (-4 *4 (-1064)) + (-5 *2 (-965 *4))))) +(((*1 *1 *1) (-4 *1 (-1159)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) +(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1218)))) + ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) + (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1192))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) + (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1064)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) + (-4 *3 (-566)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-860)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-995 *3)) (-4 *3 (-1064)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1283 *5)) (-5 *3 (-781)) (-5 *4 (-1135)) (-4 *5 (-358)) + (-5 *1 (-538 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1274 *4)) + (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-1 (-1172 *4) (-1172 *4) (-1172 *4))) (-5 *1 (-1276 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) (((*1 *1 *1) - (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) - (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1036 *3)) - (-4 *3 (-13 (-857) (-371) (-1034))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) - (-4 *3 (-1256 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) - (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1) - (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-371))))) -(((*1 *2) - (-12 (-5 *2 (-698 (-920 *3))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) - (-14 *4 (-931)))) - ((*1 *2) - (-12 (-5 *2 (-698 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) - (-14 *4 - (-3 (-1185 *3) - (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) - ((*1 *2) - (-12 (-5 *2 (-698 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) - (-14 *4 (-931))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-416 (-962 *6)) (-1178 (-1189) (-962 *6)))) - (-5 *5 (-780)) (-4 *6 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *6))))) - (-5 *1 (-299 *6)) (-5 *4 (-698 (-416 (-962 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) - (|:| |eigmult| (-780)) (|:| |eigvec| (-653 *4)))) - (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) - (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-855))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-756))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1192)) (-5 *6 (-112)) + (-4 *7 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-1218) (-972) (-29 *7))) (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) - ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) - ((*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *3 (-859)) (-5 *2 (-780))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1230)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-765))))) + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-489))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-312))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) - (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) - (-4 *3 (-350 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) - (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3))))) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *1) (-5 *1 (-569)))) (((*1 *2) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2)))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *2 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) - (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-416 (-573))) (-5 *1 (-312))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-314)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) - (-4 *1 (-314))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-371)) (-4 *4 (-565)) (-4 *5 (-1256 *4)) - (-5 *2 (-2 (|:| -2868 (-632 *4 *5)) (|:| -3954 (-416 *5)))) - (-5 *1 (-632 *4 *5)) (-5 *3 (-416 *5)))) + (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) - (-14 *3 (-931)) (-4 *4 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-461)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1256 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-318)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1048)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1085))))) -(((*1 *2 *3) - (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-416 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-565)) - (-4 *4 (-1061)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *5 *6 *2)) - (-4 *6 (-665 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1053 (-417 (-574))))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-573)))) + (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) + (-4 *3 (-1115))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-376 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1053 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) -(((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-55))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) - (-4 *3 (-1256 (-416 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1169 *3))) (-5 *1 (-1169 *3)) (-4 *3 (-1230))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) - (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) - (-4 *3 (-861 *5))))) + (-12 (-4 *1 (-1118 *3 *4 *2 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-573))) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) - (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *9) (|:| |radicand| *9))) - (-5 *1 (-963 *5 *6 *7 *8 *9)) (-5 *4 (-780)) - (-4 *9 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) - (-4 *2 (-1271 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) - (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) - (-4 *2 (-1271 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) - (-5 *1 (-1165 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-173)))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1047)) (-5 *1 (-758))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) - (-5 *2 (-416 (-962 *4))))) + (-12 (-5 *3 (-1174)) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-934)) (-4 *5 (-315)) (-4 *3 (-1259 *5)) + (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) + (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) + (-4 *2 (-13 (-860) (-21)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 (-1188 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) + (-4 *3 (-1259 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-934))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-319)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1009)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1051)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1088))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *5 (-377)) + (-5 *2 (-781))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1259 *3)) (-5 *1 (-409 *3 *2)) + (-4 *3 (-13 (-372) (-148)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) + (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) + (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1030 *4 *5)) (-5 *3 (-417 *5))))) +(((*1 *2) + (-12 (-4 *1 (-358)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-4 *6 (-462)) + (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) + (-4 *5 (-13 (-372) (-858)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *2 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1190 *4 *5 *6)) + (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) - (-5 *2 (-416 (-962 *4)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-812))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1189))) (-4 *6 (-371)) - (-5 *2 (-653 (-301 (-962 *6)))) (-5 *1 (-547 *5 *6 *7)) - (-4 *5 (-461)) (-4 *7 (-13 (-371) (-857)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-5 *3 (-781)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1275 *4 *5 *6)) + (-4 *4 (-1064)) (-14 *5 (-1192)) (-14 *6 *4)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 (-1280 (-573)))) (-5 *3 (-931)) (-5 *1 (-475))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-653 *11)) - (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) - (-5 *6 (-780)) - (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) - (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) - (-4 *11 (-1083 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) - (-4 *9 (-859)) (-5 *1 (-1081 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-653 *11)) - (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) - (-5 *6 (-780)) - (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) - (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) - (-4 *11 (-1121 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) - (-4 *9 (-859)) (-5 *1 (-1157 *7 *8 *9 *10 *11))))) -(((*1 *2 *3) (-12 (-5 *3 (-416 (-573))) (-5 *2 (-227)) (-5 *1 (-312))))) -(((*1 *1 *2) - (-12 (-5 *2 (-422 *3 *4 *5 *6)) (-4 *6 (-1050 *4)) (-4 *3 (-314)) - (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *6 (-418 *4 *5)) - (-14 *7 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 *6)) (-4 *6 (-418 *4 *5)) (-4 *4 (-1004 *3)) - (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-423 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-1293 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-536)) (-5 *3 (-129)) (-5 *2 (-780))))) -(((*1 *1) (-5 *1 (-1192)))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) - (-5 *2 (-1047)) (-5 *1 (-765))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1218) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) + (-5 *1 (-599 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-1256 *4)) (-5 *2 (-1 *6 (-653 *6))) - (-5 *1 (-1274 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-1271 *4))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) - (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-902 *6))) - (-5 *5 (-1 (-899 *6 *8) *8 (-902 *6) (-899 *6 *8))) (-4 *6 (-1112)) - (-4 *8 (-13 (-1061) (-623 (-902 *6)) (-1050 *7))) - (-5 *2 (-899 *6 *8)) (-4 *7 (-1061)) (-5 *1 (-951 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) - (-4 *3 (-1112)) (-5 *2 (-780)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) - (-4 *4 (-1230)) (-5 *2 (-780))))) + (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1064)) + (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-962 *2 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-545)) (-5 *1 (-544 *4)) - (-4 *4 (-1230))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-780)) (|:| -3881 *4))) (-5 *5 (-780)) - (-4 *4 (-959 *6 *7 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-458 *6 *7 *8 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-653 (-416 *7))) - (-4 *7 (-1256 *6)) (-5 *3 (-416 *7)) (-4 *6 (-371)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-583 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-227)) (-5 *1 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-534))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) - (-4 *2 (-13 (-859) (-21)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1132))))) -(((*1 *2 *1) - (-12 (-4 *2 (-717 *3)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1061))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *3 (-783)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-1305))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1112))))) + (-12 (-5 *3 (-654 (-934))) (-5 *2 (-1194 (-417 (-574)))) + (-5 *1 (-192))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1115)) + (-4 *3 (-1233)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1233)) + (-4 *3 (-382 *4)) (-4 *5 (-382 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 (-417 (-965 (-574))))) + (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-574)) (|has| *1 (-6 -4459)) (-4 *1 (-382 *3)) + (-4 *3 (-1233))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-662 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) - (-5 *5 (-1 (-427 *7) *7)) - (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *7 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) - (-5 *5 (-1 (-427 *7) *7)) - (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-662 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) - (-4 *6 (-1256 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *5 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) - (-4 *6 (-1256 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) - ((*1 *1 *1 *1) (-4 *1 (-554))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-780))))) + (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1064)) + (-5 *2 (-1283 (-1283 *5))) (-5 *1 (-1044 *5)) (-5 *4 (-1283 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) - (-4 *8 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *9)))) - (-5 *3 (-653 *9)) (-4 *1 (-1223 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *8)))) - (-5 *3 (-653 *8)) (-4 *1 (-1223 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-371) (-148))) - (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) - (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-760))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1012 *3))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 *8)) - (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *9 (-959 *8 *6 *7)) - (-4 *6 (-802)) (-5 *2 (-1185 *8)) (-5 *1 (-328 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *1 (-274))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *1) (-4 *1 (-982)))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -3078 *4) (|:| -1724 (-574))))) + (-4 *4 (-1115)) (-5 *2 (-1 *4)) (-5 *1 (-1032 *4))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) + (-4 *3 (-1115)) (-5 *2 (-781)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) + (-4 *4 (-1233)) (-5 *2 (-781))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1115)) (-5 *2 (-1 *4)) + (-5 *1 (-1032 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388)))) ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-594)) (-5 *3 (-606)) (-5 *4 (-298)) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1193))))) -(((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) + (-12 (-5 *3 (-1109 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-766))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-781)) + (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) + (-5 *1 (-252 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-779)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) + (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-779)) (-5 *4 (-1078)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) + (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-797)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |fn| (-324 (-227))) + (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) + (|:| |extra| (-1050)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-797)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)) + (|:| |extra| (-1050)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-818)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-818)) (-5 *4 (-1078)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-815)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-849)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-849)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) + (-12 (-5 *3 (-851)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-851)) (-5 *4 (-1078)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-908)) (-5 *3 (-1078)) + (-5 *4 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -3942 (-388)) (|:| |explanations| (-1174)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-911)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-911)) (-5 *4 (-1078)) + (-5 *2 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *1 (-910))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1135))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) + (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) + (-4 *4 (-1064))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-784)) (-5 *1 (-52))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-605 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1243 *3)) (-4 *3 (-1064)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1274 *3)) (-4 *3 (-1064))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1050 (-48))) - (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) - (-5 *2 (-427 (-1185 (-48)))) (-5 *1 (-444 *4 *5 *3)) - (-4 *3 (-1256 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-372)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 (-417 *3))) + (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1259 *2)) + (-4 *5 (-1259 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) + (-4 *6 (-351 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-372)) (-4 *3 (-1259 *2)) (-4 *4 (-1259 (-417 *3))) + (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) + (-4 *1 (-344 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) + ((*1 *1 *1 *1) (-4 *1 (-555))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) + (-4 *1 (-862 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-962 *4 *3 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-539)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-872))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) - (-5 *3 (-653 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 *3)))) - (-5 *4 (-780)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) -(((*1 *1 *2 *3) (-12 (-5 *3 - (-653 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-573))))) - (-4 *2 (-565)) (-5 *1 (-427 *2)))) + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 (-956 *4))) (-4 *1 (-1149 *4)) (-4 *4 (-1064)) + (-5 *2 (-781))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1192))) (-5 *1 (-835))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *5 (-1237)) (-4 *6 (-1259 *5)) + (-4 *7 (-1259 (-417 *6))) (-5 *2 (-654 (-965 *5))) + (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-573)) - (|:| -1687 (-653 (-2 (|:| |irr| *4) (|:| -3287 (-573))))))) - (-4 *4 (-1256 (-573))) (-5 *2 (-427 *4)) (-5 *1 (-451 *4))))) + (-12 (-5 *3 (-1192)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) + (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *4 (-372)) + (-5 *2 (-654 (-965 *4)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-653 (-653 (-573)))) - (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) - (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) - (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-301 (-416 (-962 (-171 (-573))))))) - (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) - (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 (-171 (-573))))) - (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) - (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-301 (-416 (-962 (-171 (-573)))))) - (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) - (-4 *4 (-13 (-371) (-857)))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1189)) - (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-1192))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1061)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1189)) (-5 *6 (-112)) - (-4 *7 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-4 *3 (-13 (-1215) (-969) (-29 *7))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) + (-5 *2 (-654 *4)) (-5 *1 (-1129 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *5 (-1259 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) + (-4 *7 (-858)) + (-4 *8 + (-13 (-1261 *3 *7) (-372) (-1218) + (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) (-5 *2 - (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-852 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *5 (-376)) - (-5 *2 (-780))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) - (-4 *3 (-1230))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-109))) (-5 *1 (-177))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) + (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) + (-14 *10 (-1192))))) (((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) + (-12 (-4 *3 (-1064)) (-5 *2 (-1283 *3)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1259 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) (((*1 *2 *2) - (-12 (-5 *2 (-1280 *4)) (-4 *4 (-426 *3)) (-4 *3 (-314)) - (-4 *3 (-565)) (-5 *1 (-43 *3 *4)))) + (-12 (-5 *2 (-1283 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) + (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-931)) (-4 *4 (-371)) (-5 *2 (-1280 *1)) - (-4 *1 (-336 *4)))) - ((*1 *2) (-12 (-4 *3 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *3)))) + (-12 (-5 *3 (-934)) (-4 *4 (-372)) (-5 *2 (-1283 *1)) + (-4 *1 (-337 *4)))) + ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1283 *1)) (-4 *1 (-337 *3)))) ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *1)) - (-4 *1 (-418 *3 *4)))) + (-12 (-4 *3 (-174)) (-4 *4 (-1259 *3)) (-5 *2 (-1283 *1)) + (-4 *1 (-419 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) - (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) + (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) + (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) + (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) - (-5 *2 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)) - (-4 *6 (-418 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-426 *3)))) + (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) + (-5 *2 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) + (-4 *6 (-419 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1283 *1)) (-4 *1 (-427 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 *4))) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(((*1 *1) (-5 *1 (-1100)))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 *4))) (-5 *1 (-537 *4)) - (-4 *4 (-357))))) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1259 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1259 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) + (-4 *3 (-419 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1259 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) + (-4 *4 (-419 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174))))) +(((*1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-653 (-269))) (-5 *1 (-1282)))) + (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1171)) (-5 *1 (-1282)))) - ((*1 *1 *1) (-5 *1 (-1282)))) + (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1174)) (-5 *1 (-1285)))) + ((*1 *1 *1) (-5 *1 (-1285)))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1527 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1259 *7)) + (-5 *3 (-417 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-584 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-654 *3)) + (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1124 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) + (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) + (-14 *6 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) + (-5 *1 (-1093 *4 *5)) (-5 *3 (-654 (-965 *4))) + (-14 *5 (-654 (-1192))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) + (-5 *1 (-1093 *5 *6)) (-5 *3 (-654 (-965 *5))) + (-14 *6 (-654 (-1192)))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1237)) (-4 *5 (-1259 *3)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-462)) (-4 *4 (-1115)) + (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-5 *1 (-447))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) (((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) - (-5 *1 (-757))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-653 (-573))) (-5 *3 (-698 (-573))) (-5 *1 (-1122))))) -(((*1 *1 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-371)) (-14 *5 (-1005 *3 *4))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-515)) (-5 *3 (-653 (-1194))) (-5 *1 (-1194))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) + (-5 *1 (-758))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-539))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (-4 *4 (-1064)) + (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) (-4 *4 (-1064)) + (-5 *1 (-1043 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1265 *3 *4 *5)) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) - (-14 *4 (-1189)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-722 *3 *2 *4)) (-4 *3 (-859)) - (-14 *4 - (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *2)) - (-2 (|:| -2575 *3) (|:| -3907 *2))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1189)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-653 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1215) (-27) (-439 *8))) - (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1025 *8 *4))))) + (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) + (-4 *6 (-351 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-934)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-372)) (-14 *5 (-1008 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-934)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-934)) + (-5 *1 (-538 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) - (-4 *4 (-1061)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) + (-4 *4 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) - (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) + (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) - (-4 *4 (-1256 *3)))) + (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) + (-4 *4 (-1259 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) - (-4 *3 (-1256 *2)))) + (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) + (-4 *3 (-1259 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-372)) (-4 *2 (-913 *3)) (-5 *1 (-596 *2)) + (-5 *3 (-1192)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-371)) (-4 *2 (-910 *3)) (-5 *1 (-595 *2)) - (-5 *3 (-1189)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-371)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) + (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) + (-4 *4 (-1115)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1047)) - (-5 *1 (-758))))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1259 *4)) (-4 *4 (-1237)) + (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1259 (-417 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) + (-4 *1 (-376 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1283 *1)) (-4 *4 (-174)) + (-4 *1 (-379 *4 *5)) (-4 *5 (-1259 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) + (-4 *4 (-1259 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-1061)) - (-5 *2 (-698 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-1293 *4 *5 *6 *7))) - (-5 *1 (-1293 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) - (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-653 (-1293 *6 *7 *8 *9))) - (-5 *1 (-1293 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) - (-5 *1 (-765))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-330 *4 *2)) (-4 *4 (-1112)) - (-4 *2 (-132))))) + (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-1064)) + (-5 *2 (-699 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-335 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-526 *3 *4)) + (-14 *4 (-574))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546))))) (((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1280 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1283 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-968 *3)) (-5 *1 (-1176 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) - (-5 *3 (-653 (-573))))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))))) + ((*1 *1 *1) (-5 *1 (-388))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) - (-5 *3 (-653 (-573)))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-394 *4)) (-4 *4 (-1112)) (-5 *2 (-780)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-23)) (-5 *1 (-658 *4 *2 *5)) - (-4 *4 (-1112)) (-14 *5 *2)))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1152 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) - (-5 *2 (-112)) (-5 *1 (-1153 *5 *6))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) - (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) - (-4 *1 (-1077 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) - (-5 *1 (-537 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1156)))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) + (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) + (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) + (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1064)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1138 *2 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1203 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) + (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) - (-5 *2 (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5))))) - (-5 *1 (-990 *5)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-387))) (-5 *2 (-387)) (-5 *1 (-207))))) + (-12 (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-710 *3)) + (-4 *3 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1) (-5 *1 (-338)))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2886 *1) (|:| |coef2| *1))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1197))) (-5 *1 (-1197))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *1) (-5 *1 (-516)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) (((*1 *2 *3) - (-12 (-4 *1 (-809)) + (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1047))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-698 *11)) (-5 *4 (-653 (-416 (-962 *8)))) - (-5 *5 (-780)) (-5 *6 (-1171)) (-4 *8 (-13 (-314) (-148))) - (-4 *11 (-959 *8 *10 *9)) (-4 *9 (-13 (-859) (-623 (-1189)))) - (-4 *10 (-802)) + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))))) + (-5 *2 (-1050)) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3942 (-388)) (|:| -2041 (-1174)) + (|:| |explanations| (-654 (-1174))) (|:| |extra| (-1050)))) + (-5 *2 (-1050)) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) + (-5 *2 (-491 *4 *5)) (-5 *1 (-957 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 - (|:| |rgl| - (-653 - (-2 (|:| |eqzro| (-653 *11)) (|:| |neqzro| (-653 *11)) - (|:| |wcond| (-653 (-962 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *8)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *8)))))))))) - (|:| |rgsz| (-573)))) - (-5 *1 (-934 *8 *9 *10 *11)) (-5 *7 (-573))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) - (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) - (-5 *1 (-609 *4 *5 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-4 *4 (-461)) - (-5 *2 (-653 (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4))))) - (-5 *1 (-299 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) + (-1283 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3566 (-574)) + (|:| -2306 (-574)) (|:| |spline| (-574)) (|:| -3251 (-574)) + (|:| |axesColor| (-884)) (|:| -2007 (-574)) + (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) + (-5 *1 (-1284))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) + (-14 *4 (-1192)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1115)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) + (-14 *4 + (-1 (-112) (-2 (|:| -2590 *3) (|:| -3843 *2)) + (-2 (|:| -2590 *3) (|:| -3843 *2))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1050)) (-5 *1 (-766))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) + (-5 *2 (-654 (-2 (|:| -2679 (-654 *3)) (|:| -2692 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1259 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-372) (-858))) + (-5 *2 (-654 (-2 (|:| -2679 (-654 *3)) (|:| -2692 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) - (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) - (|:| |args| (-653 (-871))))) - (-5 *1 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-1189))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-595 *3)) (-4 *3 (-371))))) + (-2 (|:| -1477 (-654 (-872))) (|:| -3672 (-654 (-872))) + (|:| |presup| (-654 (-872))) (|:| -1817 (-654 (-872))) + (|:| |args| (-654 (-872))))) + (-5 *1 (-1192)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1192))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) (((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-337))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-698 *3)) - (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) - (-5 *2 (-653 (-653 (-252 *5 *6)))) (-5 *1 (-480 *5 *6 *7)) - (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 *2)) (-4 *4 (-1256 *2)) - (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-418 *2 *4)))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-934)))) + ((*1 *2 *3) + (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) + (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) + (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-934))))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) + (-4 *4 (-1259 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) + (-4 *3 (-860)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) + (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) + (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) + (-5 *2 (-781)) (-5 *1 (-924 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) + (-5 *1 (-925 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) + (-4 *7 (-1259 *6)) (-4 *4 (-1259 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) + (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) + (-5 *1 (-1033 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-4 *3 (-566)) + (-5 *2 (-781)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1061))))) + (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-416 (-962 *4))) (-5 *1 (-934 *4 *5 *6 *3)) - (-4 *3 (-959 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-698 (-416 (-962 *4)))) - (-5 *1 (-934 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) - (-5 *1 (-934 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) - (-5 *2 (-653 (-681 *5))) (-5 *1 (-681 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-314)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) + (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) + (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) + (-4 *7 (-1233))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-338))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) (((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) - (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *3 *4 *5 *6)))) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130)))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1192)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-654 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1218) (-27) (-440 *8))) + (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1028 *8 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) + (-5 *3 (-574))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4067 *7)))) + (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1003 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4067 *7)))) + (-4 *6 (-1080 *3 *4 *5)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1122 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4459)) (-4 *4 (-372)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4459)) (-4 *4 (-566)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-4 *7 (-1007 *4)) (-4 *8 (-382 *7)) + (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) + (-4 *10 (-697 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) - (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-272 *2)) (-4 *2 (-859))))) -(((*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-189))) (-5 *1 (-189))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-4 *4 (-1112)) - (-5 *1 (-582 *4 *2)) (-4 *2 (-439 *4))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-1088 *4 *5 *2)) - (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) - (-5 *1 (-1088 *3 *4 *2)) - (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) + (-5 *2 (-654 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *2 (-1185 *4)) - (-5 *1 (-541 *4 *5 *6)) (-4 *5 (-371)) (-4 *6 (-13 (-371) (-857)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) + (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) + (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-965 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) + (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) + (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1091 *4 *5 *2)) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1091 *3 *4 *2)) + (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) + (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-992 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) + (|:| -2152 *6))) + (-5 *1 (-1030 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) (((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-859)))) - ((*1 *2 *2) - (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1215))) - (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-592 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-595 (-416 (-962 *3)))) - (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-598 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 (-2 (|:| -1359 *3) (|:| |special| *3))) (-5 *1 (-736 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) - (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) - (-5 *3 (-653 (-698 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1280 (-1280 *5))) (-4 *5 (-371)) (-4 *5 (-1061)) - (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) - (-5 *3 (-653 (-698 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-653 *1)) (-4 *1 (-1156))))) -(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-158))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-653 *5))) (-4 *5 (-1271 *4)) - (-4 *4 (-38 (-416 (-573)))) - (-5 *2 (-1 (-1169 *4) (-653 (-1169 *4)))) (-5 *1 (-1273 *4 *5))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-1259 *4)) (-4 *4 (-1064)) + (-5 *2 (-1283 *4))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) - (-4 *3 (-1061)))) + (-12 (-5 *4 (-574)) (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) + (-4 *3 (-1064)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-828 *4)) (-4 *4 (-859)) (-4 *1 (-1297 *4 *3)) - (-4 *3 (-1061))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-989 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-838))))) -(((*1 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1300 *4 *3)) + (-4 *3 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) + (-4 *3 (-1115)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) + (-5 *1 (-917 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-934)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-387)) (-5 *1 (-194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) - (-14 *4 (-653 (-1189))))) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) + (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) - (-14 *4 (-653 (-1189)))))) -(((*1 *1) (-5 *1 (-1282)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) - (-5 *1 (-1173 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) - (-14 *4 (-1189)) (-14 *5 *3)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) + (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) + ((*1 *2 *3) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) + (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1192)) + (-4 *5 (-372)) (-5 *1 (-936 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1188 *5)) + (-5 *1 (-936 *4 *5)) (-14 *4 (-1192)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) + (-5 *2 (-417 (-965 *6))) (-5 *1 (-1065 *5 *6)) (-14 *5 (-1192))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) - (-4 *5 (-243 (-2862 *3) (-780))) - (-14 *6 - (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) - (-2 (|:| -2575 *2) (|:| -3907 *5)))) - (-4 *2 (-859)) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-959 *4 *5 (-873 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-416 (-573))))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-5 *1 (-605 *3)) (-4 *3 (-1064))))) (((*1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *2 (-1061)) (-5 *1 (-721 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-953 (-227)))) (-5 *1 (-1281))))) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *1) (-4 *1 (-1167)))) (((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)))) - ((*1 *1) (-4 *1 (-1164)))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1154 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371)) - (-5 *1 (-1005 *3 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) (|partial| -4 *1 (-732)))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) - (-4 *3 (-565)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) - (-4 *3 (-1112)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) - (-4 *3 (-1112)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) - (-5 *2 (-416 (-573))))) + (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -3843 (-574))))) + (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-922)) (-4 *6 (-803)) + (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-428 (-1188 *8))) + (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-1188 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) - (-4 *3 (-1050 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-698 (-573))) - (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) - (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-5 *2 (-937)) (-5 *1 (-935 *3)) - (-4 *3 (-623 (-545))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-937)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937))))) -(((*1 *1 *1) (-5 *1 (-545)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) - (-4 *4 (-1112)) (-4 *5 (-1112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-427 *2)) (-4 *2 (-314)) (-5 *1 (-924 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-427 (-962 *6))) (-5 *5 (-1189)) (-5 *3 (-962 *6)) - (-4 *6 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-59 *3)) (-4 *3 (-1230)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-59 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-269)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-573)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1) - (-12 + (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) + (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1050)) + (-5 *1 (-759))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) - (-4 *2 (-174))))) -(((*1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) - (-5 *2 (-2 (|:| -1857 (-416 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-565)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1230)) (-5 *2 (-1285))))) + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) + (-4 *3 (-440 *4)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))) + ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) + (-4 *3 (-807 *4)))) ((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1006 *3 *4)) + (-4 *3 (-1007 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1011 *3 *4)) + (-4 *3 (-1012 *4)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))) + ((*1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-781)))) + ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1074 *3)) (-4 *3 (-1075))))) +(((*1 *1 *1) (-4 *1 (-555)))) +(((*1 *1 *1) (-5 *1 (-546)))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-699 (-417 (-965 (-574))))) + (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046)) + (-5 *3 (-324 (-574)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1192)) (-5 *6 (-654 (-622 *3))) + (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) + (-5 *1 (-567 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-781)) (-5 *3 (-956 *5)) (-4 *5 (-1064)) + (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) + (-14 *4 (-934)) (-4 *5 (-1064)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) + (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-816 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-1147 *4 *2)) + (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4458) (-6 -4459)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-860)) (-4 *3 (-1233)) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4458) (-6 -4459))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) + (-4 *2 (-13 (-440 *5) (-27) (-1218))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1115))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-780)) (-4 *3 (-1230)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-781)) (-4 *3 (-1233)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1112)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398)))) - ((*1 *1) (-5 *1 (-403))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1115)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399)))) + ((*1 *1) (-5 *1 (-404))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) ((*1 *1) - (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) - (-4 *4 (-675 *3)))) - ((*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) + (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) + (-4 *4 (-676 *3)))) + ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-5 *1 (-1154 *3 *2)) (-14 *3 (-780)) (-4 *2 (-1061)))) - ((*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) - ((*1 *1 *1) (-5 *1 (-1189))) ((*1 *1) (-5 *1 (-1189))) - ((*1 *1) (-5 *1 (-1210)))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-314) (-148))) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) - (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) + (-12 (-5 *1 (-1157 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1064)))) + ((*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) + ((*1 *1 *1) (-5 *1 (-1192))) ((*1 *1) (-5 *1 (-1192))) + ((*1 *1) (-5 *1 (-1213)))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1296 *4 *5 *6 *7))) + (-5 *1 (-1296 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) + (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1296 *6 *7 *8 *9))) + (-5 *1 (-1296 *6 *7 *8 *9))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1061)) - (-5 *1 (-862 *5 *2)) (-4 *2 (-861 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) - ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) - ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) - (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) - (-5 *1 (-637 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-2 (|:| -3692 *3) (|:| -1907 *4)))) - (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *1 (-1206 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1206 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) - (-5 *2 (-1047)) (-5 *1 (-765))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -2565 *4)))) - (-5 *1 (-705 *3)) (-4 *3 (-1256 *4))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1064)) + (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) + ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-984 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1115)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-1115)) (-5 *1 (-659 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) + (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-5 *2 (-780)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-780)))) - ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-735))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) - (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) - ((*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) - ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) - ((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-573))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1238)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) - (-5 *2 (-1047)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-62 *3)) (-14 *3 (-1189)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-69 *3)) (-14 *3 (-1189)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-72 *3)) (-14 *3 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-1285)))) - ((*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-406)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) - ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1011 *3)) (-4 *3 (-174)) (-5 *1 (-808 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1112) (-1050 *5))) - (-4 *5 (-896 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-941 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-931)) (-5 *4 (-227)) (-5 *5 (-573)) (-5 *6 (-883)) - (-5 *2 (-1285)) (-5 *1 (-1281))))) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3))))) + (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) + (-5 *1 (-903 *4)) (-4 *4 (-1115))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-2 (|:| -3666 *3) (|:| -1918 *4)))) + (-4 *3 (-1115)) (-4 *4 (-1115)) (-4 *1 (-1209 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1209 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) + (-5 *1 (-766))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) + (-4 *3 (-372))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *2) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-598 *4)) + (-4 *4 (-358))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) (-5 *2 (-1188 (-417 *5))) (-5 *1 (-625 *4 *5)) + (-5 *3 (-417 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-148) (-27) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-1188 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-698 *5)) (-4 *5 (-1061)) (-5 *1 (-1066 *3 *4 *5)) - (-14 *3 (-780)) (-14 *4 (-780))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-400))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1064)) + (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1259 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) + (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1064)) + (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-62 *3)) (-14 *3 (-1192)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-69 *3)) (-14 *3 (-1192)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-72 *3)) (-14 *3 (-1192)))) + ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1288)))) + ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-407)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-1153)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1288)) (-5 *1 (-1153))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-780)) - (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1) (-4 *1 (-1151)))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) - (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) - (-5 *2 (-1185 (-962 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) + (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1259 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-848)) - (-5 *3 - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) - (-5 *2 (-1047)))) + (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) + (-5 *2 + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *1 (-848)) - (-5 *3 - (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) - (-5 *2 (-1047))))) -(((*1 *1) - (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) - (-2075 (|has| *1 (-6 -4438))))) - ((*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) - ((*1 *1) (-4 *1 (-853))) ((*1 *1 *1 *1) (-4 *1 (-859))) - ((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-340))))) -(((*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-400)))) - ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-400))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *7 (-1256 *5)) (-4 *4 (-733 *5 *7)) - (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) - (-5 *1 (-820 *5 *6 *7 *4 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-983))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *3 (-653 (-573))) - (-5 *1 (-893))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *1) (-5 *1 (-832)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-443)) (-4 *5 (-1112)) - (-5 *1 (-1118 *5 *4)) (-4 *4 (-439 *5))))) + (-12 (-5 *3 (-574)) (-4 *4 (-1259 *3)) + (-5 *2 + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) + (-5 *2 + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-1000 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *3 (-1259 *4)) (-4 *5 (-1259 *3)) + (-5 *2 + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-1292 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-401))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1115)) + (-4 *2 (-132))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) + (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1286))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1237)) + (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1288)) (-5 *1 (-401)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-401))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-971 *3)) (-5 *1 (-1179 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-684 *2)) (-4 *2 (-1061)) (-4 *2 (-1112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-1201 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) - (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *7))) - (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1256 *6))))) + (-12 (-5 *1 (-685 *2)) (-4 *2 (-1064)) (-4 *2 (-1115))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-1148))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) - ((*1 *1 *1) (-4 *1 (-1072)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-357))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-13 (-565) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-653 (-1185 *5))) - (|:| |prim| (-1185 *5)))) - (-5 *1 (-441 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-565) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1185 *3)) - (|:| |pol2| (-1185 *3)) (|:| |prim| (-1185 *3)))) - (-5 *1 (-441 *4 *3)) (-4 *3 (-27)) (-4 *3 (-439 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-962 *5)) (-5 *4 (-1189)) (-4 *5 (-13 (-371) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) - (|:| |prim| (-1185 *5)))) - (-5 *1 (-970 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) - (-4 *5 (-13 (-371) (-148))) - (-5 *2 - (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *5))) - (|:| |prim| (-1185 *5)))) - (-5 *1 (-970 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-5 *5 (-1189)) - (-4 *6 (-13 (-371) (-148))) - (-5 *2 - (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *6))) - (|:| |prim| (-1185 *6)))) - (-5 *1 (-970 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-307)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1) (-4 *1 (-309)))) + (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-780))))) -(((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) - (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) - (-5 *5 (-112)) (-5 *2 (-1282)) (-5 *1 (-263))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1199))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) - (-5 *1 (-1193))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-899 *4 *5)) (-5 *3 (-899 *4 *6)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-675 *5)) (-5 *1 (-895 *4 *5 *6))))) -(((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) - (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) - (-4 *6 (-461)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) - (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) - (-4 *6 (-461))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) - (-5 *2 - (-2 (|:| |dpolys| (-653 (-252 *5 *6))) - (|:| |coords| (-653 (-573))))) - (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-513 *3 *4 *5 *6))) (-4 *3 (-371)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-857) (-371))) (-5 *2 (-112)) (-5 *1 (-1073 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) - (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) + (-14 *4 (-654 (-1192))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-477)) - (-5 *1 (-1284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) - (-5 *2 (-477)) (-5 *1 (-1284))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-554)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 *3)) (-4 *3 (-1256 *5)) - (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *1 (-366 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 (-573)))) (-5 *3 (-1185 (-573))) - (-5 *1 (-581)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 *1))) (-5 *3 (-1185 *1)) - (-4 *1 (-919))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-953 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1112)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-394 *3))))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1233)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) + (-14 *4 (-654 (-1192))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-444)) (-4 *5 (-1115)) + (-5 *1 (-1121 *5 *4)) (-4 *4 (-440 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) (((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-802)) (-4 *2 (-272 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-632 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112))) - (-573) *4)) - (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *1 (-583 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) - (-4 *8 (-959 *7 *5 *6)) - (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *3))) - (-5 *1 (-963 *5 *6 *7 *8 *3)) (-5 *4 (-780)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1280 (-708))) (-5 *1 (-312))))) -(((*1 *2 *2) (-12 (-5 *2 (-1169 (-653 (-931)))) (-5 *1 (-893))))) -(((*1 *1) (-5 *1 (-446)))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) - (-5 *1 (-899 *4 *5)) (-4 *5 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) - (-5 *1 (-900 *5 *3)) (-4 *3 (-1230)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) - (-4 *6 (-1230)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1281)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1282))))) + (-12 (-4 *1 (-358)) + (-5 *2 (-654 (-2 (|:| -4200 (-574)) (|:| -3843 (-574)))))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-5 *2 (-1280 (-780))) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-931)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1061)) - (-4 *4 (-1230)))) - ((*1 *1 *2) - (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) - (-4 *5 (-243 (-2862 *3) (-780))) - (-14 *6 - (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) - (-2 (|:| -2575 *2) (|:| -3907 *5)))) - (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) - (-4 *7 (-959 *4 *5 (-873 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-573)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) - (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-959 *3 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-171 *4))) - (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-583 *5 *3))))) -(((*1 *2) (-12 (-5 *2 - (-1280 (-653 (-2 (|:| -3082 (-920 *3)) (|:| -2575 (-1132)))))) - (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) - ((*1 *2) - (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) - (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) - (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) - (-5 *2 (-653 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780))))) + (-654 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-574))))) + (-5 *1 (-428 *3)) (-4 *3 (-566)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1259 *3)) + (-5 *2 (-654 (-1188 *3))) (-5 *1 (-508 *3 *5 *6)) + (-4 *6 (-1259 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-653 *3)) - (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4))))) + (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-1151))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) - (-5 *2 (-2 (|:| -1317 *3) (|:| |nconst| *3))) (-5 *1 (-576 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) - (-5 *2 - (-653 - (-2 (|:| -3583 (-780)) - (|:| |eqns| - (-653 - (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) - (|:| |cols| (-653 (-573)))))) - (|:| |fgb| (-653 *8))))) - (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-780))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *2)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) - (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) - (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) - (-4 *6 (-565))))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) + (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1274 *5)) (-5 *2 (-654 *6)) + (-5 *1 (-1276 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1259 *4)) (-5 *1 (-549 *4 *2 *5 *6)) + (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-802)) (-4 *3 (-174))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) - (-12 (-4 *3 (-565)) (-5 *2 (-112)) (-5 *1 (-632 *3 *4)) - (-4 *4 (-1256 *3)))) + (-12 (-4 *3 (-1064)) (-4 *4 (-1115)) (-5 *2 (-654 *1)) + (-4 *1 (-391 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-735)))) + (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-736)))) ((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-112))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-962 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1192)) (-5 *2 (-622 *6)) + (-4 *6 (-440 *5)) (-4 *5 (-1115)) (-5 *1 (-583 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1202))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 (-447))))) + (-5 *1 (-1196))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-1121 *5 *6 *7 *8)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-600 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-780)) (-5 *1 (-599))))) + (-12 (-5 *3 (-501)) (-5 *4 (-967)) (-5 *2 (-701 (-543))) + (-5 *1 (-543)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-967)) (-4 *3 (-1115)) (-5 *2 (-701 *1)) + (-4 *1 (-777 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) - (-5 *2 (-387)) (-5 *1 (-273)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-312))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) - (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) - (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) + (-12 (-4 *4 (-1064)) + (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) + (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) - (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) - (-5 *1 (-1081 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) - (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) - (-5 *1 (-1157 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-653 *3)) (|:| |image| (-653 *3)))) - (-5 *1 (-915 *3)) (-4 *3 (-1112))))) + (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-654 (-1227 *5))) + (-5 *1 (-1291 *5)) (-5 *4 (-1227 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) + (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *3 (-653 (-269))) - (-5 *1 (-267)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) + (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1259 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-734 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-490 *5 *6))) (-5 *3 (-490 *5 *6)) - (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-1280 *6)) - (-5 *1 (-640 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-545))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-573)) - (-5 *6 - (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) - (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-573)) - (-5 *6 - (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) - (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-5 *3 (-699 (-417 (-965 *5)))) (-5 *4 (-1192)) + (-5 *2 (-965 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-5 *2 (-965 *4)) + (-5 *1 (-300 *4)) (-4 *4 (-462)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) + (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) + (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1192)) + (-5 *2 (-965 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) + (-4 *5 (-13 (-372) (-858))))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-965 (-417 (-574)))) + (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1192)) + (-5 *2 (-965 (-417 (-574)))) (-5 *1 (-789 *5)) + (-4 *5 (-13 (-372) (-858)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1174)) (-4 *1 (-399))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1125))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2012 (-654 *7)))) + (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-246)))) + (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-573)) (-5 *1 (-246))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4))))) -(((*1 *1) - (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) - (-2075 (|has| *1 (-6 -4438))))) - ((*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-859)))) - ((*1 *1) (-4 *1 (-853))) ((*1 *1 *1 *1) (-4 *1 (-859)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *5)) (-4 *5 (-371)) (-5 *2 (-653 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *1) (-5 *1 (-446)))) + (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) + ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1027)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 *1)) (-4 *1 (-1027)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1259 *4)) (-5 *2 (-654 *1)) + (-4 *1 (-1083 *4 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-803)) (-4 *2 (-273 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) + (-4 *3 (-1233))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) +(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) +(((*1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) + (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) + ((*1 *1 *1 *1) (-4 *1 (-803)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-654 + (-2 + (|:| -3666 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1918 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1172 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4231 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-569)))) + ((*1 *2 *1) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) + (-5 *2 (-654 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-52)) (-5 *1 (-903 *4)) + (-4 *4 (-1115))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115)))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1284)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-574)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1273 *3 *2)) - (-4 *2 (-1271 *3))))) + (-12 (-5 *3 (-1204 (-654 *4))) (-4 *4 (-860)) + (-5 *2 (-654 (-654 *4))) (-5 *1 (-1203 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1115)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) + (-4 *4 (-1115)) (-14 *5 *2)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) + (-14 *4 (-574))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-387)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *5)) (-5 *1 (-895 *3 *4 *5)) - (-4 *3 (-1112)) (-4 *5 (-675 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1259 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -3907 (-780)))) (-5 *1 (-596 *3)) - (-4 *3 (-554))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-653 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-439 *4) (-1014))) (-4 *4 (-565)) - (-5 *1 (-282 *4 *2))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) - (-4 *3 (-565))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) + (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) + (-4 *3 (-1259 (-574))))) + ((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1022 *3)) + (-4 *3 (-1259 (-417 (-574)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-428 *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1155 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1115) (-34))) (-4 *6 (-13 (-1115) (-34))) + (-5 *2 (-112)) (-5 *1 (-1156 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *2 (-371)) (-4 *2 (-857)) (-5 *1 (-955 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2))))) -(((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) + (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) + (-5 *2 (-934))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 + (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) + (|:| |genIdeal| (-514 *4 *5 *6 *7)))) + (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| -3843 (-781)) (|:| -1868 *5) (|:| |radicand| (-654 *5)))) + (-5 *1 (-328 *5)) (-5 *4 (-781)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-574))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1099 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1192)) (-4 *5 (-372)) (-5 *2 (-1172 (-1172 (-965 *5)))) + (-5 *1 (-1291 *5)) (-5 *4 (-1172 (-965 *5)))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-976 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) + (-4 *3 (-1064)) (-4 *2 (-802)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1188 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-986)) (-4 *2 (-132)) (-5 *1 (-1194 *3)) (-4 *3 (-566)) + (-4 *3 (-1064)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1192)) + (-4 *3 (-1064))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -2711 *1))) + (-4 *1 (-1080 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -2711 *1))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) + (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) + (-5 *1 (-1084 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) + (-5 *4 (-781)) (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1288)) + (-5 *1 (-1160 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-760))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) (((*1 *2 *2) - (-12 (-4 *3 (-623 (-902 *3))) (-4 *3 (-896 *3)) (-4 *3 (-461)) - (-5 *1 (-1221 *3 *2)) (-4 *2 (-623 (-902 *3))) (-4 *2 (-896 *3)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-4 *1 (-913 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-653 *2) *2 *2 *2)) (-4 *2 (-1112)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) + (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1274 *5)) (-4 *6 (-1259 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) + (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) + (-5 *1 (-878 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1275 *5 *6 *7)) (-4 *5 (-372)) + (-14 *6 (-1192)) (-14 *7 *5) (-5 *2 (-417 (-1256 *6 *5))) + (-5 *1 (-878 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-586)))) - ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-586))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-371)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-459 *4 *5 *6 *2)))) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) + (-5 *1 (-538 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115))))) +(((*1 *1) + (-12 (-4 *1 (-414)) (-2086 (|has| *1 (-6 -4449))) + (-2086 (|has| *1 (-6 -4441))))) + ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860)))) +(((*1 *2 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-1259 (-417 *3))) (-5 *2 (-934)) + (-5 *1 (-926 *4 *5)) (-4 *5 (-1259 (-417 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) + (-5 *1 (-181 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-371)) + (-12 (-5 *3 (-654 *8)) + (-5 *4 + (-654 + (-2 (|:| -3907 (-699 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-699 *7))))) + (-5 *5 (-781)) (-4 *8 (-1259 *7)) (-4 *7 (-1259 *6)) (-4 *6 (-358)) (-5 *2 - (-2 (|:| R (-698 *6)) (|:| A (-698 *6)) (|:| |Ainv| (-698 *6)))) - (-5 *1 (-990 *6)) (-5 *3 (-698 *6))))) + (-2 (|:| -3907 (-699 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-699 *7)))) + (-5 *1 (-508 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534))))) +(((*1 *1) (-4 *1 (-358)))) (((*1 *2 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) + (-12 (-4 *4 (-1115)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1115)) (-4 *5 (-676 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1) (-5 *1 (-1100)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-112)) (-5 *1 (-839))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-653 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1112)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-653 *4))) (-4 *4 (-1112)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-653 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1112)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) - (-5 *1 (-723 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-962 *3 *5 *4)) + (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) + (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-698 *4)) (-4 *5 (-665 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) - (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) + (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-1197))) (-5 *1 (-891))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) + (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) - (-5 *1 (-723 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-566 *6 *3))))) + (-12 (-5 *2 (-1174)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) + (-5 *2 (-699 (-227))) (-5 *1 (-274))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-965 (-574)))) (-5 *1 (-447)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-227))) (-5 *2 (-1119)) + (-5 *1 (-769)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1192)) (-5 *4 (-699 (-574))) (-5 *2 (-1119)) + (-5 *1 (-769))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-654 *3)) (-5 *1 (-974 *3)) (-4 *3 (-555))))) (((*1 *2 *3) - (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) - (-4 *3 (-1077 *4 *5 *6))))) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-934))) (-5 *4 (-112)) + (-5 *1 (-1125))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1286))))) +(((*1 *1) (-5 *1 (-607)))) (((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) + (-5 *2 (-1285)) (-5 *1 (-264))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1288)) + (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1268 *4 *5 *6)) + (|:| |%expon| (-327 *4 *5 *6)) + (|:| |%expTerms| + (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) + (|:| |%type| (-1174)))) + (-5 *1 (-1269 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) + (-14 *5 (-1192)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1042 *5 *6 *7 *3))) (-5 *1 (-1042 *5 *6 *7 *3)) + (-4 *3 (-1080 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1161 *5 *6 *7 *3))) (-5 *1 (-1161 *5 *6 *7 *3)) + (-4 *3 (-1080 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-566)) (-4 *8 (-962 *7 *5 *6)) + (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *9) (|:| |radicand| *9))) + (-5 *1 (-966 *5 *6 *7 *8 *9)) (-5 *4 (-781)) + (-4 *9 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $)))))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -1527 (-417 *6)) (|:| |coeff| (-417 *6)))) + (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-416 (-573))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + (-12 (-5 *4 (-417 (-574))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *5 *3)))) + (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-322 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) - (-4 *6 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *5 *6)))) + (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-323 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) + (-4 *6 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *6 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) - (-4 *7 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1250 (-574))) + (-4 *7 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) - (-4 *3 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *7 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-574))) + (-4 *3 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) - (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) - (-4 *8 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) + (-5 *5 (-1250 (-417 (-574)))) (-5 *6 (-417 (-574))) + (-4 *8 (-13 (-27) (-1218) (-440 *7))) + (-4 *7 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) - (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) - (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) - (-5 *1 (-468 *8 *3)))) + (-12 (-5 *4 (-1192)) (-5 *5 (-302 *3)) (-5 *6 (-1250 (-417 (-574)))) + (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1218) (-440 *8))) + (-4 *8 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-52)) + (-5 *1 (-469 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) - (-4 *3 (-1061)) (-5 *1 (-604 *3)))) + (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-4 *3 (-1064)) (-5 *1 (-605 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-605 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-606 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) - (-4 *3 (-1061)) (-4 *1 (-1240 *3)))) + (-12 (-5 *2 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *3)))) + (-4 *3 (-1064)) (-4 *1 (-1243 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-780)) - (-5 *3 (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))) - (-4 *4 (-1061)) (-4 *1 (-1261 *4)))) + (-12 (-5 *2 (-781)) + (-5 *3 (-1172 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) + (-4 *4 (-1064)) (-4 *1 (-1264 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-4 *1 (-1274 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 (-2 (|:| |k| (-780)) (|:| |c| *3)))) - (-4 *3 (-1061)) (-4 *1 (-1271 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-296 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1256 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1059))))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1047)) (-5 *1 (-758)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-397)) (-5 *2 (-1047)) (-5 *1 (-758))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) - (-4 *2 (-174))))) + (-12 (-5 *2 (-1172 (-2 (|:| |k| (-781)) (|:| |c| *3)))) + (-4 *3 (-1064)) (-4 *1 (-1274 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 (-1172 *4))) (-5 *2 (-1172 *4)) (-5 *1 (-1176 *4)) + (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-99 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1192)) + (-4 *2 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) (((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) - (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-269))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) + (-4 *2 (-1274 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) + (-4 *2 (-1274 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1168 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-965 *5)))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) + (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) + (-5 *1 (-1144 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) + (-5 *2 (-1181 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) + (-5 *1 (-1144 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) + (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) + (-14 *6 (-934))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1115)) (-4 *6 (-1115)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1115))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-591))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 (-934))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-934)) (-14 *5 (-1008 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) + (-4 *4 (-1259 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1064)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) + (-4 *4 (-1064)) (-4 *5 (-860)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1064)) + (-4 *2 (-860)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1064)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-962 *4 *5 *6)) + (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *6 (-860)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-962 *4 *5 *2)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *2 (-860)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *2 (-962 *4 (-541 *5) *5)) + (-5 *1 (-1141 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-860)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-965 *4)) (-5 *1 (-1227 *4)) + (-4 *4 (-1064))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) - (-4 *4 (-1061)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) + (-4 *4 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) - (-4 *4 (-1256 *3)))) + (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) + (-4 *4 (-1259 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) - (-4 *3 (-1256 *2)))) - ((*1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) + (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) + (-4 *3 (-1259 *2)))) + ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1233)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-913 *4)) + (-4 *4 (-1115)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-781)) (-4 *1 (-913 *2)) (-4 *2 (-1115)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) - (-4 *4 (-1256 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1215)))) - ((*1 *2 *1) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *1) - (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) - (-4 *3 (-1112))))) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-913 *3)) (-4 *3 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) - (-5 *2 (-427 (-1185 (-416 (-573))))) (-5 *1 (-444 *4 *5 *3)) - (-4 *3 (-1256 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-565)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1230)) - (-4 *3 (-381 *4)) (-4 *5 (-381 *4))))) + (-12 + (-5 *3 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) + (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-622 *3)) + (-4 *3 (-13 (-440 *5) (-27) (-1218))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) + (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1115))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-802))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-2 (|:| -2238 (-1172 *4)) (|:| -2249 (-1172 *4)))) + (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1100))))) (((*1 *1) - (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) - (-4 *4 (-675 *3)))) - ((*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-446)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) + (-12 (-4 *3 (-1115)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1115)) + (-4 *4 (-676 *3)))) + ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1064)) (-5 *1 (-724 *4 *2)) + (-4 *2 (-658 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1064))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-698 *2)) (-5 *4 (-573)) - (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5))))) + (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) + (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *2 *4)) (-4 *4 (-1256 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1256 *2)) (-4 *2 (-174)) (-5 *1 (-417 *3 *2 *4)) - (-4 *3 (-418 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-418 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1256 *2)) (-5 *2 (-573)) (-5 *1 (-777 *3 *4)) - (-4 *4 (-418 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797))))) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *2 (-1285)) - (-5 *1 (-477)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-992 *3)))) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) + (-5 *2 (-1283 (-699 (-965 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-956 (-227))) (-5 *4 (-884)) (-5 *2 (-1288)) + (-5 *1 (-478)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-995 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-953 *3)))) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-956 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-781)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-654 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-953 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-956 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)) (-5 *3 (-227))))) -(((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-931)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-931)) - (-5 *1 (-537 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-334 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-525 *3 *4)) - (-14 *4 (-573))))) -(((*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-337)))) - ((*1 *1) (-5 *1 (-337)))) -(((*1 *2 *3) - (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) - (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)) - (-5 *1 (-823 *4 *5)) (-4 *5 (-665 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-371)) - (-5 *2 (-698 *5)) (-5 *1 (-823 *5 *6)) (-4 *6 (-665 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-573) (-573))) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-780) (-780))) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112))))) + (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)) (-5 *3 (-227))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1192)) + (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1064)) (-5 *2 (-1283 *4)) + (-5 *1 (-1193 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-934)) (-5 *2 (-1283 *3)) (-5 *1 (-1193 *3)) + (-4 *3 (-1064))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) (((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) + (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-931)) (-5 *1 (-166 *3 *4)) + (-12 (-4 *4 (-174)) (-5 *2 (-934)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-931)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-934)))) ((*1 *2) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) - (-5 *2 (-931)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) + (-5 *2 (-934)))) ((*1 *2 *3) - (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) + (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) - (-5 *2 (-780)) (-5 *1 (-676 *5)))) + (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) + (-5 *2 (-781)) (-5 *1 (-677 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-780)) - (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-781)) + (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) - (-4 *3 (-696 *4 *5 *6)))) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) - (-5 *2 (-780))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-562))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) - (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1189)) (-5 *6 (-653 (-621 *3))) - (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *7))) - (-4 *7 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) - (-5 *1 (-566 *7 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) + (-5 *2 (-781))))) +(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1115))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) - (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-1256 *3)) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2 *3) (-12 (-5 *3 (-986)) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) + (-5 *1 (-1253 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) + (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) + (-4 *2 (-697 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) + (-5 *2 (-417 (-965 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-1243 *4)) (-4 *4 (-1064)) (-4 *4 (-566)) + (-5 *2 (-417 (-965 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) + (-4 *7 (-1259 (-417 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1800 *3))) + (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-5 *1 (-777 *4 *5)) (-4 *5 (-418 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) + (-2 (|:| |answer| (-417 *6)) (|:| -1800 (-417 *6)) + (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) + (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-5 *1 (-997 *4 *3 *5 *6)) (-4 *6 (-733 *3 *5)))) + (-654 + (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) + (|:| |eigmult| (-781)) + (|:| |eigvec| (-654 (-699 (-417 (-965 *4)))))))) + (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) + (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) + (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-939)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-939)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| -1513 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) - (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-5 *1 (-1289 *4 *3 *5 *6)) (-4 *6 (-418 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-699 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3907 (-654 *6))) + *7 *6)) + (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 - (-653 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-573))))) - (-5 *1 (-427 *3)) (-4 *3 (-565)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-780)) (-4 *3 (-357)) (-4 *5 (-1256 *3)) - (-5 *2 (-653 (-1185 *3))) (-5 *1 (-507 *3 *5 *6)) - (-4 *6 (-1256 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-176 *6)) - (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-871)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) - (-4 *3 (-1230))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533))))) + (-2 (|:| |particular| (-3 (-1283 *6) "failed")) + (|:| -3907 (-654 (-1283 *6))))) + (-5 *1 (-823 *6 *7)) (-5 *4 (-1283 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 (-653 *6))) (-4 *6 (-959 *3 *5 *4)) - (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) - (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1265 *4 *5 *6)) - (|:| |%expon| (-326 *4 *5 *6)) - (|:| |%expTerms| - (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))))) - (|:| |%type| (-1171)))) - (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) - (-14 *5 (-1189)) (-14 *6 *4)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1106 *3)) (-4 *3 (-959 *7 *6 *4)) (-4 *6 (-802)) - (-4 *4 (-859)) (-4 *7 (-565)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) - (-5 *1 (-603 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-565)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) - (-5 *1 (-603 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1) (-5 *1 (-871))) + (-12 (-5 *5 (-1109 *3)) (-4 *3 (-962 *7 *6 *4)) (-4 *6 (-803)) + (-4 *4 (-860)) (-4 *7 (-566)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) + (-5 *1 (-604 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) + (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1181 *4 *2)))) + (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1218))) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1184 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) - (-5 *2 (-416 (-962 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-962 *5)))) + (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) + (-5 *2 (-417 (-965 *5))) (-5 *1 (-1185 *5)) (-5 *3 (-965 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) - (-5 *2 (-3 (-416 (-962 *5)) (-323 *5))) (-5 *1 (-1182 *5)) - (-5 *3 (-416 (-962 *5))))) + (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)))) + (-5 *2 (-3 (-417 (-965 *5)) (-324 *5))) (-5 *1 (-1185 *5)) + (-5 *3 (-417 (-965 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1104 (-962 *5))) (-5 *3 (-962 *5)) - (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 *3)) - (-5 *1 (-1182 *5)))) + (-12 (-5 *4 (-1107 (-965 *5))) (-5 *3 (-965 *5)) + (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 *3)) + (-5 *1 (-1185 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1104 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) - (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 *3 (-323 *5))) - (-5 *1 (-1182 *5))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) - (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -4141 (-653 *3)) (|:| -4055 (-653 *3)))) - (-5 *1 (-1231 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-434 *3)) (-4 *3 (-1112)) (-5 *2 (-780))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-573)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-880 *4)) (-14 *4 *3) - (-5 *3 (-573)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-416 (-573))) (-5 *1 (-881 *4 *5)) - (-5 *3 (-573)) (-4 *5 (-878 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1024)) (-5 *2 (-416 (-573))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) - (-4 *3 (-1256 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2942 (*2 (-1189)))) - (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-445))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) - (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *3 (-573)) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-163))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-962 (-573))) (-5 *3 (-1189)) - (-5 *4 (-1106 (-416 (-573)))) (-5 *1 (-30))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-1293 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) - (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) - (-5 *1 (-354 *4))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *2 (-1285)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1256 (-416 *5))) (-14 *7 *6)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *2 (-780)) - (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) - (-14 *4 (-931)) (-4 *5 (-1061)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) - (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-869)) (-5 *2 (-700 (-1238))) (-5 *3 (-1238))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) + (-12 (-5 *4 (-1107 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) + (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-3 *3 (-324 *5))) + (-5 *1 (-1185 *5))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-770)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2) - (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) - (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1256 (-573))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) (-5 *2 - (-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) - (|:| |basisInv| (-698 (-573))))) - (-5 *1 (-777 *3 *4)) (-4 *4 (-418 (-573) *3)))) - ((*1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) + (-654 + (-2 (|:| -3557 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *8))))) + (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-781))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934))))) +(((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-1283 *6)) (-5 *1 (-345 *3 *4 *5 *6)) + (-4 *6 (-351 *3 *4 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-813))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) (-5 *2 - (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-698 *4)))) - (-5 *1 (-997 *3 *4 *5 *6)) (-4 *6 (-733 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *7 *8 *9 *3 *4)) (-4 *4 (-1086 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) (-5 *2 - (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-698 *4)))) - (-5 *1 (-1289 *3 *4 *5 *6)) (-4 *6 (-418 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *10)) - (-5 *1 (-633 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1083 *5 *6 *7 *8)) - (-4 *10 (-1121 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) - (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) - (-5 *1 (-637 *5 *6)))) + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) - (-14 *6 (-653 (-1189))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 - (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) - (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) - (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) - (-5 *1 (-1058 *5 *6)))) + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-4 *3 (-1080 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *7 *8 *9 *3 *4)) (-4 *4 (-1124 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1223 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-298)) (-5 *1 (-169))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) - (-5 *2 (-1047)) (-5 *1 (-757))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) - (-5 *1 (-706))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *2) - (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *1 (-923 *3 *2)) - (-4 *2 (-1256 (-416 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1256 (-171 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) - (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) - (-5 *1 (-365 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-112)) - (-5 *1 (-537 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-171 (-323 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-934)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1188 *1)) + (-4 *1 (-337 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) + (-4 *2 (-1259 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-171 *3)) (-5 *1 (-1219 *4 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-416 *6)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) - (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-780)) (-4 *7 (-1256 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-358)) (-5 *2 (-1188 *4)) + (-5 *1 (-538 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-574)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) + (-5 *3 (-574)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) + (-5 *3 (-574)) (-4 *5 (-879 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-417 (-574))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) + (-4 *3 (-1259 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2950 (*2 (-1192)))) + (-4 *2 (-1064))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-803)) + (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *5 (-566)) + (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *3 + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *6)) + (-4 *6 + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) + (-4 *2 (-962 (-965 *4) *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-298))) - ((*1 *1) (-5 *1 (-871))) - ((*1 *1) - (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) - (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1097))) - ((*1 *1) - (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34))))) - ((*1 *1) (-5 *1 (-1192))) ((*1 *1) (-5 *1 (-1193)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-653 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) - (-14 *5 *3) (-5 *1 (-326 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387))))) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) - (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) - (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) - (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-802)) - (-4 *6 (-565)) (-4 *7 (-959 *6 *5 *3)) - (-5 *1 (-471 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1050 (-416 (-573))) (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) - (-15 -2975 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) - (-5 *2 (-653 (-1189))) (-5 *1 (-1088 *3 *4 *5)) - (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-568))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-1280 *4)) - (-5 *1 (-823 *4 *3)) (-4 *3 (-665 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) - (-4 *5 (-1256 *4)) (-5 *2 (-653 (-416 *5))) (-5 *1 (-1028 *4 *5)) - (-5 *3 (-416 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) + (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) + (-4 *7 (-962 *3 *5 *6)) + (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *8) (|:| |radicand| *8))) + (-5 *1 (-966 *5 *6 *3 *7 *8)) (-5 *4 (-781)) + (-4 *8 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) (-15 -2981 (*7 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-573))) - (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1232))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *3 (-1188 *2)) (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) + (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) + (-4 *6 (-566))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) + (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) + (-4 *3 (-13 (-27) (-1218) (-440 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1192)) (-5 *4 (-853 *2)) (-4 *2 (-1154)) + (-4 *2 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) + (-5 *1 (-577 *5 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-916 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) + (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *8 (-962 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) + (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1226 *5 *6 *7 *3)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-653 - (-653 - (-3 (|:| -2031 (-1189)) - (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))))) - (-5 *1 (-1193))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) - (-5 *1 (-1192)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) - (-5 *1 (-1192))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-573) (-227) (-515) (-1171) (-1194))) - (-5 *1 (-1194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-112)) - (-5 *1 (-368 *4 *5)) (-14 *5 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-789 *4 (-873 *5)))) (-4 *4 (-461)) - (-14 *5 (-653 (-1189))) (-5 *2 (-112)) (-5 *1 (-637 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-653 (-112))) (-5 *5 (-698 (-227))) - (-5 *6 (-698 (-573))) (-5 *7 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) - (-5 *1 (-763))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-132))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1177 3 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) - ((*1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)) - (-4 *3 (-801))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) + (-4 *4 (-1259 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-736)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1192)) (-4 *5 (-440 *4)) + (-4 *4 (-1115)) (-5 *1 (-583 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1055))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) + (-5 *3 (-654 (-574)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) - (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) - (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-112)) - (-5 *1 (-934 *5 *6 *7 *8))))) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1192))) (-4 *6 (-372)) + (-5 *2 (-654 (-302 (-965 *6)))) (-5 *1 (-548 *5 *6 *7)) + (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-417 (-965 (-574))))) (-5 *4 (-654 (-1192))) + (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) + (-4 *5 (-13 (-858) (-372))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372)))))) +(((*1 *2) + (-12 (-5 *2 (-1283 (-1116 *3 *4))) (-5 *1 (-1116 *3 *4)) + (-14 *3 (-934)) (-14 *4 (-934))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) - (-14 *6 (-653 (-1189))) - (-5 *2 - (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) - (-5 *1 (-637 *5 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-871) (-871) (-871))) (-5 *4 (-573)) (-5 *2 (-871)) - (-5 *1 (-658 *5 *6 *7)) (-4 *5 (-1112)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-871)) (-5 *1 (-863 *3 *4 *5)) (-4 *3 (-1061)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-871)) (-5 *1 (-1185 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1) - (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) - (-4 *2 (-859))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1229))) (-5 *3 (-1229)) (-5 *1 (-690))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) - (-5 *1 (-914 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-371)) (-5 *1 (-583 *4 *2)) (-4 *2 (-1256 *4))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1235)))))) -(((*1 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-455)) (-5 *3 (-573))))) + (-12 (-4 *5 (-566)) + (-5 *2 (-2 (|:| -4226 (-699 *5)) (|:| |vec| (-1283 (-654 (-934)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-832))))) +(((*1 *2 *3) + (-12 (-4 *1 (-908)) + (-5 *3 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) + (|:| |tol| (-227)))) + (-5 *2 (-1050))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1203 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-299)) (-5 *1 (-169))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-115))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) (-5 *3 (-227)) + (-5 *2 (-1050)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) + (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) + (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781))))) +(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-573))) (-5 *4 (-573)) (-5 *2 (-52)) - (-5 *1 (-1017))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *2 (-1225 (-936))) - (-5 *1 (-325)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *7 (-1171)) - (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) - (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *8 (-1171)) - (-5 *2 (-1225 (-936))) (-5 *1 (-325))))) -(((*1 *2 *1 *1) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1124 *5 *6 *7 *8)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1080 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-601 *5 *6 *7 *8 *3))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |polnum| (-791 *3)) (|:| |polden| *3) (|:| -2488 (-780)))) - (-5 *1 (-791 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2488 (-780)))) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) + (-654 + (-2 + (|:| -3666 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1918 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1172 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4231 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-569))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) + (-4 *2 (-1259 *4))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) + (-5 *4 (-654 (-934))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) + (-5 *4 (-654 (-934))) (-5 *1 (-478)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) + ((*1 *1 *1) (-5 *1 (-478)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-1280 *3)) - (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) -(((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-962 *6 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-654 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) - (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-831))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) - (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-859))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) - (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) + (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-957 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) + (-4 *4 (-803)) (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1134)))) + ((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 (-934))) (-5 *2 (-781)) (-5 *1 (-600))))) +(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1050)) (-5 *1 (-766))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) + (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1064)) (-4 *3 (-1115)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3843 (-574)))) (-4 *1 (-440 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) - ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-653 (-791 *3))) (-5 *1 (-791 *3)) (-4 *3 (-565)) - (-4 *3 (-1061))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3843 (-903 *3)))) + (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3843 (-574)))) + (-5 *1 (-963 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) + (-15 -2981 (*7 $)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-1061)) (-4 *4 (-1256 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1256 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *6)))) - (-5 *4 (-1038 (-852 (-573)))) (-5 *5 (-1189)) (-5 *7 (-416 (-573))) - (-4 *6 (-1061)) (-5 *2 (-871)) (-5 *1 (-604 *6))))) + (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064))))) (((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) - (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) -(((*1 *2 *3 *1) (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780)))) - (-5 *1 (-1169 *4)) (-4 *4 (-1230)) (-5 *3 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1193))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *2 (-565)) (-5 *1 (-981 *2 *4)) - (-4 *4 (-1256 *2))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1047)) (-5 *1 (-757))))) -(((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) + (-5 *3 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-388)) (-5 *1 (-274)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-501))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) +(((*1 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1226 *5 *6 *7 *8)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-417 (-574)))) + (-5 *2 (-2 (|:| -2357 (-1172 *4)) (|:| -2367 (-1172 *4)))) + (-5 *1 (-1178 *4)) (-5 *3 (-1172 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-968 (-1185 *4))) (-5 *1 (-365 *4)) - (-5 *3 (-1185 *4))))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) + (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) + (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) + (-4 *5 (-1064)) (-5 *2 (-112)) (-5 *1 (-1044 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1064)) + (-5 *2 (-112)) (-5 *1 (-1044 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1283 (-1283 (-574)))) (-5 *3 (-934)) (-5 *1 (-476))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-962 *4 *6 *5)) (-4 *4 (-462)) + (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1002 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1192)) (-5 *1 (-596 *2)) (-4 *2 (-1053 *3)) + (-4 *2 (-372)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) + (-4 *2 (-13 (-440 *4) (-1017) (-1218))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1107 *2)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) + (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-972)) (-5 *2 (-1192)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-972))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1283 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) + (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1259 *5)) + (-5 *2 (-699 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) + (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-298))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *3 (-962 (-573))) - (-5 *1 (-337)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *1 (-337))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-112)) (-5 *1 (-902 *4)) - (-4 *4 (-1112))))) + (-12 (-5 *3 (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) + (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) + (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1) (-5 *1 (-478)))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-654 *11)) + (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4067 *11)))))) + (-5 *6 (-781)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4067 *11)))) + (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) + (-4 *11 (-1086 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-5 *1 (-1084 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-654 *11)) + (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4067 *11)))))) + (-5 *6 (-781)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4067 *11)))) + (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1080 *7 *8 *9)) + (-4 *11 (-1124 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) + (-4 *9 (-860)) (-5 *1 (-1160 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1188 *7)) + (-4 *5 (-1064)) (-4 *7 (-1064)) (-4 *2 (-1259 *5)) + (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1259 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) + (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) + (-5 *1 (-407)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1192))))) + (-5 *6 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1119)) + (-5 *1 (-407)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-654 (-1192))) (-5 *5 (-1195)) (-5 *3 (-1192)) + (-5 *2 (-1119)) (-5 *1 (-407))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1050)) + (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1171)) (|:| -2031 (-1171)))) - (-5 *1 (-831))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) + (-5 *1 (-918 *3)) (-4 *3 (-1115))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-956 *5)) (-5 *3 (-781)) (-4 *5 (-1064)) + (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3372 *3) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574))))) + (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-965 *9)))) + (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) + (-4 *9 (-13 (-315) (-148))) (-4 *12 (-962 *9 *11 *10)) + (-4 *10 (-13 (-860) (-624 (-1192)))) (-4 *11 (-803)) + (-5 *2 + (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) + (|:| |wcond| (-654 (-965 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *9)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *9))))))))) + (-5 *1 (-937 *9 *10 *11 *12))))) +(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-1174)) (-5 *1 (-796))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-5 *1 (-709)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-372)) (-5 *1 (-993 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) + (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *3 (-654 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-956 (-227)) (-956 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) + (-14 *5 (-654 (-1192))) (-4 *6 (-462)) (-5 *2 (-1283 *6)) + (-5 *1 (-641 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) +(((*1 *1 *2) + (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1053 *4)) (-4 *3 (-315)) + (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *6 (-419 *4 *5)) + (-14 *7 (-1283 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1007 *3)) + (-4 *5 (-1259 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) + (-5 *1 (-1002 *2 *3 *4 *5)) (-4 *5 (-962 *2 *4 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) + (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-767))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-4 *5 (-357)) (-5 *2 (-427 (-1185 (-1185 *5)))) - (-5 *1 (-1228 *5)) (-5 *3 (-1185 (-1185 *5)))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-515)) (-5 *2 (-700 (-1116))) (-5 *1 (-298))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-653 (-621 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-621 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-372)) + (-5 *2 (-112)) (-5 *1 (-677 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 (-112)) + (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-546))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-382 *4)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1256 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) - ((*1 *2 *1) - (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-422 *3 *2 *4 *5)) - (-4 *3 (-314)) (-4 *5 (-13 (-418 *2 *4) (-1050 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) - (-5 *1 (-423 *3 *2 *4 *5 *6)) (-4 *3 (-314)) (-4 *5 (-418 *2 *4)) - (-14 *6 (-1280 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) - (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-504)))) (-5 *1 (-504)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-504))) (-5 *1 (-504)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-653 (-621 (-504)))) - (-5 *1 (-504)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-621 (-504))) (-5 *1 (-504)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) - (-5 *1 (-537 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-733 *4 *2)) (-4 *2 (-1256 *4)) - (-5 *1 (-784 *4 *2 *5 *3)) (-4 *3 (-1256 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1072)))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2) - (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) - (-4 *4 (-1256 *3))))) -(((*1 *1) (-5 *1 (-606)))) + (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) (-4 *2 (-382 *4)) + (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) + (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-4 *4 (-1007 *3)) (-5 *1 (-1252 *3 *4 *2)) + (-4 *2 (-1259 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1296 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-1225 *3)) - (-4 *3 (-986))))) + (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) - (-5 *2 (-1280 (-573))) (-5 *1 (-1308 *4))))) + (-12 (-5 *3 (-699 (-324 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) + (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781))))) +(((*1 *2 *2) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-574)) + (-5 *6 + (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) + (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-574)) + (-5 *6 + (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3952 (-388)))) + (-5 *7 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) + ((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) + (-14 *4 (-574))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) + (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) (((*1 *2 *3) - (-12 (-5 *2 (-621 *4)) (-5 *1 (-620 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| -1389 *1) (|:| -1686 (-654 *7))))) + (-5 *3 (-654 *7)) (-4 *1 (-1226 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-1251 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) - (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) + (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1064))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-971 (-1135))) + (-5 *1 (-355 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 *6)) (-4 *6 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-1188 *7)) (-5 *1 (-329 *4 *5 *6 *7)) + (-4 *7 (-962 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) +(((*1 *1) (-5 *1 (-1195)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-653 (-873 *4))) - (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-480 *4 *5 *6)) - (-4 *6 (-461))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-406))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1247 (-573)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *3))))) + (|partial| -12 (-5 *2 (-654 (-1188 *4))) (-5 *3 (-1188 *4)) + (-4 *4 (-922)) (-5 *1 (-673 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1064) (-860))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) +(((*1 *2 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-1288)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) (((*1 *2 *1) - (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) - (-14 *4 (-780)) (-4 *5 (-174))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-828 *3)))) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211))))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1050)) (-5 *1 (-766))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) - (-5 *2 (-1185 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-112)) (-5 *1 (-1177 *4 *5)) - (-14 *4 (-931)) (-4 *5 (-1061))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 *6)) (-5 *3 (-573)) (-4 *6 (-314)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-653 (-1185 *13))) (-5 *3 (-1185 *13)) - (-5 *4 (-653 *12)) (-5 *5 (-653 *10)) (-5 *6 (-653 *13)) - (-5 *7 (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *13))))) - (-5 *8 (-653 (-780))) (-5 *9 (-1280 (-653 (-1185 *10)))) - (-4 *12 (-859)) (-4 *10 (-314)) (-4 *13 (-959 *10 *11 *12)) - (-4 *11 (-802)) (-5 *1 (-716 *11 *12 *10 *13))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) - (-5 *2 (-112)) (-5 *1 (-1308 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-979)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) - (-4 *3 (-13 (-1215) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) - (-5 *2 (-595 (-416 (-962 *5)))) (-5 *1 (-579 *5)) - (-5 *3 (-416 (-962 *5)))))) -(((*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-387))) - ((*1 *1) (-5 *1 (-387)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-5 *2 (-477)) (-5 *1 (-1281))))) -(((*1 *2 *3) - (-12 (-4 *4 (-461)) - (-5 *2 - (-653 - (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) - (|:| |eigmult| (-780)) - (|:| |eigvec| (-653 (-698 (-416 (-962 *4)))))))) - (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4))))))) + (-12 (-5 *2 (-654 *1)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-699 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *4)) (-4 *4 (-1064)) (-4 *1 (-1138 *3 *4 *5 *6)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) - (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *7 *8 *9 *3 *4)) (-4 *4 (-1083 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1288)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) + (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-962 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) - (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) + (-2 (|:| |upol| (-1188 *8)) (|:| |Lval| (-654 *8)) + (|:| |Lfact| + (-654 (-2 (|:| -4200 (-1188 *8)) (|:| -3843 (-574))))) + (|:| |ctpol| *8))) + (-5 *1 (-752 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-1259 *4)) (-5 *2 (-1 *6 (-654 *6))) + (-5 *1 (-1277 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-174))))) +(((*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1105))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-876 *4 *5 *6 *7)) + (-4 *4 (-1064)) (-14 *5 (-654 (-1192))) (-14 *6 (-654 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) + (-14 *8 (-654 *5)) (-5 *2 (-1288)) + (-5 *1 (-1295 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-962 *4 *6 *5)) + (-14 *9 (-654 *3)) (-14 *10 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-1288)) + (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *7 *8 *9 *3 *4)) (-4 *4 (-1121 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) + (-2 (|:| -1868 *3) (|:| |gap| (-781)) (|:| -1670 (-792 *3)) + (|:| -2711 (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) + (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -1670 *1) + (|:| -2711 *1))) + (-4 *1 (-1080 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) + (-2 (|:| -1868 *1) (|:| |gap| (-781)) (|:| -1670 *1) + (|:| -2711 *1))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-574)) (-5 *1 (-247))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) - (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) - (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) - (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-565)) - (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 (-653 (-931)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *3 (-227)) - (-5 *2 (-1047)) (-5 *1 (-757))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) - (-5 *1 (-751 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *1 (-595 *2)) (-4 *2 (-1050 *3)) - (-4 *2 (-371)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)) - (-4 *2 (-13 (-439 *4) (-1014) (-1215))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) - (-4 *4 (-565)) (-5 *1 (-639 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-1189)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-969))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) -(((*1 *1 *1) - (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) - (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3))))) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-1064)) (-4 *2 (-1259 *4)) + (-5 *1 (-454 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-417 (-1188 (-324 *5)))) (-5 *3 (-1283 (-324 *5))) + (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1145 *5))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) + (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *1) - (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-769))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-388)) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1064)) (-4 *2 (-697 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1259 *4)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-1192)) (-4 *6 (-440 *5)) + (-4 *5 (-1115)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404))))) (((*1 *2 *3) - (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 *4))) (-5 *3 (-1185 *4)) - (-4 *4 (-919)) (-5 *1 (-672 *4))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-5 *2 (-2 (|:| -3692 *3) (|:| -1907 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) -(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) + (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-697 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) + (-5 *2 (-781))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) + (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1115)) + (-4 *8 (-13 (-1064) (-624 (-903 *6)) (-1053 *7))) + (-5 *2 (-900 *6 *8)) (-4 *7 (-1064)) (-5 *1 (-954 *6 *7 *8))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1284)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1053 (-574)))) + (-4 *7 (-1259 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) + (-4 *2 (-351 *5 *6 *7))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1188 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) + (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-5 *2 (-2 (|:| -3666 *3) (|:| -1918 *4)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-1127))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1108)))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1259 *4)) + (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1259 *5)) (-14 *6 (-934)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + ((*1 *1 *1) (-12 (-4 *1 (-1302 *2)) (-4 *2 (-372)) (-4 *2 (-377))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) + (-4 *4 (-566)) (-5 *2 (-1283 *4)) (-5 *1 (-648 *4 *5))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) + (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1205 (-934) (-781)))))) +(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1111)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) - ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) + (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) + ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-653 (-1171))) (-5 *3 (-573)) (-5 *4 (-1171)) - (-5 *1 (-246)))) - ((*1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + (-12 (-5 *2 (-654 (-1174))) (-5 *3 (-574)) (-5 *4 (-1174)) + (-5 *1 (-247)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))) - (-4 *2 (-13 (-1112) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-653 (-416 *6))) (-5 *3 (-416 *6)) - (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-577 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-606))) (-5 *1 (-606))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) - (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) + (-12 (-4 *1 (-1261 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1259 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) + (-4 *4 (-38 (-417 (-574))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-173)) (-5 *1 (-1177 *4 *5)) - (-14 *4 (-931)) (-4 *5 (-1061))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-962 *6)) (-5 *4 (-1189)) - (-5 *5 (-852 *7)) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-4 *7 (-13 (-1215) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1185 *6)) (-5 *4 (-852 *6)) - (-4 *6 (-13 (-1215) (-29 *5))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)) - (-4 *3 (-174))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-653 (-653 (-227)))) (-5 *4 (-227)) - (-5 *2 (-653 (-953 *4))) (-5 *1 (-1226)) (-5 *3 (-953 *4))))) + (-12 (-5 *2 (-781)) (-5 *3 (-956 *4)) (-4 *1 (-1149 *4)) + (-4 *4 (-1064)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-956 (-227))) (-5 *2 (-1288)) + (-5 *1 (-1285))))) +(((*1 *2 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) + (-5 *1 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-566 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3) - (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-381 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-512 *2 *4 *5 *3)) - (-4 *5 (-381 *2)) (-4 *3 (-381 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *4)) (-4 *4 (-1004 *2)) (-4 *2 (-565)) - (-5 *1 (-702 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-1249 *2 *4 *3)) - (-4 *3 (-1256 *4))))) + (-12 (-5 *3 (-1192)) (-5 *2 (-546)) (-5 *1 (-545 *4)) + (-4 *4 (-1233))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) (((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) -(((*1 *2 *1) - (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) + (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) - (-4 *3 (-1256 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-1077 *3 *4 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859))))) -(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) - (-5 *1 (-699 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154)) (-5 *3 (-653 (-953 (-227)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) - (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) - (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *1)))) + (-4 *1 (-1086 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1237))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-1262 *3 *2)) + (-4 *2 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) - (-4 *2 (-1112)))) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) + (-4 *2 (-1115)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) - (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) + (-4 *3 (-1233)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) - (-5 *1 (-746 *4)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) + (-5 *1 (-747 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) + (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2886 *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-962 *5 *7 *6)) + (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1192)))) + (-4 *7 (-803)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) + (-654 + (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (-5 *1 (-937 *5 *6 *7 *8))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) + (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) + (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) + (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) + (-5 *1 (-795 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3634 *4))) (-5 *5 (-781)) + (-4 *4 (-962 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) - (-4 *3 (-1256 *4))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-459 *6 *7 *8 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |k| (-681 *3)) (|:| |c| *4)))) - (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-252 *3 *4)) - (-14 *3 (-653 (-1189))) (-4 *4 (-1061)))) + (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1107 (-853 *3))) (-4 *3 (-13 (-1218) (-972) (-29 *5))) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1107 (-853 *3))) (-5 *5 (-1174)) + (-4 *3 (-13 (-1218) (-972) (-29 *6))) + (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1107 (-853 (-324 *5)))) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1107 (-853 (-324 *6)))) + (-5 *5 (-1174)) + (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1107 (-853 (-417 (-965 *5))))) (-5 *3 (-417 (-965 *5))) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1107 (-853 (-417 (-965 *6))))) (-5 *5 (-1174)) + (-5 *3 (-417 (-965 *6))) + (-4 *6 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1218) (-972) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-14 *3 (-653 (-1189))) - (-5 *1 (-463 *3 *4 *5)) (-4 *4 (-1061)) - (-4 *5 (-243 (-2862 *3) (-780))))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) + (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) + (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) + (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1109 (-853 (-388)))) + (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) + (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) + (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) + (-5 *5 (-388)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1109 (-853 (-388))))) + (-5 *5 (-388)) (-5 *6 (-1078)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) + (-5 *5 (-1174)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) + (-5 *5 (-1192)) (-5 *2 (-1050)) (-5 *1 (-575)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) (-4 *5 (-1259 *4)) + (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) (-4 *5 (-148)) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)) + (-4 *3 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1192)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-417 (-574)))) + (-4 *3 (-1064)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-4 *2 (-860)) + (-5 *1 (-1141 *3 *2 *4)) (-4 *4 (-962 *3 (-541 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) + (-5 *1 (-1176 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1189 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-38 (-417 (-574)))) + (-4 *3 (-1064)))) + ((*1 *1 *1 *2) + (-2832 + (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1192)) (-4 *1 (-1243 *3)) (-4 *3 (-1064)) + (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) + (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1243 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-2832 + (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1192)) (-4 *1 (-1264 *3)) (-4 *3 (-1064)) + (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) + (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2832 + (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) + (-12 (-4 *3 (-29 (-574))) (-4 *3 (-972)) (-4 *3 (-1218)) + (-4 *3 (-38 (-417 (-574)))))) + (-12 (-5 *2 (-1192)) (-4 *1 (-1274 *3)) (-4 *3 (-1064)) + (-12 (|has| *3 (-15 -4349 ((-654 *2) *3))) + (|has| *3 (-15 -3302 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-38 (-417 (-574)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-490 *3 *4)) - (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1064)) (-14 *5 *3)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *1 (-674 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1303 *3 *4)) + (-4 *3 (-860)) (-4 *4 (-174))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1) (-4 *1 (-1151)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1276 *3 *2)) + (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-984 *4 *3)) + (-4 *3 (-1259 *4))))) +(((*1 *1) (-5 *1 (-813)))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1283 (-1283 (-574)))) (-5 *1 (-476))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) + (-4 *7 (-1259 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-584 *6 *7))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 (-417 (-965 (-574))))) + (-5 *2 + (-654 + (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) + (|:| |radvect| (-654 (-699 (-324 (-574)))))))) + (-5 *1 (-1046))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-802)) (-4 *2 (-959 *4 *5 *6)) (-5 *1 (-458 *4 *5 *6 *2)) - (-4 *4 (-461)) (-4 *6 (-859))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-838))))) -(((*1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |ir| (-595 (-416 *6))) (|:| |specpart| (-416 *6)) - (|:| |polypart| *6))) - (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-171 (-227))) (-5 *6 (-1171)) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-654 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-803)) (-4 *6 (-962 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *4 *3 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-654 (-173))))))) +(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1155 *3 *2)) (-4 *3 (-13 (-1115) (-34))) + (-4 *2 (-13 (-1115) (-34)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -3843 (-781)))) (-5 *1 (-597 *3)) + (-4 *3 (-555))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-781)) + (-4 *5 (-13 (-462) (-1053 (-574)))) (-4 *5 (-566)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *5 (-622 $)) $)) + (-15 -2981 ((-1140 *5 (-622 $)) $)) + (-15 -2950 ($ (-1140 *5 (-622 $)))))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061))))) -(((*1 *1 *1) (-4 *1 (-1156)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1280 *5)) (-5 *3 (-780)) (-5 *4 (-1132)) (-4 *5 (-357)) - (-5 *1 (-537 *5))))) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| -1868 *4) (|:| -1670 *3) (|:| -2711 *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1080 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| -1868 *3) (|:| -1670 *1) (|:| -2711 *1))) + (-4 *1 (-1259 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-1132)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) - (-4 *2 (-696 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-558)))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-931))) (-5 *2 (-1191 (-416 (-573)))) - (-5 *1 (-192))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) - (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-922))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-440 *4) (-1017))) (-4 *4 (-566)) + (-5 *1 (-283 *4 *2))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-939)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-227))) (-5 *1 (-940)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-417 (-574))) + (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) + (-4 *5 (-13 (-566) (-1053 (-574)))) (-5 *2 (-1188 (-417 (-574)))) + (-5 *1 (-443 *5 *3))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-833)) (-5 *3 (-653 (-1189))) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) + (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) + (-4 *2 (-13 (-860) (-21)))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1234)) (-4 *5 (-1256 *3)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-112)) (-5 *1 (-349 *4 *3 *5 *6)) (-4 *4 (-350 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (-4 *4 (-1061)) - (-5 *1 (-1040 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (-4 *4 (-1061)) - (-5 *1 (-1040 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) - (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) - (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) - (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-371)) (-4 *3 (-174)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) - (-4 *2 (-696 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-698 *2)) (-4 *2 (-371)) (-4 *2 (-1061)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1135 *2 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-371)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-1200 *3))))) -(((*1 *1) (-5 *1 (-515)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) + (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) + (-4 *6 (-1259 *5)) (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) - (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) - (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1119 *3 *4 *5 *6 *7))))) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) - (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) - (-5 *1 (-604 *3)) (-4 *3 (-1061))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-780)) (-5 *3 (-953 *5)) (-4 *5 (-1061)) - (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) - (-14 *4 (-931)) (-4 *5 (-1061)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) - (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) + (-2 (|:| |cont| *5) + (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) (((*1 *2 *3) - (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) - (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1053 (-574))) + (-4 *4 (-566)) (-5 *2 (-1188 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1064)) (-4 *1 (-310)) + (-5 *2 (-1188 *1))))) (((*1 *2) - (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) - (-4 *4 (-1256 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) - (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) - (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) - (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-485 *4 *5 *6 *7)) (|:| -2001 (-653 *7)))) - (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) - ((*1 *1 *1 *1) (-4 *1 (-802)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201 (-653 *4))) (-4 *4 (-859)) - (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *2)) (-5 *1 (-181 *2)) (-4 *2 (-314)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-653 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-314)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *8)) - (-5 *4 - (-653 - (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-698 *7))))) - (-5 *5 (-780)) (-4 *8 (-1256 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-357)) - (-5 *2 - (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-698 *7)))) - (-5 *1 (-507 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) + (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) + (-4 *3 (-566))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) + (-4 *5 (-803)) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1050)) + (-5 *1 (-756))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1064)) + (-5 *1 (-1044 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) +(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-1135)) (-4 *4 (-358)) + (-5 *1 (-538 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) + (-4 *3 (-1115)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-241 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1115)) + (-5 *1 (-747 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188 *1)) (-4 *1 (-1027))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1286)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1286))))) (((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) - (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-673 *4 *5))) - (-5 *1 (-636 *4 *5 *6)) (-4 *5 (-13 (-174) (-726 (-416 (-573))))) - (-14 *6 (-931))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-416 (-573)))) - (-5 *2 (-2 (|:| -2225 (-1169 *4)) (|:| -2236 (-1169 *4)))) - (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1116)) (-5 *1 (-286))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-477)) (-5 *3 (-653 (-269))) (-5 *1 (-1281)))) - ((*1 *1 *1) (-5 *1 (-1281)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) + (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-958 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-439 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) - (-4 *4 (-1256 (-573))) (-5 *2 (-746 (-780))) (-5 *1 (-451 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-427 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1061)) - (-5 *2 (-746 (-780))) (-5 *1 (-453 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) - (-14 *3 (-653 (-1189)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-4 *2 (-1256 *5)) - (-5 *1 (-1274 *5 *2 *6 *3)) (-4 *6 (-665 *2)) (-4 *3 (-1271 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) + (-12 (-5 *3 (-654 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) + (-15 -2981 ((-1140 *4 (-622 $)) $)) + (-15 -2950 ($ (-1140 *4 (-622 $))))))) + (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-622 *2))) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) + (-15 -2981 ((-1140 *4 (-622 $)) $)) + (-15 -2950 ($ (-1140 *4 (-622 $))))))) + (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))) +(((*1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *1) + (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1192))))) +(((*1 *1) (-5 *1 (-588))) + ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-873)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-872)) (-5 *2 (-1288)) (-5 *1 (-873)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1172 *4)) + (-4 *4 (-1115)) (-4 *4 (-1233))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)) - (-4 *2 (-461)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-1256 (-573))) (-5 *2 (-653 (-573))) - (-5 *1 (-495 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *3 (-461))))) + (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1064))))) (((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-653 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |k| (-903 *3)) (|:| |c| *4)))) - (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-681 *3))) (-5 *1 (-903 *3)) (-4 *3 (-859))))) -(((*1 *1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) -(((*1 *1 *1) (-5 *1 (-871))) + (-12 (-5 *3 (-699 (-417 (-965 (-574))))) (-5 *2 (-654 (-324 (-574)))) + (-5 *1 (-1046))))) +(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1108 *3)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1233)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1189))))) -(((*1 *1) (-5 *1 (-587))) - ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-872)))) - ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1169 *4)) - (-4 *4 (-1112)) (-4 *4 (-1230))))) -(((*1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) - (-4 *2 (-461)))) - ((*1 *1 *1) - (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) - (-4 *4 (-1256 (-416 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *3 (-461)))) - ((*1 *1 *1) - (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-1176 *3 *2)) - (-4 *2 (-1256 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-301 (-842 *3))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-842 *3)) (-5 *1 (-645 *5 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-5 *1 (-1250 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4))) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 (-842 (-962 *5)))) (-4 *5 (-461)) - (-5 *2 (-842 (-416 (-962 *5)))) (-5 *1 (-646 *5)) - (-5 *3 (-416 (-962 *5))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *6 *7 *8 *3 *4)) (-4 *4 (-1124 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) - (-4 *5 (-461)) (-5 *2 (-842 *3)) (-5 *1 (-646 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1105 *3)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1230)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1106 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) - (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-989 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-746 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) - ((*1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-1252 *4 *2)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-700 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461))))) -(((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-566)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1259 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-654 (-654 (-956 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-654 (-654 (-956 (-227)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-1308))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1230)) - (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) + (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *2 *7)) (-4 *6 (-1061)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) - (-4 *5 (-461)) - (-5 *2 - (-2 (|:| |gblist| (-653 (-252 *4 *5))) - (|:| |gvlist| (-653 (-573))))) - (-5 *1 (-640 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) + (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-654 *4))) (-5 *1 (-917 *4)) + (-5 *3 (-654 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1115)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-917 *4)) + (-5 *3 (-1117 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-314)) - (-5 *2 (-416 (-427 (-962 *4)))) (-5 *1 (-1054 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1256 (-171 *3)))))) + (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-5 *2 (-574)) + (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1259 *5)) + (-4 *6 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1259 *4)) + (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-764))))) (((*1 *2) - (-12 (-4 *4 (-371)) (-5 *2 (-931)) (-5 *1 (-335 *3 *4)) - (-4 *3 (-336 *4)))) - ((*1 *2) - (-12 (-4 *4 (-371)) (-5 *2 (-842 (-931))) (-5 *1 (-335 *3 *4)) - (-4 *3 (-336 *4)))) - ((*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) - ((*1 *2) - (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1259 *5)) + (-5 *1 (-737 *5 *2)) (-4 *5 (-372))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) + (-4 *3 (-13 (-372) (-148) (-1053 (-574)))) (-5 *1 (-578 *3 *4))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) - (-5 *2 (-653 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-746 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-448))) (-5 *1 (-874))))) -(((*1 *1 *1) - (-12 (-4 *2 (-314)) (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) - (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282))))) -(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) -(((*1 *2) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) - (-5 *2 (-112))))) + (-12 (-4 *2 (-1115)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-654 (-1192))) (|:| |pred| (-52)))) + (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1180 *4 *5)) + (-14 *4 (-934)) (-4 *5 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) (((*1 *2 *2) - (-12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) - (-14 *4 (-653 (-1189))))) - ((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6)))) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) - (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) - ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-482))) - ((*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-893)))) - ((*1 *1 *1) (-5 *1 (-983))) - ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-931) (-931)))) (-5 *1 (-983))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246))))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1284)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) - (-5 *1 (-339))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1256 (-416 (-573)))) - (-5 *2 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))) - (-5 *1 (-923 *3 *4)) (-4 *4 (-1256 (-416 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) - (-4 *3 (-1256 (-416 *4)))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-852 *4)) (-5 *3 (-621 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1215) (-29 *6))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) - (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-337))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *8 (-1077 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-653 *8)) - (|:| |towers| (-653 (-1039 *5 *6 *7 *8))))) - (-5 *1 (-1039 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *8 (-1077 *5 *6 *7)) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) + (-5 *5 (-1 (-428 *7) *7)) + (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) + (-5 *5 (-1 (-428 *7) *7)) + (-4 *6 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *7 (-1259 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) + (-4 *6 (-1259 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1259 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) + (-4 *6 (-1259 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) + (-4 *4 (-1259 *2))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-965 *6)) (-5 *4 (-1192)) + (-5 *5 (-853 *7)) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-4 *7 (-13 (-1218) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1188 *6)) (-5 *4 (-853 *6)) + (-4 *6 (-13 (-1218) (-29 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1192)) + (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) + (-5 *2 + (-2 (|:| -1527 (-417 (-965 *5))) (|:| |coeff| (-417 (-965 *5))))) + (-5 *1 (-580 *5)) (-5 *3 (-417 (-965 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-2 (|:| |val| (-653 *8)) - (|:| |towers| (-653 (-1158 *5 *6 *7 *8))))) - (-5 *1 (-1158 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *1)))) - (-4 *1 (-1083 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-813 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1215) (-969)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-250 *3))))) + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-1280 *5))) (-5 *4 (-573)) (-5 *2 (-1280 *5)) - (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2) + (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-662 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) + (-5 *2 (-872)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)) + (-4 *3 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-174)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *2 (-416 *2))) (-4 *2 (-1256 *4)) - (-5 *1 (-819 *4 *2)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) - (-5 *2 (-1047)) (-5 *1 (-754))))) + (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-965 (-171 *4)))) (-4 *4 (-566)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-417 (-965 (-171 *5)))) (-5 *4 (-934)) + (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) + (-5 *1 (-795 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1172 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) + (-5 *1 (-1203 *4)) (-4 *4 (-860))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-289 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3692 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1907 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3821 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-568)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-704 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3692 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -1907 - (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) - (|:| |expense| (-387)) (|:| |accuracy| (-387)) - (|:| |intermediateResults| (-387)))))) - (-5 *1 (-812)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1171))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) +(((*1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) - (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 *3)))) - (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) - (-4 *7 (-665 (-416 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) - (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 (-663 *6 (-416 *6)))))) - (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) - (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) + (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) + (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1274 *5)) + (-5 *1 (-1276 *5 *2))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) + (-5 *2 (-654 (-956 *4))) (-5 *1 (-1229)) (-5 *3 (-956 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *1) (-5 *1 (-587)))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) - (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) + (-12 (-4 *4 (-830)) (-14 *5 (-1192)) (-5 *2 (-654 (-1256 *5 *4))) + (-5 *1 (-1129 *4 *5)) (-5 *3 (-1256 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-4 *1 (-916 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) + (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-5 *1 (-1003 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-193)) (-5 *3 (-573)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-887 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-889 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-892 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-698 (-227))) (-5 *6 (-112)) (-5 *7 (-698 (-573))) - (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) -(((*1 *1) (-5 *1 (-832)))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-554))) - ((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) - (-5 *2 (-1047)) (-5 *1 (-757))))) -(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-5 *1 (-1122 *3 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) + (-5 *1 (-1144 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) + (-5 *1 (-1144 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112)))) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1050 (-573))))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) + (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1204 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1283 *5)) (-4 *5 (-315)) + (-4 *5 (-1064)) (-5 *2 (-699 *5)) (-5 *1 (-1044 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1125)) (-5 *3 (-574))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1115)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (-5 *1 (-103 *2))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-555))) + ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34)))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-1078))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) + (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-654 *9)))) + (-5 *3 (-654 *9)) (-4 *1 (-1226 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-654 *8)))) + (-5 *3 (-654 *8)) (-4 *1 (-1226 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-962 *7 *5 *6)) + (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-315))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1075)) (-4 *3 (-1218)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *4 (-1189)) - (-5 *1 (-1192)))) + (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *4 (-1192)) + (-5 *1 (-1195)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1195)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1193)))) + (-12 (-5 *2 (-447)) (-5 *3 (-1192)) (-5 *1 (-1196)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *1 (-1193))))) + (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1192))) (-5 *1 (-1196))))) (((*1 *2 *3) - (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) - (-5 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) + (-4 *2 + (-13 (-412) + (-10 -7 (-15 -2950 (*2 *4)) (-15 -3880 ((-934) *2)) + (-15 -3907 ((-1283 *2) (-934))) (-15 -3337 (*2 *2))))) + (-5 *1 (-365 *2 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) - (-4 *2 (-1061))))) -(((*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-416 (-573))) (-4 *1 (-563 *3)) - (-4 *3 (-13 (-413) (-1215))))) - ((*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) + (-12 (-5 *2 (-173)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) (((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 - (-2 (|:| |solns| (-653 *5)) - (|:| |maps| (-653 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1140 *3 *5)) (-4 *3 (-1256 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) - (-5 *2 (-653 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) + (-5 *1 (-963 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1233)) + (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307))))) -(((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-830))))) + (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *6 *7 *2)) (-4 *6 (-1064)) + (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1050)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-372) (-148))) + (-5 *2 (-654 (-2 (|:| -3843 (-781)) (|:| -3332 *4) (|:| |num| *4)))) + (-5 *1 (-409 *3 *4)) (-4 *4 (-1259 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1114 (-780))) (-5 *6 (-780)) - (-5 *2 - (-2 (|:| |contp| (-573)) - (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) - (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) + (-5 *1 (-1234 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-5 *2 (-1288)) + (-5 *1 (-1234 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1172 *4))) (-5 *1 (-293 *4 *5)) + (-5 *3 (-1172 *4)) (-4 *5 (-1274 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-587)))) + ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587))))) +(((*1 *1 *1 *1) (-4 *1 (-555)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) - (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) - (-4 *3 (-1230)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) + (-4 *3 (-1233)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) - (-4 *3 (-1230)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4459)) (-4 *1 (-120 *3)) + (-4 *3 (-1233)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) - (-4 *2 (-1230)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1189)) (-5 *1 (-641)))) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) + (-4 *2 (-1233)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1192)) (-5 *1 (-642)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1247 (-573))) (|has| *1 (-6 -4456)) (-4 *1 (-660 *2)) - (-4 *2 (-1230)))) + (-12 (-5 *3 (-1250 (-574))) (|has| *1 (-6 -4459)) (-4 *1 (-661 *2)) + (-4 *2 (-1233)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) - (-4 *2 (-1230)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) + (-4 *2 (-1233)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) - (-4 *2 (-1230)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) + (-4 *2 (-1233)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) - (-4 *3 (-1230)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *3)) + (-4 *3 (-1233)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) - (-4 *2 (-1230))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-700 (-287)))) (-5 *1 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-847)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-1127)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1194))) (-5 *3 (-1194)) (-5 *1 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-653 *5) *6)) - (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) - (-5 *2 (-653 (-2 (|:| -1705 *5) (|:| -4122 *3)))) - (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) - (-4 *7 (-665 (-416 *6)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1138 *4 *3 *5))) (-4 *4 (-38 (-416 (-573)))) - (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *1 (-1138 *4 *3 *5)) - (-4 *5 (-959 *4 (-540 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1224 *4))) (-5 *3 (-1189)) (-5 *1 (-1224 *4)) - (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) + (-4 *2 (-1233))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-573)))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-5 *2 (-654 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) -(((*1 *2 *1) - (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2))))) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1172 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-736)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-654 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1064)) (-5 *2 (-1172 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-449)))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-848)))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1130)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1197))) (-5 *3 (-1197)) (-5 *1 (-1133))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) - (-5 *2 (-653 (-780))) (-5 *1 (-787 *3 *4 *5 *6 *7)) - (-4 *3 (-1256 *6)) (-4 *7 (-959 *6 *4 *5))))) + (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-382 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) + (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *4)) (-4 *4 (-1007 *2)) (-4 *2 (-566)) + (-5 *1 (-703 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1007 *2)) (-4 *2 (-566)) (-5 *1 (-1252 *2 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *1 (-604 *3)) (-4 *3 (-1061))))) + (-12 (-4 *1 (-1053 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-372)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) + (-5 *2 + (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) + (-5 *1 (-993 *6)) (-5 *3 (-699 *6))))) +(((*1 *1) (-5 *1 (-299)))) +(((*1 *1) (-5 *1 (-1078)))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *3 *5)) + (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *5 (-666 (-417 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1259 *4)) (-5 *1 (-817 *4 *2 *5 *3)) + (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-666 *2)) + (-4 *3 (-666 (-417 *2)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-274))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-1064)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-1259 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) (((*1 *2 *1) - (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-1280 (-698 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) - (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 (-698 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) - (-5 *2 (-1280 (-698 (-416 (-962 *5))))) (-5 *1 (-1098 *5)) - (-5 *4 (-698 (-416 (-962 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) - (-5 *2 (-1280 (-698 (-962 *5)))) (-5 *1 (-1098 *5)) - (-5 *4 (-698 (-962 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) - (-5 *2 (-1280 (-698 *4))) (-5 *1 (-1098 *4))))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *1) (-4 *1 (-291))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *1) (-4 *1 (-292))) ((*1 *2 *3) - (-12 (-5 *3 (-427 *4)) (-4 *4 (-565)) - (-5 *2 (-653 (-2 (|:| -1857 (-780)) (|:| |logand| *4)))) - (-5 *1 (-327 *4)))) + (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) + (-5 *2 (-654 (-2 (|:| -1868 (-781)) (|:| |logand| *4)))) + (-5 *1 (-328 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *1) - (-12 (-5 *2 (-673 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) + (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) - (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) - (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) -(((*1 *2) - (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) - (-4 *3 (-336 *4)))) - ((*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-780))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) - (-4 *2 (-1230))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-439 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-439 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) - (-5 *1 (-282 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-308 *4)) (-4 *4 (-309)))) - ((*1 *2 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1112)) (-5 *2 (-112)) - (-5 *1 (-438 *4 *5)) (-4 *4 (-439 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) - (-5 *1 (-440 *4 *5)) (-4 *5 (-439 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) - (-5 *1 (-639 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215)))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) + (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) + (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) + (-5 *1 (-340)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1192)) (-5 *4 (-1107 (-965 (-574)))) (-5 *2 (-338)) + (-5 *1 (-340)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1064)) + (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-761))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1192))) (-5 *1 (-641 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) - (-4 *2 (-371)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-227)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-4 *2 (-372)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) - (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) - ((*1 *1 *1 *1) (-4 *1 (-371))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) + (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) + ((*1 *1 *1 *1) (-4 *1 (-372))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-565)) (-4 *3 (-1112)) - (-4 *1 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-482))) + (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-4 *1 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-545))) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-546))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-735) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-736) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-735) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)) (-4 *2 (-371)))) + (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-736) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-726 *4)) - (-4 *3 (|SubsetCategory| (-735) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) + (-4 *3 (|SubsetCategory| (-736) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)) - (-4 *2 (|SubsetCategory| (-735) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) + (-4 *2 (|SubsetCategory| (-736) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)) (-4 *2 (-371)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)) (-4 *2 (-372)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-875 *2 *3 *4 *5)) (-4 *2 (-371)) - (-4 *2 (-1061)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-780))) - (-14 *5 (-780)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) + (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) + (-4 *2 (-1064)) (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-781))) + (-14 *5 (-781)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-371)))) + (-12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) + (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-371)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-372)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-859)) - (-4 *4 (-802)) (-14 *6 (-653 *3)) - (-5 *1 (-1292 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-959 *2 *4 *3)) - (-14 *7 (-653 (-780))) (-14 *8 (-780)))) + (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1064)) (-4 *3 (-860)) + (-4 *4 (-803)) (-14 *6 (-654 *3)) + (-5 *1 (-1295 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-962 *2 *4 *3)) + (-14 *7 (-654 (-781))) (-14 *8 (-781)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-371)) (-4 *2 (-1061)) - (-4 *3 (-855))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) + (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1064)) + (-4 *3 (-856))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) + (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-701 (-288))) (-5 *1 (-169))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1015 *3))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) (((*1 *2 *2) (-12 (-5 *2 - (-513 (-416 (-573)) (-245 *4 (-780)) (-873 *3) - (-252 *3 (-416 (-573))))) - (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-514 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1192)) (-5 *3 (-1189))))) + (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) + (-253 *3 (-417 (-574))))) + (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) - (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) - (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-780) *2)) (-5 *4 (-780)) (-4 *2 (-1112)) - (-5 *1 (-687 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-780) *3)) (-4 *3 (-1112)) (-5 *1 (-691 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-337))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1230)) - (-4 *5 (-1230)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-780)) - (-4 *7 (-1230)) (-4 *5 (-1230)) (-5 *2 (-245 *6 *5)) - (-5 *1 (-244 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1230)) (-4 *5 (-1230)) - (-4 *2 (-381 *5)) (-5 *1 (-379 *6 *4 *5 *2)) (-4 *4 (-381 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) - (-4 *2 (-434 *5)) (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-434 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-653 *6)) (-4 *6 (-1230)) - (-4 *5 (-1230)) (-5 *2 (-653 *5)) (-5 *1 (-651 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-968 *6)) (-4 *6 (-1230)) - (-4 *5 (-1230)) (-5 *2 (-968 *5)) (-5 *1 (-967 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1169 *6)) (-4 *6 (-1230)) - (-4 *3 (-1230)) (-5 *2 (-1169 *3)) (-5 *1 (-1167 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1280 *6)) (-4 *6 (-1230)) - (-4 *5 (-1230)) (-5 *2 (-1280 *5)) (-5 *1 (-1279 *6 *5))))) + (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) + (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *5)) + (-4 *5 (-1259 (-417 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) +(((*1 *1 *2) + (-12 (-5 *2 (-699 *4)) (-4 *4 (-1064)) (-5 *1 (-1157 *3 *4)) + (-14 *3 (-781))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-984 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) - (-15 -1974 ((-1285) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) + (-15 -2394 ((-1288) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) - ((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-21))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1100))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1) (-5 *1 (-871))) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1) (-5 *1 (-872))) ((*1 *2 *3) - (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-693 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2)))) + (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1237)) + (-4 *6 (-1259 (-417 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-351 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-5 *2 (-387)) (-5 *1 (-794 *3)) - (-4 *3 (-623 *2)))) + (-12 (-5 *4 (-934)) (-5 *2 (-388)) (-5 *1 (-795 *3)) + (-4 *3 (-624 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) - (-5 *2 (-387)) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-965 *4)) (-4 *4 (-1064)) (-4 *4 (-624 *2)) + (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-965 *5)) (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) - (-5 *2 (-387)) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) + (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-934)) (-4 *5 (-566)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) + (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) - (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) - (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) - (-5 *3 (-653 (-573)))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) - ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-975)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1001)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-934)) (-4 *5 (-566)) (-4 *5 (-860)) + (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) + (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1283 *5)) + (-5 *1 (-648 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 *5))) + (-2086 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1283 (-417 *5))) + (-5 *1 (-648 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1259 *4)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-978)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1004)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *2 *3)) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-5 *1 (-906 *2 *4)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) - (-4 *3 (-657 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061))))) + (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *2 *3)) + (-4 *3 (-13 (-1115) (-34)))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) - (-15 -1974 ((-1285) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) + (-15 -2394 ((-1288) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1233)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)))) + (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *2)) - (-4 *2 (-1256 *3)))) + (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-1259 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-545))) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-546))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-25))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) - (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef2| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) -(((*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-25))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-780)) (-5 *3 (-953 *4)) (-4 *1 (-1146 *4)) - (-4 *4 (-1061)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-953 (-227))) (-5 *2 (-1285)) - (-5 *1 (-1282))))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) + (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-2 (|:| -1527 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-835))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) + (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-1080 *3 *4 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 (-573)))) (-5 *1 (-475))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-461)) (-4 *4 (-859)) - (-4 *5 (-802)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) - (-15 -2975 ((-1137 *4 (-621 $)) $)) - (-15 -2942 ($ (-1137 *4 (-621 $))))))) - (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-621 *2))) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) - (-15 -2975 ((-1137 *4 (-621 $)) $)) - (-15 -2942 ($ (-1137 *4 (-621 $))))))) - (-4 *4 (-565)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-653 (-653 (-953 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-653 (-653 (-953 (-227)))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) - (-4 *3 (-13 (-371) (-148) (-1050 (-573)))) (-5 *1 (-577 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) - ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) + (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) + ((*1 *2 *3) + (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) (((*1 *2) - (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-5 *1 (-1000 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574))))) ((*1 *2 *2) - (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-5 *1 (-1119 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-1075))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1) (-5 *1 (-1075)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-12 (-5 *2 (-934)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1192))) + ((*1 *1) (-12 (-5 *1 (-1198 *2)) (-14 *2 (-934)))) + ((*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) + ((*1 *1) (-5 *1 (-1238))) ((*1 *1) (-5 *1 (-1239))) + ((*1 *1) (-5 *1 (-1240))) ((*1 *1) (-5 *1 (-1241)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174)) (-5 *2 (-574)) (-5 *1 (-1215 *4)) + (-4 *4 (-1064))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1226 *4 *5 *6 *7)) + (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1192))) + (-4 *4 (-462)) (-5 *1 (-641 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1188 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) + (-4 *7 (-860)) (-4 *8 (-1064)) (-4 *9 (-962 *8 *6 *7)) + (-4 *6 (-803)) (-5 *2 (-1188 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-711))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1100))) (-5 *1 (-299))))) +(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1233)) (-4 *2 (-1115)))) + ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-439 *4)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1115)) + (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) - (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1097))))) -(((*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-1061)))) - ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-653 *7))) (-4 *1 (-1223 *4 *5 *6 *7)) - (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1115)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) + (-5 *1 (-724 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *9 (-1080 *6 *7 *8)) + (-5 *2 + (-654 + (-2 (|:| -4096 (-654 *9)) (|:| -4067 *10) (|:| |ineq| (-654 *9))))) + (-5 *1 (-1003 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1086 *6 *7 *8 *9)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *9 (-1080 *6 *7 *8)) + (-5 *2 + (-654 + (-2 (|:| -4096 (-654 *9)) (|:| -4067 *10) (|:| |ineq| (-654 *9))))) + (-5 *1 (-1122 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) (((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-698 (-1185 *8))) (-4 *5 (-1061)) (-4 *8 (-1061)) - (-4 *6 (-1256 *5)) (-5 *2 (-698 *6)) (-5 *1 (-510 *5 *6 *7 *8)) - (-4 *7 (-1256 *6))))) + (-5 *4 (-699 (-1188 *8))) (-4 *5 (-1064)) (-4 *8 (-1064)) + (-4 *6 (-1259 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) + (-4 *7 (-1259 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-1180 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285)))) + ((*1 *2 *1) (-12 (-5 *2 (-1148 (-227))) (-5 *1 (-1285))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) + (-5 *1 (-700 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *2 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) + (|:| |f4| (-654 *5)))) + (-5 *1 (-1203 *6)) (-5 *4 (-654 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-427 *4)) (-4 *4 (-565))))) + (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-428 *4)) (-4 *4 (-566))))) +(((*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) + ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-699 *4)) (-4 *5 (-666 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-306 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-940)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-940)) (-5 *4 (-417 (-574))) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154)) (-5 *3 (-654 (-956 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 (-227))))) + (|:| |xValues| (-1109 (-227))) (|:| |yValues| (-1109 (-227))))) + (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-370 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1115)) (-5 *1 (-659 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1106 (-852 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-312)))) + (-12 (-5 *4 (-1109 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-313)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) - (-4 *3 (-1256 *4)) - (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *3 (-910 *6)) - (-5 *2 (-698 *3)) (-5 *1 (-701 *6 *3 *7 *4)) (-4 *7 (-381 *3)) - (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455))))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) - (-4 *5 (-896 (-573))) - (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) - (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) - (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) - (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-371)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) - (-5 *1 (-775 *3 *4)) (-4 *3 (-717 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) - (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) - (-4 *3 (-861 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) - (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) + (-12 (-5 *3 (-1283 *6)) (-5 *4 (-1283 (-574))) (-5 *5 (-574)) + (-4 *6 (-1115)) (-5 *2 (-1 *6)) (-5 *1 (-1032 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) + *6)) + (-4 *6 (-372)) (-4 *7 (-1259 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1192)) (-4 *4 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) + (-4 *1 (-440 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) + (-4 *1 (-440 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) + (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3843 (-574)))) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3843 (-781)))) + (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-962 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3843 (-781)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3843 (-574)))) + (-5 *1 (-963 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1064)) + (-5 *1 (-724 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-846 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1259 *4)) + (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) + (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) (((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) - (-4 *3 (-959 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| (-653 *3)))) - (-5 *1 (-963 *5 *6 *7 *3 *8)) (-5 *4 (-780)) - (-4 *8 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *3)) (-15 -2965 (*3 $)) (-15 -2975 (*3 $)))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) - (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) - (-4 *4 (-13 (-565) (-1050 (-573)) (-148))) (-5 *1 (-579 *4))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) - (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) - (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-930))))) -(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) -(((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-371) (-857))) (-4 *3 (-1256 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-753 *3)) (-4 *3 (-174))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *2 (-653 (-227))) (-5 *1 (-312))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) - (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) - (-4 *3 (-861 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) - ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) - ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) - ((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-1169 (-573)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) - (-5 *1 (-609 *4 *2 *3)) - (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1185 *7)) (-5 *3 (-573)) (-4 *7 (-959 *6 *4 *5)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-5 *1 (-328 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-130))))) -(((*1 *1) (-5 *1 (-1281)))) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1228 *3)) + (-5 *1 (-800 *3)) (-4 *3 (-989)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1228 *2)) (-4 *2 (-989))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *3 (-913 *6)) + (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) + (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458))))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130))))) (((*1 *2) - (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) - (-4 *3 (-565)))) + (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) + (-4 *3 (-566)))) ((*1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-4 *1 (-1215)))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-936))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-780)) (-5 *5 (-653 *3)) (-4 *3 (-314)) (-4 *6 (-859)) - (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-634 *6 *7 *3 *8)) - (-4 *8 (-959 *3 *7 *6))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-783)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-783)) (-5 *1 (-115))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) - (-5 *3 (-653 *7)) (-4 *4 (-13 (-314) (-148))) - (-4 *7 (-959 *4 *6 *5)) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *1 (-1173 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) - (-5 *2 (-1185 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1218)))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *5)) (-4 *5 (-1259 *3)) (-4 *3 (-315)) + (-5 *2 (-112)) (-5 *1 (-465 *3 *5))))) (((*1 *2) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-653 (-653 *4))) (-5 *1 (-349 *3 *4 *5 *6)) - (-4 *3 (-350 *4 *5 *6)))) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-4 *3 (-376)) (-5 *2 (-653 (-653 *3)))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2705 *5)))) + (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) + (-4 *6 (-666 (-417 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2705 *4)))) + (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) + (-4 *6 (-666 (-417 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2705 *5)))) + (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) + (-4 *3 (-666 (-417 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *4 (-1259 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2705 *4)))) + (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) + (-4 *3 (-666 (-417 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-588))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) - (-5 *1 (-706))))) -(((*1 *2 *3) - (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) - (-5 *2 (-931))))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) + (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-567 *6 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-917 *4)) + (-4 *4 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1192)) (-4 *5 (-624 (-903 (-574)))) + (-4 *5 (-897 (-574))) + (-4 *5 (-13 (-1053 (-574)) (-462) (-649 (-574)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) + (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) + (-4 *2 (-1243 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-1050 (-573))) (-4 *3 (-565)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-439 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1185 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1061)) (-4 *1 (-309)))) - ((*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) - ((*1 *2) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) - (-4 *2 (-1256 *3))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307))))) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-654 *4)) + (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))))) + (-5 *1 (-1160 *5 *6 *7 *3 *4)) (-4 *4 (-1124 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) + (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1115)) (-4 *4 (-1233)) (-5 *2 (-112)) + (-5 *1 (-1172 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-654 *3)) (-5 *1 (-992 *4 *5 *6 *3)) + (-4 *3 (-1080 *4 *5 *6))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1230))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1041 *3)) (-4 *3 (-1233))))) (((*1 *2 *3) - (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) - (-5 *2 (-490 *4 *5)) (-5 *1 (-640 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-554))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)) - (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-931)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-801)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1261 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1259 *5)) + (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) + (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) + (-5 *1 (-924 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-925 *4 *5 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-4 *2 (-314)) - (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) + (-12 (-4 *3 (-1007 *2)) (-4 *4 (-1259 *3)) (-4 *2 (-315)) + (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1053 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) + (-12 (-4 *3 (-566)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) - (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) + (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) - (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-653 (-323 (-227)))) - (|:| |constraints| - (-653 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-780)) (|:| |boundaryType| (-573)) - (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) - (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) + (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) + (-4 *3 (-962 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| (-654 *3)))) + (-5 *1 (-966 *5 *6 *7 *3 *8)) (-5 *4 (-781)) + (-4 *8 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *3)) (-15 -2970 (*3 $)) (-15 -2981 (*3 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-934)) (-4 *3 (-372)) + (-14 *4 (-1008 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *1) (|partial| -4 *1 (-732))) + ((*1 *1 *1) (|partial| -4 *1 (-736))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) + (-4 *2 (-1259 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-857)) (-4 *4 (-371)) (-5 *2 (-780)) - (-5 *1 (-955 *4 *5)) (-4 *5 (-1256 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) - (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-1094)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-546 *4 *2)) - (-4 *2 (-1271 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) - (-4 *5 (-1256 *4)) (-4 *6 (-733 *4 *5)) (-5 *1 (-550 *4 *5 *6 *2)) - (-4 *2 (-1271 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) - (-5 *1 (-551 *4 *2)) (-4 *2 (-1271 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) - (-5 *1 (-1165 *4))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1283 (-3 (-478) "undefined"))) (-5 *1 (-1284))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) - (-14 *4 (-653 (-1189))))) + (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) + (-14 *4 (-654 (-1192))))) ((*1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) - (-14 *4 (-653 (-1189))))) - ((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) + (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1064) (-860))) + (-14 *4 (-654 (-1192))))) + ((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-343 *3 *4 *5 *2)) (-4 *3 (-371)) - (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-4 *2 (-350 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) + (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-4 *2 (-351 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-733 *2 *3)) (-4 *3 (-1256 *2))))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1259 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) - (-5 *2 - (-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) - (|:| |singularities| (-1169 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *6 (-623 (-1189))) - (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *2 (-1178 (-653 (-962 *4)) (-653 (-301 (-962 *4))))) - (-5 *1 (-513 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-112)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1192))) + (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-1188 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1188 *3))) + (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1115))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) + (-14 *5 (-1192)) (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) - (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) + (-12 (-4 *3 (-315)) (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) + (-5 *2 (-1283 *6)) (-5 *1 (-423 *3 *4 *5 *6)) + (-4 *6 (-13 (-419 *4 *5) (-1053 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) + (-12 (-4 *3 (-1064)) (-4 *3 (-1115)) (-5 *2 (-1140 *3 (-622 *1))) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-630 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-735) *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-736) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-726 *3)) (-5 *1 (-671 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-735) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *7)) (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7))))) + (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-736) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) (((*1 *2 *3) - (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) - (-5 *2 (-1047)) (-5 *1 (-849))))) + (-12 (-5 *3 (-1283 *5)) (-4 *5 (-13 (-1064) (-649 *4))) + (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1021))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) + (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1189)) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-4 *4 (-13 (-29 *6) (-1215) (-969))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) - (-5 *1 (-810 *6 *4 *3)) (-4 *3 (-665 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-890))))) -(((*1 *1) (-5 *1 (-606)))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 (-2 (|:| -3861 (-416 *6)) (|:| |coeff| (-416 *6)))) - (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-152 *3)))) + (-12 (-4 *6 (-1259 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) + (-4 *10 (-962 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-654 (-1188 *10))) + (|:| |dterm| + (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) + (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1188 *10)) (-5 *4 (-654 *6)) + (-5 *5 (-654 *10))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-849)) + (-5 *3 + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *2 (-1050)))) + ((*1 *2 *3) + (-12 (-4 *1 (-849)) + (-5 *3 + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *2 (-1050))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) - (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) + (-5 *2 (-654 (-2 (|:| -3843 (-781)) (|:| -3332 *4) (|:| |num| *4)))) + (-4 *4 (-1259 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-112)) (-5 *1 (-446)))) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-5 *3 (-653 (-1189))) (-5 *4 (-112)) (-5 *1 (-446)))) + (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-5 *3 (-654 (-1192))) (-5 *4 (-112)) (-5 *1 (-447)))) ((*1 *2 *1) - (-12 (-5 *2 (-1169 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1172 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) + (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) + (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) + (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 (-653 *3)))) (-4 *3 (-1112)) - (-5 *1 (-684 *3)))) + (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1115)) + (-5 *1 (-685 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-722 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1112)) + (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1115)) (-14 *4 - (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) - (-2 (|:| -2575 *2) (|:| -3907 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-847)))) + (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *3)) + (-2 (|:| -2590 *2) (|:| -3843 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1133)) (-5 *1 (-848)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) + (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) - (-4 *4 (-1112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-654 (-2 (|:| -3666 (-1192)) (|:| -1918 *4)))) + (-4 *4 (-1115)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *5)) (-4 *5 (-13 (-1112) (-34))) - (-5 *2 (-653 (-1152 *3 *5))) (-5 *1 (-1152 *3 *5)) - (-4 *3 (-13 (-1112) (-34))))) + (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1115) (-34))) + (-5 *2 (-654 (-1155 *3 *5))) (-5 *1 (-1155 *3 *5)) + (-4 *3 (-13 (-1115) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| |val| *4) (|:| -4090 *5)))) - (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) - (-5 *2 (-653 (-1152 *4 *5))) (-5 *1 (-1152 *4 *5)))) + (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4067 *5)))) + (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) + (-5 *2 (-654 (-1155 *4 *5))) (-5 *1 (-1155 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4))) - (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) - (-5 *1 (-1152 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4067 *4))) + (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34))) + (-5 *1 (-1155 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34))))) + (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-13 (-1112) (-34))) - (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))))) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1115) (-34))) + (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1152 *2 *3))) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)))) + (-12 (-5 *4 (-654 (-1155 *2 *3))) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34))) (-5 *1 (-1156 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1153 *2 *3))) (-5 *1 (-1153 *2 *3)) - (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) + (-12 (-5 *4 (-654 (-1156 *2 *3))) (-5 *1 (-1156 *2 *3)) + (-4 *2 (-13 (-1115) (-34))) (-4 *3 (-13 (-1115) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) + (-12 (-5 *2 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-621 *3)) - (-4 *3 (-13 (-439 *5) (-27) (-1215))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) - (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) - (-5 *2 (-1280 (-698 (-962 *4)))) (-5 *1 (-191 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) + (-12 (-5 *1 (-1181 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1050)) (-5 *3 (-1192)) (-5 *1 (-194))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) - (-4 *5 (-896 (-573))) - (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) - (-4 *3 (-13 (-27) (-1215) (-439 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1189)) (-5 *4 (-852 *2)) (-4 *2 (-1151)) - (-4 *2 (-13 (-27) (-1215) (-439 *5))) - (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) - (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) - (-5 *1 (-576 *5 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *4 (-653 (-1189))) - (-5 *2 (-653 (-653 *5))) (-5 *1 (-388 *5)) - (-4 *5 (-13 (-857) (-371))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-388 *4)) - (-4 *4 (-13 (-857) (-371)))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-387)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-309))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-780)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-931)))) + (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1218) (-440 *5))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 + (-3 (-853 *3) + (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) + (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) + "failed")) + (-5 *1 (-646 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1174)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-853 (-965 *5)))) (-4 *5 (-462)) + (-5 *2 + (-3 (-853 (-417 (-965 *5))) + (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-965 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-853 (-417 (-965 *5))) "failed"))) + "failed")) + (-5 *1 (-647 *5)) (-5 *3 (-417 (-965 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) + (-4 *5 (-462)) + (-5 *2 + (-3 (-853 *3) + (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) + (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) + "failed")) + (-5 *1 (-647 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-302 (-417 (-965 *6)))) (-5 *5 (-1174)) + (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) + (-5 *1 (-647 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) + (-4 *4 (-13 (-566) (-1053 (-574)) (-148))) (-5 *1 (-580 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) + (-4 *4 (-879 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-574)) (-4 *1 (-1245 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-1274 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1245 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1274 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) + (-14 *3 (-654 (-1192))) (-4 *4 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1192))) + (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1064)) + (-4 *5 (-244 (-2876 *3) (-781))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) + (-14 *3 (-654 (-1192))) (-4 *4 (-1064))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-797)) (-5 *2 (-1050)) + (-5 *3 + (-2 (|:| |fn| (-324 (-227))) + (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-797)) (-5 *2 (-1050)) + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *1) + (-12 (-4 *1 (-414)) (-2086 (|has| *1 (-6 -4449))) + (-2086 (|has| *1 (-6 -4441))))) + ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-860)))) + ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))) + ((*1 *2 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-860))))) +(((*1 *2 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-934)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215))) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-1127)) (-4 *2 (-1233)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1115)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-389 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)))) + (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-860)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) - (-4 *6 (-243 (-2862 *3) (-780))) + (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) + (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) - (-2 (|:| -2575 *5) (|:| -3907 *6)))) - (-5 *1 (-470 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) - (-4 *2 (-959 *4 *6 (-873 *3))))) + (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) + (-2 (|:| -2590 *5) (|:| -3843 *6)))) + (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) + (-4 *2 (-962 *4 *6 (-874 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) - (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-545))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-693 *5 *6 *7)))) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-546))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1064)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1073)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-694 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-696 *3 *2 *4)) (-4 *3 (-1061)) (-4 *2 (-381 *3)) - (-4 *4 (-381 *3)))) + (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1064)) (-4 *2 (-382 *3)) + (-4 *4 (-382 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-696 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *2 (-381 *3)))) + (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *2 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-729))) ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-730))) ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) - (-5 *1 (-981 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070)))) - ((*1 *1 *1 *1) (-4 *1 (-1124))) + (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) + (-5 *1 (-984 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1073)))) + ((*1 *1 *1 *1) (-4 *1 (-1127))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *2 (-243 *3 *4)) - (-4 *5 (-243 *3 *4)))) + (-12 (-4 *1 (-1138 *3 *4 *2 *5)) (-4 *4 (-1064)) (-4 *2 (-244 *3 *4)) + (-4 *5 (-244 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1135 *3 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4)))) + (-12 (-4 *1 (-1138 *3 *4 *5 *2)) (-4 *4 (-1064)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) - (-4 *2 (-959 *3 (-540 *4) *4)))) + (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) + (-4 *2 (-962 *3 (-541 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-953 (-227))) (-5 *3 (-227)) (-5 *1 (-1226)))) + (-12 (-5 *2 (-956 (-227))) (-5 *3 (-227)) (-5 *1 (-1229)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-736)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-573)) (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-21)))) + (-12 (-5 *2 (-574)) (-4 *1 (-1281 *3)) (-4 *3 (-1233)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) + (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) + (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) (((*1 *1 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-14 *6 (-1280 (-698 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) - ((*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-372)) (-14 *6 (-1283 (-699 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) + ((*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1233)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'JINT 'X 'ELAM) (-2955) (-708)))) - (-5 *1 (-61 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'JINT 'X 'ELAM) (-2962) (-709)))) + (-5 *1 (-61 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'XC) (-708)))) - (-5 *1 (-63 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'XC) (-709)))) + (-5 *1 (-63 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-2955 'X) (-2955) (-708))) (-5 *1 (-64 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-348 (-2962 'X) (-2962) (-709))) (-5 *1 (-64 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-2955) (-2955 'XC) (-708))) (-5 *1 (-66 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-348 (-2962) (-2962 'XC) (-709))) (-5 *1 (-66 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955 '-1880) (-708)))) - (-5 *1 (-71 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962 '-1891) (-709)))) + (-5 *1 (-71 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'X) (-708)))) - (-5 *1 (-74 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'X) (-709)))) + (-5 *1 (-74 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'X 'EPS) (-2955 '-1880) (-708)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) - (-14 *5 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'X 'EPS) (-2962 '-1891) (-709)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) + (-14 *5 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'EPS) (-2955 'YA 'YB) (-708)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) - (-14 *5 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'EPS) (-2962 'YA 'YB) (-709)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1192)) (-14 *4 (-1192)) + (-14 *5 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-2955) (-2955 'X) (-708))) (-5 *1 (-77 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-348 (-2962) (-2962 'X) (-709))) (-5 *1 (-77 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-2955) (-2955 'X) (-708))) (-5 *1 (-78 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-348 (-2962) (-2962 'X) (-709))) (-5 *1 (-78 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'XC) (-708)))) - (-5 *1 (-79 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'XC) (-709)))) + (-5 *1 (-79 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'X) (-708)))) - (-5 *1 (-80 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962) (-2962 'X) (-709)))) + (-5 *1 (-80 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'X '-1880) (-2955) (-708)))) - (-5 *1 (-82 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'X '-1891) (-2962) (-709)))) + (-5 *1 (-82 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-698 (-347 (-2955 'X '-1880) (-2955) (-708)))) - (-5 *1 (-83 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-699 (-348 (-2962 'X '-1891) (-2962) (-709)))) + (-5 *1 (-83 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-698 (-347 (-2955 'X) (-2955) (-708)))) (-5 *1 (-84 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-699 (-348 (-2962 'X) (-2962) (-709)))) (-5 *1 (-84 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955) (-708)))) - (-5 *1 (-85 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962) (-709)))) + (-5 *1 (-85 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955 '-1880) (-708)))) - (-5 *1 (-86 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-1283 (-348 (-2962 'X) (-2962 '-1891) (-709)))) + (-5 *1 (-86 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-698 (-347 (-2955 'XL 'XR 'ELAM) (-2955) (-708)))) - (-5 *1 (-87 *3)) (-14 *3 (-1189)))) + (-12 (-5 *2 (-699 (-348 (-2962 'XL 'XR 'ELAM) (-2962) (-709)))) + (-5 *1 (-87 *3)) (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-2955 'X) (-2955 '-1880) (-708))) (-5 *1 (-89 *3)) - (-14 *3 (-1189)))) + (-12 (-5 *2 (-348 (-2962 'X) (-2962 '-1891) (-709))) (-5 *1 (-89 *3)) + (-14 *3 (-1192)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) + (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-573)) (-14 *4 (-780)))) + (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-574)) (-14 *4 (-781)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) + (-12 (-5 *2 (-1157 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) ((*1 *1 *2) - (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) + (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) ((*1 *2 *3) - (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) - (-5 *2 (-1280 (-698 (-416 (-962 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1283 (-699 *4))) (-4 *4 (-174)) + (-5 *2 (-1283 (-699 (-417 (-965 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1104 (-323 *4))) - (-4 *4 (-13 (-859) (-565) (-623 (-387)))) (-5 *2 (-1104 (-387))) - (-5 *1 (-264 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) + (-12 (-5 *3 (-1107 (-324 *4))) + (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1107 (-388))) + (-5 *1 (-265 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) ((*1 *2 *1) - (-12 (-4 *2 (-1256 *3)) (-5 *1 (-296 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1259 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) - (-14 *5 (-1189)) (-14 *6 *4) - (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) - (-5 *1 (-320 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1218) (-440 *3))) + (-14 *5 (-1192)) (-14 *6 *4) + (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) + (-5 *1 (-321 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-323 *5)) (-5 *1 (-347 *3 *4 *5)) - (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) + (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *3 *4 *2)) - (-4 *3 (-336 *4)))) + (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) + (-4 *3 (-337 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *2 *4 *3)) - (-4 *3 (-336 *4)))) + (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) + (-4 *3 (-337 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *2 (-1304 *3 *4)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *2 (-1307 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *2 (-1295 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *2 (-1298 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-708))) (-4 *1 (-391)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-392)))) - ((*1 *2 *3) (-12 (-5 *2 (-403)) (-5 *1 (-402 *3)) (-4 *3 (-1112)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) + ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1115)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-405)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-171 (-387))))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-573)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-387))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-573))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-703)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-708)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 (-323 (-710)))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-703))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-708))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-710))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) - (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) + (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-337))) (-5 *1 (-407 *3 *4 *5 *6)) - (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) + (-14 *3 (-1192)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-337)) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) - (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) + (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1192)) + (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-14 *5 (-654 (-1192))) (-14 *6 (-1196)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 *4)) (-4 *4 (-13 (-859) (-21))) - (-5 *1 (-436 *3 *4)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))))) + (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) + (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) ((*1 *1 *2) - (-12 (-5 *1 (-436 *2 *3)) (-4 *2 (-13 (-174) (-38 (-416 (-573))))) - (-4 *3 (-13 (-859) (-21))))) + (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) + (-4 *3 (-13 (-860) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-416 (-962 (-416 *3)))) (-4 *3 (-565)) (-4 *3 (-1112)) - (-4 *1 (-439 *3)))) + (-12 (-5 *2 (-417 (-965 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-962 (-416 *3))) (-4 *3 (-565)) (-4 *3 (-1112)) - (-4 *1 (-439 *3)))) + (-12 (-5 *2 (-965 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1115)) + (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-416 *3)) (-4 *3 (-565)) (-4 *3 (-1112)) - (-4 *1 (-439 *3)))) + (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1115)) + (-4 *1 (-440 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-1061)) (-4 *3 (-1112)) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-443)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-443)) (-5 *1 (-446)))) + (-12 (-5 *2 (-1140 *3 (-622 *1))) (-4 *3 (-1064)) (-4 *3 (-1115)) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-444)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-4 *1 (-449)))) - ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-449)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-449)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-708))) (-4 *1 (-449)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-709))) (-4 *1 (-450)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) - (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-450)))) + (-5 *2 (-2 (|:| |localSymbols| (-1196)) (|:| -2060 (-654 (-338))))) + (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-416 (-962 *3)))) (-4 *3 (-174)) - (-14 *6 (-1280 (-698 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-477)))) + (-12 (-5 *2 (-1283 (-417 (-965 *3)))) (-4 *3 (-174)) + (-14 *6 (-1283 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-14 *4 (-934)) (-14 *5 (-654 (-1192))))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) ((*1 *1 *2) - (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) - (-14 *5 *3) (-5 *1 (-483 *3 *4 *5)))) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1064)) (-14 *4 (-1192)) + (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-511)))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-484 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1140 (-574) (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-512)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615)))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-534)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-616)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-616 *3 *2)) (-4 *2 (-753 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1061)))) + (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) ((*1 *2 *1) - (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) + (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-644 *3 *2)) (-4 *2 (-753 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-686 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-5 *1 (-684 *3)) - (-4 *3 (-1112)))) + (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-5 *1 (-685 *3)) + (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-4 *3 (-1112)) - (-5 *1 (-684 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-1130)) (-5 *1 (-690)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-971 (-971 (-971 *3)))) (-4 *3 (-1115)) + (-5 *1 (-685 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-691)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *2)) (-4 *4 (-381 *3)) - (-4 *2 (-381 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-708))) (-5 *1 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-573))) (-5 *1 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-387)) (-5 *1 (-708)))) - ((*1 *2 *3) - (-12 (-5 *3 (-323 (-573))) (-5 *2 (-323 (-710))) (-5 *1 (-710)))) - ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) + (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) + (-4 *2 (-382 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) + ((*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) + ((*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) + ((*1 *2 *3) + (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1174)) (-5 *1 (-720)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) - (-4 *3 (-1061)) (-4 *4 (-735)) (-5 *1 (-744 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-772)))) + (-12 (-5 *2 (-654 (-2 (|:| -1868 *3) (|:| -3805 *4)))) + (-4 *3 (-1064)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-323 (-227))) - (|:| -3821 (-653 (-1106 (-852 (-227))))) + (-2 (|:| |fn| (-324 (-227))) + (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-778)))) + (-5 *1 (-779)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-323 (-227))) - (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) + (-2 (|:| |fn| (-324 (-227))) + (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-778)))) + (-5 *1 (-779)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-778)))) - ((*1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-782 *3)) (-4 *3 (-1230)))) + (-5 *1 (-779)))) + ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1233)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-817)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-833)))) + (-5 *1 (-818)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) - (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) + (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-653 (-323 (-227)))) - (|:| -3816 (-653 (-227))))))) - (-5 *1 (-850)))) + (-2 (|:| |lfn| (-654 (-324 (-227)))) + (|:| -3791 (-654 (-227))))))) + (-5 *1 (-851)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) - (-5 *1 (-850)))) + (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3791 (-654 (-227))))) + (-5 *1 (-851)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) - (-5 *1 (-850)))) - ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 (-48))) (-5 *2 (-323 (-573))) (-5 *1 (-884)))) - ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 (-48)))) (-5 *2 (-323 (-573))) - (-5 *1 (-884)))) - ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) + (-5 *1 (-851)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) + ((*1 *2 *3) + (-12 (-5 *3 (-965 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) + ((*1 *2 *3) + (-12 (-5 *3 (-417 (-965 (-48)))) (-5 *2 (-324 (-574))) + (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-653 (-323 (-227)))) + (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| - (-653 + (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-780)) (|:| |boundaryType| (-573)) - (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) - (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) - (-5 *1 (-908)))) + (-5 *1 (-911)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) + (-12 (-5 *2 (-654 (-918 *3))) (-4 *3 (-1115)) (-5 *1 (-917 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) + (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-416 (-427 *3))) (-4 *3 (-314)) (-5 *1 (-924 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-416 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) + (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-927 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315)))) ((*1 *2 *3) - (-12 (-5 *3 (-486)) (-5 *2 (-323 *4)) (-5 *1 (-929 *4)) - (-4 *4 (-565)))) - ((*1 *2 *3) (-12 (-5 *2 (-1285)) (-5 *1 (-1045 *3)) (-4 *3 (-1230)))) - ((*1 *2 *3) (-12 (-5 *3 (-319)) (-5 *1 (-1045 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-932 *4)) + (-4 *4 (-566)))) + ((*1 *2 *3) (-12 (-5 *2 (-1288)) (-5 *1 (-1048 *3)) (-4 *3 (-1233)))) + ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1048 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) - (-14 *6 (-653 *2)))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) + (-14 *6 (-654 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-565)))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-566)))) ((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) - (-4 *2 (-959 *3 (-540 *4) *4)))) + (-12 (-4 *3 (-1064)) (-4 *4 (-860)) (-5 *1 (-1141 *3 *4 *2)) + (-4 *2 (-962 *3 (-541 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) - (-4 *4 (-959 *3 (-540 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1156)))) + (-12 (-4 *3 (-1064)) (-4 *2 (-860)) (-5 *1 (-1141 *3 *2 *4)) + (-4 *4 (-962 *3 (-541 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1159)))) ((*1 *2 *3) - (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-1172 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1064)))) ((*1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1183 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1190 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) - (-14 *5 *3) (-5 *1 (-1187 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188)))) - ((*1 *2 *1) (-12 (-5 *2 (-1202 (-1189) (-446))) (-5 *1 (-1193)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3) (-12 (-5 *2 (-1210)) (-5 *1 (-1209 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) + (-14 *5 *3) (-5 *1 (-1190 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205 (-1192) (-447))) (-5 *1 (-1196)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1204 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3) (-12 (-5 *2 (-1213)) (-5 *1 (-1212 *3)) (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-5 *1 (-1224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-5 *1 (-1227 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1227 *3)) (-4 *3 (-1064)))) ((*1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1247 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1106 *3)) (-4 *3 (-1230)) (-5 *1 (-1247 *3)))) + (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1233)) (-5 *1 (-1250 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) - (-4 *3 (-1061)) (-14 *5 *3))) + (-12 (-5 *2 (-1279 *4)) (-14 *4 (-1192)) (-5 *1 (-1275 *3 *4 *5)) + (-4 *3 (-1064)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) - (-14 *5 *3) (-5 *1 (-1272 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1281)))) - ((*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-1281)) (-5 *1 (-1284)))) + (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1064)) (-14 *4 (-1192)) + (-14 *5 *3) (-5 *1 (-1275 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1284)))) + ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1284)) (-5 *1 (-1287)))) ((*1 *1 *2) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) + (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) + (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *1 (-1300 *3 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-500))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-4 *5 (-371)) - (-4 *5 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *5)))) + (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *1 (-1303 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) + (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-761))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) - (-5 *2 (-112)) (-5 *1 (-1041 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-653 (-573))) - (|:| |cols| (-653 (-573))))) - (-5 *4 (-698 *12)) (-5 *5 (-653 (-416 (-962 *9)))) - (-5 *6 (-653 (-653 *12))) (-5 *7 (-780)) (-5 *8 (-573)) - (-4 *9 (-13 (-314) (-148))) (-4 *12 (-959 *9 *11 *10)) - (-4 *10 (-13 (-859) (-623 (-1189)))) (-4 *11 (-802)) - (-5 *2 - (-2 (|:| |eqzro| (-653 *12)) (|:| |neqzro| (-653 *12)) - (|:| |wcond| (-653 (-962 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *9)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *9))))))))) - (-5 *1 (-934 *9 *10 *11 *12))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-857)) (-5 *1 (-310 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-14 *4 (-654 (-1192))) (-14 *5 (-781)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-974 *3)) (-4 *3 (-555)))) + ((*1 *2 *1) (-12 (-4 *1 (-1237)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214))))) (((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-1061)) (-4 *2 (-1256 *4)) - (-5 *1 (-453 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-416 (-1185 (-323 *5)))) (-5 *3 (-1280 (-323 *5))) - (-5 *4 (-573)) (-4 *5 (-565)) (-5 *1 (-1142 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) + (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) + (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-918 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) + (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) - (-4 *3 (-696 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) - (-5 *2 (-780))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) - ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1043 *4)) + (-4 *4 (-1064)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-918 (-574)))) (-5 *4 (-574)) + (-5 *2 (-654 (-699 *4))) (-5 *1 (-1043 *5)) (-4 *5 (-1064)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-1043 *4)) (-4 *4 (-1064))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) + (-5 *1 (-992 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) +(((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) - (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) + (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *1 *1 *1) (-4 *1 (-670)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *1) (-4 *1 (-671)))) (((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-173))))))) -(((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-829 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) - (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024))))) -(((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230))))) + (-12 (-5 *3 (-1188 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) + (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-965 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) + (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) + (-14 *4 *2)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) + (-5 *2 (-654 (-654 (-654 (-956 *3)))))))) +(((*1 *1 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315))))) (((*1 *2 *1) - (-12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *3 (-859)) - (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) - ((*1 *2 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) (-4 *3 (-860)) + (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) ((*1 *2 *1) - (-12 (-4 *2 (-1230)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-681 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) + (-12 (-4 *2 (-1233)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) - ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) + (-12 (-5 *2 (-781)) (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) + ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) (((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-871)))) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) ((*1 *2 *1) - (-12 (-5 *2 (-1154 *3 *4)) (-5 *1 (-1005 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-371)))) + (-12 (-5 *2 (-1157 *3 *4)) (-5 *1 (-1008 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-372)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *5))) (-4 *5 (-1061)) - (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) - (-4 *7 (-243 *3 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-653 *4))) (-5 *1 (-914 *4)) - (-5 *3 (-653 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-1114 *4))) (-5 *1 (-914 *4)) - (-5 *3 (-1114 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52)))) - (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *1 *1) (-4 *1 (-670)))) -(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) + (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1064)) + (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) + (-4 *7 (-244 *3 *5))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1025 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *1) (-4 *1 (-671)))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *6)))) + (-5 *4 (-1041 (-853 (-574)))) (-5 *5 (-1192)) (-5 *7 (-417 (-574))) + (-4 *6 (-1064)) (-5 *2 (-872)) (-5 *1 (-605 *6))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1192))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)) + (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) (((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-171 (-227)))) - (-5 *2 (-1047)) (-5 *1 (-764))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-252 *5 *6))) (-4 *6 (-461)) - (-5 *2 (-252 *5 *6)) (-14 *5 (-653 (-1189))) (-5 *1 (-640 *5 *6))))) + (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-933))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-657 *5)) (-4 *5 (-1061)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-861 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1064)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-698 *3)) (-4 *1 (-426 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) + (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1061)) - (-5 *1 (-862 *2 *3)) (-4 *3 (-861 *2))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) - (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-1280 *5)) - (-5 *1 (-647 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) - (-2075 (-4 *5 (-371))) (-4 *5 (-565)) (-5 *2 (-1280 (-416 *5))) - (-5 *1 (-647 *5 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 (-490 *3 *4))) (-14 *3 (-653 (-1189))) - (-4 *4 (-461)) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-1177 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-127 *3))))) -(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-764)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-397)) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-653 (-1189))) (-4 *2 (-174)) - (-4 *3 (-243 (-2862 *4) (-780))) - (-14 *6 - (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *3)) - (-2 (|:| -2575 *5) (|:| -3907 *3)))) - (-5 *1 (-470 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) - (-4 *7 (-959 *2 *3 (-873 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-109))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-461)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *5 (-919)) (-5 *1 (-466 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-919))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) - (-4 *2 (-696 *3 *4 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-573)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *4)) (-5 *1 (-895 *3 *4 *5)) - (-4 *3 (-1112)) (-4 *5 (-675 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-976 *4)) (-4 *4 (-1112)) (-5 *2 (-1114 *4)) - (-5 *1 (-977 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) - (-4 *4 (-859)) (-5 *1 (-1200 *4))))) -(((*1 *1) (-4 *1 (-979)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-52)) (-5 *2 (-1285)) (-5 *1 (-840))))) -(((*1 *1 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1064)) + (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) - (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5)))))) -(((*1 *1 *1) (-4 *1 (-670)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1188 (-1188 *4)))) + (-5 *1 (-1231 *4)) (-5 *3 (-1188 (-1188 *4)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1115))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) - (-5 *1 (-1141 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-13 (-314) (-148))) - (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) + (-12 + (-5 *2 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) - (-5 *1 (-1141 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) - (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) + (-12 + (-5 *2 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) + (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) - (-5 *1 (-1141 *5)))) + (-12 + (-5 *2 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *1 (-1035 *3)) (-4 *3 (-1259 (-574))) (-5 *4 (-417 (-574))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1035 *3)) + (-4 *3 (-1259 (-574))) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) - (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) + (-12 + (-5 *2 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *1 (-1036 *3)) (-4 *3 (-1259 (-417 (-574)))) + (-5 *4 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-301 (-416 (-962 *5))))) (-5 *4 (-653 (-1189))) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) - (-5 *1 (-1141 *5)))) + (-12 (-5 *4 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3864 *4) (|:| -3877 *4)))) (-5 *1 (-1036 *3)) + (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-417 (-574))) + (-5 *2 (-654 (-2 (|:| -3864 *5) (|:| -3877 *5)))) (-5 *1 (-1036 *3)) + (-4 *3 (-1259 *5)) (-5 *4 (-2 (|:| -3864 *5) (|:| -3877 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1243 *3)) + (-5 *2 (-417 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-462)) + (-5 *2 + (-654 + (-2 (|:| |eigval| (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4)))) + (|:| |geneigvec| (-654 (-699 (-417 (-965 *4)))))))) + (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-965 *4))))))) +(((*1 *2) + (-12 (-14 *4 (-781)) (-4 *5 (-1233)) (-5 *2 (-135)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1064)) (-5 *2 (-934)))) + ((*1 *2) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4196 (-781)) (|:| |period| (-781)))) + (-5 *1 (-1172 *4)) (-4 *4 (-1233)) (-5 *3 (-781))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1076 (-1039 *4) (-1188 (-1039 *4)))) (-5 *3 (-872)) + (-5 *1 (-1039 *4)) (-4 *4 (-13 (-858) (-372) (-1037)))))) +(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) - (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) - (-5 *1 (-1141 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) - ((*1 *1 *1 *1) (-4 *1 (-461))) + (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1064)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-658 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064)))) + ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1064))))) +(((*1 *1) (-4 *1 (-982)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *7 (-1259 *5)) (-4 *4 (-734 *5 *7)) + (-5 *2 (-2 (|:| -4226 (-699 *6)) (|:| |vec| (-1283 *5)))) + (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) +(((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1196))))) +(((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) (-4 *1 (-671)))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) + ((*1 *1 *1 *1) (-4 *1 (-462))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573))))) + (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1259 (-574))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-780))) + (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1259 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-781))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) - (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) + (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) - (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-314)))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) + (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-315)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1185 *7))) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-314)) (-5 *2 (-1185 *7)) (-5 *1 (-926 *4 *5 *6 *7)) - (-4 *7 (-959 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-931))) + (-12 (-5 *3 (-654 (-1188 *7))) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-315)) (-5 *2 (-1188 *7)) (-5 *1 (-929 *4 *5 *6 *7)) + (-4 *7 (-962 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-934))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-461)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) - (-4 *2 (-1256 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) + (-4 *2 (-1259 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) - (-4 *3 (-565)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-173)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1256 *3)) (-5 *1 (-408 *3 *2)) - (-4 *3 (-13 (-371) (-148)))))) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *2 *1) (-12 (-5 *2 (-934)) (-5 *1 (-986))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 + (-2 (|:| |solns| (-654 *5)) + (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1143 *3 *5)) (-4 *3 (-1259 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1259 (-574))) (-5 *1 (-496 *3))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) - (-4 *2 (-1230)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) + (-4 *2 (-1233)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (|has| *1 (-6 -4455)) - (-4 *1 (-152 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1115)) (|has| *1 (-6 -4458)) + (-4 *1 (-152 *2)) (-4 *2 (-1233)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) - (-4 *2 (-1230)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) + (-4 *2 (-1233)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) - (-4 *2 (-1230)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) + (-4 *2 (-1233)))) ((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-5 *2 (-2 (|:| -3881 (-1185 *4)) (|:| |deg| (-931)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-565)))) + (-12 (-4 *4 (-1064)) + (-5 *2 (-2 (|:| -3634 (-1188 *4)) (|:| |deg| (-934)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1188 *4)) (-4 *5 (-566)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) - (-4 *6 (-1230)) (-4 *2 (-1230)) (-5 *1 (-244 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) + (-4 *6 (-1233)) (-4 *2 (-1233)) (-5 *1 (-245 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-296 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1256 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1259 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-565)) (-4 *2 (-1112)))) + ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1115)))) ((*1 *1 *1) - (-12 (-4 *1 (-343 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *3 (-1256 *2)) - (-4 *4 (-1256 (-416 *3))) (-4 *5 (-350 *2 *3 *4)))) + (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1259 *2)) + (-4 *4 (-1259 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1230)) (-4 *2 (-1230)) - (-5 *1 (-379 *5 *4 *2 *6)) (-4 *4 (-381 *5)) (-4 *6 (-381 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1233)) (-4 *2 (-1233)) + (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) - (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-434 *5)) (-4 *6 (-434 *2)))) - ((*1 *1 *1) (-5 *1 (-504))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1115)) (-4 *2 (-1115)) + (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) + ((*1 *1 *1) (-5 *1 (-505))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) - (-4 *2 (-1230)) (-5 *1 (-651 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) + (-4 *2 (-1233)) (-5 *1 (-652 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1061)) (-4 *2 (-1061)) - (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *8 (-381 *2)) - (-4 *9 (-381 *2)) (-5 *1 (-694 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-696 *5 *6 *7)) (-4 *10 (-696 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1064)) (-4 *2 (-1064)) + (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) + (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) + (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-371)) - (-4 *3 (-174)) (-4 *1 (-733 *3 *4)))) + (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-372)) + (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) - (-4 *2 (-1230)) (-5 *1 (-967 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) + (-4 *2 (-1233)) (-5 *1 (-970 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) - (-14 *6 (-653 *2)))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1049 *3 *4 *5 *2 *6)) (-4 *2 (-962 *3 *4 *5)) + (-14 *6 (-654 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1061)) (-4 *2 (-1061)) - (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) - (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *12 (-1065 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1064)) (-4 *2 (-1064)) + (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) + (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *12 (-1068 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) - (-4 *2 (-1230)) (-5 *1 (-1167 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) + (-4 *2 (-1233)) (-5 *1 (-1170 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1223 *5 *6 *7 *2)) (-4 *5 (-565)) (-4 *6 (-802)) - (-4 *7 (-859)) (-4 *2 (-1077 *5 *6 *7)))) + (-4 *1 (-1226 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) + (-4 *7 (-860)) (-4 *2 (-1080 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) - (-4 *2 (-1230)) (-5 *1 (-1279 *5 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1187 *4 *5 *6)) - (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1272 *4 *5 *6)) - (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) + (-4 *2 (-1233)) (-5 *1 (-1282 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) (((*1 *2 *3) - (-12 (-5 *3 (-1114 *4)) (-4 *4 (-1112)) (-5 *2 (-1 *4)) - (-5 *1 (-1029 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1106 (-573))) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-34)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-255)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-983)))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1259 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-984 *2 *4)) + (-4 *4 (-1259 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 (-324 (-227)))) + (-5 *2 + (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) + (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) + (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4458)) (-4 *1 (-34)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-986)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-573)))) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-574)))) ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-855))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1240 *3)) (-4 *3 (-1061)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1271 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) - (-4 *1 (-861 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-554))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3861 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) - (-5 *3 (-416 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-583 *7 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-538))))) -(((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-4 *1 (-336 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) - (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) - (-4 *1 (-375 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4 *5)) (-4 *5 (-1256 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) - (-4 *4 (-1256 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3))))) + (-12 (-5 *2 (-781)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-856))))) +(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1192)) + (-5 *2 (-574)) (-5 *1 (-1129 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *3 (-654 (-574))) + (-5 *1 (-894))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-621 *6)) (-4 *6 (-13 (-439 *5) (-27) (-1215))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-1185 (-416 (-1185 *6)))) (-5 *1 (-569 *5 *6 *7)) - (-5 *3 (-1185 *6)) (-4 *7 (-1112)))) + (-12 (-5 *3 (-1188 *1)) (-5 *4 (-1192)) (-4 *1 (-27)) + (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1188 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *2 (-654 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1192))) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-1172 (-227))) (-5 *1 (-308))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1218))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 (-1188 (-417 (-1188 *6)))) (-5 *1 (-570 *5 *6 *7)) + (-5 *3 (-1188 *6)) (-4 *7 (-1115)))) ((*1 *2 *1) - (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) + (-12 (-4 *2 (-1259 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1064)))) ((*1 *2 *1) - (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) + (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1185 *11)) (-5 *6 (-653 *10)) - (-5 *7 (-653 (-780))) (-5 *8 (-653 *11)) (-4 *10 (-859)) - (-4 *11 (-314)) (-4 *9 (-802)) (-4 *5 (-959 *11 *9 *10)) - (-5 *2 (-653 (-1185 *5))) (-5 *1 (-751 *9 *10 *11 *5)) - (-5 *3 (-1185 *5)))) + (|partial| -12 (-5 *4 (-1188 *11)) (-5 *6 (-654 *10)) + (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) + (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-962 *11 *9 *10)) + (-5 *2 (-654 (-1188 *5))) (-5 *1 (-752 *9 *10 *11 *5)) + (-5 *3 (-1188 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-959 *3 *4 *5)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) - (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-14 *6 (-653 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) - ((*1 *1 *1) (-5 *1 (-387))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) - (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *4 *5 *6 *7)) - (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) - (-4 *7 (-1230))))) + (-12 (-4 *2 (-962 *3 *4 *5)) (-5 *1 (-1049 *3 *4 *5 *2 *6)) + (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) + ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1050)) (-5 *1 (-758))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |c| (-416 *6)) - (|:| -2142 *6))) - (-5 *1 (-1027 *5 *6)) (-5 *3 (-416 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1253 *4 *5)) (-5 *3 (-653 *5)) (-14 *4 (-1189)) - (-4 *5 (-371)) (-5 *1 (-933 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-371)) (-5 *2 (-1185 *5)) - (-5 *1 (-933 *4 *5)) (-14 *4 (-1189)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-780)) (-4 *6 (-371)) - (-5 *2 (-416 (-962 *6))) (-5 *1 (-1062 *5 *6)) (-14 *5 (-1189))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-574)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) + (-5 *1 (-459 *5 *6 *7 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-654 *3)) (-5 *5 (-934)) (-4 *3 (-1259 *4)) + (-4 *4 (-315)) (-5 *1 (-470 *4 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) + (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-330 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1112)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-1112)) (-5 *1 (-658 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 + (-5 *3 + (-654 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574)))))) + (-5 *2 (-654 (-227))) (-5 *1 (-313))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *1 (-336 *3)) - (-4 *3 (-371))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-1250 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) - (-4 *2 (-565)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-565))) + (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-4 *2 (-566)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-566))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) - (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-565)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-780))) + (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) + (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-781))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-566)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) - (-5 *1 (-981 *3 *4)))) + (-12 (-5 *2 (-1283 *4)) (-4 *4 (-1259 *3)) (-4 *3 (-566)) + (-5 *1 (-984 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-565)))) + (|partial| -12 (-4 *1 (-1068 *3 *4 *2 *5 *6)) (-4 *2 (-1064)) + (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 (-1 *6 (-653 *6)))) - (-4 *5 (-38 (-416 (-573)))) (-4 *6 (-1271 *5)) (-5 *2 (-653 *6)) - (-5 *1 (-1273 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-500)) (-5 *4 (-964)) (-5 *2 (-700 (-542))) - (-5 *1 (-542)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-964)) (-4 *3 (-1112)) (-5 *2 (-700 *1)) - (-4 *1 (-776 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1122))))) -(((*1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) - (-4 *3 (-1112))))) + (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1064))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-962 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1527 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-372)) (-4 *7 (-1259 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) - ((*1 *1 *1 *1) (-4 *1 (-461)))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) - (-5 *2 (-931))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-132)) (-4 *3 (-565)) - (-4 *3 (-1061)) (-4 *2 (-801)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1185 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-983)) (-4 *2 (-132)) (-5 *1 (-1191 *3)) (-4 *3 (-565)) - (-4 *3 (-1061)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-1253 *4 *3)) (-14 *4 (-1189)) - (-4 *3 (-1061))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-38 (-416 (-573)))) - (-4 *2 (-174))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-565)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) + ((*1 *1 *1 *1) (-4 *1 (-462)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-828 *3)) (|:| |rm| (-828 *3)))) - (-5 *1 (-828 *3)) (-4 *3 (-859)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-1226))))) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1039 *3)) + (-4 *3 (-13 (-858) (-372) (-1037))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1083 *2 *3)) (-4 *2 (-13 (-858) (-372))) + (-4 *3 (-1259 *2))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) - (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1064)) + (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) + (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) + (-5 *1 (-829 *3)) (-4 *3 (-860)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-858))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2679 (-428 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-1204 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357)))) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357)))) - ((*1 *1) (-4 *1 (-376))) - ((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) - (-4 *4 (-357)))) - ((*1 *1 *1) (-4 *1 (-554))) ((*1 *1) (-4 *1 (-554))) - ((*1 *1 *1) (-5 *1 (-780))) - ((*1 *2 *1) (-12 (-5 *2 (-915 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358)))) + ((*1 *1) (-4 *1 (-377))) + ((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358)))) + ((*1 *1 *1) (-4 *1 (-555))) ((*1 *1) (-4 *1 (-555))) + ((*1 *1 *1) (-5 *1 (-781))) + ((*1 *2 *1) (-12 (-5 *2 (-918 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) - (-4 *4 (-1112)))) - ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-554)) (-4 *2 (-565))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-574)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) + (-4 *4 (-1115)))) + ((*1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-555)) (-4 *2 (-566))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) - (-4 *4 (-357)) (-5 *2 (-780)) (-5 *1 (-354 *4)))) - ((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) - (-14 *4 (-931)))) - ((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) - (-14 *4 - (-3 (-1185 *3) - (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) - ((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) - (-14 *4 (-931))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) - (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) (((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 *4))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1120 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) - (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) - (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) - (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) - (-5 *1 (-1120 *6 *7 *4 *8 *9))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) - (-4 *1 (-375 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-462 *3 *4 *5 *6)) - (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) - (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-653 *5)) (-4 *5 (-859)) (-5 *1 (-1200 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-323 *4)) (-4 *4 (-13 (-837) (-1061))) (-5 *2 (-1171)) - (-5 *1 (-835 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-837) (-1061))) - (-5 *2 (-1171)) (-5 *1 (-835 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-323 *5)) (-4 *5 (-13 (-837) (-1061))) - (-5 *2 (-1285)) (-5 *1 (-835 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-831)) (-5 *4 (-323 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-837)) (-5 *2 (-1171)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-112)) (-5 *2 (-1171)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *2 (-1285)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *4 (-112)) (-5 *2 (-1285))))) + (-12 (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) + ((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (|has| *1 (-6 -4449)) (-4 *1 (-414)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) + ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1172 (-574)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) + (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-120 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1214)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1214))))) +(((*1 *1 *1 *1) (-4 *1 (-771)))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) - (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) - (-5 *1 (-797))))) -(((*1 *1 *1) (-5 *1 (-1188))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) - (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) - (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)) (-4 *2 (-314)))) - ((*1 *2 *2) - (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) - (-4 *2 (-696 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1065 *2 *3 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-314))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112))))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) (((*1 *2 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *2 (-1124 *3 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-1191))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-573)))) - (-4 *4 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))) - (-4 *3 (-565)) (-5 *1 (-1259 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-152 *2)) (-4 *2 (-1233)) + (-4 *2 (-1115))))) +(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1115))))) (((*1 *2 *1) - (-12 (-5 *2 (-1114 *3)) (-5 *1 (-915 *3)) (-4 *3 (-376)) - (-4 *3 (-1112))))) -(((*1 *1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1 *1) (-5 *1 (-780))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-595 *3) *3 (-1189))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1189))) - (-4 *3 (-291)) (-4 *3 (-638)) (-4 *3 (-1050 *4)) (-4 *3 (-439 *7)) - (-5 *4 (-1189)) (-4 *7 (-623 (-902 (-573)))) (-4 *7 (-461)) - (-4 *7 (-896 (-573))) (-4 *7 (-1112)) (-5 *2 (-595 *3)) - (-5 *1 (-582 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-975))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) + (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1017) (-1218))) + (-5 *1 (-610 *4 *2 *3)) + (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1250 *3)) (-4 *3 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-971 (-1188 *4))) (-5 *1 (-366 *4)) + (-5 *3 (-1188 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) - (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) - (-4 *3 (-861 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1230)) - (-4 *5 (-381 *4)) (-4 *3 (-381 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-573)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-314)) - (-4 *9 (-959 *8 *6 *7)) - (-5 *2 (-2 (|:| -3881 (-1185 *9)) (|:| |polval| (-1185 *8)))) - (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)) (-5 *4 (-1185 *8))))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-1139 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) + (-4 *6 (-1259 *5)) (-5 *2 (-1188 (-1188 *7))) + (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1259 *6))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1117 (-781))) (-5 *6 (-781)) + (-5 *2 + (-2 (|:| |contp| (-574)) + (|:| -2679 (-654 (-2 (|:| |irr| *3) (|:| -3737 (-574))))))) + (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-978))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1174) (-784))) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-653 (-1 *4 (-653 *4)))) (-4 *4 (-1112)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-1 *4 (-653 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) -(((*1 *1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1 *1) (-5 *1 (-780))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) - (-4 *4 (-174))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-653 - (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *2)) - (|:| |logand| (-1185 *2))))) - (-5 *4 (-653 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-371)) (-5 *1 (-595 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-416 (-573))) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) - ((*1 *1 *1) (|partial| -4 *1 (-731)))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) - (-5 *2 (-2 (|:| |radicand| (-416 *5)) (|:| |deg| (-780)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) (((*1 *2 *1) - (-12 (-5 *2 (-1114 (-1114 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) - (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-760))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1078)) (-5 *3 (-1174))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |k| (-1189)) (|:| |c| (-1302 *3))))) - (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |k| *3) (|:| |c| (-1304 *3 *4))))) - (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-654 *5))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1064)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1115))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) -(((*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) + (-12 (-5 *2 (-699 (-923 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) + (-14 *4 (-934)))) + ((*1 *2) + (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) + (-14 *4 + (-3 (-1188 *3) + (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) + ((*1 *2) + (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-934))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 *7)) (-5 *3 (-574)) (-4 *7 (-962 *6 *4 *5)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-5 *1 (-329 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1235))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1192)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-654 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1218) (-27) (-440 *8))) + (-4 *8 (-13 (-462) (-148) (-1053 *3) (-649 *3))) (-5 *3 (-574)) + (-5 *2 (-654 *4)) (-5 *1 (-1029 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) + (-5 *2 + (-654 + (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) + (|:| |wcond| (-654 (-965 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *4)))))))))) + (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) + ((*1 *1 *1) (-4 *1 (-1075)))) +(((*1 *2 *3) + (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-654 *5)) + (-5 *1 (-901 *4 *5)) (-4 *5 (-1233))))) +(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1233)) (-4 *2 (-860)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1233)))) ((*1 *2 *2) - (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) - (-4 *6 (-1077 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3733 *1) (|:| |upper| *1))) - (-4 *1 (-988 *4 *5 *3 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)))) - ((*1 *2 *1) - (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-780))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) - (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-919)) (-4 *5 (-802)) - (-4 *6 (-859)) (-5 *1 (-916 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) - (-4 *5 (-1256 *4)) (-4 *4 (-919)) (-5 *1 (-917 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1112))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) - (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) - (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-323 (-387))) (-5 *2 (-323 (-227))) (-5 *1 (-312))))) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) + (-4 *6 (-1080 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2787 *1) (|:| |upper| *1))) + (-4 *1 (-991 *4 *5 *3 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-4 *3 (-13 (-27) (-1218) (-440 *6) (-10 -8 (-15 -2950 ($ *7))))) + (-4 *7 (-858)) + (-4 *8 + (-13 (-1261 *3 *7) (-372) (-1218) + (-10 -8 (-15 -3878 ($ $)) (-15 -3302 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1174)) (|:| |prob| (-1174)))))) + (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1174)) (-4 *9 (-998 *8)) + (-14 *10 (-1192))))) (((*1 *2 *3) - (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-112)) - (-5 *1 (-681 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *1)) (-5 *4 (-1280 *1)) (-4 *1 (-648 *5)) - (-4 *5 (-1061)) - (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) - (-5 *2 (-698 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) - (-5 *2 (-698 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3903 *7) (|:| |sol?| (-112))) - (-573) *7)) - (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) - (-5 *3 (-416 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-583 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1075))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-760))))) + (-12 (-5 *3 (-1174)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) +(((*1 *1) (-5 *1 (-1284)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-417 (-965 *6)) (-1181 (-1192) (-965 *6)))) + (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *6))))) + (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-965 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-417 (-965 *5)) (-1181 (-1192) (-965 *5)))) + (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) + (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-965 *5))))) + (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-965 *5))))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-934)) (-5 *1 (-796))))) (((*1 *2 *1) - (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-830))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) - (-5 *2 (-698 (-323 (-227)))) (-5 *1 (-207)))) + (-12 (-4 *3 (-1064)) (-5 *2 (-654 *1)) (-4 *1 (-1149 *3))))) +(((*1 *1) (-4 *1 (-358))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1188 *5))) + (|:| |prim| (-1188 *5)))) + (-5 *1 (-442 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-566) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1188 *3)) + (|:| |pol2| (-1188 *3)) (|:| |prim| (-1188 *3)))) + (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-965 *5)) (-5 *4 (-1192)) (-4 *5 (-13 (-372) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) + (|:| |prim| (-1188 *5)))) + (-5 *1 (-973 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-4 *6 (-910 *5)) (-5 *2 (-698 *6)) - (-5 *1 (-701 *5 *6 *3 *4)) (-4 *3 (-381 *6)) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-621 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-1185 *2)) - (-4 *2 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-621 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) - (-5 *5 (-416 (-1185 *2))) (-4 *2 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *5 (-565)) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) + (-4 *5 (-13 (-372) (-148))) (-5 *2 - (-2 (|:| |minor| (-653 (-931))) (|:| -4122 *3) - (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) + (-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 *5))) + (|:| |prim| (-1188 *5)))) + (-5 *1 (-973 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) (-5 *5 (-1192)) + (-4 *6 (-13 (-372) (-148))) + (-5 *2 + (-2 (|:| -1868 (-654 (-574))) (|:| |poly| (-654 (-1188 *6))) + (|:| |prim| (-1188 *6)))) + (-5 *1 (-973 *6))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1055))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-653 *4)) (-4 *4 (-859)) - (-5 *1 (-1200 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)) - (-4 *2 (-859)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4456)) - (-4 *1 (-381 *3)) (-4 *3 (-1230))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *3 *5 *6 *7)) - (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) - (-4 *7 (-1230)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *3 *5 *6)) - (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) - (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) - (-5 *2 (-1185 (-962 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) - (-4 *1 (-861 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) - (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) - (-4 *4 (-696 *2 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 (-962 *6))) (-4 *6 (-565)) - (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) - (-4 *5 (-802)) - (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-504))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-301 *3))) (-5 *1 (-301 *3)) (-4 *3 (-565)) - (-4 *3 (-1230))))) + (-12 (-5 *2 (-1174)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-856))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-939))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) - (-4 *6 (-13 (-565) (-1050 *5))) (-4 *5 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *6)))))) (-5 *1 (-1051 *5 *6))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 (-574))) (-5 *2 (-574)) (-5 *1 (-955))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1188 *9))) + (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) + (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-962 *9 *10 *11)) + (-4 *10 (-803)) (-5 *2 (-654 (-1188 *12))) + (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1188 *12))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-308)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1174)) (-5 *1 (-313))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-107 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) + (-5 *2 (-654 (-2 (|:| -1716 *5) (|:| -4096 *3)))) + (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) + (-4 *7 (-666 (-417 *6)))))) +(((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-757))))) +(((*1 *1 *1) (-4 *1 (-1075)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-978))) (-5 *1 (-299))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-371)) (-4 *6 (-1256 (-416 *2))) - (-4 *2 (-1256 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-350 *5 *2 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-1105 *3)) (-4 *3 (-1230))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-555)))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) - ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) - (-5 *2 (-653 (-653 (-653 (-780)))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1280 (-1189))) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) - (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) - (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) - (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) - (-14 *6 (-653 *2)) (-14 *7 (-1280 (-698 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-462 *3 *4 *5 *6))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) - (-14 *6 (-1280 (-698 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 (-1189))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) - (-14 *6 (-1280 (-698 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-931)) (-14 *5 (-653 *2)) (-14 *6 (-1280 (-698 *3))))) - ((*1 *1) - (-12 (-5 *1 (-462 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-931)) - (-14 *4 (-653 (-1189))) (-14 *5 (-1280 (-698 *2)))))) -(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *2) (-12 (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312))))) + (-12 (-5 *3 (-699 (-417 (-574)))) + (-5 *2 + (-654 + (-2 (|:| |outval| *4) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 *4)))))) + (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) + (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1192)) + (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) + (-5 *1 (-1195)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1192)) + (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2440 "void"))) (-5 *2 (-1288)) + (-5 *1 (-1195))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *1)) (|has| *1 (-6 -4456)) (-4 *1 (-1022 *3)) - (-4 *3 (-1230))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) + (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) + (-4 *5 (-566)) (-5 *2 (-654 (-654 (-965 *5)))) (-5 *1 (-1201 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) + (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) + (-4 *8 (-962 *3 *7 *6))))) +(((*1 *2 *1) + (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *2)) + (-2 (|:| -2590 *5) (|:| -3843 *2)))) + (-4 *2 (-244 (-2876 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-860)) (-4 *7 (-962 *4 *2 (-874 *3)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *3 (-965 (-574))) + (-5 *1 (-338)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1107 (-965 (-574)))) (-5 *1 (-338))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-953 *4)) (-4 *4 (-1061)) (-5 *1 (-1177 *3 *4)) - (-14 *3 (-931))))) -(((*1 *2) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1271 *4)) - (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4))) - (-5 *1 (-1273 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) + (-12 (-5 *2 (-574)) (-4 *1 (-1108 *3)) (-4 *3 (-1233))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3462 *1) (|:| -4445 *1) (|:| |associate| *1))) + (-4 *1 (-566))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1188 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1046))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-784)) (-5 *1 (-115))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-112)) (-5 *1 (-903 *4)) + (-4 *4 (-1115))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-930)) (-5 *2 (-2 (|:| -1857 (-653 *1)) (|:| -2969 *1))) - (-5 *3 (-653 *1))))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-14 *5 (-653 (-1189))) + (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) - (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1139 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-965 (-574)))) (-5 *4 (-654 (-1192))) + (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1038)) (-5 *5 (-388)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-14 *5 (-654 (-1192))) (-5 *2 (-654 (-654 (-1039 (-417 *4))))) + (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) - (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) - (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) - (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *5))))) (-5 *1 (-1310 *5 *6 *7)) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-965 *4))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-654 (-654 (-1039 (-417 *4))))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) +(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1172 (-986))) (-5 *1 (-986))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) - (-5 *1 (-1307 *4 *5 *6)) (-5 *3 (-653 (-962 *4))) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) + (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *4))))))) + (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) + (-4 *7 (-962 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1174)) (|:| -2041 (-1174)))) + (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-1162 (-1174))) (-5 *1 (-401))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-849)))) - ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) + (-12 (-5 *3 (-851)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-850)))) + ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) - (-5 *6 (-653 (-323 (-387)))) (-5 *3 (-323 (-387))) (-5 *2 (-1047)) - (-5 *1 (-849)))) + (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) + (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1050)) + (-5 *1 (-850)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) - (-5 *5 (-653 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-849)))) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) + (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1050)) (-5 *1 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) - (-5 *1 (-849)))) + (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1050)) + (-5 *1 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) - (-5 *2 (-1047)) (-5 *1 (-849))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *1 *1) (-5 *1 (-871)))) + (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) + (-5 *2 (-1050)) (-5 *1 (-850))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1115)) (-5 *2 (-622 *5)) + (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-781))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1189)) (-5 *1 (-545)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1192)) (-5 *1 (-546)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) + (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) + (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) + (-12 (-5 *2 (-1192)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-713 *3)) - (-4 *3 (-623 (-545)))))) + (-12 (-5 *4 (-654 (-1192))) (-5 *2 (-1192)) (-5 *1 (-714 *3)) + (-4 *3 (-624 (-546)))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-5 *1 (-1000 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-5 *1 (-1119 *3 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-606)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-766))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) - (-5 *2 (-1185 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) - (-5 *2 (-1185 *3))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) - (-5 *1 (-1288 *4)) (-4 *4 (-371))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-4 *3 (-566))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-934)) (-5 *1 (-1116 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-573))) (-5 *2 (-112)) (-5 *1 (-455)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573))))) - (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-971 *3)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-4 *1 (-1234)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) -(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)) - (|:| |coef2| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1077 *3 *4 *5))))) + (-654 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1115)) (-5 *2 (-112)) + (-5 *1 (-1234 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-1001)))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) + (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-962 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-991 *4 *5 *6 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-5 *2 (-701 (-883 (-979 *3) (-979 *3)))) (-5 *1 (-979 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *1 (-1176 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1188 (-1188 *5)))) + (-5 *1 (-1231 *5)) (-5 *3 (-1188 (-1188 *5)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-1004)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-4 *4 (-1230)) (-5 *1 (-1069 *3 *4)) - (-4 *3 (-1105 *4)))) + (-12 (-5 *2 (-1192)) (-4 *4 (-1233)) (-5 *1 (-1072 *3 *4)) + (-4 *3 (-1108 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1106 *4)) (-4 *4 (-1230)) - (-5 *1 (-1104 *4))))) + (-12 (-5 *2 (-1192)) (-5 *3 (-1109 *4)) (-4 *4 (-1233)) + (-5 *1 (-1107 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-991 *4 *5 *3 *6)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1174)) (-5 *1 (-313))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) - (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-653 *3)) (-5 *5 (-931)) (-4 *3 (-1256 *4)) - (-4 *4 (-314)) (-5 *1 (-469 *4 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) - (-4 *2 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-314)) (-4 *6 (-381 *5)) (-4 *4 (-381 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-1136 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) + (-5 *1 (-621 *2 *4))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1109 (-227))) + (-5 *5 (-112)) (-5 *2 (-1285)) (-5 *1 (-264))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1141 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) + (-4 *4 (-1064)) (-4 *3 (-860)) (-5 *1 (-1141 *4 *3 *5)) + (-4 *5 (-962 *4 (-541 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1227 *4))) (-5 *3 (-1192)) (-5 *1 (-1227 *4)) + (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1064))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) - (-4 *6 (-1230)) (-5 *2 (-1 *6 *5)) (-5 *1 (-650 *5 *6)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1115)) + (-4 *6 (-1233)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) - (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) + (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 *5)) (-4 *6 (-1112)) - (-4 *5 (-1230)) (-5 *2 (-1 *5 *6)) (-5 *1 (-650 *6 *5)))) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1115)) + (-4 *5 (-1233)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) - (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1115)) + (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) - (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-650 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) + (-4 *5 (-1115)) (-4 *6 (-1233)) (-5 *1 (-651 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-780))))) -(((*1 *2 *3) - (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-653 *5)) - (-5 *1 (-900 *4 *5)) (-4 *5 (-1230))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-107 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) - (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) - (-5 *1 (-1192)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1189)) - (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) - (-5 *1 (-1192))))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1115)) (-4 *2 (-1233)) (-5 *1 (-651 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-781))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-315)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1115)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1670 (-781)) (|:| -2711 (-781)))) + (-5 *1 (-781)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1188 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1185 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-653 (-1189))) - (-5 *2 (-653 (-653 (-387)))) (-5 *1 (-1035)) (-5 *5 (-387)))) + (-12 (-4 *4 (-462)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) - (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-319)) (-5 *1 (-303)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1171))) (-5 *3 (-1171)) (-5 *2 (-319)) - (-5 *1 (-303))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-320)) (-5 *1 (-304)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-320)) (-5 *1 (-304)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1174))) (-5 *3 (-1174)) (-5 *2 (-320)) + (-5 *1 (-304))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) + (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1112)) (-5 *2 (-112)) - (-5 *1 (-1231 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-621 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) - (-5 *1 (-620 *2 *4))))) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) + (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1119))) (-5 *1 (-299))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1218) (-972)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) + (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 *4)) (-5 *1 (-1156 *3 *4)) + (-4 *3 (-13 (-1115) (-34))) (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-802)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1064)) (-5 *2 (-781)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *6)) (-4 *1 (-962 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-962 *4 *5 *3)) (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *3 (-860)) (-5 *2 (-781))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1259 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) (-5 *1 (-423 *3 *2 *4 *5)) + (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1053 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1259 *2)) (-4 *2 (-1007 *3)) + (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) + (-14 *6 (-1283 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-934)) (-4 *5 (-1064)) + (-4 *2 (-13 (-414) (-1053 *5) (-372) (-1218) (-292))) + (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1259 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-654 (-622 (-505)))) + (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) + (-5 *1 (-538 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1259 *4)) + (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1259 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1075)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 (-574))))) + (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) + (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 (-781))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -3843 (-574))))) + (-5 *1 (-428 *3)) (-4 *3 (-566))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-566) (-148))) + (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-1253 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-4 *1 (-382 *3 *4)) + (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174))))) +(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-97))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-901 *4 *3)) + (-4 *3 (-1233)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) + (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-939)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-939)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-956 (-227)) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 *4)) (-5 *1 (-1153 *3 *4)) - (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34)))))) + (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) + (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-698 *3)))) - (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-1280 *2)) (-4 *5 (-314)) - (-4 *6 (-1004 *5)) (-4 *2 (-13 (-418 *6 *7) (-1050 *6))) - (-5 *1 (-422 *5 *6 *7 *2)) (-4 *7 (-1256 *6))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-565)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-371)) (-4 *7 (-1256 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) - (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) - (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-565)))) - ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) + (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) + (-4 *6 (-462)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) + (-14 *5 (-654 (-1192))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) + (-4 *6 (-462))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) (((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-5 *2 (-2 (|:| -1380 (-653 *6)) (|:| -1674 (-653 *6))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-573)) (-14 *4 (-780))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) - ((*1 *1 *1) (-5 *1 (-871))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-953 (-227))) (-5 *2 (-227)) (-5 *1 (-1226)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-573)) (-5 *1 (-387))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) - (-14 *4 (-931))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-142))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) - (-5 *1 (-339))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) - (-5 *1 (-328 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-653 (-1280 *4))) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) - (-5 *2 (-653 (-1280 *3)))))) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-1188 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-688 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-357)) (-4 *6 (-1256 *5)) - (-5 *2 - (-653 - (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-698 *6))))) - (-5 *1 (-507 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-698 *6)))) - (-4 *7 (-1256 *6))))) + (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-766))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-416 *5)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1256 *3)))) + (-12 (-5 *3 (-417 *5)) (-4 *4 (-1237)) (-4 *5 (-1259 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1259 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) + (-12 (-5 *3 (-1194 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-698 (-323 (-227)))) (-5 *3 (-653 (-1189))) - (-5 *4 (-1280 (-323 (-227)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1192))) + (-5 *4 (-1283 (-324 (-227)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-301 *3))) (-4 *3 (-316 *3)) (-4 *3 (-1112)) - (-4 *3 (-1230)) (-5 *1 (-301 *3)))) + (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1115)) + (-4 *3 (-1233)) (-5 *1 (-302 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-316 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)) - (-5 *1 (-301 *2)))) + (-12 (-4 *2 (-317 *2)) (-4 *2 (-1115)) (-4 *2 (-1233)) + (-5 *1 (-302 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 (-653 *1)))) - (-4 *1 (-309)))) + (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) + (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) + (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) + (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) + (-12 (-5 *2 (-1192)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 (-653 *1)))) - (-4 *1 (-309)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 (-654 *1)))) + (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-301 *3))) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-301 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-573))) (-5 *4 (-1191 (-416 (-573)))) - (-5 *1 (-317 *2)) (-4 *2 (-38 (-416 (-573)))))) + (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1194 (-417 (-574)))) + (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *1)) (-4 *1 (-382 *4 *5)) - (-4 *4 (-859)) (-4 *5 (-174)))) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) + (-4 *4 (-860)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) + (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) + (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 (-653 *1))) - (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) + (-12 (-5 *2 (-1192)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) + (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-1064)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) - (-5 *4 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) - (-4 *5 (-1061)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) + (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) + (-4 *5 (-1064)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) - (-5 *4 (-653 (-1 *1 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) - (-4 *5 (-1061)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-654 (-781))) + (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1115)) + (-4 *5 (-1064)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 *1)) (-5 *4 (-1189)) - (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-623 (-545))))) + (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1192)) + (-4 *1 (-440 *5)) (-4 *5 (-1115)) (-4 *5 (-624 (-546))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1189)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) - (-4 *4 (-623 (-545))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1192)) (-4 *1 (-440 *4)) (-4 *4 (-1115)) + (-4 *4 (-624 (-546))))) ((*1 *1 *1) - (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-623 (-545))))) + (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-624 (-546))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-1189))) (-4 *1 (-439 *3)) (-4 *3 (-1112)) - (-4 *3 (-623 (-545))))) + (-12 (-5 *2 (-654 (-1192))) (-4 *1 (-440 *3)) (-4 *3 (-1115)) + (-4 *3 (-624 (-546))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) - (-4 *3 (-623 (-545))))) + (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) + (-4 *3 (-624 (-546))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1230)))) + (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1233)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *5)) (-4 *1 (-523 *4 *5)) - (-4 *4 (-1112)) (-4 *5 (-1230)))) + (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) + (-4 *4 (-1115)) (-4 *5 (-1233)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-842 *3)) (-4 *3 (-371)) (-5 *1 (-727 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-565)) - (-5 *1 (-1055 *4)))) + (-12 (-5 *2 (-417 (-965 *4))) (-5 *3 (-1192)) (-4 *4 (-566)) + (-5 *1 (-1058 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-653 (-1189))) (-5 *4 (-653 (-416 (-962 *5)))) - (-5 *2 (-416 (-962 *5))) (-4 *5 (-565)) (-5 *1 (-1055 *5)))) + (-12 (-5 *3 (-654 (-1192))) (-5 *4 (-654 (-417 (-965 *5)))) + (-5 *2 (-417 (-965 *5))) (-4 *5 (-566)) (-5 *1 (-1058 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-5 *2 (-416 (-962 *4))) - (-4 *4 (-565)) (-5 *1 (-1055 *4)))) + (-12 (-5 *3 (-302 (-417 (-965 *4)))) (-5 *2 (-417 (-965 *4))) + (-4 *4 (-566)) (-5 *1 (-1058 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-5 *2 (-416 (-962 *4))) - (-4 *4 (-565)) (-5 *1 (-1055 *4)))) + (-12 (-5 *3 (-654 (-302 (-417 (-965 *4))))) (-5 *2 (-417 (-965 *4))) + (-4 *4 (-566)) (-5 *1 (-1058 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1169 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1172 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) (((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) - (-5 *1 (-1288 *4)) (-4 *4 (-371))))) + (-12 (-5 *3 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) + (-4 *4 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) - (-5 *2 (-427 *3)) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-654 (-227))) (-5 *1 (-206))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 (-2 (|:| -1359 (-427 *3)) (|:| |special| (-427 *3)))) - (-5 *1 (-736 *5 *3))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-698 *3)) (|:| |invmval| (-698 *3)) - (|:| |genIdeal| (-513 *3 *4 *5 *6)))) - (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) + (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) + (-5 *2 (-1283 (-417 (-574)))) (-5 *1 (-1311 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-872))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-565)) (-4 *2 (-959 *3 *5 *4)) - (-5 *1 (-741 *5 *4 *6 *2)) (-5 *3 (-416 (-962 *6))) (-4 *5 (-802)) - (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) + (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) + (-5 *2 + (-2 (|:| |dpolys| (-654 (-253 *5 *6))) + (|:| |coords| (-654 (-574))))) + (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-688 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573))))) - (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)) - (-5 *1 (-1190 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-5 *2 (-1280 *3)) (-5 *1 (-1190 *3)) - (-4 *3 (-1061))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) - (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) - (-4 *2 (-696 *3 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) ((*1 *1) (-4 *1 (-554))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) - ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931))))) + (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-589))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490))))) +(((*1 *2) + (-12 (-4 *3 (-1064)) (-5 *2 (-971 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1259 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-565)) - (-4 *7 (-959 *3 *5 *6)) - (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *8) (|:| |radicand| *8))) - (-5 *1 (-963 *5 *6 *3 *7 *8)) (-5 *4 (-780)) - (-4 *8 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-621 *5))) (-5 *3 (-1189)) (-4 *5 (-439 *4)) - (-4 *4 (-1112)) (-5 *1 (-582 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) + (-12 (-5 *3 (-654 (-934))) (-5 *4 (-918 (-574))) + (-5 *2 (-699 (-574))) (-5 *1 (-600)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-934))) (-5 *2 (-654 (-699 (-574)))) + (-5 *1 (-600)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-918 (-574)))) + (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) + (-5 *2 (-654 (-654 (-956 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) (-4 *4 (-1064)) + (-4 *1 (-1149 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 (-654 (-956 *3)))) (-4 *3 (-1064)) + (-4 *1 (-1149 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) + (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-654 (-654 (-956 *4)))) (-5 *3 (-112)) + (-4 *1 (-1149 *4)) (-4 *4 (-1064)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) + (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-654 (-654 (-956 *5)))) (-5 *3 (-654 (-173))) + (-5 *4 (-173)) (-4 *1 (-1149 *5)) (-4 *5 (-1064))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-934)))) ((*1 *1) (-4 *1 (-555))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-709)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-765))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-653 - (-2 - (|:| -3692 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1907 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3821 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-515))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-885))) (-5 *1 (-492))))) -(((*1 *2 *3) - (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) - (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-416 (-573)))) - (-5 *2 (-2 (|:| -2342 (-1169 *4)) (|:| -2352 (-1169 *4)))) - (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)) (-5 *3 (-1171)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) -(((*1 *1) (-5 *1 (-446)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) + (-5 *1 (-707))))) (((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) - (-5 *2 - (-2 (|:| -3999 (-780)) (|:| |curves| (-780)) - (|:| |polygons| (-780)) (|:| |constructs| (-780))))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) - ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) - (-14 *4 (-573))))) + (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185 *6)) (-4 *6 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-1185 *7)) (-5 *1 (-328 *4 *5 *6 *7)) - (-4 *7 (-959 *6 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) + (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)) (-5 *3 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) + (-5 *2 (-1050)) (-5 *1 (-763))))) (((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-780)) (-5 *1 (-570))))) -(((*1 *2 *3) - (-12 (-4 *1 (-357)) (-5 *3 (-573)) (-5 *2 (-1202 (-931) (-780)))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-708)) (-5 *1 (-312))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-981 *4 *3)) - (-4 *3 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-962 (-573))))) + (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) + (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) + (-4 *3 (-351 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) + (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-145))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1118 *2 *3 *4 *5 *6)) (-4 *2 (-1115)) (-4 *3 (-1115)) + (-4 *4 (-1115)) (-4 *5 (-1115)) (-4 *6 (-1115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 - (-653 - (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) - (|:| |radvect| (-653 (-698 (-323 (-573)))))))) - (-5 *1 (-1043))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) + (-2 (|:| -3566 (-781)) (|:| |curves| (-781)) + (|:| |polygons| (-781)) (|:| |constructs| (-781))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-1283 *2)) (-4 *5 (-315)) + (-4 *6 (-1007 *5)) (-4 *2 (-13 (-419 *6 *7) (-1053 *6))) + (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1259 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) + (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1233)) (-4 *3 (-1233))))) (((*1 *2 *3) - (-12 (-5 *3 (-621 *5)) (-4 *5 (-439 *4)) (-4 *4 (-1050 (-573))) - (-4 *4 (-565)) (-5 *2 (-1185 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-574)) (|has| *1 (-6 -4449)) (-4 *1 (-414)) + (-5 *2 (-934))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-1228 *3)) + (-4 *3 (-989))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1259 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))) ((*1 *2 *3) - (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061)) (-4 *1 (-309)) - (-5 *2 (-1185 *1))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) - (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-240 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) - (-5 *1 (-746 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-1188 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *4 (-622 $)) $)) + (-15 -2981 ((-1140 *4 (-622 $)) $)) + (-15 -2950 ($ (-1140 *4 (-622 $)))))))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) + (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-417 (-965 (-574))))) + (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-302 (-417 (-965 (-574)))))) + (-5 *2 (-654 (-654 (-302 (-965 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 (-574)))) (-5 *2 (-654 (-302 (-965 *4)))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-302 (-417 (-965 (-574))))) + (-5 *2 (-654 (-302 (-965 *4)))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-858) (-372))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1192)) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-4 *4 (-13 (-29 *6) (-1218) (-972))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3907 (-654 *4)))) + (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 (-1283 *5) "failed")) + (|:| -3907 (-654 (-1283 *5))))) + (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) + (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) + (-2 (|:| |particular| (-3 (-1283 *5) "failed")) + (|:| -3907 (-654 (-1283 *5))))) + (-5 *1 (-677 *5)) (-5 *4 (-1283 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) + (-654 + (-2 (|:| |particular| (-3 (-1283 *5) "failed")) + (|:| -3907 (-654 (-1283 *5)))))) + (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) + (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |done| (-653 *4)) - (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) - (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-654 + (-2 (|:| |particular| (-3 (-1283 *5) "failed")) + (|:| -3907 (-654 (-1283 *5)))))) + (-5 *1 (-677 *5)) (-5 *4 (-654 (-1283 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))) (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *1 *1) - (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) - (-4 *4 (-272 *3)) (-4 *5 (-802))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4459)))) + (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4459)))) + (-5 *2 + (-654 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3907 (-654 *7))))) + (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) + (-4 *3 (-697 *5 *6 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-654 (-965 *5))) (-5 *4 (-654 (-1192))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-780 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1218) (-972))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1192)) + (-4 *7 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) + (-5 *1 (-812 *6 *7)) (-5 *4 (-1283 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1192)) + (-4 *6 (-13 (-29 *5) (-1218) (-972))) + (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-1283 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) + (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) + (-5 *5 (-1192)) (-4 *7 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1283 *7)) (|:| -3907 (-654 (-1283 *7))))) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1192)) + (-4 *7 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3907 (-654 *7))) *7 "failed")) + (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1192)) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3907 (-654 *3))) *3 "failed")) + (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1218) (-972))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1218) (-972))) (-5 *1 (-812 *6 *2)) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) + (-4 *2 (-13 (-29 *6) (-1218) (-972))) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *1 (-812 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1050)) (-5 *1 (-815)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) - (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) - (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-818)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1283 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) + (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1283 (-324 *4))) (-5 *5 (-654 (-388))) + (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1050)) (-5 *1 (-815)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3907 (-654 *6))) "failed") + *7 *6)) + (-4 *6 (-372)) (-4 *7 (-666 *6)) + (-5 *2 (-2 (|:| |particular| (-1283 *6)) (|:| -3907 (-699 *6)))) + (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1050)) (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-911)) (-5 *4 (-1078)) (-5 *2 (-1050)) (-5 *1 (-910)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) + (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) + (-5 *2 (-1050)) (-5 *1 (-910)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1174)) + (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1050)) + (-5 *1 (-910)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *2 (-654 (-388))) + (-5 *1 (-1038)) (-5 *4 (-388)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-965 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1038)) + (-5 *4 (-388)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) + (-5 *3 (-324 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1146 *4)) + (-5 *3 (-302 (-324 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) + (-5 *3 (-302 (-324 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1146 *5)) + (-5 *3 (-324 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1192))) + (-4 *5 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1146 *5)) + (-5 *3 (-654 (-302 (-324 *5)))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) - (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-654 (-417 (-965 *5)))) (-5 *4 (-654 (-1192))) + (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) + (-5 *1 (-1201 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1192))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *5)))))) (-5 *1 (-1201 *5)) + (-5 *3 (-654 (-302 (-417 (-965 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-417 (-965 *4)))) (-4 *4 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) (-5 *1 (-1201 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-965 *4)))))) + (-5 *1 (-1201 *4)) (-5 *3 (-654 (-302 (-417 (-965 *4))))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) - (-5 *1 (-794 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) - (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) + (-12 (-5 *4 (-1192)) (-4 *5 (-566)) + (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) + (-5 *3 (-417 (-965 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-4 *5 (-566)) + (-5 *2 (-654 (-302 (-417 (-965 *5))))) (-5 *1 (-1201 *5)) + (-5 *3 (-302 (-417 (-965 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) + (-5 *1 (-1201 *4)) (-5 *3 (-417 (-965 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-965 *4))))) + (-5 *1 (-1201 *4)) (-5 *3 (-302 (-417 (-965 *4))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) - (-4 *3 (-1112)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) - (-5 *1 (-960 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) - (-15 -2975 (*7 $)))))))) -(((*1 *1 *1 *1) (-4 *1 (-554)))) -(((*1 *1) (-5 *1 (-298)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1053 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-440 *3)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1234)) - (-4 *6 (-1256 (-416 *5))) + (-12 (-4 *4 (-174)) (-5 *2 (-1188 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1064)) (-4 *1 (-310)))) + ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1188 *3)))) + ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1259 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *2)) (-4 *3 (-13 (-858) (-372))) + (-4 *2 (-1259 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) + (-5 *2 (-1283 (-574))) (-5 *1 (-1311 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-1053 (-417 *2)))) (-5 *2 (-574)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1064)) (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-401))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) + (-4 *4 (-273 *3)) (-4 *5 (-803))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1076 *4 *3)) + (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1527 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-372)) (-4 *7 (-1259 *6)) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-350 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-859))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-555))) ((*1 *1) (-5 *1 (-556))) - ((*1 *1) (-5 *1 (-557))) ((*1 *1) (-5 *1 (-558))) - ((*1 *1) (-4 *1 (-735))) ((*1 *1) (-5 *1 (-1189))) - ((*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-931)))) - ((*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) - ((*1 *1) (-5 *1 (-1235))) ((*1 *1) (-5 *1 (-1236))) - ((*1 *1) (-5 *1 (-1237))) ((*1 *1) (-5 *1 (-1238)))) -(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) + (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) + (-2 (|:| -1527 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) + (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1192)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) (((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2))))) +(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1286))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573)))))) -(((*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-376)))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1307 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-829 *3)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) +(((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-884)) + (-5 *5 (-934)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1287)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *2 (-478)) + (-5 *1 (-1287)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-654 (-956 (-227))))) (-5 *4 (-654 (-270))) + (-5 *2 (-478)) (-5 *1 (-1287))))) +(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115)) (-4 *2 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566))))) +(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) + (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) + (-4 *3 (-1259 *6)) (-4 *7 (-962 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-934)) (-4 *1 (-377)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) - (-4 *4 (-357)))) + (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358)))) ((*1 *2 *1) - (-12 (-4 *2 (-859)) (-5 *1 (-722 *2 *3 *4)) (-4 *3 (-1112)) + (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1115)) (-14 *4 - (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) - (-2 (|:| -2575 *2) (|:| -3907 *3))))))) -(((*1 *1 *2) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) + (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *3)) + (-2 (|:| -2590 *2) (|:| -3843 *3))))))) +(((*1 *1 *2) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1216 *3)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-1219 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-653 (-1216 *2))) (-5 *1 (-1216 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) - (-4 *1 (-439 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) - (-4 *1 (-439 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) - (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) - (-4 *1 (-439 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-780)))) - (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-780)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-573)))) - (-5 *1 (-960 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) - (-15 -2975 (*7 $)))))))) + (-12 (-5 *3 (-654 (-1219 *2))) (-5 *1 (-1219 *2)) (-4 *2 (-1115))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) - (-5 *2 (-59 (-653 (-681 *5)))) (-5 *1 (-681 *5))))) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 (-417 *2))) + (-4 *2 (-1259 *4)) (-5 *1 (-350 *3 *4 *2 *5)) + (-4 *3 (-351 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1237)) + (-4 *4 (-1259 (-417 *2))) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -4141 *5)))) + (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-2 (|:| -4200 *5) (|:| -4144 (-574))))) + (-5 *4 (-574)) (-4 *5 (-1259 *4)) (-5 *2 (-654 *5)) + (-5 *1 (-706 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1192)) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-902 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1112)) - (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) + (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1115)) + (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-902 *4)) (-5 *3 (-653 (-1 (-112) *5))) (-4 *4 (-1112)) - (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) + (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1115)) + (-4 *5 (-1233)) (-5 *1 (-901 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-902 *5)) (-5 *3 (-653 (-1189))) - (-5 *4 (-1 (-112) (-653 *6))) (-4 *5 (-1112)) (-4 *6 (-1230)) - (-5 *1 (-900 *5 *6)))) + (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1192))) + (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1115)) (-4 *6 (-1233)) + (-5 *1 (-901 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1230)) (-4 *4 (-1112)) - (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1233)) (-4 *4 (-1115)) + (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-4 *4 (-1112)) - (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) + (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) (-4 *4 (-1115)) + (-5 *1 (-950 *4 *2 *5)) (-4 *2 (-440 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1230)) - (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) + (-12 (-5 *3 (-1192)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1233)) + (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) - (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) + (-12 (-5 *3 (-1192)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1233)) + (-5 *2 (-324 (-574))) (-5 *1 (-951 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1 (-112) (-653 *6))) - (-4 *6 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-1088 *4 *5 *6))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1) (-5 *1 (-606)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) - ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) - (-14 *4 (-653 (-1189))))) - ((*1 *2 *1) - (-12 (-5 *2 (-573)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) - (-14 *4 (-653 (-1189))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) - (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-281)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *8)) (-5 *4 (-653 *6)) (-4 *6 (-859)) - (-4 *8 (-959 *7 *5 *6)) (-4 *5 (-802)) (-4 *7 (-1061)) - (-5 *2 (-653 (-780))) (-5 *1 (-328 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) - (-4 *4 (-1256 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *3 (-859)) (-5 *2 (-780)))) - ((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *2 *4)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *2 (-801)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-780)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)) - (-5 *2 (-573)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) - (-5 *2 (-416 (-573))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-780))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) - (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-1281)) - (-5 *1 (-1284)))) + (-12 (-5 *2 (-654 (-1192))) (-5 *3 (-1 (-112) (-654 *6))) + (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1091 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1174)) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1050)) + (-5 *1 (-760))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) + (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) + (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1188 *5))) (-5 *3 (-1188 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1259 *5)) + (-4 *5 (-1259 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1188 (-574)))) (-5 *3 (-1188 (-574))) + (-5 *1 (-582)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-1188 *1))) (-5 *3 (-1188 *1)) + (-4 *1 (-922))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-372)) (-5 *1 (-1040 *3 *2)) (-4 *2 (-666 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) - (-5 *2 (-1281)) (-5 *1 (-1284))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-301 *6)) (-5 *4 (-115)) (-4 *6 (-439 *5)) - (-4 *5 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-653 *7)) - (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) - (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-653 (-301 *8))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *8)) - (-5 *6 (-653 *8)) (-4 *8 (-439 *7)) - (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) - (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-115))) (-5 *6 (-653 (-301 *8))) - (-4 *8 (-439 *7)) (-5 *5 (-301 *8)) - (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-301 *5)) (-5 *4 (-115)) (-4 *5 (-439 *6)) - (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) - (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) - (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-5 *6 (-653 *3)) - (-4 *3 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) - (-5 *1 (-324 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *6)) (-5 *5 (-1 (-427 (-1185 *6)) (-1185 *6))) - (-4 *6 (-371)) - (-5 *2 - (-653 - (-2 (|:| |outval| *7) (|:| |outmult| (-573)) - (|:| |outvect| (-653 (-698 *7)))))) - (-5 *1 (-541 *6 *7 *4)) (-4 *7 (-371)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-698 *2)) (-5 *4 (-780)) - (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5))))) + (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4096 *3) (|:| -4285 (-654 *5)))) + (-5 *1 (-1040 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1041 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1064))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-227))) - (-5 *1 (-477))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-462)) + (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-112)) - (-5 *1 (-269))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-573)) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) - (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) + (-12 (-5 *3 (-934)) (-5 *4 (-428 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-1064)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-250 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) - ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1020 *3)) (-4 *3 (-1050 (-416 (-573))))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-613 *4 *3)) (-4 *4 (-1112)) - (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-979)))) -(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-309)) (-4 *2 (-1230)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-621 *1))) (-5 *3 (-653 *1)) (-4 *1 (-309)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *1))) (-4 *1 (-309)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-301 *1)) (-4 *1 (-309))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-5 *2 (-2 (|:| -1389 (-654 *6)) (|:| -1686 (-654 *6))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-956 *4))) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1243 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573))))) - (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) - (-4 *7 (-857)) - (-4 *8 - (-13 (-1258 *3 *7) (-371) (-1215) - (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) - (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) - (-14 *10 (-1189))))) -(((*1 *2) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) - (-5 *1 (-446))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-977 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-803)) (-4 *7 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1062)) + (-5 *3 (-574))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1233)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1115)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-395 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-574)) (-14 *4 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) -(((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) - (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-931)))) - ((*1 *2 *3) - (-12 (-5 *3 (-344 *4 *5 *6 *7)) (-4 *4 (-13 (-376) (-371))) - (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *7 (-350 *4 *5 *6)) - (-5 *2 (-780)) (-5 *1 (-401 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-411)) (-5 *2 (-842 (-931))))) - ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) - (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) - (-4 *4 (-1256 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) - (-4 *3 (-859)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)) - (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) - (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) - (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) - (-5 *2 (-780)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) - (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) - (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-780)) - (-5 *1 (-922 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-344 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-371)) - (-4 *7 (-1256 *6)) (-4 *4 (-1256 (-416 *7))) (-4 *8 (-350 *6 *7 *4)) - (-4 *9 (-13 (-376) (-371))) (-5 *2 (-780)) - (-5 *1 (-1030 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-1283 (-699 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1283 (-699 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 (-699 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) + (-5 *2 (-1283 (-699 (-417 (-965 *5))))) (-5 *1 (-1101 *5)) + (-5 *4 (-699 (-417 (-965 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1192))) (-4 *5 (-372)) + (-5 *2 (-1283 (-699 (-965 *5)))) (-5 *1 (-1101 *5)) + (-5 *4 (-699 (-965 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) + (-5 *2 (-1283 (-699 *4))) (-5 *1 (-1101 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3372 *3) (|:| |coef1| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1188 *4)) (-5 *1 (-366 *4)) + (-4 *4 (-358))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-1091 *3 *4 *5))) (-4 *3 (-1115)) + (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1092 *3 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1218) (-972) (-29 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1233)) (-4 *2 (-1064)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-956 (-227))) (-5 *2 (-227)) (-5 *1 (-1229)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)) - (-5 *2 (-780)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1064))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1115) (-34))) + (-5 *2 (-112)) (-5 *1 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1283 *5)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-1088 *3 *4 *5))) (-4 *3 (-1112)) - (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) - (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) - (-5 *1 (-1089 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) - (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) - (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-1254 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) + (-4 *1 (-1086 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-371)) - (-5 *1 (-530 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) - (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) - ((*1 *2 *3) - (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) - (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-698 (-416 (-962 (-573))))) - (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)) - (-5 *3 (-323 (-573)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) - (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) - (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456))))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) (-5 *2 (-1185 (-416 *5))) (-5 *1 (-624 *4 *5)) - (-5 *3 (-416 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-1185 (-416 *6))) (-5 *1 (-624 *5 *6)) (-5 *3 (-416 *6))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) - (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-2 (|:| |num| (-698 *5)) (|:| |den| *5)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) + (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *1)) - (-4 *1 (-390 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-744 *3 *4))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-735)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-959 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-698 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1256 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-733 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-416 (-962 *5)))) (-5 *4 (-1189)) - (-5 *2 (-962 *5)) (-5 *1 (-299 *5)) (-4 *5 (-461)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-5 *2 (-962 *4)) - (-5 *1 (-299 *4)) (-4 *4 (-461)))) - ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 (-171 (-416 (-573))))) - (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *4)) - (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *4 (-1189)) - (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *5)) - (-4 *5 (-13 (-371) (-857))))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-962 (-416 (-573)))) - (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *4 (-1189)) - (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *5)) - (-4 *5 (-13 (-371) (-857)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-653 (-115)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1179))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-654 *2)) (-4 *2 (-1115)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) (((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1256 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) - (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) - (-4 *3 (-1256 (-573))))) - ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) - (-4 *3 (-1256 (-416 (-573)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-573) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *1) (-4 *1 (-357)))) + (-12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-901 *4 *5)) (-4 *5 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1182))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-934)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-802)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1264 *3)) (-4 *3 (-1064))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-653 *3)) (-5 *1 (-971 *3)) (-4 *3 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1202))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1041 (-853 (-574)))) + (-5 *3 (-1172 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1064)) + (-5 *1 (-605 *4))))) +(((*1 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) + (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-962 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-922)) + (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-922)) (-5 *1 (-920 *2 *3)) (-4 *3 (-1259 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-979 *3)) (-4 *3 (-1115)) (-5 *1 (-980 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) - (-5 *2 - (-3 (|:| |overq| (-1185 (-416 (-573)))) - (|:| |overan| (-1185 (-48))) (|:| -3600 (-112)))) - (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) -(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) - (-4 *5 (-1256 *4)) - (-5 *2 (-2 (|:| -3861 (-416 *5)) (|:| |coeff| (-416 *5)))) - (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) - (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1308))))) +(((*1 *2) + (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-781))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-633 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3877 *4) (|:| |sol?| (-112))) + (-574) *4)) + (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *1 (-584 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-654 (-324 (-227)))) + (|:| |constraints| + (-654 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 *1)) (-4 *1 (-439 *4)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) + (-4 *4 (-1115)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) - (-5 *1 (-706)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1 (-953 (-227)) (-227) (-227))) - (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *1 (-706))))) + (-12 (-5 *2 (-1192)) (-4 *1 (-440 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-979 *2)) (-4 *2 (-1115))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) - (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) - (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) - (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-704 *3)) (-4 *3 (-1112)) - (-5 *2 (-653 (-2 (|:| -1907 *3) (|:| -3974 (-780)))))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-1043 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1064)) (-5 *1 (-1043 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) - (|:| |expense| (-387)) (|:| |accuracy| (-387)) - (|:| |intermediateResults| (-387)))) - (-5 *2 (-1047)) (-5 *1 (-312))))) + (-12 (-5 *3 (-699 (-417 (-965 (-574))))) + (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388))))) (((*1 *2 *3) - (-12 (-5 *2 (-427 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) + (-5 *1 (-958 *4 *5)) (-4 *5 (-1259 *4))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-315)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) + (-4 *1 (-315))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) + (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) + (-4 *6 (-462))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) - (-5 *1 (-1173 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) + (-4 *2 (-1259 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) + (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-387)) (-5 *1 (-207))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-721 *3 *4)) - (-4 *4 (-1256 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-1201 (-653 *4))) (-5 *1 (-1200 *4)) - (-5 *3 (-653 *4))))) + (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) -(((*1 *2 *1) - (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2802 (-422 *4 (-416 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1359 (-416 *6)) - (|:| |special| (-416 *6)))) - (-5 *1 (-736 *5 *6)) (-5 *3 (-416 *6)))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-934))) (-5 *1 (-1116 *3 *4)) (-14 *3 (-934)) + (-14 *4 (-934))))) +(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-918 *3)) (-4 *3 (-1115)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1259 *4)) (-5 *2 (-574)))) ((*1 *2 *3) - (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-906 *3 *4)) - (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-780)) (-4 *5 (-371)) - (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-906 *3 *5)) - (-4 *3 (-1256 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) - (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) - (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) - (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) - (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) + (|partial| -12 (-4 *4 (-13 (-566) (-1053 *2) (-649 *2) (-462))) + (-5 *2 (-574)) (-5 *1 (-1131 *4 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *6))) + (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) + (-5 *1 (-1131 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-1174)) + (-4 *6 (-13 (-566) (-1053 *2) (-649 *2) (-462))) (-5 *2 (-574)) + (-5 *1 (-1131 *6 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-574)) + (-5 *1 (-1132 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-853 (-417 (-965 *6)))) + (-5 *3 (-417 (-965 *6))) (-4 *6 (-462)) (-5 *2 (-574)) + (-5 *1 (-1132 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-417 (-965 *6))) (-5 *4 (-1192)) + (-5 *5 (-1174)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1132 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1215 *3)) (-4 *3 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-338))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1115))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1000 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *8 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-4 *3 (-565))))) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-931)) - (-5 *2 - (-3 (-1185 *4) - (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132))))))) - (-5 *1 (-354 *4)) (-4 *4 (-357))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) - (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) - (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-653 (-323 (-227)))) - (|:| -3816 (-653 (-227))))))) - (-5 *2 (-653 (-1171))) (-5 *1 (-273))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-1208))))) + (-12 (-4 *4 (-1064)) (-4 *3 (-1259 *4)) (-4 *2 (-1274 *4)) + (-5 *1 (-1277 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1226 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *3 (-860)) (-4 *6 (-1080 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1302 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) + (-4 *8 (-962 *7 *5 *6)) + (-5 *2 (-2 (|:| -3843 (-781)) (|:| -1868 *3) (|:| |radicand| *3))) + (-5 *1 (-966 *5 *6 *7 *8 *3)) (-5 *4 (-781)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *8)) (-15 -2970 (*8 $)) (-15 -2981 (*8 $)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-142))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1115)) + (-4 *2 (-1233))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135))))) +(((*1 *1) (-5 *1 (-1097)))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-565))))) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-992 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1283 (-654 *3))) (-4 *4 (-315)) + (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-407))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-417 (-574)))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1192))) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) + (-5 *2 (-654 (-417 (-965 *4)))) (-5 *1 (-937 *4 *5 *6 *7)) + (-4 *7 (-962 *4 *6 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-764))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1250 *3 *2)) - (-4 *2 (-1256 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192))))) + (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) - (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) - (-4 *2 (-1230))))) -(((*1 *1 *1) (-4 *1 (-565)))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) + (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1259 *4)) + (-5 *2 (-2 (|:| -3987 (-633 *4 *5)) (|:| -3141 (-417 *5)))) + (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) + (-14 *3 (-934)) (-4 *4 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-462)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1259 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) + (-4 *2 (-1274 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) + (-4 *5 (-1259 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) + (-4 *2 (-1274 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) + (-5 *1 (-552 *4 *2)) (-4 *2 (-1274 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1168 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1250 (-574)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-883)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) - ((*1 *1 *1) (-4 *1 (-309))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) - ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) - (-4 *4 (-357)) (-5 *2 (-1285)) (-5 *1 (-537 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) - (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-654 (-1091 *4 *5 *2))) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-654 (-1091 *5 *6 *2))) (-5 *4 (-934)) (-4 *5 (-1115)) + (-4 *6 (-13 (-1064) (-897 *5) (-624 (-903 *5)))) + (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-498 *3)) - (-4 *3 (-1230))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-931)) (-5 *1 (-1044 *2)) - (-4 *2 (-13 (-1112) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) + (-4 *3 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 *7)) (-4 *7 (-962 *6 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1064)) (-5 *2 (-1188 *6)) + (-5 *1 (-329 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283 (-709))) (-5 *1 (-313))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1188 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-958 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) - (-5 *2 (-852 *4)) (-5 *1 (-320 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) - (-5 *2 (-852 *4)) (-5 *1 (-1266 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) - (-14 *6 *4)))) + (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1086 *4 *5 *6 *7)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-654 *1)) (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) - (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) - ((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 (-780)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) - ((*1 *1 *1) (-4 *1 (-1072)))) -(((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-171 (-387)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-387))) (-5 *1 (-337)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-573))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-171 (-387))))) - (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-387)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-573)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-171 (-387))))) - (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-387)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-573)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-171 (-387)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-387))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-573))) (-5 *1 (-337)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-703))) (-5 *1 (-337)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-708))) (-5 *1 (-337)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) - (-5 *4 (-323 (-710))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-703)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-708)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-710)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-703)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-708)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-710)))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-703))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-708))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-710))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-703))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-708))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-710))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-703))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-708))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-710))) (-5 *1 (-337)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-337)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) -(((*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-461) (-148))) (-5 *2 (-427 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1256 *4)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1192)) (-5 *2 (-112)) (-5 *1 (-622 *4)) + (-4 *4 (-1115)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1115)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-112)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-13 (-461) (-148))) - (-5 *2 (-427 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) - (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) + (-12 (-4 *5 (-1115)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) + (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1115)) + (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1192)) + (-5 *2 + (-2 (|:| |zeros| (-1172 (-227))) (|:| |ones| (-1172 (-227))) + (|:| |singularities| (-1172 (-227))))) + (-5 *1 (-105))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1172 (-654 (-934)))) (-5 *1 (-894))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3372 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-440 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) - (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 (-1280 *4))) (-4 *4 (-1061)) (-5 *2 (-698 *4)) - (-5 *1 (-1041 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) - ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) - (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-427 *1)) (-4 *1 (-959 *3 *4 *5)))) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-461)) (-5 *2 (-427 *3)) - (-5 *1 (-991 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017))))) ((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) - (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) - (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) + ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-1259 *4 *3)) - (-4 *3 (-13 (-1256 *4) (-565) (-10 -8 (-15 -2872 ($ $ $))))))) + (-12 (-5 *3 (-115)) (-4 *5 (-1115)) (-5 *2 (-112)) + (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-14 *5 (-653 (-1189))) - (-5 *2 - (-653 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6))))) - (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189)))))) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) + (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218)))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *5 *6)) (-4 *6 (-624 (-1192))) + (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *2 (-1181 (-654 (-965 *4)) (-654 (-302 (-965 *4))))) + (-5 *1 (-514 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) + (-14 *4 (-781)) (-4 *5 (-174))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *1) (-5 *1 (-1285)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-959 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) - (-4 *1 (-1256 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) -(((*1 *1 *1) (-4 *1 (-1156)))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-588))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1) (-5 *1 (-1288)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-545))) (-5 *1 (-545))))) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) +(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1233)) + (-5 *2 (-654 *3))))) +(((*1 *1) (-5 *1 (-447)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1283 *4))) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-654 (-1283 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-122 *3))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-566)) + (-4 *4 (-1064)) (-4 *2 (-1274 *4)) (-5 *1 (-1277 *4 *5 *6 *2)) + (-4 *6 (-666 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-829 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-856)) (-5 *1 (-1306 *3 *2)) (-4 *3 (-1064))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1256 *4))))) + (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-820 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-2 (|:| -3907 (-654 (-417 *6))) (|:| -4226 (-699 *5)))) + (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-820 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 (-2 (|:| -3907 (-654 (-417 *6))) (|:| -4226 (-699 *5)))) + (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-371)) (-5 *1 (-906 *2 *3)) - (-4 *2 (-1256 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1109 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) (((*1 *1 *1) - (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496)))) - ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-968)) (-5 *2 (-1109 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-1109 (-227)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) ((*1 *2 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) - ((*1 *1 *1) (-4 *1 (-1072)))) -(((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-780)) (-4 *6 (-371)) (-5 *4 (-1224 *6)) - (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1288 *6)) - (-5 *5 (-1169 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) - (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) + (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *1 (-937 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) - (-4 *3 (-13 (-1215) (-29 *5)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *1) (-5 *1 (-298)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-565)) (-4 *2 (-1061)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) - (-4 *1 (-1083 *4 *5 *6 *3))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-654 (-965 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-654 (-965 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-965 *3))))) + ((*1 *2) + (-12 (-5 *2 (-654 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1283 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-965 *4))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) + (-14 *5 (-934)) (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157 *4 *2)) (-14 *4 (-934)) + (-4 *2 (-13 (-1064) (-10 -7 (-6 (-4460 "*"))))) + (-5 *1 (-915 *4 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1259 *5)) + (-5 *2 + (-654 + (-2 (|:| -3907 (-699 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-699 *6))))) + (-5 *1 (-508 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3907 (-699 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-699 *6)))) + (-4 *7 (-1259 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)) - (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) + (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-934)) + (-4 *2 (-1115))))) (((*1 *2 *1) - (-12 (-4 *2 (-1230)) (-5 *1 (-882 *3 *2)) (-4 *3 (-1230)))) - ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1156)))) + (-12 (-4 *1 (-1245 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1274 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) - (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) - (-4 *6 (-959 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34)))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565))))) + (-12 (-4 *2 (-1233)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1233)))) + ((*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1115)) (-5 *2 (-55))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1074)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *4 (-1189)) - (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1027)) (-5 *2 (-872))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) - (-4 *5 (-381 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) + (-4 *5 (-382 *2)) (-4 *2 (-1233)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *2 (-1112)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-931)))) + (-12 (-5 *3 (-781)) (-4 *2 (-1115)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-934)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-4 *1 (-413)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-413)))) + (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-934)) (-4 *1 (-414)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *2 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-381 *5)))) + (-12 (-4 *1 (-1118 *3 *4 *5 *2 *6)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-381 *4)) (-4 *3 (-381 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) - (-5 *2 (-2 (|:| |num| (-698 *4)) (|:| |den| *4))) - (-5 *1 (-702 *4 *5)))) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-5 *2 (-112)) + (-5 *1 (-900 *4 *5)) (-4 *5 (-1115)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) - (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-653 (-416 *6))))) - (-5 *1 (-816 *5 *6 *7 *3)) (-5 *4 (-653 (-416 *6))) - (-4 *7 (-665 *6)) (-4 *3 (-665 (-416 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1249 *4 *5 *3)) - (-4 *3 (-1256 *5))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 *2)))) + (-12 (-5 *4 (-903 *5)) (-4 *5 (-1115)) (-5 *2 (-112)) + (-5 *1 (-901 *5 *3)) (-4 *3 (-1233)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) + (-4 *6 (-1233)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) + (-15 -2394 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) + (-15 -2394 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3372 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-446))))) (((*1 *2 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-859)) (-5 *4 (-653 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-653 *4)))) - (-5 *1 (-1200 *6)) (-5 *5 (-653 *4))))) + (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) + (-5 *2 (-1188 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-999 *3 *4 *5 *2)) - (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) + (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) + (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| -1868 *3) (|:| -3805 *4)))) + (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-736)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-5 *2 (-1172 (-2 (|:| |k| *4) (|:| |c| *3))))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-554)) (-5 *1 (-160 *2))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-653 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-802)) (-4 *3 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) - (-5 *1 (-458 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) - (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-653 (-52))) (-5 *2 (-1285)) (-5 *1 (-872))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112))))) -(((*1 *2) - (-12 (-14 *4 (-780)) (-4 *5 (-1230)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-371)) (-5 *2 (-135)) (-5 *1 (-335 *3 *4)) - (-4 *3 (-336 *4)))) - ((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) + (-5 *1 (-1291 *4)) (-4 *4 (-372))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-105))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) - (-5 *2 (-573)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1061)) (-5 *2 (-931)))) - ((*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-371)) (-5 *2 (-135))))) -(((*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1288)) (-5 *1 (-873))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) + (-4 *3 (-1259 (-417 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1050)) (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) + (-5 *2 (-1050)) (-5 *1 (-850))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1180 *4 *5)) + (-14 *4 (-934)) (-4 *5 (-1064))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 (-323 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) - (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573)))) - (-5 *1 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-286))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-287))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1247 *3)) (-4 *3 (-1230))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1189)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-653 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1215) (-27) (-439 *8))) - (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) - (-5 *2 (-653 *4)) (-5 *1 (-1026 *8 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) + (-12 (-5 *2 (-1283 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1195)) (-5 *3 (-1192))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1233))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1192)) + (-4 *6 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-4 *4 (-13 (-29 *6) (-1218) (-972))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3907 (-654 *4)))) + (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *1) (-4 *1 (-1072)))) -(((*1 *2 *1) - (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) + ((*1 *1 *1) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) + ((*1 *1 *1) (-4 *1 (-858))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174)) (-4 *2 (-1075)))) + ((*1 *1 *1) (-4 *1 (-1075))) ((*1 *1 *1) (-4 *1 (-1154)))) +(((*1 *1 *2) + (-12 (-5 *2 (-934)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1064)) + (-4 *4 (-1233)))) + ((*1 *1 *2) + (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) + (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 - (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *2)) - (-2 (|:| -2575 *5) (|:| -3907 *2)))) - (-4 *2 (-243 (-2862 *3) (-780))) (-5 *1 (-470 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-859)) (-4 *7 (-959 *4 *2 (-873 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) -(((*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) - (-4 *3 (-565))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1543 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801))))) + (-1 (-112) (-2 (|:| -2590 *2) (|:| -3843 *5)) + (-2 (|:| -2590 *2) (|:| -3843 *5)))) + (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) + (-4 *7 (-962 *4 *5 (-874 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-956 (-227))) (-5 *1 (-1229))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -1366 (-428 *3)) (|:| |special| (-428 *3)))) + (-5 *1 (-737 *5 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) + (-5 *2 (-699 *6)) (-5 *1 (-1044 *6)) (-4 *6 (-372)) (-4 *6 (-1064)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1044 *4)) + (-4 *4 (-372)) (-4 *4 (-1064)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) + (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-1064))))) +(((*1 *2 *3) + (-12 (-4 *4 (-922)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-962 *4 *5 *6)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-922)) (-4 *5 (-1259 *4)) (-5 *2 (-428 (-1188 *5))) + (-5 *1 (-920 *4 *5)) (-5 *3 (-1188 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1211))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1188 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1) (-4 *1 (-502))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1) (-4 *1 (-503))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-936)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-936)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) - (-5 *1 (-937))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *4 *5 *6)) - (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-931))) (-5 *4 (-915 (-573))) - (-5 *2 (-698 (-573))) (-5 *1 (-599)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) - (-5 *1 (-599)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-915 (-573)))) - (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) - (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) - (-4 *3 (-350 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) - (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-1050 (-416 *2)))) (-5 *2 (-573)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-690)))) - ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1130))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) + (-5 *1 (-917 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1192)))) + (-4 *5 (-803)) (-5 *1 (-937 *3 *4 *5 *2)) (-4 *2 (-962 *3 *5 *4))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) + (|:| |genIdeal| (-514 *3 *4 *5 *6)))) + (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-879 *2)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1174)) (-5 *3 (-833)) (-5 *1 (-832))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-654 (-1188 *13))) (-5 *3 (-1188 *13)) + (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) + (-5 *7 (-654 (-654 (-2 (|:| -4205 (-781)) (|:| |pcoef| *13))))) + (-5 *8 (-654 (-781))) (-5 *9 (-1283 (-654 (-1188 *10)))) + (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-962 *10 *11 *12)) + (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13))))) +(((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-691)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-1088)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1133))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *5)))) - (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *2 (-653 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-2 (|:| -4218 *5) (|:| -2565 (-573))))) - (-5 *4 (-573)) (-4 *5 (-1256 *4)) (-5 *2 (-653 *5)) - (-5 *1 (-705 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) + (-12 (-4 *4 (-803)) + (-4 *5 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *6 (-566)) + (-5 *2 (-2 (|:| -3672 (-965 *6)) (|:| -2730 (-965 *6)))) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-962 (-417 (-965 *6)) *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1038 (-852 (-573)))) - (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *4)))) (-4 *4 (-1061)) - (-5 *1 (-604 *4))))) + (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) + (-4 *2 (-860))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) + (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) + (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 *4)) (-4 *4 (-13 (-1064) (-649 (-574)))) + (-5 *2 (-112)) (-5 *1 (-1311 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-573)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) - (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) + (-12 (-4 *2 (-1115)) (-5 *1 (-977 *3 *2)) (-4 *3 (-1115))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1280 (-653 *3))) (-4 *4 (-314)) - (-5 *2 (-653 *3)) (-5 *1 (-464 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-145))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-819 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-662 (-416 *6))) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) - (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-819 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6 (-416 *6))) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) - (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6)))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) - ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112))))) + (-12 (-4 *6 (-566)) (-4 *2 (-962 *3 *5 *4)) + (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-965 *6))) (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-584 *5 *3))))) +(((*1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1115)) + (-5 *1 (-688 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1115)) (-5 *1 (-692 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574)))) + ((*1 *2 *2) + (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1139 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-965 *4))) (-5 *3 (-654 (-1192))) (-4 *4 (-462)) + (-5 *1 (-931 *4))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-260 *3)))) - ((*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1208))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) - (-4 *3 (-13 (-1112) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-974 *3 *2)) (-4 *3 (-1112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) - (-5 *1 (-928 *4))))) -(((*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) - ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) + ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) + (-5 *1 (-207))))) +(((*1 *2) + (-12 + (-5 *2 + (-1283 (-654 (-2 (|:| -3078 (-923 *3)) (|:| -2590 (-1135)))))) + (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) (-14 *4 (-934)))) + ((*1 *2) + (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) + (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1188 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135)))))) + (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-934))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1196))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1115)) (-4 *2 (-1115)) + (-5 *1 (-900 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) + ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-832))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1 *1) (-5 *1 (-387))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1 *1) (-5 *1 (-388))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) - (-4 *7 (-1256 (-416 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1353 *3))) - (-5 *1 (-571 *5 *6 *7 *3)) (-4 *3 (-350 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) - (-5 *2 - (-2 (|:| |answer| (-416 *6)) (|:| -1353 (-416 *6)) - (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) - (-5 *1 (-572 *5 *6)) (-5 *3 (-416 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-428 (-1188 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1188 *1)) + (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1115)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) + (-12 (-4 *1 (-922)) (-5 *2 (-428 (-1188 *1))) (-5 *3 (-1188 *1))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) + (-4 *3 (-13 (-1218) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-4 *5 (-13 (-566) (-1053 (-574)) (-148))) + (-5 *2 (-596 (-417 (-965 *5)))) (-5 *1 (-580 *5)) + (-5 *3 (-417 (-965 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1233)) + (-4 *5 (-1233)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-698 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3914 (-653 *6))) - *7 *6)) - (-4 *6 (-371)) (-4 *7 (-665 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1280 *6) "failed")) - (|:| -3914 (-653 (-1280 *6))))) - (-5 *1 (-822 *6 *7)) (-5 *4 (-1280 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-931)) (-4 *4 (-376)) (-4 *4 (-371)) (-5 *2 (-1185 *1)) - (-4 *1 (-336 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *3 (-371)) - (-4 *2 (-1256 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) - (-5 *1 (-537 *4))))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) + (-4 *7 (-1233)) (-4 *5 (-1233)) (-5 *2 (-246 *6 *5)) + (-5 *1 (-245 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1233)) (-4 *5 (-1233)) + (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1115)) (-4 *5 (-1115)) + (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1233)) + (-4 *5 (-1233)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-971 *6)) (-4 *6 (-1233)) + (-4 *5 (-1233)) (-5 *2 (-971 *5)) (-5 *1 (-970 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1172 *6)) (-4 *6 (-1233)) + (-4 *3 (-1233)) (-5 *2 (-1172 *3)) (-5 *1 (-1170 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1283 *6)) (-4 *6 (-1233)) + (-4 *5 (-1233)) (-5 *2 (-1283 *5)) (-5 *1 (-1282 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1115)) (-4 *5 (-1115)) + (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) +(((*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-913 *3))))) -(((*1 *1 *1) (-4 *1 (-554)))) -(((*1 *2) - (-12 (-5 *2 (-1280 (-1113 *3 *4))) (-5 *1 (-1113 *3 *4)) - (-14 *3 (-931)) (-14 *4 (-931))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-4 *7 (-859)) - (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-4 *8 (-314)) - (-5 *2 (-653 (-780))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *5 (-780))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *1 *1) (-4 *1 (-555)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1078))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) - ((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-959 *4 *6 *5)) (-4 *4 (-461)) - (-4 *5 (-859)) (-4 *6 (-802)) (-5 *1 (-999 *4 *5 *6 *3))))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1050))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1115)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1185 *7)) - (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) - (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388))) + ((*1 *1) (-5 *1 (-388)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-690)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1130))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-545)) (-5 *1 (-544 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-545))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) - (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 (-323 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) - (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) - (-5 *2 (-653 (-2 (|:| -1380 *1) (|:| -1674 (-653 *7))))) - (-5 *3 (-653 *7)) (-4 *1 (-1223 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1232))) (-5 *1 (-691)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1133))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-761))))) +(((*1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *2 (-1064)) (-5 *1 (-722 *2 *3)) + (-4 *3 (-1259 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1226 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-1080 *2 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-934)) (-5 *2 (-478)) (-5 *1 (-1284))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) - (-4 *4 (-38 (-416 (-573))))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-427 *3)) (-4 *3 (-565)) (-5 *1 (-428 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-103 *3)) (-4 *3 (-1112))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574))))) + (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1192))) (-14 *5 (-781)) + (-5 *1 (-515 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-956 (-227)))) (-5 *1 (-1284))))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) + (-12 (-4 *1 (-916 *3)) (-4 *3 (-1115)) (-5 *2 (-1117 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1117 *3)) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1115)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1115)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) + (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1115))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-803)) + (-4 *3 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $))))) (-4 *5 (-566)) + (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-962 (-417 (-965 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) + (-4 *3 + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-5 *1 (-999 *4 *5 *3 *2)) (-4 *2 (-962 (-965 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *6)) + (-4 *6 + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-4 *4 (-1064)) (-4 *5 (-803)) (-5 *1 (-999 *4 *5 *6 *2)) + (-4 *2 (-962 (-965 *4) *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2886 *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-527)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1115) (-34))) (-5 *1 (-1155 *3 *2)) + (-4 *3 (-13 (-1115) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1294))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *2)) - (-4 *3 (-13 (-1112) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1291))))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-4 *4 (-1061)) - (-5 *1 (-1041 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-573)) (-5 *1 (-454 *2)) (-4 *2 (-1061))))) + (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *3 (-654 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1109 (-388)))) (-5 *1 (-478))))) (((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-573)) (-5 *1 (-495 *4)) - (-4 *4 (-1256 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-653 *2))) (-5 *4 (-653 *5)) - (-4 *5 (-38 (-416 (-573)))) (-4 *2 (-1271 *5)) - (-5 *1 (-1273 *5 *2))))) + (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) + (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1053 (-574)) (-649 (-574)) (-462))) + (-5 *2 (-853 *4)) (-5 *1 (-1269 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1218) (-440 *3))) (-14 *5 (-1192)) + (-14 *6 *4)))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-569))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) -(((*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) - ((*1 *1 *1) (-5 *1 (-1132)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) +(((*1 *2 *3) + (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1192))) (-4 *5 (-1064)) + (-5 *2 (-965 *5)) (-5 *1 (-957 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) + ((*1 *1 *1) (-5 *1 (-1135)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1157 *3 *4)) (-14 *3 (-934)) (-4 *4 (-372)) + (-5 *1 (-1008 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-323 *5))) - (-5 *1 (-1141 *5)))) + (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *4 (-654 (-1192))) + (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) - (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-323 *5)))) - (-5 *1 (-1141 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-573)) (-5 *4 (-427 *2)) (-4 *2 (-959 *7 *5 *6)) - (-5 *1 (-751 *5 *6 *7 *2)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-314))))) + (-12 (-4 *5 (-1115)) (-4 *6 (-913 *5)) (-5 *2 (-699 *6)) + (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) - (-5 *1 (-1231 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) - (-5 *1 (-1231 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-832)))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) + (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-227))) (-5 *2 (-654 (-1174))) (-5 *1 (-313))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1283 *4)) + (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) + ((*1 *1 *1 *1) (-5 *1 (-1135)))) (((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) - ((*1 *1 *1 *1) (-5 *1 (-1132)))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1097))) (-5 *1 (-298))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) -(((*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1280 *6)) (-5 *4 (-1280 (-573))) (-5 *5 (-573)) - (-4 *6 (-1112)) (-5 *2 (-1 *6)) (-5 *1 (-1029 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *5)) (-4 *5 (-1256 *3)) (-4 *3 (-314)) - (-5 *2 (-112)) (-5 *1 (-464 *3 *5))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) + (-4 *3 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) (-4 *3 (-1053 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) (-5 *5 (-1188 *2)) + (-4 *2 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-622 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1192))) + (-5 *5 (-417 (-1188 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1115))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1174)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) + ((*1 *1 *1) (-4 *1 (-1075)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) - ((*1 *1 *1 *1) (-5 *1 (-1132)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) + ((*1 *1 *1 *1) (-5 *1 (-1135)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-227)) (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2886 *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) + (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1017) (-1218)))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-931)) (-4 *3 (-371)) - (-14 *4 (-1005 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) - ((*1 *1 *1) (|partial| -4 *1 (-731))) - ((*1 *1 *1) (|partial| -4 *1 (-735))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) - (-4 *2 (-1256 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1018))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-573)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-880 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-14 *2 (-573)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-573)) (-14 *3 *2) (-5 *1 (-881 *3 *4)) - (-4 *4 (-878 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-573)) (-5 *1 (-881 *2 *3)) (-4 *3 (-878 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-573)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-1271 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1271 *2))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-873 *4)) - (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-638))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) + (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-171 (-388))))) + (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-574)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-171 (-388))))) + (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1192)) (-5 *3 (-654 (-965 (-574)))) + (-5 *4 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-704)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-709)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-324 (-711)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1192)) (-5 *3 (-1174)) (-5 *1 (-338)))) + ((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-714 *3 *4)) (-4 *3 (-1230)) (-4 *4 (-1230))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1231 *2)) - (-4 *2 (-1112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-859)) - (-5 *1 (-1231 *2))))) + (-5 *1 (-715 *3 *4)) (-4 *3 (-1233)) (-4 *4 (-1233))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) - ((*1 *1 *1) (-4 *1 (-1218)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1169 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-325)) (-5 *3 (-227))))) -(((*1 *2 *3) - (-12 (-5 *3 (-301 (-962 (-573)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1) (-4 *1 (-1221)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4458)) (-4 *1 (-499 *4)) + (-4 *4 (-1233)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) + (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-962 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 - (-2 (|:| |varOrder| (-653 (-1189))) - (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) - (|:| |hom| (-653 (-1280 (-780)))))) - (-5 *1 (-241))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-573))) (-5 *5 (-1 (-1169 *4))) (-4 *4 (-371)) - (-4 *4 (-1061)) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4))))) + (-2 (|:| |minor| (-654 (-934))) (|:| -4096 *3) + (|:| |minors| (-654 (-654 (-934)))) (|:| |ops| (-654 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-934)) (-4 *3 (-666 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) + (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1259 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1259 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) + (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1259 *3))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) + (-4 *5 (-1259 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1031 *4 *5)) + (-5 *3 (-417 *5))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-781)) (-4 *3 (-1064)) (-4 *1 (-697 *3 *4 *5)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1278 *3)) (-4 *3 (-23)) (-4 *3 (-1230))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) -(((*1 *1 *1) (-4 *1 (-638))) + (-12 (-5 *2 (-781)) (-4 *1 (-1281 *3)) (-4 *3 (-23)) (-4 *3 (-1233))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *1 *1) (-4 *1 (-639))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-749 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-859)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *1 (-992 *3)) (-4 *3 (-1061)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2) - (-12 (-4 *1 (-357)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1061)) - (-5 *1 (-328 *4 *5 *2 *6)) (-4 *6 (-959 *2 *4 *5))))) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *1 (-478))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) + (-5 *1 (-1203 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) + (-4 *3 (-566)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1012 *3)) (-4 *3 (-174)) (-4 *3 (-555)) + (-5 *2 (-417 (-574))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1023 *3)) + (-4 *3 (-1053 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-856))))) (((*1 *2 *2) - (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) - (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-698 *5))) (-4 *5 (-314)) (-4 *5 (-1061)) - (-5 *2 (-1280 (-1280 *5))) (-5 *1 (-1041 *5)) (-5 *4 (-1280 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) + (-12 (-5 *2 (-654 (-965 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) + (-14 *4 (-654 (-1192))))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) + (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) + (-14 *4 (-654 (-1192))) (-5 *1 (-638 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *1) (-12 (-5 *2 (-986)) (-5 *1 (-918 *3)) (-4 *3 (-1115))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (-12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) - (-14 *4 (-653 *2)) (-4 *5 (-396)))) + (-12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) + (-14 *4 (-654 *2)) (-4 *5 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) - (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) + (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) + (-14 *3 (-654 (-1192))) (-14 *4 (-654 (-1192))))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-323 (-227))) - (|:| -3821 (-653 (-1106 (-852 (-227))))) + (-2 (|:| |fn| (-324 (-227))) + (|:| -4231 (-654 (-1109 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-778)))) + (-5 *1 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-817)))) + (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) - (|:| |lb| (-653 (-852 (-227)))) - (|:| |cf| (-653 (-323 (-227)))) - (|:| |ub| (-653 (-852 (-227)))))) + (-2 (|:| |fn| (-324 (-227))) (|:| -3791 (-654 (-227))) + (|:| |lb| (-654 (-853 (-227)))) + (|:| |cf| (-654 (-324 (-227)))) + (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-653 (-323 (-227)))) - (|:| -3816 (-653 (-227))))))) - (-5 *1 (-850)))) + (-2 (|:| |lfn| (-654 (-324 (-227)))) + (|:| -3791 (-654 (-227))))))) + (-5 *1 (-851)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-653 (-323 (-227)))) + (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| - (-653 + (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-780)) (|:| |boundaryType| (-573)) - (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) - (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) + (|:| |grid| (-781)) (|:| |boundaryType| (-574)) + (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) + (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1174)) (|:| |tol| (-227)))) - (-5 *1 (-908)))) + (-5 *1 (-911)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-991 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (-2817 - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) - (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))) - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) - (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))) - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) - (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))))) + (-2832 + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) + (-2086 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-555))) (-2086 (-4 *3 (-38 (-417 (-574))))) + (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) + (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))))) ((*1 *1 *2) - (-2817 - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) - (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) + (-2832 + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) ((*1 *1 *2) - (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-765))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-371)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) - (-4 *1 (-343 *4 *3 *5 *2)) (-4 *2 (-350 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-371)) (-4 *4 (-1256 *2)) - (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *2 *4 *5 *6)) - (-4 *6 (-350 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) - (-4 *1 (-343 *2 *3 *4 *5)) (-4 *5 (-350 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-4 *1 (-343 *3 *4 *5 *2)) (-4 *2 (-350 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-422 *4 (-416 *4) *5 *6)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-4 *3 (-371)) - (-4 *1 (-343 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) - (-4 *7 (-1256 (-416 *6))) (-5 *2 (-653 (-962 *5))) - (-5 *1 (-349 *4 *5 *6 *7)) (-4 *4 (-350 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) - (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *4 (-371)) - (-5 *2 (-653 (-962 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) - (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-653 *3)) - (-5 *1 (-600 *5 *6 *7 *8 *3)) (-4 *3 (-1121 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) - (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) - (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) - (-14 *6 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-148))) + (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) - (-5 *1 (-1090 *4 *5)) (-5 *3 (-653 (-962 *4))) - (-14 *5 (-653 (-1189))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-699 (-574))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-574)) (-5 *2 (-1050)) (-5 *1 (-763))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-382 *2)) (-4 *2 (-1233)) + (-4 *2 (-860)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4459)) + (-4 *1 (-382 *3)) (-4 *3 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 - (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) - (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) - (-14 *6 (-653 (-1189)))))) + (-654 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) + (|:| |outvect| (-654 (-699 (-171 *4))))))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) - (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1233)) + (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) - (-4 *5 (-381 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) + (-4 *5 (-382 *2)) (-4 *2 (-1233)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1233)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-653 (-573))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-573)) (-14 *5 (-780)))) + (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-574)) (-14 *5 (-781)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-780)))) + (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-781)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-780)))) + (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-781)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-780)))) + (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-781)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-573)) - (-14 *4 (-780)))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) + (-14 *4 (-781)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-250 (-1171))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1192)) (-5 *2 (-251 (-1174))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ *3)) (-15 -1402 ((-1285) $)) - (-15 -1974 ((-1285) $))))))) + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ *3)) (-15 -1413 ((-1288) $)) + (-15 -2394 ((-1288) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1001)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1004)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) - (-15 -1974 ((-1285) $))))))) + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 ((-1288) $)) + (-15 -2394 ((-1288) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-780)) (-5 *1 (-250 *4)) (-4 *4 (-859)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-859)))) + (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-859)))) + (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1230)) (-4 *2 (-1230)))) + (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1233)) (-4 *2 (-1233)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1233)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) - (-4 *4 (-1256 (-416 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1171)) (-5 *1 (-511)))) + (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) + (-4 *4 (-1259 (-417 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1174)) (-5 *1 (-512)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1115)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-653 (-902 *4))) (-5 *1 (-902 *4)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) + (-4 *4 (-1115)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) - (-4 *4 (-1112)))) + (-12 (-5 *3 (-781)) (-5 *2 (-918 *4)) (-5 *1 (-917 *4)) + (-4 *4 (-1115)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 "value") (-4 *1 (-1025 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *2 (-1061)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) + (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) (-4 *2 (-1064)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) + (-12 (-5 *3 (-574)) (-4 *1 (-1068 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1064)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-931)) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-1088 *4 *5 *2)) - (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) + (-12 (-5 *3 (-934)) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1091 *4 *5 *2)) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-931)) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-1089 *4 *5 *2)) - (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1156))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) + (-12 (-5 *3 (-934)) (-4 *4 (-1115)) + (-4 *5 (-13 (-1064) (-897 *4) (-624 (-903 *4)))) + (-5 *1 (-1092 *4 *5 *2)) + (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1159))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1192)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-416 *1)) (-4 *1 (-1256 *2)) (-4 *2 (-1061)) - (-4 *2 (-371)))) + (-12 (-5 *3 (-417 *1)) (-4 *1 (-1259 *2)) (-4 *2 (-1064)) + (-4 *2 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) - (-4 *3 (-565)))) + (-12 (-5 *2 (-417 *1)) (-4 *1 (-1259 *3)) (-4 *3 (-1064)) + (-4 *3 (-566)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) + (-12 (-5 *3 "last") (-4 *1 (-1271 *2)) (-4 *2 (-1233)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 "rest") (-4 *1 (-1271 *3)) (-4 *3 (-1233)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) + (-12 (-5 *3 "first") (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-780)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1230)))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-934))) (-5 *4 (-654 (-574))) + (-5 *2 (-699 (-574))) (-5 *1 (-1125))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-13 (-462) (-148))) + (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) + (-4 *3 (-1259 *4)) + (-4 *5 (-13 (-414) (-1053 *4) (-372) (-1218) (-292)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1192)) (-5 *5 (-1109 (-227))) (-5 *2 (-940)) + (-5 *1 (-938 *3)) (-4 *3 (-624 (-546))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-5 *2 (-940)) (-5 *1 (-938 *3)) + (-4 *3 (-624 (-546))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-940)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1109 (-227))) + (-5 *1 (-940))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1192)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) + (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233)) + (-4 *7 (-1233)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) + (-4 *3 (-624 (-546))) (-4 *5 (-1233)) (-4 *6 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-574)) (-5 *1 (-1125)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1283 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) + (-5 *1 (-1125))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1047)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) - (-5 *3 (-573))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) + (-12 (-4 *1 (-1259 *3)) (-4 *3 (-1064)) (-5 *2 (-1188 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-780)))) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) + (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064)))) + ((*1 *2 *3) + (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) + (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838))))) + (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4460 "*"))) (-4 *2 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-662 *4)) (-4 *4 (-350 *5 *6 *7)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-815 *5 *6 *7 *4))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) - (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) + (-12 (-5 *4 (-934)) (-5 *2 (-1188 *3)) (-5 *1 (-1207 *3)) + (-4 *3 (-372))))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) + (-5 *1 (-313))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1192)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) -(((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) - (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) - (-14 *4 (-780)) (-4 *5 (-174))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-1097)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1171)) (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) - (-5 *2 (-1282)) (-5 *1 (-263))))) -(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-834))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-483))) + ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-894)))) + ((*1 *1 *1) (-5 *1 (-986))) + ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1192))) + (-4 *2 (-13 (-440 (-171 *5)) (-1017) (-1218))) (-4 *5 (-566)) + (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1017) (-1218)))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1283 (-1283 *4))) (-4 *4 (-1064)) (-5 *2 (-699 *4)) + (-5 *1 (-1044 *4))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1174)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *4 (-1080 *6 *7 *8)) (-5 *2 (-1288)) + (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1086 *6 *7 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-927 *3)) (-4 *3 (-315))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-654 + (-2 + (|:| -3666 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) + (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) + (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1918 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388))))))) + (-5 *1 (-813))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872))))) (((*1 *2 *1) - (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) - (-14 *4 (-780)) (-4 *5 (-174))))) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) - (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-152 *3)) + (-4 *3 (-1233)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1233)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1223 *4 *5 *3 *2)) (-4 *4 (-565)) - (-4 *5 (-802)) (-4 *3 (-859)) (-4 *2 (-1077 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1226 *4 *5 *3 *2)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1080 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *1 (-1227 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-780))))) -(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) + (-12 (-5 *3 (-781)) (-5 *1 (-1230 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1188 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) + (-4 *2 (-666 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-653 (-1185 *11))) (-5 *3 (-1185 *11)) - (-5 *4 (-653 *10)) (-5 *5 (-653 *8)) (-5 *6 (-653 (-780))) - (-5 *7 (-1280 (-653 (-1185 *8)))) (-4 *10 (-859)) - (-4 *8 (-314)) (-4 *11 (-959 *8 *9 *10)) (-4 *9 (-802)) - (-5 *1 (-716 *9 *10 *8 *11))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) -(((*1 *2 *1) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) - (-14 *4 (-1189)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-281))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-545))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) + (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) + (-4 *4 (-1115)) (-4 *5 (-1115))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1259 *5)) (-4 *5 (-315)) + (-5 *2 (-781)) (-5 *1 (-465 *5 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |brans| (-653 (-653 (-953 *4)))) - (|:| |xValues| (-1106 *4)) (|:| |yValues| (-1106 *4)))) - (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 *4))))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-546))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) + (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-241 *3)))) + ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1115))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-653 (-1189))) (-4 *2 (-174)) - (-4 *4 (-243 (-2862 *5) (-780))) - (-14 *6 - (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *4)) - (-2 (|:| -2575 *3) (|:| -3907 *4)))) - (-5 *1 (-470 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) - (-4 *7 (-959 *2 *4 (-873 *5)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-573)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) - (-5 *1 (-458 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-4 *1 (-731))) - ((*1 *1) (-4 *1 (-735))) - ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1075)))) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1115)) + (-5 *2 (-2 (|:| -1868 (-574)) (|:| |var| (-622 *1)))) + (-4 *1 (-440 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-927 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-417 (-965 *5))) (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-428 (-965 *6))) (-5 *5 (-1192)) (-5 *3 (-965 *6)) + (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-928 *6))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) + (-5 *2 (-1188 (-965 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-934) (-934)))) (-5 *1 (-986))))) +(((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-732))) + ((*1 *1) (-4 *1 (-736))) + ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) + (-5 *1 (-764))))) +(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 *7))) + (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1188 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-462)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-428 *1)) (-4 *1 (-962 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-962 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-428 (-1188 (-417 *7)))) + (-5 *1 (-1187 *4 *5 *6 *7)) (-5 *3 (-1188 (-417 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1237)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1262 *4 *3)) + (-4 *3 (-13 (-1259 *4) (-566) (-10 -8 (-15 -2886 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-14 *5 (-654 (-1192))) + (-5 *2 + (-654 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) + (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192)))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1298 (-1192) *3)) (-4 *3 (-1064)) (-5 *1 (-1305 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *1 (-1307 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-4 *7 (-959 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-653 *7)) (|:| |n0| (-653 *7)))) - (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-515)) (-5 *2 (-653 (-975))) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-545))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) - (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-545))) - ((*1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) - ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) - ((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-665 *3)) (-4 *3 (-1061)) (-4 *3 (-371)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-780)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) - (-5 *1 (-668 *5 *2)) (-4 *2 (-665 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1215))) - (-5 *1 (-592 *4 *2)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) + (-4 *6 (-1064)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1044 *6)) + (-5 *3 (-654 (-699 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-595 (-416 (-962 *4)))) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *4)) - (-5 *1 (-598 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1064)) + (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1044 *4)) + (-5 *3 (-654 (-699 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) + (-5 *3 (-654 (-699 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-934)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064)) + (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1044 *5)) + (-5 *3 (-654 (-699 *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2974 *1))) + (-4 *1 (-862 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1233)))) + ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1233)) (-5 *1 (-59 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) + (-14 *4 *2)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1174)) (-5 *3 (-574)) (-5 *1 (-247))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-546))) + ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1073)))) + ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1073))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1064)) (-4 *5 (-803)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-962 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1064)) (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) + (-4 *1 (-1259 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-654 + (-654 + (-3 (|:| -2041 (-1192)) + (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574)))))))))) + (-5 *1 (-1196))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-4 *6 (-565)) (-5 *2 (-653 (-323 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-323 *6)) (-4 *5 (-1061)))) - ((*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) + (-12 (-5 *4 (-934)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1064)))) + ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) ((*1 *2 *3) - (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1215))) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 *5)) - (-5 *1 (-592 *4 *5)))) + (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1218))) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) + (-5 *1 (-593 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-595 (-416 (-962 *4)))) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-653 (-323 *4))) (-5 *1 (-598 *4)))) + (-12 (-5 *3 (-596 (-417 (-965 *4)))) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3 *2)) (-4 *3 (-857)) (-4 *2 (-1161 *3)))) + (-12 (-4 *1 (-1110 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1164 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) - (-4 *2 (-1161 *4)))) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) + (-4 *2 (-1164 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218))))) ((*1 *2 *1) - (-12 (-5 *2 (-1295 (-1189) *3)) (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-1298 (-1192) *3)) (-5 *1 (-1305 *3)) (-4 *3 (-1064)))) ((*1 *2 *1) - (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-336 *4)) (-4 *4 (-371)) - (-5 *2 (-698 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1280 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-1280 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) + (-12 (-5 *2 (-1298 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1256 *4)) (-5 *2 (-1280 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-418 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1288)) (-5 *1 (-1285)))) ((*1 *2 *1) - (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) - (-5 *2 (-1280 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-426 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-698 *5))) (-5 *3 (-698 *5)) (-4 *5 (-371)) - (-5 *2 (-1280 *5)) (-5 *1 (-1098 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1916 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1192)) (-5 *4 (-965 (-574))) (-5 *2 (-338)) + (-5 *1 (-340))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-626)))) + (-12 (-5 *3 (|[\|\|]| -1572)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-626)))) + (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-626)))) + (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2233)) (-5 *2 (-112)) (-5 *1 (-700 *4)) - (-4 *4 (-622 (-871))))) + (-12 (-5 *3 (|[\|\|]| -2246)) (-5 *2 (-112)) (-5 *1 (-701 *4)) + (-4 *4 (-623 (-872))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-622 (-871))) (-5 *2 (-112)) - (-5 *1 (-700 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) + (-5 *1 (-701 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-885)))) + (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-886)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-885)))) + (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-601))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-487))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-635))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1048))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1051))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-318))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-680))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1130))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-1293))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-685))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1152)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-1194)))) + (-12 (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-112)) (-5 *1 (-1197)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-1194)))) + (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1197)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1194)))) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1197)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)) (-5 *1 (-1194))))) + (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1197))))) (((*1 *2 *1) - (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 *2))) - (-5 *2 (-902 *3)) (-5 *1 (-1088 *3 *4 *5)) - (-4 *5 (-13 (-439 *4) (-896 *3) (-623 *2)))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) - (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) - (-5 *1 (-1000 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) - (-4 *4 (-1083 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) - (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) - (-5 *1 (-1119 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) - (-4 *4 (-1083 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-964))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461))))) + (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 *2))) + (-5 *2 (-903 *3)) (-5 *1 (-1091 *3 *4 *5)) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2)))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)) - (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-418 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) - (-5 *2 (-698 *3))))) + (-12 (-5 *3 (-654 (-1192))) (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) + (-5 *1 (-1195)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-654 (-1192))) (-5 *3 (-1192)) (-5 *2 (-1288)) + (-5 *1 (-1195))))) +(((*1 *1 *1) (-4 *1 (-1159)))) +(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-967))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) - (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-515)) (-4 *4 (-1112)) (-5 *1 (-939 *4 *2)) - (-4 *2 (-439 *4)))) + (-12 (-5 *3 (-516)) (-4 *4 (-1115)) (-5 *1 (-942 *4 *2)) + (-4 *2 (-440 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-515)) (-5 *2 (-323 (-573))) - (-5 *1 (-940))))) + (-12 (-5 *3 (-1192)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) + (-5 *1 (-943))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-860)) + (-4 *3 (-1115))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-314) (-148))) - (-4 *2 (-959 *4 *6 *5)) (-5 *1 (-934 *4 *5 *6 *2)) - (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) - (-5 *1 (-1173 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) - (-14 *4 (-1189)) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |%expansion| (-320 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) - (-5 *1 (-429 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) - (-14 *6 (-1189)) (-14 *7 *3)))) + (-12 (-4 *3 (-1259 (-417 (-574)))) + (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) + (-5 *1 (-926 *3 *4)) (-4 *4 (-1259 (-417 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1259 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-926 *4 *3)) + (-4 *3 (-1259 (-417 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1132)))) -(((*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273))))) -(((*1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-416 (-573))) (-5 *1 (-604 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1061))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-780)))) - ((*1 *1 *1) (-4 *1 (-411)))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) - (-5 *2 (-1047)) (-5 *1 (-756))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) - (|:| |expense| (-387)) (|:| |accuracy| (-387)) - (|:| |intermediateResults| (-387)))) - (-5 *1 (-812))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-761))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-680)))) + ((*1 *1 *1 *1) (-5 *1 (-1135)))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) + (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) + (-4 *4 (-697 *2 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1259 (-171 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) - (-14 *4 (-931))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-871)))) + (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1174) (-1197))) + (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-573)) - (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) - (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-573)) - (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) - (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-653 *5)) (-5 *4 (-573)) (-4 *5 (-857)) (-4 *5 (-371)) - (-5 *2 (-780)) (-5 *1 (-955 *5 *6)) (-4 *6 (-1256 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1115)) (-4 *4 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-1197))))) +(((*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) + (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1197) (-781)))) (-5 *1 (-341))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1218) (-29 *6))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3)) - (-4 *3 (-1256 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112))))) + (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-462)) (-5 *2 (-112)) + (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) + (-14 *5 (-654 (-1192))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1280 (-653 (-573)))) (-5 *1 (-489)))) + (-12 (-5 *3 (-781)) (-5 *2 (-1283 (-654 (-574)))) (-5 *1 (-490)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1189)) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) - (-5 *1 (-408 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-273))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1233)) (-5 *1 (-1172 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-855))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-171 (-416 (-573))))) - (-5 *2 - (-653 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-573)) - (|:| |outvect| (-653 (-698 (-171 *4))))))) - (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-573)) (-5 *1 (-1122)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-653 (-573))) (-5 *4 (-573)) - (-5 *1 (-1122))))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))) + (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1) (-12 (-5 *1 (-1219 *2)) (-4 *2 (-1115))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-314)) - (-5 *2 (-780)) (-5 *1 (-464 *5 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-698 (-573))) (-5 *3 (-653 (-573))) (-5 *1 (-1122))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-859)) - (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-1194) (-780)))) (-5 *1 (-340))))) + (-12 (-5 *3 (-1188 (-965 *6))) (-4 *6 (-566)) + (-4 *2 (-962 (-417 (-965 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) + (-4 *5 (-803)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -1846 ((-1192) $)))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1155 *4 *5)) (-4 *4 (-13 (-1115) (-34))) + (-4 *5 (-13 (-1115) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1276 *4 *2)) + (-4 *4 (-38 (-417 (-574))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) + (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) + (-4 *3 (-1053 (-1192))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-5 *2 (-654 (-302 (-965 *3)))) + (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1064)) + (-2086 (-4 *3 (-1053 (-1192)))) (-4 *3 (-897 *5)) + (-4 *4 (-624 (-903 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) + (-2086 (-4 *3 (-1053 (-1192)))) (-2086 (-4 *3 (-1064))) + (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-956 (-227))) (-5 *2 (-1288)) (-5 *1 (-478))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) - (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) - (-5 *1 (-1188))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-871)))) + (-3 (|:| I (-324 (-574))) (|:| -1395 (-324 (-388))) + (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1191)))) + (-5 *1 (-1191))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-780)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-781)) (-5 *1 (-1116 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34))) - (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554))))) -(((*1 *2 *3) - (-12 (-5 *3 (-962 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) + (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1050)) + (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1064))))) (((*1 *2 *1) - (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) - (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) - (-4 *8 (-314)) (-4 *6 (-802)) (-4 *9 (-959 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-653 (-2 (|:| -4218 (-1185 *9)) (|:| -3907 (-573))))))) - (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-904 *2 *3)) (-4 *2 (-1256 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1230))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) + (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) + (-4 *3 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) + (-5 *2 (-2 (|:| -1868 (-417 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-965 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1233))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) + ((*1 *2 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1194 (-417 (-574)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) (-4 *1 (-879 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-4 *4 (-860))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-132))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-4 *2 (-913 *5)) (-5 *1 (-702 *5 *2 *3 *4)) + (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-965 *6))) (-5 *4 (-654 (-1192))) + (-4 *6 (-13 (-566) (-1053 *5))) (-4 *5 (-566)) + (-5 *2 (-654 (-654 (-302 (-417 (-965 *6)))))) (-5 *1 (-1054 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-338))))) (((*1 *2 *1) - (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) + (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1180 3 *3)) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) + ((*1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-1064))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) - (-5 *2 - (-2 (|:| A (-698 *5)) - (|:| |eqs| - (-653 - (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5)) (|:| -4122 *6) - (|:| |rh| *5)))))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) - (-4 *6 (-665 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *6 (-665 *5)) - (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *5))))) -(((*1 *2) - (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-351 *3 *4)) (-14 *3 (-931)) - (-14 *4 (-931)))) - ((*1 *2) - (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-352 *3 *4)) (-4 *3 (-357)) - (-14 *4 (-1185 *3)))) - ((*1 *2) - (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-353 *3 *4)) (-4 *3 (-357)) - (-14 *4 (-931))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3592 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-443)) - (-5 *2 - (-653 - (-3 (|:| -2031 (-1189)) - (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) - (-5 *1 (-1193))))) -(((*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1215) (-29 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-931)) - (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) - (-5 *1 (-354 *4)) (-4 *4 (-357))))) -(((*1 *1 *1) (-4 *1 (-638))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1172 *7))) (-4 *6 (-860)) + (-4 *7 (-962 *5 (-541 *6) *6)) (-4 *5 (-1064)) + (-5 *2 (-1 (-1172 *7) *7)) (-5 *1 (-1141 *5 *6 *7))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1189)) - (|:| |arrayIndex| (-653 (-962 (-573)))) + (-2 (|:| |var| (-1192)) + (|:| |arrayIndex| (-654 (-965 (-574)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) + (-2 (|:| |var| (-1192)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1188)) (|:| |thenClause| (-337)) - (|:| |elseClause| (-337)))) + (-2 (|:| |switch| (-1191)) (|:| |thenClause| (-338)) + (|:| |elseClause| (-338)))) (|:| |returnBranch| - (-2 (|:| -3811 (-112)) - (|:| -3082 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) - (|:| |blockBranch| (-653 (-337))) - (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) + (-2 (|:| -2234 (-112)) + (|:| -3078 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1455 (-872)))))) + (|:| |blockBranch| (-654 (-338))) + (|:| |commentBranch| (-654 (-1174))) (|:| |callBranch| (-1174)) (|:| |forBranch| - (-2 (|:| -3821 (-1104 (-962 (-573)))) - (|:| |span| (-962 (-573))) (|:| -2043 (-337)))) - (|:| |labelBranch| (-1132)) - (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 (-337)))) + (-2 (|:| -4231 (-1107 (-965 (-574)))) + (|:| |span| (-965 (-574))) (|:| -2053 (-338)))) + (|:| |labelBranch| (-1135)) + (|:| |loopBranch| (-2 (|:| |switch| (-1191)) (|:| -2053 (-338)))) (|:| |commonBranch| - (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) - (|:| |printBranch| (-653 (-871))))) - (-5 *1 (-337))))) -(((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) + (-2 (|:| -2041 (-1192)) (|:| |contents| (-654 (-1192))))) + (|:| |printBranch| (-654 (-872))))) + (-5 *1 (-338))))) +(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1233))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1233)) (-5 *2 (-1288))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) - (-5 *1 (-1232))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-685)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1078)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) - (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3592 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-337)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1687 (-653 (-2 (|:| |irr| *10) (|:| -3287 (-573))))))) - (-5 *6 (-653 *3)) (-5 *7 (-653 *8)) (-4 *8 (-859)) (-4 *3 (-314)) - (-4 *10 (-959 *3 *9 *8)) (-4 *9 (-802)) - (-5 *2 - (-2 (|:| |polfac| (-653 *10)) (|:| |correct| *3) - (|:| |corrfact| (-653 (-1185 *3))))) - (-5 *1 (-634 *8 *9 *3 *10)) (-5 *4 (-653 (-1185 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-653 *6) "failed") (-573) *6 *6)) (-4 *6 (-371)) - (-4 *7 (-1256 *6)) - (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) - (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1230))))) -(((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-869)) (-5 *2 (-700 (-130))) (-5 *3 (-130))))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-315)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) + (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-457 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-1174)) (-4 *7 (-962 *4 *5 *6)) + (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-457 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-686)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1034)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1081)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1111))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-338)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-338))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1259 *4))))) +(((*1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-247))))) (((*1 *2) - (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) - (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780))))) -(((*1 *1) (-5 *1 (-626)))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-109)))) + (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-1288)) + (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1086 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1259 (-417 *2))) + (-4 *2 (-1259 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-351 *5 *2 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-654 *8)) + (|:| |towers| (-654 (-1042 *5 *6 *7 *8))))) + (-5 *1 (-1042 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-1080 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-654 *8)) + (|:| |towers| (-654 (-1161 *5 *6 *7 *8))))) + (-5 *1 (-1161 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) + (-4 *8 (-962 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1283 (-417 *8)) "failed")) + (|:| -3907 (-654 (-1283 (-417 *8)))))) + (-5 *1 (-679 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-627)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-447 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-492)))) - ((*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-975)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1087 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1127)))) - ((*1 *1 *1) (-5 *1 (-1189)))) -(((*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-685)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) - ((*1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) - (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) - (-4 *2 (-696 *3 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-371)) (-4 *7 (-1256 *6)) - (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) - (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-633 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *2 (-1121 *3 *4 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-1112))))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1115)))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-448 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) + ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-978)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1090 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1130)))) + ((*1 *1 *1) (-5 *1 (-1192)))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) + (-4 *2 (-1259 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-132)) + (-4 *3 (-802))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *1)))) + (-4 *1 (-1086 *4 *5 *6 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) - (-4 *7 (-857)) - (-4 *8 - (-13 (-1258 *3 *7) (-371) (-1215) - (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) + (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) + (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-962 *8 *6 *7)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) - (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) - (-14 *10 (-1189))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269))))) -(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) -(((*1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-654 (-2 (|:| -4200 (-1188 *9)) (|:| -3843 (-574))))))) + (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-937 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-965 *4))) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-112)) + (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1064)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1259 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-1053 (-574)) (-649 (-574)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1218) (-972)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *3 (-1259 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) + (-4 *5 (-666 (-417 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-417 *5)) + (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *5 (-1259 *4)) + (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) - (-4 *5 (-565)) (-5 *2 (-653 (-653 (-962 *5)))) (-5 *1 (-1198 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043))))) + (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) + (-4 *8 (-962 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) + (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-112)) + (-5 *1 (-937 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1169 (-983))) (-5 *1 (-983))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-574)) (-5 *1 (-206))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-991 *3 *4 *2 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *5 (-1080 *3 *4 *2))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13216,692 +13604,415 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) + (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3821 + (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1047)) (-5 *1 (-758))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) - (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) + (-5 *1 (-569))))) (((*1 *2 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) - (-5 *2 (-1185 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-594)) (-5 *1 (-287))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) - (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) + (-5 *2 (-654 (-654 (-654 (-781)))))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) + (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) + ((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))) +(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) + ((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) + ((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574)))) + ((*1 *1 *1) (-4 *1 (-1075)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1192))) + (-5 *2 + (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) + (-5 *1 (-638 *5 *6))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-653 (-387))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1259 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1259 (-171 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + (-12 (-5 *3 (-934)) (-5 *4 (-884)) (-5 *2 (-1288)) (-5 *1 (-1284)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) (((*1 *2 *1) - (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) - (-5 *2 (-653 (-1088 *3 *4 *5))) (-5 *1 (-1089 *3 *4 *5)) - (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 (-573))))) - (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) - (-4 *4 (-13 (-857) (-371))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-301 (-416 (-962 (-573)))))) - (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) - (-4 *4 (-13 (-857) (-371))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 (-301 (-962 *4)))) - (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-301 (-416 (-962 (-573))))) - (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) - (-4 *4 (-13 (-857) (-371))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1189)) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-4 *4 (-13 (-29 *6) (-1215) (-969))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) - (-5 *1 (-661 *6 *4 *3)) (-4 *3 (-665 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *2)) - (-4 *2 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *1 (-661 *6 *2 *3)) (-4 *3 (-665 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1280 *5) "failed")) - (|:| -3914 (-653 (-1280 *5))))) - (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1280 *5) "failed")) - (|:| -3914 (-653 (-1280 *5))))) - (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) - (-5 *2 - (-653 - (-2 (|:| |particular| (-3 (-1280 *5) "failed")) - (|:| -3914 (-653 (-1280 *5)))))) - (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) - (-5 *2 - (-653 - (-2 (|:| |particular| (-3 (-1280 *5) "failed")) - (|:| -3914 (-653 (-1280 *5)))))) - (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-4 *7 (-13 (-381 *5) (-10 -7 (-6 -4456)))) - (-5 *2 - (-653 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3914 (-653 *7))))) - (-5 *1 (-677 *5 *6 *7 *3)) (-5 *4 (-653 *7)) - (-4 *3 (-696 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *1 (-781 *5 *2)) (-4 *2 (-13 (-29 *5) (-1215) (-969))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-698 *7)) (-5 *5 (-1189)) - (-4 *7 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) - (-5 *1 (-811 *6 *7)) (-5 *4 (-1280 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-698 *6)) (-5 *4 (-1189)) - (-4 *6 (-13 (-29 *5) (-1215) (-969))) - (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-1280 *6))) (-5 *1 (-811 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) - (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) - (-5 *1 (-811 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) - (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) - (-5 *1 (-811 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-1189)) - (-4 *7 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3914 (-653 *7))) *7 "failed")) - (-5 *1 (-811 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1189)) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3914 (-653 *3))) *3 "failed")) - (-5 *1 (-811 *6 *3)) (-4 *3 (-13 (-29 *6) (-1215) (-969))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-301 *2)) (-5 *4 (-115)) (-5 *5 (-653 *2)) - (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-5 *1 (-811 *6 *2)) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-301 *2)) (-5 *5 (-653 *2)) - (-4 *2 (-13 (-29 *6) (-1215) (-969))) - (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *1 (-811 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) - (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) - (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) - (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) - (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) - (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) - (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3914 (-653 *6))) "failed") - *7 *6)) - (-4 *6 (-371)) (-4 *7 (-665 *6)) - (-5 *2 (-2 (|:| |particular| (-1280 *6)) (|:| -3914 (-698 *6)))) - (-5 *1 (-822 *6 *7)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-1047)) (-5 *1 (-907)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-907)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) - (-5 *8 (-227)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) - (-5 *2 (-1047)) (-5 *1 (-907)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) - (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) - (-5 *1 (-907)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 (-387))) - (-5 *1 (-1035)) (-5 *4 (-387)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) - (-5 *4 (-387)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) - (-5 *3 (-323 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) - (-5 *3 (-301 (-323 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) - (-5 *3 (-301 (-323 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) - (-5 *3 (-323 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1189))) - (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) - (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1143 *5)) - (-5 *3 (-653 (-301 (-323 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) - (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) - (-5 *1 (-1198 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5)) - (-5 *3 (-653 (-301 (-416 (-962 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-565)) - (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) - (-5 *1 (-1198 *4)) (-5 *3 (-653 (-301 (-416 (-962 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-565)) - (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) - (-5 *3 (-416 (-962 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-4 *5 (-565)) - (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) - (-5 *3 (-301 (-416 (-962 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) - (-5 *1 (-1198 *4)) (-5 *3 (-416 (-962 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) - (-5 *1 (-1198 *4)) (-5 *3 (-301 (-416 (-962 *4))))))) + (-12 (-4 *3 (-1115)) (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))) + (-5 *2 (-654 (-1091 *3 *4 *5))) (-5 *1 (-1092 *3 *4 *5)) + (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-712 *3)) - (-4 *3 (-623 (-545))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-712 *3)) (-4 *3 (-623 (-545)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-371)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-665 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-653 *5)))) - (-5 *1 (-1037 *5 *3)) (-5 *4 (-653 *5)) (-4 *3 (-665 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1112) (-34))) - (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-427 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1305))))) -(((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-962 (-573))))) - (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-253))))) -(((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) + (-5 *1 (-638 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1283 (-1192))) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) + (-14 *6 (-654 (-1192))) (-14 *7 (-1283 (-699 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1192)) (-5 *3 (-1283 (-463 *4 *5 *6 *7))) + (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-934)) + (-14 *6 (-654 *2)) (-14 *7 (-1283 (-699 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) + (-14 *6 (-1283 (-699 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 (-1192))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-934)) (-14 *5 (-654 (-1192))) + (-14 *6 (-1283 (-699 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1192)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-934)) (-14 *5 (-654 *2)) (-14 *6 (-1283 (-699 *3))))) + ((*1 *1) + (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-934)) + (-14 *4 (-654 (-1192))) (-14 *5 (-1283 (-699 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-701 (-1150))) (-5 *1 (-1166))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34)))))) +(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) - (-4 *3 (-1256 *4)) (-5 *2 (-573)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-565) (-1050 *2) (-648 *2) (-461))) - (-5 *2 (-573)) (-5 *1 (-1128 *4 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 *3)) - (-4 *3 (-13 (-27) (-1215) (-439 *6))) - (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) - (-5 *1 (-1128 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-1171)) - (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) - (-5 *1 (-1128 *6 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-573)) - (-5 *1 (-1129 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 (-416 (-962 *6)))) - (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-573)) - (-5 *1 (-1129 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1189)) - (-5 *5 (-1171)) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) -(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-135))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) + (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1259 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) + (-4 *5 (-13 (-440 *4) (-1017) (-1218))) + (-4 *3 (-13 (-440 (-171 *4)) (-1017) (-1218)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-254))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1185 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) - (-5 *1 (-32 *4 *2))))) + (-12 (-5 *2 (-934)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-934)) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-1283 *5))) (-5 *4 (-574)) (-5 *2 (-1283 *5)) + (-5 *1 (-1044 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1064))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) - (-5 *1 (-268 *2)) (-4 *2 (-1230)))) + (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) + (-5 *1 (-269 *2)) (-4 *2 (-1233)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-52)) - (-5 *1 (-269))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2277 *4))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) + (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1192)) (-5 *2 (-52)) + (-5 *1 (-270))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *1) - (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) - (-5 *2 (-653 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) -(((*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) - (-15 -1974 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) - (-15 -1974 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) - (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-461))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-653 (-698 *6))) (-5 *4 (-112)) (-5 *5 (-573)) - (-5 *2 (-698 *6)) (-5 *1 (-1041 *6)) (-4 *6 (-371)) (-4 *6 (-1061)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4)) - (-4 *4 (-371)) (-4 *4 (-1061)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-5 *2 (-698 *5)) - (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-1061))))) -(((*1 *1 *1) (-4 *1 (-878 *2)))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)))) - ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) - (-4 *2 (-859))))) -(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) - (-5 *2 (-1 *5)) (-5 *1 (-692 *4 *5))))) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1259 *4)) (-5 *1 (-820 *4 *2)) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1259 *4)) + (-5 *1 (-820 *4 *2)) + (-4 *4 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-338))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) + (-4 *1 (-1086 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1227 *6)) + (-5 *2 (-1 (-1172 *4) (-1172 *4))) (-5 *1 (-1291 *6)) + (-5 *5 (-1172 *4))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) + (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1115)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1064)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-872)) (-5 *1 (-1188 *3)) (-4 *3 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-299))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) + ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) +(((*1 *1) (-5 *1 (-588)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2) (-12 (-5 *2 (-1109 (-853 (-227)))) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) + (-5 *2 (-1050)) (-5 *1 (-755))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *3 (-129)) (-5 *2 (-780))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-387)) (-5 *1 (-1052))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-859)) (-5 *1 (-1200 *3))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) - (-5 *4 (-653 (-931))) (-5 *5 (-653 (-269))) (-5 *1 (-477)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) - (-5 *4 (-653 (-931))) (-5 *1 (-477)))) - ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) - ((*1 *1 *1) (-5 *1 (-477)))) -(((*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-314)) (-4 *2 (-461)) (-4 *3 (-859)) - (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-323 (-573))) (-5 *1 (-1131)))) - ((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1230)) (-5 *2 (-573))))) + (-12 (-5 *2 (-1172 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) + (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) + (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1053 (-574)))) + (-5 *2 (-2 (|:| -3837 (-781)) (|:| -2721 *8))) + (-5 *1 (-924 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) + (-4 *4 (-1259 (-417 (-574)))) (-4 *5 (-1259 (-417 *4))) + (-4 *6 (-351 (-417 (-574)) *4 *5)) + (-5 *2 (-2 (|:| -3837 (-781)) (|:| -2721 *6))) + (-5 *1 (-925 *4 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1061)) (-4 *3 (-1112)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-902 *3)))) - (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) - (-4 *7 (-959 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3907 (-573)))) - (-5 *1 (-960 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) - (-15 -2975 (*7 $)))))))) + (-12 (-5 *2 (-701 (-979 *3))) (-5 *1 (-979 *3)) (-4 *3 (-1115))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) + (-5 *1 (-1253 *4 *2)) (-4 *2 (-1259 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 (-653 (-780)))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-477)))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-953 *5)) (-5 *3 (-780)) (-4 *5 (-1061)) - (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757))))) + (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1233)) (-4 *2 (-1115)) + (-4 *2 (-860))))) +(((*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1233)) (-5 *2 (-574))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-381 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-4 *2 (-381 *4)) - (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-381 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) - (-5 *2 (-698 *4)) (-5 *1 (-702 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-1249 *3 *4 *2)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) - (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) -(((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) - (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) - (-5 *2 - (-2 (|:| |upol| (-1185 *8)) (|:| |Lval| (-653 *8)) - (|:| |Lfact| - (-653 (-2 (|:| -4218 (-1185 *8)) (|:| -3907 (-573))))) - (|:| |ctpol| *8))) - (-5 *1 (-751 *6 *7 *8 *9))))) -(((*1 *2 *1 *1) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-52)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)))) (-4 *3 (-566)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-939))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-654 (-1232))) (-5 *3 (-1232)) (-5 *1 (-691))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-447)) (-5 *1 (-1196))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1233)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -1857 *3) (|:| |gap| (-780)) (|:| -3152 (-791 *3)) - (|:| -3132 (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) - (-5 *2 - (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) - (|:| -3132 *1))) - (-4 *1 (-1077 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-2 + (|:| -3666 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1918 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1172 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4231 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-569)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1115)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) - (|:| -3132 *1))) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-1189)) (-4 *6 (-439 *5)) - (-4 *5 (-1112)) (-5 *2 (-653 (-621 *6))) (-5 *1 (-582 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5))))) + (-2 + (|:| -3666 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -1918 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))))) + (-5 *1 (-813)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-698 *8)) (-5 *4 (-780)) (-4 *8 (-959 *5 *7 *6)) - (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) - (-4 *7 (-802)) - (-5 *2 - (-653 - (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) - (|:| |cols| (-653 (-573)))))) - (-5 *1 (-934 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-812)))) -(((*1 *2 *3 *2) - (-12 + (-12 (-4 *5 (-372)) (-5 *2 - (-653 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-780)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-802)) (-4 *6 (-959 *4 *3 *5)) (-4 *4 (-461)) (-4 *5 (-859)) - (-5 *1 (-458 *4 *3 *5 *6))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-780)) - (-4 *5 (-13 (-461) (-1050 (-573)))) (-4 *5 (-565)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-439 *5)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *5 (-621 $)) $)) - (-15 -2975 ((-1137 *5 (-621 $)) $)) - (-15 -2942 ($ (-1137 *5 (-621 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-573))) - (-5 *1 (-442 *4 *3)) (-4 *3 (-439 *4)))) + (-2 (|:| A (-699 *5)) + (|:| |eqs| + (-654 + (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5)) (|:| -4096 *6) + (|:| |rh| *5)))))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5)) + (-4 *6 (-666 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-621 *3)) (-4 *3 (-439 *5)) - (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1185 (-416 (-573)))) - (-5 *1 (-442 *5 *3))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1047)) - (-5 *1 (-755))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-416 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1256 *5)) - (-5 *1 (-736 *5 *2)) (-4 *5 (-371))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-489))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) - (-5 *1 (-1200 *4)) (-4 *4 (-859))))) + (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) + (-5 *2 (-2 (|:| -4226 (-699 *6)) (|:| |vec| (-1283 *5)))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1283 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1230)) - (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *7 *2)) (-4 *6 (-1061)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-5 *2 (-653 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) - (-5 *2 (-653 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1169 *3)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 *3)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-653 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-5 *2 (-1169 *3))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *2) (-12 (-5 *2 (-934)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *3 *5)) - (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) - (-4 *5 (-665 (-416 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *5 *3)) - (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-665 *2)) - (-4 *3 (-665 (-416 *2)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) - (-5 *1 (-339)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-1104 (-962 (-573)))) (-5 *2 (-337)) - (-5 *1 (-339)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) - (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-700 (-287))) (-5 *1 (-169))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) - (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) - (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) - ((*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-369 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-658 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1174))))) +(((*1 *2) + (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-352 *3 *4)) (-14 *3 (-934)) + (-14 *4 (-934)))) + ((*1 *2) + (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-1188 *3)))) + ((*1 *2) + (-12 (-5 *2 (-971 (-1135))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-934))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-903 *4)) (-4 *4 (-1115)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1115))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-918 *4)) (-4 *4 (-1115)) (-5 *2 (-654 (-781))) + (-5 *1 (-917 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) + (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1259 *6)) + (-14 *7 (-934))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4460 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) + (-4 *2 (-1064)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1259 *2)) + (-4 *4 (-697 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1050)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) - (-4 *4 (-357)) (-5 *2 (-698 *4)) (-5 *1 (-354 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-573)) (-5 *2 (-1225 *3)) - (-5 *1 (-799 *3)) (-4 *3 (-986)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1225 *2)) (-4 *2 (-986))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-914 *4)) - (-4 *4 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) + (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3902 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *6 (-1259 *5)) + (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4096 *3)))) + (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) + (-4 *7 (-666 (-417 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-654 *5) *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) + (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4096 (-664 *6 (-417 *6)))))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1527 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1259 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) + (-4 *3 (-13 (-1218) (-29 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-338))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4459)) (-4 *1 (-1025 *3)) + (-4 *3 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13916,2737 +14027,2644 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) + (-3 (|:| |str| (-1172 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3821 + (|:| -4231 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) - (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) - (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) - (-5 *1 (-921 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) - (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) - (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-922 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) - (-4 *5 (-461)) (-5 *2 (-653 (-252 *4 *5))) (-5 *1 (-640 *4 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-426 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) - (-14 *4 *2)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) - (-5 *2 (-416 (-573)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) -(((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) - (-4 *3 (-1230))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) + (-5 *1 (-569))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-1174)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-757))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1218))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-388)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1064)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1259 *3))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1080 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) + (-4 *8 (-860)) (-5 *1 (-992 *6 *7 *8 *9))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1169 *3))) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061))))) -(((*1 *2 *3) - (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6))))) + (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4200 *3) (|:| -4144 *4)))) + (-5 *1 (-706 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-444)) + (-5 *2 + (-654 + (-3 (|:| -2041 (-1192)) + (|:| -3370 (-654 (-3 (|:| S (-1192)) (|:| P (-965 (-574))))))))) + (-5 *1 (-1196))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3372 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1233)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-684 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1238)))))) +(((*1 *1) (-5 *1 (-299)))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1115)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1174)) (-5 *1 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-699 (-965 *4))) (-5 *1 (-1043 *4)) + (-4 *4 (-1064))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-956 *4)) (-4 *4 (-1064)) (-5 *1 (-1180 *3 *4)) + (-14 *3 (-934))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-781)))) + ((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-736))))) +(((*1 *1) (-5 *1 (-588)))) +(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1127)) (-4 *3 (-1115)) (-5 *2 (-654 *1)) + (-4 *1 (-440 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) + (-4 *3 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-654 *1)) (-4 *1 (-962 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1064)) + (-4 *7 (-962 *6 *4 *5)) (-5 *2 (-654 *3)) + (-5 *1 (-963 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *7)) (-15 -2970 (*7 $)) + (-15 -2981 (*7 $)))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1064)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *3 (-1080 *4 *5 *6)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *1)))) + (-4 *1 (-1086 *4 *5 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-1041 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1259 *2)) (-4 *2 (-1259 *4)) + (-5 *1 (-1000 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) (((*1 *2) - (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) - (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) - (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-375 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-931))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-698 (-416 (-962 (-573))))) - (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| -3082 *4) (|:| -3447 (-573))))) - (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) - (-4 *4 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1169 *4) (-1169 *4))) (-5 *2 (-1169 *4)) - (-5 *1 (-1306 *4)) (-4 *4 (-1230)))) + (-12 (-5 *3 (-1 (-1172 *4) (-1172 *4))) (-5 *2 (-1172 *4)) + (-5 *1 (-1309 *4)) (-4 *4 (-1233)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-653 (-1169 *5)) (-653 (-1169 *5)))) (-5 *4 (-573)) - (-5 *2 (-653 (-1169 *5))) (-5 *1 (-1306 *5)) (-4 *5 (-1230))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 (-953 *4))) (-4 *1 (-1146 *4)) (-4 *4 (-1061)) - (-5 *2 (-780))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) - (-4 *4 (-1256 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871))))) + (-12 (-5 *3 (-1 (-654 (-1172 *5)) (-654 (-1172 *5)))) (-5 *4 (-574)) + (-5 *2 (-654 (-1172 *5))) (-5 *1 (-1309 *5)) (-4 *5 (-1233))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-545))) (-5 *1 (-545))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef2| (-791 *3)))) - (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -2872 *1) (|:| |coef2| *1))) - (-4 *1 (-1077 *3 *4 *5))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1280 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) - (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) - (|:| |axesColor| (-883)) (|:| -1996 (-573)) - (|:| |unitsColor| (-883)) (|:| |showing| (-573))))) - (-5 *1 (-1281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-130)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) - (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-52))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-4 *1 (-1256 *4)) (-4 *4 (-1061)) - (-5 *2 (-1280 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) + (-12 (-5 *3 (-965 *5)) (-4 *5 (-1064)) (-5 *2 (-491 *4 *5)) + (-5 *1 (-957 *4 *5)) (-14 *4 (-654 (-1192)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1218) (-29 *4)))))) +(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) + (-12 (-5 *3 (-934)) (-5 *2 (-1283 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-358))))) +(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-574)) (-4 *4 (-1064)) + (-5 *1 (-1176 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-1275 *3 *4 *5)) (-4 *3 (-1064)) + (-14 *4 (-1192)) (-14 *5 *3)))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) + (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1172 *4) (-1172 *4))) + (-5 *1 (-1276 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-5 *1 (-927 *2)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) + ((*1 *2 *1) (-12 (-4 *1 (-1075)) (-5 *2 (-574))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-934)) + (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) + (-5 *1 (-355 *4)) (-4 *4 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-52))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1107 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-859)) (-4 *5 (-919)) (-4 *6 (-802)) - (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-427 (-1185 *8))) - (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-1185 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) - (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) + (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) + (-5 *1 (-1020))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-653 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) - (-5 *2 (-653 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-621 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) - (-4 *2 (-13 (-439 *5) (-27) (-1215))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1112))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 (-902 *3))))) - (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-902 *4))) - (-5 *1 (-902 *4)) (-4 *4 (-1112))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-573) "failed") *5)) (-4 *5 (-1061)) - (-5 *2 (-573)) (-5 *1 (-552 *5 *3)) (-4 *3 (-1256 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) - (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) - (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) + (-12 (|has| *1 (-6 -4458)) (-4 *1 (-499 *3)) (-4 *3 (-1233)) + (-5 *2 (-654 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-934))) (-5 *1 (-986))))) +(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1115))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940))))) +(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1241)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1304 *4 *2)) (-4 *1 (-382 *4 *2)) (-4 *4 (-859)) + (-12 (-5 *3 (-1307 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) + (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-828 *4)) (-4 *1 (-1297 *4 *2)) (-4 *4 (-859)) - (-4 *2 (-1061)))) + (-12 (-5 *3 (-829 *4)) (-4 *1 (-1300 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-1064)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-653 (-621 *6))) (-5 *4 (-1189)) (-5 *2 (-621 *6)) - (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *1 (-582 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-387)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) -(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-1169 (-1169 (-962 *5)))) - (-5 *1 (-1288 *5)) (-5 *4 (-1169 (-962 *5)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-653 (-573))) (-5 *3 (-653 (-931))) (-5 *4 (-112)) - (-5 *1 (-1122))))) + (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) + (-5 *2 (-112)) (-5 *1 (-1002 *3 *4 *5 *6)) + (-4 *6 (-962 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *2 (-1228 (-939))) + (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1109 (-227))) (-5 *6 (-574)) (-5 *7 (-1174)) + (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) + (-5 *2 (-1228 (-939))) (-5 *1 (-326)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1109 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1174)) + (-5 *2 (-1228 (-939))) (-5 *1 (-326))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-13 (-566) (-1053 (-574)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1259 *4)) (-5 *1 (-819 *4 *2 *3 *5)) + (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *5 (-666 (-417 *2)))))) +(((*1 *2 *3) + (-12 (-14 *4 (-654 (-1192))) (-14 *5 (-781)) + (-5 *2 + (-654 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574)))))) + (-5 *1 (-515 *4 *5)) + (-5 *3 + (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) + (-253 *4 (-417 (-574)))))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1086 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) + (-5 *2 (-1050)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1148 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) - (-5 *1 (-265 *6)))) + (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) - (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) - (-5 *1 (-265 *5)))) + (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) - (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) - (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1148 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) - (-5 *1 (-265 *6)))) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) - (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) - (-5 *1 (-265 *5))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1039 *5 *6 *7 *3))) (-5 *1 (-1039 *5 *6 *7 *3)) - (-4 *3 (-1077 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-653 *6)) (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) - (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-653 (-1158 *5 *6 *7 *3))) (-5 *1 (-1158 *5 *6 *7 *3)) - (-4 *3 (-1077 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) - (-5 *1 (-767))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859))))) -(((*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-780)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) - (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) - (-4 *6 (-350 *3 *4 *5))))) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1148 (-227))) + (-5 *1 (-266 *5))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -1509 (-781)))) + (-5 *1 (-792 *3)) (-4 *3 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1509 (-781)))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1188 *1)) (-5 *3 (-1192)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1192)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1188 *2)) (-5 *4 (-1192)) (-4 *2 (-440 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-4 *1 (-1027)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1188 *1)) (-5 *3 (-934)) (-5 *4 (-872)) + (-4 *1 (-1027)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-934)) (-4 *4 (-13 (-858) (-372))) + (-4 *1 (-1083 *4 *2)) (-4 *2 (-1259 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-933)) (-5 *2 (-2 (|:| -1868 (-654 *1)) (|:| -2974 *1))) + (-5 *3 (-654 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1233)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1064)) + (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1014 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-623 *2) (-174))) (-5 *2 (-902 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1112)) (-4 *3 (-167 *5)))) + (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1115)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1106 (-852 (-387))))) - (-5 *2 (-653 (-1106 (-852 (-227))))) (-5 *1 (-312)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-403)))) + (-12 (-5 *3 (-654 (-1109 (-853 (-388))))) + (-5 *2 (-654 (-1109 (-853 (-227))))) (-5 *1 (-313)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) - (-4 *4 (-1256 *3)))) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) + (-4 *4 (-1259 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) - (-5 *2 (-1280 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) + (-5 *2 (-1283 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1283 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-427 *1)) (-4 *1 (-439 *3)) (-4 *3 (-565)) - (-4 *3 (-1112)))) + (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) + (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-472 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1230)))) - ((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1230)))) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-546)))) + ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1233)))) + ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1259 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) ((*1 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) - (-4 *5 (-623 (-1189))) (-4 *4 (-802)) (-4 *5 (-859)))) + (-12 (-5 *2 (-965 *3)) (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) + (-4 *5 (-624 (-1192))) (-4 *4 (-803)) (-4 *5 (-860)))) ((*1 *1 *2) - (-2817 - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) - (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) + (-2832 + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) ((*1 *1 *2) - (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) - (-4 *4 (-802)) (-4 *5 (-859)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) - (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) - (-5 *1 (-1081 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) - (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1121 *4 *5 *6 *7)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) - (-5 *1 (-1157 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) - ((*1 *2 *3) - (-12 (-5 *3 (-789 *4 (-873 *5))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) - (-5 *2 (-789 *4 (-873 *6))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *6 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-789 *4 (-873 *6))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) - (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) - (-5 *2 (-1185 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) + (-12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) + (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1086 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) + (-5 *1 (-1084 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4067 *8))) + (-4 *7 (-1080 *4 *5 *6)) (-4 *8 (-1124 *4 *5 *6 *7)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1174)) + (-5 *1 (-1160 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1197)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1213)))) + ((*1 *2 *3) + (-12 (-5 *3 (-790 *4 (-874 *5))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *5 (-654 (-1192))) + (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *6 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-790 *4 (-874 *6))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) + (-5 *2 (-965 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 (-1188 (-1039 (-417 *4)))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192))))) ((*1 *2 *3) (-12 - (-5 *3 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6)))) - (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) - (-5 *2 (-653 (-789 *4 (-873 *6)))) (-5 *1 (-1307 *4 *5 *6)) - (-14 *5 (-653 (-1189)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *3)) - (-4 *3 (-13 (-439 *4) (-1014)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) - (-14 *3 (-653 (-1189)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) + (-5 *3 (-1161 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) + (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-14 *6 (-654 (-1192))) + (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1310 *4 *5 *6)) + (-14 *5 (-654 (-1192)))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) - (-15 -2975 ((-1137 *3 (-621 $)) $)) - (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *1) (-4 *1 (-639))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017) (-1218)))))) +(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1077)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1077))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1064)) (-4 *3 (-860)) + (-4 *4 (-273 *3)) (-4 *5 (-803))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1196)) (-5 *1 (-1195))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3877 *6) (|:| |sol?| (-112))) (-574) + *6)) + (-4 *6 (-372)) (-4 *7 (-1259 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) + (-2 (|:| -1527 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1112)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-1112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) - (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1061 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1037))) + (-14 *5 (-654 (-1192))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) + (-5 *1 (-1310 *4 *5 *6)) (-14 *6 (-654 (-1192))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) + (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) + (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1037))) + (-5 *2 + (-654 (-2 (|:| -4374 (-1188 *5)) (|:| -4421 (-654 (-965 *5)))))) + (-5 *1 (-1310 *5 *6 *7)) (-5 *3 (-654 (-965 *5))) + (-14 *6 (-654 (-1192))) (-14 *7 (-654 (-1192))))) ((*1 *2 *3) - (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) - (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *6 (-314))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) - (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1423 (-698 (-416 (-962 *4)))) - (|:| |vec| (-653 (-416 (-962 *4)))) (|:| -3583 (-780)) - (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) - (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) + (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1037))) (-5 *2 - (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) - (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-895 *3 *4 *5)) - (-4 *3 (-1112)) (-4 *5 (-675 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) + (-654 (-2 (|:| -4374 (-1188 *4)) (|:| -4421 (-654 (-965 *4)))))) + (-5 *1 (-1310 *4 *5 *6)) (-5 *3 (-654 (-965 *4))) + (-14 *5 (-654 (-1192))) (-14 *6 (-654 (-1192)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-1064)) (-5 *1 (-700 *3))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1233))))) +(((*1 *1) (-5 *1 (-299)))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) - (-4 *3 (-13 (-439 *6) (-27) (-1215))) - (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1112))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) -(((*1 *1) (-5 *1 (-298)))) -(((*1 *2 *1) - (-12 (-5 *2 (-953 *4)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) + (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1188 *3) (-1188 *3))) + (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) + (-5 *1 (-561 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-1283 *3)) + (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) + (-5 *2 (-699 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) (((*1 *2) - (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) - (-4 *3 (-565))))) + (-12 (-5 *2 (-1288)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) (((*1 *2 *3) - (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) - (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1) (-4 *1 (-1151))) ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-653 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) - (-5 *1 (-458 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1256 *6)) - (-4 *6 (-13 (-371) (-148) (-1050 *4))) (-5 *4 (-573)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4122 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1027 *6 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) - (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) - (-5 *2 (-1047)) (-5 *1 (-757))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1115) (-1053 *5))) + (-4 *5 (-897 *4)) (-4 *4 (-1115)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-944 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-763))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) - (-14 *3 (-931)) (-4 *4 (-1061))))) + (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1210 *4 *5)) + (-4 *4 (-1115)) (-4 *5 (-1115))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-965 (-417 (-574)))) (-5 *4 (-1192)) + (-5 *5 (-1109 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-1191 (-416 (-573)))) - (-5 *1 (-192))))) -(((*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-654 *7) *7 (-1188 *7))) (-5 *5 (-1 (-428 *7) *7)) + (-4 *7 (-1259 *6)) (-4 *6 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4096 *3)))) + (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) + (-4 *8 (-666 (-417 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)) (-1053 (-417 (-574))))) + (-5 *2 + (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4096 (-664 *6 (-417 *6)))))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1232)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) ((*1 *2 *1) - (-12 (-4 *3 (-1112)) - (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) - (-5 *1 (-1088 *3 *4 *2)) - (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) + (-12 (-4 *3 (-1115)) + (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1091 *3 *4 *2)) + (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-534)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1163))))) -(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061))))) -(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) - ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-698 (-573))) (-5 *5 (-112)) (-5 *7 (-698 (-227))) - (-5 *3 (-573)) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-763))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *3) (-12 (-5 *3 (-500)) (-5 *2 (-700 (-588))) (-5 *1 (-588))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) - (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) - (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) + (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *3 *2)) (-4 *3 (-1115))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-1259 *3)) (-4 *3 (-1064))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2893 (-654 (-1192))) (|:| -4375 (-654 (-1192))))) + (-5 *1 (-1235))))) +(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-654 + (-2 (|:| -3557 (-781)) + (|:| |eqns| + (-654 + (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) + (|:| |cols| (-654 (-574)))))) + (|:| |fgb| (-654 *7))))) + (-4 *7 (-962 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) + (-4 *5 (-13 (-860) (-624 (-1192)))) (-4 *6 (-803)) (-5 *2 (-781)) + (-5 *1 (-937 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1281)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1284)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) + (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1284)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1281)) (-5 *1 (-261)))) + (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1284)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) - (-5 *2 (-1282)) (-5 *1 (-261)))) + (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1109 (-388))) + (-5 *2 (-1285)) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-301 *7)) (-5 *4 (-1189)) (-5 *5 (-653 (-269))) - (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-859) (-1050 (-573)))) - (-5 *2 (-1281)) (-5 *1 (-262 *6 *7)))) + (-12 (-5 *3 (-302 *7)) (-5 *4 (-1192)) (-5 *5 (-654 (-270))) + (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1053 (-574)))) + (-5 *2 (-1284)) (-5 *1 (-263 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) - (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1284)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) - (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1284)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-887 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) - (-5 *1 (-265 *6)))) + (-12 (-5 *3 (-888 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-887 *5)) (-5 *4 (-1104 (-387))) - (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) - (-5 *1 (-265 *5)))) + (-12 (-5 *3 (-888 *5)) (-5 *4 (-1107 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1284)) + (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) - (-5 *1 (-265 *6)))) + (-12 (-5 *3 (-890 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) - (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) - (-5 *1 (-265 *5)))) + (-12 (-5 *3 (-890 *5)) (-5 *4 (-1107 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-5 *1 (-266 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) - (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) - (-4 *3 (-13 (-623 (-545)) (-1112))))) + (-12 (-5 *4 (-1107 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-624 (-546)) (-1115))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) - (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) - (-5 *1 (-265 *6)))) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) + (-4 *6 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) - (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) - (-5 *1 (-265 *5)))) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1107 (-388))) + (-4 *5 (-13 (-624 (-546)) (-1115))) (-5 *2 (-1285)) + (-5 *1 (-266 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1281)) (-5 *1 (-266)))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) - (-5 *1 (-266)))) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1284)) + (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *2 (-1281)) (-5 *1 (-266)))) + (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *2 (-1284)) (-5 *1 (-267)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-653 (-269))) - (-5 *2 (-1281)) (-5 *1 (-266)))) + (-12 (-5 *3 (-654 (-956 (-227)))) (-5 *4 (-654 (-270))) + (-5 *2 (-1284)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1282)) (-5 *1 (-266)))) + (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1282)) - (-5 *1 (-266))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-931)) (-5 *1 (-451 *2)) - (-4 *2 (-1256 (-573))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-931)) (-5 *4 (-780)) (-5 *1 (-451 *2)) - (-4 *2 (-1256 (-573))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *1 (-451 *2)) - (-4 *2 (-1256 (-573))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) - (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) - (-5 *6 (-112)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-427 *2)) (-4 *2 (-1256 *5)) - (-5 *1 (-453 *5 *2)) (-4 *5 (-1061))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) + (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) + (-5 *1 (-267))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-382 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *5)) (-4 *5 (-1007 *4)) (-4 *4 (-566)) + (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) + (-5 *1 (-703 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *6 (-1259 *5)) + (-5 *2 (-2 (|:| -4096 *7) (|:| |rh| (-654 (-417 *6))))) + (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) + (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-1007 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1252 *4 *5 *3)) + (-4 *3 (-1259 *5))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-488)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-602)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-636)))) ((*1 *2 *1) - (-12 (-4 *3 (-1112)) - (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) - (-5 *1 (-1088 *3 *4 *2)) - (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) + (-12 (-4 *3 (-1115)) + (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) + (-5 *1 (-1091 *3 *4 *2)) + (-4 *4 (-13 (-1064) (-897 *3) (-624 (-903 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-871)))) - ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-972))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) - ((*1 *1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) - (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *1) (-5 *1 (-1075)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) - (-4 *7 (-959 *5 *6 *4)) (-4 *5 (-919)) (-4 *6 (-802)) - (-4 *4 (-859)) (-5 *1 (-916 *5 *6 *4 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4383 (-573)) (|:| -1687 (-653 *3)))) - (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263))))) -(((*1 *1 *2) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1230)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) - (-5 *1 (-339))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) + (-12 (-4 *2 (-1115)) (-5 *1 (-1181 *2 *3)) (-4 *3 (-1115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-872)))) + ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1288)) (-5 *1 (-975))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-934)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) + (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-5 *1 (-1003 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-654 *7)) (-4 *7 (-1086 *3 *4 *5 *6)) (-4 *3 (-462)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-5 *1 (-1122 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) - (-4 *2 (-1271 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-312)))) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-918 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1115))))) +(((*1 *1) (-5 *1 (-833)))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-654 + (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *3)) + (|:| |logand| (-1188 *3))))) + (-5 *1 (-596 *3)) (-4 *3 (-372))))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) + (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4141 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1233)) (-5 *2 (-781))))) +(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1192))) (-5 *1 (-1192))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-574)) (-5 *5 (-1174)) (-5 *6 (-699 (-227))) + (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) + (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) + (-4 *3 (-167 *6)) (-4 (-965 *6) (-897 *5)) + (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) + (-4 *4 (-1115)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) + (-4 *6 (-13 (-1115) (-1053 *3))) (-4 *3 (-897 *5)) + (-5 *1 (-944 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) + (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1053 (-622 $)))) + (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) + (-5 *1 (-945 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) + (-5 *1 (-946 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1115)) + (-4 *6 (-13 (-1115) (-1053 (-622 $)) (-624 *4) (-897 *5))) + (-5 *4 (-903 *5)) (-5 *1 (-947 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) + (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-948 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) + (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) + (-4 *6 (-1115)) (-4 *3 (-13 (-962 *9 *7 *8) (-624 *4))) + (-4 *7 (-803)) (-4 *9 (-13 (-1064) (-897 *6))) + (-5 *1 (-949 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) + (-4 *3 (-13 (-962 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) + (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *8 (-13 (-1064) (-897 *5))) (-5 *1 (-949 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1115)) (-4 *3 (-1007 *6)) + (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) + (-5 *1 (-952 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-900 *5 (-1192))) (-5 *3 (-1192)) (-5 *4 (-903 *5)) + (-4 *5 (-1115)) (-5 *1 (-953 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) + (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1115)) + (-4 *9 (-13 (-1064) (-624 (-903 *7)) (-1053 *8))) + (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1064)) + (-5 *1 (-954 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) + (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-934)))) + ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1300 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1064))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-902 *3)) (|:| |den| (-902 *3)))) - (-5 *1 (-902 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) - (-5 *2 (-112)) (-5 *1 (-1152 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) - (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) - (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-989 *4 *5 *6 *7))))) + (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) + (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *1) (-5 *1 (-607)))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3902 *4))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) + (-5 *2 (-1050)) (-5 *1 (-758))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-801)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-802)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-653 (-1189))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-654 (-1192))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) - (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) + (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-323 *3) (-323 *3))) (-4 *3 (-13 (-1061) (-859))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) + (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1064) (-860))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1192))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-5 *2 (-245 *5 *7)) - (-5 *1 (-244 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-5 *2 (-246 *5 *7)) + (-5 *1 (-245 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-301 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-301 *6)) (-5 *1 (-300 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-302 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1171)) (-5 *5 (-621 *6)) - (-4 *6 (-309)) (-4 *2 (-1230)) (-5 *1 (-304 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1174)) (-5 *5 (-622 *6)) + (-4 *6 (-310)) (-4 *2 (-1233)) (-5 *1 (-305 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-621 *5)) (-4 *5 (-309)) - (-4 *2 (-309)) (-5 *1 (-305 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) + (-4 *2 (-310)) (-5 *1 (-306 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-621 *1)) (-4 *1 (-309)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-5 *2 (-698 *6)) (-5 *1 (-311 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-323 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-323 *6)) (-5 *1 (-321 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-344 *5 *6 *7 *8)) (-4 *5 (-371)) - (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) - (-4 *9 (-371)) (-4 *10 (-1256 *9)) (-4 *11 (-1256 (-416 *10))) - (-5 *2 (-344 *9 *10 *11 *12)) - (-5 *1 (-341 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-350 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) + (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) + (-4 *9 (-372)) (-4 *10 (-1259 *9)) (-4 *11 (-1259 (-417 *10))) + (-5 *2 (-345 *9 *10 *11 *12)) + (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-351 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1234)) (-4 *8 (-1234)) - (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *9 (-1256 *8)) - (-4 *2 (-350 *8 *9 *10)) (-5 *1 (-348 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-350 *5 *6 *7)) (-4 *10 (-1256 (-416 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1237)) (-4 *8 (-1237)) + (-4 *6 (-1259 *5)) (-4 *7 (-1259 (-417 *6))) (-4 *9 (-1259 *8)) + (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1259 (-417 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) - (-4 *2 (-381 *6)) (-5 *1 (-379 *5 *4 *6 *2)) (-4 *4 (-381 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1233)) (-4 *6 (-1233)) + (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) + (-4 *4 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-427 *5)) (-4 *5 (-565)) - (-4 *6 (-565)) (-5 *2 (-427 *6)) (-5 *1 (-414 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) + (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-416 *5)) (-4 *5 (-565)) - (-4 *6 (-565)) (-5 *2 (-416 *6)) (-5 *1 (-415 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) + (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-422 *5 *6 *7 *8)) (-4 *5 (-314)) - (-4 *6 (-1004 *5)) (-4 *7 (-1256 *6)) - (-4 *8 (-13 (-418 *6 *7) (-1050 *6))) (-4 *9 (-314)) - (-4 *10 (-1004 *9)) (-4 *11 (-1256 *10)) - (-5 *2 (-422 *9 *10 *11 *12)) - (-5 *1 (-421 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-418 *10 *11) (-1050 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) + (-4 *6 (-1007 *5)) (-4 *7 (-1259 *6)) + (-4 *8 (-13 (-419 *6 *7) (-1053 *6))) (-4 *9 (-315)) + (-4 *10 (-1007 *9)) (-4 *11 (-1259 *10)) + (-5 *2 (-423 *9 *10 *11 *12)) + (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-419 *10 *11) (-1053 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-426 *6)) (-5 *1 (-424 *4 *5 *2 *6)) (-4 *4 (-426 *5)))) + (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-565)) (-5 *1 (-427 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) - (-4 *2 (-439 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-439 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) + (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-4 *2 (-434 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-434 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1115)) (-4 *6 (-1115)) + (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1233)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-859)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-371)) - (-4 *6 (-371)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) + (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3861 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-371)) (-4 *6 (-371)) - (-5 *2 (-2 (|:| -3861 *6) (|:| |coeff| *6))) - (-5 *1 (-593 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -1527 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-372)) (-4 *6 (-372)) + (-5 *2 (-2 (|:| -1527 *6) (|:| |coeff| *6))) + (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-371)) (-4 *2 (-371)) (-5 *1 (-593 *5 *2)))) + (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-371)) (-4 *6 (-371)) + (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-593 *5 *6)))) + (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-610 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-610 *6)) (-5 *1 (-607 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-610 *7)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-610 *8)) - (-5 *1 (-608 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-611 *8)) + (-5 *1 (-609 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-610 *7)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) - (-5 *1 (-608 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-611 *7)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) + (-5 *1 (-609 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-1169 *7)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) - (-5 *1 (-608 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1172 *7)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) + (-5 *1 (-609 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1233)) (-5 *1 (-611 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-651 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-653 *6)) (-5 *5 (-653 *7)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-653 *8)) - (-5 *1 (-652 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-654 *8)) + (-5 *1 (-653 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) - (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) - (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) - (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1061)) - (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) - (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-565)) (-4 *7 (-565)) - (-4 *6 (-1256 *5)) (-4 *2 (-1256 (-416 *8))) - (-5 *1 (-718 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1256 (-416 *6))) - (-4 *8 (-1256 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1061)) (-4 *9 (-1061)) - (-4 *5 (-859)) (-4 *6 (-802)) (-4 *2 (-959 *9 *7 *5)) - (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) - (-4 *4 (-959 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-802)) - (-4 *9 (-1061)) (-4 *2 (-959 *9 *8 *6)) - (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-802)) - (-4 *4 (-959 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5 *7)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-4 *7 (-735)) (-5 *2 (-744 *6 *7)) - (-5 *1 (-743 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1064)) (-4 *8 (-1064)) + (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) + (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) + (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1064)) + (-4 *8 (-1064)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) + (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) + (-4 *6 (-1259 *5)) (-4 *2 (-1259 (-417 *8))) + (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1259 (-417 *6))) + (-4 *8 (-1259 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1064)) (-4 *9 (-1064)) + (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-962 *9 *7 *5)) + (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) + (-4 *4 (-962 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) + (-4 *9 (-1064)) (-4 *2 (-962 *9 *8 *6)) + (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) + (-4 *4 (-962 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) + (-5 *1 (-744 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-744 *3 *4)) - (-4 *4 (-735)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-745 *3 *4)) + (-4 *4 (-736)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-806 *6)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *4 (-806 *5)))) + (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-842 *6)) (-5 *1 (-841 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-841 *5 *6)))) + (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-842 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-852 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-851 *5 *6)))) + (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-899 *5 *6)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-899 *5 *7)) - (-5 *1 (-898 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-900 *5 *7)) + (-5 *1 (-899 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-5 *2 (-962 *6)) (-5 *1 (-956 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-5 *2 (-965 *6)) (-5 *1 (-959 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) - (-4 *8 (-1061)) (-4 *6 (-802)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) + (-4 *8 (-1064)) (-4 *6 (-803)) (-4 *2 - (-13 (-1112) - (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) - (-5 *1 (-961 *6 *7 *8 *5 *2)) (-4 *5 (-959 *8 *6 *7)))) + (-13 (-1115) + (-10 -8 (-15 -3073 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) + (-5 *1 (-964 *6 *7 *8 *5 *2)) (-4 *5 (-962 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-968 *6)) (-5 *1 (-967 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-971 *6)) (-5 *1 (-970 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-976 *6)) (-5 *1 (-978 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-979 *5)) (-4 *5 (-1115)) + (-4 *6 (-1115)) (-5 *2 (-979 *6)) (-5 *1 (-981 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-5 *2 (-953 *6)) (-5 *1 (-993 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-956 *5)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-5 *2 (-956 *6)) (-5 *1 (-996 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-962 *4))) (-4 *4 (-1061)) - (-4 *2 (-959 (-962 *4) *5 *6)) (-4 *5 (-802)) + (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1064)) + (-4 *2 (-962 (-965 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-5 *1 (-996 *4 *5 *6 *2)))) + (-13 (-860) + (-10 -8 (-15 -1846 ((-1192) $)) + (-15 -1498 ((-3 $ "failed") (-1192)))))) + (-5 *1 (-999 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-565)) (-4 *6 (-565)) - (-4 *2 (-1004 *6)) (-5 *1 (-1002 *5 *6 *4 *2)) (-4 *4 (-1004 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) + (-4 *2 (-1007 *6)) (-5 *1 (-1005 *5 *6 *4 *2)) (-4 *4 (-1007 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1009 *6)) (-5 *1 (-1010 *4 *5 *2 *6)) (-4 *4 (-1009 *5)))) + (-4 *2 (-1012 *6)) (-5 *1 (-1013 *4 *5 *2 *6)) (-4 *4 (-1012 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) - (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) + (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) - (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1068 *3 *4 *5 *6 *7)) + (-4 *5 (-1064)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1061)) (-4 *10 (-1061)) - (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *2 (-1065 *5 *6 *10 *11 *12)) - (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) - (-4 *12 (-243 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1064)) (-4 *10 (-1064)) + (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *2 (-1068 *5 *6 *10 *11 *12)) + (-5 *1 (-1070 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1068 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) + (-4 *12 (-244 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-1106 *6)) (-5 *1 (-1101 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-1109 *6)) (-5 *1 (-1104 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-857)) - (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) - (-5 *1 (-1101 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-858)) + (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-654 *6)) + (-5 *1 (-1104 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1104 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-1104 *6)) (-5 *1 (-1103 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-1107 *6)) (-5 *1 (-1106 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) - (-4 *2 (-1161 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1110 *4 *2)) (-4 *4 (-858)) + (-4 *2 (-1164 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-1169 *7)) - (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) - (-5 *1 (-1168 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1172 *6)) (-5 *5 (-1172 *7)) + (-4 *6 (-1233)) (-4 *7 (-1233)) (-4 *8 (-1233)) (-5 *2 (-1172 *8)) + (-5 *1 (-1171 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-1183 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1209 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1189)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1242 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1192)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-1247 *6)) (-5 *1 (-1246 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-1250 *6)) (-5 *1 (-1249 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-857)) - (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) - (-5 *1 (-1246 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5)) (-4 *5 (-858)) + (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1172 *6)) + (-5 *1 (-1249 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1253 *5 *6)) (-14 *5 (-1189)) - (-4 *6 (-1061)) (-4 *8 (-1061)) (-5 *2 (-1253 *7 *8)) - (-5 *1 (-1248 *5 *6 *7 *8)) (-14 *7 (-1189)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1192)) + (-4 *6 (-1064)) (-4 *8 (-1064)) (-5 *2 (-1256 *7 *8)) + (-5 *1 (-1251 *5 *6 *7 *8)) (-14 *7 (-1192)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) - (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *4 *6 *2)) (-4 *4 (-1256 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) + (-4 *2 (-1259 *6)) (-5 *1 (-1257 *5 *4 *6 *2)) (-4 *4 (-1259 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5 *7 *9)) (-4 *5 (-1061)) - (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1265 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1189)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1064)) + (-4 *6 (-1064)) (-14 *7 (-1192)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1263 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1192)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) - (-4 *2 (-1271 *6)) (-5 *1 (-1269 *5 *6 *4 *2)) (-4 *4 (-1271 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1064)) (-4 *6 (-1064)) + (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *6 *4 *2)) (-4 *4 (-1274 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) - (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5)) (-4 *5 (-1233)) + (-4 *6 (-1233)) (-5 *2 (-1283 *6)) (-5 *1 (-1282 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1280 *5)) - (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) - (-5 *1 (-1279 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1283 *5)) + (-4 *5 (-1233)) (-4 *6 (-1233)) (-5 *2 (-1283 *6)) + (-5 *1 (-1282 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1064)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-1303 *3 *4)) - (-4 *4 (-855))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-1112)) - (-5 *1 (-621 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-369 (-115))) (-4 *2 (-1061)) (-5 *1 (-723 *2 *4)) - (-4 *4 (-657 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-369 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1064)) (-5 *1 (-1306 *3 *4)) + (-4 *4 (-856))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-931)) (-5 *2 (-1185 *3)) (-5 *1 (-1204 *3)) - (-4 *3 (-371))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) + (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1259 *5)) + (-5 *1 (-817 *5 *2 *3 *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1259 *5)) + (-5 *1 (-817 *5 *2 *3 *6)) + (-4 *5 (-13 (-372) (-148) (-1053 (-417 (-574))))) (-4 *3 (-666 *2)) + (-4 *6 (-666 (-417 *2)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-622 *3)) (-4 *3 (-1115)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1115)) + (-5 *1 (-622 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1233)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1233)) (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)) - (-4 *4 (-357))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) - (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-698 *3)) - (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1259 (-48)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1064)) + (-5 *1 (-1176 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-1295 (-1189) *3)) (-4 *3 (-1061)) (-5 *1 (-1302 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *1 (-1304 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283))))) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) +(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832))))) (((*1 *2 *1) (-12 (-5 *2 - (-653 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (-654 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-568)))) + (-5 *1 (-569)))) ((*1 *2 *1) - (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-5 *2 (-653 *3)))) + (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-5 *2 (-654 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-653 + (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-812))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1112)) (-4 *4 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *5 *4 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1169 *7))) (-4 *6 (-859)) - (-4 *7 (-959 *5 (-540 *6) *6)) (-4 *5 (-1061)) - (-5 *2 (-1 (-1169 *7) *7)) (-5 *1 (-1138 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) - ((*1 *1 *1 *1) (-5 *1 (-1235))) ((*1 *1 *1 *1) (-5 *1 (-1236))) - ((*1 *1 *1 *1) (-5 *1 (-1237))) ((*1 *1 *1 *1) (-5 *1 (-1238)))) + (-5 *1 (-813))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-781)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1064)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) + (-4 *4 (-382 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1064))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) + (-12 (-5 *2 (-417 (-965 *3))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-573)) (-5 *1 (-206))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1256 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1256 (-171 *2)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) - (-4 *3 (-1256 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-298))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-653 (-323 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-446)) (-5 *1 (-1193))))) -(((*1 *2) (-12 (-5 *2 (-842 (-573))) (-5 *1 (-543)))) - ((*1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1112))))) + (-12 (-5 *3 (-1283 (-324 (-227)))) (-5 *2 (-1283 (-324 (-388)))) + (-5 *1 (-313))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) (((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) - (-14 *4 *2)))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-1219 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2679 (-654 (-2 (|:| |irr| *10) (|:| -3737 (-574))))))) + (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) + (-4 *10 (-962 *3 *9 *8)) (-4 *9 (-803)) + (-5 *2 + (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) + (|:| |corrfact| (-654 (-1188 *3))))) + (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1188 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) - ((*1 *1 *1 *1) (-5 *1 (-1235))) ((*1 *1 *1 *1) (-5 *1 (-1236))) - ((*1 *1 *1 *1) (-5 *1 (-1237))) ((*1 *1 *1 *1) (-5 *1 (-1238)))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) - (-5 *2 (-653 *3)) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) - (-14 *7 (-931))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-337))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-653 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) - (-4 *8 (-859)) (-5 *1 (-989 *6 *7 *8 *9))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-373 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) + ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))) + ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) + (-5 *1 (-1203 *6)) (-5 *5 (-654 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-989))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-5 *2 + (-2 (|:| -3078 *4) (|:| -2692 *4) (|:| |totalpts| (-574)) + (|:| |success| (-112)))) + (-5 *1 (-799)) (-5 *5 (-574))))) (((*1 *2 *3) - (-12 (-4 *3 (-1256 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-997 *4 *2 *3 *5)) - (-4 *4 (-357)) (-4 *5 (-733 *2 *3))))) + (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) +(((*1 *1 *2) + (-12 (-5 *2 (-699 *5)) (-4 *5 (-1064)) (-5 *1 (-1069 *3 *4 *5)) + (-14 *3 (-781)) (-14 *4 (-781))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) + (-4 *7 (-1259 *6)) + (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) + (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) +(((*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544)))) + ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1115))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) - (-5 *1 (-1173 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) - (-14 *4 (-1189)) (-14 *5 *3)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185 *2)) (-5 *4 (-1189)) (-4 *2 (-439 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-565)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-4 *1 (-1024)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-5 *4 (-871)) - (-4 *1 (-1024)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-931)) (-4 *4 (-13 (-857) (-371))) - (-4 *1 (-1080 *4 *2)) (-4 *2 (-1256 *4))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *1 *1) (-5 *1 (-387))) ((*1 *1) (-5 *1 (-387)))) + (|partial| -12 (-5 *3 (-1192)) + (-4 *4 (-13 (-315) (-148) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-585 *4 *2)) + (-4 *2 (-13 (-1218) (-972) (-1154) (-29 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-934)))) + ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239))) + ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))) +(((*1 *2 *1) + (-12 (-4 *2 (-962 *3 *5 *4)) (-5 *1 (-1002 *3 *4 *5 *2)) + (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1233)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3 *4)) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-767))))) (((*1 *1 *1) - (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) - (-4 *4 (-272 *3)) (-4 *5 (-802))))) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-852 (-387))) (-5 *2 (-852 (-227))) (-5 *1 (-312))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-515)) (-5 *3 (-653 (-885))) (-5 *1 (-492))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-780)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) - (-4 *4 (-381 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *2 *4)) (-4 *2 (-381 *3)) - (-4 *4 (-381 *3)))) + (-12 (-5 *3 (-654 *1)) (-4 *1 (-1080 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *5 (-860)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1226 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) + (-4 *6 (-860)) (-4 *3 (-1080 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1233))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *1 (-955)) (-5 *3 (-574))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-962 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-780)) (-4 *3 (-1061))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) -(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) + ((*1 *1 *1) (-5 *1 (-388))) ((*1 *1) (-5 *1 (-388)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-12 (-5 *4 (-1192)) + (-4 *5 (-13 (-566) (-1053 (-574)) (-649 (-574)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-653 (-621 *3))) - (|:| |vals| (-653 *3)))) - (-5 *1 (-283 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) + (|:| |vals| (-654 *3)))) + (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-781)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-984 *4 *2)) + (-4 *2 (-1259 *4))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) + (-4 *5 (-13 (-372) (-148) (-1053 (-574)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) + (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2152 *6))) + (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-956 *3) (-956 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-372) (-1218) (-1017)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1283 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1259 *4)) (-5 *2 (-699 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1259 *3)) + (-5 *2 (-699 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1188 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) + (-5 *2 (-1188 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1053 (-574))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1064)) (-4 *3 (-860)) + (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) - (-5 *2 (-698 *3))))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) - (-4 *2 (-1271 *3)))) + (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) + (-4 *2 (-1274 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) - (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) - (-4 *2 (-1271 *3)))) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) + (-4 *2 (-1274 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273))))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1168 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) (((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-1 (-1185 (-962 *4)) (-962 *4))) - (-5 *1 (-1288 *4)) (-4 *4 (-371))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) - (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-874)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-840))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) - (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) - (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4))))) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1172 (-965 *4)) (-1172 (-965 *4)))) + (-5 *1 (-1291 *4)) (-4 *4 (-372))))) (((*1 *2) - (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) - (-5 *1 (-365 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) + (-12 (-4 *4 (-174)) (-5 *2 (-1188 (-965 *4))) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2) + (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) + (-5 *2 (-1188 (-965 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-857))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1687 (-427 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) + (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1176 *4)) (-4 *4 (-1064)) + (-5 *3 (-574))))) +(((*1 *2) + (-12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) (-4 *6 (-1259 (-417 *5))) + (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-692 *4 *5)) (-4 *4 (-1112)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1115)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-693 *4 *5)) (-4 *4 (-1115)))) ((*1 *2 *2) - (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) + (-12 (-4 *3 (-1115)) (-5 *1 (-942 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) + (-12 (-5 *3 (-1192)) (-5 *2 (-324 (-574))) (-5 *1 (-943)))) ((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) + (-12 (-4 *1 (-1300 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855))))) -(((*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1211))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-4 *2 (-1064)) (-5 *1 (-1306 *2 *3)) (-4 *3 (-856))))) +(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-133))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285)))) + ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1285))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-931)) (-5 *1 (-1042 *2)) - (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-573)) (-5 *1 (-952))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554))))) + (-12 (-5 *3 (-934)) (-5 *1 (-1045 *2)) + (-4 *2 (-13 (-1115) (-10 -8 (-15 -3073 ($ $ $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1064)) (-4 *1 (-1259 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-965 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-388))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-965 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) - (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) + (-4 *5 (-1053 (-574))) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) - (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) + (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-348 *3 *4 *5)) + (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-323 *5)) (-4 *5 (-396)) - (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))))) + (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) + (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-417 (-965 (-574))))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-417 (-965 (-388))))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-965 (-574)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-965 (-388)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) + (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) + (|partial| -12 (-5 *2 (-417 (-965 (-574)))) (-4 *1 (-406)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) + (|partial| -12 (-5 *2 (-417 (-965 (-388)))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-388))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-574))))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-417 (-965 (-388))))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-965 (-574)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-965 (-388)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-324 (-574)))) (-4 *1 (-451)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) + (|partial| -12 (-5 *2 (-1283 (-324 (-388)))) (-4 *1 (-451)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) - (-5 *2 (-1185 (-1185 *4))) (-5 *1 (-786 *4 *5 *6 *3 *7)) - (-4 *3 (-1256 *6)) (-14 *7 (-931)))) + (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1259 *5)) + (-5 *2 (-1188 (-1188 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) + (-4 *3 (-1259 *6)) (-14 *7 (-934)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-4 *1 (-988 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *1 (-991 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1053 *2)) (-4 *2 (-1233)))) ((*1 *1 *2) - (|partial| -2817 - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) - (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))) - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) - (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))) - (-12 (-5 *2 (-962 *3)) - (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) - (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) - (-4 *5 (-859))))) + (|partial| -2832 + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) + (-2086 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-555))) (-2086 (-4 *3 (-38 (-417 (-574))))) + (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))) + (-12 (-5 *2 (-965 *3)) + (-12 (-2086 (-4 *3 (-1007 (-574)))) (-4 *3 (-38 (-417 (-574)))) + (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *1 (-1080 *3 *4 *5)) (-4 *4 (-803)) + (-4 *5 (-860))))) ((*1 *1 *2) - (|partial| -2817 - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) - (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) - (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) + (|partial| -2832 + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-2086 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) + (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))) + (-12 (-5 *2 (-965 (-574))) (-4 *1 (-1080 *3 *4 *5)) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192)))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) - (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) - (-4 *1 (-1083 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-988 *4 *5 *3 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) - (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1000 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) - (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-1119 *4 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-573))))) - (-5 *1 (-369 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) - (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-780))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -3907 (-573))))) - (-5 *1 (-427 *3)) (-4 *3 (-565))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) + (|partial| -12 (-5 *2 (-965 (-417 (-574)))) (-4 *1 (-1080 *3 *4 *5)) + (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1192))) + (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) + (-4 *2 (-1274 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1259 *3)) + (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1274 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) + (-4 *2 (-1274 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-566) (-148))) + (-5 *1 (-1168 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) + (-4 *3 (-1064))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-654 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-803)) (-4 *3 (-962 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) + (-5 *1 (-459 *4 *5 *6 *3))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-653 (-227))) (-5 *1 (-206))))) + (-12 (-5 *3 (-1192)) (-5 *2 (-1 (-1188 (-965 *4)) (-965 *4))) + (-5 *1 (-1291 *4)) (-4 *4 (-372))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1619 *4)))) + (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) - (-5 *2 (-653 (-653 (-953 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *4 (-1061)) - (-4 *1 (-1146 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 (-653 (-953 *3)))) (-4 *3 (-1061)) - (-4 *1 (-1146 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-112)) - (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) - (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-653 (-173))) - (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-653 (-653 (-953 *5)))) (-5 *3 (-653 (-173))) - (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) - (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-653 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1256 (-171 (-573)))) (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1233)) (-4 *2 (-1017)) + (-4 *2 (-1064))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1064)) (-5 *2 (-654 (-956 *3))))) ((*1 *1 *2) - (-12 (-4 *2 (-1061)) (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *3 (-1064)) (-4 *1 (-1149 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061)))) + (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-1171)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1047)) - (-5 *1 (-759))))) + (-12 (-5 *2 (-654 (-956 *3))) (-4 *1 (-1149 *3)) (-4 *3 (-1064))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)) - (-5 *3 (-573))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-29 *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 (-112) (-653 *1))) - (-4 *1 (-1083 *4 *5 *6 *3))))) + (-12 (-4 *3 (-1064)) (-4 *4 (-1259 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1259 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))) +(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1207 *2)) (-4 *2 (-372))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1064)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1259 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1171)) (-4 *1 (-372 *2 *4)) (-4 *2 (-1112)) - (-4 *4 (-1112)))) + (-12 (-5 *3 (-1174)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1115)) + (-4 *4 (-1115)))) ((*1 *1 *2) - (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *2) - (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) - (-5 *1 (-466 *3 *4 *2 *5)) (-4 *5 (-959 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) - (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-919)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1256 *2))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) - (-4 *2 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-4 *3 (-1256 *4)) (-4 *2 (-1271 *4)) - (-5 *1 (-1274 *4 *3 *5 *2)) (-4 *5 (-665 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-653 (-1088 *4 *5 *2))) (-4 *4 (-1112)) - (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) - (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-653 (-1088 *5 *6 *2))) (-5 *4 (-931)) (-4 *5 (-1112)) - (-4 *6 (-13 (-1061) (-896 *5) (-623 (-902 *5)))) - (-4 *2 (-13 (-439 *6) (-896 *5) (-623 (-902 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-621 *4)) - (-4 *4 (-1112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3 *4)) - (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *6)) (-4 *6 (-896 *5)) (-4 *5 (-1112)) - (-5 *2 (-112)) (-5 *1 (-897 *5 *6 *4)) (-4 *4 (-623 (-902 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-653 (-962 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) - (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-653 (-962 *3))))) - ((*1 *2) - (-12 (-5 *2 (-653 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) - (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *2 (-653 (-962 *4))) - (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *4 (-174)) - (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1024)) (-5 *2 (-871))))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-1115))))) (((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) - (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) - (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-5 *2 (-1169 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) - (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) - ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) - ((*1 *1 *1) (-4 *1 (-857))) - ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) - ((*1 *1 *1) (-4 *1 (-1072))) ((*1 *1 *1) (-4 *1 (-1151)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) - (-5 *1 (-914 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-802)) - (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) - (-5 *2 (-2 (|:| -3280 (-962 *6)) (|:| -4040 (-962 *6)))) - (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-337))))) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1115)) (-4 *2 (-1115))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1115) (-34))) + (-4 *3 (-13 (-1115) (-34)))))) (((*1 *2 *3) + (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) + (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-962 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1159)))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) - (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) - (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) - (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) + (-2 (|:| -3372 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4067 *4)))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1192)) (-5 *5 (-654 (-417 (-965 *6)))) + (-5 *3 (-417 (-965 *6))) + (-4 *6 (-13 (-566) (-1053 (-574)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *6))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) + (-5 *2 (-423 *4 (-417 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1283 *6)) (-4 *6 (-13 (-419 *4 *5) (-1053 *4))) + (-4 *4 (-1007 *3)) (-4 *5 (-1259 *4)) (-4 *3 (-315)) + (-5 *1 (-423 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-372)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1233)) (-5 *1 (-384 *4 *2)) + (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4459))))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) + (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) + (-4 *2 (-697 *3 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-962 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) + (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-962 *2 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1172 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1064)) + (-5 *3 (-417 (-574))) (-5 *1 (-1176 *4))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1174)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) + (-5 *2 (-1050)) (-5 *1 (-767))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-212)) - (-5 *3 (-1189)))) + (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1192))) (-5 *1 (-212)) + (-5 *3 (-1192)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 (-227))) (-5 *4 (-780)) (-5 *2 (-653 (-1189))) - (-5 *1 (-273)))) + (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1192))) + (-5 *1 (-274)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) - (-5 *2 (-653 *3)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) + (-5 *2 (-654 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-653 *3)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) + (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-653 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-780)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-780)) (-4 *5 (-174)))) + (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1064)) + (-5 *2 (-654 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1293))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) +(((*1 *1 *2) + (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) + (-4 *3 (-13 (-414) (-1218))))) + ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-956 *3)) (-4 *3 (-13 (-372) (-1218) (-1017))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1046))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4458)) (-4 *1 (-241 *3)) + (-4 *3 (-1115)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1233))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-934)) (|has| *4 (-6 (-4460 "*"))) + (-4 *4 (-1064)) (-5 *1 (-1043 *4)))) ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573))))) - (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) - (-5 *1 (-514 *4 *5))))) + (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-934)) + (|has| *4 (-6 (-4460 "*"))) (-4 *4 (-1064)) (-5 *1 (-1043 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2872 *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) - (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-462)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *8)) (-4 *8 (-1086 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) - (-5 *1 (-609 *4 *3 *2)) (-4 *3 (-13 (-439 *4) (-1014) (-1215)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) - (-4 *4 (-1230)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-12 (-5 *3 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) + (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-934)) + (-14 *4 (-934)))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) + (-14 *4 + (-3 (-1188 *3) + (-1283 (-654 (-2 (|:| -3078 *3) (|:| -2590 (-1135))))))))) + ((*1 *2) + (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) + (-14 *4 (-934))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1064)) (-5 *1 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1275 *2 *3 *4)) (-4 *2 (-1064)) (-14 *3 (-1192)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-2 (|:| |num| (-1283 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-622 *4)) (-5 *6 (-1192)) + (-4 *4 (-13 (-440 *7) (-27) (-1218))) + (-4 *7 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) (-5 *2 - (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) - (|:| |success| (-112)))) - (-5 *1 (-798)) (-5 *5 (-573))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) - (-5 *2 (-1047)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-269)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565))))) -(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) - (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) - (-5 *1 (-406)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) - (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) - (-5 *1 (-406)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-653 (-1189))) (-5 *5 (-1192)) (-5 *3 (-1189)) - (-5 *2 (-1116)) (-5 *1 (-406))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) - (-4 *4 (-1061))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-780)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-411)) (-5 *2 (-780))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3907 (-654 *4)))) + (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1115))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-968 (-1132))) - (-5 *1 (-354 *4))))) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-4 *5 (-440 *4)) + (-5 *2 + (-3 (|:| |overq| (-1188 (-417 (-574)))) + (|:| |overan| (-1188 (-48))) (|:| -3573 (-112)))) + (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1259 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) + (-12 (-5 *2 (-934)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) + ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) ((*1 *2 *1) - (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1259 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) - (-5 *1 (-537 *4)))) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-934)) (-4 *4 (-358)) + (-5 *1 (-538 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1061))))) -(((*1 *1 *2) - (-12 (-5 *2 (-323 *3)) (-4 *3 (-13 (-1061) (-859))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *1)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-698 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 *4)) (-4 *4 (-1061)) (-4 *1 (-1135 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1102))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-387)) (-5 *1 (-1075))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-27) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)))) - (-4 *7 (-1256 (-416 *6))) (-5 *1 (-561 *4 *5 *6 *7 *2)) - (-4 *2 (-350 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-336 *3)) (-4 *5 (-1256 *4)) - (-5 *1 (-786 *3 *4 *5 *2 *6)) (-4 *2 (-1256 *5)) (-14 *6 (-931)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) - ((*1 *1 *1) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-371)) (-4 *2 (-376))))) -(((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) + (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1064))))) +(((*1 *2) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-566) (-1053 (-574)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-112)) + (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-27) (-1218) (-440 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1104 (-852 *3))) (-4 *3 (-13 (-1215) (-969) (-29 *5))) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1104 (-852 *3))) (-5 *5 (-1171)) - (-4 *3 (-13 (-1215) (-969) (-29 *6))) - (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1104 (-852 (-323 *5)))) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1104 (-852 (-323 *6)))) - (-5 *5 (-1171)) - (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1104 (-852 (-416 (-962 *5))))) (-5 *3 (-416 (-962 *5))) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1104 (-852 (-416 (-962 *6))))) (-5 *5 (-1171)) - (-5 *3 (-416 (-962 *6))) - (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 - (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-3 *3 (-653 *3))) (-5 *1 (-437 *5 *3)) - (-4 *3 (-13 (-1215) (-969) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) - (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) - (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) - (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) - (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) - (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) - (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) - (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) - (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) - (-5 *5 (-1171)) (-5 *2 (-1047)) (-5 *1 (-574)))) + (-12 (-4 *5 (-372)) + (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1283 *5))))) + (-5 *1 (-993 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1283 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-984 *3 *2)) (-4 *2 (-1259 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-566)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) +(((*1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1286))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) - (-5 *5 (-1189)) (-5 *2 (-1047)) (-5 *1 (-574)))) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) + (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) + (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4067 *9)))) + (-5 *1 (-1087 *6 *7 *4 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1195))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1192))) + (-14 *4 (-654 (-1192))) (-4 *5 (-397))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1064)) (-4 *4 (-860)) + (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-654 (-1188 *11))) (-5 *3 (-1188 *11)) + (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) + (-5 *7 (-1283 (-654 (-1188 *8)))) (-4 *10 (-860)) + (-4 *8 (-315)) (-4 *11 (-962 *8 *9 *10)) (-4 *9 (-803)) + (-5 *1 (-717 *9 *10 *8 *11))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -4375 (-654 *3)) (|:| -2893 (-654 *3)))) + (-5 *1 (-1234 *3)) (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-757))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) - (-5 *2 (-595 (-416 *5))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *2 (-3 (-323 *5) (-653 (-323 *5)))) (-5 *1 (-598 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-749 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)) - (-4 *3 (-38 (-416 (-573)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-962 *3)) (-4 *3 (-38 (-416 (-573)))) - (-4 *3 (-1061)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-4 *2 (-859)) - (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) - (-5 *1 (-1173 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-38 (-416 (-573)))) - (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-2817 - (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) - (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) - (-4 *3 (-38 (-416 (-573)))))) - (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) - (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) - (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) - ((*1 *1 *1 *2) - (-2817 - (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) - (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) - (-4 *3 (-38 (-416 (-573)))))) - (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) - (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) - (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2817 - (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) - (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) - (-4 *3 (-38 (-416 (-573)))))) - (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) - (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) - (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) - (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) -(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387))))) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) (-5 *2 (-112)) + (-5 *1 (-366 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) + (-4 *3 (-1080 *6 *7 *8)) + (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4067 *4)))) + (-5 *1 (-1123 *6 *7 *8 *3 *4)) (-4 *4 (-1086 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4067 *9)))) + (-5 *5 (-112)) (-4 *8 (-1080 *6 *7 *4)) (-4 *9 (-1086 *6 *7 *4 *8)) + (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) + (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4067 *9)))) + (-5 *1 (-1123 *6 *7 *4 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-298)) (-5 *1 (-287))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1283))))) + (-12 (-4 *1 (-810)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1050))))) (((*1 *2 *3) - (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-323 (-573)))) - (-5 *1 (-1043))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-5 *2 (-573)) - (-5 *1 (-452 *5 *3 *6)) (-4 *3 (-1256 *5)) - (-4 *6 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) - (-4 *3 (-1256 *4)) - (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-653 (-653 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-653 (-653 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-653 (-653 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1112))))) -(((*1 *1) (-5 *1 (-337)))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1072)) (-4 *3 (-1215)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) + (-12 (-4 *4 (-13 (-372) (-148) (-1053 (-417 (-574))))) + (-4 *5 (-1259 *4)) + (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4096 *5)))) + (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) + (-4 *6 (-666 (-417 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1) (-5 *1 (-338)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-287))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-653 (-573))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) - (-14 *4 (-653 (-1189))))) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1064)) + (-14 *4 (-654 (-1192))))) ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) - (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1274 *3)) + (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1245 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) - (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) - ((*1 *1 *1) (-4 *1 (-291))) + (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1243 *3)) + (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1266 *3 *4)) (-4 *5 (-998 *4)))) + ((*1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1) - (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) - (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1192))) + (-14 *3 (-654 (-1192))) (-4 *4 (-397)))) ((*1 *1 *2) - (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-5 *1 (-636 *3 *4 *5)) - (-14 *5 (-931)))) + (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) + (-14 *5 (-934)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) - (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) + (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1064) (-727 (-417 (-574))))) + (-4 *5 (-860)) (-5 *1 (-1299 *4 *5 *2)) (-4 *2 (-1304 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) - (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-273))))) -(((*1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) - (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *5)) - (-4 *5 (-1256 (-416 *4)))))) + (-12 (-5 *2 (-781)) (-5 *1 (-1303 *3 *4)) + (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1053 (-574)))) + (-4 *5 (-1259 *4)) + (-5 *2 (-2 (|:| -1527 (-417 *5)) (|:| |coeff| (-417 *5)))) + (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1115)) (-5 *2 (-781))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) (-4 *1 (-555)))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-965 *8)))) + (-5 *5 (-781)) (-5 *6 (-1174)) (-4 *8 (-13 (-315) (-148))) + (-4 *11 (-962 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1192)))) + (-4 *10 (-803)) + (-5 *2 + (-2 + (|:| |rgl| + (-654 + (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) + (|:| |wcond| (-654 (-965 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *8)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *8)))))))))) + (|:| |rgsz| (-574)))) + (-5 *1 (-937 *8 *9 *10 *11)) (-5 *7 (-574))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1281)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1284)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1284)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1282)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) - (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) -(((*1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1174)) (-5 *1 (-1285)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1174)) (-5 *1 (-1285))))) +(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286)))) + ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1286))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-654 (-654 (-956 (-227))))) (-5 *3 (-654 (-884))) + (-5 *1 (-478))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3907 (-654 *1)))) + (-4 *1 (-376 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-463 *3 *4 *5 *6)) + (|:| -3907 (-654 (-463 *3 *4 *5 *6))))) + (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) - *6)) - (-4 *6 (-371)) (-4 *7 (-1256 *6)) - (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) - (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1172 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) (((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) + (-12 (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) + (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4)))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) + (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1233)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-573)) (-4 *1 (-660 *2)) (-4 *2 (-1230))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)) - (-5 *1 (-1169 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1280 (-3 (-477) "undefined"))) (-5 *1 (-1281))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) - (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *2 (-1047)) (-5 *1 (-760))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) - (-5 *2 (-828 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061))))) -(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) - ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *3 *4) + (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *2) (-12 (-5 *2 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) - (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) - ((*1 *2 *3 *4) - (-12 + (-1002 (-417 (-574)) (-874 *3) (-246 *4 (-781)) + (-253 *3 (-417 (-574))))) + (-14 *3 (-654 (-1192))) (-14 *4 (-781)) (-5 *1 (-1001 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1284)))) + ((*1 *1 *1) (-5 *1 (-1284)))) +(((*1 *2 *3) + (-12 (-14 *4 (-654 (-1192))) (-4 *5 (-462)) (-5 *2 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-416 (-573))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-416 (-573))) - (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1032 *3)) - (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) + (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) + (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1017) (-1218))) + (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1017) (-1218))) + (-5 *1 (-610 *4 *5 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) + (-14 *4 (-1192)) (-14 *5 *3)))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-956 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) + ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) + (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) + (-4 *3 (-13 (-440 *4) (-1017)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1203 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1174)) (-5 *2 (-784)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1119)) (-5 *1 (-978))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) + (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4067 *4)))) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1115)) (-4 *2 (-913 *4)) (-5 *1 (-702 *4 *2 *5 *3)) + (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4458))))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2886 (-792 *3)) (|:| |coef1| (-792 *3)))) + (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1064)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-566)) (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2886 *1) (|:| |coef1| *1))) + (-4 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1109 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1148 (-227))) + (-5 *1 (-707)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-956 (-227)) (-227) (-227))) (-5 *4 (-1109 (-227))) + (-5 *5 (-654 (-270))) (-5 *2 (-1148 (-227))) (-5 *1 (-707)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1148 (-227))) (-5 *3 (-1 (-956 (-227)) (-227) (-227))) + (-5 *4 (-1109 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) + (-14 *3 (-654 (-1192)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1064))) (-5 *2 (-1174)) + (-5 *1 (-836 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))) - (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) + (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1064))) + (-5 *2 (-1174)) (-5 *1 (-836 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-416 (-573))) - (-5 *2 (-653 (-2 (|:| -3890 *4) (|:| -3903 *4)))) (-5 *1 (-1033 *3)) - (-4 *3 (-1256 *4)))) + (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1064))) + (-5 *2 (-1288)) (-5 *1 (-836 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-416 (-573))) - (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1033 *3)) - (-4 *3 (-1256 *5)) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1073 (-1036 *4) (-1185 (-1036 *4)))) (-5 *3 (-871)) - (-5 *1 (-1036 *4)) (-4 *4 (-13 (-857) (-371) (-1034)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) - (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871))))) -(((*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) - (-4 *2 (-665 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) - (-4 *4 (-1230)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-446)))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) - (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1271 *4)) - (-4 *4 (-38 (-416 (-573)))) - (-5 *2 (-1 (-1169 *4) (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5))))) -(((*1 *1) (-5 *1 (-568)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-931)) (-4 *5 (-314)) (-4 *3 (-1256 *5)) - (-5 *2 (-2 (|:| |plist| (-653 *3)) (|:| |modulo| *5))) - (-5 *1 (-469 *5 *3)) (-5 *4 (-653 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) - (-5 *2 (-2 (|:| |ans| (-416 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1027 *4 *5)) (-5 *3 (-416 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) - (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-435 *4 *2)) (-4 *2 (-13 (-1215) (-29 *4))))) + (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-838) (-1064))) (-5 *2 (-1288)) (-5 *1 (-836 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1174)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1174)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1288)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1288))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1188 *7)) (-4 *5 (-1064)) + (-4 *7 (-1064)) (-4 *2 (-1259 *5)) (-5 *1 (-511 *5 *2 *6 *7)) + (-4 *6 (-1259 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) - (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *5)) - (-5 *1 (-598 *5))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1064)) (-4 *7 (-1064)) + (-4 *4 (-1259 *5)) (-5 *2 (-1188 *7)) (-5 *1 (-511 *5 *4 *6 *7)) + (-4 *6 (-1259 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1064)) (-4 *2 (-566))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-780)) - (-4 *3 (-13 (-735) (-376) (-10 -7 (-15 ** (*3 *3 (-573)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-780)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-780)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *1) (-4 *1 (-979)))) -(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-538)))) - ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-538))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) - (-5 *2 (-653 *4)) (-5 *1 (-1126 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) - (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) - (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) - (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) - (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) - (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) - (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1285)) (-5 *1 (-246))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) - (-5 *1 (-537 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) - (-5 *1 (-697 *3 *4 *5 *6)) (-4 *6 (-696 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-709 *3)) - (-4 *3 (-314))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))))) - (-5 *2 (-1047)) (-5 *1 (-312)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) - (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) - (-5 *2 (-1047)) (-5 *1 (-312))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-371) (-857))) - (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1256 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-371) (-857))) - (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-831))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) - (-4 *3 (-1112)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) - (-5 *1 (-914 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-931)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) - ((*1 *1 *1) (|partial| -4 *1 (-731)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-438 *3 *4)) - (-4 *3 (-439 *4)))) - ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-553 *3)) (-4 *3 (-554)))) - ((*1 *2) (-12 (-4 *1 (-772)) (-5 *2 (-780)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-805 *3 *4)) - (-4 *3 (-806 *4)))) - ((*1 *2) - (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-1003 *3 *4)) - (-4 *3 (-1004 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-1008 *3 *4)) - (-4 *3 (-1009 *4)))) - ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1023 *3)) (-4 *3 (-1024)))) - ((*1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-780)))) - ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1071 *3)) (-4 *3 (-1072))))) + (-12 (-5 *3 (-699 (-417 (-965 *4)))) (-4 *4 (-462)) + (-5 *2 (-654 (-3 (-417 (-965 *4)) (-1181 (-1192) (-965 *4))))) + (-5 *1 (-300 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-1197))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *1) (-4 *1 (-982)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-565)) (-4 *2 (-461)) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1256 *2))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1259 *6)) + (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1053 (-574)))) + (-4 *8 (-1259 (-417 *7))) (-5 *2 (-596 *3)) + (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-446))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 (-1174))) (-5 *2 (-1288)) (-5 *1 (-247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-917 (-574))) (-5 *1 (-930)))) + ((*1 *2) (-12 (-5 *2 (-917 (-574))) (-5 *1 (-930))))) +(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) (((*1 *2 *2) - (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) -(((*1 *2 *1) (-12 (-5 *2 (-340)) (-5 *1 (-254))))) + (-12 (-4 *4 (-1064)) + (-4 *2 (-13 (-414) (-1053 *4) (-372) (-1218) (-292))) + (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1259 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-440 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1192)))) + ((*1 *1 *1) (-4 *1 (-161)))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-801)) (-4 *3 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-653 (-1224 *5))) - (-5 *1 (-1288 *5)) (-5 *4 (-1224 *5))))) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860))))) (((*1 *2 *3) - (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) - ((*1 *2 *3) - (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-653 *1)) - (-4 *1 (-1080 *4 *3))))) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) + (-5 *1 (-992 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-653 - (-2 - (|:| -3692 - (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) - (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1907 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1169 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3821 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-568)))) - ((*1 *2 *1) - (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) - (-5 *2 (-653 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) - (-14 *4 (-573))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) - (-5 *2 - (-2 (|:| |mval| (-698 *4)) (|:| |invmval| (-698 *4)) - (|:| |genIdeal| (-513 *4 *5 *6 *7)))) - (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) + (-12 (-4 *1 (-705 *3)) (-4 *3 (-1115)) + (-5 *2 (-654 (-2 (|:| -1918 *3) (|:| -3948 (-781)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-1256 (-416 *3))) (-5 *2 (-931)) - (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *4 (-780)) - (-5 *2 (-698 (-227))) (-5 *1 (-273))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1285)) - (-5 *1 (-442 *3 *4)) (-4 *4 (-439 *3))))) + (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-372) (-310) + (-10 -8 (-15 -2970 ((-1140 *3 (-622 $)) $)) + (-15 -2981 ((-1140 *3 (-622 $)) $)) + (-15 -2950 ($ (-1140 *3 (-622 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) - (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) + (-12 (-5 *2 (-1172 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1288) (-1283 *5) (-1283 *5) (-388))) + (-5 *3 (-1283 (-388))) (-5 *5 (-388)) (-5 *2 (-1288)) + (-5 *1 (-798))))) +(((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-596 *3)) (-4 *3 (-372))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1112)) (-4 *6 (-1112)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *5 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-177))) (-5 *1 (-1097))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) + (-12 (-5 *3 (-654 (-2 (|:| -4200 *4) (|:| -4144 (-574))))) + (-4 *4 (-1259 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-428 *5)) (-4 *5 (-1259 *4)) (-4 *4 (-1064)) + (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) + (-5 *2 + (-2 (|:| |brans| (-654 (-654 (-956 *4)))) + (|:| |xValues| (-1109 *4)) (|:| |yValues| (-1109 *4)))) + (-5 *1 (-154)) (-5 *3 (-654 (-654 (-956 *4))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-5 *2 (-1174))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) + (-5 *4 (-227)) (-5 *2 (-1050)) (-5 *1 (-762))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) + (-4 *3 (-376 *4)))) + ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) - ((*1 *2 *3) (-12 (-5 *3 (-983)) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) + (|partial| -12 (-4 *2 (-1115)) (-5 *1 (-1210 *3 *2)) (-4 *3 (-1115))))) +(((*1 *2 *1) + (-12 (-5 *2 (-781)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) (((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-802)) - (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) - (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1061)) (-4 *5 (-802)) - (-4 *3 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-653 *6)) - (-4 *6 - (-13 (-859) - (-10 -8 (-15 -1835 ((-1189) $)) - (-15 -1487 ((-3 $ "failed") (-1189)))))) - (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) - (-4 *2 (-959 (-962 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-573)) - (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-831))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) + (-14 *3 (-654 (-1192)))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-653 (-1152 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) - (-5 *1 (-1153 *4 *5)))) + (-12 (-5 *2 (-654 (-1155 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1115) (-34))) (-4 *5 (-13 (-1115) (-34))) + (-5 *1 (-1156 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-653 (-1152 *3 *4))) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) + (-12 (-5 *2 (-654 (-1155 *3 *4))) (-4 *3 (-13 (-1115) (-34))) + (-4 *4 (-13 (-1115) (-34))) (-5 *1 (-1156 *3 *4))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *7 (-910 *6)) - (-5 *2 (-698 *7)) (-5 *1 (-701 *6 *7 *3 *4)) (-4 *3 (-381 *7)) - (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-573)) (-4 *4 (-174)) (-4 *5 (-381 *4)) - (-4 *6 (-381 *4)) (-5 *1 (-697 *4 *5 *6 *2)) - (-4 *2 (-696 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-5 *1 (-641)))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) - ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) - ((*1 *1 *1) (-5 *1 (-871)))) -(((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185 (-573))) (-5 *3 (-573)) (-4 *1 (-878 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) + (|:| |expense| (-388)) (|:| |accuracy| (-388)) + (|:| |intermediateResults| (-388)))) + (-5 *2 (-1050)) (-5 *1 (-313))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) + (-5 *1 (-929 *3 *4 *5 *2)) (-4 *2 (-962 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-573))))) + (-12 (-5 *2 (-1188 *6)) (-4 *6 (-962 *5 *3 *4)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-929 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *6 *4 *5)) + (-5 *1 (-929 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) + (-4 *6 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) + (-4 *7 (-1007 *4)) (-4 *2 (-697 *7 *8 *9)) + (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) + (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-382 *2)) + (-4 *4 (-382 *2)) (-4 *2 (-315)))) + ((*1 *2 *2) + (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) + (-4 *2 (-697 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-992 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-574)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-573)) (-4 *2 (-439 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1050 *4)) (-4 *3 (-565))))) + (-12 (-5 *4 (-781)) (-4 *5 (-1064)) (-4 *2 (-1259 *5)) + (-5 *1 (-1277 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1274 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-654 (-1192))) (-4 *2 (-174)) + (-4 *4 (-244 (-2876 *5) (-781))) + (-14 *6 + (-1 (-112) (-2 (|:| -2590 *3) (|:| -3843 *4)) + (-2 (|:| -2590 *3) (|:| -3843 *4)))) + (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) + (-4 *7 (-962 *2 *4 (-874 *5)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) +(((*1 *2 *3) + (-12 (-5 *2 (-428 (-1188 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-965 (-574))) (-5 *3 (-1192)) + (-5 *4 (-1109 (-417 (-574)))) (-5 *1 (-30))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1050)) + (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) + (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1050)) (-5 *1 (-766))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-684 *3))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *1 (-1143 *3 *2)) (-4 *3 (-1259 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-918 *3))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -4226 (-699 (-417 (-965 *4)))) + (|:| |vec| (-654 (-417 (-965 *4)))) (|:| -3557 (-781)) + (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) + (-5 *2 + (-2 (|:| |partsol| (-1283 (-417 (-965 *4)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *4))))))) + (-5 *1 (-937 *4 *5 *6 *7)) (-4 *7 (-962 *4 *6 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-4 *1 (-1113 *3)))) + ((*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1115))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-574)))) + (-4 *4 (-13 (-1259 *3) (-566) (-10 -8 (-15 -2886 ($ $ $))))) + (-4 *3 (-566)) (-5 *1 (-1262 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1019 *3)) (-14 *3 (-574))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1073 (-1036 *3) (-1185 (-1036 *3)))) - (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034)))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1078))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-698 *3)) - (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) - (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) - (-4 *6 (-802)) (-5 *2 (-653 *3)) (-5 *1 (-934 *4 *5 *6 *3)) - (-4 *3 (-959 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) + (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)) + (-4 *2 (-462)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *4)) (-4 *4 (-1259 (-574))) (-5 *2 (-654 (-574))) + (-5 *1 (-496 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-462))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1115)) + (-4 *3 (-1115))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-574)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-803)) (-4 *4 (-962 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) + (-5 *1 (-459 *5 *6 *7 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *1 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 (-1150))) (-5 *1 (-1081))))) (((*1 *2 *1) - (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-112)))) + (-12 (-4 *4 (-1115)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) + (-4 *3 (-1115)) (-4 *5 (-676 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1115)) + (-4 *4 (-1115))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1288)) (-5 *1 (-388)))) + ((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-388))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) + (-5 *1 (-1223 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) - (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-1285)) (-5 *1 (-840))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + (-12 (-4 *5 (-1115)) (-4 *3 (-913 *5)) (-5 *2 (-699 *3)) + (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) + (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4458))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *7 (-1115)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-1115)) + (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) + (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-934)))) ((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-4 *5 (-859)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) + (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-781)) (-4 *6 (-1115)) (-4 *7 (-913 *6)) + (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) + (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4458))))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) + (-5 *2 (-1050)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-873 *3)) (-14 *3 (-653 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1001)))) + (|partial| -12 (-5 *2 (-1192)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1004)))) ((*1 *2 *1) - (-12 (-4 *4 (-1230)) (-5 *2 (-1189)) (-5 *1 (-1069 *3 *4)) - (-4 *3 (-1105 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) + (-12 (-4 *4 (-1233)) (-5 *2 (-1192)) (-5 *1 (-1072 *3 *4)) + (-4 *3 (-1108 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-1107 *3)) (-4 *3 (-1233)))) ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) - (-5 *2 (-1189)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) + (-5 *2 (-1192)))) + ((*1 *2) (-12 (-5 *2 (-1192)) (-5 *1 (-1279 *3)) (-14 *3 *2)))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1233)) (-5 *2 (-781)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) - (-5 *2 (-780)))) + (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1115)) (-4 *4 (-132)) + (-5 *2 (-781)))) ((*1 *2) - (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) - (-4 *3 (-336 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) - ((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-780)))) - ((*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) + (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) + (-4 *3 (-337 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1115)))) + ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1115)) (-5 *2 (-781)))) ((*1 *2) - (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-433 *3 *4)) - (-4 *3 (-434 *4)))) + (-12 (-4 *4 (-1115)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) + (-4 *3 (-435 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-780)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) + (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1115)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-780)) - (-5 *1 (-732 *3 *4 *5)) (-4 *3 (-733 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1259 *4)) (-5 *2 (-781)) + (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1021)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) - (-4 *3 (-1256 *2))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1047)) (-5 *1 (-757))))) -(((*1 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) - ((*1 *2 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1234)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1256 (-416 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-653 (-953 (-227))))) - (-5 *2 (-653 (-1106 (-227)))) (-5 *1 (-938))))) -(((*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-859))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) - (-14 *3 (-931)) (-4 *4 (-1061)))) + (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1076 *2 *3)) + (-4 *3 (-1259 *2))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-621 *4)) (-5 *6 (-1185 *4)) - (-4 *4 (-13 (-439 *7) (-27) (-1215))) - (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-621 *4)) (-5 *6 (-416 (-1185 *4))) - (-4 *4 (-13 (-439 *7) (-27) (-1215))) - (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) - (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *5 (-931)) - (-5 *2 (-1285)) (-5 *1 (-477)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-883)) (-5 *5 (-931)) - (-5 *2 (-1285)) (-5 *1 (-477))))) -(((*1 *2 *3) - (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) - (-4 *4 (-357))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-653 *3)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) - (-4 *6 (-802)) (-4 *7 (-859)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-458 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) + (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) + (-4 *3 (-13 (-440 *6) (-27) (-1218))) + (-4 *6 (-13 (-462) (-1053 (-574)) (-148) (-649 (-574)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1115))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1233))))) (((*1 *2 *1) - (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-859)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-1117 *3)) (-5 *1 (-918 *3)) (-4 *3 (-377)) + (-4 *3 (-1115))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-654 + (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) + (|:| |wcond| (-654 (-965 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1283 (-417 (-965 *5)))) + (|:| -3907 (-654 (-1283 (-417 (-965 *5)))))))))) + (-5 *4 (-1174)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-962 *5 *7 *6)) + (-4 *6 (-13 (-860) (-624 (-1192)))) (-4 *7 (-803)) (-5 *2 (-574)) + (-5 *1 (-937 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1192))) (-4 *6 (-462)) + (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) + (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) + (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) + (-4 *2 (-697 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1115)) (-4 *2 (-377))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *2 (-1080 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) + (-4 *3 (-1086 *4 *5 *6 *2))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-1296 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1080 *5 *6 *7)) (-4 *5 (-566)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1296 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *1) (-12 (-5 *2 (-968 (-780))) (-5 *1 (-340))))) -(((*1 *1 *1) (|partial| -4 *1 (-1164)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) - (-4 *3 (-375 *4)))) - ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-118 *3)) (-14 *3 (-573)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-314)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-573))) (-5 *1 (-774 *3)) (-4 *3 (-413)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-880 *3)) (-14 *3 (-573)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1218)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-699 *2)) (-4 *4 (-1259 *2)) + (-4 *2 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))) ((*1 *2 *1) - (-12 (-14 *3 (-573)) (-5 *2 (-176 (-416 (-573)))) - (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *2 (-565))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1047)) - (-5 *1 (-755))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) - (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3)))))) + (-12 (-4 *1 (-1138 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1064))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2 *3) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1192)) (-5 *2 (-1288)) (-5 *1 (-1195))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1115))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1) (-5 *1 (-642)))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3864 (-417 (-574))) (|:| -3877 (-417 (-574))))) + (-5 *2 (-417 (-574))) (-5 *1 (-1035 *4)) (-4 *4 (-1259 (-574)))))) +(((*1 *1 *1 *1) (-5 *1 (-872)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1283 *3)) (-4 *3 (-1064)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-1259 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-956 *4)) (-5 *1 (-1180 *3 *4)) (-14 *3 (-934)) + (-4 *4 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-596 *3) *3 (-1192))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1192))) + (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1053 *4)) (-4 *3 (-440 *7)) + (-5 *4 (-1192)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) + (-4 *7 (-897 (-574))) (-4 *7 (-1115)) (-5 *2 (-596 *3)) + (-5 *1 (-583 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 (-653 *4)))) - (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-641))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) - (-5 *1 (-928 *4))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1280 *4)) (-5 *3 (-698 *4)) (-4 *4 (-371)) - (-5 *1 (-676 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-371)) - (-4 *5 (-13 (-381 *4) (-10 -7 (-6 -4456)))) - (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))) - (-5 *1 (-677 *4 *5 *2 *3)) (-4 *3 (-696 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-653 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-371)) - (-5 *1 (-823 *2 *3)) (-4 *3 (-665 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) - (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-653 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *5 *6)) - (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) - (-5 *1 (-458 *4 *5 *6 *7))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1192)) (|:| |fn| (-324 (-227))) + (|:| -4231 (-1109 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-308))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-462)) + (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) (((*1 *2 *1) (-12 (-5 *2 @@ -16658,1661 +16676,1646 @@ (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-337))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-852 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 *4)) - (-5 *1 (-273))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-756))))) + (-5 *1 (-338))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) - (-5 *2 (-698 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) - (-4 *3 (-426 *4)))) - ((*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-802)) (-4 *5 (-1061)) (-4 *6 (-959 *5 *4 *2)) - (-4 *2 (-859)) (-5 *1 (-960 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-371) - (-10 -8 (-15 -2942 ($ *6)) (-15 -2965 (*6 $)) - (-15 -2975 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) - (-5 *2 (-1189)) (-5 *1 (-1055 *4))))) + (-12 (-4 *4 (-860)) (-5 *2 (-1204 (-654 *4))) (-5 *1 (-1203 *4)) + (-5 *3 (-654 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 *4)) (-4 *4 (-358)) + (-5 *2 (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135)))))) + (-5 *1 (-355 *4))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-23))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-416 (-573))) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-439 *4)))) + (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1053 (-574))) (-4 *4 (-566)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) + (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-573)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) - (-4 *5 (-1271 *4)) (-5 *1 (-284 *4 *5 *2)) (-4 *2 (-1242 *4 *5)))) + (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) + (-4 *5 (-1274 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1245 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) - (-4 *5 (-1240 *4)) (-5 *1 (-285 *4 *5 *2 *6)) (-4 *2 (-1263 *4 *5)) - (-4 *6 (-995 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-291))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-5 *1 (-387))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) + (-4 *5 (-1243 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1266 *4 *5)) + (-4 *6 (-998 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-292))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *1) (-5 *1 (-388))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1115)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) - (-4 *3 (-1124)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-482)) (-5 *2 (-573)))) + (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1115)) + (-4 *3 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-962 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) - (-5 *1 (-537 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-545)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-545)))) + (-12 (-5 *2 (-1283 *4)) (-5 *3 (-574)) (-4 *4 (-358)) + (-5 *1 (-538 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *4 (-1112)) - (-5 *1 (-691 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1115)) + (-5 *1 (-692 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-371)))) + (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-780)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) - (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) - (-5 *1 (-699 *4)))) + (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1064)) + (-5 *1 (-700 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)) - (-4 *4 (-657 *3)))) + (-12 (-5 *2 (-574)) (-4 *3 (-1064)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-658 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-4 *4 (-1061)) - (-5 *1 (-723 *4 *5)) (-4 *5 (-657 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-780)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-845 *3)) (-4 *3 (-1061)))) + (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1064)) + (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-934)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1064)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-5 *1 (-845 *4)) (-4 *4 (-1061)))) - ((*1 *1 *1 *1) (-5 *1 (-871))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-416 (-573))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1124)) (-5 *2 (-931)))) + (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1064)))) + ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1017)) (-5 *2 (-417 (-574))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1127)) (-5 *2 (-934)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *4 (-1061)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-371)))) + (-12 (-5 *2 (-574)) (-4 *1 (-1138 *3 *4 *5 *6)) (-4 *4 (-1064)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1177 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-38 (-417 (-574)))) + (-5 *1 (-1178 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-587)))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1) (-4 *1 (-1151)))) -(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) - (-4 *4 (-859)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) - (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) - (-4 *1 (-375 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-462 *3 *4 *5 *6)) - (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) - (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) - (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) - ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *5 *6 *2)) (-4 *3 (-1112)) (-4 *4 (-1112)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) + (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-588)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-372)) (-4 *3 (-1064)) + (-5 *2 (-2 (|:| -1670 *1) (|:| -2711 *1))) (-4 *1 (-862 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1064)) + (-5 *2 (-2 (|:| -1670 *3) (|:| -2711 *3))) (-5 *1 (-863 *5 *3)) + (-4 *3 (-862 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-357)) (-5 *2 (-1280 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-146)) (-4 *1 (-919)) - (-5 *2 (-1280 *1))))) -(((*1 *1 *1) (-4 *1 (-1072))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-780)))) + (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) + (-5 *2 (-654 *3)) (-5 *1 (-1143 *4 *3)) (-4 *4 (-1259 *3))))) +(((*1 *1 *1) (-5 *1 (-1078)))) +(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + ((*1 *1 *1) (-5 *1 (-872)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-417 (-1188 (-324 *3)))) (-4 *3 (-566)) + (-5 *1 (-1145 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1118 *3 *4 *5 *6 *2)) (-4 *3 (-1115)) (-4 *4 (-1115)) + (-4 *5 (-1115)) (-4 *6 (-1115)) (-4 *2 (-1115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1050)) + (-5 *1 (-765))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-440 *3) (-1017))) (-5 *1 (-283 *3 *2)) + (-4 *3 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-573)) (-4 *1 (-381 *3)) (-4 *3 (-1230)) - (-4 *3 (-1112)))) + (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1233)) + (-4 *3 (-1115)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) - (-5 *2 (-573)))) + (-12 (-4 *1 (-382 *3)) (-4 *3 (-1233)) (-4 *3 (-1115)) + (-5 *2 (-574)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) - (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-538)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-780)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) - (-4 *2 (-1256 *3))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-763))))) -(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-171 *4))) - (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) - (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-171 *5)))) - (-5 *1 (-386 *5)) (-4 *5 (-13 (-371) (-857)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) - (-4 *4 (-1061)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1233)) + (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-539)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1159)) (-5 *2 (-574))))) +(((*1 *2 *3) (-12 (-5 *3 (-956 *2)) (-5 *1 (-997 *2)) (-4 *2 (-1064))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1080 *3 *4 *5)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-4 *7 (-962 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) + (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1188 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1115)) + (-4 *3 (-1233))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-984 *4 *3)) (-4 *3 (-1259 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1259 *4)) (-5 *2 (-1288)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1259 (-417 *5))) (-14 *7 *6)))) (((*1 *2 *3) - (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) - (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) - (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-1259 *4)) + (-4 *5 (-1259 (-417 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) - (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-4 *2 (-1256 *4)) - (-5 *1 (-932 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) + (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1233)) + (-4 *5 (-382 *4)) (-4 *3 (-382 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) -(((*1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1213))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *1 (-706))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1233))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-654 (-978))) (-5 *1 (-299))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1151)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-227))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) - (-5 *1 (-312))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-931)) (-4 *5 (-565)) (-5 *2 (-698 *5)) - (-5 *1 (-966 *5 *3)) (-4 *3 (-665 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-5 *1 (-429 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1215) (-439 *3))) - (-14 *4 (-1189)) (-14 *5 *2))) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055)))) + ((*1 *1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1233)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-956 *5)) (-4 *5 (-1064)) (-5 *2 (-781)) + (-5 *1 (-1180 *4 *5)) (-14 *4 (-934)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1180 *4 *5)) + (-14 *4 (-934)) (-4 *5 (-1064)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-654 (-781))) (-5 *3 (-956 *5)) (-4 *5 (-1064)) + (-5 *1 (-1180 *4 *5)) (-14 *4 (-934))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) - (-4 *2 (-13 (-27) (-1215) (-439 *3) (-10 -8 (-15 -2942 ($ *4))))) - (-4 *4 (-857)) - (-4 *5 - (-13 (-1258 *2 *4) (-371) (-1215) - (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) - (-5 *1 (-431 *3 *2 *4 *5 *6 *7)) (-4 *6 (-995 *5)) (-14 *7 (-1189))))) -(((*1 *1 *1 *1) (-4 *1 (-554)))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) - (-5 *2 (-653 (-416 (-573)))) (-5 *1 (-1032 *4)) - (-4 *4 (-1256 (-573)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1280 *4)) (-5 *3 (-780)) (-4 *4 (-357)) - (-5 *1 (-537 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) - (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 (-595 *3)) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-1185 *3)) - (-4 *3 (-13 (-439 *7) (-27) (-1215))) - (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) - (-5 *6 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *7) (-27) (-1215))) - (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112))))) -(((*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) - ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1154))) ((*1 *1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-832))))) (((*1 *2 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *1 (-989 *3 *4 *5 *6))))) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-1212 *4)) - (-4 *4 (-1061))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) - (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *9 (-1077 *6 *7 *8)) - (-5 *2 - (-653 - (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) - (-5 *1 (-1000 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) - (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *9 (-1077 *6 *7 *8)) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-546))))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-566))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3) + (-12 (-5 *3 (-654 (-2 (|:| -4200 (-1188 *6)) (|:| -3843 (-574))))) + (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) + (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-962 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1259 *3)) + (-4 *5 (-1259 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 - (-653 - (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) - (-5 *1 (-1119 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-859)) (-5 *3 (-653 *6)) (-5 *5 (-653 *3)) + (-2 (|:| -2817 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1259 *5)) (-4 *5 (-372)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-653 *5)) (|:| |f3| *5) - (|:| |f4| (-653 *5)))) - (-5 *1 (-1200 *6)) (-5 *4 (-653 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) - (-14 *4 (-653 (-1189))))) + (-2 (|:| |poly| *6) (|:| -1366 (-417 *6)) + (|:| |special| (-417 *6)))) + (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1230)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) - (-14 *4 (-653 (-1189))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-859))))) + (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) + (-4 *3 (-1259 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) + (-5 *2 (-2 (|:| -3864 *3) (|:| -3877 *3))) (-5 *1 (-909 *3 *5)) + (-4 *3 (-1259 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1084 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) + (-4 *8 (-1080 *5 *6 *7)) (-4 *9 (-1124 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1160 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1241))) (-5 *3 (-1241))))) (((*1 *2 *1) - (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) - (-4 *3 (-1112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-417 (-965 *4))) (-5 *1 (-937 *4 *5 *6 *3)) + (-4 *3 (-962 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-699 *7)) (-4 *7 (-962 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-699 (-417 (-965 *4)))) + (-5 *1 (-937 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-962 *4 *6 *5)) + (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-654 (-417 (-965 *4)))) + (-5 *1 (-937 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) +(((*1 *1 *1) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-4 *2 (-462)))) + ((*1 *1 *1) + (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-1259 *2)) + (-4 *4 (-1259 (-417 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-462)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)) (-4 *3 (-462)))) + ((*1 *1 *1) + (-12 (-4 *1 (-962 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)) (-4 *2 (-462)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1179 *3 *2)) + (-4 *2 (-1259 *3))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-314)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1112)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3152 (-780)) (|:| -3132 (-780)))) - (-5 *1 (-780)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-931)) (-5 *4 (-427 *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-1061)) (-5 *2 (-653 *6)) (-5 *1 (-453 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-974 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-871))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) + (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1233)) (-5 *2 (-574))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1283 (-324 (-227)))) (|:| |yinit| (-654 (-227))) + (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-388)) (-5 *1 (-207))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1259 (-574)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1288)) (-5 *1 (-832))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1288)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-859) - (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) - (-15 -1974 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-403)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-403)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) - ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-719)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1210)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1210))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-788 *4)) - (-4 *4 (-13 (-371) (-857)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) - (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) - (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) - (-5 *1 (-458 *4 *5 *6 *7))))) + (-13 (-860) + (-10 -8 (-15 -2209 ((-1174) $ (-1192))) (-15 -1413 (*2 $)) + (-15 -2394 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-404)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-404)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-512)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-720)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1213)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1213))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) + (-4 *9 (-962 *8 *6 *7)) + (-5 *2 (-2 (|:| -3634 (-1188 *9)) (|:| |polval| (-1188 *8)))) + (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1188 *9)) (-5 *4 (-1188 *8))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831))))) + (-12 (-5 *3 (-574)) (-5 *2 (-1288)) (-5 *1 (-1285)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-388)) (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *2) + (-12 (-4 *3 (-462)) (-5 *1 (-1224 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1218)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1053 *4)) (-4 *3 (-566))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-962 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1064)) (-4 *6 (-962 *5 *4 *2)) + (-4 *2 (-860)) (-5 *1 (-963 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-372) + (-10 -8 (-15 -2950 ($ *6)) (-15 -2970 (*6 $)) + (-15 -2981 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-417 (-965 *4))) (-4 *4 (-566)) + (-5 *2 (-1192)) (-5 *1 (-1058 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) + (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1003 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1003 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) + (-4 *7 (-1080 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1122 *4 *5 *6 *7 *3)) (-4 *3 (-1086 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-654 *3)) (-4 *3 (-1086 *5 *6 *7 *8)) (-4 *5 (-462)) + (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1080 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1122 *5 *6 *7 *8 *3))))) (((*1 *2 *2) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-999 (-416 (-573)) (-873 *3) (-245 *4 (-780)) - (-252 *3 (-416 (-573))))) - (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-998 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-515)) (-5 *2 (-700 (-783))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-975))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) + (-654 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-803)) (-4 *6 (-962 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) + (-5 *1 (-459 *3 *4 *5 *6))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) + (-12 (-5 *3 (-478)) (-5 *4 (-934)) (-5 *2 (-1288)) (-5 *1 (-1284))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1064)) (-14 *3 (-654 (-1192))))) ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) - (-14 *3 (-653 (-1189))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1064) (-860))) + (-14 *3 (-654 (-1192))))) ((*1 *1 *1) - (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-1115)))) ((*1 *1 *1) - (-12 (-14 *2 (-653 (-1189))) (-4 *3 (-174)) - (-4 *5 (-243 (-2862 *2) (-780))) + (-12 (-14 *2 (-654 (-1192))) (-4 *3 (-174)) + (-4 *5 (-244 (-2876 *2) (-781))) (-14 *6 - (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) - (-2 (|:| -2575 *4) (|:| -3907 *5)))) - (-5 *1 (-470 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) - (-4 *7 (-959 *3 *5 (-873 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) + (-1 (-112) (-2 (|:| -2590 *4) (|:| -3843 *5)) + (-2 (|:| -2590 *4) (|:| -3843 *5)))) + (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) + (-4 *7 (-962 *3 *5 (-874 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1115)) (-4 *3 (-860)))) ((*1 *1 *1) - (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) ((*1 *1 *1) - (-12 (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1061)) - (-4 *3 (-735)))) - ((*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) + (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1064)) + (-4 *3 (-736)))) + ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859)))) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) -(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-565)) - (-5 *2 (-871)) (-5 *1 (-32 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) - (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-691 *2)) (-4 *2 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-653 *5) (-653 *5))) (-5 *4 (-573)) - (-5 *2 (-653 *5)) (-5 *1 (-691 *5)) (-4 *5 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) - (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) + (-12 (-5 *1 (-1306 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-856))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) - (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) - (-5 *1 (-1141 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) - (-4 *5 (-13 (-314) (-148))) - (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) - (-5 *1 (-1141 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) - (-4 *4 (-801))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) - (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) - (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) - (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *8))) - (-5 *1 (-921 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) - (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) - (-4 *6 (-350 (-416 (-573)) *4 *5)) - (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *6))) - (-5 *1 (-922 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) - ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) - (-4 *1 (-959 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) - (-5 *1 (-757))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) - (-5 *2 (-387)) (-5 *1 (-794 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) - (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) + (-12 (-5 *3 (-654 *5)) (-5 *4 (-934)) (-4 *5 (-860)) + (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1115)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1115)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) - (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1115))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1174)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) + (-5 *2 (-1050)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-302 (-843 *3))) + (-4 *5 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) + (-4 *3 (-13 (-27) (-1218) (-440 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) - (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) + (-12 (-5 *4 (-302 (-843 (-965 *5)))) (-4 *5 (-462)) + (-5 *2 (-843 (-417 (-965 *5)))) (-5 *1 (-647 *5)) + (-5 *3 (-417 (-965 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) - (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) - (-5 *1 (-794 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-426 *4))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) - (-5 *1 (-760))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) - (-4 *3 (-1077 *6 *7 *8)) - (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) - (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) - (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) - (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) - (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) - (-5 *1 (-1084 *6 *7 *4 *8 *9))))) + (-12 (-5 *4 (-302 (-417 (-965 *5)))) (-5 *3 (-417 (-965 *5))) + (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112))))) + (|partial| -12 (-5 *2 (-1076 (-1039 *3) (-1188 (-1039 *3)))) + (-5 *1 (-1039 *3)) (-4 *3 (-13 (-858) (-372) (-1037)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1055))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) + ((*1 *1 *1) (-4 *1 (-1154)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-984 *4 *3)) + (-4 *3 (-1259 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-654 *6)) (-4 *1 (-991 *3 *4 *5 *6)) (-4 *3 (-1064)) + (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1080 *3 *4 *5)) + (-4 *3 (-566))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-771)))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1259 *6)) + (-4 *6 (-13 (-372) (-148) (-1053 *4))) (-5 *4 (-574)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4096 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1030 *6 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1284)))) + ((*1 *2 *1) (-12 (-5 *2 (-1288)) (-5 *1 (-1285))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1064)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-962 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1180 *2 *3)) (-14 *2 (-934)) (-4 *3 (-1064))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-654 *2)) (-4 *2 (-962 *4 *5 *6)) (-4 *4 (-315)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-699 *3)) + (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-939))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1100))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1174)) + (-5 *3 (-227)) (-5 *2 (-1050)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-565)) (-5 *2 (-1185 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-371) (-309) - (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) - (-15 -2975 ((-1137 *4 (-621 $)) $)) - (-15 -2942 ($ (-1137 *4 (-621 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) + (-12 (-5 *3 (-934)) + (-5 *2 + (-3 (-1188 *4) + (-1283 (-654 (-2 (|:| -3078 *4) (|:| -2590 (-1135))))))) + (-5 *1 (-355 *4)) (-4 *4 (-358))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-574)) + (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1395)))) + (-5 *2 (-1050)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) + (-12 (-4 *2 (-1064)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1192))))) ((*1 *2 *1) - (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) + (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1064) (-860))) (-14 *4 (-654 (-1192))))) ((*1 *2 *1) - (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) + (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1115)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-14 *3 (-653 (-1189))) (-4 *5 (-243 (-2862 *3) (-780))) + (-12 (-14 *3 (-654 (-1192))) (-4 *5 (-244 (-2876 *3) (-781))) (-14 *6 - (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) - (-2 (|:| -2575 *4) (|:| -3907 *5)))) - (-4 *2 (-174)) (-5 *1 (-470 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) - (-4 *7 (-959 *2 *5 (-873 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1112)))) + (-1 (-112) (-2 (|:| -2590 *4) (|:| -3843 *5)) + (-2 (|:| -2590 *4) (|:| -3843 *5)))) + (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) + (-4 *7 (-962 *2 *5 (-874 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1115)))) ((*1 *2 *1) - (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) + (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1259 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) - (-4 *3 (-735)))) - ((*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) + (-12 (-4 *2 (-1064)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) + (-4 *3 (-736)))) + ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)))) ((*1 *2 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *3 (-801)) (-4 *4 (-859)) - (-4 *2 (-1061)))) + (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) + (-4 *2 (-1064)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) - (-4 *2 (-859))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-565)) - (-5 *2 (-2 (|:| -1857 *4) (|:| -3152 *3) (|:| -3132 *3))) - (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) - (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-565)) (-4 *3 (-1061)) - (-5 *2 (-2 (|:| -1857 *3) (|:| -3152 *1) (|:| -3132 *1))) - (-4 *1 (-1256 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1256 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1189)) (-4 *4 (-461)) (-4 *4 (-1112)) - (-5 *1 (-582 *4 *2)) (-4 *2 (-291)) (-4 *2 (-439 *4))))) + (-12 (-4 *1 (-1080 *3 *4 *2)) (-4 *3 (-1064)) (-4 *4 (-803)) + (-4 *2 (-860))))) (((*1 *2 *1) - (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) - (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) - (-4 *6 (-350 *3 *4 *5))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-653 - (-2 - (|:| -3692 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1280 (-323 (-227)))) - (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) - (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1907 - (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) - (|:| |expense| (-387)) (|:| |accuracy| (-387)) - (|:| |intermediateResults| (-387))))))) - (-5 *1 (-812))))) -(((*1 *2 *2) - (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1014)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) - (-4 *2 (-13 (-439 *3) (-1215)))))) -(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) + (-12 (-5 *2 (-1188 (-417 (-965 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) + (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-4 *4 (-174))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1064)) (-4 *3 (-372)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) + (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1188 *3))))) (((*1 *2 *3) - (-12 (-14 *4 (-653 (-1189))) (-14 *5 (-780)) + (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1192)))) + (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-937 *4 *5 *6 *3)) + (-4 *3 (-962 *4 *6 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1080 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-803)) + (-4 *4 (-860)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1226 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) + (-4 *5 (-860)) (-4 *2 (-1080 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1115)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1115))))) +(((*1 *2) + (-12 (-4 *3 (-1237)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 (-417 *4))) + (-5 *2 (-1283 *1)) (-4 *1 (-351 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2153 ((-428 $) $))))) + (-4 *4 (-1259 *3)) (-5 *2 - (-653 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573)))))) - (-5 *1 (-514 *4 *5)) - (-5 *3 - (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) - (-252 *4 (-416 (-573)))))))) + (-2 (|:| -3907 (-699 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-699 *3)))) + (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1259 (-574))) + (-5 *2 + (-2 (|:| -3907 (-699 (-574))) (|:| |basisDen| (-574)) + (|:| |basisInv| (-699 (-574))))) + (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) + ((*1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) + (-5 *2 + (-2 (|:| -3907 (-699 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-699 *4)))) + (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-1259 *3)) (-4 *5 (-1259 *4)) + (-5 *2 + (-2 (|:| -3907 (-699 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-699 *4)))) + (-5 *1 (-1292 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) + (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1055)) (-5 *3 (-388))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1064)) (-4 *3 (-802)))) ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1064)) (-4 *2 (-1115)))) ((*1 *2 *1) - (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) - (-4 *6 (-243 (-2862 *3) (-780))) + (-12 (-14 *3 (-654 (-1192))) (-4 *4 (-174)) + (-4 *6 (-244 (-2876 *3) (-781))) (-14 *7 - (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) - (-2 (|:| -2575 *5) (|:| -3907 *6)))) - (-5 *2 (-722 *5 *6 *7)) (-5 *1 (-470 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-859)) (-4 *8 (-959 *4 *6 (-873 *3))))) + (-1 (-112) (-2 (|:| -2590 *5) (|:| -3843 *6)) + (-2 (|:| -2590 *5) (|:| -3843 *6)))) + (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-860)) (-4 *8 (-962 *4 *6 (-874 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-735)) (-4 *2 (-859)) (-5 *1 (-744 *3 *2)) - (-4 *3 (-1061)))) + (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) + (-4 *3 (-1064)))) ((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) - (-4 *4 (-859))))) + (-12 (-4 *1 (-988 *2 *3 *4)) (-4 *2 (-1064)) (-4 *3 (-802)) + (-4 *4 (-860))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-404)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1174))) (-5 *1 (-1213))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-654 + (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1188 *2)) + (|:| |logand| (-1188 *2))))) + (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-372)) (-5 *1 (-596 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-654 *6)) (-4 *6 (-1080 *3 *4 *5)) (-4 *3 (-566)) + (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-992 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1080 *4 *5 *6)) + (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) + (-5 *1 (-992 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1218))) + (-5 *1 (-593 *4 *2)) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-596 (-417 (-965 *4)))) + (-4 *4 (-13 (-462) (-1053 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) + (-5 *1 (-599 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) (((*1 *2) - (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) - (-4 *4 (-1112))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) - *6)) - (-4 *6 (-371)) (-4 *7 (-1256 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) - (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) - (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-653 *7) *7 (-1185 *7))) (-5 *5 (-1 (-427 *7) *7)) - (-4 *7 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-5 *2 (-653 (-2 (|:| |frac| (-416 *7)) (|:| -4122 *3)))) - (-5 *1 (-818 *6 *7 *3 *8)) (-4 *3 (-665 *7)) - (-4 *8 (-665 (-416 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) - (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) - (-5 *2 - (-653 (-2 (|:| |frac| (-416 *6)) (|:| -4122 (-663 *6 (-416 *6)))))) - (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6)))))) + (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3907 (-654 *1)))) + (-4 *1 (-376 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-463 *3 *4 *5 *6)) + (|:| -3907 (-654 (-463 *3 *4 *5 *6))))) + (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-934)) + (-14 *5 (-654 (-1192))) (-14 *6 (-1283 (-699 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-427 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) + (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-1080 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-653 - (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *3)) - (|:| |logand| (-1185 *3))))) - (-5 *1 (-595 *3)) (-4 *3 (-371))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) - (-4 *3 (-167 *6)) (-4 (-962 *6) (-896 *5)) - (-4 *6 (-13 (-896 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-899 *4 *1)) (-5 *3 (-902 *4)) (-4 *1 (-896 *4)) - (-4 *4 (-1112)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) - (-4 *6 (-13 (-1112) (-1050 *3))) (-4 *3 (-896 *5)) - (-5 *1 (-941 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) - (-4 *3 (-13 (-439 *6) (-623 *4) (-896 *5) (-1050 (-621 $)))) - (-5 *4 (-902 *5)) (-4 *6 (-13 (-565) (-896 *5))) - (-5 *1 (-942 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 (-573) *3)) (-5 *4 (-902 (-573))) (-4 *3 (-554)) - (-5 *1 (-943 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *6)) (-5 *3 (-621 *6)) (-4 *5 (-1112)) - (-4 *6 (-13 (-1112) (-1050 (-621 $)) (-623 *4) (-896 *5))) - (-5 *4 (-902 *5)) (-5 *1 (-944 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *6 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) - (-4 *6 (-896 *5)) (-4 *3 (-675 *6)) (-5 *1 (-945 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-899 *6 *3) *8 (-902 *6) (-899 *6 *3))) - (-4 *8 (-859)) (-5 *2 (-899 *6 *3)) (-5 *4 (-902 *6)) - (-4 *6 (-1112)) (-4 *3 (-13 (-959 *9 *7 *8) (-623 *4))) - (-4 *7 (-802)) (-4 *9 (-13 (-1061) (-896 *6))) - (-5 *1 (-946 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) - (-4 *3 (-13 (-959 *8 *6 *7) (-623 *4))) (-5 *4 (-902 *5)) - (-4 *7 (-896 *5)) (-4 *6 (-802)) (-4 *7 (-859)) - (-4 *8 (-13 (-1061) (-896 *5))) (-5 *1 (-946 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-1004 *6)) - (-4 *6 (-13 (-565) (-896 *5) (-623 *4))) (-5 *4 (-902 *5)) - (-5 *1 (-949 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-899 *5 (-1189))) (-5 *3 (-1189)) (-5 *4 (-902 *5)) - (-4 *5 (-1112)) (-5 *1 (-950 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-653 (-902 *7))) (-5 *5 (-1 *9 (-653 *9))) - (-5 *6 (-1 (-899 *7 *9) *9 (-902 *7) (-899 *7 *9))) (-4 *7 (-1112)) - (-4 *9 (-13 (-1061) (-623 (-902 *7)) (-1050 *8))) - (-5 *2 (-899 *7 *9)) (-5 *3 (-653 *9)) (-4 *8 (-1061)) - (-5 *1 (-951 *7 *8 *9))))) + (-12 (-4 *3 (-1233)) (-5 *2 (-654 *1)) (-4 *1 (-1025 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-654 (-1180 *3 *4))) (-5 *1 (-1180 *3 *4)) + (-14 *3 (-934)) (-4 *4 (-1064))))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1115))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1 *4 (-573))) (-4 *4 (-1061)) - (-5 *1 (-1173 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-1280 (-323 (-387)))) - (-5 *1 (-312))))) -(((*1 *2 *3) - (-12 (-5 *3 (-323 (-227))) (-5 *2 (-416 (-573))) (-5 *1 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) - ((*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) - (-4 *4 (-13 (-1112) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-371) (-1215) (-1014)))))) -(((*1 *2 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1061)) (-4 *1 (-1256 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) - (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-91 *3))))) + (-12 (-5 *3 (-417 (-574))) + (-4 *4 (-13 (-566) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) - (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) - (-5 *2 (-422 *4 (-416 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))) - (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) - (-5 *1 (-422 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) - (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6))))) + (-12 (-4 *3 (-239)) (-4 *3 (-1064)) (-4 *4 (-860)) (-4 *5 (-273 *4)) + (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1064)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) + (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *1 *1) + (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1064))))) +(((*1 *2 *1) + (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1064)) (-4 *4 (-382 *3)) + (-4 *5 (-382 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5 *6 *7)) (-4 *5 (-1064)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1218))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *3)) (-4 *4 (-13 (-858) (-372))) + (-4 *3 (-1259 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1259 (-574)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) - (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) + (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1086 *5 *6 *7 *8)) + (-4 *10 (-1124 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) + (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1192))) + (-5 *2 + (-654 (-1161 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) + (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1042 *5 *6 *7 *8))) (-5 *1 (-1042 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) + (-14 *6 (-654 (-1192))) (-5 *2 (-654 (-1061 *5 *6))) + (-5 *1 (-1061 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1086 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1080 *5 *6 *7)) + (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-5 *2 (-654 (-1161 *5 *6 *7 *8))) (-5 *1 (-1161 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *7)) (-4 *7 (-1080 *4 *5 *6)) (-4 *4 (-566)) + (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) + (-4 *1 (-1226 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1194 (-417 (-574)))) + (-5 *1 (-192))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) + (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *9)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) - (-4 *8 (-1061)) (-4 *2 (-959 *9 *7 *5)) - (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) - (-4 *4 (-959 *8 *6 *5))))) + (-12 (-5 *3 (-654 *9)) (-4 *9 (-1064)) (-4 *5 (-860)) (-4 *6 (-803)) + (-4 *8 (-1064)) (-4 *2 (-962 *9 *7 *5)) + (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) + (-4 *4 (-962 *8 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1064)) (-4 *4 (-802)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) - ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-847))) (-5 *1 (-141))))) -(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-493 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1115)) (-5 *2 (-112))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + ((*1 *1 *1) (|partial| -4 *1 (-732)))) +(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-574)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-602)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-488)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-636)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1105)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1088)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-985)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1051)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-681)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1166)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1294)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1081)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-691)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-616)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1293)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-686)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-534)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1197))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) - (-14 *4 (-653 (-1189))) (-4 *5 (-396))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) - (-4 *5 (-1256 *4)) - (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -4122 *5)))) - (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-665 *5)) - (-4 *6 (-665 (-416 *5)))))) -(((*1 *2 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-573)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1171)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-515)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-601)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-487)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1179)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-635)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1102)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1085)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-982)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1048)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-680)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1163)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-534)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1291)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1078)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-526)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-690)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-615)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1290)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-685)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-533)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) - (-5 *1 (-477))))) -(((*1 *2 *3) - (-12 (-14 *4 (-653 (-1189))) (-4 *5 (-461)) - (-5 *2 - (-2 (|:| |glbase| (-653 (-252 *4 *5))) (|:| |glval| (-653 (-573))))) - (-5 *1 (-640 *4 *5)) (-5 *3 (-653 (-252 *4 *5)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1112)) (-4 *2 (-910 *4)) (-5 *1 (-701 *4 *2 *5 *3)) - (-4 *5 (-381 *2)) (-4 *3 (-13 (-381 *4) (-10 -7 (-6 -4455))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) - (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) - (-4 *6 (-1256 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) - (-4 *4 (-1256 *5)) (-5 *2 (-1185 *7)) (-5 *1 (-510 *5 *4 *6 *7)) - (-4 *6 (-1256 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1061)) - (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) - (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-112))))) + (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) + (-4 *2 (-13 (-440 *3) (-1017)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-427 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1064)) (-4 *2 (-372))))) +(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) + ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-998 *2)) (-4 *2 (-1218))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-388)) (-5 *1 (-796))))) +(((*1 *2 *2) (-12 (-5 *1 (-974 *2)) (-4 *2 (-555))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (-145)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-653 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) - (-14 *4 (-780)) (-4 *5 (-174))))) -(((*1 *1 *1) (-4 *1 (-248))) + (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) + (-14 *4 (-781)) (-4 *5 (-174))))) +(((*1 *1 *1) (-4 *1 (-249))) ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1259 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) - (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) - ((*1 *1 *1) (-4 *1 (-482))) - ((*1 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) + (-2832 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1233))) + (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1233))))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *2) (-12 (-5 *2 (-1283 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-747))))) + ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174)) (-5 *2 (-1288)) (-5 *1 (-748))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1192)) (-4 *4 (-566)) (-4 *4 (-1115)) + (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-573))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) - (-4 *5 (-381 *3)) (-5 *2 (-573)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) + (|partial| -12 (-4 *4 (-1237)) (-4 *5 (-1259 *4)) + (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1259 (-417 *5)))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-683 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-692 *4 *3)) (-4 *4 (-1112)) - (-4 *3 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) -(((*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) + (-12 (-4 *3 (-13 (-566) (-1053 (-574)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1218) (-440 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-462) (-1053 (-574)) (-649 (-574)))) + (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-27) (-1218) (-440 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1115)) (-5 *1 (-747 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115)))) + ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1115))))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-653 - (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) - (|:| |wcond| (-653 (-962 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) - (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) - (-5 *4 (-1171)) (-4 *5 (-13 (-314) (-148))) (-4 *8 (-959 *5 *7 *6)) - (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) - (-5 *1 (-934 *5 *6 *7 *8))))) -((-1314 . 732111) (-1315 . 732045) (-1316 . 731946) (-1317 . 731847) - (-1318 . 731752) (-1319 . 731506) (-1320 . 731426) (-1321 . 731342) - (-1322 . 731273) (-1323 . 730537) (-1324 . 730421) (-1325 . 730347) - (-1326 . 730204) (-1327 . 729870) (-1328 . 729717) (-1329 . 729519) - (-1330 . 729416) (-1331 . 727355) (-1332 . 727126) (-1333 . 726873) - (-1334 . 726800) (-1335 . 726741) (-1336 . 726625) (-1337 . 726462) - (-1338 . 726061) (-1339 . 725582) (-1340 . 725509) (-1341 . 725404) - (-1342 . 725261) (-1343 . 725183) (-1344 . 725081) (-1345 . 725029) - (-1346 . 724914) (-1347 . 724791) (-1348 . 724663) (-1349 . 724580) - (-1350 . 724478) (-1351 . 724371) (-1352 . 722143) (-1353 . 721965) - (-1354 . 721391) (-1355 . 721270) (-1356 . 720920) (-1357 . 720826) - (-1358 . 720182) (-1359 . 720104) (-1360 . 719819) (-1361 . 719749) - (-1362 . 719653) (-1363 . 719558) (-1364 . 719012) (-1365 . 718852) - (-1366 . 718721) (-1367 . 718522) (-1368 . 718095) (-1369 . 716923) - (-1370 . 716676) (-1371 . 716592) (-1372 . 716062) (-1373 . 716007) - (-1374 . 715894) (-1375 . 715796) (-1376 . 714956) (-1377 . 714852) - (-1378 . 714800) (-1379 . 714685) (-1380 . 714526) (-1381 . 713985) - (-1382 . 713884) (-1383 . 713517) (-1384 . 713434) (-1385 . 713356) - (-1386 . 713221) (-1387 . 713016) (-1388 . 712891) (-1389 . 712778) - (-1390 . 712723) (-1391 . 711586) (-1392 . 711494) (-1393 . 711421) - (-1394 . 711369) (-1395 . 711140) (-1396 . 710960) (-1397 . 710883) - (-1398 . 710723) (-1399 . 710586) (-1400 . 710463) (-1401 . 710347) - (-1402 . 709593) (-1403 . 709513) (-1404 . 709376) (-1405 . 708955) - (-1406 . 708852) (-1407 . 708348) (-1408 . 708295) (-1409 . 708070) - (-1410 . 707436) (-1411 . 707343) (-1412 . 707168) (-1413 . 707031) - (-1414 . 706241) (-1415 . 706034) (-1416 . 705937) (-1417 . 705822) - (-1418 . 705642) (-1419 . 705577) (-1420 . 705543) (-1421 . 705039) - (-1422 . 704909) (-1423 . 704805) (-1424 . 704578) (-1425 . 704408) - (-1426 . 704274) (-1427 . 704221) (-1428 . 704149) (-1429 . 704014) - (-1430 . 703956) (-1431 . 703870) (-1432 . 703782) (-1433 . 703679) - (-1434 . 703383) (-1435 . 702892) (-1436 . 702577) (-1437 . 702509) - (-1438 . 702402) (-1439 . 702296) (-1440 . 701775) (-1441 . 701724) - (-1442 . 701533) (-1443 . 701342) (-1444 . 701204) (-1445 . 701105) - (-1446 . 701025) (-1447 . 700617) (-1448 . 700390) (-1449 . 700338) - (-1450 . 700123) (-1451 . 699942) (** . 696948) (-1453 . 696470) - (-1454 . 696211) (-1455 . 696110) (-1456 . 695982) (-1457 . 695875) - (-1458 . 695360) (-1459 . 695195) (-1460 . 694612) (-1461 . 694501) - (-1462 . 694424) (-1463 . 694372) (-1464 . 694254) (-1465 . 694120) - (-1466 . 693937) (-1467 . 693707) (-1468 . 693198) (-1469 . 693040) - (-1470 . 692998) (-1471 . 692939) (-1472 . 692859) (-1473 . 692668) - (-1474 . 692609) (-1475 . 692520) (-1476 . 692325) (-1477 . 692231) - (-1478 . 691904) (-1479 . 691264) (-1480 . 690726) (-1481 . 690652) - (-1482 . 690544) (-1483 . 690429) (-1484 . 690274) (-1485 . 690082) - (-1486 . 689146) (-1487 . 688627) (-1488 . 688446) (-1489 . 688388) - (-1490 . 688316) (-1491 . 688250) (-1492 . 688070) (-1493 . 687975) - (-1494 . 687728) (-1495 . 687654) (-1496 . 687476) (-1497 . 687306) - (-1498 . 687187) (-1499 . 687046) (-1500 . 686929) (-1501 . 686852) - (-1502 . 686824) (-1503 . 686489) (-1504 . 686346) (-1505 . 686258) - (-1506 . 686129) (-1507 . 686077) (-1508 . 685992) (-1509 . 685839) - (-1510 . 685644) (-1511 . 685561) (-1512 . 685504) (-1513 . 685445) - (-1514 . 685135) (-1515 . 685086) (-1516 . 685013) (-1517 . 684960) - (-1518 . 684822) (-1519 . 684165) (-1520 . 684100) (-1521 . 684044) - (-1522 . 683949) (-1523 . 683794) (-1524 . 683579) (-1525 . 683519) - (-1526 . 683379) (-1527 . 683243) (-1528 . 683128) (-1529 . 683017) - (-1530 . 682874) (-1531 . 682744) (-1532 . 682649) (-1533 . 682395) - (-1534 . 682231) (-1535 . 680689) (-1536 . 680100) (-1537 . 679975) - (-1538 . 679860) (-1539 . 679808) (-1540 . 679724) (-1541 . 679641) - (-1542 . 679541) (-1543 . 679441) (-1544 . 679353) (-1545 . 678487) - (-1546 . 678366) (-1547 . 678050) (-1548 . 677998) (-1549 . 677928) - (-1550 . 677876) (-1551 . 677530) (-1552 . 677194) (-1553 . 676897) - (-1554 . 676769) (-1555 . 676672) (-1556 . 676601) (-1557 . 676456) - (-1558 . 675692) (-1559 . 675568) (-1560 . 675465) (-1561 . 675437) - (-1562 . 675178) (-1563 . 675098) (-1564 . 674952) (-1565 . 674794) - (-1566 . 674716) (-1567 . 674385) (-1568 . 674194) (-1569 . 674012) - (-1570 . 673984) (-1571 . 673817) (-1572 . 673679) (-9 . 673651) - (-1574 . 673623) (-1575 . 673499) (-1576 . 673321) (-1577 . 673250) - (-1578 . 673197) (-1579 . 673058) (-1580 . 672952) (-1581 . 672890) - (-1582 . 672744) (-1583 . 671312) (-1584 . 671211) (-1585 . 671038) - (-8 . 671010) (-1587 . 670882) (-1588 . 670657) (-1589 . 670569) - (-1590 . 670407) (-1591 . 670293) (-1592 . 670221) (-1593 . 670065) - (-1594 . 669965) (-1595 . 669685) (-1596 . 669632) (-7 . 669604) - (-1598 . 669451) (-1599 . 669325) (-1600 . 669107) (-1601 . 669000) - (-1602 . 668606) (-1603 . 668427) (-1604 . 668353) (-1605 . 668322) - (-1606 . 668250) (-1607 . 668162) (-1608 . 666962) (-1609 . 666878) - (-1610 . 666745) (-1611 . 666717) (-1612 . 666368) (-1613 . 666304) - (-1614 . 666244) (-1615 . 666172) (-1616 . 666062) (-1617 . 665969) - (-1618 . 665637) (-1619 . 665529) (-1620 . 665413) (-1621 . 665361) - (-1622 . 665275) (-1623 . 665138) (-1624 . 664822) (-1625 . 664772) - (-1626 . 657829) (-1627 . 657683) (-1628 . 657541) (-1629 . 657239) - (-1630 . 657000) (-1631 . 656928) (-1632 . 656867) (-1633 . 656423) - (-1634 . 656304) (-1635 . 655878) (-1636 . 655776) (-1637 . 655661) - (-1638 . 655555) (-1639 . 655397) (-1640 . 654794) (-1641 . 654735) - (-1642 . 654546) (-1643 . 654399) (-1644 . 654180) (-1645 . 654076) - (-1646 . 653952) (-1647 . 653799) (-1648 . 653713) (-1649 . 653586) - (-1650 . 653456) (-1651 . 653016) (-1652 . 652878) (-1653 . 652062) - (-1654 . 652010) (-1655 . 651792) (-1656 . 651433) (-1657 . 651374) - (-1658 . 651135) (-1659 . 651031) (-1660 . 650545) (-1661 . 650361) - (-1662 . 649980) (-1663 . 649917) (-1664 . 649249) (-1665 . 649001) - (-1666 . 648948) (-1667 . 648285) (-1668 . 647855) (-1669 . 647699) - (-1670 . 647572) (-1671 . 647469) (-1672 . 647387) (-1673 . 647077) - (-1674 . 646903) (-1675 . 646742) (-1676 . 646574) (-1677 . 646269) - (-1678 . 646174) (-1679 . 645928) (-1680 . 645437) (-1681 . 645205) - (-1682 . 644818) (-1683 . 644666) (-1684 . 643859) (-1685 . 643617) - (-1686 . 643534) (-1687 . 643194) (-1688 . 642736) (-1689 . 642593) - (-1690 . 642486) (-1691 . 642433) (-1692 . 642284) (-1693 . 642230) - (-1694 . 642179) (-1695 . 637636) (-1696 . 637563) (-1697 . 637486) - (-1698 . 637418) (-1699 . 637303) (-1700 . 637215) (-1701 . 637141) - (-1702 . 637075) (-1703 . 636966) (-1704 . 636895) (-1705 . 636478) - (-1706 . 636321) (-1707 . 636235) (-1708 . 636091) (-1709 . 636040) - (-1710 . 635916) (-1711 . 635659) (-1712 . 635593) (-1713 . 635500) - (-1714 . 635441) (-1715 . 635373) (-1716 . 635277) (-1717 . 635159) - (-1718 . 635085) (-1719 . 634639) (-1720 . 634419) (-1721 . 634167) - (-1722 . 634096) (-1723 . 634022) (-1724 . 633533) (-1725 . 633455) - (-1726 . 633376) (-1727 . 633293) (-1728 . 632905) (-1729 . 632734) - (-1730 . 632616) (-1731 . 632419) (-1732 . 631682) (-1733 . 631115) - (-1734 . 630991) (-1735 . 630773) (-1736 . 630645) (-1737 . 630517) - (-1738 . 630289) (-1739 . 630236) (-1740 . 630071) (-1741 . 629849) - (-1742 . 629676) (-1743 . 629569) (-1744 . 629497) (-1745 . 629390) - (-1746 . 629311) (-1747 . 629258) (-1748 . 628771) (-1749 . 628566) - (-1750 . 628356) (-1751 . 628260) (-1752 . 628038) (-1753 . 627886) - (-1754 . 627586) (-1755 . 627395) (-1756 . 627342) (-1757 . 627238) - (-1758 . 627158) (-1759 . 626979) (-1760 . 626836) (-1761 . 626748) - (-1762 . 626153) (-1763 . 626095) (-1764 . 625909) (-1765 . 625568) - (-1766 . 625474) (-1767 . 625397) (-1768 . 625299) (-1769 . 625111) - (-1770 . 624995) (-1771 . 624900) (-1772 . 624803) (-1773 . 624720) - (-1774 . 624411) (-1775 . 624359) (-1776 . 610128) (-1777 . 609792) - (-1778 . 609608) (-1779 . 609404) (-1780 . 609307) (-1781 . 609239) - (-1782 . 609173) (-1783 . 609139) (-1784 . 609087) (-1785 . 608994) - (-1786 . 608896) (-1787 . 608781) (-1788 . 608729) (-1789 . 608607) - (-1790 . 608414) (-1791 . 608385) (-1792 . 608166) (-1793 . 608075) - (-1794 . 607956) (-1795 . 607397) (-1796 . 607260) (-1797 . 606509) - (-1798 . 606391) (-1799 . 602328) (-1800 . 601904) (-1801 . 601830) - (-1802 . 601744) (-1803 . 601663) (-1804 . 601480) (-1805 . 601356) - (-1806 . 601299) (-1807 . 601196) (-1808 . 600637) (-1809 . 600582) - (-1810 . 600485) (-1811 . 600300) (-1812 . 600202) (-1813 . 600036) - (-1814 . 599692) (-1815 . 599453) (-1816 . 599382) (-1817 . 599294) - (-1818 . 598939) (-1819 . 598687) (-1820 . 598595) (-1821 . 598514) - (-1822 . 598415) (-1823 . 598387) (-1824 . 598315) (-1825 . 597949) - (-1826 . 597740) (-1827 . 597292) (-1828 . 597169) (-1829 . 596758) - (-1830 . 596670) (-1831 . 596442) (-1832 . 596371) (-1833 . 596188) - (-1834 . 596078) (-1835 . 592411) (-1836 . 592251) (-1837 . 592198) - (-1838 . 592146) (-1839 . 591718) (-1840 . 591656) (-1841 . 591453) - (-1842 . 591355) (-1843 . 591284) (-1844 . 590624) (-1845 . 588279) - (-1846 . 588171) (-1847 . 588101) (-1848 . 588024) (-1849 . 587863) - (-1850 . 587723) (-1851 . 587673) (-1852 . 587620) (-1853 . 587570) - (-1854 . 587441) (-1855 . 587294) (-1856 . 587206) (-1857 . 586848) - (-1858 . 586796) (-1859 . 586729) (-1860 . 586268) (-1861 . 586012) - (-1862 . 585742) (-1863 . 585466) (-1864 . 585288) (-1865 . 584971) - (-1866 . 584837) (-1867 . 584738) (-1868 . 584686) (-1869 . 584555) - (-1870 . 584496) (-1871 . 584443) (-1872 . 584083) (-1873 . 583783) - (-1874 . 583664) (-1875 . 583609) (-1876 . 583315) (-1877 . 583259) - (-1878 . 583157) (-1879 . 583052) (-1880 . 582783) (-1881 . 582674) - (-1882 . 582566) (-1883 . 582434) (-1884 . 582313) (-1885 . 582259) - (-1886 . 582155) (-1887 . 582072) (-1888 . 582001) (-1889 . 581945) - (-1890 . 581687) (-1891 . 581593) (-1892 . 581411) (-1893 . 581275) - (-1894 . 581180) (-1895 . 581127) (-1896 . 581025) (-1897 . 580991) - (-1898 . 580921) (-1899 . 580815) (-1900 . 580745) (-1901 . 580572) - (-1902 . 580477) (-1903 . 580405) (-1904 . 580328) (-1905 . 580185) - (-1906 . 579758) (-1907 . 578556) (-1908 . 578388) (-1909 . 578157) - (-1910 . 578016) (-1911 . 577646) (-1912 . 577451) (-1913 . 577356) - (-1914 . 577267) (-1915 . 576679) (-1916 . 576432) (-1917 . 576355) - (-1918 . 576051) (-1919 . 575709) (-1920 . 575198) (-1921 . 574946) - (-1922 . 574788) (-1923 . 574646) (-1924 . 574528) (-1925 . 574432) - (-1926 . 574377) (-1927 . 574255) (-1928 . 574202) (-1929 . 574115) - (-1930 . 574060) (-1931 . 573880) (-1932 . 573602) (-1933 . 573278) - (-1934 . 573039) (-1935 . 573011) (-1936 . 572705) (-1937 . 572562) - (-1938 . 572459) (-1939 . 572390) (-1940 . 572246) (-1941 . 571700) - (-1942 . 571334) (-1943 . 571168) (-1944 . 571113) (-1945 . 570991) - (-1946 . 570547) (-1947 . 570447) (-1948 . 570324) (-1949 . 570296) - (-1950 . 570209) (-1951 . 569623) (-1952 . 569551) (-1953 . 569160) - (-1954 . 568775) (-1955 . 568692) (-1956 . 568624) (-1957 . 568571) - (-1958 . 568320) (-1959 . 568033) (-1960 . 567963) (-1961 . 567867) - (-1962 . 567774) (-1963 . 567619) (-1964 . 567501) (-1965 . 567444) - (-1966 . 567383) (-1967 . 567282) (-1968 . 567187) (-1969 . 566980) - (-1970 . 566946) (-1971 . 566527) (-1972 . 566414) (-1973 . 565887) - (-1974 . 565465) (-1975 . 565392) (-1976 . 565340) (-1977 . 565242) - (-1978 . 565112) (-1979 . 564889) (-1980 . 564787) (-1981 . 564681) - (-1982 . 564629) (-1983 . 563286) (-1984 . 563233) (-1985 . 563118) - (-1986 . 563058) (-1987 . 562985) (-1988 . 562833) (-1989 . 562702) - (-1990 . 562211) (-1991 . 561978) (-1992 . 561921) (-1993 . 561687) - (-1994 . 552237) (-1995 . 552034) (-1996 . 551650) (-1997 . 551476) - (-1998 . 551402) (-1999 . 551350) (-2000 . 551256) (-2001 . 551199) - (-2002 . 551150) (-2003 . 551053) (-2004 . 550984) (-2005 . 550739) - (-2006 . 550644) (-2007 . 549348) (-2008 . 549271) (-2009 . 549204) - (-2010 . 549053) (-2011 . 548898) (-2012 . 548845) (-2013 . 548714) - (-2014 . 548232) (-2015 . 548092) (-2016 . 548008) (-2017 . 547819) - (-2018 . 547661) (-2019 . 547401) (-2020 . 547243) (-2021 . 547099) - (-2022 . 546991) (-2023 . 546818) (-2024 . 546718) (-2025 . 546562) - (-2026 . 546416) (-2027 . 546336) (-2028 . 546198) (-2029 . 546086) - (-2030 . 545834) (-2031 . 545188) (-2032 . 545160) (-2033 . 544817) - (-2034 . 544738) (-2035 . 544706) (-2036 . 544606) (-2037 . 544363) - (-2038 . 543912) (-2039 . 543884) (-2040 . 543773) (-2041 . 543626) - (-2042 . 543487) (-2043 . 542895) (-2044 . 542785) (-2045 . 542751) - (-2046 . 542671) (-2047 . 542576) (-2048 . 542520) (-2049 . 541339) - (-2050 . 541207) (-2051 . 541050) (-2052 . 540887) (-2053 . 540785) - (-2054 . 540604) (-2055 . 540552) (-2056 . 540425) (-2057 . 540127) - (-2058 . 539655) (-2059 . 539606) (-2060 . 539523) (-2061 . 539470) - (-2062 . 539438) (-2063 . 539365) (-2064 . 539294) (-2065 . 539120) - (-2066 . 538958) (-2067 . 538640) (-2068 . 538568) (-2069 . 538435) - (-2070 . 538289) (-2071 . 538206) (-2072 . 538133) (-2073 . 537988) - (-2074 . 537879) (-2075 . 537820) (-2076 . 537648) (-2077 . 537574) - (-2078 . 537412) (-2079 . 537308) (-2080 . 537135) (-2081 . 537045) - (-2082 . 536927) (-2083 . 536842) (-2084 . 536746) (-2085 . 536555) - (-2086 . 536490) (-2087 . 536252) (-2088 . 536064) (-2089 . 536005) - (-2090 . 535892) (-2091 . 535812) (-2092 . 535497) (-2093 . 535288) - (-2094 . 535214) (-2095 . 535063) (-2096 . 534684) (-2097 . 534619) - (-2098 . 534548) (-2099 . 534387) (-2100 . 534308) (-2101 . 534195) - (-2102 . 533716) (-2103 . 533590) (-2104 . 533506) (-2105 . 533403) - (-2106 . 533330) (-2107 . 533264) (-2108 . 533166) (-2109 . 532847) - (-2110 . 532629) (-2111 . 532451) (-2112 . 532202) (-2113 . 532075) - (-2114 . 531742) (-2115 . 531654) (-2116 . 531541) (-2117 . 531488) - (-2118 . 531372) (-2119 . 530732) (-2120 . 530557) (-2121 . 526894) - (-2122 . 526713) (-2123 . 525521) (-2124 . 525350) (-2125 . 525086) - (-2126 . 525034) (-2127 . 524067) (-2128 . 523914) (-2129 . 523618) - (-2130 . 523408) (-2131 . 523313) (-2132 . 523039) (-2133 . 522919) - (-2134 . 522767) (-2135 . 522739) (-2136 . 522686) (-2137 . 522607) - (-2138 . 522343) (-2139 . 522176) (-2140 . 522144) (-2141 . 521981) - (-2142 . 521908) (-2143 . 521718) (-2144 . 521471) (-2145 . 521418) - (-2146 . 521196) (-2147 . 520940) (-2148 . 520737) (-2149 . 520444) - (-2150 . 520338) (-2151 . 520171) (-2152 . 519953) (-2153 . 519857) - (-2154 . 519780) (-2155 . 519717) (-2156 . 519665) (-2157 . 519548) - (-2158 . 519447) (-2159 . 519361) (-2160 . 519016) (-2161 . 518926) - (-2162 . 518825) (-2163 . 518773) (-2164 . 518286) (-2165 . 518173) - (-2166 . 518121) (-2167 . 517993) (-2168 . 517940) (-2169 . 517841) - (-2170 . 517812) (-2171 . 517743) (-2172 . 517606) (-2173 . 517429) - (-2174 . 517343) (-2175 . 517220) (-2176 . 516995) (-2177 . 516914) - (-2178 . 516801) (-2179 . 516674) (-2180 . 516614) (-2181 . 516513) - (-2182 . 516409) (-2183 . 516324) (-2184 . 516031) (-2185 . 515964) - (-2186 . 515576) (-2187 . 515508) (-2188 . 515262) (-2189 . 515178) - (-2190 . 515078) (-2191 . 515025) (-2192 . 514752) (-2193 . 514611) - (-2194 . 514453) (-2195 . 514000) (-2196 . 513928) (-2197 . 513682) - (-2198 . 509682) (-2199 . 508818) (-2200 . 508740) (-2201 . 508388) - (-2202 . 508241) (-2203 . 507483) (-2204 . 507373) (-2205 . 502034) - (-2206 . 501883) (-2207 . 501753) (-2208 . 501614) (-2209 . 501523) - (-2210 . 501407) (-2211 . 501319) (-2212 . 500121) (-2213 . 499989) - (-2214 . 499861) (-2215 . 499654) (-2216 . 499558) (-2217 . 499485) - (-2218 . 499369) (-2219 . 499220) (-2220 . 499003) (-2221 . 498922) - (-2222 . 498798) (-2223 . 498446) (-2224 . 498329) (-2225 . 497600) - (-2226 . 497398) (-2227 . 497268) (-2228 . 497136) (-2229 . 496997) - (-2230 . 496401) (-2231 . 496332) (-2232 . 495115) (-2233 . 495056) - (-2234 . 494917) (-2235 . 494825) (-2236 . 494096) (-2237 . 493978) - (-2238 . 493907) (-2239 . 493766) (-2240 . 493700) (-2241 . 493638) - (-2242 . 493578) (-2243 . 493194) (-2244 . 493102) (-2245 . 492949) - (-2246 . 492273) (-2247 . 491937) (-2248 . 491860) (-2249 . 491832) - (-2250 . 491636) (-2251 . 491443) (-2252 . 491281) (-2253 . 490970) - (-2254 . 490884) (-2255 . 490320) (-2256 . 490174) (-2257 . 490106) - (-2258 . 490005) (-2259 . 489928) (-2260 . 489837) (-2261 . 489556) - (-2262 . 489486) (-2263 . 489378) (-2264 . 489170) (-2265 . 489054) - (-2266 . 488490) (-2267 . 488337) (-2268 . 488263) (-2269 . 488184) - (-2270 . 487988) (-2271 . 487910) (-2272 . 487786) (-2273 . 487715) - (-2274 . 487151) (-2275 . 487098) (-2276 . 487017) (-2277 . 486630) - (-2278 . 486598) (-2279 . 486210) (-2280 . 486004) (-2281 . 485851) - (-2282 . 485697) (-2283 . 485577) (-2284 . 485455) (-2285 . 485336) - (-2286 . 484662) (-2287 . 484464) (-2288 . 484320) (-2289 . 484149) - (-2290 . 484054) (-2291 . 483966) (-2292 . 483760) (-2293 . 483652) - (-2294 . 483621) (-2295 . 483547) (-2296 . 482873) (-2297 . 482498) - (-2298 . 481894) (-2299 . 481443) (-2300 . 481390) (-2301 . 481175) - (-2302 . 481123) (-2303 . 481070) (-2304 . 480333) (-2305 . 480226) - (-2306 . 480115) (-2307 . 480038) (-2308 . 479930) (-2309 . 479876) - (-2310 . 479679) (-2311 . 479581) (-2312 . 479512) (-2313 . 479104) - (-2314 . 478542) (-2315 . 478435) (-2316 . 478383) (-2317 . 477355) - (-2318 . 477252) (-2319 . 477199) (-2320 . 477117) (-2321 . 477031) - (-2322 . 476886) (-2323 . 476802) (-2324 . 476240) (-2325 . 476103) - (-2326 . 475857) (-2327 . 475709) (-2328 . 475556) (-2329 . 475404) - (-2330 . 475309) (-2331 . 475232) (-2332 . 474920) (-2333 . 474358) - (-2334 . 474099) (-2335 . 474047) (-2336 . 473926) (-2337 . 473898) - (-2338 . 473623) (-2339 . 473298) (-2340 . 473158) (-2341 . 472741) - (-2342 . 472066) (-2343 . 471981) (-2344 . 471816) (-2345 . 471748) - (-2346 . 471584) (-2347 . 471526) (-2348 . 471474) (-2349 . 471190) - (-2350 . 471158) (-2351 . 471088) (-2352 . 470413) (-2353 . 470297) - (-2354 . 469782) (-2355 . 469723) (-2356 . 469651) (-2357 . 469568) - (-2358 . 469144) (-2359 . 468918) (-2360 . 468833) (-2361 . 468780) - (-2362 . 468567) (-2363 . 467892) (-2364 . 467840) (-2365 . 467105) - (-2366 . 466989) (-2367 . 466905) (-2368 . 466831) (-2369 . 466690) - (-2370 . 466354) (-2371 . 466115) (-2372 . 466008) (-2373 . 465930) - (-2374 . 465367) (-2375 . 465249) (-2376 . 465108) (-2377 . 464985) - (-2378 . 464787) (-2379 . 464608) (-2380 . 464445) (-2381 . 464123) - (-2382 . 463249) (-2383 . 462987) (-2384 . 462555) (-2385 . 462410) - (-2386 . 462357) (-2387 . 462252) (-2388 . 461689) (-2389 . 461552) - (-2390 . 461277) (-2391 . 461191) (-2392 . 461059) (-2393 . 461007) - (-2394 . 460906) (-2395 . 460453) (-2396 . 460425) (-2397 . 460342) - (-2398 . 460163) (-2399 . 460089) (-2400 . 460011) (-2401 . 459448) - (-2402 . 459367) (-2403 . 459240) (-2404 . 459183) (-2405 . 459025) - (-2406 . 458973) (-2407 . 458917) (-2408 . 458566) (-2409 . 458461) - (-2410 . 458343) (-2411 . 458286) (-2412 . 458188) (-2413 . 457626) - (-2414 . 457523) (-2415 . 457304) (-2416 . 457238) (-2417 . 457099) - (-2418 . 457026) (-2419 . 456911) (-2420 . 456831) (-2421 . 456770) - (-2422 . 456738) (-2423 . 456620) (-2424 . 456368) (-2425 . 456339) - (-2426 . 455777) (-2427 . 454504) (-2428 . 454379) (-2429 . 454307) - (-2430 . 454200) (-2431 . 453803) (-2432 . 453555) (-2433 . 453484) - (-2434 . 453383) (-2435 . 450602) (-2436 . 450542) (-2437 . 450441) - (-2438 . 450160) (-2439 . 449598) (-2440 . 449171) (-2441 . 449089) - (-2442 . 448979) (-2443 . 448883) (-2444 . 448772) (-2445 . 448713) - (-2446 . 448486) (-2447 . 448239) (-2448 . 448097) (-2449 . 447927) - (-2450 . 447724) (-2451 . 447600) (-2452 . 447038) (-2453 . 446986) - (-2454 . 446933) (-2455 . 446875) (-2456 . 446844) (-2457 . 446612) - (-2458 . 446542) (-2459 . 446430) (-2460 . 446393) (-2461 . 446262) - (-2462 . 446161) (-2463 . 445767) (-2464 . 445205) (-2465 . 445106) - (-2466 . 445038) (-2467 . 444639) (-2468 . 444553) (-2469 . 444470) - (-2470 . 444402) (-2471 . 444346) (-2472 . 444201) (-2473 . 444146) - (-2474 . 443980) (-2475 . 443816) (-2476 . 443078) (-2477 . 442983) - (-2478 . 441406) (-2479 . 441357) (-2480 . 441215) (-2481 . 441149) - (-2482 . 440977) (-2483 . 440872) (-2484 . 440770) (-2485 . 440478) - (-2486 . 440324) (-2487 . 440268) (-2488 . 440169) (-2489 . 440074) - (-2490 . 439990) (-2491 . 439770) (-2492 . 439612) (-2493 . 439497) - (-2494 . 439259) (-2495 . 439087) (-2496 . 438542) (-2497 . 438126) - (-2498 . 437834) (-2499 . 437703) (-2500 . 437488) (-2501 . 437387) - (-2502 . 437270) (-2503 . 437037) (-2504 . 436933) (-2505 . 436813) - (-2506 . 436641) (-2507 . 436588) (-2508 . 436510) (-2509 . 436352) - (-2510 . 436324) (-2511 . 436258) (-2512 . 436089) (-2513 . 435291) - (-2514 . 435118) (-2515 . 435059) (-2516 . 435004) (-2517 . 433919) - (-2518 . 433603) (-2519 . 433431) (-2520 . 432869) (-2521 . 432753) - (-2522 . 432569) (-2523 . 432518) (-2524 . 432085) (-2525 . 431954) - (-2526 . 431658) (-2527 . 431515) (-2528 . 431123) (-2529 . 430599) - (-2530 . 430352) (-2531 . 429469) (-2532 . 429316) (-2533 . 429110) - (-2534 . 426854) (-2535 . 426755) (-2536 . 426660) (-2537 . 426565) - (-2538 . 426421) (-2539 . 426328) (-2540 . 426276) (-2541 . 425794) - (-2542 . 425596) (-2543 . 425494) (-2544 . 425215) (-2545 . 425141) - (-2546 . 425107) (-2547 . 424971) (-2548 . 424914) (-2549 . 424843) - (-2550 . 424791) (-2551 . 424140) (-2552 . 424068) (-2553 . 423929) - (-2554 . 423767) (-2555 . 423669) (-2556 . 423569) (-2557 . 423381) - (-2558 . 423091) (-2559 . 422965) (-2560 . 422867) (-2561 . 422815) - (-2562 . 421034) (-2563 . 420754) (-2564 . 420691) (-2565 . 418577) - (-2566 . 418524) (-2567 . 418306) (-2568 . 418278) (-2569 . 417618) - (-2570 . 416466) (-2571 . 416339) (-2572 . 416202) (-2573 . 415124) - (-2574 . 414906) (-2575 . 414579) (-2576 . 414496) (-2577 . 414356) - (-2578 . 414285) (-2579 . 413751) (-2580 . 413536) (-2581 . 413310) - (-2582 . 413051) (-2583 . 413002) (-2584 . 412974) (-2585 . 412940) - (-2586 . 412332) (-2587 . 412249) (-2588 . 411866) (-2589 . 410010) - (-2590 . 409892) (-2591 . 409673) (-2592 . 409381) (-2593 . 409249) - (-2594 . 408131) (-2595 . 408076) (-2596 . 407333) (-2597 . 407100) - (-2598 . 406973) (-2599 . 406907) (-2600 . 406694) (-2601 . 406591) - (-2602 . 406524) (-2603 . 406412) (-2604 . 406328) (-2605 . 406258) - (-2606 . 406105) (-2607 . 406009) (-2608 . 405929) (-2609 . 405834) - (-2610 . 405751) (-2611 . 405586) (-2612 . 405422) (-2613 . 405247) - (-2614 . 404604) (-2615 . 404552) (-2616 . 404442) (-2617 . 404414) - (-2618 . 404326) (-2619 . 404140) (-2620 . 403985) (-2621 . 403875) - (-2622 . 403745) (-2623 . 403630) (-2624 . 402184) (-2625 . 402129) - (-2626 . 402003) (-2627 . 401687) (-2628 . 401498) (-2629 . 401252) - (-2630 . 401142) (-2631 . 401056) (-2632 . 400900) (-2633 . 400704) - (-2634 . 400676) (-2635 . 400478) (-2636 . 400398) (-2637 . 400229) - (-2638 . 400036) (-2639 . 399937) (-2640 . 399701) (-2641 . 399533) - (-2642 . 399391) (-2643 . 399266) (-2644 . 399213) (-2645 . 395263) - (-2646 . 394934) (-2647 . 394850) (-2648 . 394770) (-2649 . 394570) - (-2650 . 394496) (-2651 . 394331) (-2652 . 394233) (-2653 . 394123) - (-2654 . 394020) (-2655 . 393965) (-2656 . 393876) (-2657 . 393780) - (-2658 . 393464) (-2659 . 393348) (-2660 . 393163) (-2661 . 393005) - (-2662 . 392880) (-2663 . 392550) (-2664 . 392390) (-2665 . 392205) - (-2666 . 391959) (-2667 . 391903) (-2668 . 391807) (-2669 . 391684) - (-2670 . 391588) (-2671 . 391236) (-2672 . 391125) (-2673 . 390864) - (-2674 . 390790) (-2675 . 390481) (-2676 . 389219) (-2677 . 389140) - (-2678 . 388767) (-2679 . 388693) (-2680 . 388665) (-2681 . 388549) - (-2682 . 387676) (-2683 . 387590) (-2684 . 387379) (-2685 . 387280) - (-2686 . 387195) (-2687 . 387124) (-2688 . 387000) (-2689 . 386879) - (-2690 . 386796) (-2691 . 386467) (-2692 . 386336) (-2693 . 386233) - (-2694 . 385880) (-2695 . 385750) (-2696 . 385361) (-2697 . 385232) - (-2698 . 385098) (-2699 . 384973) (-2700 . 384771) (-2701 . 384676) - (-2702 . 384572) (-2703 . 384481) (-2704 . 384254) (-2705 . 384043) - (-2706 . 384015) (-2707 . 383663) (-2708 . 383217) (-2709 . 383186) - (-2710 . 383100) (-2711 . 382421) (-2712 . 381119) (-2713 . 381009) - (-2714 . 380866) (-2715 . 380817) (-2716 . 380664) (-2717 . 380391) - (-2718 . 380289) (-2719 . 380255) (-2720 . 380150) (-2721 . 380097) - (-2722 . 380009) (-2723 . 379953) (-2724 . 379811) (-2725 . 379744) - (-2726 . 379672) (-2727 . 379613) (-2728 . 378617) (-2729 . 378519) - (-2730 . 378418) (-2731 . 378359) (-2732 . 378282) (-2733 . 378119) - (-2734 . 378031) (-2735 . 377835) (-2736 . 377734) (-2737 . 377679) - (-2738 . 377468) (-2739 . 377313) (-2740 . 377127) (-2741 . 377075) - (-2742 . 376931) (-2743 . 376549) (-2744 . 376391) (-2745 . 376327) - (-2746 . 376254) (-2747 . 375942) (-2748 . 375734) (-2749 . 375620) - (-2750 . 375381) (-2751 . 375280) (-2752 . 374688) (-2753 . 374389) - (-2754 . 374336) (-2755 . 374184) (-2756 . 374050) (-2757 . 373993) - (-2758 . 373507) (-2759 . 373154) (-2760 . 373076) (-2761 . 372983) - (-2762 . 372900) (-2763 . 372604) (-2764 . 372535) (-2765 . 372464) - (-2766 . 372414) (-2767 . 372083) (-2768 . 372003) (-2769 . 371760) - (-2770 . 371329) (-2771 . 371230) (-2772 . 371159) (-2773 . 371106) - (-2774 . 370948) (-2775 . 370882) (-2776 . 370626) (-2777 . 370470) - (-2778 . 370385) (-2779 . 370195) (-2780 . 370074) (-2781 . 369910) - (-2782 . 369664) (-2783 . 369569) (-2784 . 369472) (-2785 . 369394) - (-2786 . 369066) (-2787 . 368816) (-2788 . 368764) (-2789 . 368668) - (-2790 . 368545) (-2791 . 368358) (-2792 . 368072) (-2793 . 367949) - (-2794 . 367571) (-2795 . 367436) (-2796 . 367339) (-2797 . 367244) - (-2798 . 367111) (-2799 . 366876) (-2800 . 366821) (-2801 . 366002) - (-2802 . 365946) (-2803 . 365918) (-2804 . 365719) (-2805 . 365540) - (-2806 . 365403) (-2807 . 365158) (-2808 . 364382) (-2809 . 364239) - (-2810 . 364143) (-2811 . 363735) (-2812 . 363205) (-2813 . 363069) - (-2814 . 362725) (-2815 . 362668) (-2816 . 362189) (-2817 . 362017) - (-2818 . 361963) (-2819 . 361340) (-2820 . 361203) (-2821 . 361041) - (-2822 . 360957) (-2823 . 360794) (-2824 . 360613) (-2825 . 360507) - (-2826 . 360010) (-2827 . 359916) (-2828 . 359787) (-2829 . 359700) - (-12 . 359528) (-2831 . 359436) (-2832 . 359380) (-2833 . 359188) - (-2834 . 359017) (-2835 . 358931) (-2836 . 358775) (-2837 . 357914) - (-2838 . 357753) (-2839 . 357535) (-2840 . 357438) (-2841 . 357017) - (-2842 . 356902) (-2843 . 356828) (-2844 . 356438) (-2845 . 356366) - (-2846 . 356091) (-2847 . 356000) (-2848 . 355913) (-2849 . 355748) - (-2850 . 355595) (-2851 . 355485) (-2852 . 354952) (-2853 . 354110) - (-2854 . 353513) (-2855 . 353457) (-2856 . 352990) (-2857 . 352935) - (-2858 . 352876) (-2859 . 352803) (-2860 . 352659) (-2861 . 352409) - (-2862 . 351992) (-2863 . 351738) (-2864 . 351619) (-2865 . 351478) - (-2866 . 351206) (-2867 . 347597) (-2868 . 347502) (-2869 . 347421) - (-2870 . 347278) (-2871 . 347007) (-2872 . 345905) (-2873 . 344682) - (-2874 . 344596) (-2875 . 344523) (-2876 . 344492) (-2877 . 344283) - (-2878 . 344206) (-2879 . 344174) (-2880 . 344008) (-2881 . 343953) - (-2882 . 343866) (-2883 . 343838) (-2884 . 343717) (-2885 . 343499) - (-2886 . 343376) (-2887 . 343229) (-2888 . 342970) (-2889 . 342891) - (-2890 . 342598) (-2891 . 342060) (-2892 . 342003) (-2893 . 341930) - (-2894 . 341820) (-2895 . 341548) (-2896 . 341433) (-2897 . 341356) - (-2898 . 341003) (-2899 . 340896) (-2900 . 340505) (-2901 . 340345) - (-2902 . 340232) (-2903 . 340125) (-2904 . 339975) (-2905 . 339889) - (-2906 . 339767) (-2907 . 339648) (-2908 . 339577) (-2909 . 339543) - (-2910 . 339490) (-2911 . 339370) (-2912 . 338998) (-2913 . 338564) - (-2914 . 337951) (-2915 . 337881) (-2916 . 337814) (-2917 . 337723) - (-2918 . 337476) (-2919 . 337352) (-2920 . 337264) (-2921 . 337171) - (-2922 . 336953) (-2923 . 336855) (-2924 . 336821) (-2925 . 336394) - (-2926 . 336342) (-2927 . 336280) (-2928 . 335698) (-2929 . 335457) - (-2930 . 335373) (-2931 . 335278) (-2932 . 335031) (-2933 . 334915) - (-2934 . 334819) (-2935 . 334748) (-2936 . 334675) (-2937 . 334041) - (-2938 . 333947) (-2939 . 333697) (-2940 . 333644) (-2941 . 333516) - (-2942 . 314941) (* . 310674) (-2944 . 310609) (-2945 . 310556) - (-2946 . 310269) (-2947 . 309683) (-2948 . 309623) (-2949 . 309571) - (-2950 . 309488) (-2951 . 309315) (-2952 . 309196) (-2953 . 308931) - (-2954 . 308835) (-2955 . 306014) (-2956 . 305811) (-2957 . 305783) - (-2958 . 305705) (-2959 . 305653) (-2960 . 305401) (-2961 . 305223) - (-2962 . 305093) (-2963 . 305009) (-2964 . 304810) (-2965 . 304106) - (-2966 . 304047) (-2967 . 303820) (-2968 . 303643) (-2969 . 303032) - (-2970 . 302507) (-2971 . 302478) (-2972 . 302379) (-2973 . 302249) - (-2974 . 301821) (-2975 . 301140) (-2976 . 300885) (-2977 . 300747) - (-2978 . 300682) (-2979 . 300648) (-2980 . 300519) (-2981 . 300247) - (-2982 . 299973) (-2983 . 299929) (-2984 . 299445) (-2985 . 299351) - (-2986 . 299174) (-2987 . 299121) (-2988 . 299033) (-2989 . 298722) - (-2990 . 298669) (-2991 . 298575) (-2992 . 298476) (-2993 . 298355) - (-2994 . 298061) (-2995 . 297916) (-2996 . 297736) (-2997 . 297663) - (-2998 . 297597) (-2999 . 297344) (-3000 . 297315) (-3001 . 297263) - (-3002 . 297099) (-3003 . 296955) (-3004 . 296799) (-3005 . 296568) - (-3006 . 296253) (-3007 . 295967) (-3008 . 295824) (-3009 . 295751) - (-3010 . 295638) (-3011 . 295582) (-3012 . 295500) (-3013 . 295334) - (-3014 . 295266) (-3015 . 295179) (-3016 . 295124) (-3017 . 294884) - (-3018 . 294803) (-3019 . 294658) (-3020 . 294522) (-3021 . 294195) - (-3022 . 294099) (-3023 . 294030) (-3024 . 293942) (-3025 . 293728) - (-3026 . 293662) (-3027 . 293503) (-3028 . 293092) (-3029 . 293058) - (-3030 . 292972) (-3031 . 292494) (-3032 . 292355) (-3033 . 292044) - (-3034 . 291852) (-3035 . 291694) (-3036 . 291350) (-3037 . 291230) - (-3038 . 291001) (-3039 . 290822) (-3040 . 290735) (-3041 . 290609) - (-3042 . 290553) (-3043 . 290435) (-3044 . 289851) (-3045 . 289822) - (-3046 . 289727) (-3047 . 289545) (-3048 . 289458) (-3049 . 289106) - (-3050 . 289011) (-3051 . 288883) (-3052 . 288782) (-3053 . 288641) - (-3054 . 288497) (-3055 . 287533) (-3056 . 287362) (-3057 . 287207) - (-3058 . 286865) (-3059 . 286788) (-3060 . 286645) (-3061 . 286560) - (-3062 . 286430) (-3063 . 286229) (-3064 . 286170) (-3065 . 286097) - (-3066 . 286002) (-3067 . 285610) (-3068 . 285557) (-3069 . 285505) - (-3070 . 285431) (-3071 . 285378) (-3072 . 285321) (-3073 . 285263) - (-3074 . 285132) (-3075 . 285098) (-3076 . 284965) (-3077 . 283779) - (-3078 . 283613) (-3079 . 283561) (-3080 . 283461) (-3081 . 283366) - (-3082 . 283053) (-3083 . 282956) (-3084 . 282887) (-3085 . 282688) - (-3086 . 282616) (-3087 . 282563) (-3088 . 281642) (-3089 . 281499) - (-3090 . 281163) (-3091 . 280869) (-3092 . 280816) (-3093 . 279634) - (-3094 . 278453) (-3095 . 278394) (-3096 . 278204) (-3097 . 278061) - (-3098 . 277990) (-3099 . 277694) (-3100 . 277612) (-3101 . 277432) - (-3102 . 277182) (-3103 . 274974) (-3104 . 274820) (-3105 . 274665) - (-3106 . 274584) (-3107 . 274449) (-3108 . 274375) (-3109 . 273533) - (-3110 . 273480) (-3111 . 273396) (-3112 . 273188) (-3113 . 273111) - (-3114 . 273028) (-3115 . 272869) (-3116 . 272792) (-3117 . 272664) - (-3118 . 271438) (-3119 . 270737) (-3120 . 270656) (-3121 . 270568) - (-3122 . 270398) (-3123 . 270319) (-3124 . 270073) (-3125 . 269846) - (-3126 . 269760) (-3127 . 269623) (-3128 . 269510) (-3129 . 269420) - (-3130 . 269255) (-3131 . 268940) (-3132 . 268732) (-3133 . 268636) - (-3134 . 268570) (-3135 . 268474) (-3136 . 268378) (-3137 . 268124) - (-3138 . 268074) (-3139 . 267787) (-3140 . 267703) (-3141 . 267619) - (-3142 . 266315) (-3143 . 266081) (-3144 . 265944) (-3145 . 265786) - (-3146 . 265733) (-3147 . 265676) (-3148 . 265130) (-3149 . 264874) - (-3150 . 264708) (-3151 . 264475) (-3152 . 264225) (-3153 . 264000) - (-3154 . 263926) (-3155 . 263832) (-3156 . 263780) (-3157 . 263680) - (-3158 . 263194) (-3159 . 262913) (-3160 . 262810) (-3161 . 262283) - (-3162 . 262217) (-3163 . 262132) (-3164 . 262061) (-3165 . 261895) - (-3166 . 261568) (-3167 . 261540) (-3168 . 261463) (-3169 . 261183) - (-3170 . 260965) (-3171 . 260899) (-3172 . 260676) (-3173 . 260109) - (-3174 . 260012) (-3175 . 259885) (-3176 . 259857) (-3177 . 259707) - (-3178 . 259488) (-3179 . 258969) (-3180 . 258915) (-3181 . 256500) - (-3182 . 256215) (-3183 . 256096) (-3184 . 255778) (-3185 . 255623) - (-3186 . 255527) (-3187 . 255454) (-3188 . 255395) (-3189 . 255211) - (-3190 . 254882) (-3191 . 254372) (-3192 . 254345) (-3193 . 254292) - (-3194 . 254200) (-3195 . 254061) (-3196 . 253995) (-3197 . 253778) - (-3198 . 253504) (-3199 . 253406) (-3200 . 253335) (-3201 . 253262) - (-3202 . 252689) (-3203 . 252629) (-3204 . 252349) (-3205 . 252248) - (-3206 . 252182) (-3207 . 251365) (-3208 . 251269) (-3209 . 251111) - (-3210 . 250935) (-3211 . 250867) (-3212 . 250627) (-3213 . 250482) - (-3214 . 250252) (-3215 . 250158) (-3216 . 249827) (-3217 . 249725) - (-3218 . 249607) (-3219 . 249492) (-3220 . 249336) (-3221 . 249186) - (-3222 . 249127) (-3223 . 249053) (-3224 . 248965) (-3225 . 248916) - (-3226 . 248709) (-3227 . 248654) (-3228 . 248535) (-3229 . 248283) - (-3230 . 248231) (-3231 . 248131) (-3232 . 248018) (-3233 . 247944) - (-3234 . 247888) (-3235 . 247811) (-3236 . 247703) (-3237 . 247524) - (-3238 . 247471) (-3239 . 247385) (-3240 . 247076) (-3241 . 246806) - (-3242 . 246732) (-3243 . 246590) (-3244 . 246094) (-3245 . 245998) - (-3246 . 245403) (-3247 . 245045) (-3248 . 244775) (-3249 . 244676) - (-3250 . 244593) (-3251 . 244464) (-3252 . 244167) (-3253 . 244065) - (-3254 . 244006) (-3255 . 243935) (-3256 . 243551) (-3257 . 243169) - (-3258 . 243083) (-3259 . 242938) (-3260 . 242837) (-3261 . 242572) - (-3262 . 242313) (-3263 . 242217) (-3264 . 241823) (-3265 . 241713) - (-3266 . 241647) (-3267 . 241584) (-3268 . 241532) (-3269 . 241369) - (-3270 . 241214) (-3271 . 241041) (-3272 . 240809) (-3273 . 240467) - (-3274 . 240336) (-3275 . 240265) (-3276 . 239679) (-3277 . 239593) - (-3278 . 239541) (-3279 . 239429) (-3280 . 239328) (-3281 . 239095) - (-3282 . 238982) (-3283 . 238680) (-3284 . 238535) (-3285 . 238467) - (-3286 . 238372) (-3287 . 238264) (-3288 . 238164) (-3289 . 237912) - (-3290 . 237545) (-3291 . 237326) (-3292 . 237214) (-3293 . 237159) - (-3294 . 236971) (-3295 . 236541) (-3296 . 236478) (-3297 . 236412) - (-3298 . 236384) (-3299 . 235417) (-3300 . 235347) (-3301 . 235146) - (-3302 . 234861) (-3303 . 234724) (-3304 . 234644) (-3305 . 234430) - (-3306 . 234296) (-3307 . 234210) (-3308 . 234124) (-3309 . 234030) - (-3310 . 233971) (-3311 . 233808) (-3312 . 233716) (-3313 . 233558) - (-3314 . 233442) (-3315 . 233410) (-3316 . 233354) (-3317 . 233191) - (-3318 . 233050) (-3319 . 232973) (-3320 . 232751) (-3321 . 232648) - (-3322 . 232582) (-3323 . 232419) (-3324 . 232196) (-3325 . 231981) - (-3326 . 231828) (-3327 . 231454) (-3328 . 231274) (-3329 . 231171) - (-3330 . 230611) (-3331 . 230338) (-3332 . 230228) (-3333 . 229998) - (-3334 . 229399) (-3335 . 228483) (-3336 . 228377) (-3337 . 228278) - (-3338 . 228057) (-3339 . 227809) (-3340 . 227730) (-3341 . 227679) - (-3342 . 227566) (-3343 . 227140) (-3344 . 226954) (-3345 . 226922) - (-3346 . 226824) (-3347 . 226682) (-3348 . 226473) (-3349 . 226027) - (-3350 . 225903) (-3351 . 225748) (-3352 . 225510) (-3353 . 225448) - (-3354 . 225393) (-3355 . 225084) (-3356 . 224990) (-3357 . 224882) - (-3358 . 224551) (-3359 . 224177) (-3360 . 224098) (-3361 . 224016) - (-3362 . 223937) (-3363 . 223865) (-3364 . 223813) (-3365 . 223661) - (-3366 . 223608) (-3367 . 223553) (-3368 . 223415) (-3369 . 223332) - (-3370 . 223211) (-3371 . 223123) (-3372 . 223010) (-3373 . 222887) - (-3374 . 222819) (-3375 . 222722) (-3376 . 222214) (-3377 . 222162) - (-3378 . 222081) (-3379 . 222021) (-3380 . 221877) (-3381 . 221683) - (-3382 . 221513) (-3383 . 221133) (-3384 . 219403) (-3385 . 219262) - (-3386 . 218994) (-3387 . 218923) (-3388 . 218838) (-3389 . 218783) - (-3390 . 218439) (-3391 . 218405) (-3392 . 218289) (-3393 . 217868) - (-3394 . 217708) (-3395 . 217634) (-3396 . 217510) (-3397 . 217416) - (-3398 . 217331) (-3399 . 217267) (-3400 . 217094) (-3401 . 216981) - (-3402 . 216358) (-3403 . 216291) (-3404 . 216231) (-3405 . 216101) - (-3406 . 215921) (-3407 . 215791) (-3408 . 215740) (-3409 . 215592) - (-3410 . 215498) (-3411 . 215400) (-3412 . 215317) (-3413 . 215222) - (-3414 . 215061) (-3415 . 214924) (-3416 . 214827) (-3417 . 214799) - (-3418 . 214691) (-3419 . 214617) (-3420 . 214562) (-3421 . 212776) - (-3422 . 212693) (-3423 . 212553) (-3424 . 212475) (-3425 . 212381) - (-3426 . 212280) (-3427 . 212112) (-3428 . 212030) (-3429 . 211942) - (-3430 . 211715) (-3431 . 211556) (-3432 . 211429) (-3433 . 211324) - (-3434 . 211238) (-3435 . 211166) (-3436 . 211098) (-3437 . 210903) - (-3438 . 210800) (-3439 . 210678) (-3440 . 210515) (-3441 . 210393) - (-3442 . 210183) (-3443 . 210078) (-3444 . 209919) (-3445 . 209815) - (-3446 . 209714) (-3447 . 209276) (-3448 . 209206) (-3449 . 209058) - (-3450 . 208989) (-3451 . 208767) (-3452 . 208715) (-3453 . 208644) - (-3454 . 208392) (-3455 . 208234) (-3456 . 208100) (-3457 . 207925) - (-3458 . 207873) (-3459 . 207557) (-3460 . 206803) (-3461 . 206706) - (-3462 . 206632) (-3463 . 206575) (-3464 . 206515) (-3465 . 206236) - (-3466 . 206055) (-3467 . 205951) (-3468 . 205865) (-3469 . 205784) - (-3470 . 205689) (-3471 . 205125) (-3472 . 204966) (-3473 . 204848) - (-3474 . 204625) (-3475 . 204401) (-3476 . 204248) (-3477 . 204151) - (-3478 . 204063) (-3479 . 203931) (-3480 . 203830) (-3481 . 203643) - (-3482 . 203591) (-3483 . 203329) (-3484 . 203176) (-3485 . 202896) - (-3486 . 202719) (-3487 . 202631) (-3488 . 202520) (-3489 . 202391) - (-3490 . 202340) (-3491 . 202059) (-3492 . 201947) (-3493 . 201895) - (-3494 . 201716) (-3495 . 201638) (-3496 . 201510) (-3497 . 201373) - (-3498 . 201323) (-3499 . 201129) (-3500 . 200823) (-3501 . 200585) - (-3502 . 200394) (-3503 . 200295) (-3504 . 200211) (-3505 . 200134) - (-3506 . 200082) (-3507 . 200026) (-3508 . 199650) (-3509 . 199598) - (-3510 . 199520) (-3511 . 199449) (-3512 . 199238) (-3513 . 198928) - (-3514 . 198657) (-3515 . 198443) (-3516 . 198341) (-3517 . 198245) - (-3518 . 198141) (-3519 . 198104) (-3520 . 198051) (-3521 . 198023) - (-3522 . 197803) (-3523 . 197717) (-3524 . 197551) (-3525 . 197480) - (-3526 . 197414) (-3527 . 195446) (-3528 . 195394) (-3529 . 194396) - (-3530 . 194258) (-3531 . 194221) (-3532 . 194135) (-3533 . 194058) - (-3534 . 193977) (-3535 . 193613) (-3536 . 193457) (-3537 . 193350) - (-3538 . 193205) (-3539 . 193171) (-3540 . 192795) (-3541 . 192620) - (-3542 . 192504) (-3543 . 192430) (-3544 . 192309) (-3545 . 192225) - (-3546 . 192048) (-3547 . 191834) (-3548 . 191784) (-3549 . 191632) - (-3550 . 190956) (-3551 . 190903) (-3552 . 190821) (-3553 . 190750) - (-3554 . 190634) (-3555 . 190581) (-3556 . 190529) (-3557 . 190338) - (-3558 . 190216) (-3559 . 188788) (-3560 . 188325) (-3561 . 188267) - (-3562 . 188184) (-3563 . 187999) (-3564 . 187939) (-3565 . 187823) - (-3566 . 187598) (-3567 . 187543) (-3568 . 187493) (-3569 . 187400) - (-3570 . 187241) (-3571 . 187142) (-3572 . 186807) (-3573 . 186692) - (-3574 . 185813) (-3575 . 185718) (-3576 . 185603) (-3577 . 185541) - (-3578 . 185254) (-3579 . 184993) (-3580 . 184923) (-3581 . 184857) - (-3582 . 184668) (-3583 . 183418) (-3584 . 183131) (-3585 . 182881) - (-3586 . 182751) (-3587 . 182374) (-3588 . 182204) (-3589 . 182060) - (-3590 . 181422) (-3591 . 181237) (-3592 . 180534) (-3593 . 180452) - (-3594 . 180261) (-3595 . 180209) (-3596 . 180103) (-3597 . 180015) - (-3598 . 179963) (-3599 . 179935) (-3600 . 179767) (-3601 . 179644) - (-3602 . 179463) (-3603 . 179390) (-3604 . 179210) (-3605 . 179107) - (-3606 . 179021) (-3607 . 178825) (-3608 . 178723) (-3609 . 177866) - (-3610 . 177783) (-3611 . 177714) (-3612 . 177543) (-3613 . 177489) - (-3614 . 177321) (-3615 . 177176) (-3616 . 177003) (-3617 . 176897) - (-3618 . 176354) (-3619 . 176299) (-3620 . 176237) (-3621 . 175524) - (-3622 . 172683) (-3623 . 172588) (-3624 . 172428) (-3625 . 172086) - (-3626 . 171982) (-3627 . 171800) (-3628 . 171581) (-3629 . 171457) - (-3630 . 170855) (-3631 . 170737) (-3632 . 170684) (-3633 . 170536) - (-3634 . 170484) (-3635 . 170305) (-3636 . 169946) (-3637 . 169843) - (-3638 . 169747) (-3639 . 169564) (-3640 . 169481) (-3641 . 169402) - (-3642 . 169217) (-3643 . 169180) (-3644 . 169046) (-3645 . 168964) - (-3646 . 168867) (-3647 . 168808) (-3648 . 168716) (-3649 . 168537) - (-3650 . 168503) (-3651 . 168313) (-3652 . 168191) (-3653 . 167899) - (-3654 . 167800) (-3655 . 167704) (-3656 . 167610) (-3657 . 167582) - (-3658 . 167433) (-3659 . 167155) (-3660 . 166997) (-3661 . 166854) - (-3662 . 166758) (-3663 . 166604) (-3664 . 166516) (-3665 . 165973) - (-3666 . 165920) (-3667 . 165575) (-3668 . 165450) (-3669 . 164946) - (-3670 . 164753) (-3671 . 164655) (-3672 . 164437) (-3673 . 164363) - (-3674 . 164153) (-3675 . 164074) (-3676 . 163539) (-3677 . 163335) - (-3678 . 162921) (-3679 . 162714) (-3680 . 162600) (-3681 . 162492) - (-3682 . 162090) (-3683 . 162019) (-3684 . 161579) (-3685 . 161421) - (-3686 . 161372) (-3687 . 161235) (-3688 . 161078) (-3689 . 161004) - (-3690 . 160566) (-3691 . 160485) (-3692 . 160331) (-3693 . 160274) - (-3694 . 159899) (-3695 . 159834) (-3696 . 159765) (-3697 . 159737) - (-3698 . 159670) (-3699 . 159586) (-3700 . 159507) (-3701 . 159176) - (-3702 . 159120) (-3703 . 158798) (-3704 . 158580) (-3705 . 158462) - (-3706 . 158410) (-3707 . 158276) (-3708 . 158154) (-3709 . 158048) - (-3710 . 157992) (-3711 . 157504) (-3712 . 157445) (-3713 . 157078) - (-3714 . 156964) (-3715 . 156901) (-3716 . 155941) (-3717 . 155842) - (-3718 . 155592) (-3719 . 155271) (-3720 . 155204) (-3721 . 155058) - (-3722 . 154956) (-3723 . 154886) (-3724 . 154740) (-3725 . 154445) - (-3726 . 154332) (-3727 . 154270) (-3728 . 154211) (-3729 . 154156) - (-3730 . 153956) (-3731 . 152808) (-3732 . 152752) (-3733 . 152651) - (-3734 . 152508) (-3735 . 152429) (-3736 . 152253) (-3737 . 152134) - (-3738 . 152050) (-3739 . 151782) (-3740 . 151662) (-3741 . 151634) - (-3742 . 151550) (-3743 . 151453) (-3744 . 151401) (-3745 . 151189) - (-3746 . 151046) (-3747 . 150911) (-3748 . 150859) (-3749 . 150778) - (-3750 . 150724) (-3751 . 150446) (-3752 . 150076) (-3753 . 149694) - (-3754 . 149479) (-3755 . 149312) (-3756 . 149226) (-3757 . 149176) - (-3758 . 149058) (-3759 . 148978) (-3760 . 148850) (-3761 . 148755) - (-3762 . 148597) (-3763 . 148563) (-3764 . 148396) (-3765 . 148314) - (-3766 . 148159) (-3767 . 147608) (-3768 . 147489) (-3769 . 147429) - (-3770 . 147201) (-3771 . 147064) (-3772 . 146785) (-3773 . 146653) - (-3774 . 146621) (-3775 . 146483) (-3776 . 146428) (-3777 . 146226) - (-3778 . 146149) (-3779 . 146082) (-3780 . 146005) (-3781 . 145879) - (-3782 . 145750) (-3783 . 145578) (-3784 . 145459) (-3785 . 145241) - (-3786 . 145114) (-3787 . 144723) (-3788 . 144673) (-3789 . 143903) - (-3790 . 143561) (-3791 . 143437) (-3792 . 143277) (-3793 . 143111) - (-3794 . 143031) (-3795 . 142974) (-3796 . 142868) (-3797 . 142705) - (-3798 . 141365) (-3799 . 141313) (-3800 . 141200) (-3801 . 141056) - (-3802 . 140699) (-3803 . 140583) (-3804 . 140510) (-3805 . 140386) - (-3806 . 140355) (-3807 . 139974) (-3808 . 139943) (-3809 . 139539) - (-3810 . 138721) (-3811 . 138416) (-3812 . 138266) (-3813 . 138229) - (-3814 . 138127) (-3815 . 138071) (-3816 . 137946) (-3817 . 137879) - (-3818 . 137781) (-3819 . 137693) (-3820 . 137552) (-3821 . 137413) - (-3822 . 137126) (-3823 . 136908) (-3824 . 136879) (-3825 . 136663) - (-3826 . 136453) (-3827 . 136363) (-3828 . 136292) (-3829 . 136093) - (-3830 . 136061) (-3831 . 135785) (-3832 . 135618) (-3833 . 135569) - (-3834 . 134477) (-3835 . 134411) (-3836 . 134126) (-3837 . 134043) - (-3838 . 133902) (-3839 . 133821) (-3840 . 133675) (-3841 . 133300) - (-3842 . 133184) (-3843 . 133110) (-3844 . 132744) (-3845 . 132619) - (-3846 . 132432) (-3847 . 132288) (-3848 . 132167) (-3849 . 132018) - (-3850 . 131411) (-3851 . 131316) (-3852 . 131245) (-3853 . 131171) - (-3854 . 130981) (-3855 . 130771) (-3856 . 130493) (-3857 . 130294) - (-3858 . 130120) (-3859 . 130039) (-3860 . 129958) (-3861 . 129903) - (-3862 . 129758) (-3863 . 129662) (-3864 . 129543) (-3865 . 129265) - (-3866 . 129213) (-3867 . 129055) (-3868 . 128989) (-3869 . 128815) - (-3870 . 128195) (-3871 . 127902) (-3872 . 127770) (-3873 . 127608) - (-3874 . 127220) (-3875 . 127111) (-3876 . 126838) (-3877 . 126729) - (-3878 . 126643) (-3879 . 126590) (-3880 . 126465) (-3881 . 126367) - (-3882 . 126034) (-3883 . 125857) (-3884 . 125585) (-3885 . 125484) - (-3886 . 125359) (-3887 . 125240) (-3888 . 125051) (-3889 . 124947) - (-3890 . 124609) (-3891 . 124532) (-3892 . 124435) (-3893 . 124349) - (-3894 . 124239) (-3895 . 123822) (-3896 . 123761) (-3897 . 123704) - (-3898 . 123605) (-3899 . 123404) (-3900 . 123345) (-3901 . 123190) - (-3902 . 122798) (-3903 . 122460) (-3904 . 120397) (-3905 . 119886) - (-3906 . 119817) (-3907 . 119349) (-3908 . 119206) (-3909 . 119104) - (-3910 . 118988) (-3911 . 118898) (-3912 . 118730) (-3913 . 118532) - (-3914 . 117664) (-3915 . 117568) (-3916 . 117509) (-3917 . 117425) - (-3918 . 117352) (-3919 . 117248) (-3920 . 117178) (-3921 . 117082) - (-3922 . 116924) (-3923 . 116852) (-3924 . 116517) (-3925 . 116321) - (-3926 . 116208) (-3927 . 116152) (-3928 . 116074) (-3929 . 115941) - (-3930 . 115913) (-3931 . 115261) (-3932 . 115054) (-3933 . 114683) - (-3934 . 114593) (-3935 . 114541) (-3936 . 114337) (-3937 . 114233) - (-3938 . 114104) (-3939 . 113904) (-3940 . 113809) (-3941 . 113664) - (-3942 . 113608) (-3943 . 113554) (-3944 . 113464) (-3945 . 113408) - (-3946 . 113260) (-3947 . 113053) (-3948 . 112993) (-3949 . 112927) - (-3950 . 112850) (-3951 . 112716) (-3952 . 112606) (-3953 . 112527) - (-3954 . 112360) (-3955 . 111842) (-3956 . 111786) (-3957 . 111663) - (-3958 . 111414) (-3959 . 111362) (-3960 . 109584) (-3961 . 109507) - (-3962 . 109454) (-3963 . 109384) (-3964 . 109305) (-3965 . 109251) - (-3966 . 109152) (-3967 . 108898) (-3968 . 108779) (-3969 . 108726) - (-3970 . 108652) (-3971 . 108349) (-3972 . 108059) (-3973 . 107967) - (-3974 . 107728) (-3975 . 107598) (-3976 . 107545) (-3977 . 107281) - (-3978 . 107225) (-3979 . 107105) (-3980 . 106952) (-3981 . 106796) - (-3982 . 106767) (-3983 . 106697) (-3984 . 106321) (-3985 . 105958) - (-3986 . 105884) (-3987 . 105082) (-3988 . 104994) (-3989 . 104941) - (-3990 . 104889) (-3991 . 104837) (-3992 . 104728) (-3993 . 104540) - (-3994 . 104474) (-3995 . 104424) (-3996 . 104063) (-3997 . 103822) - (-3998 . 103558) (-3999 . 103465) (-4000 . 103406) (-4001 . 102960) - (-4002 . 102622) (-4003 . 102571) (-4004 . 102433) (-4005 . 102147) - (-4006 . 102065) (-4007 . 101982) (-4008 . 101867) (-4009 . 101783) - (-4010 . 101713) (-4011 . 101467) (-4012 . 101304) (-4013 . 101242) - (-4014 . 101142) (-4015 . 100831) (-4016 . 100408) (-4017 . 100248) - (-4018 . 100152) (-4019 . 99939) (-4020 . 99883) (-4021 . 99788) - (-4022 . 99261) (-4023 . 99187) (-4024 . 98946) (-4025 . 98736) - (-4026 . 98560) (-4027 . 98172) (-4028 . 98057) (-4029 . 97971) - (-4030 . 97773) (-4031 . 97706) (-4032 . 97628) (-4033 . 97337) - (-4034 . 97230) (-4035 . 97058) (-4036 . 96595) (-4037 . 96526) - (-4038 . 96425) (-4039 . 96203) (-4040 . 96134) (-4041 . 96048) - (-4042 . 95996) (-4043 . 95867) (-4044 . 95560) (-4045 . 95075) - (-4046 . 94716) (-4047 . 94646) (-4048 . 94543) (-4049 . 94325) - (-4050 . 94018) (-4051 . 93880) (-4052 . 93454) (-4053 . 93259) - (-4054 . 93204) (-4055 . 93147) (-4056 . 92905) (-4057 . 92827) - (-4058 . 92726) (-4059 . 92252) (-4060 . 92182) (-4061 . 90884) - (-4062 . 90755) (-4063 . 90667) (-4064 . 90570) (-4065 . 90518) - (-4066 . 90320) (-4067 . 90225) (-4068 . 90093) (-4069 . 89960) - (-4070 . 89802) (-4071 . 89399) (-4072 . 89327) (-4073 . 88934) - (-4074 . 88821) (-4075 . 88645) (-4076 . 88513) (-4077 . 88416) - (-4078 . 88284) (-4079 . 88191) (-4080 . 87879) (-4081 . 87720) - (-4082 . 87110) (-4083 . 87013) (-4084 . 86881) (-4085 . 86701) - (-4086 . 86597) (-4087 . 86540) (-4088 . 86463) (-4089 . 86269) - (-4090 . 86207) (-4091 . 86124) (-4092 . 85964) (-4093 . 85870) - (-4094 . 85809) (-4095 . 85726) (-4096 . 85373) (-4097 . 85320) - (-4098 . 85042) (-4099 . 84576) (-4100 . 84497) (-4101 . 84179) - (-4102 . 84108) (-4103 . 83990) (-4104 . 83902) (-4105 . 83640) - (-4106 . 83567) (-4107 . 83443) (-4108 . 83329) (-4109 . 83198) - (-4110 . 83099) (-4111 . 82889) (-4112 . 82811) (-4113 . 82743) - (-4114 . 82691) (-4115 . 82401) (-4116 . 82327) (-4117 . 82253) - (-4118 . 81951) (-4119 . 81656) (-4120 . 80999) (-4121 . 80777) - (-4122 . 80567) (-4123 . 80471) (-4124 . 80421) (-4125 . 80307) - (-4126 . 80102) (-4127 . 79869) (-4128 . 79768) (-4129 . 79674) - (-4130 . 75514) (-4131 . 75462) (-4132 . 75396) (-4133 . 75231) - (-4134 . 74555) (-4135 . 74395) (-4136 . 74002) (-4137 . 73924) - (-4138 . 73280) (-4139 . 73207) (-4140 . 73059) (-4141 . 73002) - (-4142 . 70870) (-4143 . 69800) (-4144 . 68735) (-4145 . 68681) - (-4146 . 68414) (-4147 . 68209) (-4148 . 68121) (-4149 . 67961) - (-4150 . 67832) (-4151 . 67758) (-4152 . 67510) (-4153 . 67415) - (-4154 . 67275) (-4155 . 67118) (-4156 . 66488) (-4157 . 66381) - (-4158 . 66206) (-4159 . 65914) (-4160 . 65711) (-4161 . 65680) - (-4162 . 65598) (-4163 . 65536) (-4164 . 65446) (-4165 . 65346) - (-4166 . 65251) (-4167 . 65095) (-4168 . 64934) (-4169 . 64805) - (-4170 . 64728) (-4171 . 64592) (-4172 . 64518) (-4173 . 63351) - (-4174 . 63279) (-4175 . 63183) (-4176 . 62980) (-4177 . 62907) - (-4178 . 62607) (-4179 . 62480) (-4180 . 62392) (-4181 . 62040) - (-4182 . 61974) (-4183 . 61703) (-4184 . 61393) (-4185 . 61319) - (-4186 . 61196) (-4187 . 60870) (-4188 . 60793) (-4189 . 60727) - (-4190 . 60281) (-4191 . 60223) (-4192 . 60089) (-4193 . 58687) - (-4194 . 58374) (-4195 . 58270) (-4196 . 58204) (-4197 . 57986) - (-4198 . 57912) (-4199 . 57815) (-4200 . 57650) (-4201 . 57552) - (-4202 . 57458) (-4203 . 57305) (-4204 . 57250) (-4205 . 57155) - (-4206 . 57103) (-4207 . 57002) (-4208 . 56914) (-4209 . 56026) - (-4210 . 55911) (-4211 . 55859) (-4212 . 55746) (-4213 . 55652) - (-4214 . 55590) (-4215 . 55562) (-4216 . 55483) (-4217 . 55387) - (-4218 . 49873) (-4219 . 49844) (-4220 . 49772) (-4221 . 49703) - (-4222 . 49669) (-4223 . 46370) (-4224 . 46151) (-4225 . 46098) - (-4226 . 45806) (-4227 . 45612) (-4228 . 45219) (-4229 . 45100) - (-4230 . 45012) (-4231 . 44903) (-4232 . 44836) (-4233 . 44734) - (-4234 . 44220) (-4235 . 44107) (-4236 . 44029) (-4237 . 43802) - (-4238 . 43360) (-4239 . 43289) (-4240 . 43103) (-4241 . 42885) - (-4242 . 42820) (-4243 . 42662) (-4244 . 42560) (-4245 . 42312) - (-4246 . 42238) (-4247 . 42153) (-4248 . 41818) (-4249 . 41420) - (-4250 . 41343) (-4251 . 41290) (-4252 . 41207) (-4253 . 41179) - (-4254 . 41038) (-4255 . 40889) (-4256 . 40641) (-4257 . 40496) - (-4258 . 40341) (-4259 . 40267) (-4260 . 40187) (-4261 . 40088) - (-4262 . 39987) (-4263 . 39864) (-4264 . 39704) (-4265 . 39467) - (-4266 . 39337) (-4267 . 39111) (-4268 . 38969) (-4269 . 38834) - (-4270 . 38730) (-4271 . 38490) (-4272 . 38430) (-4273 . 38347) - (-4274 . 38187) (-4275 . 38029) (-4276 . 37928) (-4277 . 37753) - (-4278 . 37601) (-4279 . 37472) (-4280 . 37257) (-4281 . 37155) - (-4282 . 37092) (-4283 . 37022) (-4284 . 36798) (-4285 . 36351) - (-4286 . 36066) (-4287 . 35920) (-4288 . 35840) (-4289 . 35716) - (-4290 . 35655) (-4291 . 35275) (-4292 . 34986) (-4293 . 34828) - (-4294 . 34725) (-4295 . 34639) (-4296 . 34560) (-4297 . 34460) - (-4298 . 34145) (-4299 . 34043) (-4300 . 33849) (-4301 . 33678) - (-4302 . 33537) (-4303 . 33378) (-4304 . 33175) (-4305 . 32968) - (-4306 . 32909) (-4307 . 32805) (-4308 . 32376) (-4309 . 32324) - (-4310 . 31903) (-4311 . 31780) (-4312 . 31684) (-4313 . 30504) - (-4314 . 30324) (-4315 . 30089) (-4316 . 29917) (-4317 . 28328) - (-4318 . 28120) (-4319 . 27967) (-4320 . 27821) (-4321 . 27561) - (-4322 . 27342) (-4323 . 27274) (-4324 . 26738) (-4325 . 26507) - (-4326 . 26425) (-4327 . 26288) (-4328 . 26202) (-4329 . 26174) - (-4330 . 26079) (-4331 . 25810) (-4332 . 25592) (-4333 . 25380) - (-4334 . 23750) (-4335 . 23547) (-4336 . 23488) (-4337 . 23414) - (-4338 . 23052) (-4339 . 23000) (-4340 . 22921) (-4341 . 22835) - (-4342 . 22082) (-4343 . 22031) (-4344 . 21172) (-4345 . 21122) - (-4346 . 20917) (-4347 . 20779) (-4348 . 20636) (-4349 . 20489) - (-4350 . 20348) (-4351 . 20190) (-4352 . 20141) (-4353 . 20041) - (-4354 . 18745) (-4355 . 18509) (-4356 . 18384) (-4357 . 18022) - (-4358 . 17812) (-4359 . 17706) (-4360 . 17489) (-4361 . 17158) - (-4362 . 17081) (-4363 . 16654) (-4364 . 16572) (-4365 . 16390) - (-4366 . 16356) (-4367 . 16290) (-4368 . 16019) (-4369 . 15766) - (-4370 . 15706) (-4371 . 15610) (-4372 . 15026) (-4373 . 14846) - (-4374 . 14795) (-4375 . 14500) (-4376 . 14426) (-4377 . 14019) - (-4378 . 13610) (-4379 . 13532) (-4380 . 13467) (-4381 . 12579) - (-4382 . 12527) (-4383 . 12443) (-4384 . 12348) (-4385 . 12296) - (-4386 . 11920) (-4387 . 11698) (-4388 . 11646) (-4389 . 11552) - (-4390 . 11479) (-4391 . 11383) (-4392 . 11214) (-4393 . 11146) - (-4394 . 11118) (-4395 . 11059) (-4396 . 10957) (-4397 . 10884) - (-4398 . 10692) (-4399 . 10509) (-4400 . 10475) (-4401 . 8709) - (-4402 . 8632) (-4403 . 8583) (-4404 . 8555) (-4405 . 8412) - (-4406 . 8233) (-4407 . 8059) (-4408 . 8000) (-4409 . 7872) - (-4410 . 7734) (-4411 . 7663) (-4412 . 6208) (-4413 . 6158) - (-4414 . 6088) (-4415 . 5935) (-4416 . 5876) (-4417 . 5166) - (-4418 . 5023) (-4419 . 4895) (-4420 . 4821) (-4421 . 4708) - (-4422 . 4483) (-4423 . 2993) (-4424 . 2316) (-4425 . 2168) - (-4426 . 1990) (-4427 . 1791) (-4428 . 1698) (-4429 . 1540) - (-4430 . 1474) (-4431 . 1401) (-4432 . 1260) (-4433 . 1086) - (-4434 . 372) (-4435 . 30))
\ No newline at end of file + (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) + (-4 *3 (-1080 *5 *6 *7)) (-5 *2 (-654 *4)) + (-5 *1 (-1123 *5 *6 *7 *3 *4)) (-4 *4 (-1086 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1050)) + (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1283 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-922)) + (-5 *2 (-1283 *1))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +((-1317 . 732600) (-1318 . 732409) (-1319 . 732343) (-1320 . 732230) + (-1321 . 732050) (-1322 . 731871) (-1323 . 731607) (-1324 . 731417) + (-1325 . 731301) (-1326 . 731232) (-1327 . 730496) (-1328 . 730380) + (-1329 . 730306) (-1330 . 730251) (-1331 . 730183) (-1332 . 730117) + (-1333 . 730018) (-1334 . 729944) (-1335 . 729846) (-1336 . 729751) + (-1337 . 727690) (-1338 . 727638) (-1339 . 727585) (-1340 . 727511) + (-1341 . 727390) (-1342 . 727227) (-1343 . 726826) (-1344 . 726729) + (-1345 . 726673) (-1346 . 724705) (-1347 . 724625) (-1348 . 724377) + (-1349 . 724130) (-1350 . 724044) (-1351 . 723891) (-1352 . 723525) + (-1353 . 723361) (-1354 . 723233) (-1355 . 723048) (-1356 . 722996) + (-1357 . 722851) (-1358 . 722756) (-1359 . 722348) (-1360 . 722274) + (-1361 . 721978) (-1362 . 721669) (-1363 . 721423) (-1364 . 721298) + (-1365 . 720654) (-1366 . 720576) (-1367 . 720478) (-1368 . 720423) + (-1369 . 719424) (-1370 . 719284) (-1371 . 719057) (-1372 . 718879) + (-1373 . 718805) (-1374 . 718595) (-1375 . 718500) (-1376 . 718313) + (-1377 . 717141) (-1378 . 716975) (-1379 . 716809) (-1380 . 716671) + (-1381 . 716514) (-1382 . 716462) (-1383 . 716292) (-1384 . 716197) + (-1385 . 716055) (-1386 . 715911) (-1387 . 715833) (-1388 . 715718) + (-1389 . 715559) (-1390 . 715215) (-1391 . 715178) (-1392 . 715014) + (-1393 . 714907) (-1394 . 714692) (-1395 . 714614) (-1396 . 714473) + (-1397 . 713977) (-1398 . 713857) (-1399 . 713529) (-1400 . 713408) + (-1401 . 712271) (-1402 . 712179) (-1403 . 711940) (-1404 . 711854) + (-1405 . 711116) (-1406 . 710941) (-1407 . 710463) (-1408 . 710346) + (-1409 . 710250) (-1410 . 710098) (-1411 . 709848) (-1412 . 709699) + (-1413 . 708945) (-1414 . 708874) (-1415 . 708779) (-1416 . 708702) + (-1417 . 708410) (-1418 . 708333) (-1419 . 708305) (-1420 . 707710) + (-1421 . 707658) (-1422 . 707051) (-1423 . 706963) (-1424 . 706882) + (-1425 . 705305) (-1426 . 705102) (-1427 . 705074) (-1428 . 704975) + (-1429 . 704922) (-1430 . 704827) (-1431 . 704731) (-1432 . 704678) + (-1433 . 704323) (-1434 . 704274) (-1435 . 703910) (-1436 . 703828) + (-1437 . 703493) (-1438 . 703414) (-1439 . 703331) (-1440 . 703208) + (-1441 . 703137) (-1442 . 702885) (-1443 . 702729) (-1444 . 702587) + (-1445 . 702497) (-1446 . 702354) (-1447 . 702090) (-1448 . 701961) + (-1449 . 701774) (-1450 . 701700) (-1451 . 701179) (-1452 . 701087) + (-1453 . 700980) (-1454 . 700914) (-1455 . 700776) (-1456 . 700676) + (-1457 . 700588) (-1458 . 700556) (-1459 . 700259) (-1460 . 700069) + (-1461 . 699783) (-1462 . 699602) (** . 696608) (-1464 . 696527) + (-1465 . 696382) (-1466 . 696277) (-1467 . 696182) (-1468 . 696130) + (-1469 . 695615) (-1470 . 695513) (-1471 . 695350) (-1472 . 695140) + (-1473 . 694762) (-1474 . 694710) (-1475 . 694611) (-1476 . 694509) + (-1477 . 694475) (-1478 . 694319) (-1479 . 694234) (-1480 . 694175) + (-1481 . 693985) (-1482 . 693850) (-1483 . 693572) (-1484 . 693500) + (-1485 . 693208) (-1486 . 692832) (-1487 . 692671) (-1488 . 692600) + (-1489 . 692447) (-1490 . 692248) (-1491 . 692195) (-1492 . 691747) + (-1493 . 691652) (-1494 . 691596) (-1495 . 691230) (-1496 . 691055) + (-1497 . 690119) (-1498 . 689600) (-1499 . 689471) (-1500 . 689372) + (-1501 . 689177) (-1502 . 688793) (-1503 . 688571) (-1504 . 688397) + (-1505 . 688264) (-1506 . 688148) (-1507 . 687939) (-1508 . 687820) + (-1509 . 687721) (-1510 . 687644) (-1511 . 687561) (-1512 . 687305) + (-1513 . 687206) (-1514 . 686824) (-1515 . 686743) (-1516 . 686508) + (-1517 . 686379) (-1518 . 685931) (-1519 . 685836) (-1520 . 685762) + (-1521 . 685626) (-1522 . 685531) (-1523 . 685474) (-1524 . 685388) + (-1525 . 685185) (-1526 . 685130) (-1527 . 685075) (-1528 . 684952) + (-1529 . 684831) (-1530 . 684747) (-1531 . 684673) (-1532 . 684617) + (-1533 . 684558) (-1534 . 684265) (-1535 . 684120) (-1536 . 683874) + (-1537 . 683729) (-1538 . 682910) (-1539 . 682499) (-1540 . 682415) + (-1541 . 682195) (-1542 . 682123) (-1543 . 682095) (-1544 . 681785) + (-1545 . 681684) (-1546 . 681578) (-1547 . 681498) (-1548 . 681402) + (-1549 . 681314) (-1550 . 681156) (-1551 . 680979) (-1552 . 680883) + (-1553 . 680665) (-1554 . 680616) (-1555 . 680351) (-1556 . 680232) + (-1557 . 680053) (-1558 . 679969) (-1559 . 679741) (-1560 . 679626) + (-1561 . 679412) (-1562 . 679209) (-1563 . 678950) (-1564 . 678807) + (-1565 . 678711) (-1566 . 678659) (-1567 . 678522) (-1568 . 678377) + (-1569 . 678327) (-1570 . 678256) (-1571 . 678018) (-1572 . 677990) + (-1573 . 677917) (-1574 . 677837) (-1575 . 677679) (-1576 . 677583) + (-1577 . 677506) (-1578 . 677172) (-1579 . 676396) (-1580 . 676213) + (-1581 . 675668) (-1582 . 675516) (-1583 . 675216) (-9 . 675188) + (-1585 . 675136) (-1586 . 674983) (-1587 . 674589) (-1588 . 674360) + (-1589 . 674254) (-1590 . 674188) (-1591 . 674045) (-1592 . 673983) + (-1593 . 673873) (-1594 . 673820) (-1595 . 673528) (-1596 . 673401) + (-8 . 673373) (-1598 . 673256) (-1599 . 673082) (-1600 . 672884) + (-1601 . 672774) (-1602 . 672592) (-1603 . 672496) (-1604 . 672340) + (-1605 . 672209) (-1606 . 672127) (-1607 . 672039) (-7 . 672011) + (-1609 . 671603) (-1610 . 671500) (-1611 . 671434) (-1612 . 671333) + (-1613 . 670939) (-1614 . 670319) (-1615 . 670288) (-1616 . 670202) + (-1617 . 670131) (-1618 . 669916) (-1619 . 668716) (-1620 . 668364) + (-1621 . 668301) (-1622 . 668273) (-1623 . 668187) (-1624 . 667958) + (-1625 . 667665) (-1626 . 667135) (-1627 . 666991) (-1628 . 666898) + (-1629 . 666797) (-1630 . 666681) (-1631 . 666615) (-1632 . 666483) + (-1633 . 666431) (-1634 . 666086) (-1635 . 665950) (-1636 . 665697) + (-1637 . 665646) (-1638 . 665593) (-1639 . 665063) (-1640 . 664946) + (-1641 . 664675) (-1642 . 664602) (-1643 . 664440) (-1644 . 664096) + (-1645 . 663972) (-1646 . 663546) (-1647 . 663494) (-1648 . 663261) + (-1649 . 663206) (-1650 . 662896) (-1651 . 662730) (-1652 . 662557) + (-1653 . 662498) (-1654 . 662019) (-1655 . 661631) (-1656 . 661374) + (-1657 . 661183) (-1658 . 661079) (-1659 . 661005) (-1660 . 660905) + (-1661 . 660672) (-1662 . 660556) (-1663 . 660447) (-1664 . 660393) + (-1665 . 659577) (-1666 . 659511) (-1667 . 659391) (-1668 . 659269) + (-1669 . 659146) (-1670 . 658896) (-1671 . 658740) (-1672 . 658631) + (-1673 . 658494) (-1674 . 658015) (-1675 . 657922) (-1676 . 657596) + (-1677 . 657450) (-1678 . 657225) (-1679 . 657152) (-1680 . 656990) + (-1681 . 656904) (-1682 . 656836) (-1683 . 656695) (-1684 . 656590) + (-1685 . 656513) (-1686 . 656339) (-1687 . 656259) (-1688 . 656185) + (-1689 . 656080) (-1690 . 656027) (-1691 . 655943) (-1692 . 655847) + (-1693 . 655688) (-1694 . 655352) (-1695 . 655286) (-1696 . 655148) + (-1697 . 655054) (-1698 . 654911) (-1699 . 654730) (-1700 . 654605) + (-1701 . 654487) (-1702 . 654248) (-1703 . 654144) (-1704 . 653698) + (-1705 . 653647) (-1706 . 649104) (-1707 . 649052) (-1708 . 648800) + (-1709 . 648722) (-1710 . 648607) (-1711 . 648533) (-1712 . 648426) + (-1713 . 648325) (-1714 . 648267) (-1715 . 648196) (-1716 . 647779) + (-1717 . 647436) (-1718 . 647336) (-1719 . 646954) (-1720 . 646829) + (-1721 . 646727) (-1722 . 646281) (-1723 . 646203) (-1724 . 645765) + (-1725 . 645706) (-1726 . 645572) (-1727 . 645493) (-1728 . 645212) + (-1729 . 645010) (-1730 . 644795) (-1731 . 644743) (-1732 . 644523) + (-1733 . 644405) (-1734 . 644335) (-1735 . 644022) (-1736 . 643919) + (-1737 . 643887) (-1738 . 643792) (-1739 . 643625) (-1740 . 643510) + (-1741 . 643258) (-1742 . 643061) (-1743 . 642920) (-1744 . 642772) + (-1745 . 642672) (-1746 . 642145) (-1747 . 642059) (-1748 . 641955) + (-1749 . 641832) (-1750 . 641763) (-1751 . 641692) (-1752 . 641568) + (-1753 . 641346) (-1754 . 641148) (-1755 . 641041) (-1756 . 640798) + (-1757 . 640732) (-1758 . 640641) (-1759 . 640523) (-1760 . 640440) + (-1761 . 640218) (-1762 . 640144) (-1763 . 639946) (-1764 . 639724) + (-1765 . 639629) (-1766 . 639178) (-1767 . 639093) (-1768 . 639013) + (-1769 . 638786) (-1770 . 638684) (-1771 . 638505) (-1772 . 638016) + (-1773 . 637421) (-1774 . 637369) (-1775 . 637236) (-1776 . 637208) + (-1777 . 637137) (-1778 . 636926) (-1779 . 636798) (-1780 . 636691) + (-1781 . 636613) (-1782 . 636450) (-1783 . 636379) (-1784 . 636070) + (-1785 . 635667) (-1786 . 635572) (-1787 . 621341) (-1788 . 621175) + (-1789 . 621028) (-1790 . 621000) (-1791 . 620796) (-1792 . 620420) + (-1793 . 618192) (-1794 . 618113) (-1795 . 617861) (-1796 . 617539) + (-1797 . 617424) (-1798 . 617352) (-1799 . 617213) (-1800 . 617035) + (-1801 . 617007) (-1802 . 616785) (-1803 . 616433) (-1804 . 616275) + (-1805 . 616156) (-1806 . 615597) (-1807 . 615514) (-1808 . 615356) + (-1809 . 614482) (-1810 . 610419) (-1811 . 610026) (-1812 . 609974) + (-1813 . 609900) (-1814 . 609790) (-1815 . 609713) (-1816 . 609682) + (-1817 . 609648) (-1818 . 609089) (-1819 . 608515) (-1820 . 608127) + (-1821 . 607982) (-1822 . 607848) (-1823 . 607735) (-1824 . 607455) + (-1825 . 607421) (-1826 . 607335) (-1827 . 607168) (-1828 . 607074) + (-1829 . 606953) (-1830 . 606782) (-1831 . 606607) (-1832 . 606554) + (-1833 . 606378) (-1834 . 606350) (-1835 . 606132) (-1836 . 606052) + (-1837 . 605970) (-1838 . 604668) (-1839 . 604318) (-1840 . 604245) + (-1841 . 604127) (-1842 . 604075) (-1843 . 603970) (-1844 . 603838) + (-1845 . 603743) (-1846 . 600076) (-1847 . 600010) (-1848 . 599855) + (-1849 . 599427) (-1850 . 599317) (-1851 . 599221) (-1852 . 599127) + (-1853 . 598390) (-1854 . 598253) (-1855 . 597937) (-1856 . 595592) + (-1857 . 595495) (-1858 . 595439) (-1859 . 595216) (-1860 . 595097) + (-1861 . 594954) (-1862 . 594669) (-1863 . 594500) (-1864 . 593933) + (-1865 . 593179) (-1866 . 592903) (-1867 . 592810) (-1868 . 592452) + (-1869 . 592320) (-1870 . 591753) (-1871 . 591693) (-1872 . 591644) + (-1873 . 591576) (-1874 . 591300) (-1875 . 591176) (-1876 . 591079) + (-1877 . 590993) (-1878 . 590681) (-1879 . 590629) (-1880 . 590472) + (-1881 . 590375) (-1882 . 590147) (-1883 . 589994) (-1884 . 589966) + (-1885 . 589748) (-1886 . 589696) (-1887 . 589622) (-1888 . 589463) + (-1889 . 589300) (-1890 . 589173) (-1891 . 588904) (-1892 . 588631) + (-1893 . 588494) (-1894 . 588435) (-1895 . 588306) (-1896 . 588249) + (-1897 . 587796) (-1898 . 587186) (-1899 . 587084) (-1900 . 587056) + (-1901 . 586777) (-1902 . 586675) (-1903 . 586573) (-1904 . 586445) + (-1905 . 586417) (-1906 . 586357) (-1907 . 586260) (-1908 . 586226) + (-1909 . 586076) (-1910 . 585895) (-1911 . 585763) (-1912 . 585729) + (-1913 . 585656) (-1914 . 585428) (-1915 . 585345) (-1916 . 585066) + (-1917 . 584934) (-1918 . 583732) (-1919 . 583513) (-1920 . 583461) + (-1921 . 583356) (-1922 . 583324) (-1923 . 583132) (-1924 . 583079) + (-1925 . 582900) (-1926 . 582719) (-1927 . 582539) (-1928 . 582020) + (-1929 . 581893) (-1930 . 581755) (-1931 . 581702) (-1932 . 581519) + (-1933 . 581354) (-1934 . 581280) (-1935 . 581176) (-1936 . 581072) + (-1937 . 580774) (-1938 . 580720) (-1939 . 580632) (-1940 . 580577) + (-1941 . 580507) (-1942 . 580473) (-1943 . 580300) (-1944 . 580214) + (-1945 . 580136) (-1946 . 580079) (-1947 . 579607) (-1948 . 577192) + (-1949 . 577136) (-1950 . 577059) (-1951 . 576982) (-1952 . 576886) + (-1953 . 576814) (-1954 . 576733) (-1955 . 576652) (-1956 . 576458) + (-1957 . 576406) (-1958 . 576121) (-1959 . 576072) (-1960 . 576005) + (-1961 . 575863) (-1962 . 575814) (-1963 . 575707) (-1964 . 575635) + (-1965 . 575540) (-1966 . 575413) (-1967 . 575330) (-1968 . 574789) + (-1969 . 574706) (-1970 . 574587) (-1971 . 574520) (-1972 . 574443) + (-1973 . 574415) (-1974 . 574260) (-1975 . 574181) (-1976 . 574124) + (-1977 . 573560) (-1978 . 573402) (-1979 . 573242) (-1980 . 573035) + (-1981 . 572982) (-1982 . 572664) (-1983 . 572592) (-1984 . 572466) + (-1985 . 572287) (-1986 . 572234) (-1987 . 572182) (-1988 . 572023) + (-1989 . 571929) (-1990 . 571706) (-1991 . 571551) (-1992 . 571519) + (-1993 . 571460) (-1994 . 571331) (-1995 . 571278) (-1996 . 571104) + (-1997 . 570617) (-1998 . 570561) (-1999 . 570443) (-2000 . 570382) + (-2001 . 569386) (-2002 . 569313) (-2003 . 569217) (-2004 . 569045) + (-2005 . 568986) (-2006 . 568783) (-2007 . 568399) (-2008 . 568194) + (-2009 . 567971) (-2010 . 567620) (-2011 . 567537) (-2012 . 567480) + (-2013 . 567421) (-2014 . 567247) (-2015 . 567128) (-2016 . 567030) + (-2017 . 565734) (-2018 . 565606) (-2019 . 565396) (-2020 . 565172) + (-2021 . 565067) (-2022 . 564714) (-2023 . 564661) (-2024 . 564477) + (-2025 . 564315) (-2026 . 563924) (-2027 . 563823) (-2028 . 563685) + (-2029 . 563589) (-2030 . 563532) (-2031 . 563379) (-2032 . 563326) + (-2033 . 563008) (-2034 . 562679) (-2035 . 562620) (-2036 . 562570) + (-2037 . 562499) (-2038 . 562402) (-2039 . 562250) (-2040 . 562152) + (-2041 . 561506) (-2042 . 561478) (-2043 . 561200) (-2044 . 561128) + (-2045 . 560618) (-2046 . 560455) (-2047 . 560113) (-2048 . 560063) + (-2049 . 559960) (-2050 . 559849) (-2051 . 559549) (-2052 . 559461) + (-2053 . 558869) (-2054 . 558403) (-2055 . 558376) (-2056 . 558243) + (-2057 . 558119) (-2058 . 558031) (-2059 . 557961) (-2060 . 556780) + (-2061 . 556589) (-2062 . 556370) (-2063 . 556238) (-2064 . 556159) + (-2065 . 556106) (-2066 . 555960) (-2067 . 555800) (-2068 . 555604) + (-2069 . 555451) (-2070 . 555398) (-2071 . 555297) (-2072 . 555231) + (-2073 . 554913) (-2074 . 554842) (-2075 . 554759) (-2076 . 554667) + (-2077 . 554501) (-2078 . 554400) (-2079 . 554341) (-2080 . 554237) + (-2081 . 554125) (-2082 . 553938) (-2083 . 553799) (-2084 . 553728) + (-2085 . 553619) (-2086 . 553560) (-2087 . 553388) (-2088 . 553315) + (-2089 . 553176) (-2090 . 553096) (-2091 . 553041) (-2092 . 552331) + (-2093 . 552251) (-2094 . 552178) (-2095 . 552126) (-2096 . 552008) + (-2097 . 551943) (-2098 . 551877) (-2099 . 551732) (-2100 . 551521) + (-2101 . 551464) (-2102 . 551321) (-2103 . 551142) (-2104 . 550827) + (-2105 . 550712) (-2106 . 550450) (-2107 . 550362) (-2108 . 550297) + (-2109 . 550080) (-2110 . 550006) (-2111 . 549900) (-2112 . 549745) + (-2113 . 549617) (-2114 . 549474) (-2115 . 549413) (-2116 . 549260) + (-2117 . 548998) (-2118 . 548812) (-2119 . 548714) (-2120 . 548440) + (-2121 . 548278) (-2122 . 548029) (-2123 . 547866) (-2124 . 547792) + (-2125 . 547704) (-2126 . 547616) (-2127 . 547563) (-2128 . 547531) + (-2129 . 547251) (-2130 . 547178) (-2131 . 547003) (-2132 . 543340) + (-2133 . 543242) (-2134 . 543138) (-2135 . 543086) (-2136 . 541746) + (-2137 . 541633) (-2138 . 540666) (-2139 . 540608) (-2140 . 540431) + (-2141 . 540179) (-2142 . 540055) (-2143 . 539781) (-2144 . 539710) + (-2145 . 539537) (-2146 . 539393) (-2147 . 539249) (-2148 . 538572) + (-2149 . 538484) (-2150 . 538317) (-2151 . 538131) (-2152 . 538058) + (-2153 . 536785) (-2154 . 536671) (-2155 . 536424) (-2156 . 536351) + (-2157 . 536261) (-2158 . 535879) (-2159 . 535522) (-2160 . 535374) + (-2161 . 535033) (-2162 . 534866) (-2163 . 534741) (-2164 . 534630) + (-2165 . 534499) (-2166 . 534436) (-2167 . 533863) (-2168 . 533768) + (-2169 . 533650) (-2170 . 533492) (-2171 . 533376) (-2172 . 533286) + (-2173 . 533108) (-2174 . 533014) (-2175 . 532527) (-2176 . 532398) + (-2177 . 532326) (-2178 . 532227) (-2179 . 532174) (-2180 . 532089) + (-2181 . 531543) (-2182 . 531483) (-2183 . 531419) (-2184 . 531346) + (-2185 . 531147) (-2186 . 531070) (-2187 . 530963) (-2188 . 530912) + (-2189 . 530702) (-2190 . 530422) (-2191 . 530326) (-2192 . 530202) + (-2193 . 530129) (-2194 . 530036) (-2195 . 529938) (-2196 . 529657) + (-2197 . 529260) (-2198 . 529182) (-2199 . 528936) (-2200 . 528745) + (-2201 . 528644) (-2202 . 528332) (-2203 . 527951) (-2204 . 527793) + (-2205 . 527545) (-2206 . 527433) (-2207 . 527365) (-2208 . 527119) + (-2209 . 523119) (-2210 . 522881) (-2211 . 522815) (-2212 . 522607) + (-2213 . 522203) (-2214 . 522137) (-2215 . 521918) (-2216 . 516579) + (-2217 . 516527) (-2218 . 516456) (-2219 . 516404) (-2220 . 515587) + (-2221 . 515399) (-2222 . 514581) (-2223 . 514467) (-2224 . 514394) + (-2225 . 514262) (-2226 . 514158) (-2227 . 513951) (-2228 . 513772) + (-2229 . 513671) (-2230 . 513381) (-2231 . 513322) (-2232 . 513226) + (-2233 . 512987) (-2234 . 512681) (-2235 . 512557) (-2236 . 512416) + (-2237 . 512299) (-2238 . 511570) (-2239 . 511440) (-2240 . 508659) + (-2241 . 508581) (-2242 . 508507) (-2243 . 508354) (-2244 . 508204) + (-2245 . 508103) (-2246 . 508044) (-2247 . 507870) (-2248 . 507778) + (-2249 . 507049) (-2250 . 506921) (-2251 . 506820) (-2252 . 506746) + (-2253 . 506547) (-2254 . 506494) (-2255 . 506457) (-2256 . 505865) + (-2257 . 505779) (-2258 . 505065) (-2259 . 504973) (-2260 . 504297) + (-2261 . 504016) (-2262 . 503879) (-2263 . 503577) (-2264 . 503326) + (-2265 . 503254) (-2266 . 502955) (-2267 . 502853) (-2268 . 502767) + (-2269 . 502425) (-2270 . 502298) (-2271 . 501734) (-2272 . 501684) + (-2273 . 501257) (-2274 . 500962) (-2275 . 500909) (-2276 . 500622) + (-2277 . 500566) (-2278 . 500513) (-2279 . 500305) (-2280 . 500175) + (-2281 . 499611) (-2282 . 498954) (-2283 . 498749) (-2284 . 498606) + (-2285 . 498536) (-2286 . 498384) (-2287 . 498317) (-2288 . 497877) + (-2289 . 497313) (-2290 . 497260) (-2291 . 497189) (-2292 . 496967) + (-2293 . 496842) (-2294 . 496548) (-2295 . 496452) (-2296 . 496354) + (-2297 . 496220) (-2298 . 496100) (-2299 . 495962) (-2300 . 495843) + (-2301 . 495169) (-2302 . 495084) (-2303 . 494869) (-2304 . 494773) + (-2305 . 494720) (-2306 . 494627) (-2307 . 494539) (-2308 . 494482) + (-2309 . 494451) (-2310 . 494399) (-2311 . 493725) (-2312 . 493673) + (-2313 . 493618) (-2314 . 493568) (-2315 . 493450) (-2316 . 492269) + (-2317 . 491925) (-2318 . 491707) (-2319 . 490970) (-2320 . 490917) + (-2321 . 490810) (-2322 . 490696) (-2323 . 490637) (-2324 . 490576) + (-2325 . 490407) (-2326 . 489967) (-2327 . 489608) (-2328 . 489501) + (-2329 . 488939) (-2330 . 488828) (-2331 . 488794) (-2332 . 488589) + (-2333 . 488486) (-2334 . 488296) (-2335 . 488195) (-2336 . 488037) + (-2337 . 487844) (-2338 . 487785) (-2339 . 487223) (-2340 . 487146) + (-2341 . 487030) (-2342 . 486797) (-2343 . 486654) (-2344 . 486559) + (-2345 . 486460) (-2346 . 486323) (-2347 . 486084) (-2348 . 485522) + (-2349 . 485263) (-2350 . 484842) (-2351 . 484734) (-2352 . 484663) + (-2353 . 484629) (-2354 . 484393) (-2355 . 484236) (-2356 . 484132) + (-2357 . 483457) (-2358 . 483297) (-2359 . 483243) (-2360 . 483191) + (-2361 . 483109) (-2362 . 482813) (-2363 . 482394) (-2364 . 482226) + (-2365 . 481788) (-2366 . 481302) (-2367 . 480627) (-2368 . 480553) + (-2369 . 480356) (-2370 . 480104) (-2371 . 480021) (-2372 . 479908) + (-2373 . 479826) (-2374 . 479684) (-2375 . 479603) (-2376 . 479550) + (-2377 . 479366) (-2378 . 478691) (-2379 . 478593) (-2380 . 478469) + (-2381 . 478291) (-2382 . 478176) (-2383 . 478102) (-2384 . 477852) + (-2385 . 477325) (-2386 . 477268) (-2387 . 477143) (-2388 . 476580) + (-2389 . 476199) (-2390 . 476105) (-2391 . 476036) (-2392 . 475952) + (-2393 . 475822) (-2394 . 475400) (-2395 . 475347) (-2396 . 474972) + (-2397 . 474817) (-2398 . 474555) (-2399 . 474123) (-2400 . 474041) + (-2401 . 473956) (-2402 . 473893) (-2403 . 473330) (-2404 . 473260) + (-2405 . 472852) (-2406 . 472768) (-2407 . 472636) (-2408 . 472571) + (-2409 . 472498) (-2410 . 472417) (-2411 . 472316) (-2412 . 471987) + (-2413 . 471850) (-2414 . 471182) (-2415 . 470619) (-2416 . 470420) + (-2417 . 470368) (-2418 . 470304) (-2419 . 470058) (-2420 . 470001) + (-2421 . 469932) (-2422 . 469880) (-2423 . 469745) (-2424 . 469661) + (-2425 . 469543) (-2426 . 469457) (-2427 . 469209) (-2428 . 468647) + (-2429 . 467619) (-2430 . 467446) (-2431 . 467387) (-2432 . 467224) + (-2433 . 467024) (-2434 . 466996) (-2435 . 466898) (-2436 . 466824) + (-2437 . 466796) (-2438 . 466678) (-2439 . 466598) (-2440 . 466569) + (-2441 . 466516) (-2442 . 465954) (-2443 . 465841) (-2444 . 465788) + (-2445 . 465561) (-2446 . 465499) (-2447 . 465425) (-2448 . 464583) + (-2449 . 464453) (-2450 . 464386) (-2451 . 464326) (-2452 . 464231) + (-2453 . 464054) (-2454 . 463391) (-2455 . 462829) (-2456 . 462747) + (-2457 . 462124) (-2458 . 462042) (-2459 . 461942) (-2460 . 461840) + (-2461 . 461756) (-2462 . 461703) (-2463 . 461538) (-2464 . 461311) + (-2465 . 461042) (-2466 . 460612) (-2467 . 460050) (-2468 . 459964) + (-2469 . 459897) (-2470 . 459372) (-2471 . 458949) (-2472 . 458865) + (-2473 . 458633) (-2474 . 458527) (-2475 . 458429) (-2476 . 458350) + (-2477 . 458132) (-2478 . 457976) (-2479 . 457414) (-2480 . 457354) + (-2481 . 457209) (-2482 . 457049) (-2483 . 457020) (-2484 . 456968) + (-2485 . 456760) (-2486 . 456650) (-2487 . 456319) (-2488 . 456107) + (-2489 . 455980) (-2490 . 455896) (-2491 . 455766) (-2492 . 455667) + (-2493 . 455571) (-2494 . 455515) (-2495 . 455438) (-2496 . 454095) + (-2497 . 453992) (-2498 . 453820) (-2499 . 453617) (-2500 . 453463) + (-2501 . 453360) (-2502 . 453223) (-2503 . 453043) (-2504 . 452830) + (-2505 . 452700) (-2506 . 452617) (-2507 . 452562) (-2508 . 452447) + (-2509 . 452125) (-2510 . 451953) (-2511 . 451894) (-2512 . 451812) + (-2513 . 451396) (-2514 . 451150) (-2515 . 451020) (-2516 . 450592) + (-2517 . 450536) (-2518 . 450318) (-2519 . 450159) (-2520 . 450099) + (-2521 . 450010) (-2522 . 449838) (-2523 . 449764) (-2524 . 449454) + (-2525 . 449306) (-2526 . 449255) (-2527 . 449160) (-2528 . 448905) + (-2529 . 448732) (-2530 . 448680) (-2531 . 448603) (-2532 . 448431) + (-2533 . 448358) (-2534 . 448262) (-2535 . 447700) (-2536 . 447338) + (-2537 . 447200) (-2538 . 447039) (-2539 . 446886) (-2540 . 446738) + (-2541 . 446211) (-2542 . 446095) (-2543 . 445943) (-2544 . 445815) + (-2545 . 445681) (-2546 . 445365) (-2547 . 445313) (-2548 . 445145) + (-2549 . 444939) (-2550 . 444845) (-2551 . 444693) (-2552 . 444619) + (-2553 . 444554) (-2554 . 444423) (-2555 . 443722) (-2556 . 443606) + (-2557 . 443484) (-2558 . 443205) (-2559 . 443126) (-2560 . 443031) + (-2561 . 442726) (-2562 . 442485) (-2563 . 442387) (-2564 . 442353) + (-2565 . 442273) (-2566 . 441782) (-2567 . 441701) (-2568 . 441595) + (-2569 . 441410) (-2570 . 441324) (-2571 . 441241) (-2572 . 441146) + (-2573 . 441009) (-2574 . 440932) (-2575 . 440756) (-2576 . 440627) + (-2577 . 440539) (-2578 . 440306) (-2579 . 440148) (-2580 . 439660) + (-2581 . 439607) (-2582 . 438854) (-2583 . 438759) (-2584 . 438513) + (-2585 . 437361) (-2586 . 437087) (-2587 . 436775) (-2588 . 436387) + (-2589 . 436169) (-2590 . 435842) (-2591 . 435672) (-2592 . 435615) + (-2593 . 435490) (-2594 . 435123) (-2595 . 435072) (-2596 . 434581) + (-2597 . 434529) (-2598 . 434368) (-2599 . 434324) (-2600 . 434209) + (-2601 . 434130) (-2602 . 433896) (-2603 . 433566) (-2604 . 433452) + (-2605 . 433334) (-2606 . 433284) (-2607 . 433052) (-2608 . 432931) + (-2609 . 432794) (-2610 . 432708) (-2611 . 432224) (-2612 . 431978) + (-2613 . 422528) (-2614 . 422368) (-2615 . 422305) (-2616 . 422100) + (-2617 . 421853) (-2618 . 421466) (-2619 . 421438) (-2620 . 421341) + (-2621 . 421143) (-2622 . 421049) (-2623 . 420969) (-2624 . 420795) + (-2625 . 420568) (-2626 . 420383) (-2627 . 419423) (-2628 . 419248) + (-2629 . 419110) (-2630 . 419043) (-2631 . 418933) (-2632 . 418658) + (-2633 . 418506) (-2634 . 418478) (-2635 . 418292) (-2636 . 418208) + (-2637 . 418031) (-2638 . 417916) (-2639 . 417842) (-2640 . 417756) + (-2641 . 417657) (-2642 . 417411) (-2643 . 417268) (-2644 . 417022) + (-2645 . 416912) (-2646 . 416105) (-2647 . 415780) (-2648 . 415672) + (-2649 . 415594) (-2650 . 415541) (-2651 . 415461) (-2652 . 415409) + (-2653 . 415272) (-2654 . 415022) (-2655 . 414966) (-2656 . 414819) + (-2657 . 414577) (-2658 . 414437) (-2659 . 414363) (-2660 . 410413) + (-2661 . 410306) (-2662 . 410218) (-2663 . 410138) (-2664 . 410044) + (-2665 . 409931) (-2666 . 409610) (-2667 . 409514) (-2668 . 409372) + (-2669 . 409289) (-2670 . 409234) (-2671 . 408817) (-2672 . 408506) + (-2673 . 408334) (-2674 . 408285) (-2675 . 408195) (-2676 . 408128) + (-2677 . 408032) (-2678 . 407874) (-2679 . 407534) (-2680 . 407449) + (-2681 . 405663) (-2682 . 405200) (-2683 . 405147) (-2684 . 405024) + (-2685 . 404927) (-2686 . 404762) (-2687 . 404616) (-2688 . 404264) + (-2689 . 404215) (-2690 . 404132) (-2691 . 403674) (-2692 . 403365) + (-2693 . 403200) (-2694 . 403131) (-2695 . 403037) (-2696 . 402616) + (-2697 . 401743) (-2698 . 401674) (-2699 . 401359) (-2700 . 401213) + (-2701 . 401102) (-2702 . 401002) (-2703 . 400934) (-2704 . 400791) + (-2705 . 400462) (-2706 . 400322) (-2707 . 400223) (-2708 . 400122) + (-2709 . 400019) (-2710 . 399774) (-2711 . 399566) (-2712 . 399271) + (-2713 . 399010) (-2714 . 398774) (-2715 . 398667) (-2716 . 398589) + (-2717 . 398425) (-2718 . 398304) (-2719 . 398082) (-2720 . 397987) + (-2721 . 397541) (-2722 . 397445) (-2723 . 397371) (-2724 . 397258) + (-2725 . 397133) (-2726 . 396454) (-2727 . 396401) (-2728 . 396343) + (-2729 . 396249) (-2730 . 396180) (-2731 . 395886) (-2732 . 395809) + (-2733 . 395743) (-2734 . 395681) (-2735 . 394419) (-2736 . 394209) + (-2737 . 394060) (-2738 . 393959) (-2739 . 393907) (-2740 . 393762) + (-2741 . 393676) (-2742 . 393580) (-2743 . 393513) (-2744 . 393454) + (-2745 . 393375) (-2746 . 393269) (-2747 . 393192) (-2748 . 393138) + (-2749 . 392970) (-2750 . 392686) (-2751 . 392506) (-2752 . 392454) + (-2753 . 392303) (-2754 . 392207) (-2755 . 392152) (-2756 . 391779) + (-2757 . 391562) (-2758 . 391489) (-2759 . 391407) (-2760 . 391375) + (-2761 . 391246) (-2762 . 391173) (-2763 . 391018) (-2764 . 390764) + (-2765 . 390690) (-2766 . 390490) (-2767 . 390159) (-2768 . 390082) + (-2769 . 390012) (-2770 . 389924) (-2771 . 389858) (-2772 . 389551) + (-2773 . 389420) (-2774 . 389370) (-2775 . 389342) (-2776 . 388194) + (-2777 . 388117) (-2778 . 388049) (-2779 . 387933) (-2780 . 387706) + (-2781 . 387221) (-2782 . 387192) (-2783 . 387108) (-2784 . 386626) + (-2785 . 386195) (-2786 . 386079) (-2787 . 385978) (-2788 . 385551) + (-2789 . 385463) (-2790 . 384948) (-2791 . 384789) (-2792 . 384625) + (-2793 . 384266) (-2794 . 384126) (-2795 . 384042) (-2796 . 383956) + (-2797 . 383813) (-2798 . 383731) (-2799 . 383657) (-2800 . 383560) + (-2801 . 383433) (-2802 . 383374) (-2803 . 383230) (-2804 . 383160) + (-2805 . 383037) (-2806 . 382803) (-2807 . 382719) (-2808 . 382543) + (-2809 . 382332) (-2810 . 382150) (-2811 . 382053) (-2812 . 381987) + (-2813 . 381882) (-2814 . 381810) (-2815 . 381654) (-2816 . 381551) + (-2817 . 381495) (-2818 . 381396) (-2819 . 381197) (-2820 . 381008) + (-2821 . 380871) (-2822 . 380752) (-2823 . 380507) (-2824 . 380473) + (-2825 . 380364) (-2826 . 380281) (-2827 . 380195) (-2828 . 379977) + (-2829 . 379662) (-2830 . 379605) (-2831 . 379447) (-2832 . 379275) + (-2833 . 379117) (-2834 . 378494) (-2835 . 378409) (-2836 . 378325) + (-2837 . 378259) (-2838 . 378102) (-2839 . 377939) (-2840 . 377515) + (-2841 . 377443) (-2842 . 377157) (-2843 . 376850) (-2844 . 376763) + (-12 . 376591) (-2846 . 376331) (-2847 . 376278) (-2848 . 376207) + (-2849 . 376179) (-2850 . 375908) (-2851 . 375840) (-2852 . 374979) + (-2853 . 374753) (-2854 . 374597) (-2855 . 374454) (-2856 . 374316) + (-2857 . 374158) (-2858 . 374101) (-2859 . 373977) (-2860 . 373893) + (-2861 . 373640) (-2862 . 373569) (-2863 . 373482) (-2864 . 373287) + (-2865 . 373202) (-2866 . 373007) (-2867 . 372934) (-2868 . 372092) + (-2869 . 371546) (-2870 . 371402) (-2871 . 371343) (-2872 . 371246) + (-2873 . 371125) (-2874 . 371065) (-2875 . 371012) (-2876 . 370595) + (-2877 . 370382) (-2878 . 370279) (-2879 . 370166) (-2880 . 370111) + (-2881 . 366502) (-2882 . 366419) (-2883 . 366311) (-2884 . 366055) + (-2885 . 366003) (-2886 . 364901) (-2887 . 364805) (-2888 . 364666) + (-2889 . 364635) (-2890 . 364583) (-2891 . 364461) (-2892 . 364405) + (-2893 . 364348) (-2894 . 364217) (-2895 . 364005) (-2896 . 363977) + (-2897 . 363393) (-2898 . 363247) (-2899 . 363084) (-2900 . 362349) + (-2901 . 362107) (-2902 . 362025) (-2903 . 361937) (-2904 . 361831) + (-2905 . 361728) (-2906 . 361585) (-2907 . 361405) (-2908 . 359973) + (-2909 . 359857) (-2910 . 359735) (-2911 . 359344) (-2912 . 359276) + (-2913 . 359198) (-2914 . 359128) (-2915 . 358914) (-2916 . 358862) + (-2917 . 358509) (-2918 . 358458) (-2919 . 358248) (-2920 . 358147) + (-2921 . 358113) (-2922 . 358029) (-2923 . 357595) (-2924 . 356982) + (-2925 . 356927) (-2926 . 356826) (-2927 . 356760) (-2928 . 356587) + (-2929 . 356506) (-2930 . 356376) (-2931 . 356081) (-2932 . 355908) + (-2933 . 355874) (-2934 . 355447) (-2935 . 355207) (-2936 . 354733) + (-2937 . 354638) (-2938 . 354227) (-2939 . 354143) (-2940 . 354089) + (-2941 . 353700) (-2942 . 353626) (-2943 . 353498) (-2944 . 353359) + (-2945 . 353206) (-2946 . 353136) (-2947 . 353055) (-2948 . 353021) + (-2949 . 352949) (-2950 . 334374) (* . 330107) (-2952 . 329978) + (-2953 . 329700) (-2954 . 329293) (-2955 . 329068) (-2956 . 328694) + (-2957 . 328098) (-2958 . 327953) (-2959 . 326655) (-2960 . 326578) + (-2961 . 326492) (-2962 . 323671) (-2963 . 323301) (-2964 . 323167) + (-2965 . 322758) (-2966 . 322670) (-2967 . 322490) (-2968 . 322421) + (-2969 . 322292) (-2970 . 321588) (-2971 . 321452) (-2972 . 320974) + (-2973 . 320831) (-2974 . 320220) (-2975 . 320142) (-2976 . 319980) + (-2977 . 319877) (-2978 . 318660) (-2979 . 318572) (-2980 . 318245) + (-2981 . 317564) (-2982 . 316904) (-2983 . 316477) (-2984 . 316338) + (-2985 . 316066) (-2986 . 315906) (-2987 . 315841) (-2988 . 315727) + (-2989 . 315588) (-2990 . 315028) (-2991 . 314932) (-2992 . 314835) + (-2993 . 314524) (-2994 . 314356) (-2995 . 314014) (-2996 . 313887) + (-2997 . 312999) (-2998 . 312927) (-2999 . 312654) (-3000 . 312536) + (-3001 . 312467) (-3002 . 312415) (-3003 . 312162) (-3004 . 312110) + (-3005 . 311918) (-3006 . 311814) (-3007 . 311583) (-3008 . 311352) + (-3009 . 311215) (-3010 . 311163) (-3011 . 311063) (-3012 . 310953) + (-3013 . 310882) (-3014 . 310741) (-3015 . 310575) (-3016 . 310417) + (-3017 . 310330) (-3018 . 310148) (-3019 . 309070) (-3020 . 308986) + (-3021 . 308706) (-3022 . 308565) (-3023 . 308335) (-3024 . 308262) + (-3025 . 308172) (-3026 . 308089) (-3027 . 307745) (-3028 . 307375) + (-3029 . 307216) (-3030 . 306997) (-3031 . 306902) (-3032 . 306849) + (-3033 . 305933) (-3034 . 305867) (-3035 . 305811) (-3036 . 305701) + (-3037 . 305577) (-3038 . 305382) (-3039 . 305262) (-3040 . 305175) + (-3041 . 304950) (-3042 . 304810) (-3043 . 304758) (-3044 . 304605) + (-3045 . 304499) (-3046 . 304437) (-3047 . 304289) (-3048 . 304017) + (-3049 . 303922) (-3050 . 303693) (-3051 . 303622) (-3052 . 302988) + (-3053 . 302386) (-3054 . 302260) (-3055 . 302200) (-3056 . 302101) + (-3057 . 301894) (-3058 . 301779) (-3059 . 301690) (-3060 . 301511) + (-3061 . 301418) (-3062 . 301300) (-3063 . 300766) (-3064 . 300611) + (-3065 . 300393) (-3066 . 300172) (-3067 . 299788) (-3068 . 299728) + (-3069 . 299651) (-3070 . 299063) (-3071 . 298937) (-3072 . 298762) + (-3073 . 297576) (-3074 . 297361) (-3075 . 297308) (-3076 . 297234) + (-3077 . 297168) (-3078 . 296855) (-3079 . 296748) (-3080 . 296679) + (-3081 . 296431) (-3082 . 296278) (-3083 . 295925) (-3084 . 295004) + (-3085 . 294778) (-3086 . 294442) (-3087 . 294195) (-3088 . 294139) + (-3089 . 292957) (-3090 . 292809) (-3091 . 292710) (-3092 . 292631) + (-3093 . 292452) (-3094 . 292272) (-3095 . 291936) (-3096 . 291829) + (-3097 . 291752) (-3098 . 291675) (-3099 . 291521) (-3100 . 291262) + (-3101 . 291144) (-3102 . 288936) (-3103 . 288884) (-3104 . 288783) + (-3105 . 288709) (-3106 . 288632) (-3107 . 288581) (-3108 . 288421) + (-3109 . 288287) (-3110 . 287983) (-3111 . 286757) (-3112 . 286173) + (-3113 . 285994) (-3114 . 285945) (-3115 . 285822) (-3116 . 285750) + (-3117 . 285722) (-3118 . 285609) (-3119 . 285496) (-3120 . 285386) + (-3121 . 285044) (-3122 . 285015) (-3123 . 284987) (-3124 . 284628) + (-3125 . 284468) (-3126 . 284380) (-3127 . 284184) (-3128 . 283758) + (-3129 . 283679) (-3130 . 283572) (-3131 . 283285) (-3132 . 283190) + (-3133 . 282679) (-3134 . 281375) (-3135 . 281341) (-3136 . 281238) + (-3137 . 281108) (-3138 . 281024) (-3139 . 280838) (-3140 . 280645) + (-3141 . 280478) (-3142 . 280328) (-3143 . 280146) (-3144 . 279894) + (-3145 . 279286) (-3146 . 279190) (-3147 . 278964) (-3148 . 278478) + (-3149 . 278345) (-3150 . 278183) (-3151 . 278151) (-3152 . 278065) + (-3153 . 277547) (-3154 . 277389) (-3155 . 277302) (-3156 . 276975) + (-3157 . 276792) (-3158 . 276709) (-3159 . 276567) (-3160 . 276218) + (-3161 . 276120) (-3162 . 275809) (-3163 . 275753) (-3164 . 275631) + (-3165 . 275489) (-3166 . 275137) (-3167 . 274754) (-3168 . 274671) + (-3169 . 274536) (-3170 . 274472) (-3171 . 274330) (-3172 . 274184) + (-3173 . 274061) (-3174 . 273942) (-3175 . 273869) (-3176 . 273774) + (-3177 . 273656) (-3178 . 273577) (-3179 . 271721) (-3180 . 271617) + (-3181 . 271557) (-3182 . 271489) (-3183 . 271280) (-3184 . 271228) + (-3185 . 271157) (-3186 . 271044) (-3187 . 270916) (-3188 . 270820) + (-3189 . 270601) (-3190 . 270416) (-3191 . 270176) (-3192 . 270104) + (-3193 . 269658) (-3194 . 269557) (-3195 . 267779) (-3196 . 267726) + (-3197 . 267671) (-3198 . 267431) (-3199 . 267376) (-3200 . 267275) + (-3201 . 266983) (-3202 . 266946) (-3203 . 266886) (-3204 . 266776) + (-3205 . 266699) (-3206 . 266575) (-3207 . 266455) (-3208 . 266378) + (-3209 . 266237) (-3210 . 266115) (-3211 . 265981) (-3212 . 265849) + (-3213 . 265766) (-3214 . 265434) (-3215 . 265343) (-3216 . 265188) + (-3217 . 264816) (-3218 . 264763) (-3219 . 264710) (-3220 . 264566) + (-3221 . 264484) (-3222 . 263366) (-3223 . 263206) (-3224 . 262936) + (-3225 . 262866) (-3226 . 262758) (-3227 . 262520) (-3228 . 262239) + (-3229 . 262160) (-3230 . 261802) (-3231 . 261532) (-3232 . 260568) + (-3233 . 260481) (-3234 . 260426) (-3235 . 260329) (-3236 . 260171) + (-3237 . 260055) (-3238 . 259985) (-3239 . 259923) (-3240 . 259824) + (-3241 . 259757) (-3242 . 259702) (-3243 . 259531) (-3244 . 259472) + (-3245 . 258729) (-3246 . 258628) (-3247 . 258576) (-3248 . 258521) + (-3249 . 258413) (-3250 . 258322) (-3251 . 258068) (-3252 . 257995) + (-3253 . 257815) (-3254 . 257659) (-3255 . 257567) (-3256 . 257334) + (-3257 . 257182) (-3258 . 256983) (-3259 . 256897) (-3260 . 256588) + (-3261 . 256472) (-3262 . 256353) (-3263 . 256106) (-3264 . 256054) + (-3265 . 255941) (-3266 . 255663) (-3267 . 255321) (-3268 . 255142) + (-3269 . 255015) (-3270 . 254886) (-3271 . 254749) (-3272 . 254655) + (-3273 . 254502) (-3274 . 254378) (-3275 . 254325) (-3276 . 253898) + (-3277 . 253574) (-3278 . 253497) (-3279 . 253307) (-3280 . 253241) + (-3281 . 253178) (-3282 . 252862) (-3283 . 252788) (-3284 . 252680) + (-3285 . 252606) (-3286 . 252518) (-3287 . 252279) (-3288 . 252136) + (-3289 . 251844) (-3290 . 251631) (-3291 . 251561) (-3292 . 251511) + (-3293 . 251432) (-3294 . 251353) (-3295 . 251050) (-3296 . 250957) + (-3297 . 250872) (-3298 . 250844) (-3299 . 250741) (-3300 . 250642) + (-3301 . 250418) (-3302 . 243475) (-3303 . 243393) (-3304 . 243197) + (-3305 . 242907) (-3306 . 242689) (-3307 . 241849) (-3308 . 241543) + (-3309 . 241413) (-3310 . 240814) (-3311 . 240747) (-3312 . 240651) + (-3313 . 240204) (-3314 . 240058) (-3315 . 239980) (-3316 . 239901) + (-3317 . 239809) (-3318 . 239711) (-3319 . 239607) (-3320 . 239464) + (-3321 . 239263) (-3322 . 239169) (-3323 . 239057) (-3324 . 238772) + (-3325 . 238630) (-3326 . 238558) (-3327 . 238434) (-3328 . 238304) + (-3329 . 238252) (-3330 . 238149) (-3331 . 238090) (-3332 . 237759) + (-3333 . 237385) (-3334 . 237301) (-3335 . 237273) (-3336 . 237127) + (-3337 . 236825) (-3338 . 236754) (-3339 . 236702) (-3340 . 236649) + (-3341 . 236587) (-3342 . 236449) (-3343 . 236380) (-3344 . 236307) + (-3345 . 236158) (-3346 . 236088) (-3347 . 236008) (-3348 . 235769) + (-3349 . 235716) (-3350 . 235564) (-3351 . 235300) (-3352 . 234718) + (-3353 . 234658) (-3354 . 234563) (-3355 . 234419) (-3356 . 234261) + (-3357 . 234108) (-3358 . 234047) (-3359 . 233975) (-3360 . 233922) + (-3361 . 233841) (-3362 . 233721) (-3363 . 233480) (-3364 . 233337) + (-3365 . 232791) (-3366 . 232399) (-3367 . 232322) (-3368 . 232226) + (-3369 . 231846) (-3370 . 231785) (-3371 . 231730) (-3372 . 231343) + (-3373 . 231248) (-3374 . 231095) (-3375 . 231000) (-3376 . 230634) + (-3377 . 230581) (-3378 . 230421) (-3379 . 230325) (-3380 . 230167) + (-3381 . 229723) (-3382 . 229640) (-3383 . 229608) (-3384 . 229452) + (-3385 . 229205) (-3386 . 229039) (-3387 . 228987) (-3388 . 228833) + (-3389 . 228750) (-3390 . 228647) (-3391 . 228528) (-3392 . 228407) + (-3393 . 228019) (-3394 . 227903) (-3395 . 227874) (-3396 . 227819) + (-3397 . 227745) (-3398 . 227580) (-3399 . 227492) (-3400 . 227406) + (-3401 . 227304) (-3402 . 227216) (-3403 . 227010) (-3404 . 226940) + (-3405 . 226844) (-3406 . 226791) (-3407 . 226669) (-3408 . 226505) + (-3409 . 225962) (-3410 . 225862) (-3411 . 225747) (-3412 . 225594) + (-3413 . 225481) (-3414 . 225410) (-3415 . 225034) (-3416 . 224977) + (-3417 . 224533) (-3418 . 224480) (-3419 . 223837) (-3420 . 223522) + (-3421 . 223416) (-3422 . 223262) (-3423 . 223138) (-3424 . 223065) + (-3425 . 222702) (-3426 . 222644) (-3427 . 222544) (-3428 . 222492) + (-3429 . 222147) (-3430 . 221953) (-3431 . 221795) (-3432 . 221673) + (-3433 . 221605) (-3434 . 221531) (-3435 . 220897) (-3436 . 220766) + (-3437 . 220643) (-3438 . 220615) (-3439 . 220490) (-3440 . 220319) + (-3441 . 219716) (-3442 . 219619) (-3443 . 219421) (-3444 . 219327) + (-3445 . 218525) (-3446 . 218497) (-3447 . 218463) (-3448 . 218270) + (-3449 . 218182) (-3450 . 218023) (-3451 . 217964) (-3452 . 217456) + (-3453 . 217311) (-3454 . 217223) (-3455 . 216973) (-3456 . 216836) + (-3457 . 216749) (-3458 . 216616) (-3459 . 216518) (-3460 . 216363) + (-3461 . 216160) (-3462 . 215971) (-3463 . 215800) (-3464 . 215748) + (-3465 . 215695) (-3466 . 215642) (-3467 . 215424) (-3468 . 215258) + (-3469 . 214672) (-3470 . 214562) (-3471 . 214439) (-3472 . 214232) + (-3473 . 214085) (-3474 . 213990) (-3475 . 213909) (-3476 . 213857) + (-3477 . 213729) (-3478 . 213677) (-3479 . 213603) (-3480 . 213211) + (-3481 . 213081) (-3482 . 213004) (-3483 . 212945) (-3484 . 212801) + (-3485 . 212713) (-3486 . 212661) (-3487 . 212596) (-3488 . 212211) + (-3489 . 212111) (-3490 . 210665) (-3491 . 210455) (-3492 . 210351) + (-3493 . 210278) (-3494 . 210225) (-3495 . 210019) (-3496 . 209825) + (-3497 . 209716) (-3498 . 209663) (-3499 . 209592) (-3500 . 209497) + (-3501 . 209414) (-3502 . 209335) (-3503 . 209280) (-3504 . 208851) + (-3505 . 208798) (-3506 . 208628) (-3507 . 208520) (-3508 . 208233) + (-3509 . 208045) (-3510 . 207948) (-3511 . 207880) (-3512 . 207754) + (-3513 . 207219) (-3514 . 206798) (-3515 . 206660) (-3516 . 206280) + (-3517 . 206206) (-3518 . 205620) (-3519 . 205554) (-3520 . 205350) + (-3521 . 205034) (-3522 . 204911) (-3523 . 204254) (-3524 . 203578) + (-3525 . 203203) (-3526 . 201473) (-3527 . 201423) (-3528 . 201363) + (-3529 . 201203) (-3530 . 201014) (-3531 . 200600) (-3532 . 200504) + (-3533 . 200439) (-3534 . 199011) (-3535 . 198953) (-3536 . 198812) + (-3537 . 198208) (-3538 . 198156) (-3539 . 197795) (-3540 . 197742) + (-3541 . 197535) (-3542 . 197449) (-3543 . 196269) (-3544 . 196174) + (-3545 . 195906) (-3546 . 195455) (-3547 . 195372) (-3548 . 195131) + (-3549 . 195079) (-3550 . 194923) (-3551 . 194809) (-3552 . 194629) + (-3553 . 194474) (-3554 . 194301) (-3555 . 194037) (-3556 . 193975) + (-3557 . 192725) (-3558 . 192617) (-3559 . 192421) (-3560 . 192186) + (-3561 . 192023) (-3562 . 191808) (-3563 . 191170) (-3564 . 191069) + (-3565 . 190950) (-3566 . 190857) (-3567 . 190775) (-3568 . 190572) + (-3569 . 190170) (-3570 . 190142) (-3571 . 189970) (-3572 . 189918) + (-3573 . 189750) (-3574 . 189690) (-3575 . 189638) (-3576 . 189483) + (-3577 . 189382) (-3578 . 189117) (-3579 . 189058) (-3580 . 188960) + (-3581 . 188762) (-3582 . 188691) (-3583 . 187756) (-3584 . 186167) + (-3585 . 186027) (-3586 . 185914) (-3587 . 185741) (-3588 . 185374) + (-3589 . 184928) (-3590 . 184832) (-3591 . 184761) (-3592 . 184553) + (-3593 . 184321) (-3594 . 184185) (-3595 . 184133) (-3596 . 181292) + (-3597 . 181089) (-3598 . 180751) (-3599 . 180091) (-3600 . 180038) + (-3601 . 179575) (-3602 . 179422) (-3603 . 179307) (-3604 . 179179) + (-3605 . 178837) (-3606 . 178809) (-3607 . 178758) (-3608 . 178650) + (-3609 . 178567) (-3610 . 178489) (-3611 . 178229) (-3612 . 178118) + (-3613 . 178019) (-3614 . 177888) (-3615 . 177602) (-3616 . 177524) + (-3617 . 177454) (-3618 . 177296) (-3619 . 177111) (-3620 . 176892) + (-3621 . 176749) (-3622 . 176678) (-3623 . 176649) (-3624 . 176615) + (-3625 . 176538) (-3626 . 176416) (-3627 . 176388) (-3628 . 176328) + (-3629 . 176260) (-3630 . 175674) (-3631 . 175544) (-3632 . 175266) + (-3633 . 175197) (-3634 . 175099) (-3635 . 174993) (-3636 . 174832) + (-3637 . 174766) (-3638 . 174650) (-3639 . 174114) (-3640 . 174019) + (-3641 . 173933) (-3642 . 173796) (-3643 . 173292) (-3644 . 172959) + (-3645 . 172462) (-3646 . 172322) (-3647 . 172153) (-3648 . 171928) + (-3649 . 171697) (-3650 . 171443) (-3651 . 171391) (-3652 . 171214) + (-3653 . 171120) (-3654 . 170943) (-3655 . 170893) (-3656 . 170838) + (-3657 . 170040) (-3658 . 169876) (-3659 . 169790) (-3660 . 169741) + (-3661 . 169469) (-3662 . 169357) (-3663 . 169228) (-3664 . 169154) + (-3665 . 169101) (-3666 . 168947) (-3667 . 168888) (-3668 . 168838) + (-3669 . 168734) (-3670 . 167192) (-3671 . 167069) (-3672 . 166968) + (-3673 . 166876) (-3674 . 166775) (-3675 . 166725) (-3676 . 166670) + (-3677 . 166577) (-3678 . 166511) (-3679 . 166393) (-3680 . 166168) + (-3681 . 165579) (-3682 . 165454) (-3683 . 165221) (-3684 . 165165) + (-3685 . 165109) (-3686 . 164980) (-3687 . 164921) (-3688 . 163836) + (-3689 . 163677) (-3690 . 163459) (-3691 . 163334) (-3692 . 163032) + (-3693 . 162951) (-3694 . 162759) (-3695 . 162640) (-3696 . 162538) + (-3697 . 162468) (-3698 . 162321) (-3699 . 162222) (-3700 . 161906) + (-3701 . 161832) (-3702 . 161717) (-3703 . 161572) (-3704 . 161459) + (-3705 . 161403) (-3706 . 161214) (-3707 . 161043) (-3708 . 160955) + (-3709 . 160876) (-3710 . 160541) (-3711 . 160425) (-3712 . 160328) + (-3713 . 160276) (-3714 . 160156) (-3715 . 160070) (-3716 . 160002) + (-3717 . 159498) (-3718 . 159371) (-3719 . 159103) (-3720 . 158999) + (-3721 . 158864) (-3722 . 158812) (-3723 . 158628) (-3724 . 158513) + (-3725 . 158348) (-3726 . 158264) (-3727 . 158169) (-3728 . 158109) + (-3729 . 158012) (-3730 . 157851) (-3731 . 157801) (-3732 . 157734) + (-3733 . 157683) (-3734 . 156803) (-3735 . 156705) (-3736 . 156622) + (-3737 . 156514) (-3738 . 156413) (-3739 . 156327) (-3740 . 156109) + (-3741 . 155558) (-3742 . 155097) (-3743 . 155002) (-3744 . 154569) + (-3745 . 154475) (-3746 . 154375) (-3747 . 154275) (-3748 . 154171) + (-3749 . 154074) (-3750 . 153964) (-3751 . 153762) (-3752 . 153506) + (-3753 . 153391) (-3754 . 153260) (-3755 . 153107) (-3756 . 152855) + (-3757 . 152434) (-3758 . 152334) (-3759 . 152249) (-3760 . 152031) + (-3761 . 151904) (-3762 . 151487) (-3763 . 150717) (-3764 . 150447) + (-3765 . 150385) (-3766 . 150089) (-3767 . 150034) (-3768 . 149919) + (-3769 . 149831) (-3770 . 149538) (-3771 . 149171) (-3772 . 149114) + (-3773 . 149062) (-3774 . 148949) (-3775 . 148771) (-3776 . 148484) + (-3777 . 148341) (-3778 . 148246) (-3779 . 148215) (-3780 . 148184) + (-3781 . 147318) (-3782 . 147099) (-3783 . 147032) (-3784 . 146831) + (-3785 . 146757) (-3786 . 146440) (-3787 . 146048) (-3788 . 145787) + (-3789 . 145735) (-3790 . 145614) (-3791 . 145489) (-3792 . 145377) + (-3793 . 144989) (-3794 . 144930) (-3795 . 144540) (-3796 . 144406) + (-3797 . 144336) (-3798 . 143812) (-3799 . 143711) (-3800 . 143656) + (-3801 . 143340) (-3802 . 143272) (-3803 . 143117) (-3804 . 143045) + (-3805 . 142769) (-3806 . 142670) (-3807 . 142604) (-3808 . 142357) + (-3809 . 142269) (-3810 . 142185) (-3811 . 142133) (-3812 . 141858) + (-3813 . 141670) (-3814 . 141278) (-3815 . 140903) (-3816 . 140772) + (-3817 . 140583) (-3818 . 139700) (-3819 . 138812) (-3820 . 138742) + (-3821 . 138312) (-3822 . 138212) (-3823 . 138121) (-3824 . 137610) + (-3825 . 137551) (-3826 . 137264) (-3827 . 137111) (-3828 . 136996) + (-3829 . 136927) (-3830 . 136875) (-3831 . 136822) (-3832 . 136759) + (-3833 . 136678) (-3834 . 136513) (-3835 . 136460) (-3836 . 136210) + (-3837 . 133954) (-3838 . 133902) (-3839 . 133624) (-3840 . 133278) + (-3841 . 133005) (-3842 . 132939) (-3843 . 132471) (-3844 . 132318) + (-3845 . 131958) (-3846 . 131859) (-3847 . 131729) (-3848 . 131616) + (-3849 . 131280) (-3850 . 131007) (-3851 . 130979) (-3852 . 130838) + (-3853 . 130728) (-3854 . 130585) (-3855 . 130285) (-3856 . 130190) + (-3857 . 129813) (-3858 . 129719) (-3859 . 129422) (-3860 . 129264) + (-3861 . 128297) (-3862 . 128195) (-3863 . 127662) (-3864 . 127324) + (-3865 . 127247) (-3866 . 127128) (-3867 . 127033) (-3868 . 126863) + (-3869 . 126835) (-3870 . 126774) (-3871 . 126646) (-3872 . 126547) + (-3873 . 126477) (-3874 . 126024) (-3875 . 125427) (-3876 . 125337) + (-3877 . 124999) (-3878 . 122858) (-3879 . 122803) (-3880 . 122659) + (-3881 . 122515) (-3882 . 122436) (-3883 . 122320) (-3884 . 122160) + (-3885 . 122063) (-3886 . 121991) (-3887 . 121790) (-3888 . 121734) + (-3889 . 121566) (-3890 . 121272) (-3891 . 121179) (-3892 . 120994) + (-3893 . 120898) (-3894 . 120767) (-3895 . 120696) (-3896 . 120411) + (-3897 . 119547) (-3898 . 119080) (-3899 . 118882) (-3900 . 118826) + (-3901 . 118774) (-3902 . 118071) (-3903 . 118042) (-3904 . 117278) + (-3905 . 117141) (-3906 . 117063) (-3907 . 116195) (-3908 . 116140) + (-3909 . 116038) (-3910 . 115556) (-3911 . 115365) (-3912 . 115293) + (-3913 . 115169) (-3914 . 114817) (-3915 . 114737) (-3916 . 114641) + (-3917 . 114568) (-3918 . 114463) (-3919 . 114411) (-3920 . 114213) + (-3921 . 114144) (-3922 . 114041) (-3923 . 113894) (-3924 . 113680) + (-3925 . 113621) (-3926 . 113477) (-3927 . 113368) (-3928 . 113266) + (-3929 . 113160) (-3930 . 113126) (-3931 . 112877) (-3932 . 112618) + (-3933 . 111860) (-3934 . 111726) (-3935 . 111642) (-3936 . 111392) + (-3937 . 111322) (-3938 . 111214) (-3939 . 111160) (-3940 . 111086) + (-3941 . 110998) (-3942 . 107699) (-3943 . 107553) (-3944 . 107467) + (-3945 . 107357) (-3946 . 107103) (-3947 . 107030) (-3948 . 106791) + (-3949 . 106659) (-3950 . 106631) (-3951 . 106597) (-3952 . 106541) + (-3953 . 106322) (-3954 . 106164) (-3955 . 106078) (-3956 . 105927) + (-3957 . 105823) (-3958 . 105704) (-3959 . 105583) (-3960 . 105460) + (-3961 . 105324) (-3962 . 105271) (-3963 . 105193) (-3964 . 105099) + (-3965 . 104969) (-3966 . 104899) (-3967 . 104758) (-3968 . 104704) + (-3969 . 104523) (-3970 . 104466) (-3971 . 104174) (-3972 . 104035) + (-3973 . 103704) (-3974 . 103645) (-3975 . 103562) (-3976 . 103466) + (-3977 . 103194) (-3978 . 103056) (-3979 . 102952) (-3980 . 102879) + (-3981 . 102808) (-3982 . 102614) (-3983 . 102523) (-3984 . 102332) + (-3985 . 102169) (-3986 . 102034) (-3987 . 101939) (-3988 . 101781) + (-3989 . 101470) (-3990 . 101387) (-3991 . 101207) (-3992 . 101155) + (-3993 . 101036) (-3994 . 100854) (-3995 . 100738) (-3996 . 100646) + (-3997 . 100565) (-3998 . 100493) (-3999 . 100283) (-4000 . 100212) + (-4001 . 100109) (-4002 . 99458) (-4003 . 99370) (-4004 . 99212) + (-4005 . 99184) (-4006 . 99096) (-4007 . 98805) (-4008 . 98470) + (-4009 . 98327) (-4010 . 98271) (-4011 . 98185) (-4012 . 98113) + (-4013 . 98004) (-4014 . 97837) (-4015 . 97721) (-4016 . 96523) + (-4017 . 96252) (-4018 . 96056) (-4019 . 95798) (-4020 . 95659) + (-4021 . 95463) (-4022 . 95396) (-4023 . 95268) (-4024 . 95130) + (-4025 . 95098) (-4026 . 94672) (-4027 . 93449) (-4028 . 93336) + (-4029 . 93242) (-4030 . 93140) (-4031 . 92978) (-4032 . 92876) + (-4033 . 92848) (-4034 . 92792) (-4035 . 92696) (-4036 . 92640) + (-4037 . 92554) (-4038 . 92372) (-4039 . 92274) (-4040 . 92191) + (-4041 . 91677) (-4042 . 91604) (-4043 . 91480) (-4044 . 91348) + (-4045 . 91190) (-4046 . 91027) (-4047 . 90949) (-4048 . 90876) + (-4049 . 90740) (-4050 . 90640) (-4051 . 90571) (-4052 . 90439) + (-4053 . 90326) (-4054 . 90148) (-4055 . 90007) (-4056 . 89891) + (-4057 . 89682) (-4058 . 89549) (-4059 . 89454) (-4060 . 89283) + (-4061 . 89095) (-4062 . 89017) (-4063 . 88940) (-4064 . 88912) + (-4065 . 88835) (-4066 . 88686) (-4067 . 88624) (-4068 . 88547) + (-4069 . 88494) (-4070 . 88204) (-4071 . 88150) (-4072 . 87923) + (-4073 . 87664) (-4074 . 87447) (-4075 . 87225) (-4076 . 86573) + (-4077 . 86541) (-4078 . 86439) (-4079 . 86271) (-4080 . 86145) + (-4081 . 86074) (-4082 . 85973) (-4083 . 85892) (-4084 . 85789) + (-4085 . 85582) (-4086 . 85416) (-4087 . 85346) (-4088 . 85248) + (-4089 . 85103) (-4090 . 84917) (-4091 . 84789) (-4092 . 84665) + (-4093 . 84610) (-4094 . 84544) (-4095 . 84173) (-4096 . 83963) + (-4097 . 83911) (-4098 . 83738) (-4099 . 83520) (-4100 . 83413) + (-4101 . 83323) (-4102 . 83222) (-4103 . 83059) (-4104 . 82707) + (-4105 . 82620) (-4106 . 82568) (-4107 . 82380) (-4108 . 81704) + (-4109 . 79923) (-4110 . 79817) (-4111 . 79752) (-4112 . 79587) + (-4113 . 79535) (-4114 . 79312) (-4115 . 79110) (-4116 . 76978) + (-4117 . 76857) (-4118 . 76741) (-4119 . 76604) (-4120 . 76550) + (-4121 . 76283) (-4122 . 75740) (-4123 . 75460) (-4124 . 75302) + (-4125 . 74719) (-4126 . 74587) (-4127 . 74372) (-4128 . 74168) + (-4129 . 73950) (-4130 . 73855) (-4131 . 73225) (-4132 . 73170) + (-4133 . 73107) (-4134 . 72317) (-4135 . 72215) (-4136 . 72104) + (-4137 . 72073) (-4138 . 72011) (-4139 . 71888) (-4140 . 71784) + (-4141 . 71687) (-4142 . 71480) (-4143 . 71418) (-4144 . 69304) + (-4145 . 69056) (-4146 . 68979) (-4147 . 68821) (-4148 . 68708) + (-4149 . 68579) (-4150 . 68432) (-4151 . 67265) (-4152 . 67182) + (-4153 . 67085) (-4154 . 66372) (-4155 . 66154) (-4156 . 66080) + (-4157 . 65962) (-4158 . 65786) (-4159 . 65706) (-4160 . 65506) + (-4161 . 65247) (-4162 . 65195) (-4163 . 65100) (-4164 . 64985) + (-4165 . 64957) (-4166 . 64872) (-4167 . 64738) (-4168 . 64670) + (-4169 . 64461) (-4170 . 64366) (-4171 . 64287) (-4172 . 62885) + (-4173 . 62549) (-4174 . 62369) (-4175 . 61971) (-4176 . 61788) + (-4177 . 61714) (-4178 . 61569) (-4179 . 61276) (-4180 . 61131) + (-4181 . 60947) (-4182 . 60837) (-4183 . 60643) (-4184 . 60578) + (-4185 . 60525) (-4186 . 60295) (-4187 . 60065) (-4188 . 59914) + (-4189 . 59858) (-4190 . 59320) (-4191 . 59223) (-4192 . 58917) + (-4193 . 58821) (-4194 . 58787) (-4195 . 58704) (-4196 . 58642) + (-4197 . 58133) (-4198 . 58039) (-4199 . 57660) (-4200 . 52146) + (-4201 . 52089) (-4202 . 52035) (-4203 . 51967) (-4204 . 51729) + (-4205 . 51618) (-4206 . 51114) (-4207 . 50973) (-4208 . 50815) + (-4209 . 50744) (-4210 . 50413) (-4211 . 50020) (-4212 . 49954) + (-4213 . 49895) (-4214 . 49704) (-4215 . 49574) (-4216 . 49425) + (-4217 . 49383) (-4218 . 49281) (-4219 . 49120) (-4220 . 48979) + (-4221 . 48493) (-4222 . 48051) (-4223 . 48017) (-4224 . 47770) + (-4225 . 47671) (-4226 . 47567) (-4227 . 47319) (-4228 . 47260) + (-4229 . 47181) (-4230 . 47063) (-4231 . 46924) (-4232 . 46571) + (-4233 . 46236) (-4234 . 46184) (-4235 . 46100) (-4236 . 45958) + (-4237 . 45881) (-4238 . 45654) (-4239 . 45626) (-4240 . 45481) + (-4241 . 45401) (-4242 . 45286) (-4243 . 45173) (-4244 . 45095) + (-4245 . 44808) (-4246 . 44728) (-4247 . 44635) (-4248 . 44465) + (-4249 . 44413) (-4250 . 44243) (-4251 . 44052) (-4252 . 43815) + (-4253 . 43659) (-4254 . 43180) (-4255 . 43087) (-4256 . 42869) + (-4257 . 42771) (-4258 . 42568) (-4259 . 42512) (-4260 . 42378) + (-4261 . 42284) (-4262 . 42225) (-4263 . 42099) (-4264 . 41924) + (-4265 . 41774) (-4266 . 41691) (-4267 . 41662) (-4268 . 41447) + (-4269 . 41345) (-4270 . 41293) (-4271 . 41169) (-4272 . 40792) + (-4273 . 36632) (-4274 . 36579) (-4275 . 36363) (-4276 . 36274) + (-4277 . 36215) (-4278 . 36131) (-4279 . 36007) (-4280 . 35711) + (-4281 . 35422) (-4282 . 35370) (-4283 . 35248) (-4284 . 35196) + (-4285 . 35117) (-4286 . 35051) (-4287 . 34979) (-4288 . 34784) + (-4289 . 34681) (-4290 . 34579) (-4291 . 34505) (-4292 . 34364) + (-4293 . 34154) (-4294 . 34085) (-4295 . 33892) (-4296 . 33814) + (-4297 . 33761) (-4298 . 33626) (-4299 . 33461) (-4300 . 33409) + (-4301 . 33315) (-4302 . 33242) (-4303 . 33154) (-4304 . 33083) + (-4305 . 32993) (-4306 . 32964) (-4307 . 32906) (-4308 . 32835) + (-4309 . 32675) (-4310 . 32617) (-4311 . 32290) (-4312 . 32144) + (-4313 . 32078) (-4314 . 32029) (-4315 . 31979) (-4316 . 31908) + (-4317 . 31689) (-4318 . 31478) (-4319 . 31447) (-4320 . 31361) + (-4321 . 30968) (-4322 . 30328) (-4323 . 30009) (-4324 . 29802) + (-4325 . 29471) (-4326 . 29272) (-4327 . 27642) (-4328 . 27551) + (-4329 . 27481) (-4330 . 27171) (-4331 . 27093) (-4332 . 27005) + (-4333 . 26467) (-4334 . 26412) (-4335 . 26194) (-4336 . 26114) + (-4337 . 26082) (-4338 . 25223) (-4339 . 25086) (-4340 . 24815) + (-4341 . 24703) (-4342 . 24059) (-4343 . 23956) (-4344 . 23882) + (-4345 . 23763) (-4346 . 23585) (-4347 . 23342) (-4348 . 23175) + (-4349 . 21879) (-4350 . 21128) (-4351 . 21091) (-4352 . 20877) + (-4353 . 20515) (-4354 . 20442) (-4355 . 20146) (-4356 . 20038) + (-4357 . 19911) (-4358 . 19659) (-4359 . 19610) (-4360 . 19511) + (-4361 . 19393) (-4362 . 19291) (-4363 . 19160) (-4364 . 19012) + (-4365 . 18521) (-4366 . 18406) (-4367 . 18354) (-4368 . 18021) + (-4369 . 16929) (-4370 . 16858) (-4371 . 16434) (-4372 . 16338) + (-4373 . 16237) (-4374 . 15922) (-4375 . 15865) (-4376 . 15710) + (-4377 . 15610) (-4378 . 15497) (-4379 . 15444) (-4380 . 15378) + (-4381 . 15292) (-4382 . 15188) (-4383 . 14794) (-4384 . 14726) + (-4385 . 13656) (-4386 . 13464) (-4387 . 13351) (-4388 . 13235) + (-4389 . 12950) (-4390 . 12792) (-4391 . 12711) (-4392 . 12612) + (-4393 . 12575) (-4394 . 11510) (-4395 . 11403) (-4396 . 11222) + (-4397 . 11148) (-4398 . 10508) (-4399 . 10425) (-4400 . 10359) + (-4401 . 8593) (-4402 . 8565) (-4403 . 8382) (-4404 . 8239) + (-4405 . 8171) (-4406 . 7966) (-4407 . 7860) (-4408 . 7802) + (-4409 . 7621) (-4410 . 7565) (-4411 . 7424) (-4412 . 7168) + (-4413 . 5713) (-4414 . 5589) (-4415 . 5190) (-4416 . 4970) + (-4417 . 4919) (-4418 . 4831) (-4419 . 4759) (-4420 . 4682) + (-4421 . 3490) (-4422 . 3334) (-4423 . 3253) (-4424 . 3028) + (-4425 . 1538) (-4426 . 1481) (-4427 . 1395) (-4428 . 1309) + (-4429 . 1149) (-4430 . 958) (-4431 . 892) (-4432 . 721) (-4433 . 613) + (-4434 . 467) (-4435 . 382) (-4436 . 279) (-4437 . 196) (-4438 . 30))
\ No newline at end of file |